Querying the Details About a Training Job
Function
This API is used to query the details about a training job.
Debugging
You can debug this API through automatic authentication in API Explorer or use the SDK sample code generated by API Explorer.
URI
GET /v2/{project_id}/training-jobs/{training_job_id}
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
project_id |
Yes |
String |
Project ID. For details, see Obtaining a Project ID and Name. |
training_job_id |
Yes |
String |
ID of a training job. |
Request Parameters
None
Response Parameters
Status code: 200
Parameter |
Type |
Description |
---|---|---|
kind |
String |
Training job type, which is job by default. Options:
|
metadata |
JobMetadata object |
Metadata of a training job. |
status |
Status object |
Status of a training job. You do not need to set this parameter when creating a job. |
algorithm |
JobAlgorithmResponse object |
Algorithm used by a training job. The options are as follows:
|
tasks |
Array of TaskResponse objects |
List of tasks in heterogeneous training jobs. |
spec |
spec object |
Specifications of a training job. |
Parameter |
Type |
Description |
---|---|---|
id |
String |
Training job ID, which is generated and returned by ModelArts after the training job is created. |
name |
String |
Name of a training job. The value must contain 1 to 64 characters consisting of only digits, letters, underscores (_), and hyphens (-). |
workspace_id |
String |
Workspace where a job is located. The default value is 0. |
description |
String |
Training job description. The value must contain 0 to 256 characters. The default value is NULL. |
create_time |
Long |
Time when a training job was created, in milliseconds. The value is generated and returned by ModelArts after a training job is created. |
user_name |
String |
Username for creating a training job. The username is generated and returned by ModelArts after a training job is created. |
annotations |
Map<String,String> |
Advanced configuration of a training job. Options:
|
Parameter |
Type |
Description |
---|---|---|
phase |
String |
Level-1 status of a training job. The options are as follows: Creating, Pending, Running, Failed, Completed, Terminating, Terminated, Abnormal. |
secondary_phase |
String |
Level-2 status of a training job. The values are internal detailed statuses and may be added, changed, or deleted. Dependency on the status is not recommended. The options are as follows: Creating, Queuing, Running, Failed, Completed, Terminating, Terminated, CreateFailed, TerminatedFailed, Unknown, Lost. |
duration |
Long |
Running duration of a training job, in milliseconds |
node_count_metrics |
Array<Array<Integer>> |
Node count changes during the training job running period. |
tasks |
Array of strings |
Tasks of a training job. |
start_time |
Long |
Start time of a training job. The value is in timestamp format. |
task_statuses |
Array of task_statuses objects |
Status of a training job task. |
running_records |
Array of running_records objects |
Running and fault recovery records of a training job |
Parameter |
Type |
Description |
---|---|---|
task |
String |
Name of a training job task. |
exit_code |
Integer |
Exit code of a training job task. |
message |
String |
Error message of a training job task. |
Parameter |
Type |
Description |
---|---|---|
start_at |
Integer |
Unix timestamp of the start time in the current running record, in seconds |
end_at |
Integer |
Unix timestamp of the end time in the current running record, in seconds |
start_type |
String |
Startup mode of the current running record. The options are as follows: init_or_rescheduled: This startup is the first running after scheduling, including the first startup and the running after scheduling recovery. restarted: This startup is not the first running after scheduling but the running after a process restart. |
end_reason |
String |
Reason why the current running record ends |
end_related_task |
String |
ID of the task worker that causes the end of the current running record, for example, worker-0 |
end_recover |
String |
Fault tolerance policy used after the current running record ends. The enums are as follows:
|
end_recover_before_downgrade |
String |
Tolerance policy used after the current running record ends and before the fault tolerance policy is degraded. The options are the same as those of end_recover. |
Parameter |
Type |
Description |
---|---|---|
id |
String |
Algorithm used by a training job. The options are as follows:
|
name |
String |
Algorithm name. |
subscription_id |
String |
Subscription ID of a subscribed algorithm, which must be used with item_version_id |
item_version_id |
String |
Version ID of the subscribed algorithm, which must be used with subscription_id |
code_dir |
String |
Code directory of a training job, for example, /usr/app/. This parameter must be used together with boot_file. If id or subscription_id+item_version_id is set, leave it blank. |
boot_file |
String |
Boot file of a training job, which must be stored in the code directory, for example, /usr/app/boot.py. This parameter must be used with code_dir. Leave this parameter blank if id, or subscription_id and item_version_id are specified. |
autosearch_config_path |
String |
YAML configuration path of auto search jobs. An OBS URL is required. |
autosearch_framework_path |
String |
Framework code directory of auto search jobs. An OBS URL is required. |
command |
String |
Boot command for starting the container of a custom image for a training job. For example, python train.py. |
parameters |
Array of Parameter objects |
Running parameters of a training job. |
policies |
policies object |
Policies supported by jobs. |
inputs |
Array of Input objects |
Input of a training job. |
outputs |
Array of Output objects |
Output of a training job. |
engine |
engine object |
Engine of a training job. Leave this parameter blank if the job is created using id of the algorithm in algorithm management, or subscription_id+item_version_id of the subscribed algorithm. |
local_code_dir |
String |
Local directory of the training container to which the algorithm code directory is downloaded. The rules are as follows:
|
working_dir |
String |
Work directory where an algorithm is executed. Note that this parameter does not take effect in v1 compatibility mode. |
environments |
Array of Map<String,String> objects |
Environment variables of a training job. The format is key:value. Leave this parameter blank. |
Parameter |
Type |
Description |
---|---|---|
name |
String |
Parameter name. |
value |
String |
Parameter value. |
description |
String |
Parameter description. |
constraint |
constraint object |
Parameter constraint. |
i18n_description |
i18n_description object |
Internationalization description. |
Parameter |
Type |
Description |
---|---|---|
type |
String |
Parameter type. |
editable |
Boolean |
Whether the parameter is editable. |
required |
Boolean |
Whether the parameter is mandatory. |
sensitive |
Boolean |
Whether the parameter is sensitive This function is not implemented currently. |
valid_type |
String |
Valid type. |
valid_range |
Array of strings |
Valid range. |
Parameter |
Type |
Description |
---|---|---|
language |
String |
Language. Options:
|
description |
String |
Description. |
Parameter |
Type |
Description |
---|---|---|
auto_search |
auto_search object |
Hyperparameter search configuration. |
Parameter |
Type |
Description |
---|---|---|
skip_search_params |
String |
Hyperparameter parameters that need to be skipped. |
reward_attrs |
Array of reward_attrs objects |
List of search metrics. |
search_params |
Array of search_params objects |
Search parameters. |
algo_configs |
Array of algo_configs objects |
Search algorithm configurations. |
Parameter |
Type |
Description |
---|---|---|
name |
String |
Metric name. |
mode |
String |
Search mode.
|
regex |
String |
Regular expression of a metric. |
Parameter |
Type |
Description |
---|---|---|
name |
String |
Hyperparameter name. |
param_type |
String |
Parameter type.
|
lower_bound |
String |
Lower bound of the hyperparameter. |
upper_bound |
String |
Upper bound of the hyperparameter. |
discrete_points_num |
String |
Number of discrete points of a continuous hyperparameter. |
discrete_values |
Array of strings |
List of discrete hyperparameter values. |
Parameter |
Type |
Description |
---|---|---|
name |
String |
Name of the search algorithm. |
params |
Array of AutoSearchAlgoConfigParameter objects |
Search algorithm parameters. |
Parameter |
Type |
Description |
---|---|---|
key |
String |
Parameter key. |
value |
String |
Parameter value. |
type |
String |
Parameter type. |
Parameter |
Type |
Description |
---|---|---|
name |
String |
Name of the data input channel. |
description |
String |
Description of the data input channel. |
local_dir |
String |
Local directory of the container to which the data input channel is mapped. |
remote |
InputDataInfo object |
Information of the data input. Enums:
|
remote_constraint |
Array of remote_constraint objects |
Data input constraint |
Parameter |
Type |
Description |
---|---|---|
dataset |
dataset object |
Dataset as the data input. |
obs |
obs object |
OBS in which data input and output stored. |
Parameter |
Type |
Description |
---|---|---|
id |
String |
Dataset ID of a training job. |
version_id |
String |
Dataset version ID of a training job. |
obs_url |
String |
OBS URL of the dataset for a training job. It is automatically parsed by ModelArts based on the dataset ID and dataset version ID. For example, /usr/data/. |
Parameter |
Type |
Description |
---|---|---|
obs_url |
String |
OBS URL of the dataset required by a training job. For example, /usr/data/. |
Parameter |
Type |
Description |
---|---|---|
data_type |
String |
Data input type, including the data storage location and dataset. |
attributes |
String |
Attributes if a dataset is used as the data input. Options:
|
Parameter |
Type |
Description |
---|---|---|
name |
String |
Name of the data output channel. |
description |
String |
Description of the data output channel. |
local_dir |
String |
Local directory of the container to which the data output channel is mapped. |
remote |
remote object |
Description of the actual data output. |
Parameter |
Type |
Description |
---|---|---|
engine_id |
String |
Engine ID selected for a training job. The value can be engine_id, engine_name + engine_version, or image_url. |
engine_name |
String |
Name of the engine selected for a training job. If engine_id is set, leave this parameter blank. |
engine_version |
String |
Name of the engine version selected for a training job. If engine_id is set, leave this parameter blank. |
image_url |
String |
Custom image URL selected for a training job. |
Parameter |
Type |
Description |
---|---|---|
role |
String |
Task role. This function is not supported currently. |
algorithm |
algorithm object |
Algorithm management and configuration. |
task_resource |
FlavorResponse object |
Flavors of a training job or an algorithm. |
Parameter |
Type |
Description |
---|---|---|
code_dir |
String |
Absolute path of the directory where the algorithm boot file is stored. |
boot_file |
String |
Absolute path of the algorithm boot file. |
inputs |
inputs object |
Algorithm input channel. |
outputs |
outputs object |
Algorithm output channel. |
engine |
engine object |
Engine on which a heterogeneous job depends. |
local_code_dir |
String |
Local directory of the training container to which the algorithm code directory is downloaded. The rules are as follows:
|
working_dir |
String |
Work directory where an algorithm is executed. Note that this parameter does not take effect in v1 compatibility mode. |
Parameter |
Type |
Description |
---|---|---|
name |
String |
Name of the data input channel. |
local_dir |
String |
Local path of the container to which the data input and output channels are mapped. |
remote |
remote object |
Actual data input. Heterogeneous jobs support only OBS. |
Parameter |
Type |
Description |
---|---|---|
obs |
obs object |
OBS in which data input and output stored. |
Parameter |
Type |
Description |
---|---|---|
obs_url |
String |
OBS URL of the dataset required by a training job. For example, /usr/data/. |
Parameter |
Type |
Description |
---|---|---|
name |
String |
Name of the data output channel. |
local_dir |
String |
Local directory of the container to which the data output channel is mapped. |
remote |
remote object |
Description of the actual data output. |
mode |
String |
Data transmission mode. The default value is upload_periodically. |
period |
String |
Data transmission period. The default value is 30s. |
Parameter |
Type |
Description |
---|---|---|
engine_id |
String |
Engine ID of a heterogeneous job, for example, caffe-1.0.0-python2.7. |
engine_name |
String |
Engine name of a heterogeneous job, for example, Caffe. |
engine_version |
String |
Engine version of a heterogeneous job. |
v1_compatible |
Boolean |
Whether the v1 compatibility mode is used. |
run_user |
String |
User UID started by default by the engine. |
image_url |
String |
Custom image URL selected by an algorithm. |
Parameter |
Type |
Description |
---|---|---|
flavor_id |
String |
ID of the resource flavor. |
flavor_name |
String |
Name of the resource flavor. |
max_num |
Integer |
Maximum number of nodes in a resource flavor. |
flavor_type |
String |
Resource flavor type. Options:
|
billing |
billing object |
Billing information of a resource flavor. |
flavor_info |
flavor_info object |
Resource flavor details. |
attributes |
Map<String,String> |
Other specification attributes. |
Parameter |
Type |
Description |
---|---|---|
code |
String |
Billing code. |
unit_num |
Integer |
Number of billing units. |
Parameter |
Type |
Description |
---|---|---|
max_num |
Integer |
Maximum number of nodes that can be selected. The value 1 indicates that the distributed mode is not supported. |
cpu |
cpu object |
CPU specifications. |
gpu |
gpu object |
GPU specifications. |
npu |
npu object |
Ascend specifications |
memory |
memory object |
Memory information. |
disk |
disk object |
Disk information. |
Parameter |
Type |
Description |
---|---|---|
arch |
String |
CPU architecture. |
core_num |
Integer |
Number of cores. |
Parameter |
Type |
Description |
---|---|---|
unit_num |
Integer |
Number of GPUs. |
product_name |
String |
Product name. |
memory |
String |
Memory. |
Parameter |
Type |
Description |
---|---|---|
unit_num |
String |
Number of NPUs. |
product_name |
String |
Product name. |
memory |
String |
Memory. |
Parameter |
Type |
Description |
---|---|---|
resource |
Resource object |
Resource flavors of a training job. Select either flavor_id or pool_id+[flavor_id]. |
volumes |
Array of volumes objects |
Volumes attached to a training job. |
log_export_path |
log_export_path object |
Export path of training job logs. |
Parameter |
Type |
Description |
---|---|---|
policy |
String |
Resource flavor mode of a training job. The value is regular. |
flavor_id |
String |
ID of the resource flavor selected for a training job. flavor_id cannot be specified for dedicated resource pools with CPU specifications. The options for dedicated resource pools with GPU/Ascend specifications are as follows:
|
flavor_name |
String |
Read-only flavor name returned by ModelArts when flavor_id is used. |
node_count |
Integer |
Number of resource replicas selected for a training job. |
pool_id |
String |
Resource pool ID selected for a training job. |
flavor_detail |
flavor_detail object |
Flavor details of a training job or algorithm. This parameter is available only for public resource pools. |
Parameter |
Type |
Description |
---|---|---|
flavor_type |
String |
Resource flavor type. Options:
|
billing |
billing object |
Billing information of a resource flavor. |
flavor_info |
flavor_info object |
Resource flavor details. |
Parameter |
Type |
Description |
---|---|---|
code |
String |
Billing code. |
unit_num |
Integer |
Number of billing units. |
Parameter |
Type |
Description |
---|---|---|
max_num |
Integer |
Maximum number of nodes that can be selected. The value 1 indicates that the distributed mode is not supported. |
cpu |
cpu object |
CPU specifications. |
gpu |
gpu object |
GPU specifications. |
npu |
npu object |
Ascend specifications |
memory |
memory object |
Memory information. |
disk |
disk object |
Disk information. |
Parameter |
Type |
Description |
---|---|---|
arch |
String |
CPU architecture. |
core_num |
Integer |
Number of cores. |
Parameter |
Type |
Description |
---|---|---|
unit_num |
Integer |
Number of GPUs. |
product_name |
String |
Product name. |
memory |
String |
Memory. |
Parameter |
Type |
Description |
---|---|---|
unit_num |
String |
Number of NPUs. |
product_name |
String |
Product name. |
memory |
String |
Memory. |
Parameter |
Type |
Description |
---|---|---|
size |
Integer |
Memory size. |
unit |
String |
Number of memory units. |
Parameter |
Type |
Description |
---|---|---|
size |
String |
Disk size. |
unit |
String |
Unit of the disk size. Generally, the value is GB. |
Example Requests
The following shows how to query a training job whose UUID is 3faf5c03-aaa1-4cbe-879d-24b05d997347.
GET https://endpoint/v2/{project_id}/training-jobs/3faf5c03-aaa1-4cbe-879d-24b05d997347
Example Responses
Status code: 200
ok
{ "kind" : "job", "metadata" : { "id" : "3faf5c03-aaa1-4cbe-879d-24b05d997347", "name" : "trainjob--py14_mem06-108", "description" : "", "create_time" : 1636447346315, "workspace_id" : "0", "user_name" : "" }, "status" : { "phase" : "Abnormal", "secondary_phase" : "CreateFailed", "duration" : 0, "start_time" : 0, "node_count_metrics" : [ [ 1636447746000, 0 ], [ 1636447755000, 0 ], [ 1636447756000, 0 ] ], "tasks" : [ "worker-0" ], "running_records" : [ { "start_at" : 1701327093, "end_at" : 1701322341, "start_type" : "init_or_rescheduled", "end_recover" : "job_reschedule", "end_reason" : "exit with 127", "end_related_task" : "worker-2", "end_recover_before_downgrade" : "npu_proc_restart" }, { "start_at" : 1701323345, "end_at" : 1701325432, "start_type" : "init_or_rescheduled", "end_reason" : "job completed" } ] }, "algorithm" : { "code_dir" : "obs://test/economic_test/py_minist/", "boot_file" : "obs://test/economic_test/py_minist/minist_common.py", "inputs" : [ { "name" : "data_url", "local_dir" : "/home/ma-user/modelarts/inputs/data_url_0", "remote" : { "obs" : { "obs_url" : "/test/data/py_minist/" } } } ], "outputs" : [ { "name" : "train_url", "local_dir" : "/home/ma-user/modelarts/outputs/train_url_0", "remote" : { "obs" : { "obs_url" : "/test/train_output/" } } } ], "engine" : { "engine_id" : "pytorch-cp36-1.4.0-v2", "engine_name" : "PyTorch", "engine_version" : "PyTorch-1.4.0-python3.6-v2" } }, "spec" : { "resource" : { "flavor_id" : "modelarts.vm.pnt1.large.eco", "node_count" : 1, "flavor_detail" : { "flavor_type" : "GPU", "billing" : { "code" : "modelarts.vm.gpu.pnt1.eco", "unit_num" : 1 }, "flavor_info" : { "cpu" : { "arch" : "x86", "core_num" : 8 }, "gpu" : { "unit_num" : 1, "memory" : "8GB" }, "memory" : { "size" : 64, "unit" : "GB" } } } } } }
Status Codes
Status Code |
Description |
---|---|
200 |
ok |
Error Codes
See Error Codes.
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.See the reply and handling status in My Cloud VOC.
For any further questions, feel free to contact us through the chatbot.
Chatbot