Creating a Training Job Configuration
Sample Code
In ModelArts notebook, you do not need to enter authentication parameters for session authentication. For details about session authentication of other development environments, see Session Authentication.
- Example 1: Create a training job parameter configuration using the data stored on OBS.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
from modelarts.session import Session from modelarts.estimator import Estimator session = Session() estimator = Estimator( modelarts_session=session, framework_type='PyTorch', # AI engine name framework_version='PyTorch-1.0.0-python3.6', # AI engine version code_dir='/bucket/src/', # Training script directory boot_file='/bucket/src/pytorch_sentiment.py', # Training boot script directory log_url='/bucket/log/', # Training log directory hyperparameters=[ {"label":"classes", "value": "10"}, {"label":"lr", "value": "0.001"} ], output_path='/bucket/output/', # Training output directory train_instance_type='modelarts.vm.gpu.p100', # Training environment flavor train_instance_count=1) # Number of training nodes job_config_instance = estimator.create_job_configs(config_name='my_job_config', inputs='/bucket/data/train/', config_desc='my job config')
- Example 2: Create a training job parameter configuration using a dataset.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
from modelarts.session import Session from modelarts.estimator import Estimator session = Session() estimator = Estimator( modelarts_session=session, framework_type='PyTorch', # AI engine name framework_version='PyTorch-1.0.0-python3.6', # AI engine version code_dir='/bucket/src/', # Training script directory boot_file='/bucket/src/pytorch_sentiment.py', # Training boot script directory log_url='/bucket/log/', # Training log directory hyperparameters=[ {"label":"classes", "value": "10"}, {"label":"lr", "value": "0.001"} ], output_path='/bucket/output/', # Training output directory train_instance_type='modelarts.vm.gpu.p100', # Training environment flavor train_instance_count=1) # Number of training nodes job_config_instance = estimator.create_job_configs(config_name='my_job_config', dataset_id='4AZNvFkN7KYr5EdhFkH', dataset_version_id='UOF9BIeSGArwVt0oI6T', config_desc='my job config')
Parameters
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
modelarts_session |
Yes |
Object |
Session object. For details about the initialization method, see Session Authentication. |
train_instance_count |
Yes |
Long |
Number of workers in a training job |
code_dir |
No |
String |
Code directory of a training job, for example, /bucket/src/. Leave this parameter blank when model_name is set. |
boot_file |
No |
String |
Boot file of a training job, which needs to be stored in the code directory. For example, /bucket/src/boot.py. Leave this parameter blank when model_name is set. |
model_name |
No |
Long |
Name of the built-in algorithm used by a training job. If you have configured model_name, you do not need to configure app_url, boot_file_url, framework_type, and framework_version. |
output_path |
Yes |
String |
Output path of a training job |
hyperparameters |
No |
JSON Array |
Running parameters of a training job. It is a collection of label-value pairs. This parameter is a container environment variable when a job uses a custom image. |
log_url |
No |
String |
OBS URL of the logs of a training job. By default, this parameter is left blank. Example value: /usr/log/ |
train_instance_type |
Yes |
Long |
Resource flavor selected for a training job. If you choose to train on the training platform, obtain the value by calling the API described in Querying the List of Resource Flavors. |
framework_type |
No |
String |
Engine selected for a training job. Obtain the value by calling the API described in Querying the List of Engine Types. Leave this parameter blank when model_name is set. |
framework_version |
No |
String |
Engine version selected for a training job. Obtain the value by calling the API described in Querying the List of Engine Types. Leave this parameter blank when model_name is set. |
job_description |
No |
String |
Description of a training job |
user_image_url |
No |
String |
SWR URL of the custom image used by a training job. Example value: 100.125.5.235:20202/jobmng/custom-cpu-base:1.0 |
user_command |
No |
String |
Boot command used to start the container of the custom image of a training job. The format is bash /home/work/run_train.sh python /home/work/user-job-dir/app/train.py {python_file_parameter}. |
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
config_name |
No |
String |
Name of a training job parameter configuration. The value is a string of 1 to 20 characters consisting of only digits, letters, underscores (_), and hyphens (-). By default, if this parameter is left blank, the value is dynamically generated by date. |
config_desc |
No |
String |
Description of a training job parameter configuration. The value is a string of 0 to 256 characters. By default, this parameter is left blank. |
inputs |
No |
String |
OBS storage path of a training job |
dataset_id |
No |
String |
Dataset ID of a training job. This parameter must be used with dataset_version_id, but cannot be used with inputs. |
dataset_version_id |
No |
String |
Dataset version ID of a training job. This parameter must be used with dataset_id, but cannot be used with inputs. |
Parameter |
Type |
Description |
---|---|---|
TrainingJob |
Object |
Training object. This object contains attributes such as config_name, and operations on a training job parameter configuration, such as querying or deleting the training job parameter configuration. For example, you can use job_config_instance.config_name to obtain the name of a training job parameter configuration. |
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.See the reply and handling status in My Cloud VOC.
For any further questions, feel free to contact us through the chatbot.
Chatbot