| 
       1  | 
     
       Absval  | 
     
       Computes the absolute value of the input.  | 
     
       [Inputs] 
      One input 
      [Arguments] 
      engine: (optional) enum, default to 0, CAFFE = 1, CUDNN = 2 
      [Restrictions] 
      None 
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       2  | 
     
       Argmax  | 
     
       Computes the index of the maximum values.  | 
     
       [Inputs] 
      One input 
      [Arguments] 
      
       - out_max_val: (optional) bool, default to false
 
       - top_k: (optional) unit32, default to 1
 
       - axis: (optional) int32
 
       
      [Restrictions] 
      None 
      [Quantization tool supporting] 
      No  | 
    
    
     | 
       3  | 
     
       BatchNorm  | 
     
       Normalizes the input: 
      variance of [(x – avg(x))/x]  | 
     
       [Inputs] 
      One input 
      [Arguments] 
      
       - use_global_stats: bool, must be true
 
       - moving_average_fraction: (optional) float, default to 0.999
 
       - eps: (optional) float, default to 1e – 5
 
       
      [Restrictions] 
      Only the C dimension can be normalized. 
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       4  | 
     
       Concat  | 
     
       Concatenates the input along the given dimension.  | 
     
       [Inputs] 
      Multiple inputs 
      [Arguments] 
      
       - concat_dim: (optional) uint32, default to 1, greater than 0
 
       - axis: (optional) int32, default to 1, exclusive with concat_dim. When axis is –1, four input dimensions are required. Otherwise, the result may be incorrect.
 
       
      [Restrictions] 
      
       - The number of dimensions of the input tensors must match, and all dimensions except axis must be equal.
 
       - The range of the input Tensor count is [1, 1000].
 
       
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       5  | 
     
       ConvolutionDepthwise  | 
     
       Convolution depthwise  | 
     
       [Inputs] 
      One input, with a constant filter and four dimensions 
      [Arguments] 
      
       - num_output: (optional) uint32
 
       - bias_term: (optional) bool, default to true
 
       - pad: uint32, default to 0, array
 
       - kernel_size: uint32, array
 
       - stride: uint32, default to 1, array
 
       - dilation: uint32, only dilation=1 is supported, array
 
       - pad_h: (optional) uint32, default to 0 (2D only)
 
       - pad_w: (optional) uint32, default to 0 (2D only)
 
       - kernel_h: (optional) uint32 (2D only)
 
       - kernel_w: (optional) uint32 (2D only)
 
       - stride_h: (optional) uint32 (2D only)
 
       - stride_w: (optional) uint32 (2D only)
 
       - group: (optional) uint32, default to 1
 
       - weight_filler: This parameter is not supported.
 
       - bias_filler: This parameter is not supported.
 
       - engine: (optional) enum, default to 0, CAFFE = 1, CUDNN = 2
 
       - force_nd_im2col:(optional) bool, default to false
 
       - axis: (optional) int32, default to 1
 
       
      [Restrictions] 
      filterN = inputC = group 
      (W + 15)/16 * 16) * filter.W * 32 ≤ 32 * 1024, where, W is W of the operator input and filter.W is W of the filter. 
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       6  | 
     
       Convolution  | 
     
       Convolves the input.  | 
     
       [Inputs] 
      One input, with a constant filter and four dimensions 
      [Arguments] 
      
       - num_output: (optional) uint32
 
       - bias_term: (optional) bool, default to true
 
       - pad: uint32, default to 0, array
 
       - kernel_size: uint32, array
 
       - stride: uint32, default to 1, array
 
       - dilation: uint32, default to 1, array
 
       - pad_h: (optional) uint32, default to 0 (2D only)
 
       - pad_w: (optional) uint32, default to 0 (2D only)
 
       - kernel_h: (optional) uint32 (2D only)
 
       - kernel_w: (optional) uint32 (2D only)
 
       - stride_h: (optional) uint32 (2D only)
 
       - stride_w: (optional) uint32 (2D only)
 
       - group: (optional) uint32, default to 1
 
       - weight_filler: This parameter is not supported.
 
       - bias_filler: This parameter is not supported.
 
       - engine: (optional) enum, default to 0, CAFFE = 1, CUDNN = 2
 
       - force_nd_im2col:(optional) bool, default to false
 
       - axis: (optional) int32, default to 1
 
       
      [Restrictions] 
      
       - (inputW + padWHead + padWTail) ≥ (((FilterW – 1) * dilationW) + 1)
 
       - (inputW + padWHead + padWTail)/StrideW + 1 ≤ 2147483647
 
       - (inputH + padHHead + padHTail) ≥ (((FilterH – 1) * dilationH) + 1)
 
       - (inputH + padHHead + padHTail)/StrideH + 1 ≤ 2147483647
 
       - 0 ≤ Pad < 256, 0 < FilterSize < 256, 0 < Stride < 64, 1 ≤ dilationsize < 256
 
       
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       7  | 
     
       Crop  | 
     
       Crops the input.  | 
     
       [Inputs] 
      Two inputs 
      [Arguments] 
      
       - axis: (optional) int32, default to 2. When axis is –1, four input dimensions are required.
 
       - offset: uint32, array
 
       
      [Restrictions] 
      None 
      [Quantization tool supporting] 
      No  | 
    
    
     | 
       8  | 
     
       Deconvolution  | 
     
       Deconvolution  | 
     
       [Inputs] 
      One input, with a constant filter and four dimensions 
      [Arguments] 
      
       - num_output: (optional) uint32
 
       - bias_term: (optional) bool, default to true
 
       - pad: uint32, default to 0, array
 
       - kernel_size: uint32, array
 
       - stride: uint32, default to 1, array
 
       - dilation: uint32, default to 1, array
 
       - pad_h: (optional) uint32, default to 0 (2D only)
 
       - pad_w: (optional) uint32, default to 0 (2D only)
 
       - kernel_h: (optional) uint32 (2D only)
 
       - kernel_w: (optional) uint32 (2D only)
 
       - stride_h: (optional) uint32 (2D only)
 
       - stride_w: (optional) uint32 (2D only)
 
       - group: (optional) uint32, default to 1
 
       - weight_filler: This parameter is not supported.
 
       - bias_filler: This parameter is not supported.
 
       - engine: (optional) enum, default to 0, CAFFE = 1, CUDNN = 2
 
       - force_nd_im2col:(optional) bool, default to false
 
       - axis: (optional) int32, default to 1
 
       
      [Restrictions] 
      
       - group = 1
 
       - dilation = 1
 
       - filterH – padHHead – 1 ≥ 0
 
       - filterW – padWHead – 1 ≥ 0
 
       - Restrictions involving intermediate variables:
 
       
      1. a = ALIGN(filter_num, 16) * ALIGN(filter_c, 16) * filter_h * filter_w * 2 
      If ALIGN(filter_c, 16)%32 = 0, a = a/2 
      2. conv_input_width = (deconvolution input W – 1) * strideW + 1 
      3. b = (conv_input_width) * filter_h * ALIGN(filter_num, 16) * 2 * 2 
      4. a + b ≤ 1024 * 1024 
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       9  | 
     
       DetectionOutput  | 
     
       Generates detection results and outputs FSR.  | 
     
       [Inputs] 
      Three inputs 
      [Arguments] 
      
       - num_classes: (mandatory) int32, indicating the number of classes to be predicted
 
       - share_location: (optional) bool, default to true, indicating that classes share one BBox
 
       - background_label_id: (optional) int32, default to 0
 
       - nms_param: (optional) indicating non-maximum suppression (NMS)
 
       - save_output_param: (optional) indicating whether to save the detection result
 
       - code_type: (optional) default to CENTER_SIZE
 
       - variance_encoded_in_target: (optional) bool, default to true. The value true indicates that the variance is encoded in the target, otherwise the prediction offset needs to be adjusted accordingly.
 
       - keep_top_k: (optional) int32, indicating the total number of BBoxes to be reserved for each image after NMS
 
       - confidence_threshold: (optional) float, indicating that only the detection whose confidence is above the threshold is considered. If this parameter is not set, all boxes are considered.
 
       - nms_threshold: (optional) float
 
       - top_k: (optional) int32
 
       - boxes: (optional) int32, default to 1
 
       - relative: (optional) bool, default to true
 
       - objectness_threshold: (optional) float, default to 0.5
 
       - class_threshold: (optional) float, default to 0.5
 
       - biases: array
 
       - general_nms_param: (optional)
 
       
      [Restrictions] 
      
       - Used for Faster R-CNN
 
       - Non-maximum suppression (NMS) ratio nmsThreshold is of range (0, 1).
 
       - Probability threshold postConfThreshold is of range (0, 1).
 
       - At least two classes
 
       - Input box count ≤ 1024
 
       - Output W dimension = 16
 
       
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       10  | 
     
       Eltwise  | 
     
       Compute element-wise operations (PROD, MAX, and SUM).  | 
     
       [Inputs] 
      At least two inputs 
      [Arguments] 
      
       - operation: (optional) enum, (PROD = 0; SUM = 1; MAX = 2), default to SUM
 
       - coeff: array, float
 
       - stable_prod_grad: (optional) bool, default to true
 
       
      [Restrictions] 
      
       - Up to four inputs
 
       - Compared with the native operator, this operator does not support the stable_prod_grad parameter.
 
       - PROD, MAX, and SUM operations are supported.
 
       
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       11  | 
     
       Elu  | 
     
       Activation function  | 
     
       [Inputs] 
      One input 
      [Arguments] 
      alpha: (optional) float, default to 1 
      [Restrictions] 
      None 
      [Quantization tool supporting] 
      No  | 
    
    
     | 
       12  | 
     
       Exp  | 
     
       Applies e as the base and x as the exponent.  | 
     
       [Inputs] 
      One input 
      [Arguments] 
      
       - base: (optional) float, default to –1.0
 
       - scale: (optional) float, default to 1.0
 
       - shift: (optional) float, default to 0.0
 
       
      [Restrictions] 
      None 
      [Quantization tool supporting] 
      No  | 
    
    
     | 
       13  | 
     
       Flatten  | 
     
       Converts an input n * c * h * w into a vector n * (c * h * w).  | 
     
       [Inputs] 
      One input 
      top_size ≠ bottom_size ≠ 1 
      When axis is –1, four input dimensions are required. 
      [Arguments] 
      
       - axis: (optional) int32, default to 1
 
       - end_axis: (optional) int32, default to –1
 
       
      [Restrictions] 
      axis < end axis 
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       14  | 
     
       FullConnection  | 
     
       Computes an inner product.  | 
     
       [Inputs] 
      One input 
      [Arguments] 
      
       - num_output: (optional) uint32
 
       - bias_term: (optional) bool, default to true
 
       - weight_filler: This parameter is not supported.
 
       - bias_filler: This parameter is not supported.
 
       - axis: (optional) int32, default to 1
 
       - transpose: (optional) bool, default to false
 
       
      [Restrictions] 
      
       - transpose = false, axis = 1
 
       - In the quantization scenario, Bais_C <= 59136; In non-quantified scenarios, Bais_C <= 118272
 
       - To quantify the model, the following dimension restrictions must be satisfied:
 
       - When N = 1: 2 * CEIL(C, 16) * 16 * xH * xW ≤ 1024 * 1024;
 
       - When N > 1: 2 * 16 * CEIL(C, 16) * 16 * xH * xW ≤ 1024 * 1024.
 
       
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       15  | 
     
       Interp  | 
     
       Interpolation layer  | 
     
       [Inputs] 
      One input 
      [Arguments] 
      
       - height: (optional) int32, default to 0
 
       - width: (optional) int32, default to 0
 
       - zoom_factor: (optional) int32, default to 1
 
       - shrink_factor: (optional) int32, default to 1
 
       - pad_beg: (optional) int32, default to 0
 
       - pad_end: (optional) int32, default to 0
 
       
      Note: 
      
       - zoom_factor and shrink_factor are exclusive.
 
       - height and zoom_factor are exclusive.
 
       - height and shrink_factor are exclusive.
 
       
      [Restrictions] 
      (outputH * outputW)/(inputH * inputW) > 1/30 
      [Quantization tool supporting] 
      No  | 
    
    
     | 
       16  | 
     
       Log  | 
     
       Performs logarithmic operation on the input.  | 
     
       [Inputs] 
      One input 
      [Arguments] 
      
       - base: (optional) float, default to –1.0
 
       - scale: (optional) float, default to 1.0
 
       - shift: (optional) float, default to 0.0
 
       
      [Restrictions] 
      None 
      [Quantization tool supporting] 
      No  | 
    
    
     | 
       17  | 
     
       LRN  | 
     
       Normalizes the input in a local region.  | 
     
       [Inputs] 
      One non-constant input 
      [Arguments] 
      
       - local_size: (optional) uint32, default to 5
 
       - alpha: (optional) float, default to 1
 
       - beta: (optional) float, default to 0.75
 
       - norm_region: (optional) enum, default to ACROSS_CHANNELS (ACROSS_CHANNELS = 0, WITHIN_CHANNEL = 1)
 
       - lrnk: (optional) float, default to 1
 
       - engine: (optional) enum, default to 0, CAFFE = 1, CUDNN = 2
 
       
      [Restrictions] 
      
       - local_size is an odd number greater than 0.
 
       - Inter-channel: If local_size is of range [1, 15]: lrnK > 0.00001 and beta > 0.01; Otherwise, lrnK and beta are any values. lrnK and alpha are not 0 at the same time. When the C dimension is greater than 1776, local_size < 1728.
 
       - Intra-channel: lrnK = 1, local_size is of range [1, 15], beta > 0.01
 
       
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       18  | 
     
       LSTM  | 
     
       Long and short term memory network (LSTM)  | 
     
       [Inputs] 
      Two or three inputs 
      
       - X: time sequence data (T * B * Xt). According to the NCHW format of 4D, ensure that the following conditions are met: N is the time sequence length T, C is the batch number B, H is the input data Xt at the t moment, and W is 1.
 
       - Cont: sequence continuity flag (T * B)
 
       - Xs: (optional) static data (B * Xt)
 
       
      [Arguments] 
      
       - num_output: (optional) uint32, default to 0
 
       - weight_filler: This parameter is not supported.
 
       - bias_filler: This parameter is not supported.
 
       - debug_info: (optional) bool, default to false
 
       - expose_hidden: (optional) bool, default to false
 
       
      [Restrictions] 
      
       - Restrictions involving intermediate variables, ht and output are the argument num_output:
 
       
      a = (ALIGN(xt,16) + ALIGN(output,16)) * 16 * 2 * 2 
      b = (ALIGN(xt,16) + ALIGN(output,16)) * 16 * 4 * 2 * 2 
      d = 16 * ALIGN(ht,16) * 2 
      e = B * 4 
      That is: 
      a + b ≤ 1024 * 1024 
      d ≤ 256 * 1024/8 
      e ≤ 256*1024/32 
      
      [Quantization tool supporting] 
      No  | 
    
    
     | 
       19  | 
     
       Normalize  | 
     
       Normalization layer  | 
     
       [Inputs] 
      One input 
      [Arguments] 
      
       - across_spatial: (optional) bool, default to true
 
       - scale_filler: This parameter is not supported.
 
       - channel_shared: (optional) bool, default to true
 
       - eps: (optional) float, default to 1e – 10
 
       
      [Restrictions] 
      
       - 1e – 7 < eps ≤ 0.1 + (1e – 6)
 
       - across_spatial must be true for Caffe, indicating normalization by channel
 
       
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       20  | 
     
       Permute  | 
     
       Permutes the input dimensions according to a given mode.  | 
     
       [Inputs] 
      One input 
      [Arguments] 
      order: uint32, array 
      [Restrictions] 
      None 
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       21  | 
     
       Pooling  | 
     
       Pools the input.  | 
     
       [Inputs] 
      One input 
      [Arguments] 
      
       - pool: (optional) enum, indicating the pooling method, MAX = 0, AVE = 1, and STOCHASTIC = 2, default to MAX
 
