Halaman ini belum tersedia dalam bahasa lokal Anda. Kami berusaha keras untuk menambahkan lebih banyak versi bahasa. Terima kasih atas dukungan Anda.

Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive
Help Center/ Data Lake Insight/ Developer Guide/ SQL Jobs/ Calling UDTFs in Spark SQL Jobs

Calling UDTFs in Spark SQL Jobs

Updated on 2024-06-06 GMT+08:00

Scenario

You can use Hive User-Defined Table-Generating Functions (UDTF) to customize table-valued functions. Hive UDTFs are used for the one-in-multiple-out data operations. UDTF reads a row of data and output multiple values.

Constraints

  • To perform UDTF-related operations on DLI, you need to create a SQL queue instead of using the default queue.
  • When UDTFs are used by multiple accounts, other users, except the user who creates them, need to be authorized before using the UDTF. The authorization operations are as follows:

    Log in to the DLI console and choose Data Management > Package Management. On the displayed page, select your UDTF Jar package and click Manage Permissions in the Operation column. On the permission management page, click Grant Permission in the upper right corner and select the required permissions.

  • If you use a static class or interface in a UDF, add try catch to capture exceptions. Otherwise, package conflicts may occur.

Environment Preparations

Before you start, set up the development environment.

Table 1 Development environment

Item

Description

OS

Windows 7 or later

JDK

JDK 1.8.

IntelliJ IDEA

This tool is used for application development. The version of the tool must be 2019.1 or other compatible versions.

Maven

Basic configurations of the development environment. Maven is used for project management throughout the lifecycle of software development.

Development Process

The process of developing a UDTF is as follows:
Figure 1 Development process
Table 2 Process description

No.

Phase

Software Portal

Description

1

Create a Maven project and configure the POM file.

IntelliJ IDEA

Write UDTF code by referring the steps in Procedure.

2

Write UDTF code.

3

Debug, compile, and pack the code into a Jar package.

4

Upload the Jar package to OBS.

OBS console

Upload the UDTF Jar file to an OBS directory.

5

Create the UDTF on DLI.

DLI console

Create a UDTF on the SQL job management page of the DLI console.

6

Verify and use the UDTF on DLI.

DLI console

Use the UDTF in your DLI job.

Procedure

  1. Create a Maven project and configure the POM file. This step uses IntelliJ IDEA 2020.2 as an example.
    1. Start IntelliJ IDEA and choose File > New > Project.
      Figure 2 Creating a project
    2. Choose Maven, set Project SDK to 1.8, and click Next.
      Figure 3 Choosing Maven
    3. Set the project name, configure the storage path, and click Finish.
      Figure 4 Creating a project
    4. Add the following content to the pom.xml file.
      <dependencies>
              <dependency>
                  <groupId>org.apache.hive</groupId>
                  <artifactId>hive-exec</artifactId>
                  <version>1.2.1</version>
              </dependency>
      </dependencies>
      Figure 5 Adding configurations to the POM file
    5. Choose src > main and right-click the java folder. Choose New > Package to create a package and a class file.
      Figure 6 Creating a package and a class file

      Set the package name as you need. In this example, set Package to com.huawei.demo. Then, press Enter.

      Figure 7 Customizing a package

      Create a Java Class file in the package path. In this example, the Java Class file is UDTFSplit.

      Figure 8 Creating a Java class file
  2. Write UDTF code. For sample code, see Sample Code.

    The UDTF class must inherit org.apache.hadoop.hive.ql.udf.generic.GenericUDTF to implement the initialize, process, and close methods.

    1. Call the initialize method in the UDTF. This method returns the information about the returned data rows of the UDTF, such as the number and type.
    2. Call the process method to process data. Each time forward() is called in the process method, a row is generated.
      If multiple columns are generated, you can put the values in an array and pass the array to the forward() function.
      public void process(Object[] args) throws HiveException {
              // TODO Auto-generated method stub
              if(args.length == 0){
                  return;
              }
              String input = args[0].toString();
              if(StringUtils.isEmpty(input)){
                  return;
              }
              String[] test = input.split(";");
              for (int i = 0; i < test.length; i++) {
                  try {
                      String[] result = test[i].split(":");
                      forward(result);
                  } catch (Exception e) {
                      continue;
                  }
              }
      
          }
    3. Call the close method to clear methods that need to be closed.
  3. Use IntelliJ IDEA to compile the code and pack it into the JAR package.
    1. Click Maven in the tool bar on the right, and click clean and compile to compile the code.
      After the compilation is successful, click package.
      Figure 9 Compiling and packaging

      The generated JAR package is stored in the target directory. In this example, MyUDTF-1.0-SNAPSHOT.jar is stored in D:\MyUDTF\target.

      Figure 10 Generating a JAR file
  4. Log in to the OBS console and upload the file to the OBS path.
    NOTE:

    The region of the OBS bucket to which the Jar package is uploaded must be the same as the region of the DLI queue. Cross-region operations are not allowed.

  5. (Optional) Upload the file to DLI for package management.
    1. Log in to the DLI management console and choose Data Management > Package Management.
    2. On the Package Management page, click Create in the upper right corner.
    3. In the Create Package dialog, set the following parameters:
      1. Type: Select JAR.
      2. OBS Path: Specify the OBS path for storing the package.
      3. Set Group and Group Name as required for package identification and management.
    4. Click OK.
      Figure 11 Creating a package
  6. Create the UDTF on DLI.
    1. Log in to the DLI console, choose SQL Editor. Set Engine to spark, and select the created SQL queue and database.
      Figure 12 Selecting the queue and database
    2. In the SQL editing area, enter the path of the JAR file to be uploaded to create a UDTF and click Execute.
      CREATE FUNCTION mytestsplit AS 'com.huawei.demo.UDTFSplit' using jar 'obs://dli-test-obs01/MyUDTF-1.0-SNAPSHOT.jar';
  7. Restart the original SQL queue for the added function to take effect.
    1. Log in to the DLI management console and choose Resources > Queue Management from the navigation pane. In the Operation column of the SQL queue job, click Restart.
    2. In the Restart dialog box, click OK.
  8. Verify and use the UDTF on DLI.

    Use the UDTF created in 6 in the SELECT statement as follows:

    select mytestsplit('abc:123\;efd:567\;utf:890');
    Figure 13 Execution result
  9. (Optional) Delete the UDTF.

    If this function is no longer used, run the following statement to delete the function:

    Drop FUNCTION mytestsplit;

Sample Code

The complete UDTFSplit.java code is as follows:

import java.util.ArrayList;

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;

public class UDTFSplit extends GenericUDTF {

    @Override
    public void close() throws HiveException {
        // TODO Auto-generated method stub

    }

    @Override
    public void process(Object[] args) throws HiveException {
        // TODO Auto-generated method stub
        if(args.length == 0){
            return;
        }
        String input = args[0].toString();
        if(StringUtils.isEmpty(input)){
            return;
        }
        String[] test = input.split(";");
        for (int i = 0; i < test.length; i++) {
            try {
                String[] result = test[i].split(":");
                forward(result);
            } catch (Exception e) {
                continue;
            }
        }

    }

    @Override
    public StructObjectInspector initialize(ObjectInspector[] args) throws UDFArgumentException {
        if (args.length != 1) {
            throw new UDFArgumentLengthException("ExplodeMap takes only one argument");
        }
        if (args[0].getCategory() != ObjectInspector.Category.PRIMITIVE) {
            throw new UDFArgumentException("ExplodeMap takes string as a parameter");
        }

        ArrayList<String> fieldNames = new ArrayList<String>();
        ArrayList<ObjectInspector> fieldOIs = new ArrayList<ObjectInspector>();
        fieldNames.add("col1");
        fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
        fieldNames.add("col2");
        fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);

        return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames, fieldOIs);
    }

}

Kami menggunakan cookie untuk meningkatkan kualitas situs kami dan pengalaman Anda. Dengan melanjutkan penelusuran di situs kami berarti Anda menerima kebijakan cookie kami. Cari tahu selengkapnya

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback