Obtaining an Auto Labeling Task List by Page
Function
Obtain auto labeling tasks by page, including auto labeling and auto grouping tasks. You can specify type to obtain the list of a specific type of tasks.
-
Auto labeling means learning and training are performed based on the selected labels and images and an existing model is selected to quickly label the remaining images. Auto labeling includes active learning and pre-labeling.
-
In auto grouping, unlabeled images are clustered using a clustering algorithm and then processed based on the clustering result. Images can be labeled by group or cleaned.
Debugging
You can debug this API in API Explorer which supports automatic authentication. API Explorer can automatically generate SDK code examples and provide the SDK code example debugging.
URI
GET /v2/{project_id}/datasets/{dataset_id}/tasks
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
dataset_id |
Yes |
String |
Dataset ID |
project_id |
Yes |
String |
Project ID. For details, see Obtaining a Project ID and Name. |
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
limit |
No |
Integer |
Maximum number of records returned on each page. The value ranges from 1 to 100. The default value is 10. |
offset |
No |
Integer |
Start page for pagination display. The default value is 0. |
task_name |
No |
String |
Task name filtering. |
type |
No |
String |
Task type. If this parameter is not delivered, the auto labeling (active learning or pre-labeling) task list is returned by default. Options: |
Request Parameters
None
Response Parameters
Status code: 200
Parameter |
Type |
Description |
---|---|---|
exist_running_deploy_task |
Boolean |
Whether the dataset contains running (including initialization) one-click model deployment. Options: |
tasks |
Array of RunningTask objects |
Specifies the task list. |
total_count |
Integer |
Total number of tasks. |
Parameter |
Type |
Description |
---|---|---|
annotated_sample_count |
Integer |
Number of labeled samples |
code |
String |
Error code |
config |
SmartTaskConfig object |
Task configuration |
create_time |
String |
Task creation time |
dataset_id |
String |
Dataset ID |
elapsed_time |
Long |
Task execution time |
error_code |
String |
Error code |
error_detail |
String |
Error details |
error_msg |
String |
Error message |
message |
String |
Error message |
model_id |
String |
Model ID |
model_name |
String |
Model name |
model_version |
String |
Model version |
progress |
Float |
Current task progress |
result |
Result object |
Task result |
status |
Integer |
Task status |
task_id |
String |
Task ID |
task_name |
String |
Task name |
total_sample_count |
Integer |
Total number of samples |
type |
Integer |
Task type |
unconfirmed_sample_count |
Integer |
Number of samples to be confirmed |
Parameter |
Type |
Description |
---|---|---|
algorithm_type |
String |
Algorithm type for auto labeling. Options: |
ambiguity |
Boolean |
Whether to perform clustering based on the image blurring degree. |
annotation_output |
String |
Output path of the active learning labeling result |
collect_rule |
String |
Sample collection rule. The default value is all, indicating full collection. Only all is available. |
collect_sample |
Boolean |
Whether to enable sample collection. Options: |
confidence_scope |
String |
Confidence range of key samples. The minimum and maximum values are separated by hyphens (-), for example, 0.10-0.90. |
description |
String |
Job description |
engine_name |
String |
Engine name |
export_format |
Integer |
Format of the exported directory. Options: |
export_params |
ExportParams object |
Parameters of a dataset export task |
flavor |
Flavor object |
Training resource flavor |
image_brightness |
Boolean |
Whether to perform clustering based on the image brightness |
image_colorfulness |
Boolean |
Whether to perform clustering based on the image color |
inf_cluster_id |
String |
ID of a dedicated cluster. This parameter is left blank by default, indicating that a dedicated cluster is not used. When using a dedicated cluster to deploy services, ensure that the cluster status is normal. After this parameter is set, the network configuration of the cluster is used, and the vpc_id parameter does not take effect. |
inf_config_list |
Array of InfConfig objects |
Configuration list required for running an inference job, which is optional and left blank by default |
inf_output |
String |
Output path of inference in active learning |
infer_result_output_dir |
String |
OBS directory for storing sample prediction results. This parameter is optional. The {service_id}-infer-result subdirectory in the output_dir directory is used by default. |
key_sample_output |
String |
Output path of hard examples in active learning |
log_url |
String |
OBS URL of the logs of a training job. By default, this parameter is left blank. |
manifest_path |
String |
Path of the manifest file, which is used as the input for training and inference |
model_id |
String |
Model ID |
model_name |
String |
Model name |
model_parameter |
String |
Model parameters |
model_version |
String |
Model version |
n_clusters |
Integer |
Number of clusters |
name |
String |
Task name |
output_dir |
String |
Sample output path. The format is as follows: Dataset output path/Dataset name-Dataset ID/annotation/auto-deploy/. Example: /test/work_1608083108676/dataset123-g6IO9qSu6hoxwCAirfm/annotation/auto-deploy/. |
parameters |
Array of TrainingParameter objects |
Running parameters of a training job |
pool_id |
String |
Resource pool ID |
property |
String |
Attribute name |
req_uri |
String |
Inference path of a batch job |
result_type |
Integer |
Processing mode of auto grouping results. Options: |
samples |
Array of SampleLabels objects |
Labeling information for samples to be auto labeled |
stop_time |
Integer |
Timeout interval, in minutes. The default value is 15 minutes. This parameter is used only in the scenario of auto labeling for videos. |
time |
String |
Timestamp in active learning |
train_data_path |
String |
Path for storing existing training datasets |
train_url |
String |
OBS URL of the output file of a training job. By default, this parameter is left blank. |
version_format |
String |
Format of a dataset version. Options: |
worker_server_num |
Integer |
Number of workers in a training job |
Parameter |
Type |
Description |
---|---|---|
clear_hard_property |
Boolean |
Whether to clear hard example attributes. Options: |
export_dataset_version_format |
String |
Format of the dataset version to be exported |
export_dataset_version_name |
String |
Name of the dataset version to be exported |
export_dest |
String |
Format of the exported dataset. Options: |
export_new_dataset_name |
String |
Name of the new dataset to which data is exported |
export_new_dataset_work_path |
String |
Working directory of the new dataset to which data is exported |
ratio_sample_usage |
Boolean |
Whether to randomly allocate data to the training and validation datasets based on the specified ratio. Options: |
sample_state |
String |
Sample status. Options: |
samples |
Array of strings |
ID list of exported samples |
search_conditions |
Array of SearchCondition objects |
Exported search criteria. Multiple search criteria are in the OR relationship. |
train_sample_ratio |
String |
Split ratio of training and validation datasets for specified version release. The default value is 1.00, indicating that all data is allocated to the training dataset. |
Parameter |
Type |
Description |
---|---|---|
coefficient |
String |
Filter by difficulty coefficient |
frame_in_video |
Integer |
A frame in the video |
hard |
String |
Whether a sample is a hard example. Options: |
import_origin |
String |
Filter by data source |
kvp |
String |
CT dosage, filtered by dosage. |
label_list |
SearchLabels object |
Label search criteria |
labeler |
String |
Annotator |
metadata |
SearchProp object |
Search by sample attribute |
parent_sample_id |
String |
Parent sample ID |
sample_dir |
String |
Directory where samples are stored (the directory must end with a slash (/)). Only samples in the specified directory are searched for. Recursive search of directories is not supported. |
sample_name |
String |
Search by sample name, including the file name extension |
sample_time |
String |
When a sample is added to the dataset, an index is created based on the last modification time (accurate to day) of the sample on OBS. You can search for the sample based on the time. Options:
|
score |
String |
Search by confidence |
slice_thickness |
String |
DICOM layer thickness. Samples are filtered by layer thickness. |
study_date |
String |
DICOM scanning time |
time_in_video |
String |
A time point in the video |
Parameter |
Type |
Description |
---|---|---|
labels |
Array of SearchLabel objects |
Label search criteria |
op |
String |
If you want to search for multiple labels, op must be specified. If you search for only one label, op can be left blank. Options: |
Parameter |
Type |
Description |
---|---|---|
name |
String |
Label name |
op |
String |
Operation type between multiple attributes. Options: |
property |
Map<String,Array<String>> |
Label attribute, which is in the Object format and stores any key-value pairs. key indicates the attribute name, and value indicates the value list. If value is null, the search is not performed by value. Otherwise, the search value can be any value in the list. |
type |
Integer |
Label type. Options: |
Parameter |
Type |
Description |
---|---|---|
op |
String |
Relationship between attribute values. Options: |
props |
Map<String,Array<String>> |
Search criteria of an attribute. Multiple search criteria can be set. |
Parameter |
Type |
Description |
---|---|---|
code |
String |
Attribute code of a resource specification, which is used for task creating |
Parameter |
Type |
Description |
---|---|---|
envs |
Map<String,String> |
Environment variable key-value pair required for running a model. This parameter is optional. By default, it is left blank. To ensure data security, do not enter sensitive information in environment variables. |
instance_count |
Integer |
Number of instances (compute nodes) for deploying a model |
model_id |
String |
Model ID |
specification |
String |
Resource specifications of real-time services. For details, see Deploying a Service. |
weight |
Integer |
Traffic weight allocated to a model. This parameter is mandatory only when infer_type is set to real-time. The sum of the weights must be 100. |
Parameter |
Type |
Description |
---|---|---|
label |
String |
Parameter name |
value |
String |
Parameter value |
Parameter |
Type |
Description |
---|---|---|
annotated_sample_count |
Integer |
Number of labeled samples |
confidence_scope |
String |
Confidence. The value ranges from 0 to 1. |
dataset_name |
String |
Dataset name, which can contain 1 to 100 characters. Only letters, digits, underscores (_), and hyphens (-) are allowed. |
dataset_type |
String |
Dataset type. Options: |
description |
String |
Description |
dlf_model_job_name |
String |
DLF model inference job name |
dlf_service_job_name |
String |
DLF real-time service job name |
dlf_train_job_name |
String |
DLF training job name |
events |
Array of Event objects |
Event |
hard_example_path |
String |
Path for storing hard examples |
hard_select_tasks |
Array of HardSelectTask objects |
List of selected hard example jobs |
manifest_path |
String |
Path for storing the manifest files |
model_id |
String |
Model ID |
model_name |
String |
Model name |
model_version |
String |
Model version |
samples |
Array of SampleLabels objects |
Inference result of the real-time video service. |
service_id |
String |
Real-time service ID |
service_name |
String |
Real-time service name |
service_resource |
String |
ID of the real-time service bound to a user. |
total_sample_count |
Integer |
Total number of samples |
train_data_path |
String |
Path for storing training data |
train_job_id |
String |
Training job ID |
train_job_name |
String |
Training job name |
unconfirmed_sample_count |
Integer |
Number of samples to be confirmed |
version_id |
String |
Dataset version ID |
version_name |
String |
Dataset version name |
workspace_id |
String |
Workspace ID. If no workspace is created, the default value is 0. If a workspace is created and used, use the actual value. |
Parameter |
Type |
Description |
---|---|---|
create_time |
Long |
Event creation time |
description |
String |
Description |
elapsed_time |
Long |
Event execution time |
error_code |
String |
