Esta página ainda não está disponível no idioma selecionado. Estamos trabalhando para adicionar mais opções de idiomas. Agradecemos sua compreensão.

Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Situation Awareness
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
Software Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive
On this page
Help Center/ Cloud Container Engine/ User Guide (Kuala Lumpur Region)/ Best Practices/ Checklist for Deploying Containerized Applications in the Cloud

Checklist for Deploying Containerized Applications in the Cloud

Updated on 2024-07-27 GMT+08:00

Overview

Security, efficiency, stability, and availability are common requirements on all cloud services. To meet these requirements, the system availability, data reliability, and O&M stability must be coordinated. This checklist describes the check items for deploying containerized applications on the cloud to help you efficiently migrate services to CCE, reducing potential cluster or application exceptions caused by improper use.

Check Items

Table 1 System availability

Category

Check Item

Type

Impact

Cluster

Before creating a cluster, properly plan the node network and container network based on service requirements to allow subsequent service expansion.

Network planning

If the subnet or container CIDR block where the cluster resides is small, the number of available nodes supported by the cluster may be less than required.

Before creating a cluster, properly plan CIDR blocks for the related Direct Connect, peering connection, container network, service network, and subnet to avoid IP address conflicts.

Network planning

If CIDR blocks are not properly set and IP address conflicts occur, service access will be affected.

When a cluster is created, the default security group is automatically created and bound to the cluster. You can set custom security group rules based on service requirements.

Deployment

Security groups are key to security isolation. Improper security policy configuration may cause security risks and service connectivity problems.

Enable the multi-master node mode, and set the number of master nodes to 3 when creating a cluster.

Reliability

After the multi-master node mode is enabled, three master nodes will be created. If a master node is faulty, the cluster can still be available without affecting service functions. In commercial scenarios, it is advised to enable the multi-master node mode.

When creating a cluster, select a proper network model as needed.
  • Select VPC network or Tunnel network for your CCE standard cluster.

Deployment

After a cluster is created, the network model cannot be changed. Exercise caution when selecting a network model.

Workload

When creating a workload, set the CPU and memory limits to improve service robustness.

Deployment

When multiple applications are deployed on the same node, if the upper and lower resource limits are not set for an application, resource leakage occurs. As a result, resources cannot be allocated to other applications, and the application monitoring information will be inaccurate.

When creating a workload, you can set probes for container health check, including liveness probe and readiness probe.

Reliability

If the health check function is not configured, a pod cannot detect service exceptions or automatically restart the service to restore it. This results in a situation where the pod status is normal but the service in the pod is abnormal.

When creating a workload, select a proper access mode (Service). Currently, the following types of Services are supported: ClusterIP, NodePort, and LoadBalancer.

Deployment

Improper Service configuration may cause logic confusion for internal and external access and resource waste.

When creating a workload, do not set the number of replicas for a single pod. Set a proper node scheduling policy based on your service requirements.

Reliability

For example, if the number of replicas of a single pod is set, the service will be abnormal when the node or pod is abnormal. To ensure that your pods can be successfully scheduled, ensure that the node has idle resources for container scheduling after you set the scheduling rule.

Properly set affinity and anti-affinity.

Reliability

If affinity and anti-affinity are both configured for an application that provides Services externally, Services may fail to be accessed after the application is upgraded or restarted.

When creating a workload, set the pre-stop processing command (Lifecycle > Pre-Stop) to ensure that the services running in the pods can be completed in advance in the case of application upgrade or pod deletion.

Reliability

If the pre-stop processing command is not configured, the pod will be directly killed and services will be interrupted during application upgrade.

Table 2 Data reliability

Category

Check Item

Type

Impact

Container data persistency

Select a proper data volume type based on service requirements.

Reliability

When a node is faulty and cannot be recovered, data in the local disk cannot be recovered. Therefore, you are advised to use cloud storage volumes to ensure data reliability.

Backup

Back up application data.

Reliability

Data cannot be restored after being lost.

Table 3 O&M reliability

Category

Check Item

Type

Impact

Project

The quotas of ECS, VPC, subnet, EIP, and EVS resources must meet customer requirements.

Deployment

If the quota is insufficient, resources will fail to be created. Specifically, users who have configured auto scaling must have sufficient resource quotas.

You are not advised to modify kernel parameters, system configurations, cluster core component versions, security groups, and ELB-related parameters on cluster nodes, or install software that has not been verified.

Deployment

Exceptions may occur on CCE clusters or Kubernetes components on the node, making the node unavailable for application deployment.

Do not modify information about resources created by CCE, such as security groups and EVS disks. Resources created by CCE are labeled cce.

Deployment

CCE cluster functions may be abnormal.

Proactive O&M

CCE provides multi-dimensional monitoring and alarm reporting functions, allowing users to locate and rectify faults as soon as possible.

  • Application Operations Management (AOM): The default basic resource monitoring of CCE covers detailed container-related metrics and provides alarm reporting functions.
  • Open source Prometheus: A monitoring tool for cloud native applications. It integrates an independent alarm system to provide more flexible monitoring and alarm reporting functions.

Monitoring

If the alarms are not configured, the standard of container cluster performance cannot be established. When an exception occurs, you cannot receive alarms and will need to manually locate the fault.

Usamos cookies para aprimorar nosso site e sua experiência. Ao continuar a navegar em nosso site, você aceita nossa política de cookies. Saiba mais

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback