El contenido no se encuentra disponible en el idioma seleccionado. Estamos trabajando continuamente para agregar más idiomas. Gracias por su apoyo.

Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive
On this page

Overview

Updated on 2022-06-09 GMT+08:00

Definition

An MRS cluster provides various resources and services for multiple organizations, departments, or applications to share. The cluster provides tenants as a logical entity to use these resources and services. A mode involving different tenants is called multi-tenant mode. Currently, only the analysis cluster supports tenant management.

Principles

The MRS cluster provides the multi-tenant function. It supports a layered tenant model and allows dynamic adding or deleting of tenants to isolate resources. It dynamically manages and configures tenants' computing and storage resources.

The computing resources indicate tenants' Yarn task queue resources. The task queue quota can be modified, and the task queue usage status and statistics can be viewed.

The storage resources can be stored on HDFS. You can add and delete the HDFS storage directories of tenants, and set the quotas of file quantity and the storage space of the directories.

Tenants can create and manage tenants in a cluster based on service requirements.

  • Roles, computing resources, and storage resources are automatically created when tenants are created. By default, all permissions of the new computing resources and storage resources are allocated to a tenant's roles.
  • Permissions to view the current tenant's resources, add a subtenant, and manage the subtenant's resources are granted to the tenant's roles by default.
  • After you have modified the tenant's computing or storage resources, permissions of the tenant's roles are automatically updated.

MRS supports a maximum of 512 tenants. The default tenants created by the system include default. Tenants that are in the topmost layer with the default tenant are called level-1 tenants.

Resource Pools

Yarn task queues support only the label-based scheduling policy. This policy enables Yarn task queues to associate NodeManagers that have specific node labels. In this way, Yarn tasks run on specified nodes so that tasks are scheduled and certain hardware resources are utilized. For example, Yarn tasks requiring a large memory capacity can run on nodes with a large memory capacity by means of label association, preventing poor service performance.

In an MRS cluster, the tenant logically divides Yarn cluster nodes to combine multiple NodeManagers into a resource pool. Yarn task queues can be associated with specified resource pools by configuring queue capacity policies, ensuring efficient and independent resource utilization in the resource pools.

MRS supports a maximum of 50 resource pools. By default, the system contains a default resource pool.

Utilizamos cookies para mejorar nuestro sitio y tu experiencia. Al continuar navegando en nuestro sitio, tú aceptas nuestra política de cookies. Descubre más

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback