Cloud Native Cluster Monitoring
Introduction
The Cluster Native Cluster Monitoring add-on (kube-prometheus-stack) uses Prometheus-operator and Prometheus to provide easy-to-use, end-to-end Kubernetes cluster monitoring.
This add-on allows the monitoring data to be interconnected with Monitoring Center so that you can view monitoring data and configure alarms in Monitoring Center.
Open source community: https://github.com/prometheus/prometheus
Permissions
The node-exporter component of the Cloud Native Cluster Monitoring add-on needs to read the Docker info data from the /var/run/docker.sock directory on the host for monitoring the Docker disk space.
The following permission is required for running node-exporter:
- cap_dac_override: reads the Docker info data.
Installing the Add-on
- Log in to the CCE console and click the cluster name to access the cluster console. In the navigation pane on the left, choose Add-ons. Locate Cloud Native Cluster Monitoring on the right and click Install.
- On the Install Add-on page, select a version.
- Configure the parameters.
- Interconnecting with AOM: Prometheus data will be reported to AOM. If this option is enabled, you need to select an AOM instance. Basic metrics are free, but custom metrics are billed based on the standard pricing of AOM. For details, see AOM Pricing Details. To interconnect with AOM, you must have certain permissions. Only Huawei Cloud accounts, HUAWEI IDs, and IAM users in the admin user group can perform this operation.
- User-defined indicator HPA: Application metrics are automatically collected in the form of service discovery. If this option is enabled, you need to add related configurations to the target application. For details, see Creating an HPA Policy Using Custom Metrics.
- Click Install.
After the add-on is installed, you may need to perform the following operations:
If you want to use custom metrics to create an HPA policy, you need to aggregate the custom metrics collected by Prometheus to the API server. For details, see Creating an HPA Policy Using Custom Metrics.
Components
All Kubernetes resources created during kube-prometheus-stack add-on installation are created in the namespace named monitoring.
Component |
Description |
Resource Type |
---|---|---|
prometheusOperator (workload name: prometheus-operator) |
Deploys and manages the Prometheus Server based on CustomResourceDefinitions (CRDs), and monitors and processes the events related to these CRDs. It is the control center of the entire system. |
Deployment |
prometheus-lightweight (workload name: prometheus-lightweight) |
A Prometheus Server cluster deployed by the operator based on the Prometheus CRDs that can be regarded as StatefulSets. |
StatefulSet |
kubeStateMetrics (workload name: kube-state-metrics) |
Converts the Prometheus metric data into a format that can be identified by Kubernetes APIs.
NOTE:
If the components run in multiple pods, only metrics in one pod are collected. |
Deployment |
nodeExporter (workload name: node-exporter) |
Deployed on each node to collect node monitoring data. |
Pod |
adapter (workload name: custom-metrics-apiserver) |
Aggregates custom metrics to the native Kubernetes API Server. This is closely related to custom metric HPA. The adapter component needs to be installed only when custom metric HPA is enabled. |
Deployment |
Providing Resource Metrics Through the Metrics API
Resource metrics of containers and nodes, such as CPU and memory usage, can be obtained through the Kubernetes Metrics API. Resource metrics can be directly accessed, for example, by using the kubectl top command, or used by HPA or CustomedHPA policies for auto scaling.
The add-on can provide the Kubernetes Metrics API that is disabled by default. To enable the Metrics API, create the following APIService object:
apiVersion: apiregistration.k8s.io/v1 kind: APIService metadata: labels: app: custom-metrics-apiserver release: cceaddon-prometheus name: v1beta1.metrics.k8s.io spec: group: metrics.k8s.io groupPriorityMinimum: 100 insecureSkipTLSVerify: true service: name: custom-metrics-apiserver namespace: monitoring port: 443 version: v1beta1 versionPriority: 100
You can save the object as a file, name it metrics-apiservice.yaml, and run the following command:
kubectl create -f metrics-apiservice.yaml
Run the kubectl top pod -n monitoring command. If information similar to the following is displayed, the Metrics API can be accessed:
# kubectl top pod -n monitoring NAME CPU(cores) MEMORY(bytes) ...... custom-metrics-apiserver-d4f556ff9-l2j2m 38m 44Mi ......
To uninstall the add-on, run the following kubectl command and delete the APIService object first or the add-on cannot be installed due to residual APIService resources.
kubectl delete APIService v1beta1.metrics.k8s.io
Creating an HPA Policy Using Custom Metrics
- Log in to the CCE console and click the cluster name to access the cluster console.
- In the navigation pane on the left, choose ConfigMaps and Secrets. Then click Create from YAML.
You can add multiple collection rules by adding multiple configurations under the rules field. For details, see Metrics Discovery and Presentation Configuration. The following is an example of a custom collection rule:
kind: ConfigMap apiVersion: v1 metadata: name: user-adapter-config namespace: monitoring data: config.yaml: |- rules: - seriesQuery: 'container_network_receive_bytes_total{namespace!="",pod!=""}' # Original metrics required for scale-out (metrics from kubelet) seriesFilters: [] resources: overrides: # Specifies pod and namespace resources. namespace: resource: namespace pod: resource: pod name: matches: container_(.*)_total as: "pod_${1}_per_second" # Metric alias metricsQuery: sum(rate(<<.Series>>{<<.LabelMatchers>>}[30s])) by (<<.GroupBy>>) # Metric change rate of all containers for a workload within 30s
In the preceding example, the aggregation time is 30s. If this time is set to a value less than 15s (a collection period), the metrics may be inaccurate.
- In the navigation pane, choose Add-ons. Locate the Cloud Native Cluster Monitoring add-on, click Edit, and enable custom metric HPA.
Click Install.
You need to create collection rules described in 2 and then enable the custom metric HPA to trigger add-on redeployment for custom metric collection to take effect.
- In the navigation pane on the left, choose Workloads. Locate the workload for which you want to create an HPA policy and click Auto Scaling. In the Custom Policy area, you can create an auto scaling policy based on the metrics in 2.
After a workload is created, create an HPA policy unless all pods for that workload are ready and the metrics of the first collection period are collected.
Figure 1 Creating an HPA policy
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.See the reply and handling status in My Cloud VOC.
For any further questions, feel free to contact us through the chatbot.
Chatbot