       - pad: (optional) uint32, default to 0
 
       - pad_h: (optional) uint32, default to 0
 
       - pad_w: (optional) uint32, default to 0
 
       - kernel_size: (optional) uint32, exclusive with kernel_h/kernel_w
 
       - kernel_h: (optional) uint32
 
       - kernel_w: (optional) uint32, used in pair with kernel_h
 
       - stride: (optional) uint32, default to 1
 
       - stride_h: (optional) uint32
 
       - stride_w: (optional) uint32
 
       - engine: (optional) enum, default to 0, CAFFE = 1, CUDNN = 2
 
       - global_pooling: (optional) bool, default to false
 
       - ceil_mode: (optional) bool, default to true
 
       - round_mode: (optional) enum, CEIL = 0, FLOOR = 1, default to CEIL
 
       
      [Restrictions] 
      
       - kernelH ≤ inputH + padTop + padBottom
 
       - kernelW ≤ inputW + padLeft + padRight
 
       - padTop < windowH
 
       - padBottom < windowH
 
       - padLeft < windowW
 
       - padRight < windowW
 
       - Only the global pooling mode is supported. The following restrictions must be satisfied:
 
       
      1) outputH == 1 && outputW == 1 && kernelH ≥ inputH && kernelW ≥ inputW 
      2) inputH * inputW ≤ 10000 
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       22  | 
     
       Power  | 
     
       y = (scale * x + shift)^power  | 
     
       [Inputs] 
      One input 
      [Arguments] 
      
       - power: (optional) float, default to 1.0
 
       - scale: (optional) float, default to 1.0
 
       - shift: (optional) float, default to 0.0
 
       
      [Restrictions] 
      
       - power! = 1
 
       - scale*x + shift > 0
 
       
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       23  | 
     
       Prelu  | 
     
       Activation function  | 
     
       [Inputs] 
      One input 
      [Arguments] 
      
       - filler: This parameter is not supported.
 
       - channel_shared: (optional) bool, indicating whether to share slope parameters across channels, default to false
 
       
      [Restrictions] 
      None 
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       24  | 
     
       PriorBox  | 
     
       Obtains the real location of the target from the box proposals.  | 
     
       [Inputs] 
      Two inputs: 
      
       - Original input image of model, data format: NCHW;
 
       - FeatureMap, data format: NCHW.
 
       
      [Arguments] 
      
       - min_size: (mandatory) indicating the minimum frame size (in pixels)
 
       - max_size: (mandatory) indicating the maximum frame size (in pixels)
 
       - aspect_ratio: array, float. A repeated ratio is ignored. If no aspect ratio is provided, the default ratio 1 is used.
 
       - flip: (optional) bool, default to true. The value true indicates that each aspect ratio is reversed. For example, for aspect ratio r, the aspect ratio 1.0/r is generated.
 
       - clip: (optional) bool, default to false. The value true indicates that the previous value is clipped to the range [0, 1].
 
       - variance: array, used to adjust the variance of the BBoxes
 
       - img_size: (optional) uint32. exclusive with img_h/img_w
 
       - img_h: (optional) uint32
 
       - img_w: (optional) uint32
 
       - step: (optional) float. step_h and step_w are exclusive.
 
       - step_h: (optional) float
 
       - step_w: (optional) float
 
       - offset: (optional) float, default to 0.5
 
       
      [Restrictions] 
      Used for the SSD network only 
      Output dimensions: [n, 2, detection frame * 4, 1] 
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       25  | 
     
       Proposal  | 
     
       Sorts the box proposals by (proposal, score) and obtains the top N proposals by using the NMS.  | 
     
       [Inputs] 
      Three inputs: scores, bbox_pred, im_info 
      [Arguments] 
      
       - feat_stride: (optional) float
 
       - base_size: (optional) float
 
       - min_size: (optional) float
 
       - ratio: array (optional), float
 
       - scale: array (optional), float
 
       - pre_nms_topn: (optional) int32
 
       - post_nms_topn: (optional) int32
 
       - nms_thresh: (optional) float
 
       
      [Restrictions] 
      Used only for Faster R-CNN 
      
       - ProposalParameter and PythonParameter are exclusive.
        
1. Value range of preTopK: 1–6144 
        2. Value range of postTopK: 1–1024 
        3. scaleCnt * ratioCnt ≤ 64 
        4. 0 < nmsTresh ≤ 1 (threshold for box filtering) 
        5. minSize: minimum edge length of a proposal. A box with any side smaller than minSize is removed. 
        6. featStride: H/W stride between the two adjacent boxes used in default box generation 
        7. baseSize: base box size used in default box generation 
        8. ratio and scale: used in default box generation 
        9. imgH and imgW: height and width of the image input to the network. The values must be greater than 0.  
       - Restrictions on the input dimensions:
        
clsProb: C = 2 * scaleCnt * ratioCnt 
        bboxPred: C = 4 * scaleCnt * ratioCnt 
        bboxPrior: N = clsProb.N, C = 4 * scaleCnt * ratioCnt 
        imInfo: N = clsProb.N, C = 3  
       
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       26  | 
     
       PSROIPooling  | 
     
       Position-sensitive region-of-interest pooling (PSROIPooling)  | 
     
       [Inputs] 
      Two inputs 
      [Arguments] 
      
       - spatial_scale: (mandatory) float
 
       - output_dim: (mandatory) int32, indicating the number of output channels
 
       - group_size: (mandatory) int32, indicating the number of groups to encode position-sensitive score maps
 
       
      [Restrictions] 
      Used for the Region-based Fully Convolutional Network (R-FCN) 
      
       - ROI coordinates [roiN, roiC, roiH, roiW]: 1 ≤ roiN ≤ 65535, roiC == 5, roiH == 1, roiW == 1
 
       - Dimensions of the input feature map: [xN, xC, xH, xW]
 
       - pooledH == pooledW == groupSize ≤ 128
 
       
      pooledH and pooledW indicate the length and width of the pooled ROI. 
      Output format: y [yN, yC, yH, yW] 
      
       - poolingMode == avg pooling, pooledH == pooledW == groupSize, pooledH ≤ 128, spatialScale > 0, groupSize > 0, outputDim > 0
 
       - 1 ≤ xN ≤ 65535, roisN % xN == 0
 
       - HW_LIMIT is the limit of xH and xW.
 
       
      xHW = xH * xW 
      pooledHW = pooledH * pooledW 
      HW_LIMIT = (64 * 1024 – 8 * 1024)/32, 
      xH ≥ pooledH, xW ≥ pooledW 
      xHW ≥ pooledHW 
      xHW/pooledHW ≤ HW_LIMIT 
      
       - In multi-batch scenarios, the ROIs are allocated equally to the batches. In addition, the batch sequence of the ROIs is the same as the feature.
 
       
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       27  | 
     
       Relu  | 
     
       Activation function, including common ReLU and Leaky ReLU, which can be specified by parameters  | 
     
       [Inputs] 
      One input 
      [Arguments] 
      
       - negative_slope: (optional) float, default to 0
 
       - engine: (optional) enum, default to 0, CAFFE = 1, CUDNN = 2
 
       
      [Restrictions] 
      None 
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       28  | 
     
       Reshape  | 
     
       Reshapes the input.  | 
     
       [Inputs] 
      One input 
      [Arguments] 
      
       - shape: constant, int64 or int
 
       - axis: (optional) int32, default to 0
 
       - num_axes: (optional) int32, default to –1
 
       
      [Restrictions] 
      None 
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       29  | 
     
       ROIAlign  | 
     
       Aggregates features using ROIs.  | 
     
       [Inputs] 
      At least two inputs 
      [Arguments] 
      
       - pooled_h: (optional) uint32, default to 0
 
       - pooled_w: (optional) uint32, default to 0
 
       - spatial_scale: (optional) float, default to 1
 
       - sampling_ratio: (optional) int32, default to –1
 
       
      [Restrictions] 
      Mainly used for Mask R-CNN 
      Restrictions on the feature map: 
      
       - H * W ≤ 5248 or W * C < 40960
 
       - C ≤ 1280
 
       - ((C – 1)/128+1) * pooledW ≤ 216
 
       
      Restrictions on the ROI: 
      
       - C = 5 (Caffe), H = 1, W = 1
 
       - samplingRatio * pooledW ≤ 128, samplingRatio * pooledH ≤ 128
 
       - H ≥ pooledH, W ≥ pooledW
 
       
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       30  | 
     
       ROIPooling  | 
     
       Maps ROI proposals to a feature map.  | 
     
       [Inputs] 
      At least two inputs 
      [Arguments] 
      
       - pooled_h: (mandatory) uint32, default to 0
 
       - pooled_w: (mandatory) uint32, default to 0
 
       - spatial_scale: (mandatory) float, default to 1. The multiplication spatial scale factor is used to convert ROI coordinates from the input scale to the pool scale.
 
       
      [Restrictions] 
      Mainly used for Faster R-CNN 
      
       - Input dimensions: H * W ≤ 8160, H ≤ 120, W ≤ 120
 
       - Output dimensions: pooledH ≤ 20, pooledW ≤ 20
 
       
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       31  | 
     
       Scale  | 
     
       out = alpha*Input+beta  | 
     
       [Inputs] 
      Two inputs, each with four dimensions 
      [Arguments] 
      
       - axis: (optional) int32, 1 (default) or –3
 
       - num_axes: (optional) int32, default to 1
 
       - filler: This parameter is not supported.
 
       - bias_term: (optional) bool, default to false, indicating whether to learn a bias (equivalent to ScaleLayer + BiasLayer, but may be more efficient).
 
       - bias_filler: This parameter is not supported.
 
       
      [Restrictions] 
      shape of scale and bias: (n, c, 1, 1), with the C dimension equal to that of the input 
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       32  | 
     
       ShuffleChannel  | 
     
       Shuffles information cross the feature channels.  | 
     
       [Inputs] 
      One input 
      [Arguments] 
      group: (optional) uint32, default to 1 
      [Restrictions] 
      None 
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       33  | 
     
       Sigmoid  | 
     
       Activation function  | 
     
       [Inputs] 
      One input 
      [Arguments] 
      engine: (optional) enum, default to 0, CAFFE = 1, CUDNN = 2 
      [Restrictions] 
      None 
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       34  | 
     
       Slice  | 
     
       Slices an input into multiple outputs.  | 
     
       [Inputs] 
      One input 
      [Arguments] 
      
       - slice_dim: (optional) uint32, default to 1, exclusive with axis
 
       - slice_point: array, uint32
 
       - axis: (optional) int32, default to 1, indicating concatenation along the channel dimension
 
       
      [Restrictions] 
      None 
      [Returns] 
      No restrictions 
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       35  | 
     
       Softmax  | 
     
       Normalization logic function  | 
     
       [Inputs] 
      One input 
      [Arguments] 
      
       - engine: (optional) default to 0, CAFFE = 1, CUDNN = 2
 
       - axis: (optional) int32, default to 1, indicating the axis along which softmax is performed
 
       
      [Restrictions] 
      If the input contains four dimensions, softmax is performed on each of them. 
      According to axis: 
      
       - When axis = 1: C ≤ ((256 * 1024/4) – 8 * 1024 – 256)/2
 
       - When axis = 0: N ≤ (56 * 1024 – 256)/2
 
       - When axis = 2: W = 1, 0 < H < (1024 * 1024/32)
 
       - When axis = 3: 0 < W < (1024 * 1024/32)
 
       
      If the input contains fewer than four dimensions, softmax is performed only on the last dimension, with the last dimension ≤ 46080. 
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       36  | 
     
       Tanh  | 
     
       Activation function  | 
     
       [Inputs] 
      One input 
      [Arguments] 
      engine: (optional) enum, default to 0, CAFFE = 1, CUDNN = 2 
      [Restrictions] 
      The number of tensor elements cannot exceed INT32_MAX. 
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       37  | 
     
       Upsample  | 
     
       Backward propagation of max pooling  | 
     
       [Inputs] 
      Two inputs 
      [Arguments] 
      scale: (optional) int32, default to 1 
      [Restrictions] 
      None 
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       38  | 
     
       SSDDetectionOutput  | 
     
       SSD network detection output  | 
     
       [Inputs] 
      Three inputs 
      [Arguments] 
      
       - num_classes: (mandatory) int32, indicating the number of classes to be predicted
 
       - share_location: (optional) bool, default to true, indicating that classes share one BBox
 
       - background_label_id: (optional) int32, default to 0
 
       - nms_param: (optional) indicating non-maximum suppression (NMS)
 
       - save_output_param: (optional) indicating whether to save the detection result
 
       - code_type: (optional) default to CENTER_SIZE
 
       - variance_encoded_in_target: (optional) bool, default to true. The value true indicates that the variance is encoded in the target, otherwise the prediction offset needs to be adjusted accordingly.
 
       - keep_top_k: (optional) int32, indicating the total number of BBoxes to be reserved for each image after NMS
 
       - confidence_threshold: (optional) float, indicating that only the detection whose confidence is above the threshold is considered. If this parameter is not set, all boxes are considered.
 
       - nms_threshold: (optional) float
 
       - top_k: (optional) int32
 
       - boxes: (optional) int32, default to 1
 
       - relative: (optional) bool, default to true
 
       - objectness_threshold: (optional) float, default to 0.5
 
       - class_threshold: (optional) float, default to 0.5
 
       - biases: array
 
       - general_nms_param: (optional)
 
       
      [Restrictions] 
      
       - Used for the SSD network
 
       - Value range of preTopK and postTopK: 1–1024
 
       - shareLocation = true
 
       - nmsEta = 1
 
       - Value range of numClasses: 1–2048
 
       - code_type = CENTER_SIZE
 
       - Value range of nms_threshold and confidence_threshold: 0.0–1.0
 
       
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       39  | 
     
       Reorg  | 
     
       Real-time object detection  | 
     
       [Inputs] 
      One input 
      [Arguments] 
      
       - stride: (optional) uint32, default to 2
 
       - reverse: (optional) bool, default to false
 
       
      [Restrictions] 
      Used only for YOLOv2 
      [Quantization tool supporting] 
      No  | 
    
    
     | 
       40  | 
     
       Reverse  | 
     
       Reversion  | 
     
       [Inputs] 
      One input 
      [Arguments] 
      axis: (optional) int32, default to 1. Controls the axis to be reversed. The content layout will not be reversed. 
      [Restrictions] 
      None 
      [Quantization tool supporting] 
      No  | 
    
    
     | 
       41  | 
     
       LeakyRelu  | 
     
       LeakyRelu activation function  | 
     
       [Inputs] 
      One input 
      [Arguments] 
      Same as Relu 
      [Restrictions] 
      None 
      [Quantization tool supporting] 
      Yes  | 
    
    
     | 
       42  | 
     
       YOLODetectionOutput  | 
     
       YOLO network detection output  | 
     
       [Inputs] 
      Four inputs 
      [Arguments] 
      
       - num_classes: (mandatory) int32, indicating the number of classes to be predicted
 
       - share_location: (optional) bool, default to true, indicating that classes share one BBox
 
       - background_label_id: (optional) int32, default to 0
 
       - nms_param: (optional) indicating non-maximum suppression (NMS)
 
       - save_output_param: (optional) indicating whether to save the detection result
 
       - code_type: (optional) default to CENTER_SIZE
 
       - variance_encoded_in_target: (optional) bool, default to true. The value true indicates that the variance is encoded in the target, otherwise the prediction offset needs to be adjusted accordingly.
 
       - keep_top_k: (optional) int32, indicating the total number of BBoxes to be reserved for each image after NMS
 
       - confidence_threshold: (optional) float, indicating that only the detection whose confidence is above the threshold is considered. If this parameter is not set, all boxes are considered.
 
       - nms_threshold: (optional) float
 
       - top_k: (optional) int32
 
       - boxes: (optional) int32, default to 1
 
       - relative: (optional) bool, default to true
 
       - objectness_threshold: (optional) float, default to 0.5
 
       - class_threshold: (optional) float, default to 0.5
 
       - biases: array
 
       - general_nms_param: (optional)
 
       
      [Restrictions] 
      
       - Used only for YOLOv2
 
       - classNUm < 10240, anchorBox < 5
 
       - W ≤ 1536
 
       - The upper layer of yolodetectionoutput must be the yoloregion operator.
 
       
      [Quantization tool supporting] 
      No  |