Error code |
error_message |
String |
Error message |
events |
Array of Event objects |
List of sub-events |
level |
Integer |
Event severity |
name |
String |
Event name |
ordinal |
Integer |
Sequence number |
parent_name |
String |
Parent event name |
status |
String |
Status. Options: |
Parameter |
Type |
Description |
---|---|---|
create_at |
Long |
Task creation time |
dataset_id |
String |
Dataset ID |
dataset_name |
String |
Dataset name |
hard_select_task_id |
String |
ID of selected hard example task |
task_status |
String |
Task status |
time |
Long |
Task execution time |
update_at |
Long |
Task update time |
Parameter |
Type |
Description |
---|---|---|
labels |
Array of SampleLabel objects |
List of sample labels. If this parameter is left blank, all sample labels are deleted. |
metadata |
SampleMetadata object |
Attribute key-value pair of the sample metadata |
sample_id |
String |
Sample ID |
sample_type |
Integer |
Sample type. Options: |
sample_usage |
String |
Sample usage. Options: |
source |
String |
Source address of sample data, which can be obtained by calling the sample list API. |
worker_id |
String |
ID of a labeling team member |
Parameter |
Type |
Description |
---|---|---|
annotated_by |
String |
Video labeling method, which is used to determine whether a video is labeled manually or automatically. Options: |
id |
String |
Label ID |
name |
String |
Label name |
property |
SampleLabelProperty object |
Attribute key-value pair of the sample label, such as the object shape and shape feature |
score |
Float |
Confidence. The value ranges from 0 to 1. |
type |
Integer |
Label type. Options: |
Request Example
Run the following command to obtain auto labeling or auto grouping tasks by page:
GET https://{endpoint}/v2/{project_id}/datasets/{dataset_id}/tasks?offset=0&limit=10
Response Example
Status code: 200
OK
{ "tasks" : [ { "dataset_id" : "OBegCXHxTJ2JHRAZWr0", "task_id" : "14cyxyu6UXaNT3lrPFl", "type" : 1, "create_time" : "2020-11-03 15:22:39", "status" : 3, "code" : "ModelArts.4996", "message" : "prelabel task execute successfully.", "elapsed_time" : 531, "result" : { "service_id" : "ee2ade80-0967-4ef3-b6da-e8c873017b9a", "service_name" : "prelabel_infer_1604388201993_xubo_cls_snt9_2_993", "hard_select_tasks" : [ { "hard_select_task_id" : "86711ab3-8ceb-4b0e-bd52-8545b184a2a7", "dataset_id" : "OBegCXHxTJ2JHRAZWr0", "dataset_name" : "xubo_cls_snt9_2", "task_status" : "import_dataset_completed", "time" : 262, "create_at" : 0, "update_at" : 0 } ] }, "progress" : 100.0, "total_sample_count" : 246, "annotated_sample_count" : 38, "unconfirmed_sample_count" : 208, "model_id" : "c717a39f-c64f-45df-a9d3-be9ed79cdcb4", "model_name" : "auto-deploy-50041602581620628", "model_version" : "0.0.1", "config" : { "ambiguity" : false, "name" : "5fXxR01TyUoiobqNEd9", "worker_server_num" : 0, "inf_config_list" : [ { "specification" : "modelarts.vm.cpu.2u", "weight" : 0, "instance_count" : 1 } ], "collect_sample" : false, "confidence_scope" : "0.0-0.5", "algorithm_type" : "supervisory", "image_brightness" : false, "image_colorfulness" : false } }, { "dataset_id" : "OBegCXHxTJ2JHRAZWr0", "task_id" : "5QPy73VwnwHi5NqvbcP", "type" : 0, "create_time" : "2020-10-31 16:11:37", "status" : 3, "code" : "ModelArts.4996", "message" : "task executed successfully.", "elapsed_time" : 397, "result" : { "train_job_name" : "BNFURaEyftGNMITaBiv", "train_job_id" : "74679", "version_id" : "89745" }, "progress" : 100.0, "total_sample_count" : 246, "annotated_sample_count" : 38, "unconfirmed_sample_count" : 198, "model_name" : "Supervisory", "model_version" : "0.0.1", "config" : { "ambiguity" : false, "worker_server_num" : 0, "collect_sample" : false, "algorithm_type" : "fast", "image_brightness" : false, "image_colorfulness" : false } } ], "total_count" : 2, "exist_running_deploy_task" : false }
Status Code
Status Code |
Description |
---|---|
200 |
OK |
401 |
Unauthorized |
403 |
Forbidden |
404 |
Not Found |
Error Code
For details, see Error Codes.
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.See the reply and handling status in My Cloud VOC.
For any further questions, feel free to contact us through the chatbot.
Chatbot