El contenido no se encuentra disponible en el idioma seleccionado. Estamos trabajando continuamente para agregar más idiomas. Gracias por su apoyo.

Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive

Dynamic Resources

Updated on 2022-08-12 GMT+08:00

Overview

Yarn provides the distributed resource management function for a big data cluster. The total volume of resources allocated to Yarn can be configured. Then Yarn allocates and schedules computing resources for task queues. The computing resources of Mapreduce, Spark, Flink and Hive task queues are allocated and scheduled by Yarn.

Yarn queues are basic units of computing resource allocation.

For tenants, the resources obtained using Yarn task queues are dynamic resources. Users can dynamically create and modify the quotas of task queues and view the status and statistics of task queues.

Resource Pool

Complex cluster environments and upper-layer requirements are facing enterprise IT systems. For example:

  • Heterogeneous cluster: The computing speed, storage capacity, and network performance of each node in the cluster are different. All the tasks of complex applications need to be properly allocated to each compute node in the cluster based on service requirements.
  • Computing isolation: Data must be shared among multiple departments but computing resources must be distributed onto different compute nodes.

Compute nodes must be partitioned.

Resource pools are used to specify the configuration of dynamic resources. Yarn task queues are associated with resource pools for resource allocation and scheduling.

Only one default resource pool can be set for a tenant. Users can bind to the role of a tenant to use the resources in the resource pool of the tenant. If resources in multiple resource pools need to be used, users can bind themselves to multiple tenant roles.

Scheduling Mechanism

Yarn dynamic resources support label based scheduling. This policy creates labels for compute nodes (Yarn NodeManager nodes) of Yarn clusters and adds the compute nodes with the same label into the same resource pool. Then Yarn dynamically associates the task queues with resource pools based on the resource requirements of the task queues.

For example, a cluster has more than 40 nodes. Labels Normal, HighCPU, HighMEM, and HighIO are created based on the hardware and network configurations of nodes and added four resource pools. Table 1 describes the performance of each node in the resource pool.

Table 1 Performance of each node in a resource pool

Label

Number of Nodes

Hardware and Network Configuration

Added To

Association

Normal

10

Minor

Resource pool A

Common task queue

HighCPU

10

High-performance CPU

Resource pool B

Computing-intensive task queue

HighMEM

10

Large memory

Resource pool C

Memory-intensive task queue

HighIO

10

High-performance network

Resource pool D

I/O-intensive task queue

Task queues can use the compute nodes in the associated resource pools only.

  • Common task queues are associated with resource pool A and use nodes with hardware and network configurations labeled with Normal.
  • Computing-intensive task queues are associated with resource pool B and use nodes with CPUs labeled with HighCPU.
  • Memory-intensive task queues are associated with resource pool C and use nodes with memory labeled with HighMEM.
  • I/O-intensive task queues are associated with resource pool C and use nodes with the network labeled with HighIO.

Yarn task queues are associated with specified resource pools to efficiently utilize resources in resource pools and ensure node performance.

FusionInsight Manager supports a maximum of add 50 resource pools. A default resource pool is included in the system by default.

Introduction to Schedulers

By default, the Superior scheduler is enabled for the MRS cluster.

  • The Superior scheduler is an enhanced version and named after the Lake Superior, indicating that the scheduler can manage a large amount of data.

To meet enterprise requirements and tackle challenges facing the Yarn community in scheduling. The Superior scheduler provides the following enhancements:

  • Enhanced resource sharing policy

    The Superior scheduler supports queue hierarchy. It integrates the functions of open source schedulers and shares resources based on configurable policies. In terms of instances, administrators can use the Superior scheduler to configure an absolute value or a percentage policy for queue resources. The resource sharing policy of the Superior scheduler enhances the label scheduling policy of Yarn as a resource pool feature. Nodes in a Yarn cluster can be grouped based on the capacity or service type to ensure that queues can more efficiently utilize resources.

  • Tenant-based resource reservation policy

    Resources required by tenants must be ensured for running critical tasks. The Superior scheduler builds a resource reservation mechanism. With this mechanism, reserved resources can be allocated to tasks run by tenant queues in a timely manner to ensure proper task execution.

  • Fair sharing among tenants and resource pool users

    The Superior scheduler allows shared resources to be configured for users in a queue. Each tenant may have users with different weights. Heavily weighted users may require more shared resources.

  • Ensured scheduling performance in a big cluster

    The Superior scheduler receives heartbeats from each NodeManager and saves resource information in memory, which enables the scheduler to control cluster resource usage globally. The Superior scheduler uses the push scheduling model, which makes the scheduling more precise and efficient and remarkably improves cluster resource utilization. Additionally, the Superior scheduler delivers excellent performance when the interval between NodeManager heartbeats is long and prevents heartbeat storms in big clusters.

  • Priority policy

    If the minimum resource requirement of a service cannot be met after the service obtains all available resources, a preemption occurs. The preemption function is disabled by default.

Utilizamos cookies para mejorar nuestro sitio y tu experiencia. Al continuar navegando en nuestro sitio, tú aceptas nuestra política de cookies. Descubre más

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback