Updated on 2024-03-21 GMT+08:00

Querying the Details About a Training Job Configuration

Sample Code

In ModelArts notebook, you do not need to enter authentication parameters for session authentication. For details about session authentication of other development environments, see Session Authentication.

  • Method 1: Use the specified config_name.
    1
    2
    3
    4
    5
    6
    from modelarts.session import Session
    from modelarts.estimator import Estimator
    session = Session()
    estimator = Estimator(modelarts_session=session, config_name="my_job_config")
    job_paras_info = estimator.get_job_configs_info()
    print(job_paras_info)
    

Parameters

Table 1 Estimator request parameters

Parameter

Mandatory

Type

Description

modelarts_session

Yes

Object

Session object. For details about the initialization method, see Session Authentication.

config_name

Yes

String

Name of a training job parameter configuration

Table 2 get_job_configs_info response parameters

Parameter

Type

Description

error_msg

String

Error message when the API call fails.

This parameter is not included when the API call succeeds.

error_code

String

Error code when the API fails to be called. For details, see Error Codes.

This parameter is not included when the API call succeeds.

config_name

String

Name of a training job parameter configuration

config_desc

String

Description of a training job parameter configuration

worker_server_num

Integer

Number of workers in a training job

app_url

String

Code directory of a training job

boot_file_url

String

Boot file of a training job

model_id

Long

Model ID of a training job

parameter

JSON Array

Running parameters of a training job. It is a collection of label-value pairs. This parameter is a container environment variable when a job uses a custom image.

spec_id

Long

ID of the resource specifications selected for a training job

data_url

String

Dataset of a training job

dataset_id

String

Dataset ID of a training job

dataset_version_id

String

Dataset version ID of a training job

engine_type

Short

Engine type of a training job

engine_name

String

Name of the engine selected for a training job

engine_id

Long

ID of the engine selected for a training job

engine_version

String

Version of the engine selected for a training job

train_url

String

OBS URL of the output file of a training job. By default, this parameter is left blank. Example value: /usr/train/

log_url

String

OBS URL of the logs of a training job. By default, this parameter is left blank. Example value: /usr/train/

user_image_url

String

SWR URL of the custom image used by a training job

user_command

String

Boot command used to start the container of the custom image of a training job

is_success

Boolean

Whether the API call succeeds