Esta página ainda não está disponível no idioma selecionado. Estamos trabalhando para adicionar mais opções de idiomas. Agradecemos sua compreensão.

Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive
On this page

Community Open MPI

Updated on 2022-06-28 GMT+08:00

Scenarios

This section describes how to run community Open MPI (version 3.1.1) on a configured ECS.

Prerequisites

  • An ECS equipped with InfiniBand NICs has been created, and an EIP has been bound to it.
  • Multiple ECSs have been created using a private image.

Procedure

  1. Use PuTTY and a key pair to log in to the ECS.

    Ensure that the username specified during ECS creation is used to establish the connection.

  2. Run the following command to disable user logout upon system timeout:

    # TMOUT=0

  3. Run the following command to check whether the ECSs to be tested can be logged in to from each other without a password:

    $ ssh Username@SERVER_IP

  4. Run the following commands to disable the firewall of the ECS:

    # iptables -F

    # service firewalld stop

  5. Run the following command to set the hostnames of tested ECSs:

    # hostnamectl set-hostname vm1

  6. Run the following command to add the /etc/hosts file:

    # vi /etc/hosts

    Add the hostnames and IP addresses of ECSs. The following are examples:

    #cat /etc/hosts

    192.168.1.3 vm1

    192.168.1.4 vm2

    ...

  7. Run the following command to add the hostfile file:

    # vi hostfile

    Add the hostnames of the tested ECSs. The following are examples:

    vm1

    vm2

    ...

  8. Modify hostfile and run MPI benchmark with the path of hostfile specified.

    For example, to modify the hostfile file and run MPI benchmark on two ECSs, run the following command:

    # mpirun --allow-run-as-root -np 2 --pernode -hostfile /root/hostfile /usr/mpi/gcc/openmpi-3.0.0rc6/tests/imb/IMB-MPI1 PingPong

    Run Intel MPI benchmark in a cluster containing two nodes. In the RDMA network, the minimum latency is less than 1.5 us.

    #------------------------------------------------------------
    #    Intel (R) MPI Benchmarks 4.1, MPI-1 part
    #------------------------------------------------------------
    # Date                  : Mon Jul 16 09:42:15 2018
    # Machine               : x86_64
    # System                : Linux
    # Release               : 3.10.0-514.10.2.el7.x86_64
    # Version               : #1 SMP Fri Mar 3 00:04:05 UTC 2017
    # MPI Version           : 3.1
    # MPI Thread Environment:
    
    # New default behavior from Version 3.2 on:
    
    # the number of iterations per message size is cut down
    # dynamically when a certain run time (per message size sample)
    # is expected to be exceeded. Time limit is defined by variable
    # "SECS_PER_SAMPLE" (=> IMB_settings.h)
    # or through the flag => -time
    
    # Calling sequence was:
    
    # /usr/mpi/gcc/openmpi-3.0.0rc6/tests/imb/IMB-MPI1 PingPong
    
    # Minimum message length in bytes:   0
    # Maximum message length in bytes:   4194304
    #
    # MPI_Datatype                   :   MPI_BYTE
    # MPI_Datatype for reductions    :   MPI_FLOAT
    # MPI_Op                         :   MPI_SUM
    #
    #
    
    # List of Benchmarks to run:
    
    # PingPong
    
    #---------------------------------------------------
    # Benchmarking PingPong
    # #processes = 2
    #---------------------------------------------------
    #bytes #repetitions      t[usec]   Mbytes/sec
    0         1000         1.75         0.00
    1         1000         1.75         0.55
    2         1000         1.74         1.10
    4         1000         1.74         2.19
    8         1000         1.77         4.31
    16         1000         1.79         8.54
    32         1000         1.77        17.26
    64         1000         1.85        33.02
    128         1000         1.89        64.45
    256         1000         2.39       102.29
    512         1000         2.54       192.56
    1024         1000         2.81       346.99
    2048         1000         3.24       603.08
    4096         1000         4.30       907.66
    8192         1000         5.91      1321.23
    16384         1000         8.61      1814.29
    32768         1000        12.31      2537.83
    65536          640        21.80      2867.15
    131072          320        33.91      3686.23
    262144          160        42.65      5861.95
    524288           80        68.61      7287.12
    1048576           40       120.06      8329.50
    2097152           20       221.55      9027.12
    4194304           10       424.35      9426.16
    
    
    # All processes entering MPI_Finalize
  9. Deploy your MPI application in the Linux cluster and run the MPI application in the Linux cluster using the preceding method.

Usamos cookies para aprimorar nosso site e sua experiência. Ao continuar a navegar em nosso site, você aceita nossa política de cookies. Saiba mais

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback