Boot File of a Preset Image
ModelArts Standard offers multiple AI images for model training, which can be adapted by modifying their boot commands.
This section describes how to modify the boot file when creating a training job using different preset images.
Ascend-Powered-Engine Boot Principles
Ascend-Powered-Engine is a unique engine that combines multiple AI frameworks, runtime environments, and boot modes tailored to Ascend accelerator chips.
- All Ascend accelerators run on Arm servers, which means the upper-layer Docker images are Arm images.
- The NVIDIA CUDA (unified computing architecture) driver is installed in images for GPU scenarios. The Huawei Cloud CANN (heterogeneous computing architecture) driver is installed in images powered by the Ascend-Powered-Engine, adapting to the underlying hardware version.
When a training job is submitted, ModelArts Standard automatically runs the boot file. The boot process repeats as many times as there are training cards.
In a single-node job, the boot file is executed once for each card in a task. For example, if there is one card, the boot file is executed once. If there are eight cards, the boot file is executed eight times. So, do not listen on ports in the boot file.
The following environment variables are set in the boot file:
- RANK_TABLE_FILE: path of the rank table file.
- ASCEND_DEVICE_ID: logical device ID. For example, for single-card training, the value is always 0.
- RANK_ID: logical (sequential) number of a device in a training job.
- RANK_SIZE: Set this parameter based on the number of devices in the rank table file. For example, the value is 4 for 4 snt9b devices.
To ensure the boot file runs only once, check the ASCEND_DEVICE_ID value. If it is 0, execute the logic; otherwise, exit directly.
For details about the code example mindspore-verification.py of Ascend-Powered-Engine, see the training script mindspore-verification.py.
The command for starting Ascend-Powered-Engine in standalone mode is the same as that in distributed mode.
PyTorch-GPU Boot Principles
For single-node multi-card scenarios, the platform adds the --init_method "tcp://<ip>:<port>" parameter to the boot file.
For multi-node multi-card scenarios, the platform adds the --init_method "tcp://<ip>:<port>" --rank <rank_id> --world_size <node_num> parameter to the boot file.
The preceding parameters must be parsed in the boot file.
For details about the code example of the PyTorch-GPU framework, see Example: Creating a DDP Distributed Training Job (PyTorch + GPU) (Method 1).
TensorFlow-GPU Boot Principles
For a single-node job, ModelArts starts a training container that exclusively uses the resources on the node.
For a multi-node job, ModelArts starts a parameter server and a worker on the same node. It allocates parameter server and worker tasks in a 1:1 ratio. For example, in a two-node job, two parameter servers and two workers are allocated. ModelArts also injects the following parameters into the boot file: --task_index <VC_TASK_INDEX>, --ps_hosts <TF_PS_HOSTS>, --worker_hosts <TF_WORKER_HOSTS>, and --job_name <MA_TASK_NAME>.
The following parameters must be parsed in the boot file.
- VC_TASK_INDEX: task serial number, for example, 0/1/2.
- TF_PS_HOSTS: addresses of parameter server nodes, for example, [xx-ps-0.xx:TCP_PORT,xx-ps-1.xx:TCP_PORT]. The value of TCP_PORT is a random port ranging from 5,000 to 10,000.
- TF_WORKER_HOSTS: addresses of worker nodes, for example, [xx-worker-0.xx:TCP_PORT,xx-worker-1.xx:TCP_PORT]. The value of TCP_PORT is a random port ranging from 5,000 to 10,000.
- MA_TASK_NAME: task name, which can be ps or worker.
For details, see the example code file mnist.py (single-node) of the TensorFlow-GPU framework.
Horovod/MPI/MindSpore-GPU
ModelArts uses mpirun to run boot files for Horovod, MPI, or MindSpore-GPU. To use a preset engine in ModelArts Standard, simply edit the boot file (training script). ModelArts Standard automatically builds the mpirun command and training job cluster. The platform does not add extra parameters to the boot file.
Example of pytorch_synthetic_benchmark.py:
import argparse import torch.backends.cudnn as cudnn import torch.nn.functional as F import torch.optim as optim import torch.utils.data.distributed from torchvision import models import horovod.torch as hvd import timeit import numpy as np # Benchmark settings parser = argparse.ArgumentParser(description='PyTorch Synthetic Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--fp16-allreduce', action='store_true', default=False, help='use fp16 compression during allreduce') parser.add_argument('--model', type=str, default='resnet50', help='model to benchmark') parser.add_argument('--batch-size', type=int, default=32, help='input batch size') parser.add_argument('--num-warmup-batches', type=int, default=10, help='number of warm-up batches that don\'t count towards benchmark') parser.add_argument('--num-batches-per-iter', type=int, default=10, help='number of batches per benchmark iteration') parser.add_argument('--num-iters', type=int, default=10, help='number of benchmark iterations') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--use-adasum', action='store_true', default=False, help='use adasum algorithm to do reduction') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() hvd.init() if args.cuda: # Horovod: pin GPU to local rank. torch.cuda.set_device(hvd.local_rank()) cudnn.benchmark = True # Set up standard model. model = getattr(models, args.model)() # By default, Adasum doesn't need scaling up learning rate. lr_scaler = hvd.size() if not args.use_adasum else 1 if args.cuda: # Move model to GPU. model.cuda() # If using GPU Adasum allreduce, scale learning rate by local_size. if args.use_adasum and hvd.nccl_built(): lr_scaler = hvd.local_size() optimizer = optim.SGD(model.parameters(), lr=0.01 * lr_scaler) # Horovod: (optional) compression algorithm. compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none # Horovod: wrap optimizer with DistributedOptimizer. optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters(), compression=compression, op=hvd.Adasum if args.use_adasum else hvd.Average) # Horovod: broadcast parameters & optimizer state. hvd.broadcast_parameters(model.state_dict(), root_rank=0) hvd.broadcast_optimizer_state(optimizer, root_rank=0) # Set up fixed fake data data = torch.randn(args.batch_size, 3, 224, 224) target = torch.LongTensor(args.batch_size).random_() % 1000 if args.cuda: data, target = data.cuda(), target.cuda() def benchmark_step(): optimizer.zero_grad() output = model(data) loss = F.cross_entropy(output, target) loss.backward() optimizer.step() def log(s, nl=True): if hvd.rank() != 0: return print(s, end='\n' if nl else '') log('Model: %s' % args.model) log('Batch size: %d' % args.batch_size) device = 'GPU' if args.cuda else 'CPU' log('Number of %ss: %d' % (device, hvd.size())) # Warm-up log('Running warmup...') timeit.timeit(benchmark_step, number=args.num_warmup_batches) # Benchmark log('Running benchmark...') img_secs = [] for x in range(args.num_iters): time = timeit.timeit(benchmark_step, number=args.num_batches_per_iter) img_sec = args.batch_size * args.num_batches_per_iter / time log('Iter #%d: %.1f img/sec per %s' % (x, img_sec, device)) img_secs.append(img_sec) # Results img_sec_mean = np.mean(img_secs) img_sec_conf = 1.96 * np.std(img_secs) log('Img/sec per %s: %.1f +-%.1f' % (device, img_sec_mean, img_sec_conf)) log('Total img/sec on %d %s(s): %.1f +-%.1f' % (hvd.size(), device, hvd.size() * img_sec_mean, hvd.size() * img_sec_conf))
run_mpi.sh is as follows:
#!/bin/bash MY_HOME=/home/ma-user MY_SSHD_PORT=${MY_SSHD_PORT:-"36666"} MY_MPI_BTL_TCP_IF=${MY_MPI_BTL_TCP_IF:-"eth0,bond0"} MY_TASK_INDEX=${MA_TASK_INDEX:-${VC_TASK_INDEX:-${VK_TASK_INDEX}}} MY_MPI_SLOTS=${MY_MPI_SLOTS:-"${MA_NUM_GPUS}"} MY_MPI_TUNE_FILE="${MY_HOME}/env_for_user_process" if [ -z ${MY_MPI_SLOTS} ]; then echo "[run_mpi] MY_MPI_SLOTS is empty, set it be 1" MY_MPI_SLOTS="1" fi printf "MY_HOME: ${MY_HOME}\nMY_SSHD_PORT: ${MY_SSHD_PORT}\nMY_MPI_BTL_TCP_IF: ${MY_MPI_BTL_TCP_IF}\nMY_TASK_INDEX: ${MY_TASK_INDEX}\nMY_MPI_SLOTS: ${MY_MPI_SLOTS}\n" env | grep -E '^MA_|SHARED_|^S3_|^PATH|^VC_WORKER_|^SCC|^CRED' | grep -v '=$' > ${MY_MPI_TUNE_FILE} # add -x to each line sed -i 's/^/-x /' ${MY_MPI_TUNE_FILE} sed -i "s|{{MY_SSHD_PORT}}|${MY_SSHD_PORT}|g" ${MY_HOME}/etc/ssh/sshd_config # start sshd service bash -c "$(which sshd) -f ${MY_HOME}/etc/ssh/sshd_config" # confirm the sshd is up netstat -anp | grep LIS | grep ${MY_SSHD_PORT} if [ $MY_TASK_INDEX -eq 0 ]; then # generate the hostfile of mpi for ((i=0; i<$MA_NUM_HOSTS; i++)) do eval hostname=${MA_VJ_NAME}-${MA_TASK_NAME}-${i}.${MA_VJ_NAME} echo "[run_mpi] hostname: ${hostname}" ip="" while [ -z "$ip" ]; do ip=$(ping -c 1 ${hostname} | grep "PING" | sed -E 's/PING .* .([0-9.]+). .*/\1/g') sleep 1 done echo "[run_mpi] resolved ip: ${ip}" # test the sshd is up while : do if [ cat < /dev/null >/dev/tcp/${ip}/${MY_SSHD_PORT} ]; then break fi sleep 1 done echo "[run_mpi] the sshd of ip ${ip} is up" echo "${ip} slots=$MY_MPI_SLOTS" >> ${MY_HOME}/hostfile done printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n" fi RET_CODE=0 if [ $MY_TASK_INDEX -eq 0 ]; then echo "[run_mpi] start exec command time: "$(date +"%Y-%m-%d-%H:%M:%S") np=$(( ${MA_NUM_HOSTS} * ${MY_MPI_SLOTS} )) echo "[run_mpi] command: mpirun -np ${np} -hostfile ${MY_HOME}/hostfile -mca plm_rsh_args \"-p ${MY_SSHD_PORT}\" -tune ${MY_MPI_TUNE_FILE} ... $@" # execute mpirun at worker-0 # mpirun mpirun \ -np ${np} \ -hostfile ${MY_HOME}/hostfile \ -mca plm_rsh_args "-p ${MY_SSHD_PORT}" \ -tune ${MY_MPI_TUNE_FILE} \ -bind-to none -map-by slot \ -x NCCL_DEBUG=INFO -x NCCL_SOCKET_IFNAME=${MY_MPI_BTL_TCP_IF} -x NCCL_SOCKET_FAMILY=AF_INET \ -x HOROVOD_MPI_THREADS_DISABLE=1 \ -x LD_LIBRARY_PATH \ -mca pml ob1 -mca btl ^openib -mca plm_rsh_no_tree_spawn true \ "$@" RET_CODE=$? if [ $RET_CODE -ne 0 ]; then echo "[run_mpi] exec command failed, exited with $RET_CODE" else echo "[run_mpi] exec command successfully, exited with $RET_CODE" fi # stop 1...N worker by killing the sleep proc sed -i '1d' ${MY_HOME}/hostfile if [ `cat ${MY_HOME}/hostfile | wc -l` -ne 0 ]; then echo "[run_mpi] stop 1 to (N - 1) worker by killing the sleep proc" sed -i 's/${MY_MPI_SLOTS}/1/g' ${MY_HOME}/hostfile printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n" mpirun \ --hostfile ${MY_HOME}/hostfile \ --mca btl_tcp_if_include ${MY_MPI_BTL_TCP_IF} \ --mca plm_rsh_args "-p ${MY_SSHD_PORT}" \ -x PATH -x LD_LIBRARY_PATH \ pkill sleep \ > /dev/null 2>&1 fi echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S") else echo "[run_mpi] the training log is in worker-0" sleep 365d echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S") fi exit $RET_CODE
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.See the reply and handling status in My Cloud VOC.
For any further questions, feel free to contact us through the chatbot.
Chatbot