このページは、お客様の言語ではご利用いただけません。Huawei Cloudは、より多くの言語バージョンを追加するために懸命に取り組んでいます。ご協力ありがとうございました。

Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive

Debezium

Updated on 2025-01-10 GMT+08:00

Function

Debezium is a Changelog Data Capture (CDC) tool that can stream changes in real-time from MySQL, PostgreSQL, Oracle, Microsoft SQL Server and many other databases into Kafka. Debezium provides a unified format schema for changelog and supports to serialize messages using JSON and Apache Avro.

Flink supports to interpret Debezium JSON and Avro messages as INSERT/UPDATE/DELETE messages into Flink SQL system. This is useful in many cases to leverage this feature, such as

  • Synchronizing incremental data from databases to other systems
  • Auditing logs
  • Real-time materialized views on databases
  • Temporal join changing history of a database table

Flink also supports to encode the INSERT/UPDATE/DELETE messages in Flink SQL as Debezium JSON or Avro messages, and emit to external systems like Kafka. However, currently Flink cannot combine UPDATE_BEFORE and UPDATE_AFTER into a single UPDATE message. Therefore, Flink encodes UPDATE_BEFORE and UDPATE_AFTER as DELETE and INSERT Debezium messages.

For details, see Debezium Format.

Supported Connectors

  • Kafka
  • FileSystem

Caveats

  • Duplicate change events

    Under normal operating scenarios, the Debezium application delivers every change event exactly-once. Flink works pretty well when consuming Debezium produced events in this situation. However, Debezium application works in at-least-once delivery if any failover happens. That means, in the abnormal situations, Debezium may deliver duplicate change events to Kafka and Flink will get the duplicate events. This may cause Flink query to get wrong results or unexpected exceptions.

    Solution: Set table.exec.source.cdc-events-duplicate to true and define a primary key on this source.

    Framework will generate an additional stateful operator, and use the primary key to deduplicate the change events and produce a normalized changelog stream.

    For more information, see Debezium documentation.

  • Consuming data produced by Debezium Postgres Connector

    If you are using Debezium Connector for PostgreSQL to capture the changes to Kafka, please make sure the REPLICA IDENTITY configuration of the monitored PostgreSQL table has been set to FULL which is by default DEFAULT. Otherwise, Flink SQL currently will fail to interpret the Debezium data.

    In FULL strategy, the UPDATE and DELETE events will contain the previous values of all the table's columns.

    In other strategies, the before field of UPDATE and DELETE events will only contain primary key columns or null if no primary key.

    You can change the REPLICA IDENTITY by running ALTER TABLE <your-table-name> REPLICA IDENTITY FULL.

Parameter Description

Flink provides debezium-avro-confluent and debezium-json formats to interpret Avro or Json messages produced by Debezium. Use format debezium-avro-confluent to interpret Debezium Avro messages and format debezium-json to interpret Debezium Json messages.

Table 1 Debezium Avro parameters

Parameter

Mandatory

Default Value

Data Type

Description

format

Yes

None

String

Format to be used. Set this parameter to 'debezium-avro-confluent'.

debezium-avro-confluent.basic-auth.credentials-source

No

None

String

Basic auth credentials source for Schema Registry

debezium-avro-confluent.basic-auth.user-info

No

None

String

Basic auth user info for schema registry

debezium-avro-confluent.bearer-auth.credentials-source

No

None

String

Bearer auth credentials source for Schema Registry

debezium-avro-confluent.bearer-auth.token

No

None

String

Bearer auth token for Schema Registry

debezium-avro-confluent.properties

No

None

Map

Properties map that is forwarded to the underlying Schema Registry. This is useful for options that are not officially exposed via Flink config options. However, note that Flink options have higher precedence.

debezium-avro-confluent.ssl.keystore.location

No

None

String

Location/File of SSL keystore

debezium-avro-confluent.ssl.keystore.password

No

None

String

Password for SSL keystore

debezium-avro-confluent.ssl.truststore.location

No

None

String

Location/File of SSL truststore

debezium-avro-confluent.ssl.truststore.password

No

None

String

Password for SSL truststore

debezium-avro-confluent.subject

No

None

String

The Confluent Schema Registry subject under which to register the schema used by this format during serialization. By default, 'kafka' and 'upsert-kafka' connectors use '<topic_name>-value' or '<topic_name>-key' as the default subject name if this format is used as the value or key format. But for other connectors (e.g. 'filesystem'), the subject option is required when used as sink.

debezium-avro-confluent.url

No

None

String

The URL of the Confluent Schema Registry to fetch/register schemas.

Table 2 Debezium JSON parameters

Parameter

Mandatory

Default Value

Mandatory

Description

format

Yes

None

String

Format to be used. In this example.Set this parameter to debezium-json.

debezium-json.schema-include

No

false

Boolean

Whether the Debezium JSON messages contain the schema. When setting up Debezium Kafka Connect, enable the Kafka configuration value.converter.schemas.enable to include the schema in the message.

debezium-json.ignore-parse-errors

No

false

Boolean

Whether fields and rows with parse errors will be skipped or failed. The default value is false, indicating that an error will be thrown. Fields are set to null in case of errors.

debezium-json.timestamp-format.standard

No

'SQL'

String

Input and output timestamp formats. Currently supported values are SQL and ISO-8601.

  • SQL will parse input timestamp in "yyyy-MM-dd HH:mm:ss.s{precision}" format, for example 2020-12-30 12:13:14.123 and output timestamp in the same format.
  • ISO-8601 will parse input timestamp in "yyyy-MM-ddTHH:mm:ss.s{precision}" format, for example 2020-12-30T12:13:14.123 and output timestamp in the same format.

debezium-json.map-null-key.mode

No

'FAIL'

String

Handling mode when serializing null keys for map data. Available values are as follows:

  • FAIL will throw exception when encountering map value with null key.
  • DROP will drop null key entries for map data.
  • LITERAL replaces the empty key value in the map with a string constant. The string literal is defined by debezium-json.map-null-key.literal option.

debezium-json.map-null-key.literal

No

'null'

String

String literal to replace null key when debezium-json.map-null-key.mode is LITERAL.

debezium-json.encode.decimal-as-plain-number

No

false

Boolean

Encode all decimals as plain numbers instead of possible scientific notations. For example, 0.000000027 is encoded as 2.7E-8 by default, and will be written as 0.000000027 if set this parameter to true.

Metadata

The following format metadata can be exposed as read-only (VIRTUAL) columns in DDL.

Format metadata fields are only available if the corresponding connector forwards format metadata. Currently, only the Kafka connector is able to expose metadata fields for its value format.

Table 3 Metadata

Key

Data Type

Description

schema

STRING NULL

JSON string describing the schema of the payload. Null if the schema is not included in the Debezium record.

ingestion-timestamp

TIMESTAMP_LTZ(3) NULL

The timestamp at which the connector processed the event. Corresponds to the ts_ms field in the Debezium record.

source.timestamp

TIMESTAMP_LTZ(3) NULL

The timestamp at which the source system created the event. Corresponds to the source.ts_ms field in the Debezium record.

source.database

STRING NULL

The originating database. Corresponds to the source.db field in the Debezium record if available.

source.schema

STRING NULL

The originating database schema. Corresponds to the source.schema field in the Debezium record if available.

source.table

STRING NULL

The originating database table. Corresponds to the source.table or source.collection field in the Debezium record if available.

source.properties

MAP<STRING, STRING> NULL

Map of various source properties. Corresponds to the source field in the Debezium record.

The following example shows how to access Canal metadata fields in Kafka:

CREATE TABLE KafkaTable (
  origin_ts TIMESTAMP(3) METADATA FROM 'value.ingestion-timestamp' VIRTUAL,
  event_time TIMESTAMP(3) METADATA FROM 'value.source.timestamp' VIRTUAL,
  origin_database STRING METADATA FROM 'value.source.database' VIRTUAL,
  origin_schema STRING METADATA FROM 'value.source.schema' VIRTUAL,
  origin_table STRING METADATA FROM 'value.source.table' VIRTUAL,
  origin_properties MAP<STRING, STRING> METADATA FROM 'value.source.properties' VIRTUAL,
  user_id BIGINT,
  item_id BIGINT,
  behavior STRING
) WITH (
  'connector' = 'kafka',
  'topic' = 'kafkaTopic',
  'properties.bootstrap.servers' = 'KafkaAddress1:KafkaPort,KafkaAddress2:KafkaPort',
  'properties.group.id' = 'GroupId',
  'scan.startup.mode' = 'earliest-offset',
  'value.format' = 'debezium-json'
);

Example

Use Kafka to parse Debezium JSON data and output the result to Print.

  1. Create a datasource connection for the communication with the VPC and subnet where Kafka locates and bind the connection to the queue. Set a security group and inbound rule to allow access of the queue and test the connectivity of the queue using the Kafka IP address. For example, locate a general-purpose queue where the job runs and choose More > Test Address Connectivity in the Operation column. If the connection is successful, the datasource is bound to the queue. Otherwise, the binding fails.
  2. Create a Flink OpenSource SQL job and select Flink 1.15. Copy the following statement and submit the job:

    CREATE TABLE kafkaSource (
      id bigint,
      name string,
      description string,  
      weight DECIMAL(10, 2)
    ) WITH (
      'connector' = 'kafka',
      'topic' = 'kafkaTopic',
      'properties.bootstrap.servers' = 'KafkaAddress1:KafkaPort,KafkaAddress2:KafkaPort',
      'properties.group.id' = 'GroupId',
      'scan.startup.mode' = 'latest-offset',
      'format' = 'debezium-json'
    );
    CREATE TABLE printSink (
      id bigint,
      name string,
      description string,  
      weight DECIMAL(10, 2)
    ) WITH (
      'connector' = 'print'
    );
    insert into printSink select * from kafkaSource;

  3. Insert the data below into the appropriate Kafka topics. The data shows that the MySQL products table has four columns: id, name, description, and weight. This JSON message represents an update event on the products table, where the weight value of the row with id = 111 has been changed from 5.18 to 5.15.

    {
      "before": {
        "id": 111,
        "name": "scooter",
        "description": "Big 2-wheel scooter",
        "weight": 5.18
      },
      "after": {
        "id": 111,
        "name": "scooter",
        "description": "Big 2-wheel scooter",
        "weight": 5.15
      },
      "source": {
        "version": "0.9.5.Final",
    	"connector": "mysql",
    	"name": "fullfillment",
    	"server_id" :1,
    	"ts_sec": 1629607909,
    	"gtid": "mysql-bin.000001",
    	"pos": 2238,"row": 0,
    	"snapshot": false,
    	"thread": 7,
    	"db": "inventory",
    	"table": "test",
    	"query": null},
      "op": "u",
      "ts_ms": 1589362330904,
      "transaction": null
    }

  4. Perform the following operations to view the data result in the taskmanager.out file:

    1. Log in to the DLI console. In the navigation pane, choose Job Management > Flink Jobs.
    2. Click the name of the corresponding Flink job, choose Run Log, click OBS Bucket, and locate the folder of the log you want to view according to the date.
    3. Go to the folder of the date, find the folder whose name contains taskmanager, download the .out file, and view result logs.
    -U[111, scooter, Big 2-wheel scooter, 5.18]
    +U[111, scooter, Big 2-wheel scooter, 5.15]

We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out more

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback