
ModelArts

Workflow

Issue 01

Date 2024-04-30

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 MLOps Overview..1

2 What Is Workflow?... 4

3 How to Use a Workflow?...7
3.1 Configuring a Workflow..7
3.1.1 Configuration Entries.. 7
3.1.2 Runtime Configurations... 8
3.1.3 Resource Configurations.. 8
3.1.4 Tag Configuration.. 9
3.1.5 SMN... 11
3.1.6 Input and Output Configurations.. 11
3.1.7 Phase Parameters.. 12
3.1.8 Saving Configurations.. 12
3.2 Starting, Stopping, Searching for, Copying, or Deleting a Workflow..12
3.3 Viewing Workflow Execution Records... 15
3.4 Retrying, Stopping, or Proceeding a Phase.. 16
3.5 Partial Execution... 16

4 How to Develop a Workflow?.. 17
4.1 Concepts... 17
4.1.1 Workflow.. 17
4.1.2 Step.. 18
4.1.3 Data..19
4.1.4 Development State... 25
4.1.5 Running State... 25
4.2 Parameter Configuration.. 25
4.2.1 Function.. 25
4.2.2 Parameter Overview... 26
4.2.3 Examples...27
4.3 Unified Storage.. 27
4.3.1 Function.. 28
4.3.2 Common Usage..28
4.3.3 Advanced Usage.. 28
4.3.4 Example.. 30

ModelArts
Workflow Contents

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

4.3.5 Operations... 30
4.4 Phase Type...31
4.4.1 Dataset Creation Phase... 31
4.4.1.1 Function...31
4.4.1.2 Parameter Overview... 31
4.4.1.3 Examples... 35
4.4.2 Labeling Phase..37
4.4.2.1 Function...37
4.4.2.2 Parameter Overview... 37
4.4.2.3 Examples... 41
4.4.3 Dataset Import Phase.. 43
4.4.3.1 Function...43
4.4.3.2 Parameter Overview... 44
4.4.3.3 Examples... 49
4.4.4 Dataset Release Phase... 52
4.4.4.1 Function...53
4.4.4.2 Parameter Overview... 53
4.4.4.3 Examples... 56
4.4.5 Job Phase.. 58
4.4.5.1 Function...58
4.4.5.2 Parameter Overview... 58
4.4.5.3 Obtaining Resources... 64
4.4.5.4 Examples... 65
4.4.6 Model Registration Phase... 74
4.4.6.1 Function...74
4.4.6.2 Parameter Overview... 74
4.4.6.3 Examples... 78
4.4.7 Service Deployment Phase... 83
4.4.7.1 Function...83
4.4.7.2 Parameter Overview... 83
4.4.7.3 Examples... 87
4.4.7.4 Configuration Operations..89
4.4.8 Condition Phase... 90
4.4.8.1 Function...90
4.4.8.2 Parameter Overview... 90
4.4.8.3 Examples... 92
4.5 Branch Control... 96
4.6 Data Selection Among Multiple Inputs.. 101
4.7 Creating a Workflow... 103
4.8 Debugging a Workflow.. 103
4.9 Publishing a Workflow..104
4.9.1 Publishing a Workflow to the Running State..104

ModelArts
Workflow Contents

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

4.9.2 Publishing a Workflow to AI Gallery.. 105
4.10 Advanced Capabilities...106
4.10.1 Partial Execution... 106
4.10.2 Using Big Data Capabilities (DLI/MRS) in a Workflow... 107
4.11 FAQs..108
4.11.1 How Do I Obtain Training Specifications During Debugging in the Development State?..................108
4.11.2 How Do I Implement Multiple Branches?..108
4.11.3 How Do I Import Objects?...109
4.11.4 How Do I Locate Running Errors?.. 110

ModelArts
Workflow Contents

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iv

1 MLOps Overview

What Is MLOps?
Machine Learning Operations (MLOps) are a set of practices with machine
learning (ML) and DevOps combined. With the development of ML, it is expected
not only to make breakthroughs in academic research, but also to systematically
implement these technologies in various scenarios. However, there is a significant
gap between academic research and the implementation of ML technologies. In
academic research, an AI algorithm is developed for a certain dataset (a public
dataset or a scenario-specific dataset). The algorithm is continuously iterated and
optimized for this specific dataset. Scenario-oriented systematical AI development
involves the development of both models and the entire system. Then, the
successful experience in software system development "DevOps" is naturally
introduced to AI development. However, in the AI era, traditional DevOps cannot
cover the entire development process of an AI system.

DevOps
Development and Operations (DevOps) are a set of processes, approaches, and
systems that facilitate communication, collaboration, and integration between
software development, O&M, and quality assurance (QA) departments. DevOps is
a proven approach in large-scale software system development. DevOps not only
accelerates the interaction and iteration between services and development, but
also resolves the conflicts between development and O&M. Development pursues
speed, while O&M requires stability. This is the inherent and root conflict between
development and O&M. Similar conflicts occur during the implementation of AI
applications. The development of AI applications requires basic algorithm
knowledge as well as fast, efficient algorithm iteration. Professional O&M
personnel pursue stability, security, and reliability. Their professional knowledge is
quite different from that of AI algorithm personnel. O&M personnel have to
understand the design and ideas of algorithm personnel for service assurance,
which are difficult for them to achieve. In this case, the algorithm personnel are
required to take end-to-end responsibilities, leading to high labor cost. This
method is feasible if a small number of models are used. However, when AI
applications are implemented on a large scale, manpower will become a
bottleneck.

ModelArts
Workflow 1 MLOps Overview

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

MLOps Functions
The ML development process consists of project design, data engineering, model
building, and model deployment. AI development is not a unidirectional pipeline
job. During development, multiple iterations of experiments are performed based
on the data and model results. To achieve better model results, algorithm
engineers perform diverse data processing and model optimization based on the
data features and labels of existing datasets. Traditional AI development ends with
a one-off delivery of the final model output by iterative experimentation. As time
passes after an application is released however, model drift occurs, leading to
worsening effects when applying new data and features to the existing model.
Iterative experimentation of MLOps forms a fixed pipeline which contains data
engineering, model algorithms, and training configurations. You can use the
pipeline to continuously perform iterative training on data that is being
continuously generated. This ensures that the AI application of the model, built
using the pipeline, is always in an optimum state.

Figure 1-1 MLOps

An entire MLOps link, which covers everything from algorithm development to
service delivery and O&M, requires an implementation tool. Originally, the
development and delivery processes were conducted separately. The models
developed by algorithm engineers were delivered to downstream system
engineers. In this process, algorithm engineers are highly involved, which is
different from MLOps. There are general delivery cooperation rules in each
enterprise. When it comes to project management, working process management
needs to be added to AI projects as the system does not simply build and manage
pipelines, but acts as a job management system.

The tool for the MLOps link must support the following features:

● Process analysis: Accumulated industry sample pipelines help you quickly
design AI projects and processes.

● Process definition and redefinition: You can use pipelines to quickly define AI
projects and design workflows for model training and release for inference.

● Resource allocation: You can use account management to allocate resource
quotas and permissions to participants (including developers and O&M
personnel) in the pipeline and view resource usage.

ModelArts
Workflow 1 MLOps Overview

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

● Task arrangement: Sub-tasks can be arranged based on sub-pipelines.
Additionally, notifications can be enabled for efficient management and
collaboration.

● Process quality and efficiency evaluation: Pipeline execution views are
provided, and checkpoints for different phases such as data evaluation, model
evaluation, and performance evaluation are added so that AI project
managers can easily view the quality and efficiency of the pipeline execution.

● Process optimization: In each iteration of the pipeline, you can customize core
metrics and obtain affected data and causes. In this way, you can quickly
determine the next iteration based on these metrics.

ModelArts
Workflow 1 MLOps Overview

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

2 What Is Workflow?

A workflow is a pipeline tool developed based on service scenarios for deploying
models or applications. In ML, a pipeline may involve data labeling, data
processing, model development and training, model evaluation, application
development, and application evaluation.

Figure 2-1 Workflow

Different from traditional ML-based model building, workflows can be used to
develop production pipelines. Based on MLOps, workflows enable runtime
recording, monitoring, and continuous running. The development and continuous
iteration of a workflow are separated in products based on roles and concepts.

A pipeline consists of multiple phases. The functions required by the pipeline and
the function parameters are called through workflow SDKs. When developing a
pipeline, you can use SDKs to describe phases and the relationships between
phases. Developing a pipeline is the development state of the workflow. After a
pipeline is determined, you can consolidate and provide it for others to use. You
do not need to pay attention to what algorithms are used in the pipeline or how
the pipeline is implemented. Instead, you only need to check whether the models
or applications produced by the pipeline meet the release requirements. If not, you
need to check whether the data and parameters need to be adjusted for iteration.
Using such a consolidated pipeline is the running state of the workflow.

ModelArts
Workflow 2 What Is Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

The development and running states of a workflow are as follows:

● Development state: Workflow Python SDKs are used to develop and debug a
pipeline.

● Running state: You can configure and run a produced pipeline in visualized
mode.

Leveraging DevOps principles and practices, workflows orchestrate ModelArts
capabilities to help you efficiently train, develop, and deploy AI models.

Different functions are implemented in the development and running states of a
workflow.

Workflow Development State
Based on service requirements, you can use Python SDKs provided by ModelArts
workflows to offer each ModelArts capability as a step in a pipeline. This is a
familiar and flexible development mode for AI developers. Python SDKs support:

● Debugging: partially execution, fully execution, and debugging.
● Release: Release a workflow from the development state to the running state.
● Experiment record: for persistence and the management of experiments.

Workflow Running State
Workflows are executed in visualized mode. You only need to pay attention to
some simple parameter settings, whether the model needs to be retrained, and
model deployment.

Running workflows are released from the development state or subscribed to from
AI Gallery.

A running workflow supports:

● Unified configuration management: The parameters and resources required
for a workflow are centrally managed.

● Workflow operations: include starting, stopping, copying, and deleting
workflows.

● Running record: records historical running parameters and statuses of the
workflow.

Workflow Components
A workflow is the description of a directed acyclic graph (DAG). You can develop a
DAG through a workflow. A DAG consists of phases and the relationships between
phases. To define a DAG, specify the execution content and sequence on phases. A
green rectangle indicates a phase, and the link between phases shows the phase
relationship. A DAG is actually an ordered job execution template.

Sample Workflows
ModelArts provides abundant scenario-oriented sample workflows. You can
subscribe to them in AI Gallery.

ModelArts
Workflow 2 What Is Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

https://developer.huaweicloud.com/intl/en-us/develop/aigallery/workflow/list

Subscribing to and Using an AI Gallery Workflow
1. Log in to AI Gallery workflow cases.
2. On the workflow asset page of AI Gallery, select and subscribe to a workflow,

read and agree to Data Security and Privacy Risk and Service Agreement of AI
Gallery, and click Continue.

3. After the subscription, click Run. You will be automatically redirected to the
ModelArts console. Select an asset version, workflow name, service region,
and workspace, and click Import. The workflow details page is displayed.

4. Click Configure in the upper right corner. On the configuration page that
appears, set parameters and click Save in the upper right corner to save the
configuration.

5. Click Start in the top right corner to start the workflow.
6. On the workflow execution page, wait for the workflow to start running.
7. On the dashboard, check the status of each phase. The workflow runs

automatically from one phase to the next until it finishes all the phases.

ModelArts
Workflow 2 What Is Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://developer.huaweicloud.com/intl/en-us/develop/aigallery/workflow/list

3 How to Use a Workflow?

3.1 Configuring a Workflow

3.1.1 Configuration Entries
Before or during the execution of a workflow, configure the parameters and
resources required by the workflow. After obtaining the workflow, modify the
configuration as required so that the produced model or application is better
suited for your needs.

Workflow configurations include the configurations before and during the
workflow execution.

Configurations Before Workflow Execution
Log in to the ModelArts console and choose Workflow to go to the workflow list
page. There are two entries to configure a workflow before it runs.

● Click Configure in the Operation column of the target workflow to go to the
workflow configuration page.

Figure 3-1 Configure

● On the workflow list page, click the name of the target workflow. On the
workflow details page that is displayed, click Configure in the upper right
corner.

Figure 3-2 Configure

ModelArts
Workflow 3 How to Use a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

Configurations During Workflow Execution

Certain phases require parameter configuration during the execution of a
workflow. When the workflow runs to such a phase, it pauses and waits for your
input.

On the workflow overview page, view the to-dos on the right. Click the workflow
name to go to the phase in the awaiting input status. Set the parameters for the
phase and click Next.

Figure 3-3 Workflow to-dos

3.1.2 Runtime Configurations
Work directories can be centrally managed in ModelArts workflow. The root
directory is configured in Runtime Configurations.

1. On the workflow list page, click the name of the target workflow.
2. Click Configure in the upper right corner.
3. On the Workflow Configurations tab page, configure the Runtime

Configurations settings.

Figure 3-4 Runtime Configurations

3.1.3 Resource Configurations
You can configure resources for multiple phases within a workflow, with the ability
to specify different configurations for each phase. The billing mode for resources
consumed by a workflow is the same as that for training jobs and real-time
inference, and the fees are only generated while a phase is running.

Figure 3-5 Resource Configurations

ModelArts
Workflow 3 How to Use a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

If you need to use a dedicated resource pool, enable Dedicated Resource Pool.

Configuring inference resource specifications

Specify the required inference resource specifications when the workflow runs on
the service deployment phase.

1. Wait until the workflow runs on the service deployment phase, and the phase
enters the Awaiting input status.

2. In the Input area, select the required inference resource specifications.

3. Click Next.

Figure 3-6 Input configurations

NO TE

● Specifications: The CN North-Beijing4 region supports limited-time free specifications,
but each user can create only one instance using the free specifications. Other
specifications are billed on a pay-per-use basis. After using the specifications, stop the
workflow in a timely manner to avoid unnecessary fees.

● You can choose the package that you have bought when you select specifications. On
the configuration fee tab, you can view your remaining package quota and how much
you will pay for any extra usage.

3.1.4 Tag Configuration
You can filter workflows by tag for easy classification, which saves a lot of time.

ModelArts
Workflow 3 How to Use a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

Configuring Tags
1. On the ModelArts console, choose Workflow from the navigation pane. The

workflow list page is displayed.

2. Locate the workflow you want to tag and click its name. The workflow details
page is displayed.

3. Click in the upper left corner.

4. In the Edit Workflow dialog box that appears, enter a tag in the Tag text box
and click Add Tag. The new tag is displayed below. You can add multiple tags
at a time. After the tags are added, click Yes.

Figure 3-7 Edit button

Figure 3-8 Adding a tag

Searching for a Workflow by Tag

Workflows with tags can be filtered by tag in the search box.

1. In the search box above the workflow list, set Property to Tag.

ModelArts
Workflow 3 How to Use a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Figure 3-9 Searching for a workflow by tag

2. On the tag list that appears, click the target tag. The workflow list displays
workflows with that tag.

3.1.5 SMN
Simple Message Notification (SMN) can be enabled for workflows. After you
select the status to be monitored from the event list, you will be notified when an
event occurs. To subscribe to notifications, enable Subscription Notification.

● After you enable Subscription Notification, specify an SMN topic. Otherwise,
create an SMN topic on the SMN management console.

● You can subscribe to events for a single phase or multiple phases in a
workflow, or for workflow statuses. In the subscription list, a row indicates the
subscription for a phase or an entire workflow. To obtain notifications for
status changes of multiple phases, add one subscription for each phase.

● You can select multiple subscription events for each subscription object,
including Awaiting input, Executed, and Abnormal.

3.1.6 Input and Output Configurations
You can set input and output parameters on the configuration page, or when the
workflow is running.

When a workflow is running, you can configure parameters for the phase in the
Awaiting input state.

Input Configurations
The following table describes the parameters you need to specify.

ModelArts
Workflow 3 How to Use a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

Table 3-1 Input parameters

Input Parameter Description

dataset Select an existing dataset or create a new one.

obs Select your OBS path.

label task Select a labeling job under your dataset.

service Select a deployed real-time service.

swr image Select the image storage path required for registering the
model.

Output Configurations

Click Select to select the OBS path to store the output data.

3.1.7 Phase Parameters
You can configure different parameters for each phase.

3.1.8 Saving Configurations
On the workflow configuration page, click Save in the upper right corner after you
complete the configuration.

Figure 3-10 Saving Configurations

After the workflow is saved, click Start in the upper right corner of the page. In
the dialog box that is displayed, click OK. The workflow is started and the runtime
page is displayed.

3.2 Starting, Stopping, Searching for, Copying, or
Deleting a Workflow

Starting a Workflow

When a workflow is not running, you can start it in any of the following ways:

● On the workflow list page, click Start in the Operation column. In the
displayed dialog box, click OK.

● On the runtime configuration page, click Start in the upper right corner. In
the displayed dialog box, click OK.

ModelArts
Workflow 3 How to Use a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

● On the workflow configuration page, click Start in the upper right corner. In
the displayed dialog box, click OK.

NO TE

After a workflow is started, you will be charged on a pay-per-use basis. After the
workflow is complete, you can stop it to avoid unnecessary fees.

Searching for a Workflow
On the workflow list page, you can use the search box to quickly search for
workflows based on workflow properties.

1. Log in to the ModelArts console. In the navigation pane, choose Workflow.
2. In the search box above the workflow list, filter workflows based on the

required property, such as the name, status, current phase, start time, running
duration, or tag.

3. Click on the right of the search box to set the content you want to display
on the workflow list page and modify other display settings.
– Table Text Wrapping: This function is disabled by default. If you enable

this function, excess text will move down to the next line; otherwise, the
text will be truncated.

– Operation Column: This function is enabled by default. If you enable this
function, the Operation column is always fixed at the rightmost position
of the table.

– Custom Columns: By default, all items are selected. You can select
columns you want to see.

Figure 3-11 Settings

ModelArts
Workflow 3 How to Use a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

4. Click OK.

5. To arrange workflows by a specific property, click in the table header.

Stopping a Workflow

You can stop a running workflow in either of the following ways:

● Workflow list page

When a workflow is running, the Stop button is available in the Operation
column. Click Stop. In the displayed dialog box, click OK.

● Click the name of a running workflow and click Stop in the upper right corner
of the displayed page. In the displayed dialog box, click OK.

NO TE

The Stop button is available only for a workflow that is running.

After a workflow is stopped, the associated training jobs and real-time services are
also stopped.

Copying a Workflow

A workflow can have only one running instance. If you want to concurrently run a
workflow, copy the workflow. To do so, click More in the Operation column and
select Copy. In the displayed dialog box, a new name is automatically generated
in the format of "Original workflow name_copy".

You can rename the new workflow. Ensure that the name complies with naming
specifications.

NO TE

A workflow name is 1 to 64 characters long, starting with a letter and containing only
letters, digits, underscores (_), and hyphens (-).

Deleting a Workflow

You can delete a workflow in either of the following ways:

● Workflow list page

a. Click More in the Operation column and select Delete.

b. In the displayed dialog box, enter delete and click OK.

● Runtime configuration page

Click Delete in the upper right corner of the page. In the displayed dialog
box, enter DELETE and click OK.

NO TE

● Deleted workflows cannot be recovered.

● After a workflow is deleted, the corresponding training jobs and real-time services
are not deleted accordingly. To delete them, go to the Training Management >
Training Jobs and Service Deployment > Real-Time Services pages.

ModelArts
Workflow 3 How to Use a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

3.3 Viewing Workflow Execution Records
All runtime statuses of a workflow are recorded.

1. On the workflow list page, click the name of the target workflow.

2. On the workflow details page, view all runtime records of the workflow in the
left pane.

Figure 3-12 Viewing execution records

3. Delete or edit the runtime records, or rerun the workflow.

– To delete a runtime record that is no longer needed, click Delete. In the
displayed dialog box, click Yes.

– To distinguish a runtime record from others, click Edit Tag to add a tag
to it.

– To rerun the workflow, click Rerun on a runtime record.

4. Filter and compare all runtime records of the workflow.

– Filter: You can filter all runtime records by status or tag.

Figure 3-13 Filtering

– Compare: You can compare all runtime records by status, execution
record, start time, duration, and metrics.

ModelArts
Workflow 3 How to Use a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

Figure 3-14 Comparison

After you click Start to run a workflow, the execution record list is refreshed. In
addition, the data is updated on both the DAG and dashboard. An execution
record is added after each startup.

You can click any phase on the workflow details page to obtain the phase status,
including attributes (status, start time, and duration), input location, output
location, and parameters (dataset labeling job name).

3.4 Retrying, Stopping, or Proceeding a Phase
● Retrying a phase

If executing a single phase failed, you can click Retry to re-execute the
current phase without restarting the workflow. Before the retry, you can
modify configurations on the Global Configuration page. The modification
takes effect after the affected phase is retried.

● Stopping a phase
Click a phase to view its details. On this page, you can stop the running
phase.

● Proceeding a phase
If parameters need to be configured during the runtime of a single phase, the
phase is awaiting operation. After the parameters are configured, you can
click Proceed to proceed to the execution of the current phase.

3.5 Partial Execution
To reduce the time consumed by repeated execution in large-scale and complex
workflows, you can choose specific phases to execute in sequence.

● Creation
Predefine the phases to be executed when you use the SDK to create a
workflow. For details, see Partial Execution.

● Configuration
When configuring a workflow, enable Execute Certain Phases, select phases
to be executed, and configure parameters for these phases.

● Start
After saving the configuration, click Start to execute certain phases.

ModelArts
Workflow 3 How to Use a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

4 How to Develop a Workflow?

4.1 Concepts

4.1.1 Workflow
A workflow is a DAG that consists of phases and the relationships between
phases.

A directed line segment shows the dependency between phases. The dependency
decides the order of phase execution. In this example, the workflow runs from left
to right after it starts. The DAG can handle the multi-branch structure as well. You
can design the DAG flexibly according to the real situation. In the multi-branch
situation, phases in parallel branches can run at the same time.

Table 4-1 Workflow

Param
eter

Description Manda
tory

Data Type

name Workflow name. The name can contain
a maximum of 64 characters, including
only letters, digits, underscores (_), and
hyphens (-), and must start with a
letter.

Yes str

desc Workflow description Yes str

steps Phases contained in a workflow Yes list[Step]

storage
s

Unified storage objects No Storage or
list[Storage]

policy Workflow configuration policy, which is
used for partial execution

No Policy

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

4.1.2 Step
A step is the smallest unit of a workflow. In a DAG, a step is also a phase.
Different types of steps have different service abilities. The main parts of a step
are as follows.

Table 4-2 Step

Parame
ter

Description Man
dato
ry

Data Type

name Phase name. The name can contain a
maximum of 64 characters, including
only letters, digits, underscores (_), and
hyphens (-), and must start with a letter.

Yes str

title Title of a phase, which is displayed in the
DAG. If this parameter is not configured,
the name is displayed by default.

No str

step_typ
e

Type of a phase, which determines the
function of the phase

Yes enum

inputs Inputs of a phase No AbstractInput or
list[AbstractInput]

outputs Outputs of a phase No AbstractOutput or
list[AbstractOutpu
t]

properti
es

Node properties No dict

policy Phase execution policy, which includes
the phase scheduling interval, the phase
execution timeout interval, and the
option to skip phase execution

No StepPolicy

depend
_steps

List of dependency phases. This
parameter determines the DAG structure
and phase execution sequence.

No Step or list[Step]

Table 4-3 StepPolicy

Parameter Description Mandato
ry

Data Type

poll_interval_s
econds

Phase scheduling interval.
The default value is 1 second.

Yes str

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

Parameter Description Mandato
ry

Data Type

max_execution
_minutes

Phase execution timeout
interval. The default value is
10080 minutes, that is, 7
days.

Yes str

skip_conditions Conditions that determine
whether a phase is skipped

No Condition or
condition list

Step is a superclass of a phase. It has a conceptual role and is not used directly by
you. Different types of phase are created based on functions, including
CreateDatasetStep, LabelingStep, DatasetImportStep, ReleaseDatasetStep,
JobStep, ModelStep, ServiceStep and ConditionStep. For details, see Phase
Type.

4.1.3 Data
Data objects are used for phase input and are classified into the following types:

● Actual data objects, which are specified when you create a workflow
– Dataset: defines existing datasets. This object is used for data labeling

and model training.
– LabelTask: defines existing labeling jobs. This object is used for data

labeling and dataset version release.
– OBSPath: defines an OBS path. This object is used for model training,

dataset import, and model import.
– ServiceData: defines an existing service. This object is used only for

service update.
– SWRImage: defines an existing SWR path. This object is used for model

registration.
– GalleryModel: defines a model subscribed from AI Gallery. This object is

used for model registration.
● Placeholder data objects, which are specified when a workflow is running

– DatasetPlaceholder: defines datasets to be specified when a workflow is
running. This object is used for data labeling and model training.

– LabelTaskPlaceholder: defines labeling jobs to be specified when a
workflow is running. This object is used for data labeling and dataset
version release.

– OBSPlaceholder: defines an OBS path to be specified when a workflow is
running. This object is used for model training, dataset import, and model
import.

– ServiceUpdatePlaceholder: defines existing services to be specified when a
workflow is running. This object is used only for service update.

– SWRImagePlaceholder: defines an SWR path to be specified when a
workflow is running. This object is used for model registration.

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

– ServiceInputPlaceholder: defines model information required for service
deployment when a workflow is running. This object is used only for
service deployment and update.

– DataSelector: supports multiple data types. Currently, this object can be
used only on the job phase (only OBS or datasets are supported).

● Data selection object:
DataConsumptionSelector: selects a valid output from the outputs of multiple
dependency phases as the data input. This object is usually used for
conditional branching. (When creating a workflow, the output of which
dependency phase will be used as the data input source is not specified. The
data input source should be automatically selected based on the actual
execution status of the dependency phases.)

Table 4-4 Dataset

Parameter Description Mandatory Data Type

dataset_name Dataset name Yes str

version_name Dataset version No str

Example:

 example = Dataset(dataset_name = "**", version_name = "**")
Obtain the dataset name and version name in the ModelArts dataset module.

NO TE

When a dataset is used as the input of a phase, configure version_name based on service
requirements. For example, version_name is not required for LabelingStep and
ReleaseDatasetStep, but mandatory for JobStep.

Table 4-5 LabelTask

Parameter Description Mandatory Data Type

dataset_name Dataset name Yes str

task_name Labeling job
name

Yes str

Example:

 example = LabelTask(dataset_name = "**", task_name = "**")
Obtain the dataset name and labeling job name in the ModelArts dataset module.

Table 4-6 OBSPath

Parameter Description Mandatory Data Type

obs_path OBS path Yes str, Storage

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

Example:

example = OBSPath(obs_path = "**")
Obtain the OBS path from Object Storage Service.

Table 4-7 ServiceData

Parameter Description Mandatory Data Type

service_id Service ID Yes str

Example:

example = ServiceData(service_id = "**")
Obtain the service ID in ModelArts Real-Time Services. This object describes a specified real-time service
and is used for service update.

Table 4-8 SWRImage

Parameter Description Mandatory Data Type

swr_path SWR path to a
container image

Yes str

Example:

example = SWRImage(swr_path = "**")
Container image path, which is used as the input for model registration

Table 4-9 GalleryModel

Parameter Description Mandatory Data Type

subscription_id Subscription ID of
a subscribed
model

Yes str

version_num Version number
of a subscribed
model

Yes str

Example:

example = GalleryModel(subscription_id="**", version_num="**")
Subscribed model object, which is used as the input of the model registration phase

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

Table 4-10 DatasetPlaceholder

Parameter Description Mandatory Data Type

name Name Yes str

data_type Data type No DataTypeEnum

delay Whether the data object
is configured when the
phase is running. The
default value is False.

No bool

default Default value of a data
object

No Dataset

Example:

example = DatasetPlaceholder(name = "**", data_type = DataTypeEnum.IMAGE_CLASSIFICATION)
Dataset object placeholder. Configure data_type to specify supported data types.

Table 4-11 OBSPlaceholder

Parameter Description Mandatory Data Type

name Name Yes str

object_type OBS object type. Only
"file" and "directory"
are supported.

Yes str

delay Whether the data
object is configured
when the phase is
running. The default
value is False.

No bool

default Default value of a data
object

No OBSPath

Example:

example = OBSPlaceholder(name = "**", object_type = "directory")
OBS object placeholder. You can set object_type to file or directory.

Table 4-12 LabelTaskPlaceholder

Parameter Description Mandatory Data Type

name Name Yes str

task_type Type of a labeling job No LabelTaskTypeEn
um

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Parameter Description Mandatory Data Type

delay Whether the data object
is configured when the
phase is running. The
default value is False.

No bool

Example:

example = LabelTaskPlaceholder(name = "**")
LabelTask object placeholder

Table 4-13 ServiceUpdatePlaceholder

Field Description Mandatory Data Type

name Name Yes str

delay Whether the data object
is configured when the
phase is running. The
default value is False.

No bool

Example:

example = ServiceUpdatePlaceholder(name = "**")
ServiceData object placeholder, which is used as the input for service update

Table 4-14 SWRImagePlaceholder

Field Description Mandatory Data Type

name Name Yes str

delay Whether the data
object is configured
when the phase is
running. The default
value is False.

No bool

Example:

example = SWRImagePlaceholder(name = "**")
SWRImage object placeholder, which is used as the input for model registration.

Table 4-15 ServiceInputPlaceholder

Parameter Description Mandatory Data Type

name Name Yes str

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

Parameter Description Mandatory Data Type

model_name Model name Yes str or Placeholder

model_versio
n

Model version No str

envs Environment variables No dict

delay Whether service
deployment
information is
configured when the
phase is running. The
default value is True.

No bool

Example:

example = ServiceInputPlaceholder(name = "**" , model_name = "model_name")
This object is used as the input for service deployment or service update.

Table 4-16 DataSelector

Parameter Description Mandatory Data Type

name Name Yes str

data_type_lis
t

Supported data types.
Currently, only obs and
dataset are supported.

Yes list

delay Whether the data
object is configured
when the phase is
running. The default
value is False.

No bool

Example:

example = DataSelector(name = "**" ,data_type_list=["obs", "dataset"])
This object is used as the input of the job phase.

Table 4-17 DataConsumptionSelector

Parameter Description Mandatory Data Type

data_list Output data objects of
a dependency phase

Yes list

Example:

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

example = DataConsumptionSelector(data_list=[step1.outputs["step1_output_name"].as_input(),
step2.outputs["step2_output_name"].as_input()])
Use the valid output from either step 1 or step 2 as the input. If step 1 is skipped and has no output, use
the valid output from step 2 as the input. (Make sure that data_list has only one valid output.)

4.1.4 Development State
In the development state, workflow Python SDKs are used to develop and debug
workflows. This is a familiar and flexible development mode for AI developers and
MLOps developers, which provides the following capabilities:

● Development and building: You can use Python code to create and orchestrate
workflows with flexibility.

● Debugging: The debug and run modes are supported. The run mode supports
partial execution and fully execution of a workflow.

● Publishing: The debugged workflows can be fixed and published to the
running state for configuration and execution.

● Sharing: Workflows can be published to AI Gallery as assets and shared with
other users.

4.1.5 Running State
Workflows run in a visualized mode, which is called the running state. You only
need to pay attention to some simple parameter settings to start a workflow.
Running workflows are released from the development state or subscribed to from
AI Gallery.

A running workflow supports:

● Unified configuration management: The parameters and resources required
for a workflow are centrally managed.

● Easy-to-use operations: You can start, stop, retry, copy, and delete workflows.
● Running record: records historical running parameters and statuses of the

workflow.

4.2 Parameter Configuration

4.2.1 Function
A workflow parameter is a placeholder object that can be configured when the
workflow runs. The following data types are supported: int, str, bool, float, Enum,
dict, and list. You can display fields (such as algorithm hyperparameters) in a
phase as placeholders in a transparent way. You can modify and use the default
values that are set for them.

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

4.2.2 Parameter Overview

Placeholder
Parameter Description Mandator

y
Data Type

name Parameter name, which must be
globally unique.

Yes str

placeholder
_type

Parameter type. The mapping
between placeholder types and
actual data types:
PlaceholderType.INT -> int
PlaceholderType.STR -> str
PlaceholderType.BOOL -> bool
PlaceholderType.FLOAT -> float
PlaceholderType.ENUM -> Enum
PlaceholderType.JSON -> dict
PlaceholderType.LIST -> list
● When the type is

PlaceholderType.ENUM, the
enum_list field cannot be empty.

● When the type is
PlaceholderType.LIST, the
placeholder_format field cannot
be empty and can only be set to
str, int, float, or bool, indicating
the data types in the list.

Yes PlaceholderT
ype

default Default parameter value. The data
type must be the same as that of
placeholder_type.

No Any

placeholder
_format

Supported data formats. Currently,
obs, flavor, train_flavor, and swr are
supported.

No str

delay Whether parameters are set when
the workflow is running. The default
value is False, indicating that
parameters are set before the
workflow runs. If the value is True,
parameters are set in an action of the
phase where they are needed.

No bool

description Parameter description No str

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

Parameter Description Mandator
y

Data Type

enum_list List of enumerated values of a
parameter. This parameter is
mandatory only for parameters of
PlaceholderType.ENUM type.

No list

constraint Constraints on parameters. This
parameter only supports the
constraints of training specifications
and is not visible to you.

No dict

required Whether the parameter is mandatory.
● The default value is True.
● This parameter cannot be set to

False for Delay.
This parameter is optional at the
frontend during execution.

No bool

4.2.3 Examples
● Integer parameter

from modelarts import workflow as wf
wf.Placeholder(name="placeholder_int", placeholder_type=wf.PlaceholderType.INT, default=1,
description="This is an integer parameter.")

● String parameter
from modelarts import workflow as wf
wf.Placeholder(name="placeholder_str", placeholder_type=wf.PlaceholderType.STR,
default="default_value", description="This is a string parameter.")

● Bool parameter
from modelarts import workflow as wf
wf.Placeholder(name="placeholder_bool", placeholder_type=wf.PlaceholderType.BOOL, default=True,
description="This is a bool parameter.")

● Float parameter
from modelarts import workflow as wf
wf.Placeholder(name="placeholder_float", placeholder_type=wf.PlaceholderType.FLOAT, default=0.1,
description="This is a float parameter.")

● Enumeration parameter
from modelarts import workflow as wf
wf.Placeholder(name="placeholder_enum", placeholder_type=wf.PlaceholderType.ENUM, default="a",
enum_list=["a", "b"], description="This is an enumeration parameter.")

● Dictionary parameter
from modelarts import workflow as wf
wf.Placeholder(name="placeholder_dict", placeholder_type=wf.PlaceholderType.JSON, default={"key":
"value"}, description="This is a dictionary parameter.")

● List parameter
from modelarts import workflow as wf
wf.Placeholder(name="placeholder_list", placeholder_type=wf.PlaceholderType.LIST, default=[1, 2],
placeholder_format="int", description="This is a list parameter and its value is an integer.")

4.3 Unified Storage

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

4.3.1 Function
Unified storage is used for workflow directory management. It centrally manages
all storage paths of a workflow with these functions:

● Input directory management: When developing a workflow, you can centrally
manage all data storage paths. You can store data and configure the root
directory based on your own requirements. This function orchestrates
directories but does not create them.

● Output directory management: When developing a workflow, you can
centrally manage all output paths. You do not need to create output
directories. Instead, you only need to configure the root path before the
workflow runs and view the output data in the specified directories based on
your directory orchestration rules. In addition, multiple executions of the same
workflow are output to different directories, isolating data for different
executions.

4.3.2 Common Usage
● InputStorage (path concatenation)

This object is used to centrally manage input directories. The following is an
example:
import modelarts.workflow as wf
storage = wf.data.InputStorage(name="storage_name", title="title_info",
description="description_info") # Only name is mandatory.
input_data = wf.data.OBSPath(obs_path = storage.join("directory_path")) # Add a slash (/) after a
directory, for example, storage.join("/input/data/").

When a workflow is running, if the root path of the storage object is /root/, the obtained path will
be /root/directory_path.

● OutputStorage (directory creation)
This object is used to centrally manage output directories and ensure that
multiple executions of the same workflow are output to different directories.
The following is an example:
import modelarts.workflow as wf
storage = wf.data.OutputStorage(name="storage_name", title="title_info",
description="description_info") # Only name is mandatory.
output_path = wf.data.OBSOutputConfig(obs_path = storage.join("directory_path")) # Only a
directory can be created but not files.

When a workflow is running, if the root path of the storage object is set to /root/, the system will
automatically create a relative directory and the obtained path will be /root/Execution ID/
directory_path.

4.3.3 Advanced Usage

Storage
This object contains capabilities of InputStorage and OutputStorage and can be
flexibly used based on your needs.

Parameter Description Manda
tory

Data Type

name Name Yes str

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

Parameter Description Manda
tory

Data Type

title If this parameter is left blank, the
value of name is used by default.

No str

description Description No str

create_dir Whether to create a directory. The
default value is False.

No bool

with_executio
n_id

Whether to combine execution_id
when a directory is created. The
default value is False. This
parameter can be set to True only
when create_dir is set to True.

No bool

The following is an example:

● Implementing InputStorage capabilities
import modelarts.workflow as wf
Create a Storage object (with_execution_id=False, create_dir=False).
storage = wf.data.Storage(name="storage_name", title="title_info", description="description_info",
with_execution_id=False, create_dir=False)
input_data = wf.data.OBSPath(obs_path = storage.join("directory_path")) # Add a slash (/) after a
directory, for example, storage.join("/input/data/").

When a workflow is running, if the root path of the storage object is /root/, the obtained path will
be /root/directory_path.

● Implementing OutputStorage capabilities
import modelarts.workflow as wf
Create a Storage object (with_execution_id=True, create_dir=True).
storage = wf.data.Storage(name="storage_name", title="title_info", description="description_info",
with_execution_id=True, create_dir=True)
output_path = wf.data.OBSOutputConfig(obs_path = storage.join("directory_path")) # Only a
directory can be created.

When a workflow is running, if the root path of the storage object is set to /root/, the system will
automatically create a relative directory and the obtained path will be /root/Execution ID/
directory_path.

● Implementing different capabilities of a Storage object through the join
method
import modelarts.workflow as wf
Create a Storage object. Assume that the root directory of the Storage object is /root/.
storage = wf.data.Storage(name="storage_name", title="title_info", description="description_info",
with_execution_id=False, create_dir=False)
input_data1 = wf.data.OBSPath(obs_path = storage) # The obtained path is /root/.
input_data2 = wf.data.OBSPath(obs_path = storage.join("directory_path")) # The obtained path is /
root/directory_path. Ensure that the path exists.
output_path1 = wf.data.OBSOutputConfig(obs_path = storage.join(directory="directory_path",
with_execution_id=False, create_dir=True)) # The system automatically creates a directory /root/
directory_path.
output_path2 = wf.data.OBSOutputConfig(obs_path = storage.join(directory="directory_path",
with_execution_id=True, create_dir=True)) # The system automatically creates a directory /root/
Execution ID/directory_path.

Chain call is supported for Storage.

The following is an example:
import modelarts.workflow as wf
Create a base class Storage object. Assume that the root directory of the Storage object is /root/.

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

storage = wf.data.Storage(name="storage_name", title="title_info", description="description_info",
with_execution_id=False, create_dir=Fals)
input_storage = storage.join("directory_path_1") # The obtained path is /root/directory_path_1.
input_storage_next = input_storage.join("directory_path_2") # The obtained path is /root/directory_path_1/
directory_path_2.

4.3.4 Example
Unified storage is mainly used in the job phase. The following code uses a
workflow that contains only the training phase as an example.

from modelarts import workflow as wf

Create an InputStorage object. Assume that the root directory of the Storage object is /root/input-data/.
input_storage = wf.data.InputStorage(name="input_storage_name", title="title_info",
description="description_info") # Only name is mandatory.

Create an OutputStorage object. Assume that the root directory of the Storage object is /root/output/.
output_storage = wf.data.OutputStorage(name="output_storage_name", title="title_info",
description="description_info") # Only name is mandatory.

Use JobStep to define a training phase, and set OBS paths for storing inputs and outputs.
job_step = wf.steps.JobStep(
 name="training_job", # Name of a training phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Image classification training", # Title, which defaults to the value of name
 algorithm=wf.AIGalleryAlgorithm(subscription_id="subscription_ID",
item_version_id="item_version_ID"), # Algorithm used for training. In this example, an algorithm subscribed
to from AI Gallery is used.
 inputs=[
 wf.steps.JobInput(name="data_url_1", data=wf.data.OBSPath(obs_path = input_storage.join("/
dataset1/new.manifest"))), # The obtained path is /root/input-data/dataset1/new.manifest.
 wf.steps.JobInput(name="data_url_2", data=wf.data.OBSPath(obs_path = input_storage.join("/
dataset2/new.manifest"))) # The obtained path is /root/input-data/dataset2/new.manifest.
],
 outputs=wf.steps.JobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=output_storage.join("/model/"))), # The training output
path is /root/output/Execution ID/model/.
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")
),
 log_export_path=wf.steps.job_step.LogExportPath(obs_url=output_storage.join("/logs/")) # The log
output path is /root/output/Execution ID/logs/.
)# Training flavors
)

Define a workflow that contains only the job phase.
workflow = wf.Workflow(
 name="test-workflow",
 desc="this is a test workflow",
 steps=[job_step],
 storages=[input_storage, output_storage] # Add Storage objects used in this workflow.
)

4.3.5 Operations

Configuring Root Paths in the Development State

Use the run method of the workflow object, and input root paths in the text box
that is displayed when the workflow starts to run.

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

Figure 4-1 Inputting root paths

You must enter a valid path. If the path does not exist, an error will occur. The
path format must be /Bucket name/Folder path/.

Configuring Root Paths in the Running State
Use the release method of the workflow object to release the workflow to the
running state. On the ModelArts console, go to the Workflow page, find the
target workflow, and configure root paths.

Figure 4-2 Configuring root paths

4.4 Phase Type

4.4.1 Dataset Creation Phase

4.4.1.1 Function
This phase integrates capabilities of the ModelArts dataset module, allowing you
to create datasets of the new version. This phase is used to centrally manage
existing data by creating datasets. It is usually followed by a dataset import phase
or a labeling phase.

4.4.1.2 Parameter Overview
You can use CreateDatasetStep to create a dataset creation phase. The following is
an example of defining a CreateDatasetStep.

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Table 4-18 CreateDatasetStep

Paramet
er

Description Man
dato
ry

Data Type

name Name of a dataset creation phase. The
name contains a maximum of 64
characters, including only letters, digits,
underscores (_), and hyphens (-). It must
start with a letter and must be unique in
a workflow.

Yes str

inputs Inputs of the dataset creation phase. Yes CreateDatasetIn-
put or a list of
CreateDatasetIn-
put

outputs Outputs of the dataset creation phase. Yes CreateDatasetOut
put or a list of
CreateDatasetOut
put

propertie
s

Configurations for dataset creation. Yes DatasetProperties

title Title for frontend display. No str

descripti
on

Description of the dataset creation
phase.

No str

policy Phase execution policy. No StepPolicy

depend_
steps

Dependency phases. No Step or step list

Table 4-19 CreateDatasetInput

Paramet
er

Description Man
dato
ry

Data Type

name Input name of the dataset creation
phase. The name can contain a
maximum of 64 characters, including
only letters, digits, underscores (_), and
hyphens (-), and must start with a letter.
The input name of a step must be
unique.

Yes str

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

Paramet
er

Description Man
dato
ry

Data Type

data Input data object of the dataset creation
phase.

Yes OBS object.
Currently, only
OBSPath,
OBSConsumption,
OBSPlaceholder,
and
DataConsumption
Selector are
supported.

Table 4-20 CreateDatasetOutput

Paramet
er

Description Man
dato
ry

Data Type

name Output name of the dataset creation
phase. The name can contain a
maximum of 64 characters, including
only letters, digits, underscores (_), and
hyphens (-), and must start with a letter.
The output name of a step must be
unique.

Yes str

config Output configurations of the dataset
creation phase.

Yes Currently, only
OBSOutputConfig
is supported.

Table 4-21 DatasetProperties

Paramet
er

Description Man
dat
ory

Data Type

dataset_
name

Dataset name. The value contains 1 to
100 characters. Only letters, digits,
underscores (_), and hyphens (-) are
allowed.

Yes str, Placeholder

dataset_f
ormat

Dataset format. The default value is 0,
indicating the file type.

No 0: file
1: table

data_typ
e

Data type. The default value is
FREE_FORMAT.

No DataTypeEnum

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

Paramet
er

Description Man
dat
ory

Data Type

descripti
on

Description. No str

import_d
ata

Whether to import data. The default
value is False. Currently, only table data
is supported.

No bool

work_pat
h_type

Type of the dataset output path.
Currently, only OBS is supported. The
default value is 0.

No int

import_c
onfig

Configurations for label import. The
default value is None. When creating a
dataset based on labeled data, you can
specify this parameter to import labeling
information.

No ImportConfig

Table 4-22 Importconfig

Parameter Description Man
dato
ry

Data Type

import_annotat
ions

Whether to automatically import
the labeling information in the
input directory, supporting
detection, image classification,
and text classification. Options:
● true: The labeling information

in the input directory is
imported. (Default)

● false: The labeling information
in the input directory is not
imported.

No str, Placeholder

import_type Import mode. Options:
● dir: imported from an OBS

path
● manifest: imported from a

manifest file

No 0: file type
ImportTypeEnum

annotation_for
mat_config

Configurations of the imported
labeling format

No DAnnotationForm
aTypeEtConumfig
list

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

Table 4-23 AnnotationFormatConfig

Parameter Description Mand
atory

Data Type

format_name Name of a labeling format No AnnotationForma-
tEnum

scene Labeling scenario, which is
optional

No LabelTaskTypeEnu
m

Enumerated Type Enumerated Value

ImportTypeEnum DIR
MANIFEST

DataTypeEnum IMAGE
TEXT
AUDIO
TABULAR
VIDEO
FREE_FORMAT

AnnotationFormatEnum MA_IMAGE_CLASSIFICATION_V1
MA_IMAGENET_V1
MA_PASCAL_VOC_V1
YOLO
MA_IMAGE_SEGMENTATION_V1
MA_TEXT_CLASSIFICATION_COMBINE_
V1
MA_TEXT_CLASSIFICATION_V1
MA_AUDIO_CLASSIFICATION_DIR_V1

4.4.1.3 Examples
There are two scenarios:

● Creating a dataset using unlabeled data
● Creating a dataset using labeled data with labels imported

Creating a Dataset Using Unlabeled Data
Data preparation: Store unlabeled data in an OBS folder.

from modelarts import workflow as wf
Use CreateDatasetStep to create a dataset of the new version using OBS data.

Define parameters of the dataset output path.

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

dataset_output_path = wf.Placeholder(name="dataset_output_path",
placeholder_type=wf.PlaceholderType.STR, placeholder_format="obs")

Define the dataset name.
dataset_name = wf.Placeholder(name="dataset_name", placeholder_type=wf.PlaceholderType.STR)

create_dataset = wf.steps.CreateDatasetStep(
 name="create_dataset", # Name of a dataset creation phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Dataset creation", # Title, which defaults to the value of name
 inputs=wf.steps.CreateDatasetInput(name="input_name",
data=wf.data.OBSPlaceholder(name="obs_placeholder_name", object_type="directory")),#
CreateDatasetStep inputs, configured when the workflow is running; the data field can also be represented
by the wf.data.OBSPath(obs_path="fake_obs_path") object.
 outputs=wf.steps.CreateDatasetOutput(name="output_name",
config=wf.data.OBSOutputConfig(obs_path=dataset_output_path)),# CreateDatasetStep outputs
 properties=wf.steps.DatasetProperties(
 dataset_name=dataset_name, # If the dataset name does not exist, a dataset will be created using
this name. If the dataset name exists, the corresponding dataset will be used.
 data_type=wf.data.DataTypeEnum.IMAGE, # Data type of the dataset, for example, image
)
)
Ensure that the dataset name is not used by others under the account. Otherwise, the dataset created by
others will be used in the subsequent phases.

workflow = wf.Workflow(
 name="create-dataset-demo",
 desc="this is a demo workflow",
 steps=[create_dataset]
)

Creating a Dataset Using Labeled Data with Labels Imported

Data preparation: Store labeled data in an OBS folder.

For details about specifications for importing labeled data from an OBS directory,
see Specifications for Importing Data from an OBS Directory.

from modelarts import workflow as wf
Use CreateDatasetStep to create a dataset of the new version using OBS data.

Define parameters of the dataset output path.
dataset_output_path = wf.Placeholder(name="dataset_placeholder_name",
placeholder_type=wf.PlaceholderType.STR, placeholder_format="obs")

Define the dataset name.
dataset_name = wf.Placeholder(name="dataset_placeholder_name",
placeholder_type=wf.PlaceholderType.STR)

create_dataset = wf.steps.CreateDatasetStep(
 name="create_dataset", # Name of a dataset creation phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Dataset creation", # Title, which defaults to the value of name
 inputs=wf.steps.CreateDatasetInput(name="input_name",
data=wf.data.OBSPlaceholder(name="obs_placeholder_name", object_type="directory")),#
CreateDatasetStep inputs, configured when the workflow is running; the data field can also be represented
by the wf.data.OBSPath(obs_path="fake_obs_path") object.
 outputs=wf.steps.CreateDatasetOutput(name="output_name",
config=wf.data.OBSOutputConfig(obs_path=dataset_output_path)),# CreateDatasetStep outputs
 properties=wf.steps.DatasetProperties(
 dataset_name=dataset_name, # If the dataset name does not exist, a dataset will be created using
this name. If the dataset name exists, the corresponding dataset will be used.
 data_type=wf.data.DataTypeEnum.IMAGE, # Data type of the dataset, for example, image
 import_config=wf.steps.ImportConfig(
 annotation_format_config=[
 wf.steps.AnnotationFormatConfig(

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

https://support.huaweicloud.com/intl/en-us/dataprepare-modelarts/dataprepare-modelarts-0013.html

 format_name=wf.steps.AnnotationFormatEnum.MA_IMAGE_CLASSIFICATION_V1, # Labeling
format of labeled data
 scene=wf.data.LabelTaskTypeEnum.IMAGE_CLASSIFICATION # Labeling scene
]
)
)
)
Ensure that the dataset name is not used by others under the account. Otherwise, the dataset created by
others will be used in the subsequent phases.

workflow = wf.Workflow(
 name="create-dataset-demo",
 desc="this is a demo workflow",
 steps=[create_dataset]
)

4.4.2 Labeling Phase

4.4.2.1 Function

This phase integrates capabilities of the ModelArts dataset module, allowing you
to label datasets. The labeling phase is used to create labeling jobs or label
existing jobs.

4.4.2.2 Parameter Overview

You can use LabelingStep to create a labeling phase. The following is an example
of defining a LabelingStep.

Table 4-24 LabelingStep

Parameter Description Mandatory Data Type

name Name of a labeling
phase. The name
contains a
maximum of 64
characters,
including only
letters, digits,
underscores (_),
and hyphens (-). It
must start with a
letter and must be
unique in a
workflow.

Yes str

inputs Inputs of the
labeling phase

Yes LabelingInput or
LabelingInput list

outputs Outputs of the
labeling phase

Yes LabelingOutput or
LabelingOutput
list

properties Configurations for
dataset labeling

Yes LabelTaskProper-
ties

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

Parameter Description Mandatory Data Type

title Title for frontend
display

No str

description Description of the
labeling phase

No str

policy Phase execution
policy

No StepPolicy

depend_steps Dependency
phases

No Step or step list

Table 4-25 LabelingInput

Parameter Description Mandatory Data Type

name Input name of the
labeling phase. The
name can contain
a maximum of 64
characters,
including only
letters, digits,
underscores (_),
and hyphens (-),
and must start
with a letter. The
input name of a
step must be
unique.

Yes str

data Input data object
of the labeling
phase

Yes Dataset or
labeling job
object. Currently,
only Dataset,
DatasetConsumpti
on,
DatasetPlacehold-
er, LabelTask,
LabelTaskPlacehol
der,
LabelTaskConsum
ption, and
DataConsumption
Selector are
supported.

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

Table 4-26 LabelingOutput

Parameter Description Mandatory Data Type

name Output name of
the labeling phase.
The name can
contain a
maximum of 64
characters,
including only
letters, digits,
underscores (_),
and hyphens (-),
and must start
with a letter. The
output name of a
step must be
unique.

Yes str

Table 4-27 LabelTaskProperties

Parameter Description Mandatory Data Type

task_type Type of a labeling
job. Jobs of the
specified type are
returned.

Yes LabelTaskTypeEnu
m

task_name Labeling job name.
The value contains
1 to 100
characters,
including only
letters, digits,
hyphens (-), and
underscores (_).
This parameter is
mandatory when
the input is a
dataset object.

No str, Placeholder

labels Labels to be
created

No Label

properties Attributes of a
labeling job. You
can update this
field to record
custom
information.

No dict

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

Parameter Description Mandatory Data Type

auto_sync_datase
t

Whether to
automatically
synchronize the
result of a labeling
job to the dataset.
Options:
● true: The

labeling result
of the labeling
job is
automatically
synchronized to
the dataset.
(Default)

● false: The
labeling result
of the labeling
job is not
automatically
synchronized to
the dataset.

No bool

content_labeling Whether to enable
content labeling
for speech
paragraph labeling.
This function is
enabled by default.

No bool

description Labeling job
description. The
description
contains 0 to 256
characters and
does not support
the following
special characters:
^!<>=&"'

No str

Table 4-28 Label

Parameter Description Mand
atory

Data Type

name Tag name No str

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

Parameter Description Mand
atory

Data Type

property Basic attribute key-
value pair of a
label, such as color
and shortcut keys

No str, dic, Placeholder

type Tag type No LabelTypeEnum

Enumerated Type Enumerated Value

LabelTaskTypeEnum IMAGE_CLASSIFICATION
OBJECT_DETECTION
IMAGE_SEGMENTATION
TEXT_CLASSIFICATION
NAMED_ENTITY_RECOGNITION
TEXT_TRIPLE
AUDIO_CLASSIFICATION
SPEECH_CONTENT
SPEECH_SEGMENTATION
DATASET_TABULAR
VIDEO_ANNOTATION
FREE_FORMAT

4.4.2.3 Examples
There are three scenarios:

● Creating a labeling job for a specified dataset and labeling the dataset
● Labeling a specified job
● Creating a labeling job based on the output of the dataset creation phase

Creating a Labeling Job for a Specified Dataset and Labeling the Dataset
Scenarios:

● You have created only one unlabeled dataset and need to label it when the
workflow is running.

● After a dataset is imported, the dataset needs to be labeled.

Data preparation: Create a dataset on the ModelArts console.
from modelarts import workflow as wf
Use LabelingStep to create a labeling job for the input dataset and label it.

Define the input dataset.
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

Define the name parameters of the labeling job.
task_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

labeling = wf.steps.LabelingStep(
 name="labeling", # Name of the labeling phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Dataset labeling", # Title, which defaults to the value of name
 properties=wf.steps.LabelTaskProperties(
 task_type=wf.data.LabelTaskTypeEnum.IMAGE_CLASSIFICATION, # Labeling job type, for example,
image classification
 task_name=task_name # If the labeling job name does not exist, a job will be created using this
name. If the labeling job name exists, the corresponding job will be used.
),
 inputs=wf.steps.LabelingInput(name="input_name", data=dataset), # LabelingStep inputs. The dataset
object is configured when the workflow is running. You can also use
wf.data.Dataset(dataset_name="fake_dataset_name") for the data field.
 outputs=wf.steps.LabelingOutput(name="output_name"), # LabelingStep outputs
)

workflow = wf.Workflow(
 name="labeling-step-demo",
 desc="this is a demo workflow",
 steps=[labeling]
)

Labeling a Specified Job
Scenarios:

● You have created a labeling job and need to label it when the workflow is
running.

● After a dataset is imported, the dataset needs to be labeled.

Data preparation: Create a labeling job using a specified dataset on the ModelArts
console.
from modelarts import workflow as wf
Input a labeling job and label it.

Define the labeling job of the dataset.
label_task = wf.data.LabelTaskPlaceholder(name="label_task_placeholder_name")

labeling = wf.steps.LabelingStep(
 name="labeling", # Name of the labeling phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Dataset labeling", # Title, which defaults to the value of name
 inputs=wf.steps.LabelingInput(name="input_name", data=label_task), # LabelingStep inputs. The labeling
job object is configured when the workflow is running. You can also use
wf.data.LabelTask(dataset_name="dataset_name", task_name="label_task_name") for the data field.
 outputs=wf.steps.LabelingOutput(name="output_name"), # LabelingStep outputs
)

workflow = wf.Workflow(
 name="labeling-step-demo",
 desc="this is a demo workflow",
 steps=[labeling]
)

Creating a Labeling Phase Based on the Dataset Creation Phase
Scenario: The outputs of the dataset creation phase are used as the inputs of the
labeling phase.
from modelarts import workflow as wf

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

Define parameters of the dataset output path.
dataset_output_path = wf.Placeholder(name="dataset_output_path",
placeholder_type=wf.PlaceholderType.STR, placeholder_format="obs")

Define the dataset name.
dataset_name = wf.Placeholder(name="dataset_name", placeholder_type=wf.PlaceholderType.STR)

create_dataset = wf.steps.CreateDatasetStep(
 name="create_dataset", # Name of a dataset creation phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Dataset creation", # Title, which defaults to the value of name
 inputs=wf.steps.CreateDatasetInput(name="input_name",
data=wf.data.OBSPlaceholder(name="obs_placeholder_name", object_type="directory")),#
CreateDatasetStep inputs, configured when the workflow is running; the data field can also be represented
by the wf.data.OBSPath(obs_path="fake_obs_path") object.
 outputs=wf.steps.CreateDatasetOutput(name="create_dataset_output",
config=wf.data.OBSOutputConfig(obs_path=dataset_output_path)),# CreateDatasetStep outputs
 properties=wf.steps.DatasetProperties(
 dataset_name=dataset_name, # If the dataset name does not exist, a dataset will be created using
this name. If the dataset name exists, the corresponding dataset will be used.
 data_type=wf.data.DataTypeEnum.IMAGE, # Data type of the dataset, for example, image
)
)

Define the name parameters of the labeling job.
task_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

labeling = wf.steps.LabelingStep(
 name="labeling", # Name of the labeling phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Dataset labeling", # Title, which defaults to the value of name
 properties=wf.steps.LabelTaskProperties(
 task_type=wf.data.LabelTaskTypeEnum.IMAGE_CLASSIFICATION, # Labeling job type, for example,
image classification
 task_name=task_name # If the labeling job name does not exist, a job will be created using this
name. If the labeling job name exists, the corresponding job will be used.
),
 inputs=wf.steps.LabelingInput(name="input_name",
data=create_dataset.outputs["create_dataset_output"].as_input()), # LabelingStep inputs. The data source is
the outputs of the dataset creation phase.
 outputs=wf.steps.LabelingOutput(name="output_name"), # LabelingStep outputs
 depend_steps=create_dataset # Preceding dataset creation phase
)
create_dataset is an instance of wf.steps.CreateDatasetStep. create_dataset_output is the name field
value of wf.steps.CreateDatasetOutput.

workflow = wf.Workflow(
 name="labeling-step-demo",
 desc="this is a demo workflow",
 steps=[create_dataset, labeling]
)

4.4.3 Dataset Import Phase

4.4.3.1 Function

This phase integrates capabilities of the ModelArts dataset module, allowing you
to import data to datasets. The dataset import phase is used to import data from
a specified path to a dataset or a labeling job. The application scenarios are as
follows:

● This phase is used for continuous data update. You can import raw data or
labeled data to a labeling job and label the data in the labeling phase.

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

● Some labeled raw data can be directly imported to a dataset or labeling job,
and the dataset with version information can be obtained in the dataset
release phase.

4.4.3.2 Parameter Overview
You can use DatasetImportStep to create a dataset import phase. The following is
an example of defining a DatasetImportStep.

Table 4-29 DatasetImportStep

Parameter Description Mandator
y

Data Type

name Name of a dataset
import phase. The
name contains a
maximum of 64
characters,
including only
letters, digits,
underscores (_),
and hyphens (-). It
must start with a
letter and must be
unique in a
workflow.

Yes str

inputs Inputs of the
dataset import
phase.

Yes DatasetImportInput or
DatasetImportInput list

outputs Outputs of the
dataset import
phase.

Yes DatasetImportOutput or
DatasetImportOutput list

properties Configurations for
dataset import.

Yes ImportDataInfo

title Title for frontend
display.

No str

description Description of the
dataset import
phase.

No str

policy Phase execution
policy.

No StepPolicy

depend_steps Dependency
phases.

No Step or step list

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

Table 4-30 DatasetImportInput

Parameter Description Mandator
y

Data Type

name Input name of the
dataset import
phase. The name
can contain a
maximum of 64
characters,
including only
letters, digits,
underscores (_),
and hyphens (-),
and must start
with a letter. The
input name of a
step must be
unique.

Yes str

data Input data object
of the dataset
import phase.

Yes Dataset, OBS, or labeling
job object. Currently, only
Dataset,
DatasetConsumption,
DatasetPlaceholder,
OBSPath,
OBSConsumption,
OBSPlaceholder,
LabelTask,
LabelTaskPlaceholder,
LabelTaskConsumption,
and DataConsumptionSe-
lector are supported.

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

Table 4-31 DatasetImportOutput

Parameter Description Mandatory Data Type

name Output name of
the dataset import
phase. The name
can contain a
maximum of 64
characters,
including only
letters, digits,
underscores (_),
and hyphens (-),
and must start
with a letter. The
output name of a
step must be
unique.

Yes str

Table 4-32 ImportDataInfo

Parameter Description Mandatory Data Type

annotation_form
at_config

Configurations of
the imported
labeling format

No AnnotationFormat
Config

excluded_labels Samples with
specified labels are
not imported.

No Label list

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

Parameter Description Mandatory Data Type

import_annotate
d

Whether to import
the labeled
samples in the
original dataset to
the To Be
Confirmed tab.
The default value
is false, indicating
that the labeled
samples in the
original dataset
are not imported
to the To Be
Confirmed tab.
Options:
● true: The

labeled samples
in the original
dataset are
imported to the
To Be
Confirmed tab.

● false: The
labeled samples
in the original
dataset are not
imported to the
To Be
Confirmed tab.

No bool

import_annotatio
ns

Whether to import
labels. Options:
● true: The labels

are imported.
(Default)

● false: The labels
are not
imported.

No bool

import_samples Whether to import
samples. Options:
● true: The

samples are
imported.
(Default)

● false: The
samples are not
imported.

No bool

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

Parameter Description Mandatory Data Type

import_type Import mode.
Options:
● dir: imported

from an OBS
path

● manifest:
imported from
a manifest file

No ImportTypeEnum

included_labels Samples with
specified labels are
imported.

No Label list

label_format Label format. This
parameter is used
only for text
datasets.

No LabelFormat

Table 4-33 AnnotationFormatConfig

Parameter Description Mandator
y

Data Type

format_name Name of a labeling
format

No AnnotationForma-
tEnum

parameters Advanced parameters of
the labeling format

No AnnotationFormat
Parameters

scene Labeling scenario, which is
optional

No LabelTaskTypeEnu
m

Table 4-34 AnnotationFormatParameters

Parameter Description Mandatory Data Type

difficult_only Whether to import only
hard examples. Options:
● true: Only hard

examples are imported.
● false: All the samples

are imported. (Default)

No bool

included_labels Samples with specified
labels are imported.

No Label list

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

Parameter Description Mandatory Data Type

label_separator Separator between labels.
By default, the comma (,)
is used as the separator.
The separator needs to be
escaped. The separator
can contain only one
character, which must be a
letter, a digit, or any of
the following special
characters: !@#$
%^&*_=|?/':.;,

No str

sample_label_sep
arator

Separator between the
text and label. By default,
the Tab key is used as the
separator. The separator
needs to be escaped. The
separator can contain only
one character, which must
be a letter, a digit, or any
of the following special
characters: !@#$
%^&*_=|?/':.;,

No str

4.4.3.3 Examples
There are three scenarios:

● Importing data in a specified path to a target dataset
– Importing labeled data to a dataset
– Importing unlabeled data to a dataset

● Importing data in a specified path to a target labeling job
– Importing labeled data to a labeling job
– Importing unlabeled data to a labeling job

● Creating a dataset import phase based on the dataset creation phase

Importing Data in a Specified Path to a Target Dataset
Scenario: Data needs to be updated for a dataset.

● You import labeled data (with label information) in a specified path to a
dataset. Then, you can create a dataset release phase to release a version.
Data preparation: Create a dataset on the ModelArts console and upload
labeled data to OBS.
from modelarts import workflow as wf
Use DatasetImportStep to import data in a specified path to a dataset and output the dataset.

Define the dataset.
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

Define the OBS data.
obs = wf.data.OBSPlaceholder(name = "obs_placeholder_name", object_type = "directory") #
object_type must be file or directory.

dataset_import = wf.steps.DatasetImportStep(
 name="data_import", # Name of the dataset import phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter
and must be unique in a workflow.
 title="Dataset import", # Title, which defaults to the value of name
 inputs=[
 wf.steps.DatasetImportInput(name="input_name_1", data=dataset), # The target dataset is
configured when the workflow is running. You can also use
wf.data.Dataset(dataset_name="dataset_name") for the data field.
 wf.steps.DatasetImportInput(name="input_name_2", data=obs) # Storage path to the imported
dataset, configured when the workflow is running. You can also use
wf.data.OBSPath(obs_path="obs_path") for the data field.
],# DatasetImportStep inputs
 outputs=wf.steps.DatasetImportOutput(name="output_name"), # DatasetImportStep outputs
 properties=wf.steps.ImportDataInfo(
 annotation_format_config=[
 wf.steps.AnnotationFormatConfig(
 format_name=wf.steps.AnnotationFormatEnum.MA_IMAGE_CLASSIFICATION_V1, #
Labeling format of labeled data, for example, image classification
 scene=wf.data.LabelTaskTypeEnum.IMAGE_CLASSIFICATION # Labeling scene
)
]
)
)

workflow = wf.Workflow(
 name="dataset-import-demo",
 desc="this is a demo workflow",
 steps=[dataset_import]
)

● You import unlabeled data in a specified path to a dataset. Then, you can add
a labeling phase to label the imported data.

Data preparation: Create a dataset on the ModelArts console and upload
unlabeled data to OBS.
from modelarts import workflow as wf
Use DatasetImportStep to import data in a specified path to a dataset and output the dataset.

Define the dataset.
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

Define the OBS data.
obs = wf.data.OBSPlaceholder(name = "obs_placeholder_name", object_type = "directory") #
object_type must be file or directory.

dataset_import = wf.steps.DatasetImportStep(
 name="data_import", # Name of the dataset import phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter
and must be unique in a workflow.
 title="Dataset import", # Title, which defaults to the value of name
 inputs=[
 wf.steps.DatasetImportInput(name="input_name_1", data=dataset), # The target dataset is
configured when the workflow is running. You can also use
wf.data.Dataset(dataset_name="dataset_name") for the data field.
 wf.steps.DatasetImportInput(name="input_name_2", data=obs) # Storage path to the imported
dataset, configured when the workflow is running. You can also use
wf.data.OBSPath(obs_path="obs_path") for the data field.
],# DatasetImportStep inputs
 outputs=wf.steps.DatasetImportOutput(name="output_name"), # DatasetImportStep outputs
)

workflow = wf.Workflow(
 name="dataset-import-demo",

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

 desc="this is a demo workflow",
 steps=[dataset_import]
)

Importing Data in a Specified Path to a Target Labeling Job
Scenario: Data needs to be updated for a labeling job.

● You import labeled data in a specified path to a labeling job. Then, you can
create a dataset release phase to release a version.
Data preparation: Create a labeling job using a specified dataset and upload
the labeled data to OBS.
from modelarts import workflow as wf
Use DatasetImportStep to import data in a specified path to a labeling job and output the labeling
job.

Define the labeling job.
label_task = wf.data.LabelTaskPlaceholder(name="label_task_placeholder_name")

Define the OBS data.
obs = wf.data.OBSPlaceholder(name = "obs_placeholder_name", object_type = "directory") #
object_type must be file or directory.

dataset_import = wf.steps.DatasetImportStep(
 name="data_import", # Name of the dataset import phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter
and must be unique in a workflow.
 title="Dataset import", # Title, which defaults to the value of name
 inputs=[
 wf.steps.DatasetImportInput(name="input_name_1", data=label_task), # Labeling job object,
configured when the workflow is running. You can also use
wf.data.LabelTask(dataset_name="dataset_name", task_name="label_task_name") for the data
field.
 wf.steps.DatasetImportInput(name="input_name_2", data=obs) # Storage path to the imported
dataset, configured when the workflow is running. You can also use
wf.data.OBSPath(obs_path="obs_path") for the data field.
],# DatasetImportStep inputs
 outputs=wf.steps.DatasetImportOutput(name="output_name"), # DatasetImportStep outputs
 properties=wf.steps.ImportDataInfo(
 annotation_format_config=[
 wf.steps.AnnotationFormatConfig(
 format_name=wf.steps.AnnotationFormatEnum.MA_IMAGE_CLASSIFICATION_V1, #
Labeling format of labeled data, for example, image classification
 scene=wf.data.LabelTaskTypeEnum.IMAGE_CLASSIFICATION # Labeling scene
)
]
)
)

workflow = wf.Workflow(
 name="dataset-import-demo",
 desc="this is a demo workflow",
 steps=[dataset_import]
)

● You import unlabeled data in a specified path to a labeling job. Then, you can
add a labeling phase to label the imported data.
Data preparation: Create a labeling job using a specified dataset and upload
the unlabeled data to OBS.
from modelarts import workflow as wf
Use DatasetImportStep to import data in a specified path to a labeling job and output the labeling
job.

Define the labeling job.
label_task = wf.data.LabelTaskPlaceholder(name="label_task_placeholder_name")

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

Define the OBS data.
obs = wf.data.OBSPlaceholder(name = "obs_placeholder_name", object_type = "directory") #
object_type must be file or directory.

dataset_import = wf.steps.DatasetImportStep(
 name="data_import", # Name of the dataset import phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter
and must be unique in a workflow.
 title="Dataset import", # Title, which defaults to the value of name
 inputs=[
 wf.steps.DatasetImportInput(name="input_name_1", data=label_task), # Labeling job object,
configured when the workflow is running. You can also use
wf.data.LabelTask(dataset_name="dataset_name", task_name="label_task_name") for the data
field.
 wf.steps.DatasetImportInput(name="input_name_2", data=obs) # Storage path to the imported
dataset, configured when the workflow is running. You can also use
wf.data.OBSPath(obs_path="obs_path") for the data field.
],# DatasetImportStep inputs
 outputs=wf.steps.DatasetImportOutput(name="output_name"), # DatasetImportStep outputs
)

workflow = wf.Workflow(
 name="dataset-import-demo",
 desc="this is a demo workflow",
 steps=[dataset_import]
)

Creating a Dataset Import Phase Based on the Dataset Creation Phase
Scenario: The outputs of the dataset creation phase are used as the inputs of the
dataset import phase.

from modelarts import workflow as wf
Use DatasetImportStep to import data in a specified path to a dataset and output the dataset.

Define the OBS data.
obs = wf.data.OBSPlaceholder(name = "obs_placeholder_name", object_type = "directory") # object_type
must be file or directory.

dataset_import = wf.steps.DatasetImportStep(
 name="data_import", # Name of the dataset import phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Dataset import", # Title, which defaults to the value of name
 inputs=[
 wf.steps.DatasetImportInput(name="input_name_1",
data=create_dataset.outputs["create_dataset_output"].as_input()), # The outputs of the dataset creation
phase are used as the inputs of the dataset import phase.
 wf.steps.DatasetImportInput(name="input_name_2", data=obs) # Storage path to the imported
dataset, configured when the workflow is running. You can also use
wf.data.OBSPath(obs_path="obs_path") for the data field.
],# DatasetImportStep inputs
 outputs=wf.steps.DatasetImportOutput(name="output_name"), # DatasetImportStep outputs
 depend_steps=create_dataset # Preceding dataset creation phase
)
create_dataset is an instance of wf.steps.CreateDatasetStep. create_dataset_output is the name field
value of wf.steps.CreateDatasetOutput.

workflow = wf.Workflow(
 name="dataset-import-demo",
 desc="this is a demo workflow",
 steps=[dataset_import]
)

4.4.4 Dataset Release Phase

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

4.4.4.1 Function
This phase integrates capabilities of the ModelArts dataset module, enabling
automatic dataset version release. The dataset release phase is used to release
versions of existing datasets or labeling jobs. Each version is a data snapshot and
can be used for subsequent data source tracing. The application scenarios are as
follows:

● After data labeling is completed, a dataset version can be automatically
released and used as inputs in subsequent phases.

● When data update is required for model training, you can use the dataset
import phase to import data and then use the dataset release phase to
release a version for subsequent phases.

4.4.4.2 Parameter Overview
You can use ReleaseDatasetStep to create a dataset release phase. The following is
an example of defining a ReleaseDatasetStep.

Table 4-35 ReleaseDatasetStep

Parameter Description Mandator
y

Data Type

name Name of a dataset release
phase. The name contains a
maximum of 64 characters,
including only letters, digits,
underscores (_), and hyphens
(-). It must start with a letter
and must be unique in a
workflow.

Yes str

inputs Inputs of the dataset release
phase

Yes ReleaseDatasetInput
or ReleaseDatasetIn-
put list

outputs Outputs of the dataset
release phase

Yes ReleaseDatasetOut-
put or
ReleaseDatasetOut-
put list

title Title for frontend display No str

description Description of the dataset
release phase

No str

policy Phase execution policy No StepPolicy

depend_st
eps

Dependency phases No Step or step list

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

Table 4-36 ReleaseDatasetInput

Parameter Description Mandator
y

Data Type

name Input name of the dataset
release phase. The name can
contain a maximum of 64
characters, including only
letters, digits, underscores
(_), and hyphens (-), and
must start with a letter. The
input name of a step must be
unique.

Yes str

data Input data object of the
dataset release phase

Yes Dataset or labeling
job object. Currently,
only Dataset,
DatasetConsumption
, DatasetPlaceholder,
LabelTask,
LabelTaskPlacehold-
er,
LabelTaskConsump-
tion, and
DataConsumptionSe-
lector are supported.

Table 4-37 ReleaseDatasetOutput

Parameter Description Mandator
y

Data Type

name Output name of the dataset
release phase. The name can
contain a maximum of 64
characters, including only
letters, digits, underscores (_),
and hyphens (-), and must
start with a letter. The output
name of a step must be
unique.

Yes str

dataset_ver
sion_config

Configurations for dataset
version release

Yes DatasetVersionCon-
fig

Table 4 DatasetVersionConfig

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

Parameter Description Mandato
ry

Data Type

version_na
me

Dataset version name. By
default, the dataset version is
named in ascending order of
V001 and V002.

No str or Placeholder

version_for
mat

Version format, which defaults
to Default. You can also set it
to CarbonData.

No str

train_evalu
ate_sample
_ratio

Ratio between the training set
and validation set, which
defaults to 1.00. The value
ranges from 0 to 1.00. For
example, 0.8 indicates the
ratio for the training set is
80%, and that for the
validation set is 20%.

No str or Placeholder

clear_hard_
property

Whether to clear hard
examples. The default value is
True.

No bool or Placeholder

remove_sa
mple_usage

Whether to clear existing
usage information of a
dataset. The default value is
True.

No bool or Placeholder

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

Parameter Description Mandato
ry

Data Type

label_task_t
ype

Type of a labeling job. If the
input is a dataset, this field is
mandatory and is used to
specify the labeling scenario
of the dataset version. If the
input is a labeling job, this
field does not need to be
configured.

No LabelTaskTypeEnum
The following types
are supported:
● IMAGE_CLASSIFIC

ATION
● OBJECT_DETECTI

ON = 1
● IMAGE_SEGMEN

TATION
● TEXT_CLASSIFICA

TION
● NAMED_ENTITY_

RECOGNITION
● TEXT_TRIPLE
● AUDIO_CLASSIFI

CATION
● SPEECH_CONTEN

T
SPEECH_SEGMEN
TATION

● TABLE
● VIDEO_ANNOTAT

ION

description Description of a version No str

NO TE

If there is no special requirement, use the default values.

4.4.4.3 Examples
There are three scenarios:

● Releasing a dataset version
● Releasing a labeling job version
● Releasing a version based on the output of the labeling phase

Releasing a Dataset Version
Scenario: When data in a dataset is updated, this phase can be used to release a
dataset version for subsequent phases to use.

from modelarts import workflow as wf
Use ReleaseDatasetStep to release a version of the input dataset and output the dataset with version

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

information.

Define the dataset.
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

Define the split ratio between the training set and validation set
train_ration = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR,
default="0.8")

release_version = wf.steps.ReleaseDatasetStep(
 name="release_dataset", # Name of the dataset release phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Dataset version release", # Title, which defaults to the value of name
 inputs=wf.steps.ReleaseDatasetInput(name="input_name", data=dataset), # ReleaseDatasetStep inputs.
The dataset object is configured when the workflow is running. You can also use
wf.data.Dataset(dataset_name="dataset_name") for the data field.
 outputs=wf.steps.ReleaseDatasetOutput(
 name="output_name",
 dataset_version_config=wf.data.DatasetVersionConfig(
 label_task_type=wf.data.LabelTaskTypeEnum.IMAGE_CLASSIFICATION, # Labeling job type for
dataset version release
 train_evaluate_sample_ratio=train_ration # Split ratio between the training set and validation set
)
) # ReleaseDatasetStep outputs
)

workflow = wf.Workflow(
 name="dataset-release-demo",
 desc="this is a demo workflow",
 steps=[release_version]
)

Releasing a Labeling Job Version
When data or labeling information of a labeling job is updated, this phase can be
used to release a dataset version for subsequent phases to use.

from modelarts import workflow as wf
Use ReleaseDatasetStep to release a version of the input labeling job and output the dataset with version
information.

Define the labeling job.
label_task = wf.data.LabelTaskPlaceholder(name="label_task_placeholder_name")

Define the split ratio between the training set and validation set
train_ration = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR,
default="0.8")

release_version = wf.steps.ReleaseDatasetStep(
 name="release_dataset", # Name of the dataset release phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Dataset version release", # Title, which defaults to the value of name
 inputs=wf.steps.ReleaseDatasetInput(name="input_name", data=label_task), # ReleaseDatasetStep inputs
The labeling job object is configured when the workflow is running. You can also use
wf.data.LabelTask(dataset_name="dataset_name", task_name="label_task_name") for the data field.
 outputs=wf.steps.ReleaseDatasetOutput(name="output_name",
dataset_version_config=wf.data.DatasetVersionConfig(train_evaluate_sample_ratio=train_ration)), # Split
ratio between the training set and validation set
)

workflow = wf.Workflow(
 name="dataset-release-demo",
 desc="this is a demo workflow",
 steps=[release_version]
)

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

Creating a Dataset Release Phase Based on the Labeling Phase
Scenario: The outputs of the labeling phase are used as the inputs of the dataset
release phase.

from modelarts import workflow as wf
Use ReleaseDatasetStep to release a version of the input labeling job and output the dataset with version
information.

Define the split ratio between the training set and validation set
train_ration = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR,
default="0.8")

release_version = wf.steps.ReleaseDatasetStep(
 name="release_dataset", # Name of the dataset release phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Dataset version release", # Title, which defaults to the value of name
 inputs=wf.steps.ReleaseDatasetInput(name="input_name",
data=labeling_step.outputs["output_name"].as_input()), # ReleaseDatasetStep inputs
The labeling job object is configured when the workflow is running. You can also use
wf.data.LabelTask(dataset_name="dataset_name", task_name="label_task_name") for the data field.
 outputs=wf.steps.ReleaseDatasetOutput(name="output_name",
dataset_version_config=wf.data.DatasetVersionConfig(train_evaluate_sample_ratio=train_ration)), # Split
ratio between the training set and validation set
 depend_steps = [labeling_step] # Preceding labeling phase
)
labeling_step is an instance object of wf.steps.LabelingStep and output_name is the value of the name
field of wf.steps.LabelingOutput.

workflow = wf.Workflow(
 name="dataset-release-demo",
 desc="this is a demo workflow",
 steps=[release_version]
)

4.4.5 Job Phase

4.4.5.1 Function
This phase defines the algorithm, input, and output of a job to implement
ModelArts job management for data processing, model training, and model
evaluation. The application scenarios are as follows:

● Data preprocessing such as image enhancement and noise reduction
● Model training for object detection and image classification

4.4.5.2 Parameter Overview
You can use JobStep to create a job phase. The following is an example of defining
a JobStep.

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

Table 4-38 JobStep

Parameter Description Mandatory Data Type

name Name of a job
phase. The name
contains a
maximum of 64
characters,
including only
letters, digits,
underscores (_),
and hyphens (-). It
must start with a
letter and must be
unique in a
workflow.

Yes str

algorithm Algorithm object Yes BaseAlgorithm,
Algorithm,
AIGalleryAlgorith
m

spec Job specifications Yes JobSpec

inputs Inputs of a job
phase

Yes JobInput or
JobInput list

outputs Outputs of a job
phase

Yes JobOutput or
JobOutput list

title Title for frontend
display

No str

description Description of a
job phase

No str

policy Phase execution
policy

No StepPolicy

depend_steps Dependency
phases

No Step or step list

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

Table 4-39 JobInput

Parameter Description Mandatory Data Type

name Input name of the
job phase. The
name can contain
a maximum of 64
characters,
including only
letters, digits,
underscores (_),
and hyphens (-),
and must start
with a letter. The
input name of a
step must be
unique.

Yes str

data Input data object
of a job phase

Yes Dataset or OBS
object. Currently,
only Dataset,
DatasetPlacehold-
er,
DatasetConsumpti
on, OBSPath,
OBSConsumption,
OBSPlaceholder,
and
DataConsumption
Selector are
supported.

Table 4-40 JobOutput

Parameter Description Mandatory Data Type

name Output name of
the job phase. The
name can contain
a maximum of 64
characters,
including only
letters, digits,
underscores (_),
and hyphens (-),
and must start
with a letter. The
output name of a
step must be
unique.

Yes str

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

Parameter Description Mandatory Data Type

obs_config OBS output
configuration

No OBSOutputConfig

model_config Model output
configuration

No ModelConfig

metrics_config Metrics
configuration

No MetricsConfig

Table 4-41 OBSOutputConfig

Parameter Description Mandatory Data Type

obs_path Existing OBS
directory

Yes str, Placeholder,
Storage

metric_file Name of the file
that stores metric
information

No str, Placeholder

Table 4-42 BaseAlgorithm

Parameter Description Mandatory Data Type

id Algorithm ID No str

subscription_id Subscription ID of
the subscribed
algorithm

No str

item_version_id Version ID of the
subscribed
algorithm

No str

code_dir Code directory No str, Placeholder,
Storage

boot_file Boot file No str, Placeholder,
Storage

command Boot command No str, Placeholder

parameters Algorithm
hyperparameters

No AlgorithmParame
ters list

engine Information about
the image used by
the job

No JobEngine

environments Environment
variables

No dict

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

Table 4-43 Algorithm

Parameter Description Mandatory Data Type

algorithm_id Algorithm ID Yes str

parameters Algorithm
hyperparameters

No AlgorithmParame-
ters list

Table 4-44 AIGalleryAlgorithm

Parameter Description Mandatory Data Type

subscription_id Subscription ID of
the subscribed
algorithm

Yes str

item_version_id Version ID of the
subscribed
algorithm

Yes str

parameters Algorithm
hyperparameters

No AlgorithmParame
ters list

Table 4-45 AlgorithmParameters

Parameter Description Mandatory Data Type

name Name of an
algorithm
hyperparameter

Yes str

value Value of an
algorithm
hyperparameter

Yes int, bool, float, str,
Placeholder,
Storage

Table 4-46 JobEngine

Parameter Description Mandatory Data Type

engine_id Image ID No str, Placeholder

engine_name Image name No str, Placeholder

engine_version Image version No str, Placeholder

image_url Image URL No str, Placeholder

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

Table 4-47 JobSpec

Parameter Description Mandatory Data Type

resource Resource Yes JobResource

log_export_path Log output path No LogExportPath

schedule_policy Job scheduling
policy

No SchedulePolicy

volumes Information about
the file system
mounted to the
job

No list[Volume]

Table 4-48 JobResource

Parameter Description Mandatory Data Type

flavor Resource
specifications

Yes Placeholder

node_count Number of nodes.
The default value
is 1. If there are
multiple nodes,
distributed training
is supported.

No int, Placeholder

Table 4-49 SchedulePolicy

Parameter Description Mandatory Data Type

priority Job scheduling
priority. The value
can only be 1, 2, or
3, indicating low,
medium, and high
priorities,
respectively.

Yes int, Placeholder

Table 4-50 Volume

Parameter Description Mandatory Data Type

nfs NFS file system
object

No NFS

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

Table 4-51 NFS

Parameter Description Mandatory Data Type

nfs_server_path Service address of
the NFS file
system.

Yes str, Placeholder

local_path Path mounted to
the container.

Yes str, Placeholder

read_only Indicates if the
mount mode is set
to read-only.

No bool, Placeholder

4.4.5.3 Obtaining Resources
Before creating a job phase, perform the following operations to obtain supported
training flavors and engines:

● Import packages.
from modelarts.session import Session
from modelarts.estimatorV2 import TrainingJob
from modelarts.workflow.client.job_client import JobClient

● Initialize a session.
If you develop a workflow in a local IDEA, initialize a session as follows:
Hardcoded or plaintext AK/SK is risky. For security, encrypt your AK/SK and store them in the
configuration file or environment variables.
In this example, the AK/SK are stored in environment variables for identity authentication. Before
running this example, set environment variables HUAWEICLOUD_SDK_AK and
HUAWEICLOUD_SDK_SK.
__AK = os.environ["HUAWEICLOUD_SDK_AK"]
__SK = os.environ["HUAWEICLOUD_SDK_SK"]
Decrypt the information if it is encrypted.
session = Session(
 access_key=__AK, # AK information of your account
 secret_key=__SK, # SK information of your account
 region_name="***", # Region to which your account belongs
 project_id="***" # Project ID of your account
)

If you develop a workflow in a notebook environment, initialize a session as follows:
session = Session()

● Obtain public resource pools.
Obtain the specification list of public resource pools.
spec_list = TrainingJob(session).get_train_instance_types(session) # A list is returned. You can
download it.
print(spec_list)

● Obtain dedicated resource pools.
Obtain the list of running dedicated resource pools.
pool_list = JobClient(session).get_pool_list() # A list of dedicated resource pools is returned.
pool_id_list = JobClient(session).get_pool_id_list() # An ID list of dedicated resource pools is returned.
The following lists the flavor IDs of dedicated resource pools. Select one as required.
 modelarts.pool.visual.xlarge (1 card)
 modelarts.pool.visual.2xlarge (2 cards)
 modelarts.pool.visual.4xlarge (4 cards)
 modelarts.pool.visual.8xlarge (8 cards)

● Obtain engine types.
Obtain engine types.
engine_dict = TrainingJob(session).get_engine_list(session) # A dictionary is returned. You can

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

download it.
print(engine_dict)

4.4.5.4 Examples
There are seven scenarios:

● Using an algorithm subscribed to in AI Gallery
● Using an algorithm in Algorithm Management
● Using a custom algorithm (code directory+boot file+official image)
● Using a custom algorithm (code directory+boot command+official image)
● Creating a job phase based on the dataset release phase
● Job phase with visualization
● Using the DataSelector object as the input, which supports OBS or datasets

Using an Algorithm Subscribed to in AI Gallery
from modelarts import workflow as wf

Create an OutputStorage object to centrally manage training output directories.
storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") #
Only name is mandatory.

Define the input dataset.
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

Use JobStep to define a training phase. Use a dataset as the input, and use OBS to store the output.
job_step = wf.steps.JobStep(
 name="training_job", # Name of a training phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Image classification training", # Title, which defaults to the value of name.
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # algorithm subscription ID. You can also enter the version number.
 item_version_id="item_version_id", # Algorithm version ID. You can also enter the version number
instead.
 parameters=[
 wf.AlgorithmParameters(
 name="parameter_name",
 value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR,
default="fake_value",description="description_info")
) # Algorithm hyperparameters are represented using placeholders, which can be integer, bool,
float, or string.
]
), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this example. If the
value of an algorithm hyperparameter does not need to be changed, you do not need to configure the
hyperparameter in parameters. Hyperparameter values will be automatically filled.

 inputs=wf.steps.JobInput(name="data_url", data=dataset), # JobStep inputs are configured when the
workflow is running. You can also use wf.data.Dataset(dataset_name="fake_dataset_name",
version_name="fake_version_name") for the data field.
 outputs=wf.steps.JobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep outputs
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
)# Training flavors
)

workflow = wf.Workflow(

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

 name="job-step-demo",
 desc="this is a demo workflow",
 steps=[job_step],
 storages=[storage]
)

Using an algorithm in Algorithm Management
from modelarts import workflow as wf

Create an OutputStorage object to centrally manage training output directories.
storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") #
Only name is mandatory.

Define the input dataset.
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

Use JobStep to define a training phase. Use a dataset as the input, and use OBS to store the output.
job_step = wf.steps.JobStep(
 name="training_job", # Name of a training phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Image classification training", # Title, which defaults to the value of name.
 algorithm=wf.Algorithm(
 algorithm_id="algorithm_id", # Algorithm ID
 parameters=[
 wf.AlgorithmParameters(
 name="parameter_name",
 value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR,
default="fake_value",description="description_info")
) # Algorithm hyperparameters are represented using placeholders, which can be integer, bool,
float, or string.
]
), # Algorithm used for training. An algorithm from Algorithm Management is used in this example. If
the value of an algorithm hyperparameter does not need to be changed, you do not need to configure the
hyperparameter in parameters. Hyperparameter values will be automatically filled.

 inputs=wf.steps.JobInput(name="data_url", data=dataset), # JobStep inputs are configured when the
workflow is running. You can also use wf.data.Dataset(dataset_name="fake_dataset_name",
version_name="fake_version_name") for the data field.
 outputs=wf.steps.JobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep outputs
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
)# Training flavors
)

workflow = wf.Workflow(
 name="job-step-demo",
 desc="this is a demo workflow",
 steps=[job_step],
 storages=[storage]
)

Using a Custom Algorithm (Code Directory+Boot File+Official Image)
from modelarts import workflow as wf

Create an OutputStorage object to centrally manage training output directories.
storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") #
Only name is mandatory.

Define the input dataset.
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

Use JobStep to define a training phase. Use a dataset as the input, and use OBS to store the output.
job_step = wf.steps.JobStep(
 name="training_job", # Name of a training phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Image classification training", # Title, which defaults to the value of name.
 algorithm=wf.BaseAlgorithm(
 code_dir="fake_code_dir", # Code directory
 boot_file="fake_boot_file", # Boot file path, which must be in the code directory
 engine=wf.steps.JobEngine(engine_name="fake_engine_name",
engine_version="fake_engine_version"), # Name and version of the official image

 parameters=[
 wf.AlgorithmParameters(
 name="parameter_name",
 value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR,
default="fake_value",description="description_info")
) # Algorithm hyperparameters are represented using placeholders, which can be integer, bool,
float, or string.
]
), # The custom algorithm is implemented using the code directory, boot file, and official image.

 inputs=wf.steps.JobInput(name="data_url", data=dataset), # JobStep inputs are configured when the
workflow is running. You can also use wf.data.Dataset(dataset_name="fake_dataset_name",
version_name="fake_version_name") for the data field.
 outputs=wf.steps.JobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep outputs
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
)# Training flavors
)

workflow = wf.Workflow(
 name="job-step-demo",
 desc="this is a demo workflow",
 steps=[job_step],
 storages=[storage]
)

Using a Custom Algorithm (Code Directory+Boot Command+Official Image)
from modelarts import workflow as wf

Create an OutputStorage object to centrally manage training output directories.
storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") #
Only name is mandatory.

Define the input dataset.
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

Use JobStep to define a training phase. Use a dataset as the input, and use OBS to store the output.
job_step = wf.steps.JobStep(
 name="training_job", # Name of a training phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Image classification training", # Title, which defaults to the value of name.
 algorithm=wf.BaseAlgorithm(
 code_dir="fake_code_dir", # Code directory
 command="fake_command", # Boot command
 engine=wf.steps.JobEngine(image_url="fake_image_url"), # Custom image URL, in the format of
Organization name/Image name:Version name. Do not contain the domain name; If image_url is required
to be configurable in the running state, use the following: image_url=wf.Placeholder(name="image_url",
placeholder_type=wf.PlaceholderType.STR, placeholder_format="swr", description="Custom image")
 parameters=[

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

 wf.AlgorithmParameters(
 name="parameter_name",
 value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR,
default="fake_value",description="description_info")
) # Algorithm hyperparameters are represented using placeholders, which can be integer, bool,
float, or string.
]
), The custom algorithm is implemented using the code directory, boot command, and official image.

 inputs=wf.steps.JobInput(name="data_url", data=dataset), # JobStep inputs are configured when the
workflow is running. You can also use wf.data.Dataset(dataset_name="fake_dataset_name",
version_name="fake_version_name") for the data field.
 outputs=wf.steps.JobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep outputs
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
)# Training flavors
)

workflow = wf.Workflow(
 name="job-step-demo",
 desc="this is a demo workflow",
 steps=[job_step],
 storages=[storage]
)

NO TE

The preceding four methods use a dataset as the input. If you want to use an OBS path as
the input, set data of JobInput to
data=wf.data.OBSPlaceholder(name="obs_placeholder_name",
object_type="directory") or data=wf.data.OBSPath(obs_path="fake_obs_path").
In addition, you can specify a dataset or OBS path when creating a workflow to reduce
configuration operations and facilitate debugging in the development state. You are advised
to use placeholders to create a workflow you want to publish to the running state or AI
Gallery. In this case, you can configure parameters before workflow execution.

Creating a Job Phase Based on the Dataset Release Phase
Scenario: The output of the dataset release phase is used as the input of the job
phase.
from modelarts import workflow as wf

Define the dataset object.
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

Define the split ratio between the training set and validation set
train_ration = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR,
default="0.8")

release_version_step = wf.steps.ReleaseDatasetStep(
 name="release_dataset", # Name of the dataset release phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Dataset version release", # Title, which defaults to the value of name
 inputs=wf.steps.ReleaseDatasetInput(name="input_name", data=dataset), # ReleaseDatasetStep inputs.
The dataset object is configured when the workflow is running. You can also use
wf.data.Dataset(dataset_name="dataset_name") for the data field.
 outputs=wf.steps.ReleaseDatasetOutput(
 name="output_name",
 dataset_version_config=wf.data.DatasetVersionConfig(
 label_task_type=wf.data.LabelTaskTypeEnum.IMAGE_CLASSIFICATION, # Labeling job type for

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

dataset version release
 train_evaluate_sample_ratio=train_ration # Split ratio between the training set and validation set
)
) # ReleaseDatasetStep outputs
)

Create an OutputStorage object to centrally manage training output directories.
storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") #
Only name is mandatory.

Use JobStep to define a training phase. Use a dataset as the input, and use OBS to store the output.
job_step = wf.steps.JobStep(
 name="training_job", # Name of a training phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Image classification training", # Title, which defaults to the value of name.
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # Subscription ID of the subscribed algorithm
 item_version_id="item_version_id", # Version ID of the subscribed algorithm
 parameters=[
 wf.AlgorithmParameters(
 name="parameter_name",
 value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR,
default="fake_value",description="description_info")
) # Algorithm hyperparameters are represented using placeholders, which can be integer, bool,
float, or string.
]
), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this example. If the
value of an algorithm hyperparameter does not need to be changed, you do not need to configure the
hyperparameter in parameters. Hyperparameter values will be automatically filled.

 inputs=wf.steps.JobInput(name="data_url",
data=release_version_step.outputs["output_name"].as_input()), # The output of the dataset release phase is
used as the input of JobStep.
 outputs=wf.steps.JobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep outputs
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
), # Training flavors
 depend_steps=release_version_step # Preceding dataset release phase
)
release_version_step is an instance object of wf.steps.ReleaseDatasetStep and output_name is the
value of the name field of wf.steps.ReleaseDatasetOutput.

workflow = wf.Workflow(
 name="job-step-demo",
 desc="this is a demo workflow",
 steps=[release_version_step, job_step],
 storages=[storage]
)

Job Phase With Visualization
Phase visualization enables you to view the metrics generated by your workflows
in real time. You can also display the external disks of each phase separately. To
use phase visualization, you need to add and configure an output for showing
metrics through the MetricsConfig object, based on the original job phase.

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

Table 4-52 MetricsConfig

Parameter Description Mandatory Data Type

metric_files Metric files Yes List. Elements in
the list support
string,
placeholder, or
storage.

realtime_visualiza
tion

Whether to
display the output
metrics in real
time

No Bool. The default
value is False.

visualization Whether to
display
visualization
phases separately

No Bool. The default
value is True.

The output metrics file must contain standard JSON data with a maximum size of
1 MB. The data formats must match the supported ones.

● Key-value pair data
[
 {
 "key": "loss",
 "title": "loss",
 "type": "float",
 "data": {
 "value": 1.2
 }
 },
 {
 "key": "accuracy",
 "title": "accuracy",
 "type": "float",
 "data": {
 "value": 1.6
 }
 }
]

● Line chart data
[
 {
 "key": "metric",
 "title": "metric",
 "type": "line chart",
 "data": {
 "x_axis": [
 {
 "title": "step/epoch",
 "value": [
 1,
 2,
 3
]
 }
],
 "y_axis": [

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

 {
 "title": "value",
 "value": [
 0.5,
 0.4,
 0.3
]
 }
]
 }
 }
]

● Histogram data
[
 {
 "key": "metric",
 "title": "metric",
 "type": "histogram",
 "data": {
 "x_axis": [
 {
 "title": "step/epoch",
 "value": [
 1,
 2,
 3
]
 }
],
 "y_axis": [
 {
 "title": "value",
 "value": [
 0.5,
 0.4,
 0.3
]
 }
]
 }
 }
]

● Confusion matrix
[
 {
 "key": "confusion_matrix",
 "title": "confusion_matrix",
 "type": "table",
 "data": {
 "cell_value": [
 [
 1,
 2
],
 [
 2,
 3
]
],
 "col_labels": {
 "title": "labels",
 "value": [
 "daisy",
 "dandelion"
]
 },
 "row_labels": {

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

 "title": "predictions",
 "value": [
 "daisy",
 "dandelion"
]
 }
 }
 }
]

● One-dimensional table
[
 {
 "key": "Application Evaluation Results",
 "title": "Application Evaluation Results",
 "type": "one-dimensional-table",
 "data": {
 "cell_value": [
 [
 10,
 2,
 0.5
]
],
 "labels": [
 "samples",
 "maxResTine",
 "p99"
]
 }
 }
]

Example:
from modelarts import workflow as wf

Create a Storage object to centrally manage training output directories.
storage = wf.data.Storage(name="storage_name", title="title_info", description="description_info",
with_execution_id=True, create_dir=True) # Only name is mandatory.

Define the input dataset.
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

Use JobStep to define a training phase. Use a dataset as the input, and use OBS to store the output.
job_step = wf.steps.JobStep(
 name="training_job", # Name of a training phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter
and must be unique in a workflow.
 title="Image classification training", # Title, which defaults to the value of name.
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # Subscription ID of the subscribed algorithm
 item_version_id="item_version_id", # Algorithm version ID. You can also enter the version
number instead.
 parameters=[
 wf.AlgorithmParameters(
 name="parameter_name",
 value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR,
default="fake_value",description="description_info")
) # Algorithm hyperparameters are represented using placeholders, which can be integer,
bool, float, or string.
]

), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this example. If
the value of an algorithm hyperparameter does not need to be changed, you do not need to
configure the hyperparameter in parameters. Hyperparameter values will be automatically filled.

 inputs=wf.steps.JobInput(name="data_url", data=dataset), # JobStep inputs are configured when
the workflow is running. You can also use wf.data.Dataset(dataset_name="fake_dataset_name",

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

version_name="fake_version_name") for the data field.
 outputs=[
 wf.steps.JobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))),# JobStep outputs
 wf.steps.JobOutput(name="metrics_output",
metrics_config=wf.data.MetricsConfig(metric_files=storage.join("directory_path/metrics.json",
create_dir=False))) # Metrics are output to the configured path by the job script.
],
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
)# Training flavors
)

workflow = wf.Workflow(
 name="job-step-demo",
 desc="this is a demo workflow",
 steps=[job_step],
 storages=[storage]
)

NO TE

Workflow does not automatically retrieve the metrics produced by training. You need to
extract the metrics from the algorithm code, create the metrics.json file in the required
data format, and upload the file to the OBS path specified in MetricsConfig. Workflow only
reads, renders, and displays the data.

Using the DataSelector Object as the Input, Which Supports OBS or Datasets
You can use this method when you can choose the input type. The DataSelector
object allows you to select either a dataset object or an OBS object as the training
input. Here is a code example:
from modelarts import workflow as wf

Create an OutputStorage object to centrally manage training output directories.
storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") #
Only name is mandatory.

Define the DataSelector object.
data_selector = wf.data.DataSelector(name="input_data", data_type_list=["dataset", "obs"])

Use JobStep to define a training phase. Use a dataset as the input, and use OBS to store the output.
job_step = wf.steps.JobStep(
 name="training_job", # Name of a training phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Image classification training", # Title, which defaults to the value of name.
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # algorithm subscription ID. You can also enter the version number.
 item_version_id="item_version_id", # Algorithm version ID. You can also enter the version number
instead.
 parameters=[
 wf.AlgorithmParameters(
 name="parameter_name",
 value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR,
default="fake_value",description="description_info")
) # Algorithm hyperparameters are represented using placeholders, which can be integer, bool,
float, or string.
]
), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this example. If the
value of an algorithm hyperparameter does not need to be changed, you do not need to configure the
hyperparameter in parameters. Hyperparameter values will be automatically filled.

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

 inputs=wf.steps.JobInput(name="data_url", data=data_selector), # JobStep inputs are configured when
the workflow is running. You can choose OBS or datasets as the input.
 outputs=wf.steps.JobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep outputs
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
)# Training flavors
)

workflow = wf.Workflow(
 name="job-step-demo",
 desc="this is a demo workflow",
 steps=[job_step],
 storages=[storage]
)

NO TE

When using DataSelector as the input, ensure that the algorithm input supports both
datasets and OBS.

4.4.6 Model Registration Phase

4.4.6.1 Function

This phase integrates capabilities of ModelArts AI application management. This
enables trained models to be registered in AI Application Management for service
deployment and update. The application scenarios are as follows:

● Registering models trained from ModelArts training jobs
● Registering models from custom images

4.4.6.2 Parameter Overview

You can use ModelStep to create a model registration phase. The following is an
example of defining a ModelStep.

Table 4-53 ModelStep

Parameter Description Mandat
ory

Data Type

name Name of a model registration
phase. The name contains a
maximum of 64 characters,
including only letters, digits,
underscores (_), and hyphens (-).
It must start with a letter and
must be unique in a workflow.

Yes str

inputs Inputs of the model registration
phase

No ModelInput or
ModelInput list

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

Parameter Description Mandat
ory

Data Type

outputs Outputs of the model registration
phase

Yes ModelOutput or
ModelOutput list

title Title for frontend display No str

description Description of the model
registration phase

No str

policy Phase execution policy No StepPolicy

depend_ste
ps

Dependency phases No Step or step list

Table 4-54 ModelInput

Parame
ter

Description Mandat
ory

Data Type

name Input name of the model registration
phase. The name can contain a
maximum of 64 characters, including
only letters, digits, underscores (_),
and hyphens (-), and must start with
a letter. The input name of a step
must be unique.

Yes str

data Input data object of the model
registration phase

Yes OBS, SWR, or
subscribed model
object. Currently,
only OBSPath,
SWRImage,
OBSConsumption,
OBSPlaceholder,
SWRImagePlaceh
older,
DataConsumption
Selector, and
GalleryModel are
supported.

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

Table 4-55 ModelOutput

Parame
ter

Description Manda
tory

Data Type

name Output name of the model
registration phase. The name can
contain a maximum of 64 characters,
including only letters, digits,
underscores (_), and hyphens (-), and
must start with a letter. The output
name of a step must be unique.

Yes str

model_c
onfig

Configurations for model registration Yes ModelConfig

Table 4-56 ModelConfig

Paramete
r

Description Man
dato
ry

Data Type

model_typ
e

Model type. Supported types:
TensorFlow, MXNet, Caffe,
Spark_MLlib, Scikit_Learn, XGBoost,
Image, PyTorch, Template, and
Custom. The default value is
TensorFlow.

Yes str

model_na
me

Model name. Enter 1 to 64 characters.
Only letters, digits, hyphens (-), and
underscores (_) are allowed.

No str, Placeholder

model_ver
sion

Model version in the format of
Digit.Digit.Digit. The value range of
the digits is [1, 99]. If this parameter is
left blank, the version number
automatically increases.
CAUTION

No part of the version number can start
with 0. For example, 01.01.01 is not
allowed.

No str, Placeholder

runtime Model runtime environment. The
options of runtime are the same as
those of model_type.

No str, Placeholder

descriptio
n

Model description that consists of 1 to
100 characters. The following special
characters cannot be contained:
&!'"<>=

No str

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

Paramete
r

Description Man
dato
ry

Data Type

execution_
code

OBS path for storing the execution
code. By default, this parameter is left
blank. The name of the execution code
file is fixed to customize_service.py.
The inference code file must be stored
in the model directory. This parameter
is left blank. The system can
automatically identify the inference
code in the model directory.

No str

dependen
cies

Package required for the inference
code and model. By default, this
parameter is left blank. It is read from
the configuration file.

No str

model_me
trics

Model precision, which is read from
the configuration file

No str

apis All apis input and output parameters
of a model (optional), which are
parsed from the configuration file

No str

initial_conf
ig

Model configuration information No dict

template Template configuration items. This
parameter is mandatory when
model_type is set to Template.

No Template

dynamic_l
oad_mode

Dynamic loading mode. Currently, only
Single is supported.

No str, Placeholder

prebuild Whether the model is prebuilt. The
default value is False.

No bool, Placeholder

install_typ
e

Model installation type. The value can
be real_time, edge, batch. If this
parameter is left blank, all types are
supported by default.

No list[str]

Table 4-57 Template

Paramete
r

Description Mand
atory

Data Type

template_i
d

ID of the used template. The
template has a built-in input and
output mode.

Yes str, Placeholder

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

Paramete
r

Description Mand
atory

Data Type

infer_form
at

Input and output mode ID. When
this parameter is used, the input and
output mode built in the template
does not take effect.

No str, Placeholder

template_i
nputs

Template input configuration,
specifying the source path for
configuring a model

Yes list of
TemplateInputs
object

Table 4-58 TemplateInputs

Paramete
r

Description Manda
tory

Data Type

input_id Input item ID, which is obtained
from the template details

Yes str, Placeholder

input Template input path, which can be
an OBS file path or OBS directory
path. When you use a template with
multiple input items to create a
model, if the target paths
input_properties specified in the
template are the same, the OBS
directory or OBS file name entered
here must be unique to prevent files
from being overwritten.

Yes str, Placeholder,
Storage

4.4.6.3 Examples
There are six scenarios:

● Registering models output by JobStep
● Registering a model using OBS data
● Registering a model using a template
● Registering a model using a custom image
● Registering a model using a custom image and OBS
● Registering a model using a subscribed model and OBS

Registering a Model From a Training Job (Model Source: JobStep Output)
import modelarts.workflow as wf

Create an OutputStorage object to centrally manage training output directories.
storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") #
Only name is mandatory.

Define the input dataset object.

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

dataset = wf.data.DatasetPlaceholder(name="input_dataset")

Use JobStep to define a training phase. Use a dataset as the input, and use OBS to store the output.
job_step = wf.steps.JobStep(
 name="training_job", # Name of a training phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Image classification training", # Title, which defaults to the value of name.
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # algorithm subscription ID. You can also enter the version number.
 item_version_id="item_version_id", # Algorithm version ID. You can also enter the version number
instead.
 parameters=[
 wf.AlgorithmParameters(
 name="parameter_name",
 value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR,
default="fake_value",description="description_info")
) # Algorithm hyperparameters are represented using placeholders, which can be integer, bool,
float, or string.
]
), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this example. If the
value of an algorithm hyperparameter does not need to be changed, you do not need to configure the
hyperparameter in parameters. Hyperparameter values will be automatically filled.

 inputs=wf.steps.JobInput(name="data_url", data=dataset), # JobStep inputs are configured when the
workflow is running. You can also use wf.data.Dataset(dataset_name="fake_dataset_name",
version_name="fake_version_name") for the data field.
 outputs=wf.steps.JobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep outputs
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
)# Training flavors
)

Define a model registration phase using ModelStep. The output of JobStep is used as the input of
ModelStep.

Define model name parameters.
model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

model_registration = wf.steps.ModelStep(
 name="model_registration", # Name of the model registration phase. The name contains a maximum of
64 characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Model registration", # Title
 inputs=wf.steps.ModelInput(name='model_input', data=job_step.outputs["train_url"].as_input()), # The
output of JobStep is used as the input of ModelStep.

outputs=wf.steps.ModelOutput(name='model_output',model_config=wf.steps.ModelConfig(model_name=mo
del_name, model_type="TensorFlow")), # ModelStep outputs
 depend_steps=job_step # Dependent job phase
)
job_step is an instance object of wf.steps.JobStep and train_url is the value of the name field of
wf.steps.JobOutput.

workflow = wf.Workflow(
 name="model-step-demo",
 desc="this is a demo workflow",
 steps=[job_step, model_registration],
 storages=[storage]
)

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

Registering a Model From a Training Job (Model Source: A Trained Model
Stored in OBS)

import modelarts.workflow as wf
Define a model registration phase using ModelStep. The input is from OBS.

Define the OBS data.
obs = wf.data.OBSPlaceholder(name = "obs_placeholder_name", object_type = "directory") # object_type
must be file or directory.

Define model name parameters.
model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

model_registration = wf.steps.ModelStep(
 name="model_registration", # Name of the model registration phase. The name contains a maximum of
64 characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Model registration", # Title
 inputs=wf.steps.ModelInput(name='model_input', data=obs), # ModelStep inputs are configured when
the workflow is running. You can also use wf.data.OBSPath(obs_path="fake_obs_path") for the data field.

outputs=wf.steps.ModelOutput(name='model_output',model_config=wf.steps.ModelConfig(model_name=mo
del_name, model_type="TensorFlow"))# ModelStep outputs
)

workflow = wf.Workflow(
 name="model-step-demo",
 desc="this is a demo workflow",
 steps=[model_registration]
)

Registering a Model Using a Template
import modelarts.workflow as wf
Define a model registration phase using ModelStep. Register a model using a preset template.

Define a preset template object. Fields in the template object can be represented by placeholders.
template = wf.steps.Template(
 template_id="fake_template_id",
 infer_format="fake_infer_format",
 template_inputs=[
 wf.steps.TemplateInputs(
 input_id="fake_input_id",
 input="fake_input_file"
)
]
)

Define model name parameters.
model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

model_registration = wf.steps.ModelStep(
 name="model_registration", # Name of the model registration phase. The name contains a maximum of
64 characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Model registration", # Title
 outputs=wf.steps.ModelOutput(
 name='model_output',
 model_config=wf.steps.ModelConfig(
 model_name=model_name,
 model_type="Template",
 template=template
)
) # ModelStep outputs
)

workflow = wf.Workflow(
 name="model-step-demo",
 desc="this is a demo workflow",

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

 steps=[model_registration]
)

Registering a Model From a Custom Image
import modelarts.workflow as wf
Define a model registration phase using ModelStep. The input is from the URL of a custom image.

Define the image data.
swr = wf.data.SWRImagePlaceholder(name="placeholder_name")

Define model name parameters.
model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

model_registration = wf.steps.ModelStep(
 name="model_registration", # Name of the model registration phase. The name contains a maximum of
64 characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Model registration", # Title
 inputs=wf.steps.ModelInput(name="input",data=swr), # ModelStep inputs are configured when the
workflow is running. You can also use wf.data.SWRImage(swr_path="fake_path") for the data field.

outputs=wf.steps.ModelOutput(name='model_output',model_config=wf.steps.ModelConfig(model_name=mo
del_name, model_type="TensorFlow"))# ModelStep outputs
)

workflow = wf.Workflow(
 name="model-step-demo",
 desc="this is a demo workflow",
 steps=[model_registration]
)

Registering a Model Using a Custom Image and OBS
import modelarts.workflow as wf
Define a model registration phase using ModelStep. The input is from the URL of a custom image.

Define the image data.
swr = wf.data.SWRImagePlaceholder(name="placeholder_name")

Define OBS model data.
model_obs = wf.data.OBSPlaceholder(name = "obs_placeholder_name", object_type = "directory") #
object_type must be file or directory.

Define model name parameters.
model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

model_registration = wf.steps.ModelStep(
 name="model_registration", # Name of the model registration phase. The name contains a maximum of
64 characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Model registration", # Title
 inputs=[
 wf.steps.ModelInput(name="input",data=swr), # ModelStep inputs are configured when the workflow
is running. You can also use wf.data.SWRImage(swr_path="fake_path") for the data field.
 wf.steps.ModelInput(name="input",data=model_obs) # ModelStep inputs are configured when the
workflow is running. You can also use wf.data.OBSPath(obs_path="fake_obs_path") for the data field.
],
 outputs=wf.steps.ModelOutput(
 name='model_output',
 model_config=wf.steps.ModelConfig(
 model_name=model_name,
 model_type="Custom",
 dynamic_load_mode="Single"
)
) # ModelStep outputs
)

workflow = wf.Workflow(

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

 name="model-step-demo",
 desc="this is a demo orkflow",
 steps=[model_registration]
)

Registering a Model Using a Subscribed Model and OBS

This mode is similar to the custom image + OBS mode, except that you obtain a
custom image from a subscribed model.

Example:

import modelarts.workflow as wf

Define the subscribed model object.
base_model = wf.data.GalleryModel(subscription_id="fake_subscription_id", version_num="fake_version") #
Model subscribed to from AI Gallery, generally published by a developer

Define OBS model data.
model_obs = wf.data.OBSPlaceholder(name = "obs_placeholder_name", object_type = "directory") #
object_type must be file or directory.

Define model name parameters.
model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

model_registration = wf.steps.ModelStep(
 name="model_registration", # Name of the model registration phase. The name contains a maximum of
64 characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Model registration", # Title
 inputs=[
 wf.steps.ModelInput(name="input",data=base_model) # Use a subscribed model as the ModelStep
input.
 wf.steps.ModelInput(name="input",data=model_obs) # ModelStep inputs are configured when the
workflow is running. You can also use wf.data.OBSPath(obs_path="fake_obs_path") for the data field.
],
 outputs=wf.steps.ModelOutput(
 name='model_output',
 model_config=wf.steps.ModelConfig(
 model_name=model_name,
 model_type="Custom",
 dynamic_load_mode="Single"
)
) # ModelStep outputs
)

workflow = wf.Workflow(
 name="model-step-demo",
 desc="this is a demo workflow",
 steps=[model_registration]
)

In the preceding example, the system automatically obtains the custom image
from the subscribed model and registers and generates a model based on the
entered OBS model path. model_obs can be replaced with the dynamic output of
JobStep.

NO TE

The value of model_type can be TensorFlow, MXNet, Caffe, Spark_MLlib, Scikit_Learn,
XGBoost, Image, PyTorch, Template, or Custom.

If model_type is not set for wf.steps.ModelConfig, TensorFlow is used by default.

● If the model type of your workflow does not need to be changed, refer to the
preceding examples.

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

● If the model type of your workflow needs to be changed in multiple
executions, write the parameter using placeholders.
model_type = wf.Placeholder(name="placeholder_name",
placeholder_type=wf.PlaceholderType.ENUM, default="TensorFlow",
enum_list=["TensorFlow", "MXNet", "Caffe", "Spark_MLlib", "Scikit_Learn",
"XGBoost", "Image", "PyTorch", "Template", "Custom"], description="Model
type")

4.4.7 Service Deployment Phase

4.4.7.1 Function

This phase integrates capabilities of ModelArts service management to enable
service deployment and update in a workflow. The application scenarios are as
follows:

● Deploying a model as a web service
● Updating an existing service (gray update supported)

4.4.7.2 Parameter Overview

You can use ServiceStep to create a service deployment phase. The following is an
example of defining a ServiceStep.

Table 4-59 ServiceStep

Paramete
r

Description Mandato
ry

Data Type

name Name of a service deployment
phase. The name contains a
maximum of 64 characters,
including only letters, digits,
underscores (_), and hyphens (-).
It must start with a letter and
must be unique in a workflow.

Yes str

inputs Inputs of the service deployment
phase

No ServiceInput or
ServiceInput list

outputs Outputs of the service deployment
phase

Yes ServiceOutput or
ServiceOutput list

title Title for frontend display No str

descriptio
n

Description of the service
deployment phase

No str

policy Phase execution policy No StepPolicy

depend_st
eps

Dependency phases No Step or step list

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

Table 4-60 ServiceInput

Paramete
r

Description Mandato
ry

Data Type

name Input name of the service
deployment phase. The name can
contain a maximum of 64
characters, including only letters,
digits, underscores (_), and
hyphens (-), and must start with a
letter. The input name of a step
must be unique.

Yes str

data Input data object of the service
deployment phase

Yes Model list or
service object.
Currently, only
ServiceInputPlace-
holder,
ServiceData, and
ServiceUpdatePla-
ceholder are
supported.

Table 4-61 ServiceOutput

Paramete
r

Description Mandato
ry

Data Type

name Output name of the service
deployment phase. The name can
contain a maximum of 64
characters, including only letters,
digits, underscores (_), and
hyphens (-), and must start with a
letter. The output name of a step
must be unique.

Yes str

service_co
nfig

Configurations for service
deployment

Yes ServiceConfig

Table 4 ServiceConfig

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

Parameter Description Mandat
ory

Data Type

infer_type Inference mode. The value can be
real-time, batch, or edge. The
default value is real-time.
● real-time: real-time service. The

model is deployed as a web
service.

● batch: batch service. A batch
service can perform inference on
batch data and automatically
stops after data processing is
completed.

● edge: edge service. A model is
deployed as a web service on an
edge node through IEF. Create an
edge node on IEF beforehand.

Yes str

service_na
me

Service name. Enter 1 to 64
characters. Only letters, digits,
hyphens (-), and underscores (_) are
allowed.
NOTE

If you do not specify this parameter, the
default service name is generated
automatically.

No str, Placeholder

description Service description, which contains a
maximum of 100 characters. By
default, this parameter is left blank.

No str

vpc_id ID of the VPC to which a real-time
service instance is deployed. By
default, this parameter is left blank.
In this case, ModelArts allocates a
dedicated VPC to each user, and
users are isolated from each other.
To access other service components
in the VPC of the service instance,
set this parameter to the ID of the
corresponding VPC. Once a VPC is
configured, it cannot be modified. If
both vpc_id and cluster_id are
configured, only the dedicated
resource pool takes effect.

No str

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

Parameter Description Mandat
ory

Data Type

subnet_net
work_id

ID of a subnet. By default, this
parameter is left blank. This
parameter is mandatory when
vpc_id is configured. Enter the
network ID displayed in the subnet
details on the VPC management
console. A subnet provides
dedicated network resources that
are isolated from other networks.

No str

security_gr
oup_id

Security group. By default, this
parameter is left blank. This
parameter is mandatory when
vpc_id is configured. A security
group is a virtual firewall that
provides secure network access
control policies for service instances.
A security group must contain at
least one inbound rule to permit the
requests whose protocol is TCP,
source address is 0.0.0.0/0, and port
number is 8080.

No str

cluster_id ID of a dedicated resource pool. By
default, this parameter is left blank,
indicating that no dedicated
resource pool is used. When using a
dedicated resource pool to deploy
services, ensure that the cluster is
running properly. After this
parameter is configured, the
network configuration of the cluster
is used, and the vpc_id parameter
does not take effect. If both this
parameter and cluster_id in real-
time config are configured,
cluster_id in real-time config is
preferentially used.

No str

additional_
properties

Additional configurations No dict

apps Whether to enable application
authentication for service
deployment. Multiple application
names can be entered.

No str, Placeholder,
list

envs Environment variables No dict

Example:

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

example = ServiceConfig()
This object is used in the output of the service deployment phase.

If there is no special requirement, use the default values.

4.4.7.3 Examples
There are three scenarios:

● Deploying a real-time service
● Modifying a real-time service
● Getting the inference address from the service deployment phase

Deploying a Real-Time Service
import modelarts.workflow as wf
Use ServiceStep to define a service deployment phase and specify a model for service deployment.

Define model name parameters.
model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

service_step = wf.steps.ServiceStep(
 name="service_step", # Name of the service deployment phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Deploying a service", # Title
 inputs=wf.steps.ServiceInput(name="si_service_ph",
data=wf.data.ServiceInputPlaceholder(name="si_placeholder1",
 # Restrictions on the model name: Only the model
name specified here can be used in the running state; use the same model name as model_name of the
model registration phase.
 model_name=model_name)),# ServiceStep inputs
 outputs=wf.steps.ServiceOutput(name="service_output") # ServiceStep outputs
)

workflow = wf.Workflow(
 name="service-step-demo",
 desc="this is a demo workflow",
 steps=[service_step]
)

Modifying a Real-Time Service
Scenario: When you use a new model version to update an existing service, ensure
that the name of the new model version is the same as that of the deployed
service.

import modelarts.workflow as wf
Use ServiceStep to define a service deployment phase and specify a model for service update.

Define model name parameters.
model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

Define a service object.
service = wf.data.ServiceUpdatePlaceholder(name="placeholder_name")

service_step = wf.steps.ServiceStep(
 name="service_step", # Name of the service deployment phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Service update", # Title
 inputs=[wf.steps.ServiceInput(name="si2",
data=wf.data.ServiceInputPlaceholder(name="si_placeholder2",
 # Restrictions on the model name: Only the model

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

name specified here can be used in the running state.
 model_name=model_name)),
 wf.steps.ServiceInput(name="si_service_data", data=service) # ServiceStep inputs are configured
when the workflow is running. You can also use wf.data.ServiceData(service_id="fake_service") for the
data field.
], # ServiceStep inputs
 outputs=wf.steps.ServiceOutput(name="service_output") # ServiceStep outputs
)

workflow = wf.Workflow(
 name="service-step-demo",
 desc="this is a demo workflow",
 steps=[service_step]
)

Getting the Inference Address From the Service Deployment Phase
The service deployment phase supports the output of the inference address. You
can use the get_output_variable("access_address") method to obtain the output
and use it in subsequent phases.

● For services deployed in the public resource pool, you can use access_address
to obtain the inference address registered on the public network from the
output.

● For services deployed in a dedicated resource pool, you can get the internal
inference address from the output using cluster_inner_access_address, in
addition to the public inference address. The internal address can only be
accessed by other inference services.
import modelarts.workflow as wf

Define model name parameters.
sub_model_name = wf.Placeholder(name="si_placeholder1",
placeholder_type=wf.PlaceholderType.STR)

sub_service_step = wf.steps.ServiceStep(
 name="sub_service_step", # Name of the service deployment phase. The name contains a
maximum of 64 characters, including only letters, digits, underscores (_), and hyphens (-). It must
start with a letter and must be unique in a workflow.
 title="Subservice", # Title
 inputs=wf.steps.ServiceInput(
 name="si_service_ph",
 data=wf.data.ServiceInputPlaceholder(name="si_placeholder1", model_name=sub_model_name)
),# ServiceStep inputs
 outputs=wf.steps.ServiceOutput(name="service_output") # ServiceStep outputs
)

main_model_name = wf.Placeholder(name="si_placeholder2",
placeholder_type=wf.PlaceholderType.STR)

Obtain the inference address output by the subservice and transfer the address to the main service
through envs.
main_service_config = wf.steps.ServiceConfig(
 infer_type="real-time",
 envs={"infer_address":
sub_service_step.outputs["service_output"].get_output_variable("access_address")} # Obtain the
inference address output by the subservice and transfer the address to the main service through envs.
)

main_service_step = wf.steps.ServiceStep(
 name="main_service_step", # Name of the service deployment phase. The name contains a
maximum of 64 characters, including only letters, digits, underscores (_), and hyphens (-). It must
start with a letter and must be unique in a workflow.
 title="Main service", # Title
 inputs=wf.steps.ServiceInput(
 name="si_service_ph",

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

 data=wf.data.ServiceInputPlaceholder(name="si_placeholder2",
model_name=main_model_name)
),# ServiceStep inputs
 outputs=wf.steps.ServiceOutput(name="service_output", service_config=main_service_config), #
ServiceStep outputs
 depend_steps=sub_service_step
)

workflow = wf.Workflow(
 name="service-step-demo",
 desc="this is a demo workflow",
 steps=[sub_service_step, main_service_step]
)

4.4.7.4 Configuration Operations

Configuring Information for Deploying a Synchronous Service
After the service deployment phase is started in the development state (usually a
notebook instance), configure the information based on the following format in
the logs.

1. On the ModelArts management console, choose Workflow from the left
navigation pane.

2. Configure the information after the service deployment phase is started. After
the configuration, click Next.

Configuring Information for Deploying an Asynchronous Service
1. On the ModelArts management console, choose Workflow from the left

navigation pane.
2. Configure the information after the service deployment phase is started.

Select an asynchronous inference AI application and a version, and configure
service startup parameters. After the configuration. click Next.

NO TE

After you select the required AI application and version, the system automatically matches
the service startup parameters.

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

4.4.8 Condition Phase

4.4.8.1 Function
This phase is used for conditional branching in the execution of phases based on
condition value comparison or metrics output by the preceding phase. The
application scenarios are as follows:

● You need to determine the subsequent process based on different input
values. If you need to determine whether to retrain or register a model based
on the model precision output by the training phase, you can use this phase
to control the process.

4.4.8.2 Parameter Overview
You can use ConditionStep to create a condition phase. The following is an
example of defining a ConditionStep.

Table 4-62 ConditionStep

Parameter Description Mandato
ry

Data Type

name Name of a condition phase.
The name contains a
maximum of 64 characters,
including only letters,
digits, underscores (_), and
hyphens (-). It must start
with a letter and must be
unique in a workflow.

Yes str

conditions List of conditions. The AND
operation is used for
multiple conditions.

Yes Condition or
condition list

if_then_steps Steps to be executed if the
calculation result of the
condition expression is
True

No str or str list

else_then_steps Steps to be executed if the
calculation result of the
condition expression is
False

No str or str list

title Title for frontend-phase
display

No str

description Description of a condition
phase

No str

depend_steps Dependency phases No Step or step list

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

Table 4-63 Condition

Parameter Description Mandator
y

Data Type

condition_type Condition type. The "==",
">", ">=", "in", "<", "<=",
"!=", and "or" operators
are supported.

Yes ConditionTypeEnu
m

left Left value of a condition
expression

Yes int, float, str, bool,
Placeholder,
Sequence,
Condition,
MetricInfo

right Right value of a condition
expression

Yes int, float, str, bool,
Placeholder,
Sequence,
Condition,
MetricInfo

Table 4-64 MetricInfo

Parameter Description Mandator
y

Data Type

input_data Metric input. Currently,
only the output of
JobStep is supported.

Yes JobStep output

json_key Key value corresponding
to the metric information
to be obtained

Yes str

Description of the structure:

● Condition object, which consists of the condition type, left value, and right
value
– The condition type is obtained from ConditionTypeEnum. The "==", ">",

">=", "in", "<", "<=", "!=", and "or" operators are supported. The following
table describes the mapping.

Enumerated Type Operator

ConditionTypeEnum.EQ ==

ConditionTypeEnum.GT >

ConditionTypeEnum.GTE >=

ConditionTypeEnum.IN in

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

Enumerated Type Operator

ConditionTypeEnum.LT <

ConditionTypeEnum.LTE <=

ConditionTypeEnum.NOT !=

ConditionTypeEnum.OR or

– The left and right values support the following types: integer, float, string,

bool, placeholder, sequence, condition, and MetricInfo.
– A condition phase supports a list of condition objects. The && operation

is performed between multiple conditions.
● if_then_steps and else_then_steps

– if_then_steps indicates a list of phases that are ready for execution if
conditions evaluate to true. In this case, steps in else_then_steps are
skipped.

– else_then_steps indicates a list of phases that are ready for execution if
conditions evaluate to false. In this case, steps in if_then_steps are
skipped.

4.4.8.3 Examples

Simple Examples
● Implemented using parameter configurations

import modelarts.workflow as wf

left_value = wf.Placeholder(name="left_value", placeholder_type=wf.PlaceholderType.BOOL,
default=True)

Condition object
condition = wf.steps.Condition(condition_type=wf.steps.ConditionTypeEnum.EQ, left=left_value,
right=True) # Condition object, including the type, left value, and right value.

Condition phase
condition_step = wf.steps.ConditionStep(
 name="condition_step_test", # Name of the condition phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter
and must be unique in a workflow.
 conditions=condition, # Condition objects. The relationship between the conditions is &&.
 if_then_steps="job_step_1", # If conditions evaluate to true, job_step_1 is ready for execution, and
job_step_2 is skipped.
 else_then_steps="job_step_2" # If conditions evaluate to false, job_step_2 is ready for execution,
and job_step_1 is skipped.
)

This phase is used only as an example. You need to supplement other fields as required.
job_step_1 = wf.steps.JobStep(
 name="job_step_1",
 depend_steps=condition_step
)

This phase is used only as an example. You need to supplement other fields as required.
model_step_1 = wf.steps.ModelStep(
 name="model_step_1",
 depend_steps=job_step_1
)

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

This phase is used only as an example. You need to supplement other fields as required.
job_step_2 = wf.steps.JobStep(
 name="job_step_2",
 depend_steps=condition_step
)

This phase is used only as an example. You need to supplement other fields as required.
model_step_2 = wf.steps.ModelStep(
 name="model_step_2",
 depend_steps=job_step_2
)

workflow = wf.Workflow(
 name="condition-demo",
 desc="this is a demo workflow",
 steps=[condition_step, job_step_1, job_step_2, model_step_1, model_step_2]
)

NO TE

Scenario description: job_step_1 and job_step_2 indicate two training phases that
depend on condition_step. condition_step parameters determine the subsequent
phase execution.

Execution analysis:
– If the default value of left_value is True, the calculation result of the

condition logical expression is True. Then, job_step_1 is executed,
job_step_2 is skipped, and all phases contained in the branches that use
job_step_2 as the unique root node are skipped. That is, model_step_2 is
skipped. Therefore, condition_step, job_step_1, and model_step_1 are
executed.

– If left_value is set to False, the calculation result of the condition logical
expression is False. Then, job_step_2 is executed, job_step_1 is skipped,
and all phases contained in the branches that use job_step_1 as the
unique root node are skipped. That is, model_step_1 is skipped, and
condition_step, job_step_2, and model_step_2 are executed.

● Implemented by obtaining the metric information output by JobStep
from modelarts import workflow as wf

Create an OutputStorage object to centrally manage training output directories.
storage = wf.data.Storage(name="storage_name", title="title_info", with_execution_id=True,
create_dir=True, description="description_info") # The name field is mandatory, and the title and
description fields are optional.

Define the input OBS object.
obs_data = wf.data.OBSPlaceholder(name="obs_placeholder_name", object_type="directory")

Use JobStep to define a training phase, and use OBS to store the output.
job_step = wf.steps.JobStep(
 name="training_job", # Name of a training phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter
and must be unique in a workflow.
 title="Image classification training", # Title, which defaults to the value of name.
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # Subscription ID of the subscribed algorithm
 item_version_id="item_version_id", # Algorithm version ID. You can also enter the version
number instead.
 parameters=[]

), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this example. If
the value of an algorithm hyperparameter does not need to be changed, you do not need to
configure the hyperparameter in parameters. Hyperparameter values will be automatically filled.
 inputs=wf.steps.JobInput(name="data_url", data=obs_data),
 outputs=[

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

wf.steps.JobOutput(name="train_url",obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("dir
ectory_path"))),
 wf.steps.JobOutput(name="metrics",
metrics_config=wf.data.MetricsConfig(metric_files=storage.join("directory_path/metrics.json",
create_dir=False))) # Metric output path. Metric information is automatically output by the job script
based on the specified data format. (In the example, the metric information needs to be output to the
metrics.json file in the training output directory.)
],
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")
)
) # Training flavors
)

Define a condition object.
condition_lt = wf.steps.Condition(
 condition_type=wf.steps.ConditionTypeEnum.LT,
 left=wf.steps.MetricInfo(job_step.outputs["metrics"].as_input(), "accuracy"),
 right=0.5
)

condition_step = wf.steps.ConditionStep(
 name="condition_step_test", # Name of the condition phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter
and must be unique in a workflow.
 conditions=condition_lt, # Condition objects. The relationship between the conditions is &&.
 if_then_steps="training_job_retrain", # If conditions evaluate to true, training_job_retrain is ready
for execution, and model_registration is skipped.
 else_then_steps="model_registration", # If conditions evaluate to false, model_registration is
ready for execution, and training_job_retrain is skipped.
 depend_steps=job_step
)

Use JobStep to define a training phase, and use OBS to store the output.
job_step_retrain = wf.steps.JobStep(
 name="training_job_retrain", # Name of a training phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter
and must be unique in a workflow.
 title="Image classification retraining", # Title, which defaults to the value of name.
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # Subscription ID of the subscribed algorithm
 item_version_id="item_version_id", # Algorithm version ID. You can also enter the version
number instead.
 parameters=[]

), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this example. If
the value of an algorithm hyperparameter does not need to be changed, you do not need to
configure the hyperparameter in parameters. Hyperparameter values will be automatically filled.
 inputs=wf.steps.JobInput(name="data_url", data=obs_data),
 outputs=[

wf.steps.JobOutput(name="train_url",obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("dir
ectory_path_retrain"))),
 wf.steps.JobOutput(name="metrics",
metrics_config=wf.data.MetricsConfig(metric_files=storage.join("directory_path_retrain/metrics.json",
create_dir=False))) # Metric output path. Metric information is automatically output by the job script
based on the specified data format. (In the example, the metric information needs to be output to the
metrics.json file in the training output directory.)
],
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor_retrain",
placeholder_type=wf.PlaceholderType.JSON, description="Training flavor")
)
), # Training flavors
 depend_steps=condition_step

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

)

Define model name parameters.
model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

model_step = wf.steps.ModelStep(
 name="model_registration", # Name of the model registration phase. The name contains a
maximum of 64 characters, including only letters, digits, underscores (_), and hyphens (-). It must
start with a letter and must be unique in a workflow.
 title="Model registration", # Title
 inputs=wf.steps.ModelInput(name='model_input', data=job_step.outputs["train_url"].as_input()), #
job_step output is used as the input.
 outputs=wf.steps.ModelOutput(name='model_output',
model_config=wf.steps.ModelConfig(model_name=model_name, model_type="TensorFlow")), #
ModelStep outputs
 depend_steps=condition_step,
)

workflow = wf.Workflow(
 name="condition-demo",
 desc="this is a demo workflow",
 steps=[job_step, condition_step, job_step_retrain, model_step],
 storages=storage
)

In this example, ConditionStep obtains the accuracy output by job_step and
compares it with the preset value to determine whether to retrain or register
the model. When the accuracy output by job_step is less than the threshold
0.5, the calculation result of condition_lt is True. In this case,
job_step_retrain runs and model_step skips. Otherwise, job_step_retrain
skips and model_step runs.

NO TE

For details about the format requirements of the metric file generated by job_step,
see Job Phase. In the condition phase, only the metric data whose type is float can be
used as the input.

The following is an example of the metrics.json file:
[
 {
 "key": "loss",
 "title": "loss",
 "type": "float",
 "data": {
 "value": 1.2
 }
 },
 {
 "key": "accuracy",
 "title": "accuracy",
 "type": "float",
 "data": {
 "value": 0.8
 }
 }
]

Advanced Example
import modelarts.workflow as wf

left_value = wf.Placeholder(name="left_value", placeholder_type=wf.PlaceholderType.BOOL, default=True)
condition1 = wf.steps.Condition(condition_type=wf.steps.ConditionTypeEnum.EQ, left=left_value, right=True)

internal_condition_1 = wf.steps.Condition(condition_type=wf.steps.ConditionTypeEnum.GT, left=10, right=9)
internal_condition_2 = wf.steps.Condition(condition_type=wf.steps.ConditionTypeEnum.LT, left=10, right=9)

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

The result of condition2 is internal_condition_1 || internal_condition_2.
condition2 = wf.steps.Condition(condition_type=wf.steps.ConditionTypeEnum.OR, left=internal_condition_1,
right=internal_condition_2)

condition_step = wf.steps.ConditionStep(
 name="condition_step_test", # Name of the condition phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 conditions=[condition1, condition2], # Condition objects. The relationship between the conditions is &&.
 if_then_steps=["job_step_1"], # If conditions evaluate to true, job_step_1 is ready for execution, and
job_step_2 is skipped.
 else_then_steps=["job_step_2"] # If conditions evaluate to false, job_step_2 is ready for execution, and
job_step_1 is skipped.
)

This phase is used only as an example. You need to supplement other fields as required.
job_step_1 = wf.steps.JobStep(
 name="job_step_1",
 depend_steps=condition_step
)

This phase is used only as an example. You need to supplement other fields as required.
job_step_2 = wf.steps.JobStep(
 name="job_step_2",
 depend_steps=condition_step
)

workflow = wf.Workflow(
 name="condition-demo",
 desc="this is a demo workflow",
 steps=[condition_step, job_step_1, job_step_2],
)

ConditionStep supports nested condition phases. You can flexibly design tit based
on different scenarios.

NO TE

The condition phase can only support two branches, which is very limiting. You can use the
new branch function to replace the ConditionStep capability without creating new phases.
For details, see Branch Control.

4.5 Branch Control

Function

You can use parameters or metrics from training output to decide whether to run
a phase. This way, you can control the process.

Application Scenarios

This function is used for complex scenarios that involve multiple branches. When
each execution starts, the workflow decides which branches to run and which ones
to skip based on the relevant configuration information. This way, only some
branches are executed. This function has a similar use case as ConditionStep, but it
is more powerful. This function applies to the dataset creation phase, labeling
phase, dataset import phase, dataset release phase, job phase, model registration
phase, and service deployment phase.

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

Examples
● Controlling the execution of a single phase

– Implemented using parameter configurations
from modelarts import workflow as wf

condition_equal = wf.steps.Condition(condition_type=wf.steps.ConditionTypeEnum.EQ,
left=wf.Placeholder(name="is_skip", placeholder_type=wf.PlaceholderType.BOOL), right=True)

Create an OutputStorage object to centrally manage training output directories.
storage = wf.data.OutputStorage(name="storage_name", title="title_info",
 description="description_info") # Only name is mandatory.

Define the input OBS object.
obs_data = wf.data.OBSPlaceholder(name="obs_placeholder_name", object_type="directory")

Use JobStep to define a training phase, and use OBS to store the output.
job_step = wf.steps.JobStep(
 name="training_job", # Name of a training phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a
letter and must be unique in a workflow.
 title="Image classification training", # Title, which defaults to the value of name.
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # Subscription ID of the subscribed algorithm
 item_version_id="item_version_id", # Algorithm version ID. You can also enter the version
number instead.
 parameters=[]

), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this
example. If the value of an algorithm hyperparameter does not need to be changed, you do not
need to configure the hyperparameter in parameters. Hyperparameter values will be
automatically filled.

 inputs=wf.steps.JobInput(name="data_url", data=obs_data),
 # JobStep input is configured when the workflow is running. You can also use
data=wf.data.OBSPath(obs_path="fake_obs_path") for the data field.
 outputs=wf.steps.JobOutput(name="train_url",

obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))),
 # JobStep output
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
), # Training flavors
 policy=wf.steps.StepPolicy(
 skip_conditions=[condition_equal] # Determines whether to skip job_step based on the
calculation result of skip_conditions.
)
)

workflow = wf.Workflow(
 name="new-condition-demo",
 desc="this is a demo workflow",
 steps=[job_step],
 storages=storage
)

In this example, job_step has a skip policy that is controlled by a bool
parameter. If the placeholder parameter named is_skip is set to True,
then job_step is skipped when condition_equal evaluates to True.
Otherwise, job_step is run. For more details about the condition object,
see Condition Phase.

– Implemented by obtaining the metric information output by JobStep

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

from modelarts import workflow as wf

Create an OutputStorage object to centrally manage training output directories.
storage = wf.data.Storage(name="storage_name", title="title_info", with_execution_id=True,
create_dir=True, description="description_info") # The name field is mandatory, and the title
and description fields are optional.

Define the input OBS object.
obs_data = wf.data.OBSPlaceholder(name="obs_placeholder_name", object_type="directory")

Use JobStep to define a training phase, and use OBS to store the output.
job_step = wf.steps.JobStep(
 name="training_job", # Name of a training phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a
letter and must be unique in a workflow.
 title="Image classification training", # Title, which defaults to the value of name.
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # Subscription ID of the subscribed algorithm
 item_version_id="item_version_id", # Algorithm version ID. You can also enter the version
number instead.
 parameters=[]

), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this
example. If the value of an algorithm hyperparameter does not need to be changed, you do not
need to configure the hyperparameter in parameters. Hyperparameter values will be
automatically filled.
 inputs=wf.steps.JobInput(name="data_url", data=obs_data),
 outputs=[

wf.steps.JobOutput(name="train_url",obs_config=wf.data.OBSOutputConfig(obs_path=storage.joi
n("directory_path"))),
 wf.steps.JobOutput(name="metrics",
metrics_config=wf.data.MetricsConfig(metric_files=storage.join("directory_path/metrics.json",
create_dir=False))) # Metric output path. Metric information is automatically output by the job
script based on the specified data format. (In the example, the metric information needs to be
output to the metrics.json file in the training output directory.)
],
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")
)
) # Training flavors
)

Define model name parameters.
model_name = wf.Placeholder(name="placeholder_name",
placeholder_type=wf.PlaceholderType.STR)

Define a condition object.
condition_lt = wf.steps.Condition(
 condition_type=wf.steps.ConditionTypeEnum.LT,
 left=wf.steps.MetricInfo(job_step.outputs["metrics"].as_input(), "accuracy"),
 right=0.5
)

model_step = wf.steps.ModelStep(
 name="model_registration", # Name of the model registration phase. The name contains a
maximum of 64 characters, including only letters, digits, underscores (_), and hyphens (-). It
must start with a letter and must be unique in a workflow.
 title="Model registration", # Title
 inputs=wf.steps.ModelInput(name='model_input',
data=job_step.outputs["train_url"].as_input()), # job_step output is used as the input.
 outputs=wf.steps.ModelOutput(name='model_output',
model_config=wf.steps.ModelConfig(model_name=model_name, model_type="TensorFlow")), #
ModelStep outputs
 depend_steps=job_step # Preceding job phase
 policy=wf.steps.StepPolicy(skip_conditions=condition_lt) # Determines whether to skip
model_step based on the calculation result of skip_conditions.

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

)

workflow = wf.Workflow(
 name="new-condition-demo",
 desc="this is a demo workflow",
 steps=[job_step, model_step],
 storages=storage
)

In this example, model_step has a skip policy. The model registration
depends on whether the accuracy output by job_step meets the preset
value. When the accuracy output by job_step is less than the threshold
0.5, the calculation result of condition_lt is True. In this case,
model_step skips. Otherwise, model_step runs.

NO TE

For details about the format requirements of the metric file generated by
job_step, see Branch Control. In the condition phase, only the metric data whose
type is float can be used as the input.

The following is an example of the metrics.json file:
[
 {
 "key": "loss",
 "title": "loss",
 "type": "float",
 "data": {
 "value": 1.2
 }
 },
 {
 "key": "accuracy",
 "title": "accuracy",
 "type": "float",
 "data": {
 "value": 0.8
 }
 }
]

● Controlling partial execution of multiple branches
from modelarts import workflow as wf

Create an OutputStorage object to centrally manage training output directories.
storage = wf.data.Storage(name="storage_name", title="title_info", with_execution_id=True,
create_dir=True, description="description_info") # The name field is mandatory, and the title and
description fields are optional.

Define the input OBS object.
obs_data = wf.data.OBSPlaceholder(name="obs_placeholder_name", object_type="directory")

condition_equal_a = wf.steps.Condition(condition_type=wf.steps.ConditionTypeEnum.EQ,
left=wf.Placeholder(name="job_step_a_is_skip", placeholder_type=wf.PlaceholderType.BOOL),
right=True)

Use JobStep to define a training phase, and use OBS to store the output.
job_step_a = wf.steps.JobStep(
 name="training_job_a", # Name of a training phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter
and must be unique in a workflow.
 title="Image classification training", # Title, which defaults to the value of name.
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # Subscription ID of the subscribed algorithm
 item_version_id="item_version_id", # Algorithm version ID. You can also enter the version
number instead.
 parameters=[]

), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this example. If

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

the value of an algorithm hyperparameter does not need to be changed, you do not need to
configure the hyperparameter in parameters. Hyperparameter values will be automatically filled.
 inputs=wf.steps.JobInput(name="data_url", data=obs_data),
 outputs=[wf.steps.JobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path_a")))],
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
), # Training flavors
 policy=wf.steps.StepPolicy(skip_conditions=condition_equal_a)
)

condition_equal_b = wf.steps.Condition(condition_type=wf.steps.ConditionTypeEnum.EQ,
left=wf.Placeholder(name="job_step_b_is_skip", placeholder_type=wf.PlaceholderType.BOOL),
right=True)

Use JobStep to define a training phase, and use OBS to store the output.
job_step_b = wf.steps.JobStep(
 name="training_job_b", # Name of a training phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter
and must be unique in a workflow.
 title="Image classification training", # Title, which defaults to the value of name.
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # Subscription ID of the subscribed algorithm
 item_version_id="item_version_id", # Algorithm version ID. You can also enter the version
number instead.
 parameters=[]

), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this example. If
the value of an algorithm hyperparameter does not need to be changed, you do not need to
configure the hyperparameter in parameters. Hyperparameter values will be automatically filled.
 inputs=wf.steps.JobInput(name="data_url", data=obs_data),
 outputs=[wf.steps.JobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path_b")))],
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
), # Training flavors
 policy=wf.steps.StepPolicy(skip_conditions=condition_equal_b)
)

Define model name parameters.
model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

model_step = wf.steps.ModelStep(
 name="model_registration", # Name of the model registration phase. The name contains a
maximum of 64 characters, including only letters, digits, underscores (_), and hyphens (-). It must
start with a letter and must be unique in a workflow.
 title="Model registration", # Title
 inputs=wf.steps.ModelInput(name='model_input',
data=wf.data.DataConsumptionSelector(data_list=[job_step_a.outputs["train_url"].as_input(),
job_step_b.outputs["train_url"].as_input()])), # Select the output of job_step_a or job_step_b as the
input.
 outputs=wf.steps.ModelOutput(name='model_output',
model_config=wf.steps.ModelConfig(model_name=model_name, model_type="TensorFlow")), #
ModelStep outputs
 depend_steps=[job_step_a, job_step_b], # Preceding job phase
)

workflow = wf.Workflow(
 name="new-condition-demo",
 desc="this is a demo workflow",
 steps=[job_step_a, job_step_b, model_step],

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

 storages=storage
)

In this example, both job_step_a and job_step_b have a skip policy that is
controlled by parameters. When the parameter values are different, the
execution of model_step can be divided into the following cases (model_step
has no skip policy configured, so it follows the default rule).

job_step_a_is_skip job_step_b_is_skip Whether to Execute
model_step

True True No

False Yes

False True Yes

False Yes

CA UTION

Default rule: A phase is automatically skipped if all the phases it depends on
are skipped. Otherwise, the phase is run. This logic can apply to any phase.

Based on the previous example, if you want to override the default rule and
make model_step run when job_step_a and job_step_b are skipped, you only
need to configure a skip policy in model_step. The skip policy takes
precedence over the default rule.

4.6 Data Selection Among Multiple Inputs

Function
This function is only for the scenario where multiple branches are run. When you
create a workflow phase, the data input source of the phase is uncertain. The data
input source could be the output of any of the phases it depends on. Only after all
dependency phases are run, the valid output is automatically selected as the input
based on the actual execution situation.

Examples
from modelarts import workflow as wf

condition_equal = wf.steps.Condition(condition_type=wf.steps.ConditionTypeEnum.EQ,
left=wf.Placeholder(name="is_true", placeholder_type=wf.PlaceholderType.BOOL), right=True)
condition_step = wf.steps.ConditionStep(
 name="condition_step",
 conditions=[condition_equal],
 if_then_steps=["training_job_1"],
 else_then_steps=["training_job_2"],
)

Create an OutputStorage object to centrally manage training output directories.
storage = wf.data.OutputStorage(name="storage_name", title="title_info",
 description="description_info") # Only name is mandatory.

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

Define the input OBS object.
obs_data = wf.data.OBSPlaceholder(name="obs_placeholder_name", object_type="directory")

Use JobStep to define a training phase, and use OBS to store the output.
job_step_1 = wf.steps.JobStep(
 name="training_job_1", # Name of a training phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Image classification training", # Title, which defaults to the value of name.
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # Subscription ID of the subscribed algorithm
 item_version_id="item_version_id", # Algorithm version ID. You can also enter the version number
instead.
 parameters=[]

), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this example. If the
value of an algorithm hyperparameter does not need to be changed, you do not need to configure the
hyperparameter in parameters. Hyperparameter values will be automatically filled.

 inputs=wf.steps.JobInput(name="data_url", data=obs_data),
 # JobStep input is configured when the workflow is running. You can also use
data=wf.data.OBSPath(obs_path="fake_obs_path") for the data field.
 outputs=wf.steps.JobOutput(name="train_url",
 obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))),
 # JobStep output
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
), # Training flavors
 depend_steps=[condition_step]
)

Use JobStep to define a training phase, and use OBS to store the output.
job_step_2 = wf.steps.JobStep(
 name="training_job_2", # Name of a training phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Image classification training", # Title, which defaults to the value of name.
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # Subscription ID of the subscribed algorithm
 item_version_id="item_version_id", # Algorithm version ID. You can also enter the version number
instead.
 parameters=[]

), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this example. If the
value of an algorithm hyperparameter does not need to be changed, you do not need to configure the
hyperparameter in parameters. Hyperparameter values will be automatically filled.

 inputs=wf.steps.JobInput(name="data_url", data=obs_data),
 # JobStep input is configured when the workflow is running. You can also use
data=wf.data.OBSPath(obs_path="fake_obs_path") for the data field.
 outputs=wf.steps.JobOutput(name="train_url",
 obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))),
 # JobStep output
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
), # Training flavors
 depend_steps=[condition_step]
)

Define model name parameters.

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

model_step = wf.steps.ModelStep(
 name="model_registration", # Name of the model registration phase. The name contains a maximum of
64 characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Model registration", # Title
 inputs=wf.steps.ModelInput(name='model_input',
data=wf.data.DataConsumptionSelector(data_list=[job_step_1.outputs["train_url"].as_input(),
job_step_2.outputs["train_url"].as_input()])), # Select the output of job_step_1 or job_step_2 as the input.
 outputs=wf.steps.ModelOutput(name='model_output',
model_config=wf.steps.ModelConfig(model_name=model_name, model_type="TensorFlow")), # ModelStep
outputs
 depend_steps=[job_step_1, job_step_2] # Preceding job phase
)# job_step is an instance object of wf.steps.JobStep and train_url is the value of the name field of
wf.steps.JobOutput.

workflow = wf.Workflow(name="data-select-demo",
 desc="this is a test workflow",
 steps=[condition_step, job_step_1, job_step_2, model_step],
 storages=storage
)

NO TE

The workflow in this example has two parallel branches, but only one branch runs at a
time, depending on the configuration of condition_step. The input source of model_step is
either job_step_1 or job_step_2's output. If job_step_1 runs and job_step_2 is skipped,
model_step uses job_step_1's output as input, and vice versa.

4.7 Creating a Workflow
To create a workflow, define each phase by referring to Phase Type. You need to
perform the following steps:

1. Sort out scenarios, understand preset steps' functions, and determine the DAG
structure.

2. Debug single-phase functions like training or inference on ModelArts.
3. Choose the code template that matches the phase function and fill in the

details.
4. Arrange phases according to the DAG structure to create a workflow.

4.8 Debugging a Workflow
After creating a workflow, you can debug it in the development state. You can use
the run or debug modes for debugging. Suppose a workflow has five phases:
label_step, release_step, job_step, model_step, and service_step. The debugging
steps are as follows:

● Run mode
– Running all phases

workflow.run(steps=[label_step, release_step, job_step, model_step, service_step],
experiment_id="Experiment record ID")

– Running job_step, model_step, and service_step (Ensure the correctness
of data dependency for partial execution.)
workflow.run(steps=[job_step, model_step, service_step], experiment_id="Experiment record ID")

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

● Debug mode

You can use the debug mode only in a notebook environment with the next()
method. Example:

a. Start the debug mode.
workflow.debug(steps=[label_step, release_step, job_step, model_step, service_step],
experiment_id="Experiment record ID")

b. Run the first phase.
workflow.next()

As a result, either of the following situations occur:

▪ If the data required for running the phase is available, the phase will
be executed directly.

▪ If the data required for running the phase is unavailable, configure
phase data in either of the following ways:

○ Configuring a parameter:
workflow.set_placeholder ("Parameter name", Value)

○ Configuring a data object:
workflow.set_data (Name of the data object, Data object)
Example: Configuring a dataset object.
workflow.set_data("Object name", Dataset(dataset_name="Dataset name",
version_name="Dataset version name"))

c. After the execution on the preceding phase is completed, use
workflow.next() to start the next phase. Then, repeat the operations
until all phases have been executed.

NO TE

When you debug a workflow in the development state, the system only monitors
the running status and prints logs. To view the detailed running information of
each phase, go to the ModelArts console.

4.9 Publishing a Workflow

4.9.1 Publishing a Workflow to the Running State
After debugging a workflow, you can use the release() method to publish the
workflow to the running state for configuration and execution (on the workflow
page of the management console).

Run the following command:

workflow.release()

After the preceding command is executed, if the log indicates that the workflow is
published, you can go to the ModelArts workflow page to view the workflow. For
details about workflow operations, see How to Use a Workflow?.

The release_and_run() method is based on the release() method and allows you
to publish and run workflows in the development state, without the need to
configure and execute workflows on the console.

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

CA UTION

Note the following when using this method:

● For all configuration objects related to placeholders in the workflow, you need
to either set default values or use fixed data objects directly.

● The method executes differently depending on the workflow object's name. It
creates and runs a new workflow if the name does not exist. It updates and
runs the existing workflow if the name already exists, using the new workflow
structure for the new execution.
workflow.release_and_run()

4.9.2 Publishing a Workflow to AI Gallery
You can publish workflows to AI Gallery and share them with other users. To do
so, run this code:

workflow.release_to_gallery()

Once the release is done, you can visit AI Gallery to see the asset details. The asset
permission is set to private by default, but you can change it if you want.

The release_to_gallery() method contains the following input parameters.

Parameter Description Mandatory Type

content_id Workflow asset ID No str

version Version number of the
workflow asset. The
format is x.x.x.

No str

desc Description of the
workflow asset version

No str

title Workflow asset name. If
this parameter is not
specified, the workflow
name is used by default.

No str

visibility Visibility of the
workflow asset. The
value can be public,
group (whitelist), and
private (visible only to
you). The default value
is private.

No str

group_users Whitelist. This
parameter is mandatory
only when visibility is set
to group. You can only
enter domain_id.

No list[str]

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

You can use the method in two ways based on the input parameters:

● workflow.release_to_gallery(title="Asset name") publishes a new workflow
asset with version 1.0.0. If the workflow includes an algorithm that is not
from AI Gallery, it also publishes the algorithm to AI Gallery with version
1.0.0.

● workflow.release_to_gallery(content_id="**", title="Asset name") publishes a
new version based on the specified workflow asset. The version number
increases automatically. If the workflow includes an AI Gallery algorithm, it
updates the algorithm asset with a higher version number.

Workflow asset whitelist setting:

You can specify the visibility and group_users fields of the release_to_gallery
method when you publish an asset for the first time. To change the whitelist for
accessing a certain asset, use this command:
from modelarts import workflow as wf

Add specified whitelist users.
wf.add_whitelist_users(content_id="**", version_num="*.*.*", user_groups=["**", "**"])

Delete specified whitelist users.
wf.delete_whitelist_users(content_id="**", version_num="*.*.*", user_groups=["**", "**"])

NO TE

When you modify the whitelist for a workflow asset, the system automatically obtains the
information of the algorithm asset that the workflow version depends on and sets the
whitelist for the algorithm asset as well.

4.10 Advanced Capabilities

4.10.1 Partial Execution
Workflows support predefined scenarios to enable partial execution. You can split
the DAG into different branches based on the scenarios during workflow
development. Then, you can run each branch independently as a separate
workflow. The sample code is as follows:
workflow =wf.Workflow(
 name="image_cls",
 desc="this is a demo workflow",
 steps=[label_step, release_data_step, training_step, model_step, service_step],
 policy=wf.policy.Policy(
 scenes=[
 wf.policy.Scene(
 scene_name="Model training",
 scene_steps=[label_step, release_data_step, training_step]
),
 wf.policy.Scene(
 scene_name="Service deployment",
 scene_steps=[model_step, service_step]
),
]
)
)

This example shows a workflow with five phases. The policy defines two preset
scenarios: model training and service deployment. When the workflow is published

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

to the running state, partial execution is disabled by default and all phases run.
You can specify certain scenarios to run on the global configuration page.

NO TE

You can define the same phase in different running scenarios using partial execution.
However, you must ensure that the data dependency between phases is correct. Partial
execution can only be configured and used in the running state and cannot be debugged in
the development state.

4.10.2 Using Big Data Capabilities (DLI/MRS) in a Workflow

Function
This phase calls MRS for big data cluster computing. It is used for batch data
processing and model training.

Application Scenarios
You can use MRS Spark for big data computing in this phase.

Examples
On the MRS console, check available MRS clusters of your account. If no MRS
cluster is available, create one with Spark selected.

You can use MrsStep to create a job phase. The following is an example of
defining a MrsStep:

● Specifying a boot script and cluster
from modelarts import workflow as wf
Define a MrsJobStep using MrsStep.

algorithm = wf.steps.MrsJobAlgorithm(
 boot_file="obs://spark-sql/wordcount.py", # OBS path to the boot script
 parameters=[wf.AlgorithmParameters(name="run_args", value="--master,yarn-cluster")]
)
inputs = wf.steps.MrsJobInput(name="mrs_input", data=wf.data.OBSPath(obs_path="/spark-sql/
mrs_input/")) # OBS path to the input data
outputs = wf.steps.MrsJobOutput(name="mrs_output",
obs_config=wf.data.OBSOutputConfig(obs_path="/spark-sql/mrs_output")) # OBS path to the output
data
step = wf.steps.MrsJobStep(
 name="mrs_test", # Step name, which can be customized
 mrs_algorithm=algorithm,
 inputs=inputs,
 outputs=outputs,
 cluster_id="cluster_id_xxx" # MRS cluster ID
)

● Configuring a cluster and boot script
from modelarts import workflow as wf
Define a phase using MrsJobStep.
run_arg_description = "Program execution parameter, which is used as the program running
environment parameter. The default value is (--master,yarn-cluster)".
app_arg_description = "Program execution parameter, which is used as the input parameter of the
boot script, for example, (--param_a=3,--param_b=4). This parameter is optional and left blank by
default."
mrs_outputs_description = "Data output path, which can be obtained from train_url in the parameter
list."
cluster_id_description = "cluster id of MapReduce Service"

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

algorithm = wf.steps.MrsJobAlgorithm(
 boot_file=wf.Placeholder(name="boot_file",
 description="Program boot script",
 placeholder_type=wf.PlaceholderType.STR,
 placeholder_format="obs"),
 parameters=[wf.AlgorithmParameters(name="run_args",
 value=wf.Placeholder(name="run_args",
 description=run_arg_description,
 default="--master,yarn-cluster",
 placeholder_type=wf.PlaceholderType.STR),
),
 wf.AlgorithmParameters(name="app_args",
 value=wf.Placeholder(name="app_args",
 description=app_arg_description,
 default="",
 placeholder_type=wf.PlaceholderType.STR)
)
]
)

inputs = wf.steps.MrsJobInput(name="data_url",
 data=wf.data.OBSPlaceholder(name="data_url",object_type="directory"))

outputs = wf.steps.MrsJobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=wf.Placeholder(name="train_url",
placeholder_type=wf.PlaceholderType.STR,
placeholder_format="obs",description=mrs_outputs_description)))

mrs_job_step = wf.steps.MrsJobStep(
 name="mrs_job_test",
 mrs_algorithm=algorithm,
 inputs=inputs,
 outputs=outputs,
 cluster_id=wf.Placeholder(name="cluster_id", placeholder_type=wf.PlaceholderType.STR,
description=cluster_id_description, placeholder_format="cluster")
)

● Using an MRS phase on the console
After a workflow is published, configure phase parameters such as the data
input, data output, boot script, and cluster ID on the workflow configuration
page.

4.11 FAQs

4.11.1 How Do I Obtain Training Specifications During
Debugging in the Development State?

When debugging and running a workflow in the development state, you need to
manually configure the training specifications. For details, see Obtaining
Resources.

4.11.2 How Do I Implement Multiple Branches?
You can use two modes to implement a multi-branch workflow. For details, see
Condition Phase and Branch Control. The branch control mode is more flexible
and recommended.

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

4.11.3 How Do I Import Objects?
When creating a workflow, required objects are imported through workflow
packages. The details are as follows:

from modelarts import workflow as wf

Import the data package:

wf.data.DatasetTypeEnum
wf.data.Dataset
wf.data.DatasetVersionConfig
wf.data.DatasetPlaceholder
wf.data.ServiceInputPlaceholder
wf.data.ServiceData
wf.data.ServiceUpdatePlaceholder
wf.data.DataTypeEnum
wf.data.ModelData
wf.data.GalleryModel
wf.data.OBSPath
wf.data.OBSOutputConfig
wf.data.OBSPlaceholder
wf.data.SWRImage
wf.data.SWRImagePlaceholder
wf.data.Storage
wf.data.InputStorage
wf.data.OutputStorage
wf.data.LabelTask
wf.data.LabelTaskPlaceholder
wf.data.LabelTaskConfig
wf.data.LabelTaskTypeEnum
wf.data.MetricsConfig
wf.data.TripartiteServiceConfig
wf.data.DataConsumptionSelector

Import the policy package:

wf.policy.Policy
wf.policy.Scene

Import the steps package:

wf.steps.MetricInfo
wf.steps.Condition
wf.steps.ConditionTypeEnum
wf.steps.ConditionStep
wf.steps.LabelingStep
wf.steps.LabelingInput
wf.steps.LabelingOutput
wf.steps.LabelTaskProperties
wf.steps.ImportDataInfo
wf.steps.DataOriginTypeEnum
wf.steps.DatasetImportStep
wf.steps.DatasetImportInput
wf.steps.DatasetImportOutput
wf.steps.AnnotationFormatConfig
wf.steps.AnnotationFormatParameters
wf.steps.AnnotationFormatEnum
wf.steps.Label
wf.steps.ImportTypeEnum
wf.steps.LabelFormat
wf.steps.LabelTypeEnum
wf.steps.ReleaseDatasetStep
wf.steps.ReleaseDatasetInput
wf.steps.ReleaseDatasetOutput
wf.steps.CreateDatasetStep
wf.steps.CreateDatasetInput
wf.steps.CreateDatasetOutput
wf.steps.DatasetProperties

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

wf.steps.SchemaField
wf.steps.ImportConfig
wf.steps.JobStep
wf.steps.JobMetadata
wf.steps.JobSpec
wf.steps.JobResource
wf.steps.JobTypeEnum
wf.steps.JobEngine
wf.steps.JobInput
wf.steps.JobOutput
wf.steps.LogExportPath
wf.steps.MrsJobStep
wf.steps.MrsJobInput
wf.steps.MrsJobOutput
wf.steps.MrsJobAlgorithm
wf.steps.ModelStep
wf.steps.ModelInput
wf.steps.ModelOutput
wf.steps.ModelConfig
wf.steps.Template
wf.steps.TemplateInputs
wf.steps.ServiceStep
wf.steps.ServiceInput
wf.steps.ServiceOutput
wf.steps.ServiceConfig
wf.steps.StepPolicy

Import the workflow package:

wf.Workflow
wf.Subgraph
wf.Placeholder
wf.PlaceholderType
wf.AlgorithmParameters
wf.BaseAlgorithm
wf.Algorithm
wf.AIGalleryAlgorithm
wf.resource
wf.SystemEnv
wf.add_whitelist_users
wf.delete_whitelist_users

4.11.4 How Do I Locate Running Errors?
If a workflow reports an error when it runs in run mode, follow these steps:

1. Check if you have the latest version of the SDK package installed to avoid
package version inconsistency.

2. Check if your SDK code follows the specifications. See the corresponding code
example for details.

3. Check if the content you entered during the execution is correct and matches
the format required in the prompt message.

4. Find the code line where the error occurs based on the error information and
analyze the context logic.

Common Errors With Historical SDK Packages
● An error is reported when the service deployment phase is running.

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

● The following execution error information appears after you configure the
service parameters:

Solutions
The two common errors can be rectified by upgrading the SDK to the latest
version.

ModelArts
Workflow 4 How to Develop a Workflow?

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

	Contents
	1 MLOps Overview
	2 What Is Workflow?
	3 How to Use a Workflow?
	3.1 Configuring a Workflow
	3.1.1 Configuration Entries
	3.1.2 Runtime Configurations
	3.1.3 Resource Configurations
	3.1.4 Tag Configuration
	3.1.5 SMN
	3.1.6 Input and Output Configurations
	3.1.7 Phase Parameters
	3.1.8 Saving Configurations

	3.2 Starting, Stopping, Searching for, Copying, or Deleting a Workflow
	3.3 Viewing Workflow Execution Records
	3.4 Retrying, Stopping, or Proceeding a Phase
	3.5 Partial Execution

	4 How to Develop a Workflow?
	4.1 Concepts
	4.1.1 Workflow
	4.1.2 Step
	4.1.3 Data
	4.1.4 Development State
	4.1.5 Running State

	4.2 Parameter Configuration
	4.2.1 Function
	4.2.2 Parameter Overview
	4.2.3 Examples

	4.3 Unified Storage
	4.3.1 Function
	4.3.2 Common Usage
	4.3.3 Advanced Usage
	4.3.4 Example
	4.3.5 Operations

	4.4 Phase Type
	4.4.1 Dataset Creation Phase
	4.4.1.1 Function
	4.4.1.2 Parameter Overview
	4.4.1.3 Examples

	4.4.2 Labeling Phase
	4.4.2.1 Function
	4.4.2.2 Parameter Overview
	4.4.2.3 Examples

	4.4.3 Dataset Import Phase
	4.4.3.1 Function
	4.4.3.2 Parameter Overview
	4.4.3.3 Examples

	4.4.4 Dataset Release Phase
	4.4.4.1 Function
	4.4.4.2 Parameter Overview
	4.4.4.3 Examples

	4.4.5 Job Phase
	4.4.5.1 Function
	4.4.5.2 Parameter Overview
	4.4.5.3 Obtaining Resources
	4.4.5.4 Examples

	4.4.6 Model Registration Phase
	4.4.6.1 Function
	4.4.6.2 Parameter Overview
	4.4.6.3 Examples

	4.4.7 Service Deployment Phase
	4.4.7.1 Function
	4.4.7.2 Parameter Overview
	4.4.7.3 Examples
	4.4.7.4 Configuration Operations

	4.4.8 Condition Phase
	4.4.8.1 Function
	4.4.8.2 Parameter Overview
	4.4.8.3 Examples

	4.5 Branch Control
	4.6 Data Selection Among Multiple Inputs
	4.7 Creating a Workflow
	4.8 Debugging a Workflow
	4.9 Publishing a Workflow
	4.9.1 Publishing a Workflow to the Running State
	4.9.2 Publishing a Workflow to AI Gallery

	4.10 Advanced Capabilities
	4.10.1 Partial Execution
	4.10.2 Using Big Data Capabilities (DLI/MRS) in a Workflow

	4.11 FAQs
	4.11.1 How Do I Obtain Training Specifications During Debugging in the Development State?
	4.11.2 How Do I Implement Multiple Branches?
	4.11.3 How Do I Import Objects?
	4.11.4 How Do I Locate Running Errors?

