Halaman ini belum tersedia dalam bahasa lokal Anda. Kami berusaha keras untuk menambahkan lebih banyak versi bahasa. Terima kasih atas dukungan Anda.

Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive

Scala Example Code

Updated on 2025-02-21 GMT+08:00

Prerequisites

A datasource connection has been created on the DLI management console. For details, see Data Lake Insight User Guide.

CSS Non-Security Cluster

  • Development description
    • Constructing dependency information and creating a Spark session
      1. Import dependencies.
        Maven dependency
        1
        2
        3
        4
        5
        <dependency>
          <groupId>org.apache.spark</groupId>
          <artifactId>spark-sql_2.11</artifactId>
          <version>2.3.2</version>
        </dependency>
        
        Import dependency packages.
        1
        2
        import org.apache.spark.sql.{Row, SaveMode, SparkSession}
        import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
        
      2. Create a session.
        1
        val sparkSession = SparkSession.builder().getOrCreate()
        
    • Connecting to data sources through SQL APIs
      1. Create a table to connect to a CSS data source.
        1
        2
        3
        4
        sparkSession.sql("create table css_table(id int, name string) using css options(
        	'es.nodes' 'to-css-1174404221-Y2bKVIqY.datasource.com:9200',
        	'es.nodes.wan.only'='true',
        	'resource' '/mytest/css')")
        
        Table 1 Parameters for creating a table

        Parameter

        Description

        es.nodes

        CSS connection address. You need to create a datasource connection first. For details, see Enhanced Datasource Connections.

        If you have created a basic datasource connection, you can use the returned IP address.

        If you have created an enhanced datasource connection, use the intranet IP address provided by CSS. The address format is IP1:PORT1,IP2:PORT2.

        resource

        Name of the resource for the CSS datasource connection name. You can use /index/type to specify the resource location (for easier understanding, the index may be seen as database and type as table).

        NOTE:
        • In Elasticsearch 6.X, a single index supports only one type, and the type name can be customized.
        • In Elasticsearch 7.X, a single index uses _doc as the type name and cannot be customized. To access Elasticsearch 7.X, set this parameter to index.

        pushdown

        Whether to enable the pushdown function of CSS. The default value is true. For tables with a large number of I/O requests, the pushdown function help reduce I/O pressure when the where condition is specified.

        strict

        Whether the CSS pushdown is strict. The default value is false. The exact match function can reduce more I/O requests than pushdown.

        batch.size.entries

        Maximum number of entries that can be inserted in a batch. The default value is 1000. If the size of a single data record is so large that the number of data records in the bulk storage reaches the upper limit of the data amount in a single batch, the system stops storing data and submits the data based on the batch.size.bytes parameter.

        batch.size.bytes

        Maximum amount of data in a single batch. The default value is 1 MB. If the size of a single data record is so small that the number of data records in the bulk storage reaches the upper limit of the data amount of a single batch, the system stops storing data and submits the data based on the batch.size.entries parameter.

        es.nodes.wan.only

        Whether to access the Elasticsearch node using only the domain name. The default value is false. If a basic datasource connection address is used as the es.nodes, set this parameter to true. If the original internal IP address provided by CSS is used as the es.nodes, you do not need to set this parameter or set it to false.

        es.mapping.id

        Document field name that contains the document ID in the Elasticsearch node.

        NOTE:
        • The document ID in the same /index/type is unique. If a field that contains a document ID has duplicate values, the document with the duplicate ID will be overwritten when the ES is inserted.
        • This feature can be used as a fault tolerance solution. When data is being inserted, the DLI job fails and some data has been inserted into Elasticsearch. The data is redundant. If the document ID is set, the previous data will be overwritten when the DLI job is executed again.
        NOTE:

        batch.size.entries and batch.size.bytes limit the number of data records and data volume respectively.

      2. Insert data.
        1
        sparkSession.sql("insert into css_table values(13, 'John'),(22, 'Bob')")
        
      3. Query data.
        1
        2
        val dataFrame = sparkSession.sql("select * from css_table")
        dataFrame.show()
        

        Before data is inserted:

        Response:

      4. Delete the datasource connection table.
        1
        sparkSession.sql("drop table css_table")
        
    • Connecting to data sources through DataFrame APIs
      1. Set connection parameters.
        1
        2
        val resource = "/mytest/css"
        val nodes = "to-css-1174405013-Ht7O1tYf.datasource.com:9200"
        
      2. Create a schema and add data to it.
        1
        2
        val schema = StructType(Seq(StructField("id", IntegerType, false), StructField("name", StringType, false)))
        val rdd = sparkSession.sparkContext.parallelize(Seq(Row(12, "John"),Row(21,"Bob")))
        
      3. Import data to CSS.
        1
        2
        3
        4
        5
        6
        7
        val dataFrame_1 = sparkSession.createDataFrame(rdd, schema)
        dataFrame_1.write 
          .format("css") 
          .option("resource", resource) 
          .option("es.nodes", nodes) 
          .mode(SaveMode.Append) 
          .save()
        
        NOTE:

        The value of SaveMode can be one of the following:

        • ErrorIfExis: If the data already exists, the system throws an exception.
        • Overwrite: If the data already exists, the original data will be overwritten.
        • Append: If the data already exists, the system saves the new data.
        • Ignore: If the data already exists, no operation is required. This is similar to the SQL statement CREATE TABLE IF NOT EXISTS.
      4. Read data from CSS.
        1
        2
        val dataFrameR = sparkSession.read.format("css").option("resource",resource).option("es.nodes", nodes).load()
        dataFrameR.show()
        

        Before data is inserted:

        Response:

    • Submitting a Spark job
      1. Generate a JAR file based on the code file and upload the JAR file to the OBS bucket.
      2. In the Spark job editor, select the corresponding dependency module and execute the Spark job.
        NOTE:
        • For Spark 2.3.2 (soon to be take offline) or 2.4.5, set Module to sys.datasource.css when submitting a job.
        • If the Spark version is 3.1.1 or later, you do not need to select a module. Configure Spark parameters (--conf).

          spark.driver.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/css/*

          spark.executor.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/css/*

        • For how to submit a job on the console, see Table 3 "Parameters for selecting dependency resources" in Creating a Spark Job.
        • For details about how to submit a job through an API, see the description of the modules parameter in Table 2 "Request parameters" in Creating a Batch Processing Job.
  • Complete example code
    • Maven dependency
      1
      2
      3
      4
      5
      <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-sql_2.11</artifactId>
        <version>2.3.2</version>
      </dependency>
      
    • Connecting to data sources through SQL APIs
       1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      import org.apache.spark.sql.SparkSession
      
      object Test_SQL_CSS {
        def main(args: Array[String]): Unit = {
          // Create a SparkSession session.
          val sparkSession = SparkSession.builder().getOrCreate()
      
          // Create a DLI data table for DLI-associated CSS
          sparkSession.sql("create table css_table(id long, name string) using css options(
      	'es.nodes' = 'to-css-1174404217-QG2SwbVV.datasource.com:9200',
      	'es.nodes.wan.only' = 'true',
      	'resource' = '/mytest/css')")
      
          //*****************************SQL model***********************************
          // Insert data into the DLI data table
          sparkSession.sql("insert into css_table values(13, 'John'),(22, 'Bob')")
         
          // Read data from DLI data table
          val dataFrame = sparkSession.sql("select * from css_table")
          dataFrame.show()
         
          // drop table
          sparkSession.sql("drop table css_table")
      
          sparkSession.close()
        }
      }
      
    • Connecting to data sources through DataFrame APIs
       1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      import org.apache.spark.sql.{Row, SaveMode, SparkSession};
      import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType};
      
      object Test_SQL_CSS {
        def main(args: Array[String]): Unit = {
          //Create a SparkSession session.
          val sparkSession = SparkSession.builder().getOrCreate()
      
          //*****************************DataFrame model***********************************
          // Setting the /index/type of CSS
          val resource = "/mytest/css"
        
          // Define the cross-origin connection address of the CSS cluster
          val nodes = "to-css-1174405013-Ht7O1tYf.datasource.com:9200"
      
          //Setting schema
          val schema = StructType(Seq(StructField("id", IntegerType, false), StructField("name", StringType, false)))
        
          // Construction data
          val rdd = sparkSession.sparkContext.parallelize(Seq(Row(12, "John"),Row(21,"Bob")))
        
          // Create a DataFrame from RDD and schema
          val dataFrame_1 = sparkSession.createDataFrame(rdd, schema)
        
         //Write data to the CSS
         dataFrame_1.write.format("css") 
          .option("resource", resource) 
          .option("es.nodes", nodes) 
          .mode(SaveMode.Append) 
          .save()
        
          //Read data
          val dataFrameR = sparkSession.read.format("css").option("resource", resource).option("es.nodes", nodes).load()
          dataFrameR.show()
      
          spardSession.close()
        }
      }
      

CSS Security Cluster

  • Development description
    • Constructing dependency information and creating a Spark session
      1. Import dependencies.
        Maven dependency
        1
        2
        3
        4
        5
        <dependency>
          <groupId>org.apache.spark</groupId>
          <artifactId>spark-sql_2.11</artifactId>
          <version>2.3.2</version>
        </dependency>
        
        Import dependency packages.
        1
        2
        import org.apache.spark.sql.{Row, SaveMode, SparkSession}
        import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
        
      2. Create a session and set the AKs and SKs.
        NOTE:

        Hard-coded or plaintext AK and SK pose significant security risks. To ensure security, encrypt your AK and SK, store them in configuration files or environment variables, and decrypt them when needed.

        1
        2
        3
        4
        5
        val sparkSession = SparkSession.builder().getOrCreate()
        sparkSession.conf.set("fs.obs.access.key", ak)
        sparkSession.conf.set("fs.obs.secret.key", sk)
        sparkSession.conf.set("fs.obs.endpoint", enpoint)
        sparkSession.conf.set("fs.obs.connecton.ssl.enabled", "false")
        
    • Connecting to data sources through SQL APIs
      1. Create a table to connect to a CSS data source.
         1
         2
         3
         4
         5
         6
         7
         8
         9
        10
        11
        sparkSession.sql("create table css_table(id int, name string) using css options(
        	'es.nodes' 'to-css-1174404221-Y2bKVIqY.datasource.com:9200',
        	'es.nodes.wan.only'='true',
        	'resource'='/mytest/css',
         	'es.net.ssl'='true',
        	'es.net.ssl.keystore.location'='obs://Bucket name/path/transport-keystore.jks',
        	'es.net.ssl.keystore.pass'='***',
        	'es.net.ssl.truststore.location'='obs://Bucket name/path/truststore.jks',
        	'es.net.ssl.truststore.pass'='***',
        	'es.net.http.auth.user'='admin',
        	'es.net.http.auth.pass'='***')")
        
        Table 2 Parameters for creating a table

        Parameter

        Description

        es.nodes

        CSS connection address. You need to create a datasource connection first. For details, see Enhanced Datasource Connections.

        If you have created a basic datasource connection, you can use the returned IP address.

        If you have created an enhanced datasource connection, use the intranet IP address provided by CSS. The address format is IP1:PORT1,IP2:PORT2.

        resource

        Name of the resource for the CSS datasource connection name. You can use /index/type to specify the resource location (for easier understanding, the index may be seen as database and type as table).

        NOTE:

        1. In Elasticsearch 6.X, a single index supports only one type, and the type name can be customized.

        2. In Elasticsearch 7.X, a single index uses _doc as the type name and cannot be customized. To access Elasticsearch 7.X, set this parameter to index.

        pushdown

        Whether to enable the pushdown function of CSS. The default value is true. For tables with a large number of I/O requests, the pushdown function help reduce I/O pressure when the where condition is specified.

        strict

        Whether the CSS pushdown is strict. The default value is false. The exact match function can reduce more I/O requests than pushdown.

        batch.size.entries

        Maximum number of entries that can be inserted in a batch. The default value is 1000. If the size of a single data record is so large that the number of data records in the bulk storage reaches the upper limit of the data amount in a single batch, the system stops storing data and submits the data based on the batch.size.bytes parameter.

        batch.size.bytes

        Maximum amount of data in a single batch. The default value is 1 MB. If the size of a single data record is so small that the number of data records in the bulk storage reaches the upper limit of the data amount of a single batch, the system stops storing data and submits the data based on the batch.size.entries parameter.

        es.nodes.wan.only

        Whether to access the Elasticsearch node using only the domain name. The default value is false. If a basic datasource connection address is used as the es.nodes, set this parameter to true. If the original internal IP address provided by CSS is used as the es.nodes, you do not need to set this parameter or set it to false.

        es.mapping.id

        Document field name that contains the document ID in the Elasticsearch node.

        NOTE:
        • The document ID in the same /index/type is unique. If a field that contains a document ID has duplicate values, the document with the duplicate ID will be overwritten when the ES is inserted.
        • This feature can be used as a fault tolerance solution. When data is being inserted, the DLI job fails and some data has been inserted into Elasticsearch. The data is redundant. If the document ID is set, the previous data will be overwritten when the DLI job is executed again.

        es.net.ssl

        Whether to connect to the security CSS cluster. The default value is false.

        es.net.ssl.keystore.location

        OBS bucket location of the keystore file generated by the security CSS cluster certificate.

        es.net.ssl.keystore.pass

        Password of the keystore file generated by the security CSS cluster certificate.

        es.net.ssl.truststore.location

        OBS bucket location of the truststore file generated by the security CSS cluster certificate.

        es.net.ssl.truststore.pass

        Password of the truststore file generated by the security CSS cluster certificate.

        es.net.http.auth.user

        Username of the security CSS cluster.

        es.net.http.auth.pass

        Password of the security CSS cluster.

        NOTE:

        batch.size.entries and batch.size.bytes limit the number of data records and data volume respectively.

      2. Insert data.
        1
        sparkSession.sql("insert into css_table values(13, 'John'),(22, 'Bob')")
        
      3. Query data.
        1
        2
        val dataFrame = sparkSession.sql("select * from css_table")
        dataFrame.show()
        

        Before data is inserted:

        Response:

      4. Delete the datasource connection table.
        1
        sparkSession.sql("drop table css_table")
        
    • Connecting to data sources through DataFrame APIs
      1. Set connection parameters.
        1
        2
        val resource = "/mytest/css"
        val nodes = "to-css-1174405013-Ht7O1tYf.datasource.com:9200"
        
      2. Create a schema and add data to it.
        1
        2
        val schema = StructType(Seq(StructField("id", IntegerType, false), StructField("name", StringType, false)))
        val rdd = sparkSession.sparkContext.parallelize(Seq(Row(12, "John"),Row(21,"Bob")))
        
      3. Import data to CSS.
         1
         2
         3
         4
         5
         6
         7
         8
         9
        10
        11
        12
        13
        14
        val dataFrame_1 = sparkSession.createDataFrame(rdd, schema)
        dataFrame_1.write 
          .format("css") 
          .option("resource", resource) 
          .option("es.nodes", nodes) 
          .option("es.net.ssl", "true")
          .option("es.net.ssl.keystore.location", "obs://Bucket name/path/transport-keystore.jks")
          .option("es.net.ssl.keystore.pass", "***")
          .option("es.net.ssl.truststore.location", "obs://Bucket name/path/truststore.jks")
          .option("es.net.ssl.truststore.pass", "***")
          .option("es.net.http.auth.user", "admin")
          .option("es.net.http.auth.pass", "***")
          .mode(SaveMode.Append) 
          .save()
        
        NOTE:

        The value of Mode can be one of the following:

        • ErrorIfExis: If the data already exists, the system throws an exception.
        • Overwrite: If the data already exists, the original data will be overwritten.
        • Append: If the data already exists, the system saves the new data.
        • Ignore: If the data already exists, no operation is required. This is similar to the SQL statement CREATE TABLE IF NOT EXISTS.
      4. Read data from CSS.
         1
         2
         3
         4
         5
         6
         7
         8
         9
        10
        11
        12
        val dataFrameR = sparkSession.read.format("css")
                .option("resource",resource)
                .option("es.nodes", nodes)
                .option("es.net.ssl", "true")
                .option("es.net.ssl.keystore.location", "obs://Bucket name/path/transport-keystore.jks")
                .option("es.net.ssl.keystore.pass", "***")
                .option("es.net.ssl.truststore.location", "obs://Bucket name/path/truststore.jks")
                .option("es.net.ssl.truststore.pass", "***")
                .option("es.net.http.auth.user", "admin")
                .option("es.net.http.auth.pass", "***")
                .load()
        dataFrameR.show()
        

        Before data is inserted:

        Response:

    • Submitting a Spark job
      1. Generate a JAR file based on the code file and upload the JAR file to the OBS bucket.
      2. In the Spark job editor, select the corresponding dependency module and execute the Spark job. For details about console operations, see Creating a Spark Job. For API operations, see Creating a Batch Processing Job.
        NOTE:
        • When submitting a job, you need to specify a dependency module named sys.datasource.css.
        • For how to submit a job on the console, see Table 3 "Parameters for selecting dependency resources" in Creating a Spark Job.
        • For details about how to submit a job through an API, see the modules parameter in Request parameters of Creating a Batch Processing Job in the Data Lake Insight API Reference.
  • Complete example code
    • Maven dependency
      1
      2
      3
      4
      5
      <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-sql_2.11</artifactId>
        <version>2.3.2</version>
      </dependency>
      
    • Connecting to data sources through SQL APIs
       1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      import org.apache.spark.sql.SparkSession
       
      object csshttpstest {
        def main(args: Array[String]): Unit = {
          //Create a SparkSession session.
          val sparkSession = SparkSession.builder().getOrCreate()
          // Create a DLI data table for DLI-associated CSS
          sparkSession.sql("create table css_table(id long, name string) using css options('es.nodes' = '192.168.6.204:9200','es.nodes.wan.only' = 'false','resource' = '/mytest','es.net.ssl'='true','es.net.ssl.keystore.location' = 'obs://xietest1/lzq/keystore.jks','es.net.ssl.keystore.pass' = '**','es.net.ssl.truststore.location'='obs://xietest1/lzq/truststore.jks','es.net.ssl.truststore.pass'='**','es.net.http.auth.user'='admin','es.net.http.auth.pass'='**')")
       
          //*****************************SQL model***********************************
          // Insert data into the DLI data table
          sparkSession.sql("insert into css_table values(13, 'John'),(22, 'Bob')")
       
          // Read data from DLI data table
          val dataFrame = sparkSession.sql("select * from css_table")
          dataFrame.show()
       
          // drop table
          sparkSession.sql("drop table css_table")
       
          sparkSession.close()
        }
      }
      
    • Connecting to data sources through DataFrame APIs
      NOTE:

      Hard-coded or plaintext AK and SK pose significant security risks. To ensure security, encrypt your AK and SK, store them in configuration files or environment variables, and decrypt them when needed.

       1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      import org.apache.spark.sql.{Row, SaveMode, SparkSession};
      import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType};
      
      object Test_SQL_CSS {
        def main(args: Array[String]): Unit = {
          //Create a SparkSession session.
          val sparkSession = SparkSession.builder().getOrCreate()
          sparkSession.conf.set("fs.obs.access.key", ak)
          sparkSession.conf.set("fs.obs.secret.key", sk)
      
          //*****************************DataFrame model***********************************
          // Setting the /index/type of CSS
          val resource = "/mytest/css"
        
          // Define the cross-origin connection address of the CSS cluster
          val nodes = "to-css-1174405013-Ht7O1tYf.datasource.com:9200"
      
          //Setting schema
          val schema = StructType(Seq(StructField("id", IntegerType, false), StructField("name", StringType, false)))
        
          // Construction data
          val rdd = sparkSession.sparkContext.parallelize(Seq(Row(12, "John"),Row(21,"Bob")))
        
          // Create a DataFrame from RDD and schema
          val dataFrame_1 = sparkSession.createDataFrame(rdd, schema)
        
         //Write data to the CSS
         dataFrame_1.write .format("css") 
          .option("resource", resource) 
          .option("es.nodes", nodes) 
          .option("es.net.ssl", "true")
          .option("es.net.ssl.keystore.location", "obs://Bucket name/path/transport-keystore.jks")
          .option("es.net.ssl.keystore.pass", "***")
          .option("es.net.ssl.truststore.location", "obs://Bucket name/path/truststore.jks")
          .option("es.net.ssl.truststore.pass", "***")
          .option("es.net.http.auth.user", "admin")
          .option("es.net.http.auth.pass", "***")
          .mode(SaveMode.Append) 
          .save();
        
          //Read data
          val dataFrameR = sparkSession.read.format("css")
          .option("resource", resource)
          .option("es.nodes", nodes)
          .option("es.net.ssl", "true")
          .option("es.net.ssl.keystore.location", "obs://Bucket name/path/transport-keystore.jks")
          .option("es.net.ssl.keystore.pass", "***")
          .option("es.net.ssl.truststore.location", "obs://Bucket name/path/truststore.jks")
          .option("es.net.ssl.truststore.pass", "***")
          .option("es.net.http.auth.user", "admin")
          .option("es.net.http.auth.pass", "***")
          .load()
          dataFrameR.show()
      
          spardSession.close()
        }
      }
      

Kami menggunakan cookie untuk meningkatkan kualitas situs kami dan pengalaman Anda. Dengan melanjutkan penelusuran di situs kami berarti Anda menerima kebijakan cookie kami. Cari tahu selengkapnya

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback