このページは、お客様の言語ではご利用いただけません。Huawei Cloudは、より多くの言語バージョンを追加するために懸命に取り組んでいます。ご協力ありがとうございました。

Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Situation Awareness
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
Software Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive

Maxwell

Updated on 2024-04-19 GMT+08:00

Function

Maxwell is a Changelog Data Capture (CDC) tool that can stream changes in real-time from MySQL into Kafka and other streaming connectors. Maxwell provides a unified format schema for changelog and supports to serialize messages using JSON.

Flink supports to interpret Maxwell JSON messages as INSERT/UPDATE/DELETE messages into Flink SQL system. This is useful in many cases to leverage this feature,

such as:

  • Synchronizing incremental data from databases to other systems
  • Auditing logs
  • Real-time materialized views on databases
  • Temporal join changing history of a database table and so on

Flink also supports to encode the INSERT/UPDATE/DELETE messages in Flink SQL as Maxwell JSON messages, and emit to external systems like Kafka. However, currently Flink cannot combine UPDATE_BEFORE and UPDATE_AFTER into a single UPDATE message. Therefore, Flink encodes UPDATE_BEFORE and UDPATE_AFTER as DELETE and INSERT Maxwell messages.

For details, see Maxwell Format.

Supported Connectors

  • Kafka
  • FileSystem

Caveats

The Maxwell application allows to deliver every change event exactly-once. Flink works pretty well when consuming Maxwell produced events in this situation. If Maxwell application works in at-least-once delivery, it may deliver duplicate change events to Kafka and Flink will get the duplicate events. This may cause Flink query to get wrong results or unexpected exceptions. Thus, it is recommended setting job configuration table.exec.source.cdc-events-duplicate to true and define PRIMARY KEY on the source in this situation. Framework will generate an additional stateful operator, and use the primary key to deduplicate the change events and produce a normalized changelog stream.

Parameters

Table 1 Parameters

Parameter

Mandatory

Default Value

Type

Description

format

Yes

None

String

Format to be used. Set this parameter to maxwell-json.

maxwell-json.ignore-parse-errors

No

false

Boolean

Whether fields and rows with parse errors will be skipped or failed. Fields are set to null in case of errors.

maxwell-json.timestamp-format.standard

No

'SQL'

String

Specify the input and output timestamp format. Currently supported values are SQL and ISO-8601:

  • SQL will parse input timestamp in "yyyy-MM-dd HH:mm:ss.s{precision}" format, e.g '2020-12-30 12:13:14.123' and output timestamp in the same format.
  • ISO-8601 will parse input timestamp in "yyyy-MM-ddTHH:mm:ss.s{precision}" format, e.g '2020-12-30T12:13:14.123' and output timestamp in the same format.

maxwell-json.map-null-key.mode

No

'FAIL'

String

Specify the handling mode when serializing null keys for map data. Currently supported values are FAIL, DROP, and LITERAL:

  • FAIL will throw exception when encountering map with null key.
  • DROP will drop null key entries for map data.
  • LITERAL will replace null key with string literal. The string literal is defined by maxwell-json.map-null-key.literal.

maxwell-json.map-null-key.literal

No

'null'

String

Specify string literal to replace null key when maxwell-json.map-null-key.mode is LITERAL.

maxwell-json.encode.decimal-as-plain-number

No

false

Boolean

Encode all decimals as plain numbers instead of possible scientific notations. By default, decimals may be written using scientific notation. For example, 0.000000027 is encoded as 2.7E-8 by default, and will be written as 0.000000027 if set this parameter to true.

Metadata

The following format metadata can be exposed as read-only (VIRTUAL) columns in DDL.

Table 2 Metadata

Key

Data Type

Description

database

STRING NULL

The originating database. Corresponds to the database field in the Maxwell record if available.

table

STRING NULL

The originating database table. Corresponds to the table field in the Maxwell record if available.

primary-key-columns

ARRAY<STRING> NULL

Array of primary key names. Corresponds to the primary_key_columns field in the Maxwell record if available.

ingestion-timestamp

TIMESTAMP_LTZ(3) NULL

The timestamp at which the connector processed the event. Corresponds to the ts field in the Maxwell record.

The following is an example of using metadata:

CREATE TABLE KafkaTable (
  origin_database STRING METADATA FROM 'value.database' VIRTUAL,
  origin_table STRING METADATA FROM 'value.table' VIRTUAL,
  origin_primary_key_columns ARRAY<STRING> METADATA FROM 'value.primary-key-columns' VIRTUAL,
  origin_ts TIMESTAMP(3) METADATA FROM 'value.ingestion-timestamp' VIRTUAL,
  user_id BIGINT,
  item_id BIGINT,
  behavior STRING
) WITH (
  'connector' = 'kafka',
  'topic' = 'kafkaTopic',
  'properties.bootstrap.servers' = 'KafkaAddress1:KafkaPort,KafkaAddress2:KafkaPort',
  'properties.group.id' = 'GroupId',
  'scan.startup.mode' = 'earliest-offset',
  'value.format' = 'maxwell-json'
);

Example

Use Kafka to send data and output the data to Print.

  1. Create a datasource connection for the communication with the VPC and subnet where Kafka locates and bind the connection to the queue. Set a security group and inbound rule to allow access of the queue and test the connectivity of the queue using the Kafka IP address. For example, locate a general-purpose queue where the job runs and choose More > Test Address Connectivity in the Operation column. If the connection is successful, the datasource is bound to the queue. Otherwise, the binding fails.
  2. Create a Flink OpenSource SQL job and select Flink 1.15. Copy the following statement and submit the job:

    CREATE TABLE kafkaSource (
      id bigint,
      name string,
      description string,  
      weight DECIMAL(10, 2)
    ) WITH (
      'connector' = 'kafka',
      'topic' = 'kafkaTopic',
      'properties.bootstrap.servers' = 'KafkaAddress1:KafkaPort,KafkaAddress2:KafkaPort',
      'properties.group.id' = 'GroupId',
      'scan.startup.mode' = 'latest-offset',
      'format' = 'maxwell-json'
    );
    
    
    CREATE TABLE printSink (
      id bigint,
      name string,
      description string,  
      weight DECIMAL(10, 2)
    ) WITH (
      'connector' = 'print'
    );
    insert into printSink select * from kafkaSource;

  3. Insert the data below into the appropriate Kafka topics (for details about the meaning of each field, see Maxwell documentation):

    {
       "database":"test",
       "table":"e",
       "type":"insert",
       "ts":1477053217,
       "xid":23396,
       "commit":true,
       "position":"master.000006:800911",
       "server_id":23042,
       "thread_id":108,
       "primary_key": [1, "2016-10-21 05:33:37.523000"],
       "primary_key_columns": ["id", "c"],
       "data":{
         "id":111,
         "name":"scooter",
         "description":"Big 2-wheel scooter",
         "weight":5.15
       },
       "old":{
         "weight":5.18
       }
    }

  4. Perform the following operations to view the data result in the taskmanager.out file:

    1. Log in to the DLI console. In the navigation pane, choose Job Management > Flink Jobs.
    2. Click the name of the corresponding Flink job, choose Run Log, click OBS Bucket, and locate the folder of the log you want to view according to the date.
    3. Go to the folder of the date, find the folder whose name contains taskmanager, download the .out file, and view result logs.
    +I[111, scooter, Big 2-wheel scooter, 5.15]

We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out more

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback