หน้านี้ยังไม่พร้อมใช้งานในภาษาท้องถิ่นของคุณ เรากำลังพยายามอย่างหนักเพื่อเพิ่มเวอร์ชันภาษาอื่น ๆ เพิ่มเติม ขอบคุณสำหรับการสนับสนุนเสมอมา

Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive

PySpark Example Code

Updated on 2025-02-21 GMT+08:00

Development Description

  • Prerequisites

    A datasource connection has been created and bound to a queue on the DLI management console. For details, see Enhanced Datasource Connections.

    NOTE:

    Hard-coded or plaintext passwords pose significant security risks. To ensure security, encrypt your passwords, store them in configuration files or environment variables, and decrypt them when needed.

  • Code implementation
    1. Import dependency packages.
      1
      2
      3
      from __future__ import print_function
      from pyspark.sql.types import StructType, StructField, IntegerType, StringType
      from pyspark.sql import SparkSession
      
    2. Create a session.
      1
      sparkSession = SparkSession.builder.appName("datasource-rds").getOrCreate()
      
  • Connecting to data sources through DataFrame APIs
    1. Configure datasource connection parameters.
      1
      2
      3
      4
      5
      url = "jdbc:mysql://to-rds-1174404952-ZgPo1nNC.datasource.com:3306"
      dbtable = "test.customer"
      user = "root"
      password = "######"
      driver = "com.mysql.jdbc.Driver"
      

      For details about the parameters, see Table 1.

    2. Set data.
      1
      dataList = sparkSession.sparkContext.parallelize([(123, "Katie", 19)])
      
    3. Configure the schema.
      1
      2
      3
      schema = StructType([StructField("id", IntegerType(), False),\                     
                           StructField("name", StringType(), False),\                    
                           StructField("age", IntegerType(), False)])
      
    4. Create a DataFrame.
      1
      dataFrame = sparkSession.createDataFrame(dataList, schema)
      
    5. Save data to RDS.
      1
      2
      3
      4
      5
      6
      7
      8
      9
      dataFrame.write \   
          .format("jdbc") \   
          .option("url", url) \  
          .option("dbtable", dbtable) \  
          .option("user", user) \  
          .option("password", password) \  
          .option("driver", driver) \   
          .mode("Append") \  
          .save()
      
      NOTE:

      The value of mode can be one of the following:

      • ErrorIfExis: If the data already exists, the system throws an exception.
      • Overwrite: If the data already exists, the original data will be overwritten.
      • Append: If the data already exists, the system saves the new data.
      • Ignore: If the data already exists, no operation is required. This is similar to the SQL statement CREATE TABLE IF NOT EXISTS.
    6. Read data from RDS.
      1
      2
      3
      4
      5
      6
      7
      8
      9
      jdbcDF = sparkSession.read \ 
          .format("jdbc") \  
          .option("url", url) \  
          .option("dbtable", dbtable) \ 
          .option("user", user) \  
          .option("password", password) \ 
          .option("driver", driver) \  
          .load()
      jdbcDF.show()
      
    7. View the operation result.

  • Connecting to data sources through SQL APIs
    1. Create a table to connect to an RDS data source and set connection parameters.
      1
      2
      3
      4
      5
      6
      7
      sparkSession.sql(
          "CREATE TABLE IF NOT EXISTS dli_to_rds USING JDBC OPTIONS (\
          'url'='jdbc:mysql://to-rds-1174404952-ZgPo1nNC.datasource.com:3306',\
          'dbtable'='test.customer',\
          'user'='root',\
          'password'='######',\
          'driver'='com.mysql.jdbc.Driver')")
      

      For details about the parameters for creating a table, see Table 1.

    2. Insert data.
      1
      sparkSession.sql("insert into dli_to_rds values(3,'John',24)")
      
    3. Query data.
      1
      2
      jdbcDF_after = sparkSession.sql("select * from dli_to_rds")
      jdbcDF_after.show()
      
    4. View the operation result.

  • Submitting a Spark job
    1. Upload the Python code file to the OBS bucket.
    2. In the Spark job editor, select the corresponding dependency module and execute the Spark job.
    3. After the Spark job is created, click Execute in the upper right corner of the console to submit the job. If the message "Spark job submitted successfully." is displayed, the Spark job is successfully submitted. You can view the status and logs of the submitted job on the Spark Jobs page.
      NOTE:
      • The queue you select for creating a Spark job is the one bound when you create the datasource connection.
      • If the Spark version is 2.3.2 (will be offline soon) or 2.4.5, specify the Module to sys.datasource.rds when you submit a job.
      • If the Spark version is 3.1.1 or later, you do not need to select a module. Configure Spark parameters (--conf).

        spark.driver.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/rds/*

        spark.executor.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/rds/*

      • For how to submit a job on the console, see Table 3 "Parameters for selecting dependency resources" in Creating a Spark Job.
      • For details about how to submit a job through an API, see the description of the modules parameter in Table 2 "Request parameters" in Creating a Batch Processing Job.

Complete Example Code

NOTE:

If the following sample code is directly copied to the .py file, note that unexpected characters may exist after the backslashes (\) in the file content. You need to delete the indentations or spaces after the backslashes (\).

  • Connecting to data sources through DataFrame APIs
    # _*_ coding: utf-8 _*_
    from __future__ import print_function
    from pyspark.sql.types import StructType, StructField, IntegerType, StringType
    from pyspark.sql import SparkSession
    if __name__ == "__main__":
      # Create a SparkSession session.    
      sparkSession = SparkSession.builder.appName("datasource-rds").getOrCreate()
    
      # Set cross-source connection parameters.   
      url = "jdbc:mysql://to-rds-1174404952-ZgPo1nNC.datasource.com:3306"
      dbtable = "test.customer"
      user = "root"
      password = "######"
      driver = "com.mysql.jdbc.Driver"
    
      # Create a DataFrame and initialize the DataFrame data.  
      dataList = sparkSession.sparkContext.parallelize([(123, "Katie", 19)])
    
      # Setting schema   
      schema = StructType([StructField("id", IntegerType(), False),\          
                           StructField("name", StringType(), False),\               
                           StructField("age", IntegerType(), False)])
    
      # Create a DataFrame from RDD and schema   
      dataFrame = sparkSession.createDataFrame(dataList, schema)
    
      # Write data to the RDS.
      dataFrame.write \    
          .format("jdbc") \     
          .option("url", url) \     
          .option("dbtable", dbtable) \   
          .option("user", user) \    
          .option("password", password) \     
          .option("driver", driver) \     
          .mode("Append") \      
          .save()
    
      # Read data  
      jdbcDF = sparkSession.read \    
          .format("jdbc") \      
          .option("url", url) \   
          .option("dbtable", dbtable) \   
          .option("user", user) \   
          .option("password", password) \    
          .option("driver", driver) \  
          .load()  
      jdbcDF.show()
    
      # close session  
      sparkSession.stop()
  • Connecting to data sources through SQL APIs
    # _*_ coding: utf-8 _*_
    from __future__ import print_function
    from pyspark.sql import SparkSession
    
    if __name__ == "__main__":
      # Create a SparkSession session.    
      sparkSession = SparkSession.builder.appName("datasource-rds").getOrCreate()
    
      # Create a data table for DLI - associated RDS    
      sparkSession.sql(
           "CREATE TABLE IF NOT EXISTS dli_to_rds USING JDBC OPTIONS (\
           'url'='jdbc:mysql://to-rds-1174404952-ZgPo1nNC.datasource.com:3306',\
           'dbtable'='test.customer',\
           'user'='root',\
           'password'='######',\
           'driver'='com.mysql.jdbc.Driver')")
    
      # Insert data into the DLI data table   
      sparkSession.sql("insert into dli_to_rds values(3,'John',24)")
    
      # Read data from DLI data table    
      jdbcDF = sparkSession.sql("select * from dli_to_rds")   
      jdbcDF.show() 
    
      # close session  
      sparkSession.stop()

เราใช้คุกกี้เพื่อปรับปรุงไซต์และประสบการณ์การใช้ของคุณ การเรียกดูเว็บไซต์ของเราต่อแสดงว่าคุณยอมรับนโยบายคุกกี้ของเรา เรียนรู้เพิ่มเติม

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback