หน้านี้ยังไม่พร้อมใช้งานในภาษาท้องถิ่นของคุณ เรากำลังพยายามอย่างหนักเพื่อเพิ่มเวอร์ชันภาษาอื่น ๆ เพิ่มเติม ขอบคุณสำหรับการสนับสนุนเสมอมา

Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Situation Awareness
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
Software Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive
Help Center/ Elastic Volume Service/ User Guide/ Overview/ Shared EVS Disks and Usage Instructions

Shared EVS Disks and Usage Instructions

Updated on 2022-12-20 GMT+08:00

What Are Shared EVS Disks?

Shared EVS disks are block storage devices that support concurrent read/write operations and can be attached to multiple servers. Shared EVS disks feature multiple attachments, high-concurrency, high-performance, and high-reliability. They are usually used for enterprise business-critical applications that require cluster deployment for high availability (HA). Multiple servers can access the same shared EVS disk at the same time.

A shared EVS disk can be attached to a maximum of 16 servers. Servers that EVS supports include ECSs and BMSs. To share files, you need to deploy a shared file system or a cluster management system, such as Windows MSCS, Veritas VCS, or CFS.

NOTICE:

You must set up a shared file system or cluster management system before using shared EVS disks. If you directly attach a disk to multiple servers, the sharing function will not work and data may be overwritten.

Figure 1 Application scenario of shared EVS disks

Usage Precautions

Because most cluster applications, such as Windows MSCS, Veritas VCS, and Veritas CFS, require SCSI reservations, you are advised to use shared EVS disks with SCSI. If a SCSI EVS disk is attached to a Xen ECS for use, you must install the driver. For details, see Device Types and Usage Instructions.

You can create shared VBD disks or shared SCSI disks. It is recommended that you attach the shared disk to the ECSs in the same ECS group to improve service reliability.
  • Shared VBD EVS disks: The device type of a newly created shared EVS disk is VBD by default. Such disks can be used as virtual block storage devices, but do not support SCSI reservations. If SCSI reservations are required for your applications, create shared SCSI EVS disks.
  • Shared SCSI EVS disks: These EVS disks support SCSI reservations.
    NOTICE:
    • To improve data security, you are advised to use SCSI reservations together with the anti-affinity policy of an ECS group. That said, ensure that shared SCSI EVS disks are only attached to ECSs in the same anti-affinity ECS group.
    • If an ECS does not belong to any anti-affinity ECS group, you are advised not to attach shared SCSI EVS disks to this ECS. Otherwise, SCSI reservations may not work properly, which may put your data at risk.

    Concepts of the anti-affinity ECS group and SCSI reservations:

    • The anti-affinity policy of an ECS group allows ECSs to be created on different physical servers to improve service reliability.

      For details about ECS groups, see Managing ECS Groups in the Elastic Cloud Server User Guide.

    • The SCSI reservation mechanism uses a SCSI reservation command to perform SCSI reservation operations. If an ECS sends such a command to an EVS disk, the disk is displayed as locked to other ECSs, preventing the data damage that may be caused by simultaneous read/write operations to the disk from multiple ECSs.
    • ECS groups and SCSI reservations have the following relationship: A SCSI reservation on a single EVS disk cannot differentiate multiple ECSs on the same physical host. For that reason, if multiple ECSs that use the same shared EVS disk are running on the same physical host, SCSI reservations will not work properly. Therefore, you are advised to use SCSI reservations only on ECSs that are in the same ECS group, thus having a working anti-affinity policy.

Advantages

  • Multiple attachments: A shared EVS disk can be attached to a maximum of 16 servers.
  • High-performance: The random read/write IOPS of a shared ultra-high I/O disk can reach up to 160,000.
  • High-reliability: Shared EVS disks support both manual and automatic backup, delivering highly reliable data storage.
  • Wide range of use: Shared EVS disks can be used for Linux RHCS clusters where only VBD EVS disks are needed. They can also be used for Windows MSCS and Veritas VCS clusters that require SCSI reservations.

Specifications and Performance

Shared EVS disks have the same specifications and performance as non-shared EVS disks. For details, see Disk Types and Performance.

Data Sharing Principle and Common Usage Mistakes

A shared EVS disk is essentially the disk that can be attached to multiple servers for use, which is similar to a physical disk in that the disk can be attached to multiple physical servers, and each server can read data from and write data into any space on the disk. If the data read/write rules, such as the read/write sequence and meaning, between these servers are not defined, data read/write interference between servers or other unpredictable errors may occur.

Though shared EVS disks are block storage devices that provide shared access for servers, shared EVS disks do not have the cluster management capability. Therefore, you need to deploy a cluster system to manage shared EVS disks. Common cluster management systems include Windows MSCS, Linux RHCS, Veritas VCS, and Veritas CFS.

If shared EVS disks are not managed by a cluster system, the following issues may occur:
  • Data inconsistency caused by read/write conflicts

    When a shared EVS disk is attached to two servers (server A and server B), server A cannot recognize the disk spaces allocated to server B, vice versa. That said, a disk space allocated to server A may be already used by server B. In this case, repeated disk space allocation occurs, which leads to data errors.

    For example, a shared EVS disk has been formatted into the ext3 file system and attached to server A and server B. Server A has written metadata into the file system in space R and space G. Then server B has written metadata into space E and space G. In this case, the data written into space G by server A will be replaced. When the metadata in space G is read, an error will occur.

  • Data inconsistency caused by data caching

    When a shared EVS disk is attached to two servers (server A and server B), the application on server A has read the data in space R and space G, then cached the data. At that time, other processes and threads on server A would then read this data directly from the cache. At the same time, if the application on server B has modified the data in space R and space G, the application on server A cannot detect this data change and still reads this data from the cache. As a result, the user cannot view the modified data on server A.

    For example, a shared EVS disk has been formatted into the ext3 file system and attached to server A and server B. Both servers have cached the metadata in the file system. Then server A has created a new file (file F) on the shared disk, but server B cannot detect this modification and still reads data from its cached data. As a result, the user cannot view file F on server B.

Before you attach a shared EVS disk to multiple servers, the disk device type needs to be determined. The device type can be either VBD or SCSI. Shared SCSI EVS disks support SCSI reservations. Before using SCSI reservations, you need to install a driver in the server OS and ensure that the OS image is included in the compatibility list.

NOTICE:

If you simply attach a shared EVS disk to multiple servers, files cannot be shared between the servers as shared EVS disks do not have the cluster capability. Therefore, build a shared file system or deploy a cluster management system if you need to share files between servers.

เราใช้คุกกี้เพื่อปรับปรุงไซต์และประสบการณ์การใช้ของคุณ การเรียกดูเว็บไซต์ของเราต่อแสดงว่าคุณยอมรับนโยบายคุกกี้ของเรา เรียนรู้เพิ่มเติม

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback