Updated on 2024-10-09 GMT+08:00

SQL Optimization for Multi-level Nesting and Hybrid Join

Scenario

This section describes the optimization suggestions for SQL statements in multi-level nesting and hybrid join scenarios.

Prerequisites

The following provides an example of complex query statements:

select
s_name,
count(1) as numwait
from (
select s_name from (
select
s_name,
t2.l_orderkey,
l_suppkey,
count_suppkey,
max_suppkey
from
test2 t2 right outer join (
select
s_name,
l_orderkey,
l_suppkey from (
select
s_name,
t1.l_orderkey,
l_suppkey,
count_suppkey,
max_suppkey
from
test1 t1 join (
select
s_name,
l_orderkey,
l_suppkey
from
orders o join (
select
s_name,
l_orderkey,
l_suppkey
from
nation n join supplier s
on
s.s_nationkey = n.n_nationkey
and n.n_name = 'SAUDI ARABIA'
join lineitem l
on
s.s_suppkey = l.l_suppkey
where
l.l_receiptdate > l.l_commitdate
and l.l_orderkey is not null
) l1 on o.o_orderkey = l1.l_orderkey and o.o_orderstatus = 'F'
) l2 on l2.l_orderkey = t1.l_orderkey
) a
where
(count_suppkey > 1)
or ((count_suppkey=1)
and (l_suppkey <> max_suppkey))
) l3 on l3.l_orderkey = t2.l_orderkey
) b
where
(count_suppkey is null)
or ((count_suppkey=1)
and (l_suppkey = max_suppkey))
) c
group by
s_name
order by
numwait desc,
s_name 
limit 100;

Procedure

  1. Analyze services.

    Analyze business to determine whether SQL statements can be simplified through measures, for example, by combining tables to reduce the number of nesting levels layers and join times.

  2. If the SQL statements cannot be simplified, configure the driver memory.

    • Use spark-submit or spark-sql to run SQL statements and go to 3.
    • Use spark-beeline to run SQL statements and go to 4.

  3. During execution of SQL statements, specify the driver-memory parameter. An example of SQL statements is as follows:

    /spark-sql --master=local[4] --driver-memory=512M -f /tpch.sql

  4. Before you run SQL statements, change the memory size as the MRS cluster administrator.

    1. Log in to FusionInsight Manager, choose Cluster > Services > Spark2x, and click Configurations.
    2. Click the All Configurations sub-tab and search for SPARK_DRIVER_MEMORY.
    3. Set the parameter to a larger value to increase the memory size. The value must be an integer, and the unit must be MB or GB. For example, enter 512 MB.

Related Information

In the event of insufficient DRIVER memory, the following error may be displayed during the query:

2018-02-11 09:13:14,683 | WARN  | Executor task launch worker for task 5 | Calling spill() on RowBasedKeyValueBatch. Will not spill but return 0. | org.apache.spark.sql.catalyst.expressions.RowBasedKeyValueBatch.spill(RowBasedKeyValueBatch.java:173)
2018-02-11 09:13:14,682 | WARN  | Executor task launch worker for task 3 | Calling spill() on RowBasedKeyValueBatch. Will not spill but return 0. | org.apache.spark.sql.catalyst.expressions.RowBasedKeyValueBatch.spill(RowBasedKeyValueBatch.java:173)
2018-02-11 09:13:14,704 | ERROR | Executor task launch worker for task 2 | Exception in task 2.0 in stage 1.0 (TID 2) | org.apache.spark.internal.Logging$class.logError(Logging.scala:91)
java.lang.OutOfMemoryError: Unable to acquire 262144 bytes of memory, got 0
        at org.apache.spark.memory.MemoryConsumer.allocateArray(MemoryConsumer.java:100)
        at org.apache.spark.unsafe.map.BytesToBytesMap.allocate(BytesToBytesMap.java:791)
        at org.apache.spark.unsafe.map.BytesToBytesMap.<init>(BytesToBytesMap.java:208)
        at org.apache.spark.unsafe.map.BytesToBytesMap.<init>(BytesToBytesMap.java:223)
        at org.apache.spark.sql.execution.UnsafeFixedWidthAggregationMap.<init>(UnsafeFixedWidthAggregationMap.java:104)
        at org.apache.spark.sql.execution.aggregate.HashAggregateExec.createHashMap(HashAggregateExec.scala:307)
        at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.agg_doAggregateWithKeys$(Unknown Source)
        at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
        at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
        at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:381)
        at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
        at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:126)
        at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
        at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
        at org.apache.spark.scheduler.Task.run(Task.scala:99)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:325)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
        at java.lang.Thread.run(Thread.java:748)