Este conteúdo foi traduzido por máquina para sua conveniência e a Huawei Cloud não pode garantir que o conteúdo foi traduzido com precisão. Para exibir o conteúdo original, use o link no canto superior direito para mudar para a página em inglês.
Computação
Elastic Cloud Server
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Redes
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Gerenciamento e governança
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
Cloud Operations Center
Resource Governance Center
Migração
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Análises
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
IoT
IoT Device Access
Outros
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Segurança e conformidade
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Blockchain
Blockchain Service
Serviços de mídia
Media Processing Center
Video On Demand
Live
SparkRTC
Armazenamento
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Cloud Server Backup Service
Storage Disaster Recovery Service
Scalable File Service
Volume Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Bancos de dados
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Aplicações de negócios
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Data Lake Factory
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Distribuição de conteúdo e computação de borda
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Soluções
SAP Cloud
High Performance Computing
Serviços para desenvolvedore
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
Cloud Application Engine
MacroVerse aPaaS
KooPhone
KooDrive
Nesta página

IoTDB Basic Principles

Atualizado em 2023-08-14 GMT+08:00

Database for Internet of Things (IoTDB) is a software system that collects, stores, manages, and analyzes IoT time series data. Apache IoTDB uses a lightweight architecture and features high performance and rich functions.

IoTDB sorts time series and stores indexes and chunks, greatly improving the query performance of time series data. IoTDB uses the Raft protocol to ensure data consistency. In time series scenarios, IoTDB pre-computes and stores data to improve analysis performance. Based on the characteristics of time series data, IoTDB provides powerful data encoding and compression capabilities. In addition, its replica mechanism ensures data security. IoTDB is deeply integrated with Apache Hadoop and Flink to meet the requirements of massive data storage, high-speed data reading, and complex data analysis in the industrial IoT field.

This section applies to MRS 3.1.5 or later.

IoTDB Architecture

The IoTDB suite consists of multiple components to provide a series of functions such as data collection, data writing, data storage, data query, data visualization, and data analysis.

Figura 1 shows the overall application architecture after all components of the IoTDB suite are used. IoTDB refers to the time series database component in the suite.

Figura 1 IoTDB architecture
  • Users can use Java Database Connectivity (JDBC) to import the time series data and system status data (such as server load, CPU usage and memory usage) collected from device sensors, as well as time series data in message queues, applications, or other databases, to the local or remote IoTDB. Users can also directly write the preceding data into a local TsFile file or a TsFile file in the HDFS.
  • Users can write TsFile files to the HDFS to implement data processing tasks such as exception detection and machine learning on the Hadoop or Flink data processing platform.
  • The TsFile-Hadoop or TsFile-Flink connector can be used to allow Hadoop or Flink to process the TsFile files written to the HDFS or local host.
  • The analysis result can be written back to a TsFile in the same way.
  • IoTDB and TsFile also provide client tools to meet users' requirements for viewing and writing data in SQL, script, and graphical formats.

IoTDB Principles

Based on the attribute hierarchy, attribute coverage, and subordinate relationships between data, the IoTDB data model can be represented as the attribute hierarchy, as shown in Figura 2. The hierarchy is as follows: power group layer - power plant layer - device layer - sensor layer. ROOT is a root node, and each node at the sensor layer is a leaf node. According to the IoTDB syntax, the path from ROOT to a leaf node is separated by a dot (.). The complete path is used to name a time series in the IoTDB. For example, the time series name corresponding to the path on the left in the following figure is ROOT.ln.wf01.wt01.status.

Figura 2 IoTDB data model

Usamos cookies para aprimorar nosso site e sua experiência. Ao continuar a navegar em nosso site, você aceita nossa política de cookies. Saiba mais

Feedback

Feedback

Feedback

0/500

Conteúdo selecionado

Envie o conteúdo selecionado com o feedback