Failed to Drop a Large Number of Partitions
Symptom
When the drop partition operation is performed, the following information is displayed:
MetaStoreClient lost connection. Attempting to reconnect. | org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.invoke(RetryingMetaStoreClient.java:187) org.apache.thrift.transport.TTransportException at org.apache.thrift.transport.TIOStreamTransport.read(TIOStreamTransport.java:132) at org.apache.thrift.transport.TTransport.xxx(TTransport.java:86) at org.apache.thrift.transport.TSaslTransport.readLength(TSaslTransport.java:376) at org.apache.thrift.transport.TSaslTransport.readFrame(TSaslTransport.java:453) at org.apache.thrift.transport.TSaslTransport.read(TSaslTransport.java:435) ...
As indicated by the MetaStore log, StackOverFlow occurs.
2017-04-22 01:00:58,834 | ERROR | pool-6-thread-208 | java.lang.StackOverflowError at org.datanucleus.store.rdbms.sql.SQLText.toSQL(SQLText.java:330) at org.datanucleus.store.rdbms.sql.SQLText.toSQL(SQLText.java:339) at org.datanucleus.store.rdbms.sql.SQLText.toSQL(SQLText.java:339) at org.datanucleus.store.rdbms.sql.SQLText.toSQL(SQLText.java:339) at org.datanucleus.store.rdbms.sql.SQLText.toSQL(SQLText.java:339)
Cause Analysis
The processing logic of the drop partition operation is to find all the partitions that meet the conditions, combine them, and delete them together. However, because the number of partitions is too large and the data stack for deleting metadata is deep, StackOverFlow errors occur.
Solution
Delete partitions in batches.
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.See the reply and handling status in My Cloud VOC.
For any further questions, feel free to contact us through the chatbot.
Chatbot