- What's New
- Product Bulletin
- Service Overview
- Billing
- Getting Started
-
User Guide
-
UCS Clusters
- Overview
- Huawei Cloud Clusters
-
On-Premises Clusters
- Overview
- Service Planning for On-Premises Cluster Installation
- Registering an On-Premises Cluster
- Installing an On-Premises Cluster
- Managing an On-Premises Cluster
- Attached Clusters
- Multi-Cloud Clusters
- Single-Cluster Management
- Fleets
-
Cluster Federation
- Overview
- Enabling Cluster Federation
- Using kubectl to Connect to a Federation
- Upgrading a Federation
-
Workloads
- Workload Creation
-
Container Settings
- Setting Basic Container Information
- Setting Container Specifications
- Setting Container Lifecycle Parameters
- Setting Health Check for a Container
- Setting Environment Variables
- Configuring a Workload Upgrade Policy
- Configuring a Scheduling Policy (Affinity/Anti-affinity)
- Configuring Scheduling and Differentiation
- Managing a Workload
- ConfigMaps and Secrets
- Services and Ingresses
- MCI
- MCS
- DNS Policies
- Storage
- Namespaces
- Multi-Cluster Workload Scaling
- Adding Labels and Taints to a Cluster
- RBAC Authorization for Cluster Federations
- Image Repositories
- Permissions
-
Policy Center
- Overview
- Basic Concepts
- Enabling Policy Center
- Creating and Managing Policy Instances
- Example: Using Policy Center for Kubernetes Resource Compliance Governance
-
Policy Definition Library
- Overview
- k8spspvolumetypes
- k8spspallowedusers
- k8spspselinuxv2
- k8spspseccomp
- k8spspreadonlyrootfilesystem
- k8spspprocmount
- k8spspprivilegedcontainer
- k8spsphostnetworkingports
- k8spsphostnamespace
- k8spsphostfilesystem
- k8spspfsgroup
- k8spspforbiddensysctls
- k8spspflexvolumes
- k8spspcapabilities
- k8spspapparmor
- k8spspallowprivilegeescalationcontainer
- k8srequiredprobes
- k8srequiredlabels
- k8srequiredannotations
- k8sreplicalimits
- noupdateserviceaccount
- k8simagedigests
- k8sexternalips
- k8sdisallowedtags
- k8sdisallowanonymous
- k8srequiredresources
- k8scontainerratios
- k8scontainerrequests
- k8scontainerlimits
- k8sblockwildcardingress
- k8sblocknodeport
- k8sblockloadbalancer
- k8sblockendpointeditdefaultrole
- k8spspautomountserviceaccounttokenpod
- k8sallowedrepos
- Configuration Management
- Traffic Distribution
- Observability
- Container Migration
- Pipeline
- Error Codes
-
UCS Clusters
- Best Practices
-
API Reference
- Before You Start
- Calling APIs
-
API
- UCS Cluster
-
Fleet
- Adding a Cluster to a Fleet
- Removing a Cluster from a Fleet
- Registering a Fleet
- Deleting a Fleet
- Querying a Fleet
- Adding Clusters to a Fleet
- Updating Fleet Description
- Updating Permission Policies Associated with a Fleet
- Updating the Zone Associated with the Federation of a Fleet
- Obtaining the Fleet List
- Enabling Fleet Federation
- Disabling Cluster Federation
- Querying Federation Enabling Progress
- Creating a Federation Connection and Downloading kubeconfig
- Creating a Federation Connection
- Downloading Federation kubeconfig
- Permissions Management
- Using the Karmada API
- Appendix
-
FAQs
- About UCS
-
Billing
- How Is UCS Billed?
- What Status of a Cluster Will Incur UCS Charges?
- Why Am I Still Being Billed After I Purchase a Resource Package?
- How Do I Change the Billing Mode of a Cluster from Pay-per-Use to Yearly/Monthly?
- What Types of Invoices Are There?
- Can I Unsubscribe from or Modify a Resource Package?
-
Permissions
- How Do I Configure Access Permissions for Each Function of the UCS Console?
- What Can I Do If an IAM User Cannot Obtain Cluster or Fleet Information After Logging In to UCS?
- How Do I Restore ucs_admin_trust I Deleted or Modified?
- What Can I Do If I Cannot Associate the Permission Policy with a Fleet or Cluster?
- How Do I Clear RBAC Resources After a Cluster Is Unregistered?
- Policy Center
-
Fleets
- What Can I Do If Cluster Federation Verification Fails to Be Enabled for a Fleet?
- What Can I Do If an Abnormal, Federated Cluster Fails to Be Removed from the Fleet?
- What Can I Do If an Nginx Ingress Is in the Unready State After Being Deployed?
- What Can I Do If "Error from server (Forbidden)" Is Displayed When I Run the kubectl Command?
- Huawei Cloud Clusters
- Attached Clusters
-
On-Premises Clusters
- What Can I Do If an On-Premises Cluster Fails to Be Connected?
- How Do I Manually Clear Nodes of an On-Premises Cluster?
- How Do I Downgrade a cgroup?
- What Can I Do If the VM SSH Connection Times Out?
- How Do I Expand the Disk Capacity of the CIA Add-on in an On-Premises Cluster?
- What Can I Do If the Cluster Console Is Unavailable After the Master Node Is Shut Down?
- What Can I Do If a Node Is Not Ready After Its Scale-Out?
- How Do I Update the CA/TLS Certificate of an On-Premises Cluster?
- What Can I Do If an On-Premises Cluster Fails to Be Installed?
- Multi-Cloud Clusters
-
Cluster Federation
- What Can I Do If the Pre-upgrade Check of the Cluster Federation Fails?
- What Can I Do If a Cluster Fails to Be Added to a Federation?
- What Can I Do If Status Verification Fails When Clusters Are Added to a Federation?
- What Can I Do If an HPA Created on the Cluster Federation Management Plane Fails to Be Distributed to Member Clusters?
- What Can I Do If an MCI Object Fails to Be Created?
- What Can I Do If I Fail to Access a Service Through MCI?
- What Can I Do If an MCS Object Fails to Be Created?
- What Can I Do If an MCS or MCI Instance Fails to Be Deleted?
- Traffic Distribution
- Container Intelligent Analysis
- General Reference
Copied.
Setting Container Specifications
Scenario
UCS allows you to set resource limits for added containers during workload creation. You can apply for and limit the CPU and memory quotas used by each pod in the workload.
Meanings
The meanings of requests and limits for CPU and memory are as follows:
- Requests are the minimum guaranteed amount of a resource that is reserved for containers in a pod. If the node where the pod is running does not have enough of that resource, the containers fail to be created.
- Limits are the maximum amount of a resource to be used by containers. You can specify the resource limit for a container to prevent the container from using more of that resource than the limit you set or being evicted due to node resource exhaustion.
When creating a workload, you are advised to set the upper and lower limits of CPU and memory resources. If the upper and lower resource limits are not set for a workload, a resource leak of this workload will make resources unavailable for other workloads deployed on the same node. In addition, workloads that do not have upper and lower resource limits cannot be accurately monitored.
Configuration Description
- CPU quotas:
Table 1 Description of CPU quotas Parameter
Description
CPU request
Minimum number of CPU cores required by a container. Resources are scheduled for the container based on this value. The container can be scheduled to this node only when the total available CPU on the node is greater than or equal to the number of containerized CPU applications.
CPU limit
Maximum number of CPU cores available for a container.
Recommended configuration
Actual available CPU of a node ≥ Sum of CPU limits of all containers on the current node ≥ Sum of CPU requests of all containers on the current node. You can view the actual available CPUs of a node on the CCE console (Resource Management > Nodes > Allocatable).
- Memory quotas:
Table 2 Description of memory quotas Parameter
Description
Memory request
Minimum amount of memory required by a container. Resources are scheduled for the container based on this value. The container can be scheduled to this node only when the total available memory on the node is greater than or equal to the number of containerized memory applications.
Memory Limit
Maximum amount of memory available for a container. When the memory usage exceeds the configured memory limit, the instance may be restarted, which affects the normal use of the workload.
Recommended configuration
Actual available memory of a node ≥ Sum of memory limits of all containers on the current node ≥ Sum of memory requests of all containers on the current node. You can view the actual available memory of a node on the CCE console (Resource Management > Nodes > Allocatable).
The allocatable resources are calculated based on the resource request value (Request), which indicates the upper limit of resources that can be requested by pods on this node, but does not indicate the actual available resources of the node. The calculation formula is as follows:
- Allocatable CPU = Total CPU – Requested CPU of all pods – Reserved CPU for other resources
- Allocatable memory = Total memory – Requested memory of all pods – Reserved memory for other resources
Example
Assume that a cluster contains a node with 4 cores and 8 GB. A workload containing two pods has been deployed on the cluster. The resources of the two pods (pods 1 and 2) are as follows: {CPU request, CPU limit, memory request, memory limit} = {1 core, 2 cores, 2 GB, 2 GB}.
The CPU and memory usage of the node is as follows:
- Allocatable CPU = 4 cores - (1 core requested by pod 1 + 1 core requested by pod 2) = 2 cores
- Allocatable memory = 8 GB - (2 GB requested by pod 1 + 2 GB requested by pod 2) = 4 GB
Therefore, the remaining 2 cores and 4 GB can be used by the next new pod.
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.See the reply and handling status in My Cloud VOC.
For any further questions, feel free to contact us through the chatbot.
Chatbot