
IoT Device Access

User Guide

Issue 1.0

Date 2024-12-31

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 Overview..1

2 IoTDA Instances... 4
2.1 Overview.. 4
2.2 Buying an Instance... 4
2.3 Instance Management... 7
2.4 Tag Management.. 9
2.4.1 Overview...10
2.4.2 Adding a Tag... 10
2.4.3 Deleting a Tag.. 13
2.4.4 Searching for Resources by Tag.. 16

3 Resource Spaces...18

4 Device Access..20
4.1 Overview.. 21
4.2 Device Authentication... 24
4.2.1 Overview...24
4.2.2 LwM2M/CoAP Authentication...25
4.2.3 MQTT(S) Secret Authentication... 26
4.2.4 MQTT(S) Certificate Authentication... 27
4.2.5 MQTT(S) Custom Authentication.. 28
4.2.5.1 Overview... 28
4.2.5.2 Usage... 29
4.2.6 MQTT(S) Custom Template Authentication.. 36
4.2.6.1 Overview... 36
4.2.6.2 Usage... 37
4.2.6.3 Examples... 43
4.2.6.4 Internal Functions.. 47
4.3 Open Protocol Access.. 56
4.3.1 LwM2M/CoAP Access... 56
4.3.2 HTTPS Access.. 57
4.3.3 MQTT(S) Access... 70
4.4 Custom Device Domain Name... 74

5 Message Communications...77

IoT Device Access
User Guide Contents

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

5.1 Data Reporting.. 77
5.1.1 Overview...77
5.1.2 Device Reporting Messages... 85
5.1.3 Device Reporting Properties.. 88
5.2 Data Delivery.. 93
5.2.1 Overview...93
5.2.2 Message Delivery...96
5.2.3 Property Delivery... 106
5.2.4 Command Delivery... 112
5.3 Custom Topic Communications... 127
5.3.1 Overview.. 128
5.3.2 Custom Topics Starting with $oc... 129
5.3.3 Custom Topics Not Starting with $oc.. 132
5.4 M2M Communications... 135
5.4.1 Overview.. 135
5.4.2 Usage.. 136
5.4.3 Example.. 140
5.5 Device Topic Policies.. 144
5.5.1 Overview.. 144
5.5.2 Content... 146
5.5.3 Usage.. 149
5.5.4 Examples.. 152
5.6 Broadcast Communication.. 162
5.6.1 Broadcast Communication Overview... 162
5.6.2 Broadcast Communication Usage... 163
5.6.3 Broadcast Communication Example...164
5.7 Codecs.. 167

6 Device Management.. 170
6.1 Product Creation... 170
6.2 Registering Devices.. 173
6.2.1 Registering an Individual Device..173
6.2.2 Registering a Batch of Devices... 176
6.2.3 Registering a Device Authenticated by an X.509 Certificate... 178
6.2.4 Device Self-Registration.. 184
6.3 Device Management... 188
6.4 Groups and Tags... 193
6.5 Advanced Search...202
6.6 Device Shadow.. 205
6.7 OTA Upgrade..213
6.7.1 Software/Firmware Package Upload..213
6.7.2 OTA Upgrade for NB-IoT Devices.. 217
6.7.3 OTA Upgrade for MQTT Devices..223

IoT Device Access
User Guide Contents

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

6.7.4 OTA Upgrade for a Batch of Devices..228
6.8 File Upload..233
6.9 Gateways and Child Devices...237
6.10 Authentication Credentials... 240
6.11 Device Certificates... 243

7 Rules...247
7.1 Overview..247
7.2 Data Forwarding Process... 248
7.3 SQL Statements.. 256
7.4 Connectivity Tests... 262
7.5 Data Forwarding to Huawei Cloud Services... 264
7.5.1 Forwarding Data to DIS.. 264
7.5.2 Forwarding Data to GeminiDB Influx.. 268
7.5.3 Forwarding Data to DMS for Kafka for Storage.. 272
7.5.4 Forwarding Data to FunctionGraph..275
7.5.5 Forwarding Data to MySQL for Storage... 284
7.5.6 Forwarding Device Data to OBS for Long-Term Storage.. 289
7.6 Data Forwarding to Third-Party Applications...293
7.6.1 Forwarding Modes.. 293
7.6.2 HTTP/HTTPS Data Forwarding... 295
7.6.3 AMQP Data Forwarding... 304
7.6.3.1 Overview... 304
7.6.3.2 AMQP Server Configuration...306
7.6.3.3 AMQP Queue Alarm Configuration.. 308
7.6.3.4 AMQP Client Access.. 311
7.6.3.5 Java SDK Access Example... 315
7.6.3.6 Node.js SDK Access Example... 321
7.6.3.7 C# SDK Access Example.. 322
7.6.3.8 Android SDK Access Example.. 326
7.6.3.9 Python SDK Access Example..332
7.6.3.10 Go SDK Access Example..334
7.6.4 MQTT Data Forwarding.. 338
7.6.4.1 Overview... 338
7.6.4.2 MQTT Server Configuration... 339
7.6.4.3 MQTT Client Access.. 343
7.6.4.4 Java Demo Usage Guide... 345
7.6.4.5 Python Demo.. 349
7.6.4.6 GO Demo..353
7.6.4.7 Node.js Demo..356
7.6.4.8 C# Demo...358
7.6.5 M2M Communications.. 364
7.7 Data Forwarding Channel Details...365

IoT Device Access
User Guide Contents

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iv

7.8 Data Forwarding Stack Policies... 367
7.9 Data Forwarding Flow Control Policies...369
7.10 Abnormal Data Target... 371
7.11 Device Linkage.. 376
7.11.1 Cloud Rules... 376
7.11.2 Device-side Rules.. 382

8 Monitoring and O&M...393
8.1 Message Trace... 393
8.2 Reports... 394
8.3 Alarms.. 406
8.4 Audit Logs... 416
8.5 Run Logs (Old Version).. 425
8.6 Run Logs (New Version).. 433
8.7 Anomaly Detection.. 441
8.8 Remote Login... 448
8.9 Remote Device Configuration.. 450

9 Granting Permissions Using IAM...454
9.1 Agency Authorization..454

IoT Device Access
User Guide Contents

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. v

1 Overview

IoT Device Access (IoTDA) lets you connect and manage an enormous number of
devices. It can be used together with other Huawei Cloud services to quickly
construct IoT applications, simplify device management, and reduce manual
operations, thereby improving management efficiency. Using the IoTDA console,
you can create, develop, and debug products, register, manage, and authenticate
devices, and upgrade software and firmware. You can also create rules for device
linkage and data forwarding. In addition, you can monitor the device status based
on reports generated from product and device data.

Function Description

Product A product is a collection of devices with the same capabilities or
features. On the IoTDA console, you can quickly develop product
models and codecs, and use functions such as online debugging
and topic customization in end-to-end (E2E) IoT development. This
helps you improve integration development efficiency and shorten
the construction period of IoT solutions.

Product
model

A product model defines the properties of a device, such as the
color, size, collected data, identifiable commands, and reported
events. You can create a product model on the IoTDA console.

Device A device is a physical entity that belongs to a product. Each device
has a unique ID. It can be a device directly connected to the
platform, or a gateway that connects child devices to the platform.

Device
authentic
ation

The platform authenticates devices that attempt to access it.
Currently, the platform supports two authentication modes: secret
authentication and X.509 authentication. After the verification is
successful and the device is connected to the platform, the devices
can communicate with the platform.

Group
and tag

A group is a collection of devices. You can create groups for all the
devices in a resource space based on different rules, such as regions
and types, and you can operate the devices by group.
You can define tags and bind tags to devices.

IoT Device Access
User Guide 1 Overview

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

Function Description

Software
and
firmware
upgrades

You can upgrade software and firmware of devices that support
LwM2M and MQTT in over the air (OTA) mode.

Device
shadow

A device shadow is a JSON file that stores the device status, latest
device properties reported, and device configurations to deliver.
Each device has only one shadow. A device can retrieve and set its
shadow to synchronize the status, either from the shadow to the
device or from the device to the shadow.

Gateway
and child
device

Devices can be directly or indirectly connected to the IoT platform.
Indirectly connected devices access the platform through gateways.

Rule You can set rules for devices connected to the platform. If the
conditions set in a rule are met, the platform triggers the
corresponding action. Device linkage and data forwarding rules are
available.

Monitori
ng and
O&M

IoTDA provides monitoring and O&M functions such as statistics
reports, online debugging, message tracing, current alarms, and run
logs. You can also monitor the device running status, device
communications, and user operations, and quickly trace and locate
faults, ensuring device reliability and security.

Resource
space

Resource space is a space allocated for your applications. Resources
(such as products and devices) created on the platform must
belong to a resource space. You can use the resource space for
domain-based management.

IoTDA
instance

To meet the requirements of enterprise customers with different
IoT device scales, IoTDA provides three editions: basic (shared
instance), standard (standard instance), and enterprise (dedicated
instance). You can purchase the most appropriate instance type and
instance specifications based on your service scenario, device scale,
and data collection frequency.

Data
reporting

After being registered with the platform and powered on, a device
can collect and report data based on the service logic. Data
collection and reporting can be triggered by a schedule or by
specific events.

Data
forwardin
g

The data forwarding function connects IoTDA with other Huawei
Cloud or third-party cloud services to smoothly transfer device data
to the message middleware, storage and data analysis services, and
applications.

Comman
d delivery

A product model defines commands that can be delivered to the
devices. Applications can call platform APIs to deliver commands to
the devices to effectively manage these devices.

IoT Device Access
User Guide 1 Overview

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

Browser Requirements
To ensure good display effect and ease of use, use a browser with good
compatibility. The table below lists the browser requirements.

Browser
Type

Version Requirements Recommende
d Resolution

Microsoft
Edge

The latest three stable versions are supported
and tested.

1366 x 768

Firefox The latest three stable versions are supported
and tested.

Google
Chrome

The latest three stable versions are supported
and tested.

IoT Device Access
User Guide 1 Overview

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

2 IoTDA Instances

2.1 Overview
IoTDA uses instances to implement data and resource isolation. Currently, the
platform provides standard edition (standard instance).

● Standard Edition

You can experience all functions of Standard Edition free of charge within the
limit on the number of messages and devices per day.

If you want to increase device and message quotas, modify the configuration
on the instance page and select units with desired specifications.

Restrictions on Purchasing Instances

Note the following restrictions to prevent purchasing and creation failures:

● Restrictions on purchasing standard edition instances

– Each tenant can subscribe to only one free trial instance in the same
region.

2.2 Buying an Instance

Procedure

Step 1 In the navigation pane, choose IoTDA Instances, click Buy Instance, and select
Enterprise.

Step 2 Enter configuration information about the instance. The system automatically
calculates the fee based on Instance Specifications and Required Duration.

Parameter Description

Billing Mode Billing mode of an instance. The value is fixed at Yearly/
Monthly.

IoT Device Access
User Guide 2 IoTDA Instances

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

Parameter Description

Region Region where IoTDA is deployed. Currently, CN North-Beijing4,
CN East-Shanghai1, and CN South-Guangzhou are supported.
NOTE

Select a nearby region to ensure the lowest latency possible.

Network Select an available VPC and subnet.
Create a VPC on the VPC console.

Security
Group

Select a security group. Create a security group on the VPC
console.

Public
Network
Access

Set this parameter based on your requirements. If configured,
devices can access the platform via the Internet.

Private
Network
Access

● If you select Create Provide Network Access Point, a VPC
endpoint is automatically purchased and an access address is
automatically allocated.

● If it is not selected, private network ingestion is still required.
You can purchase VPC endpoints for connection.

Access Ports You can configure access ports or use the default ports. The
following ports are provided:
Application access: HTTPS (443) and AMQPS (5671)
Device access: CoAP (5683), CoAPS (5684), MQTT (1883),
MQTTS (8883), and HTTPS (443)

Instance
Version

Select Enterprise.

Enterprise
Project

This parameter is displayed only for enterprise users who have
enabled the enterprise project function. Enterprise projects let
you manage cloud resources and users by project. For details,
see Enterprise Center Overview.

Tags Tags are key-value pairs, which are used to identify, classify, and
search for instances. Instance tags are used to filter and manage
instances only. For details, see Instance Tag Management.

Instance
Name

Set a name for easy management. The value can contain a
maximum of 64 characters consisting of letters, numbers,
underscores (_), and hyphens (-).

Cryptographi
c Algorithm

General cryptographic algorithms (such as RSA and SHA-256)
and SM series commercial cryptographic algorithms (Chinese
cryptographic algorithms such as SM2, SM3, and SM4) are
available.

Description Provide a description for the instance, which can be a brief
description based on the instance user and usage.

IoT Device Access
User Guide 2 IoTDA Instances

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

https://console-intl.huaweicloud.com/vpc/?locale=en-us#/vpcs
https://console-intl.huaweicloud.com/vpc/?locale=en-us#/secGroups
https://console-intl.huaweicloud.com/vpc/?locale=en-us#/secGroups
https://www.huaweicloud.com/intl/en-us/product/vpcep.html
https://support.huaweicloud.com/intl/en-us/usermanual-em/en-us_topic_0123692049.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0151.html

Parameter Description

Required
Duration

Select a duration as required.
You can select Auto-renew so the instance will be automatically
renewed when it expires.

Step 3 Click Buy.

Step 4 Confirm the specifications and click Pay.

Step 5 On the payment page, select a payment method and click Pay.

----End

Buying a Standard Edition Instance
The standard instance provides configurable instance specifications. You can
purchase more economical instances based on your service model.

Before the purchase, browse the overall process for a more efficient operation.

Procedure

Step 1 In the navigation pane, choose IoTDA Instances, click Buy Instance, and select
Standard.

Step 2 Enter configuration information about the instance. The system automatically
calculates the fee based on instance specifications and the pay-per-use mode.

Parameter Description

Billing Mode Billing mode of an instance. Currently, only Pay-per-use is
supported..

Region Region where IoTDA is available. Currently, AP-Bangkok, AP-
Singapore, AF-Johannesburg, LA-Sao Paulo1, and CN-Hong Kong
are supported.
NOTE

Select a nearby region to ensure the lowest latency possible.

IoT Device Access
User Guide 2 IoTDA Instances

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

Parameter Description

Specification
s

SUF unit with free specifications, SU1 unit with small
specifications, SU2 unit with medium specifications, SU3 unit
with large specifications, and SU4 unit with ultra-large
specifications are available. You can obtain the recommended
instance specifications based on the required upstream and
downstream TPS.
NOTE

● Instance specifications of Standard Edition = Number of units in the
instance x Specifications of each unit

● A Standard Edition instance can contain multiple units of the same
type. The maximum number of units in a single instance is 100, and
the maximum TPS of upstream and downstream messages of a single
instance is 100,000. For example, even if an instance contains 100 S3
units, the maximum TPS of the instance is 100,000.

● You can increase the number of units in the instance online, for
example, upgrading a standard instance from three SU1 units to five
SU2 units.

● An instance cannot contain different types of units, for example, M
SU1 units and N SU2 units.

Enterprise
Project

This parameter is displayed only for enterprise users who have
enabled the enterprise project function. Enterprise projects let
you manage cloud resources and users by project. For details,
see Enterprise Center Overview.

Tags Tags are key-value pairs, which are used to identify, classify, and
search for instances. Instance tags are used to filter and manage
instances only. For details, see Instance Tag Management.

Instance
Name

Enter a name for easy management. The value can contain a
maximum of 64 characters consisting of letters, numbers,
underscores (_), and hyphens (-).

Description Provide a description for the instance, which can be a brief
description based on the instance user and usage.

Step 3 Click Buy.

Step 4 Confirm the specifications and click Submit.

----End

2.3 Instance Management

Selecting an Instance

After an instance is created, select the instance before creating products and
devices and setting other functions in the instance.

Step 1 Access the IoTDA service page and click Access Console.

IoT Device Access
User Guide 2 IoTDA Instances

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

https://support.huaweicloud.com/intl/en-us/usermanual-em/en-us_topic_0123692049.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0151.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

Step 2 In the navigation pane, choose IoTDA Instances, and click the target instance
card.

Figure 2-1 Instance management - Changing instance

----End

Viewing Instance Details

After purchasing an IoTDA instance, you can view the instance details in the
instance details page, including the instance ID, name, and specifications.

Step 1 Access the IoTDA service page and click Access Console.

Step 2 In the navigation pane, choose IoTDA Instances and click Details corresponding
to an instance.

Figure 2-2 Instance management - Instance details

----End

Modifying Instance Specifications

You can upgrade the specifications of an IoTDA instance based on service
requirements. Modifying instance specifications does not affect services.

IoT Device Access
User Guide 2 IoTDA Instances

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Step 1 Access the IoTDA service page and click Access Console.

Step 2 In the navigation pane, choose IoTDA Instances. Locate the target instance, click
Modify, and select the new instance specifications.

Step 3 Set a delay for the change to take effect. After you set a maintenance window, the
change will be performed in the scheduled time.

Figure 2-3 Instance management - Modifying specifications

----End

Unsubscribing from an Instance
If an instance is no longer required, you can choose More > Unsubscribe in the
Operation column to release your cloud service resources. For details, see
Unsubscriptions.

Figure 2-4 Instance management - Unsubscribing from an instance

2.4 Tag Management

IoT Device Access
User Guide 2 IoTDA Instances

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://support.huaweicloud.com/intl/en-us/usermanual-billing/en-us_topic_0077628999.html

2.4.1 Overview

Scenarios
You can add tags to cloud resources for quicker search. You can view, modify, and
delete these tags in a unified manner, facilitating cloud resource management.
You can also use the tags to collect resource cost statistics from the service
dimension.

Tag Naming Rules
● Each tag consists of a key-value pair.
● A maximum of 20 tags can be added for an IoTDA instance.
● For each resource, a tag key must be unique and can have only one tag value.
● A tag consists of a tag key and a tag value. Table 1 lists the tag key and value

requirements.

Table 2-1 Tag naming rules

Paramet
er

Rule Example

Tag key The value cannot be empty. Must be unique for the
same instance. A tag key can contain a maximum of
36 characters. Only letters, digits, hyphens (-),
underscores (_), and Unicode characters (\u4E00-
\u9FFF) are allowed.

Organizati
on

Tag value It can contain a maximum of 43 characters and can
be left blank. Only letters, digits, periods (.), hyphens
(-), underscores (_), and Unicode characters (\u4E00-
\u9FFF).are allowed.

Apache

NO TE

If your organization has configured tag policies for IoTDA, add tags to instances based on
the policies. If a tag does not comply with the tag policies, instance creation may fail.
Contact your administrator to learn more about tag policies.

2.4.2 Adding a Tag
You can add tags for IoTDA instances in either of the following ways:

● Adding a Tag on the Instance Details Page
● Adding a Tag on the Tag Management Service Page

For details about how to use predefined tags, see Using Predefined Tags.

Adding a Tag on the Instance Details Page

Step 1 Access the IoTDA service page and click Access Console.

IoT Device Access
User Guide 2 IoTDA Instances

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Step 2 In the navigation pane, choose IoTDA Instances and click Details under
Enterprise Edition.

Step 3 Click the Tags tab and then Add Tag. In the displayed dialog box, enter the tag
key and tag value. For details, see Tag naming rules.

Figure 2-5 Instance management - Adding a tag

----End

Adding a Tag on the Tag Management Service Page
NO TE

This method is suitable for adding tags with the same tag key to multiple resources.

Step 1 Access the IoTDA service page and click Access Console.

Step 2 In the upper right corner of the page, click the username and select Tag
Management from the drop-down list.

Figure 2-6 Tag management

Step 3 On the Resource Tags page, select the region where the resource is located, set
Resource Type to IoTDA-Instance, and click Search. All IoTDA instance resources
in the selected region are displayed.

Step 4 In the Search Result area, click Create Key. In the displayed dialog box, enter a
key (for example project) and click OK. After the tag is created, the tag key is

IoT Device Access
User Guide 2 IoTDA Instances

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

https://www.huaweicloud.com/intl/en-us/product/iotda.html

added to the resource tag list, as shown in Figure 2-7. If the tag is not contained

in the list, click and select the created tag from the drop-down list. By default,
the value of the tag key is Not tagged. You need to set a value for the tag of each
resource to associate the tag with the resource.

Figure 2-7 Instance tag - Tag management

Step 5 Click Edit to make the resource list editable.

Step 6 Select the row where the IoTDA instance resource is located, and enter the tag
value (for example, A). After a value is set for a tag key, the number of tags is
incremented by 1. Repeat the preceding steps to add tag values for other
instances.

Figure 2-8 Instance tag - Entering a tag value

----End

Using Predefined Tags
If you want to add the same tag to multiple resources, you can create a
predefined tag on the Tag Management Service (TMS) console and select the tag
for the resources. This frees you from having to repeatedly enter tag keys and
values. The procedure is as follows:

Step 1 Log in to the console.

Step 2 In the upper right corner of the page, click the username and select Tag
Management from the drop-down list.

Step 3 In the navigation pane, choose Predefined Tags. In the right pane, click Create
Tag enter a key (for example project) and a value (for example A) in the
displayed dialog box.

IoT Device Access
User Guide 2 IoTDA Instances

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

Step 4 Choose Service List > IoT Device Access and select the predefined tag by
following the procedure for adding a tag.

Figure 2-9 Instance tag - Predefined tags

----End

2.4.3 Deleting a Tag
If you no longer need a tag, delete it in any of the following ways:

● Deleting a Tag on the Instance Details Page

● Deleting a Tag on the TMS Console

● Batch Deleting Tags on the TMS Console

Deleting a Tag on the Instance Details Page

Step 1 Access the IoTDA service page and click Access Console.

Step 2 In the navigation pane, choose IoTDA Instances and click Details under
Enterprise Edition.

Step 3 Click the Tags tab. Locate the row containing the tag to be deleted and click
Delete in the Operation column. In the Delete Tag dialog box, click OK.

Figure 2-10 Instance management - Deleting a tag

----End

IoT Device Access
User Guide 2 IoTDA Instances

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Deleting a Tag on the TMS Console

Step 1 Access the IoTDA service page and click Access Console.

Step 2 In the upper right corner of the page, click the username and select Tag
Management from the drop-down list.

Figure 2-11 Tag management

Step 3 On the Resource Tags page, select the region where the resource is located, set
Resource Type to IoTDA-Instance, and click Search. All IoTDA instance resources
in the selected region are displayed.

Step 4 In the Search Result area, click Edit to make the resource tag list editable. Click

 and select the tag key to be deleted from the drop-down list. You are advised
not to select more than 10 keys to display.

IoT Device Access
User Guide 2 IoTDA Instances

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 2-12 Instance tag - Tag list

Step 5 Locate the row containing the target IoTDA instance resource and click .

Figure 2-13 Instance tag - Deleting a tag

----End

Batch Deleting Tags on the TMS Console

Step 1 Access the IoTDA service page and click Access Console.

Step 2 In the upper right corner of the page, click the username and select Tag
Management from the drop-down list.

Step 3 On the Resource Tags page, select the region where the resource is located, set
Resource Type to IoTDA-Instance, and click Search. All IoTDA instance resources
in the selected region are displayed.

Step 4 Select the IoTDA instance resource whose tag is to be deleted.

Step 5 Click Manage Tag in the upper left corner of the list.

Step 6 In the displayed Manage Tag dialog box, click Delete in the Operation column.
Click OK.

IoT Device Access
User Guide 2 IoTDA Instances

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 2-14 Instance tag - Deleting tags in batches

----End

2.4.4 Searching for Resources by Tag
After adding tags to cloud resources, you can use the methods described in this
section to search for resources by tag.

Filtering Resources By Tag

Step 1 Access the IoTDA service page and click Access Console.

Step 2 In the upper right corner of the page, click the username and select Tag
Management from the drop-down list.

Figure 2-15 Tag management

IoT Device Access
User Guide 2 IoTDA Instances

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Step 3 On the Resource Tags page, set the search criteria, including Region, Resource
Type, and Resource Tag.

Step 4 Click Search. All the resources that meet the search criteria will be displayed.

Figure 2-16 Instance tag - Searching for resources by tag

----End

IoT Device Access
User Guide 2 IoTDA Instances

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

3 Resource Spaces

Resource space is a space allocated for your applications. Resources (such as
products and devices) created on the platform must belong to a resource space.
You can use the resource space for domain-based management.

● You can create a maximum of 10 resource spaces. By default, the space
automatically created by the platform when the IoTDA service is subscribed to
for the first time is the default resource space.

● An app_id, which is a unique identifier of a resource space, is allocated by the
platform when the resource space is created. app_id is also used in API calls.

● After a resource space is created, you can view its app_id in the resource
space.

● The default resource space cannot be deleted. After a resource space is
deleted, all resources in the space, such as devices, products, and subscription
data, are deleted from the platform and cannot be restored. Exercise caution
when deleting a resource space.

Creating a Resource Space

When you subscribe to IoTDA for the first time, the platform automatically creates
the default resource space. Each instance has only one default resource space,
which cannot be deleted.

You can create a product or register a device in the default resource space. You
can also perform the following steps to create a resource space:

Figure 3-1 Resource space - Resource space list

IoT Device Access
User Guide 3 Resource Spaces

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

NO TE

If you subscribed to IoTDA before 00:00 on Apr 27, 2020, see Which Resource Space Will
Be Set As Default on the IoT Platform?.

Step 1 Access the IoTDA service page and click Access Console.

Step 2 In the navigation pane, choose IoTDA Instances, and click the target instance
card.

Step 3 In the navigation pane, choose Resource Spaces. On the displayed page, click
Create Resource Space. On the displayed dialog box, set Space Name and click
OK.

The resource space name must be unique under the account.

Figure 3-2 Resource space - Creating a resource space

----End

Querying a Resource Space
After a resource space is created, choose Resource Spaces and click View to check
the app ID (app_id), creation time, number of products, number of devices,
number of groups, and number of created rules under the resource space. To
create products, devices, groups, and rules in another resource space, switch to the
target resource space.

Figure 3-3 Resource space - Viewing resource spaces

IoT Device Access
User Guide 3 Resource Spaces

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

https://support.huaweicloud.com/intl/en-us/iothub_faq/iothub_faq_00104.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iothub_faq_00104.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

4 Device Access

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

4.1 Overview

Device Access Process

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

Figure 4-1 Device access process

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Platform Connection Information
1. Log in to the IoTDA console. In the navigation pane, choose IoTDA

Instances, and click the target instance card.

Figure 4-2 Instance management - Changing instance

2. In the navigation pane, choose Overview. In the Instance Information area,
click Access Details.

Figure 4-3 Obtaining access information

Certificates
The following certificates are used when devices and applications need to verify
IoTDA.

NO TE

● The certificates apply only to Huawei Cloud IoTDA and must be used together with the
corresponding domain name.

● CA certificates cannot be used to verify server certificates after their expiration dates.
Replace these certificates before expiration dates to ensure that devices can connect to
the IoT platform properly.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

Table 4-1 Certificates

Certificate
Package
Name

Region
and
Edition

Cer
tifi
cat
e
Typ
e

Certific
ate
Format

Description Downloa
d Link

certificate CN-
Hong
Kong,
AP-
Singapo
re, AP-
Bangko
k, AF-
Johanne
sburg,
LA-
Santiag
o, LA-
Sao
Paulo1,
and
ME-
Riyadh

Dev
ice
cert
ifica
te

pem,
jks, and
bks

Used by a device to
verify the platform
identity. The certificate
must be used together
with the device access
domain name.

Certifica
te file

4.2 Device Authentication

4.2.1 Overview
IoTDA authenticates a device when the device attempts to access the platform.
The authentication process depends on the access method.

Access Type Authentication Mode

Device using
LwM2M over CoAP

You can call the API for creating a device or use the
IoTDA console to register a device. Then, when connecting
to the platform, a non-security device does not use DTLS/
DTLS+, and carries the node ID to get authenticated. A
security device uses DTLS/DTLS+, and carries both the
secret and node ID to get authenticated.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

https://iot-developer.obs.cn-north-4.myhuaweicloud.com/cert/v2/ap-southeast-1-deviceCert-standard-instance.zip
https://iot-developer.obs.cn-north-4.myhuaweicloud.com/cert/v2/ap-southeast-1-deviceCert-standard-instance.zip
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html

Access Type Authentication Mode

Device using
MQTT or MQTTS

● Using secrets:
You can call the API for creating a device or use the
IoTDA console to register a device. Then, you can
hardcode the device ID and secret returned by the
platform into the device, and preset a CA certificate on
the device if it uses MQTTS protocols. When connecting
to the platform, the device uses the device ID and
secret to get authenticated.

● Using certificates:
You can upload a device CA certificate on the IoTDA
console, and register the device, either by calling the
API for creating a device or using the console. Then,
you can hardcode the device ID returned by the
platform into the device. When connecting to the
platform, the device uses the X.509 certificate to get
authenticated.

● Using custom authentication:
Before connecting a device to the platform, you can use
the application to configure custom authentication
information on the console, and then configure custom
authentication functions by using FunctionGraph.
When the device connects to IoTDA, the platform
obtains parameters such as the device ID and custom
authentication function name, and sends an
authentication request to FunctionGraph. The user
implements the authentication logic to complete access
authentication.

● Using custom templates:
You can use a custom authentication template to
orchestrate internal functions provided by the platform
and flexibly customize triplet parameters ClientId,
Username, and Password for MQTT device
authentication.

4.2.2 LwM2M/CoAP Authentication

Introduction
LwM2M/CoAP authentication supports both encrypted and non-encrypted access
modes. Non-encrypted mode: Devices connect to IoTDA carrying the node ID
through port 5683. Encrypted mode: Devices connect to IoTDA carrying node ID
and secret through port 5684 by the DTLS/DTLS+ channel.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0110.html

Authentication for Devices Using LwM2M over CoAP

Figure 4-4 LwM2M/CoAP access authentication process

1. An application calls the API for creating a device to register a device.
Alternatively, a user uses the IoTDA console to register a device.

2. The platform allocates a secret to the device and returns timeout.

NO TE

● The secret can be defined during device registration. If no secret is defined, the
platform allocates one.

● If the device is not connected to the platform within the duration specified by
timeout, the platform deletes the device registration information.

3. During login, the device sends a connection authentication request carrying
the node ID (such as the IMEI) and secret if it is a security device, or carrying
the node ID if it is a non-security device.

4. If the authentication is successful, the platform returns a success message,
and the device is connected to the platform.

4.2.3 MQTT(S) Secret Authentication

Introduction

MQTT(S) secret authentication requires a device to have its ID and secret for
access authentication. For devices connected through MQTTS, a CA certificate
must be preconfigured on the devices.

Procedure

Figure 4-5 MQTT(S) secret authentication process

1. An application calls the API for creating a device to register a device.
Alternatively, a user uses the IoTDA console to register a device.

NO TE

During registration, use the MAC address, serial number, or IMEI of the device as the
node ID.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

2. The platform allocates a globally unique device ID and secret to the device.

NO TE

The secret can be defined during device registration. If no secret is defined, the
platform allocates one.

3. The device needs to integrate the preset CA certificate (only for the
authentication process of MQTTS access).

4. During login, the device sends a connection request carrying the device ID and
secret.

5. If the authentication is successful, the platform returns a success message,
and the device is connected to the platform.

4.2.4 MQTT(S) Certificate Authentication

Introduction
MQTT(S) certificate authentication requires you to upload a device CA certificate
on the console first. Then, you can either use the API for creating a device or
register the device on the console to get the device ID. When the device accesses
the IoT platform, it carries the X.509 certificate for authentication, which is a
digital certificate used to authenticate the communication entity.

Constraints
● Only MQTT devices can use X.509 certificates for identity authentication.
● You can upload up to 100 device CA certificates.

Procedure

Figure 4-6 MQTT(S) certificate authentication process

1. A user uploads a device CA certificate on the IoTDA console.
2. An application calls the API for creating a device to register a device.

Alternatively, a user uses the IoTDA console to register a device.

NO TE

During registration, use the MAC address, serial number, or IMEI of the device as the
node ID.

3. The platform allocates a globally unique device ID to the device.
4. During login, the device sends a connection request carrying the X.509

certificate to the platform.
5. If the authentication is successful, the platform returns a success message,

and the device is connected to the platform.

APIs
● Create a Device

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0055.html#section4
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0055.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html

● Reset a Device Secret
● Obtain the Device CA Certificate List
● Upload a Device CA Certificate
● Delete a Device CA Certificate
● Verify a Device CA Certificate

4.2.5 MQTT(S) Custom Authentication

4.2.5.1 Overview

Introduction

You can use FunctionGraph to customize the identity authentication logic for
devices connected to the platform.

Before connecting a device to the platform, you can use the application to
configure custom authentication on the console, and then configure related
functions by using FunctionGraph. When the device connects to the platform, the
platform obtains parameters such as the device ID and custom authentication
function name, and sends an authentication request to FunctionGraph. The user
implements the authentication logic to complete access authentication.

Figure 1 Custom authentication architecture

Application Scenarios
● Device migration from third-party cloud platforms to IoTDA: You can

configure the custom logic to make it compatible with the original
authentication mode. No modification is required on the device side.

● Native access: Custom templates provide flexible authentication.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0093.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0022.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0016.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0110.html

Constraints
● The device must use TLS and support SNI (Server Name Indication). The SNI

must carry the domain name allocated by the platform.
● By default, each user can configure up to 10 custom authenticators.
● Max. processing time: 5 seconds. If the function does not return any result

within 5 seconds, the authentication fails.
● For max. TPS of authentication requests of a user, see Specifications. The

max. TPS of custom authentication is 50% of the total authentication TPS
(excluding device self-registration).

● If you have enabled the function of caching FunctionGraph authentication
results, the modification takes effect only after the cache expires.

● The custom authentication mode is preferentially used for device access if
conditions are met, for example, the custom authenticator name carried by
the device is matched or a default custom authenticator has been configured.

4.2.5.2 Usage

Process

Figure 4-7 Custom authentication process

Procedure

Step 1 Use FunctionGraph to create a custom authentication function.

Figure 4-8 Function list - Creating a function

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

https://datatracker.ietf.org/doc/html/rfc3546#section-3.1
https://support.huaweicloud.com/intl/en-us/productdesc-iothub/iot_04_0014.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0110.html

Figure 4-9 Creating a function - Parameters

Step 2 Configure custom authentication on the console for storage, management, and
maintenance. You can configure up to 10 custom authenticators and choose one
as the default.

Figure 4-10 Custom authentication - Creating an authenticator

Table 4-2 Custom authentication parameters

Parameter Mandat
ory

Description

Authenticatio
n Name

Yes Enter a custom authenticator name.

Function Yes Select the corresponding function from the list created with
FunctionGraph in Step 1.

Status Yes To use an authenticator, you must first enable it as it is disabled by
default.

Signature
Authenticatio
n

Yes After this function is enabled (by default), authentication information
that does not meet signature requirements will be rejected to reduce
invalid function calls.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

Parameter Mandat
ory

Description

Token No Token for signature authentication. Used to check whether a device's
signature information is valid.

Public Key No Public key for signature authentication. Used to check whether a
device's signature information is valid.

Default Mode Yes After this function is enabled (disabled by default), if the username in
an authentication request does not contain the authorizer_name
parameter, this authenticator is used.

Caching Yes Whether to cache FunctionGraph authentication results (disabled by
default). The cache duration ranges from 300 minutes to 1 day.

Step 3 The device initiates a CONNECT request using MQTT. The request must carry the
username parameter, which contains optional parameters related to custom
authentication.
● Username format requirements: Remove braces ({}) and separate each

parameter by a vertical bar (|). Do not add vertical bars (|) in the parameter
content.
{device-identifier}|authorizer-name={authorizer-name}|authorizer-signature={token-signature}|signing-
token={token-value}
Example:
659b70a0bd3f665a471e5ec9_auth|authorizer-name=Test_auth_1|authorizer-signature=***|signing-
token=tokenValue

Table 4-3 Description of the username parameter

Parameter Man
dato
ry

Description

device-
identifier

Yes Device identifier. You are advised to set it to the
device ID.

authorizer-
name

No Custom authenticator name, which must be the
same as the configured authenticator. If this
parameter is not carried, the system will use either
the default custom authenticator (if configured) or
the original secret/certificate authentication mode.

authorizer-
signature

No This parameter is mandatory when the signature
verification function is enabled. Obtain the value by
encrypting the private key and signing-token. The
value must be the same as the authentication name
used in Step 2.

signing-token No This parameter is mandatory when the signature
verification function is enabled. The value is used
for signature verification and must be the same as
the token value used in Step 2.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

● Run the following command to obtain authorizer-signature:
echo -n {signing-token} | openssl dgst -sha256 -sign {private key} | openssl base64

Table 4-4 Command parameters

Parameter Description

echo -n {signing-
token}

Run the echo command to output the value of
signing-token and use the -n parameter to
remove the newline character at the end. The
value of signing-token must be the same as that
of the token in Step 2.

openssl dgst -sha256 -
sign

Hash the input data with the SHA-256 algorithm.

{private key} Private key encrypted using the RSA algorithm.
You can upload a private key file in .pem or .key
format.

openssl base64 Encode the signature result using Base64 for
transmission and storage.

Step 4 When receiving an authentication request, IoTDA determines whether to use the
custom authentication mode based on the username parameter and related
configuration.

1. The system checks whether the username carries the custom authentication
name. If yes, the authenticator processing function is matched based on the
name. If no, the default custom authenticator is used to match the
authentication processing function. If no matching is found, the original key/
certificate authentication mode is used.

2. The system checks whether signature verification is enabled. If yes, the system
checks whether the signature information carried in the username can be
verified. If the verification fails, an authentication failure message is returned.

3. After the processing function is matched, the device authentication
information (that is, the input parameter event of Step 5) is carried and an
authentication request is sent to FunctionGraph through the function URN.

Step 5 Develop based on the processing function created with FunctionGraph in Step 1.
The function return result must meet the following requirements:
exports.handler = async (event, context) => {
 console.log("username=" + event.username);
 // Enter the validation logic.

 // Returned JSON format (fixed)
 const authRes = {
 "result_code": 200,
 "result_desc": "successful",
 "refresh_seconds": 300,
 "device": {
 "device_id": "myDeviceId",
 "provision_enable": true,
 "provisioning_resource": {
 "device_name": "myDeviceName",
 "node_id": "myNodeId",

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

 "product_id": "myProductId",
 "app_id": "customization0000000000000000000",
 "policy_ids": ["657a4e0c2ea0cb2cd831d12a", "657a4e0c2ea0cb2cd831d12b"]
 }
 }
 }
 return JSON.stringify(authRes);
}

Request parameters (event, in JSON format) of the function:

{
 "username": "myUserName",
 "password": "myPassword",
 "client_id": "myClientId",
 "certificate_info": {
 "common_name": "",
 "fingerprint": "123"
 }
}

Table 4-5 Request parameters

Parameter Type Mandator
y

Description

username String Yes The username field in the MQTT
CONNECT message, the format of
which is the same as that of the
username field in Step 3.

password String Yes password parameter in the MQTT
CONNECT message.

client_id String Yes clientId parameter in the MQTT
CONNECT message.

certificate_in
fo

JsonObject No Device certificate information in the
MQTT CONNECT message.

Table 4-6 certificate_info: certificate information

Parameter Type Man
dato
ry

Description

common_name String Yes Common name parsed from the device
certificate carried by the device.

fingerprint String Yes Fingerprint information parsed from the
device certificate carried by the device.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

Table 4-7 Returned parameter information

Parameter Type Mandator
y

Description

result_code Integer Yes Authentication result code. If 200 is
returned, the authentication is
successful.

result_desc String No Description of the authentication
result.

refresh_seco
nds

Integer No Cache duration of the authentication
result, in seconds.

device JsonObject No Device information when the
authentication is successful. When
self-registration is enabled, the
platform creates a device based on the
device information provided if the
corresponding device ID does not
exist.

Table 4-8 Device information

Parameter Type Mandator
y

Description

device_id String Yes A globally unique device ID. This
parameter is mandatory in both self-
registration and non-self-registration
scenarios. If this parameter is carried,
the platform sets the device ID to the
value of this parameter.
Recommended format: product_id + _
+ node_id. The value can contain up to
128 characters. Only letters, digits,
underscores (_), and hyphens (-) are
allowed. You are advised to use at
least 4 characters.

provision_ena
ble

Boolean No Whether to enable self-registration.
Default value: false.

provisioning_r
esource

JsonObje
ct

Mandator
y in the
self-
registratio
n scenario

Self-registration parameters.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

Table 4-9 provisioning_resource self-registration parameters

Parameter Type Mandator
y

Description

device_name String No Device name, which uniquely identifies
a device in a resource space. The value
can contain up to 256 characters. Only
letters, digits, and special characters
(_?'#().,&%@!-) are allowed. You are
advised to use at least 4 characters.
Min. characters: 1
Max. characters: 256

node_id String Yes Device identifier. This parameter is set
to the IMEI, MAC address, or serial
number. It contains 1 to 64 characters
(recommended length: 4), including
letters, digits, hyphens (-), and
underscores (_). (Note: Information
cannot be modified once it is
hardcoded to NB-IoT modules.
Therefore, the node ID of an NB-IoT
must be globally unique.)

product_id String Yes Unique ID of the product associated
with the device. The value is allocated
by IoTDA after the product is created.
The value can contain up to 256
characters. Only letters, digits, and
special characters (_?'#().,&%@!-) are
allowed. You are advised to use at
least 4 characters.
Min. characters: 1
Max. characters: 256

app_id String Yes Resource space ID, which specifies the
resource space to which the created
device belongs. The value is a string of
no more than 36 characters. Only
letters, digits, underscores (_), and
hyphens (-) are allowed.

policy_ids List<String
>

No Topic policy ID.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

Figure 4-11 Compiling a function - Deployment

Step 6 After receiving the result, FunctionGraph checks whether the self-registration is
required. If yes, FunctionGraph triggers automatic device registration. By default,
all self-registered devices are authenticated using secrets, which are randomly
generated. After receiving the authentication result, IoTDA proceeds with the
subsequent process.

----End

4.2.6 MQTT(S) Custom Template Authentication

4.2.6.1 Overview

Introduction
In addition to the default authentication mode, you can also use the internal
functions provided by the platform to flexibly orchestrate authentication modes
for devices connecting to the platform.

Application Scenarios
● Device migration from third-party IoT platforms to IoTDA: You can configure a

custom template to be compatible with the original authentication mode. No
modification is required on the device side.

● Native access: Custom templates can support more devices.

Constraints
1. The device must use TLS and support SNI (Server Name Indication). The SNI

must carry the domain name allocated by the platform.
2. Max. templates: five for a user. Only one template can be enabled at a time.
3. Max. functions nested: five layers.
4. Max. content length: 4,000 characters. Chinese character not allowed.
5. When the device uses secret authentication, the template password function

must contain the original secret parameter (iotda::device:secret).
6. The format of the template authentication parameter username cannot be

the same as that of the custom function authentication parameter username.
Otherwise, the custom function authentication is used. For example:

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html
https://datatracker.ietf.org/doc/html/rfc3546#section-3.1

{deviceId}|authorizer-name={authorizer-name}|xxx

7. As custom authentication templates have higher priority, once you activate a
custom authentication template, the platform uses the template instead of
the default mode.

4.2.6.2 Usage

Process

Figure 4-12 Process of authentication based on custom templates

Procedure

Step 1 Create an authentication template. Specifically, log in to the IoTDA console, in the
navigation pane, choose Devices > Custom Authentication, click Custom
Template, and click Create Template. The authentication template used in this
example is the same as that used in the default authentication.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html

Figure 4-13 Custom authentication - Creating a template

The overall content of the template is as follows:

{
 "template_name": "system-default-auth",
 "description": "Example of the default authentication template of Huawei Cloud IoTDA",
 "status": "ACTIVE",
 "template_body": {
 "parameters": {
 "iotda::mqtt::client_id": {
 "type": "String"
 },
 "iotda::mqtt::username": {
 "type": "String"
 },
 "iotda::device::secret": {
 "type": "String"
 }
 },
 "resources": {
 "device_id": {
 "Ref": "iotda::mqtt::username"
 },
 "timestamp": {
 "type": "FORMAT",
 "pattern": "yyyyMMddHH",
 "value": {
 "Fn::SubStringAfter": [
 "${iotda::mqtt::client_id}",
 "_0_1_"
]
 }
 },
 "password": {
 "Fn::HmacSHA256": [
 "${iotda::device::secret}",
 {
 "Fn::SubStringAfter": [
 "${iotda::mqtt::client_id}",
 "_0_1_"
]
 }
]
 }
 }
 }
}

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

Table 4-10 Authentication template parameters

Parameter Name Ma
nda
tory

Description

template_n
ame

Template
name

Yes Template name. The name must be unique
for a single user. Max. length: 128 characters.
Use only letters, digits, underscores (_), and
hyphens (-).

description Descriptio
n

No Template description. Max. length: 2,048
characters. Use only letters, digits, and special
characters (_?'#().,&%@!-).

status Status No Template status. By default, a template is not
enabled. A user can only have one enabled
template at a time.

parameters Parameter Yes MQTT connection parameters predefined by
the platform. When a device uses password
authentication, the template must contain
the original secret parameter
(iotda::device:secret).
The platform predefines the following
parameters:
iotda::mqtt::client_id: Client Id in the MQTT
connection parameter triplet
iotda::mqtt::username: User Name in the
MQTT connection parameter triplet
iotda::certificate::country: device certificate
(country/region, C)
iotda::certificate::organization: device
certificate (organization, O)
iotda::certificate::organizational_unit:
device certificate (organization unit, OU)
iotda::certificate::distinguished_name_qualif
ier: device certificate (distinguishable name
qualifier, dnQualifier)
iotda::certificate::state_name:
device_certificate (province/city, ST)
iotda::certificate::common_name: device
certificate (common name, CN)
iotda::certificate::serial_number: device
certificate (serial number, serialNumber)
iotda::device::secret: original secret of the
device

device_id Device ID
function

Yes Function for obtaining the device ID, in JSON
format. The platform parses this function to
obtain the corresponding device information.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

Parameter Name Ma
nda
tory

Description

timestamp Timestamp
verification

No Whether to verify the timestamp in the
device connection information.
Recommended: Enable this function if the
device connection parameters (clientId and
username) contain the timestamp.
Verification process: The platform compares
the timestamp carried by the device with the
platform system time. If the timestamp plus
1 hour is less than the platform system time,
the verification fails.

type Timestamp
type

No UNIX: Unix timestamp. Long integer, in
seconds.
FORMAT: formatted timestamp, for example,
2024-03-28 11:47:39 or 2024/03/28
03:49:13.

pattern Timestamp
format

No Time format template. Mandatory when the
timestamp type is FORMAT.
y: year
M: month
d: day
H: hour
m: minute
s: second
S: millisecond
Example: yyyy-MM-dd HH:mm:ss and
yyyy/MM/dd HH:mm:ss

value Timestamp
function

No Function for obtaining the timestamp when
the device establishes a connection.
Mandatory when timestamp verification is
enabled.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

Parameter Name Ma
nda
tory

Description

password MQTT
password
function

No Password function. Mandatory when the
device authentication type is secret
authentication. The template parameters
must contain the original device secret
parameter (iotda::device:secret). For details
about the device authentication type, see
Registering an Individual Device.
Verification process: The platform uses
parameters such as the original secret of the
device in the function to calculate. If the
result is the same as the password carried in
the connection establishment request, the
authentication is successful. Otherwise, the
authentication fails.

Step 2 Select a device debugging template. Specifically, click Debug, select a device for
debugging, enter MQTT connection parameters, and click Debug to view the
result. Note: If clientId in the standard format is used, the platform verifies
whether the value of username is the same as the prefix of clientId.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html

Figure 4-14 Custom template - Debugging

After the device debugging is successful, click Enable to enable the template.
Once the template is enabled, it will be used for authentication of all devices, and
the enabled template cannot be modified. You are advised to create a backup
template for debugging, and switch to the backup template only when the
debugging succeeds.

Step 3 Use the MQTT.fx tool to simulate device connection setup. Set Broker Address to
the platform access address, choose Overview > Access Information, and set
port to 8883.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01003.html

Figure 4-15 Device connection establishment

Figure 4-16 Device list - Device online status

----End

4.2.6.3 Examples

Example 1
When a certificate is used to authenticate a device, the values of UserName and
ClientId are not limited. The device ID is obtained from the common name of the
device certificate.

Table 4-11 Authentication parameters

Parameter Description

Client ID Any value

User Name Any value

Password Empty value

Authentication template:

{
 "template_name": "template1",
 "description": "template1",
 "template_body": {
 "parameters": {
 "iotda::certificate::common_name": {
 "type": "String"
 }

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

 },
 "resources": {
 "device_id": {
 "Ref": "iotda::certificate::common_name"
 }
 }
 }
}

Example 2
Device ID format: ${ProductId}_${NodeId}

Table 4-12 Authentication parameters

Parameter Description

Client ID Fixed format:
${ClientId}|securemode=2,signmethod=hmacsha256|timestamp=${timestamp}|

● ${ClientId} (fixed format): ${ProductId}.${NodeId}
– ${NodeId}: device node ID
– ${ProductId}: product ID

● ${timestamp}: Unix timestamp, in milliseconds

User Name Fixed format:
${NodeId}&${ProductId}

Password Result value after encrypting the combination of device
parameter and parameter value, with the device password as the
key and HMAC-SHA256 algorithm as the tool.
Encryption string format:
clientId${clientId}deviceName${nodeId}productKey${productId}timestamp$
{timestamp}

● ${ClientId} (fixed format): ${ProductId}.${NodeId}.
● ${NodeId}: device node ID
● ${ProductId}: product ID
● ${timestamp}: timestamp

Authentication template:

{
 "template_name": "template2",
 "description": "template2",
 "template_body": {
 "parameters": {
 "iotda::mqtt::client_id": {
 "type": "String"
 },
 "iotda::mqtt::username": {
 "type": "String"
 },
 "iotda::device::secret": {
 "type": "String"
 }
 },
 "resources": {

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

 "device_id": {
 "Fn::Join": [{
 "Fn::SplitSelect": [
 "${iotda::mqtt::username}",
 "&",
 1
]
 }, "_", {
 "Fn::SplitSelect": [
 "${iotda::mqtt::username}",
 "&",
 0
]
 }]
 },
 "timestamp": {
 "type": "UNIX",
 "value": {
 "Fn::MathDiv": [{
 "Fn::ParseLong": {
 "Fn::SplitSelect": [{
 "Fn::SplitSelect": ["${iotda::mqtt::client_id}", "|", 2]
 }, "=", 1]
 }
 }, 1000]
 }
 },
 "password": {
 "Fn::HmacSHA256": [{
 "Fn::Sub": [
 "clientId${clientId}deviceName${deviceName}productKey${productKey}timestamp$
{timestamp}",
 {
 "clientId": {
 "Fn::SplitSelect": [
 "${iotda::mqtt::client_id}",
 "|",
 0
]
 },
 "deviceName": {
 "Fn::SplitSelect": [
 "${iotda::mqtt::username}",
 "&",
 0
]
 },
 "productKey": {
 "Fn::SplitSelect": [
 "${iotda::mqtt::username}",
 "&",
 1
]
 },
 "timestamp": {
 "Fn::SplitSelect": [{
 "Fn::SplitSelect": ["${iotda::mqtt::client_id}", "|", 2]
 }, "=", 1]
 }
 }
]
 },
 "${iotda::device::secret}"
]
 }
 }
 }
}

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

Example 3

Device ID format: ${productId}${nodeId}

Table 4-13 Parameter

Parameter Description

Client ID Fixed format:
${productId}${nodeId}

● ${productId}: product ID
● ${nodeId}: node ID

User Name Fixed format:
${productId}${nodeId};12010126;${connid};${expiry}

● ${productId}: product ID
● ${nodeId}: node ID
● ${connid}: random string
● ${expiry}: Unix timestamp, in seconds

Password Fixed format:
${token};hmacsha256

● ${token}: result value after encrypting the User Name field,
with the HMAC-SHA256 algorithm as the tool and the
Base64-decoded device password as the key.

Authentication template:

{
 "template_name": "template3",
 "description": "template3",
 "template_body": {
 "parameters": {
 "iotda::mqtt::client_id": {
 "type": "String"
 },
 "iotda::mqtt::username": {
 "type": "String"
 },
 "iotda::device::secret": {
 "type": "String"
 }
 },
 "resources": {
 "device_id": {
 "Ref": "iotda::mqtt::client_id"
 },
 "timestamp": {
 "type": "UNIX",
 "value": {
 "Fn::ParseLong": {
 "Fn::SplitSelect": ["${iotda::mqtt::username}", ";", 3]
 }
 }
 },
 "password": {
 "Fn::Sub": [
 "${token};hmacsha256",

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

 {
 "token": {
 "Fn::HmacSHA256": [
 "${iotda::mqtt::username}",
 {
 "Fn::Base64Decode": "${iotda::device::secret}"
 }
]
 }
 }
]
 }
 }
 }
}

4.2.6.4 Internal Functions

Description
Huawei Cloud IoTDA provides multiple internal functions to use in templates. This
section introduces these functions, including the input parameter type, parameter
length, and return value type.

NO TE

● The entire function must be in valid JSON format.

● In a function, the variable placeholders (${}) or the Ref function can be used to
reference the value defined by the input parameter.

● The parameters used by the function must be declared in the template.

● A function with a single input parameter is followed by a parameter, for example,
"Fn::Base64Decode": "${iotda::mqtt::username}".

● A function with multiple input parameters is followed by an array, for example,
"Fn::HmacSHA256": ["${iotda::mqtt::username}", "${iotda::device::secret}"].

● Functions can be nested. That is, the parameter of a function can be another function.
Note that the return value of a nested function must match its parameter type in the
outer function, for example, {"Fn::HmacSHA256": ["${iotda::mqtt::username}",
{"Fn::Base64Encode": "${iotda::device::secret}"}]}.

Fn::ArraySelect
The internal function Fn::ArraySelect returns a string element whose index is
index in a string array.

JSON

{"Fn::ArraySelect": [index, [StringArray]]}

Table 4-14 Parameters

Parameter Type Description

index int Index of an array element. The value is
an integer and starts from 0.

StringArray String[] String array element.

Return values String Element whose index is index.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

Example:

{
 "Fn::ArraySelect": [1, ["123", "456", "789"]]
}
return: "456"

Fn::Base64Decode
The internal function Fn::Base64Decode decodes a string into a byte array using
Base64.

JSON

{ "Fn::Base64Decode" : "content" }

Table 4-15 Parameters

Parameter Type Description

content String String to be decoded.

Return Values byte[] Base64-decoded byte array.

Example:

{
 "Fn::Base64Decode": "123456"]
}
return: d76df8e7 // The value is converted into a hexadecimal string for display.

Fn::Base64Encode
The internal function Fn::Base64Encode encodes a string using Base64.

JSON

{"Fn::Base64Encode": "content"}

Table 4-16 Parameters

Parameter Type Description

content String String to be encoded.

Return Values String Base64-encoded string.

Example:

{
 "Fn::Base64Encode": "testvalue"
}
return: "dGVzdHZhbHVl"

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

Fn::GetBytes
The internal function Fn::GetBytes returns a byte array encoded from a string
using UTF-8.

JSON

{"Fn::GetBytes": "content"}

Table 4-17 Parameters

Parameter Type Description

content String String to be encoded.

Return Values byte[] Byte array converted from a string
encoded using UTF-8.

Example:

{
 "Fn::GetBytes": "testvalue"
}
return: "7465737476616c7565" // The value is converted into a hexadecimal string for display.

Fn::HmacSHA256
The internal function Fn::HmacSHA256 encrypts a string using the HMACSHA256
algorithm based on a given secret.

JSON

{"Fn::HmacSHA256": ["content", "secret"]}

Table 4-18 Parameters

Parameter Type Description

content String String to be encrypted.

secret String or byte[] Secret key, which can be a string or
byte array.

Return Values String Value encrypted using the
HMACSHA256 algorithm.

Example:

{
 "Fn::HmacSHA256": ["testvalue", "123456"]
}
return: "0f9fb47bd47449b6ffac1be951a5c18a7eff694940b1a075b973ff9054a08be3"

Fn::Join
The internal function Fn::Join can concatenate up to 10 strings into one string.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

JSON

{"Fn::Join": ["element", "element"...]}

Table 4-19 Parameters

Parameter Type Description

element String String to be concatenated.

Return Values String String obtained by concatenating
substrings.

Example:

{
 "Fn::Join": ["123", "456", "789"]
}
return: "123456789"

Fn::MathAdd

The internal function Fn::MathAdd performs mathematical addition on two
integers.

JSON

{"Fn::MathAdd": [X, Y]}

Table 4-20 Parameters

Parameter Type Description

X long Augend.

Y long Addend.

Return Values long Sum of X and Y.

Example:

{
 "Fn::MathAdd": [1, 1]
}
return: 2

Fn::MathDiv

The internal function Fn::MathDiv performs a mathematical division on two
integers.

JSON

{"Fn::MathDiv": [X, Y]}

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

Table 4-21 Parameters

Parameter Type Description

X long Dividend.

Y long Divisor.

Return Values long Value of X divided by Y.

Example:

{
 "Fn::MathDiv": [10, 2]
}
return: 5

{
 "Fn::MathDiv": [10, 3]
}
return: 3

Fn::MathMod

The internal function Fn::MathMod performs the mathematical modulo on two
integers.

JSON

{"Fn::MathMod": [X, Y]}

Table 4-22 Parameters

Parameter Type Description

X long Dividend.

Y long Divisor.

Return Values long Residue of X modulo Y.

Example:

{
 "Fn::MathMod": [10, 3]
}
return: 1

Fn::MathMultiply

The internal function Fn::MathMultiply performs mathematical multiplication on
two integers.

JSON

{"Fn::MathMultiply": [X, Y]}

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

Table 4-23 Parameters

Parameter Type Description

X long Multiplicand.

Y long Multiplier.

Return Values long Value of X multiplied by Y.

Example:

{
 "Fn::MathMultiply": [3, 3]
}
return: 9

Fn::MathSub
The internal function Fn::MathSub performs mathematical subtraction on two
integers.

JSON

{"Fn::MathSub": [X, Y]}

Table 4-24 Parameters

Parameter Type Description

X long Minuend.

Y long Subtrahend.

Return Values long Value of X minus Y.

Example:

{
 "Fn::MathSub": [9, 3]
}
return: 6

Fn::ParseLong
The internal function Fn::ParseLong can convert a numeric string into an integer.

JSON

{"Fn::ParseLong": "String"}

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

Table 4-25 Parameters

Parameter Type Description

String String String to be converted.

Return Values long Value obtained after a string is
converted into an integer.

Example:

{
 "Fn::ParseLong": "123"
}
return: 123

Fn::Split

The internal function Fn::Split splits a string into a string array based on the
specified separator.

JSON

{ "Fn::Split" : ["String", "Separator"] }

Table 4-26 Parameters

Parameter Type Description

String String String to be split.

Separator String Separator.

Return Values String[] String array obtained after String is
split by Separator.

Example:

{
 "Fn::Split": ["a|b|c", "|"]
}
return: ["a", "b", "c"]

Fn::SplitSelect

The internal function Fn::SplitSelect splits a string into a string array based on the
specified separator, and then returns the elements of the specified index in the
array.

JSON

{ "Fn::SplitSelect" : ["String", "Separator", index] }

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

Table 4-27 Parameters

Parameter Type Description

String String String to be split.

Separator String Separator.

index int Index value of the target element in
the array, starting from 0.

Return Values String Substring of the specified index after a
string is split by the specified separator.

Example:

{
 "Fn::SplitSelect": ["a|b|c", "|", 1]
}
return: "b"

Fn::Sub
The internal function Fn::Sub replaces variables in an input string with specified
values. You can use this function in a template to construct a dynamic string.

JSON

{ "Fn::Sub" : ["String", { "Var1Name": Var1Value, "Var2Name": Var2Value }] }

Table 4-28 Parameters

Parameter Type Description

String String A string that contains variables.
Variables are defined using
placeholders (${}).

VarName String Variable name, which must be defined
in the String parameter.

VarValue String Variable value. Function nesting is
supported.

Return Values String Value of string after replacement in
the original String parameter

Example:

{
 "Fn::Sub": ["${token};hmacsha256", {
 "token": {
 "Fn::HmacSHA256": ["${iotda::mqtt::username}", {
 "Fn::Base64Decode": "${iotda::mqtt::client_id}"
 }]
 }

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

 }]
}
If:
${iotda::mqtt::username}="test_device_username"
${iotda::device::client_id}="OozqTPlCWTTJjEH/5s+T6w=="
return: "0773c4fd6c92902a1b2f4a45fdcdec416b6fc2bc6585200b496e460e2ef31c3d"

Fn::SubStringAfter
The internal function Fn::SubStringAfter truncates the substring after the
specified separator in a string.

JSON

{ "Fn::SubStringAfter" : ["content", "separator"] }

Table 4-29 Parameters

Parameter Type Description

content String String to be truncated.

separator String Separator.

Return Values String Substring after the specified separator
that separates the string.

Example:

{
 "Fn::SubStringAfter": ["content:123456", ":"]
]
return: "123456"

Fn::SubStringBefore
The internal function Fn::SubStringBefore truncates the substring before the
specified separator in a string.

JSON

{ "Fn::SubStringBefore" : ["content", "separator"] }

Table 4-30 Parameters

Parameter Type Description

content String String to be truncated.

separator String Separator.

Return Values String Substring before the specified
separator that separates the string.

Example:

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

{
 "Fn::SubStringBefore": ["content:123456", ":"]
]
return: "content"

Ref

The internal function Ref returns the value of the specified referenced parameter.
The referenced parameter must be declared in the template.

JSON

{ "Ref" : "paramName" }

Table 4-31 Parameters

Parameter Type Description

paramName String Name of the referenced parameter.

Return Values String Value of the referenced parameter.

Example:

{
 "Ref": "iotda::mqtt::username"
}
When iotda::mqtt::username="device_123"
return: "device_123"

4.3 Open Protocol Access

4.3.1 LwM2M/CoAP Access

Overview

LwM2M, proposed by the Open Mobile Alliance (OMA), is a lightweight, standard,
and universal IoT device management protocol that can be used to quickly deploy
IoT services in client/server mode. LwM2M establishes a set of standards for IoT
device management and application. It provides lightweight, compact, and secure
communication interfaces and efficient data models for M2M device management
and service support. IoTDA supports encrypted and non-encrypted access. Port
5684 and CoAP over DTLS are used for encrypted service data exchange and
access. Port 5683 and CoAP are used for non-encrypted access. You are advised to
use the encrypted access mode for security purposes.

NO TE

For details about LwM2M syntax and APIs, see specifications.

IoTDA supports the plain text, opaque, Core Link, TLV, and JSON encoding formats specified
in the protocol. In the multi-field operation (for example, writing multiple resources), the
TLV format is used by default.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

http://openmobilealliance.org/release/LightweightM2M/V1_1-20171208-C/

Constraints

Table 4-32 Constraints

Description Limit

Supported LwM2M version 1.1

Supported DTLS version DTLS 1.2

Supported cryptographic algorithm
suite

TLS_PSK_WITH_AES_128_CCM_8 and
TLS_PSK_WITH_AES_128_CBC_SHA256

Body length 1 KB

API specifications Specifications

API Calling
For details about the platform endpoint, see Platform Connection Information.

NO TE

Use the endpoint corresponding to CoAP (5683) or CoAPS (5684) and port 5683 (non-
encrypted) or 5684 (encrypted) for device access.

4.3.2 HTTPS Access

Overview
Hypertext Transfer Protocol Secure (HTTPS) is a secure communication protocol
based on HTTP and encrypted using SSL. IoTDA supports communication through
HTTPS.

Constraints
Description Limit

Supported HTTP version HTTP 1.0
HTTP 1.1

Supported HTTPS The platform supports only the HTTPS
protocol. For details about how to
download a certificate, see Certificates.

Supported TLS version TLS 1.2

Body length 1 MB

API specifications Specifications

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

https://support.huaweicloud.com/intl/en-us/productdesc-iothub/iot_04_0014.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3
https://support.huaweicloud.com/intl/en-us/productdesc-iothub/iot_04_0014.html

Description Limit

Number of child devices of which
properties can be reported by a
gateway at a time

50

API Calling

For details about the platform endpoint, see Platform Connection Information.

NO TE

Use the endpoint of IoTDA and the HTTPS port number 443.

Communication Between HTTPS Devices and the Platform

When a device connects to the platform through HTTPS, HTTPS APIs are used for
their communication. These APIs can be used for device authentication as well as
message and property reporting.

Message
Type

Description

Device
authenticatio
n

Devices obtain access tokens.

Device
reporting
properties

Devices report property data to IoTDA in the format defined in
the product model.

Device
reporting
messages

Devices report custom data to IoTDA, which then forwards
reported messages to an application or other Huawei Cloud
services for storage and processing.

Gateway
reporting
device
properties in
batches

A gateway reports property data of multiple child devices to
the platform.

Service Flow

Step 1 Create a product on the IoTDA console or by calling the API for creating a
product.

Step 2 Register a device on the IoTDA console or calling the API for creating a device.

Step 3 Call the device authentication API to obtain the access token of the device.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html

Figure 4-17 Obtaining the access token

Step 4 The obtained access token can be used by devices to report messages and
properties. The access token is in the message header. The following uses property
reporting as an example.

Figure 4-18 Reporting properties

Figure 4-19 Reporting properties

----End

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

HTTP APIs
The following table describes the platform APIs.

API
Category

API API Description

Device
authentic
ation API

Device
Authentic
ation API

/v5/device-auth This API is used to
authenticate a device.
Connections can be
established between devices
and IoTDA after successful
authentication. After the
authentication is successful,
IoTDA returns an access
token. An access token is
required when APIs for
property reporting and
message reporting are called.
If an access token expires,
you need to authenticate the
device again to obtain an
access token. If you obtain a
new access token before the
old one expires, the old
access token will be valid for
30 seconds before expiration.

Device
message
reporting
API

Device
Message
Reporting

/v5/devices/
{device_id}/sys/
messages/up

This API is used by a device
to report custom data to
IoTDA, which then forwards
reported messages to an
application or other Huawei
Cloud services for storage
and processing.

Device
property
reporting
APIs

Device
Property
Reporting

/v5/devices/
{device_id}/sys/
properties/report

This API is used by a device
to report property data in
the format defined in the
product model to IoTDA.

Gateway
Reporting
Child
Device
Property

/v5/devices/
{device_id}/sys/
gateway/sub-devices/
properties/report

This API is used to report
device data in batches to
IoTDA. A gateway can use
this API to report the
property data of a maximum
of 50 child devices at the
same time.

Device Authentication API
This API is used to authenticate a device. After successful authentication,
connections can be established between devices and IoTDA, and the platform

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

returns an access token. The access token is required when APIs for property
reporting and message reporting are called. If an access token expires, you need to
authenticate the device again to obtain an access token. If you obtain a new
access token before the old one expires, the old access token will be valid for 30
seconds before expiration.

Request
Method

POST

URI /v5/device-auth

Transpor
t
Protocol

HTTPS

Paramet
er

Mandato
ry

Type Loca
tion

Description

device_id Yes String Body Device ID, which uniquely
identifies a device. The value of
this parameter is specified during
device registration or allocated
by IoTDA. If the value is
allocated by the platform, the
value is in the format of
[product_id]_[node_id].
The value is a string of no more
than 128 characters. Only letters,
digits, underscores (_), and
hyphens (-) are allowed.
Value length: 1 to 128 characters

sign_type Yes Integer Body Password verification mode. 0:
When the timestamp is verified
using the HMAC-SHA256
algorithm, IoTDA does not check
whether the message timestamp
is consistent with the IoTDA time
but only checks whether the
password is correct. 1: When the
timestamp is verified using the
HMAC-SHA256 algorithm, IoTDA
checks whether the message
timestamp is consistent with the
IoTDA time and then checks
whether the password is correct.
Value range: 0 to 1

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

Paramet
er

Mandato
ry

Type Loca
tion

Description

timestam
p

Yes String Body The timestamp is the UTC time
when the device was connected
to IoTDA, in the format of
YYYYMMDDHH. For example, if
the UTC time is 2018/7/24
17:56:20, the timestamp is
2018072417.
Value length: a fixed length of
10 characters

password Yes String Body The value of this parameter is
the value of the device secret
signed by using the HMAC-
SHA256 algorithm with the
timestamp as the key. For
details, see the secret
generation tool. The device
secret is returned by IoTDA upon
successful device registration.
Value length: a fixed length of
64 characters

Parameter Type Description

access_toke
n

String Device token, which is used for device
authentication.
Value length: 32 to 256 characters

expires_in Integer Remaining validity period of the authentication
information, in seconds.

Request example:

POST https://{endpoint}/v5/device-auth
Content-Type: application/json

{
 "device_id" : "********",
 "sign_type" : 0,
 "timestamp" : "2019120219",
 "password" : "********"
}

Response example:

Status Code: 200 OK

Content-Type: application/json

{

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

https://iot-tool.obs-website.cn-north-4.myhuaweicloud.com/
https://iot-tool.obs-website.cn-north-4.myhuaweicloud.com/

 "access_token" : "********",
 "expires_in" : 86399
}

HTTP
Status
Code

Descrip
tion

Error
Code

Error Message Error Description

200 OK - - -

400 Bad
Request

IOTDA.0
00006

Invalid input data. Invalid request
parameters.

401 Unauth
orized

IOTDA.0
00002

Authentication failed. Authentication failed.

403 Forbidd
en

IOTDA.0
21101

Request reached the
maximum rate limit.

The request frequency
has reached the upper
limit.

IOTDA.0
21102

The request rate has
reached the upper
limit of the tenant,
limit %s.

The request frequency
has reached the upper
limit of the tenant.

Device Message Reporting
This API is used by a device to report custom data to IoTDA, which then forwards
reported messages to an application or other Huawei Cloud services for storage
and processing.

Request
Method

POST

URI /v5/devices/{device_id}/sys/messages/up

Transpor
t
Protocol

HTTPS

Paramet
er

Mandato
ry

Type Loca
tion

Description

access_to
ken

Yes String Head
er

Access token returned after the
device authentication API is
called.
Value length: 1 to 256 characters

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

Paramet
er

Mandato
ry

Type Loca
tion

Description

device_id Yes String Path Device ID, which uniquely
identifies a device. The value of
this parameter is specified during
device registration or allocated
by IoTDA. If the value is
allocated by the platform, the
value is in the format of
[product_id]_[node_id].
The value is a string of no more
than 128 characters. Only letters,
digits, underscores (_), and
hyphens (-) are allowed.
Value length: 1 to 128 characters

NO TE

This API allows a device to use a request body to report custom data to IoTDA, which then
forwards the body content to applications or other Huawei Cloud services for storage and
processing. IoTDA has no specific format requirements on the body content. This API can
carry data whose size is smaller than 1 MB.

Request example:

POST https://{endpoint}/v5/devices/{device_id}/sys/messages/up
Content-Type: application/json
access_token: ********
{
 "name" : "name",
 "id" : "id",
 "content" : "messageUp"
}

Response example:

Status Code: 200 ok

HTTP
Status
Code

Descrip
tion

Error
Code

Error Message Error Description

200 OK - - -

400 Bad
Request

IOTDA.0
00006

Invalid input data. Invalid request
parameters.

401 Unauth
orized

IOTDA.0
00002

Authentication failed. Authentication failed.

403 Forbidd
en

IOTDA.0
00004

Invalid access token. Invalid token.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

HTTP
Status
Code

Descrip
tion

Error
Code

Error Message Error Description

IOTDA.0
21101

Request reached the
maximum rate limit.

The request frequency
has reached the upper
limit.

IOTDA.0
21102

The request rate has
reached the upper
limit of the tenant,
limit %s.

The request frequency
has reached the upper
limit of the tenant.

Device Property Reporting

This API is used by a device to report property data in the format defined in the
product model to IoTDA.

Request
Method

POST

URI /v5/devices/{device_id}/sys/properties/report

Transpor
t
Protocol

HTTPS

Paramet
er

Mandato
ry

Type Loca
tion

Description

access_to
ken

Yes String Head
er

Access token returned after the
device authentication API is
called.
Value length: 1 to 256 characters

device_id Yes String Path Device ID, which uniquely
identifies a device. The value of
this parameter is specified during
device registration or allocated
by IoTDA. If the value is
allocated by the platform, the
value is in the format of
[product_id]_[node_id].
The value is a string of no more
than 128 characters. Only letters,
digits, underscores (_), and
hyphens (-) are allowed.
Value length: 1 to 128 characters

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

Paramet
er

Mandato
ry

Type Loca
tion

Description

services Yes List<Table
4-33>

Body Device service data list.

Table 4-33 ServiceProperty

Paramete
r

Mandator
y

Type Description

service_id Yes String Service ID of the device.

properties Yes Object Service properties, which are defined
in the product model of the device.

event_tim
e

No String UTC time when the device collects
data. The value is in the format of
yyyy-MM-dd'T'HH:mm:ss.SSS'Z'. If
this parameter is not carried in the
reported data or is in an incorrect
format, the time when IoTDA
receives the data is used.

Example request:

POST https://{endpoint}/v5/devices/{device_id}/sys/properties/report
Content-Type: application/json
access_token: ********

{
 "services" : [{
 "service_id" : "serviceId",
 "properties" : {
 "Height" : 124,
 "Speed" : 23.24
 },
 "event_time" : "2021-08-13T10:10:10.555Z"
 }]
}

Response example:

If the status code is 200, reporting is successful.

HTTP
Status
Code

Descrip
tion

Error
Code

Error Message Error Description

200 OK - - -

400 Bad
Request

IOTDA.0
00006

Invalid input data. Invalid request
parameters.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

HTTP
Status
Code

Descrip
tion

Error
Code

Error Message Error Description

IOTDA.0
21104

Subdevices in the
request does not exist
or does not belong to
the gateway.

Some child devices in
the request do not
exist or do not belong
to the gateway.

403 Forbidd
en

IOTDA.0
00004

Invalid access token. Invalid token.

IOTDA.0
21101

Request reached the
maximum rate limit.

The request frequency
has reached the upper
limit.

IOTDA.0
21102

The request rate has
reached the upper
limit of the tenant,
limit %s.

The request frequency
has reached the upper
limit of the tenant.

IOTDA.0
21105

The content reported
in a single request
cannot exceed 1 MB.

The content reported
in a single request
cannot exceed 1 MB.

Gateway Reporting Child Device Property
This API is used to report device data in batches to IoTDA. A gateway can use this
API to report the property data of a maximum of 50 child devices at the same
time.

Request
Method

POST

URI /v5/devices/{device_id}/sys/gateway/sub-devices/properties/report

Transpor
t
Protocol

HTTPS

Paramet
er

Mandato
ry

Type Loca
tion

Description

access_to
ken

Yes String Head
er

Access token returned after the
device authentication API is
called.
Value length: 1 to 256 characters

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

Paramet
er

Mandato
ry

Type Loca
tion

Description

device_id Yes String Path Device ID, which uniquely
identifies a device. The value of
this parameter is specified during
device registration or allocated
by IoTDA. If the value is
allocated by the platform, the
value is in the format of
[product_id]_[node_id].
The value is a string of no more
than 128 characters. Only letters,
digits, underscores (_), and
hyphens (-) are allowed.
Value length: 1 to 128 characters

devices Yes List<Table
4-34>

Body Device data list.
Value length: 50 characters at
most

Table 4-34 DeviceProperty

Paramete
r

Mandator
y

Type Description

device_id Yes String ID of the child device, which is
unique and is allocated by IoTDA
during device registration.
The value is a string of no more than
128 characters. Only letters, digits,
underscores (_), and hyphens (-) are
allowed.

services Yes List<Table
4-35>

Device service data list.

Table 4-35 ServiceProperty

Paramete
r

Mandator
y

Type Description

service_id Yes String Service ID of the device.

properties Yes Object Service properties, which are defined
in the product model of the device.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

Paramete
r

Mandator
y

Type Description

event_tim
e

No String UTC time when the device collects
data. The value is in the format of
yyyy-MM-dd'T'HH:mm:ss.SSS'Z'. If
this parameter is not carried in the
reported data or is in an incorrect
format, the time when IoTDA
receives the data is used.

An example request is as follows:

POST https://{endpoint}/v5/devices/{device_id}/sys/gateway/sub-devices/properties/report
Content-Type: application/json
access_token: ********

{
 "devices" : [{
 "device_id" : "deviceId_0001",
 "services" : [{
 "service_id" : "serviceId",
 "properties" : {
 "Height" : 124,
 "Speed" : 23.24
 },
 "event_time" : "2021-08-13T10:10:10.555Z"
 }]
 }, {
 "device_id" : "deviceId_0002",
 "services" : [{
 "service_id" : "serviceId",
 "properties" : {
 "Height" : 124,
 "Speed" : 23.24
 },
 "event_time" : "2021-08-13T10:10:10.555Z"
 }]
 }]
}

Response example:

If the status code is 200, reporting is successful.

HTTP
Status
Code

Descrip
tion

Error
Code

Error Message Error Description

200 OK - - -

400 Bad
Request

IOTDA.0
00006

Invalid input data. Invalid request
parameters.

IOTDA.0
21104

Subdevices in the
request does not exist
or does not belong to
the gateway.

Some child devices in
the request do not
exist or do not belong
to the gateway.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

HTTP
Status
Code

Descrip
tion

Error
Code

Error Message Error Description

401 Unauth
orized

IOTDA.0
00002

Authentication failed. Authentication failed.

403 Forbidd
en

IOTDA.0
00004

Invalid access token. Invalid token.

IOTDA.0
21101

Request reached the
maximum rate limit.

The request frequency
has reached the upper
limit.

IOTDA.0
21102

The request rate has
reached the upper
limit of the tenant,
limit %s.

The request frequency
has reached the upper
limit of the tenant.

IOTDA.0
21103

The number of child
devices in the request
has reached the upper
limit (%s).

The number of child
devices in the request
reaches the upper
limit.

IOTDA.0
21105

The content reported
in a single request
cannot exceed 1 MB.

The content reported
in a single request
cannot exceed 1 MB.

4.3.3 MQTT(S) Access

Overview

An MQTT message consists of fixed header, variable header, and payload.

For details on how to define the fixed header and variable header, see MQTT
standard specifications. The payload can be defined by applications in UTF-8
format, that is, by the devices and IoT platform.

NO TE

For details about MQTT syntax and APIs, see MQTT standard specifications.

Common MQTT message types include CONNECT, SUBSCRIBE, and PUBLISH.

● CONNECT: A client requests a connection to a server. For details about main
parameters in the payload of a CONNECT message, see Device Connection
Authentication.

● SUBSCRIBE: A client subscribes to a topic. The main parameter Topic name in
the payload of a SUBSCRIBE message indicates the topic whose subscriber is a
device. For details, see Topics.

● PUBLISH: The platform publishes a message.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html

– The main parameter Topic name in the variable header of a PUBLISH
message indicates the topic whose publisher is a device. For details, see
Topics.

– The payload contains the data reported or commands delivered. It is a
JSON object.

Topics

If you connect devices to the platform using MQTT, you can use topics to send and
receive messages.

● Topics starting with $oc are preset system topics in IoTDA. You can subscribe
to and publish messages through these topics. For details about the topic list
and functions, see Topics.

● You can create topics that do not start with $oc to send and receive custom
messages.

Constraints

Description Limit

Number of concurrent connections to a directly
connected MQTT device

1

Connection setup requests of an account per second
on the device side

● Basic edition: 100
● Standard edition: See

Specifications.

Number of upstream requests for an instance per
second on the device side (when average message
payload is 512 bytes)

● Basic edition: 500
● Standard edition: See

Specifications.

Number of upstream messages for an MQTT
connection

50 per second

Bandwidth of an MQTT connection (upstream
messages)

1 MB (default)

Length of a publish message sent over an MQTT
connection (Oversized messages will be rejected.)

1 MB

Standard MQTT protocol MQTT v5.0, MQTT v3.1.1,
and MQTT v3.1

Differences from the standard MQTT protocol ● Not supported: QoS 2
● Not supported: will

and retain msg

Security levels supported by MQTT TCP channel and TLS
protocols (TLS v1, TLS
v1.1, TLS v1.2, and TLS
v1.3)

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/productdesc-iothub/iot_04_0014.html#section2
https://support.huaweicloud.com/intl/en-us/productdesc-iothub/iot_04_0014.html#section2

Description Limit

Recommended heartbeat interval for MQTT
connections

Range: 30s to 1200s;
recommended: 120s

MQTT message publish and subscription A device can only publish
and subscribe to
messages of its own
topics.

Number of subscriptions for an MQTT connection 100

Length of a custom MQTT topic 128 bytes

Number of custom MQTT topics added to a product 10

Number of CA certificates uploaded for an account
on the device side

100

Compatibility
IoTDA supports device access using MQTT 5.0, MQTT 3.1.1, and MQTT 3.1.
However, IoTDA is not a simple MQTT broker. It also integrates capabilities such as
message communications, device management, rule engine, and data forwarding.
The differences between the MQTT function provided by IoTDA and standard
MQTT specifications are as follows:

● Devices can communicate with IoTDA using CONNECT, CONNACK, PUBLISH,
PUBACK, SUBSCRIBE, SUBACK, UNSUBSCRIBE, UNSUBACK, PINGREQ,
PINGRESP, and DISCONNECT packets in MQTT specifications.

● IoTDA supports MQTT QoS 0 and QoS 1, but does not support QoS 2.
● IoTDA supports clean sessions.
● IoTDA does not support the will feature. IoTDA can push device statuses. After

a device goes offline, IoTDA pushes its status to your application or other
cloud services based on a forwarding rule.

● IoTDA does not support retained messages. IoTDA can cache messages during
message reporting and delivery.

Supported MQTT 5.0 Features
NO TE

Only enterprise edition instances support MQTT 5.0-related features.

IoTDA supports the following new MQTT 5.0 features:

● Topic aliases. Message communication topics are reduced to an integer to
reduce MQTT packets and save network bandwidth resources.

● Response topics and correlation data. The two parameters can be carried
during message reporting and delivery to implement cloud HTTP-like requests
and responses.

● User property list. Each property consists of a key and a value and is used to
transmit property data in the non-payload area.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

https://docs.oasis-open.org/mqtt/mqtt/v5.0/
http://mqtt.org/
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html

● Content-Type. Message reporting packets can carry Content-Type to identify
the packet type.

● Return codes can be carried in CONNACK and PUBACK packets, helping
devices quickly locate request statuses and issues.

TLS Support for MQTT
TLS is recommended for secure transmission between devices and the platform.
Currently, TLS v1.1, v1.2, v1.3, and GMTLS are supported. TLS v1.3 is
recommended. TLS v1.1 will not be supported in the future. GMTLS is supported
only by the enterprise edition using Chinese cryptographic algorithms.

When TLS connections are used for the basic edition, standard edition, and
enterprise edition that support general cryptographic algorithms, the IoT platform
supports the following cipher suites:

● TLS_AES_256_GCM_SHA384
● TLS_AES_128_GCM_SHA256
● TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
● TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
● TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
● TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

When the enterprise edition that supports Chinese cryptographic algorithms uses
TLS connections, the IoT platform supports the following cipher suites:

● ECC_SM4_GCM_SM3
● ECC_SM4_CBC_SM3
● ECDHE_SM4_GCM_SM3
● ECDHE_SM4_CBC_SM3
● TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
● TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
● TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
● TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

NO TE

CBC cipher suites may pose security risks.

Service Flow
MQTT devices communicate with the platform without data encryption. For
security purposes, MQTTS access is recommended.

You are advised to use the IoT Device SDK to connect devices to the platform
over MQTTS.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_0135.html

1. Create a product on the IoTDA console or by calling the API Creating a
Product.

2. Register a device on the IoTDA console or calling the API Creating a Device.
3. The registered device can report messages and properties, receive commands,

properties, and messages, perform OTA upgrades, and report data using
custom topics. For details about preset topics of the platform, see Topic
Definition.

NO TE

You can use MQTT.fx to debug access using the native MQTT protocol. For details, see
Developing an MQTT-based Smart Street Light Online.

4.4 Custom Device Domain Name

Overview
A custom fully qualified domain name (FQDN) for a device to connect to IoTDA.
With a custom domain name, you can manage your own server certificates,
including the root certificate authority (CA), signature algorithms, and certificate
lifecycles.

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_00016.html

Scenarios
● Managing the root CAs, signature algorithms, and certificate lifecycles of

server certificates.
● Disclosing the domain names to customers for branding.
● Inheriting the original domain names and server certificates during migration.

Constraints
● Only the standard and enterprise editions support this function.
● Only port 8883 connected using MQTT takes effect.
● The device must use TLS and support SNI (Server Name Indication). The SNI

must carry the required custom domain name.
● Only one custom domain name can be configured for an IoTDA instance.

Procedure

Step 1 Configure a custom domain name.

1. In the navigation pane, choose Overview. In the Instance Information area,
click Access Details.

Figure 4-20 Obtaining access information

2. On the displayed page, click Details in the Custom Domain Name column.

Figure 4-21 Access information - Custom domain name details

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

https://datatracker.ietf.org/doc/html/rfc3546#section-3.1

3. On the displayed page, click Add Domain Name, configure parameters as
prompted, and click OK.

Figure 4-22 Custom domain name - Configuring a custom domain name

Step 2 Create a DNS record. Contact the vendor to add domain name resolution to
connect the custom domain name to the IoTDA access point. Obtain the access
point by referring to Platform Interconnection.

----End

IoT Device Access
User Guide 4 Device Access

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

5 Message Communications

5.1 Data Reporting

5.1.1 Overview

Introduction
A device connected to IoTDA can send data to IoTDA in multiple ways.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

Table 5-1 Data reporting

T
y
p
e

Sub
-
typ
e

Description Application Protoc
ol

Pr
od
uc
t
M
od
el

Size

M
e
ss
a
g
e
r
e
p
o
rt
in
g

Dev
ice
Rep
orti
ng
Me
ssa
ges

Devices directly report
data to the cloud. The
platform does not parse
or store the reported
data, and transparently
transfers it from devices
to applications.

Used for high-
frequency data
transmission or in
scenarios where user-
defined data formats
are required. For
example, a large
amount of sensor
data needs to be sent
to applications in a
short period of time.

MQTT
and
HTTP

N
ot
re
qu
ire
d

● M
a
x
.
r
e
p
o
r
t
e
d
m
e
s
s
a
g
e
i
n
a
r
e
q
u
e
s
t:
1
M
B

● M
a
x
.
a
v
a
il
a
b

Cus
to
m
Top
ic
Co
m
mu
nic
ati
ons

Devices report data
with custom topics. The
platform transparently
transfers the reported
data. Applications can
subscribe to custom
topics to differentiate
services.

Used when devices
need to report
messages for various
service types, or
transfer data to
specific topics in
scenarios such as
data migration.

MQTT

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

T
y
p
e

Sub
-
typ
e

Description Application Protoc
ol

Pr
od
uc
t
M
od
el

Size

l
e
b
a
n
d
w
i
d
t
h
:
1
0
M
b
it
/
s
f
o
r
s
t
a
n
d
a
r
d
e
d
it
i
o
n
u
s
e
r
s
a
n
d

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

T
y
p
e

Sub
-
typ
e

Description Application Protoc
ol

Pr
od
uc
t
M
od
el

Size

5
0
M
b
it
/
s
f
o
r
e
n
t
e
r
p
ri
s
e
e
d
it
i
o
n
u
s
e
r
s

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

T
y
p
e

Sub
-
typ
e

Description Application Protoc
ol

Pr
od
uc
t
M
od
el

Size

P
r
o
p
e
rt
y
r
e
p
o
rt
in
g

Dev
ice
Rep
orti
ng
Pro
per
ties

The platform does not
transparently transfer
the reported data from
devices to applications.
Instead, the platform
verifies and filters data
based on the defined
product model. If the
reported data does not
comply with the
product model
definition, the platform
discards the data.

Used when the
platform needs to
parse and store
device data with
unified models that
specify the data
format and value
range. Alternatively,
used when the
platform needs to
store the latest image
data. For example,
the switch data of
street lamps needs to
be sent to the
application side.

MQTT,
HTTP,
and
LwM2
M over
CoAP

Re
qu
ire
d

● M
a
x
.
r
e
p
o
r
t
e
d
p
r
o
p
e
r
t
y
i
n
a
r
e
q
u
e
s
t:
6
4
K
B

● M
a
x
.
a
v
a
il
a
b

Gat
ew
ay
Rep
orti
ng
Dev
ice
Pro
per
ties
in
Bat
che
s

Gateways report the
properties of multiple
child devices at a time.
The platform does not
transparently transfer
the reported data from
devices to applications.
The reported data is
distributed to the
corresponding child
devices by the platform.

Used when a gateway
is associated with
multiple child devices,
and you do not have
strict requirements on
the data reporting
time. The data of
these child devices
can be packaged and
then reported
together by the
gateway.

MQTT

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html

T
y
p
e

Sub
-
typ
e

Description Application Protoc
ol

Pr
od
uc
t
M
od
el

Size

l
e
b
a
n
d
w
i
d
t
h
:
1
0
M
b
it
/
s
f
o
r
s
t
a
n
d
a
r
d
e
d
it
i
o
n
u
s
e
r
s
a
n
d

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

T
y
p
e

Sub
-
typ
e

Description Application Protoc
ol

Pr
od
uc
t
M
od
el

Size

5
0
M
b
it
/
s
f
o
r
e
n
t
e
r
p
ri
s
e
e
d
it
i
o
n
u
s
e
r
s

NO TE

● It is not suitable to report data in JSON format for devices with limited resources or with
limits on bandwidth usage. In this case, devices can transparently transfer the original
binary data to the platform, but a codec is required to convert binary data to JSON
format. For details about how to develop codecs, see Developing a Codec.

● You can forward the reported data to other Huawei Cloud services for storage and
processing with data forwarding rules. Then, the data is further processed through the
consoles or APIs of the other services.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_9990.html

Figure 5-1 Conceptual diagram of message reporting

Figure 5-2 Conceptual diagram of property reporting

Figure 5-3 Conceptual diagram of raw binary data reporting

Application APIs
● Modify Device Properties
● Query Device Messages
● Query a Device
● Query a Device Shadow

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0034.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0058.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0055.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0079.html

MQTT Device APIs
● Device Reporting a Message
● Device Reporting Properties
● Gateway Reporting Device Properties in Batches

5.1.2 Device Reporting Messages

Overview

Message reporting is a method by which a device directly sends data to the cloud
and forwards the data to applications or other Huawei Cloud services through
data forwarding. The platform does not parse or store the messages reported by
devices. In this case, a product model is not required.

Figure 5-4 Process of device message reporting

Scenarios

IoTDA does not parse or store the data reported by devices. Instead, it forwards
the data to other Huawei Cloud services for storage and processing based on data
forwarding rules.

Constraints
● Max. size of a single message: 1 MB.
● Max. bandwidth of a single MQTT connection: 1 Mbit/s.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html

● Max. upstream messages for a single MQTT connection per second: 50 (one
request is considered as one message).

Process

Figure 5-5 Process of device message reporting

Step 1 Product and device creation: For details, see Creating a Product and Registering
an Individual Device.

Step 2 Device authentication: The platform checks whether the device has the access
permission.

Step 3 Device message reporting: Devices report messages through protocols such as
MQTT and HTTPS.

Use different APIs for different protocols.

MQTT: Use the message reporting APIs for MQTT devices.

● Example topic of MQTT message reporting:
$oc/devices/{device_id}/sys/messages/up

● Example format of MQTT message reporting:
{
 "content": {"hello":"123"}
}

HTTPS: Use the message reporting APIs for HTTP devices. To obtain access_token
for HTTP devices, see Authenticating a Device. The following is an example of
HTTPS device message reporting.
POST https://{endpoint}/v5/devices/{device_id}/sys/messages/up
Content-Type: application/json
access_token: ********
{
 "name": "name",
 "id": "id",
 "content": "messageUp"
}

NO TE

For details about devices using different protocols, see MQTT Device Reporting a Message
and HTTP Device Reporting a Message.

Step 4 Data forwarding: With the data forwarding function, data can be forwarded to
applications or other Huawei Cloud services for further processing.

----End

Message Reporting Using Java SDK

This section describes how to use Java SDKs for the development of message
reporting. JDK 1.8 or later is used.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_01_0053.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7009.html

Configure the SDK on the device side:

Step 1 Download an SDK.

Step 2 Configure the Maven dependency of the SDK on devices.
<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>iot-device-sdk-java</artifactId>
 <version>1.1.4</version>
</dependency>

Step 3 Configure the SDK and device connection parameters on devices.
// Load the CA certificate of the IoT platform. For details about how to obtain the certificate, visit https://
support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html.
URL resource = BroadcastMessageSample.class.getClassLoader().getResource("ca.jks");
File file = new File(resource.getPath());

// The format is ssl://Access address:Port number.
// To obtain the access address, log in to the IoTDA console. In the navigation pane, choose Overview and
click Access Details in the Instance Information area. Select the access address corresponding to port 8883.
String serverUrl = "ssl://localhost:8883";
// Device ID created on the IoT platform
String deviceId = "deviceId";
// Secret corresponding to the device ID
String deviceSecret = "secret";
// Create a device.
IoTDevice device = new IoTDevice(serverUrl, deviceId, deviceSecret, file);
if (device.init() != 0) {
 return;
}

Step 4 Report a device message.
device.getClient().reportDeviceMessage(new DeviceMessage("hello"), new ActionListener() {
 @Override
 public void onSuccess(Object context) {
 log.info("reportDeviceMessage success: ");
 }
 @Override
 public void onFailure(Object context, Throwable var2) {
 log.error("reportDeviceMessage fail: "+var2);
 }
});

----End

Verify the setting:

Step 1 On the IoTDA console, choose Devices > All Devices, select a device to access its
details page, and click Start Trace on the Message Trace tab page.

Figure 5-6 Message tracing - Starting message tracing

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

https://support.huaweicloud.com/intl/en-us/sdkreference-iothub/iot_10_1002.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html

Step 2 Run the SDK code on the device. The following is an example of the log format
when the device reports a message.

Figure 5-7 Java SDK message reporting result log

Step 3 Check the result on the Message Trace tab page. The platform has received
messages from the device and the data forwarding rule has been triggered.

Figure 5-8 Message tracing - Message reporting triggering a forwarding rule

----End

5.1.3 Device Reporting Properties

Overview
Property reporting is a method by which IoTDA parses, caches, and forwards data
to applications or other Huawei Cloud services through data forwarding. Product
models need to be established on the platform. The platform records the latest
reported property value and stores the data that complies with the product model
definition. The device can obtain the latest device properties from the platform
through device shadow.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3012.html

Figure 5-9 Device Reporting Properties

Scenarios
● Data of devices and applications needs to be converted, managed, and cached

by the platform.
● Data needs to be forwarded to other Huawei Cloud services for storage and

processing based on data forwarding rules.

Constraints
● Max. size of a single message: 64 KB.
● A product model is required. The reported data must match the properties

defined in the product model.
● Max. child devices of which properties can be reported by a gateway at a

time: 100.

Process

Figure 5-10 Process of device property reporting

Step 1 Product and device creation and product model definition: For details, see
Creating a Product, Registering an Individual Device, and Product Model
Definition.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_01_0053.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_01_0017.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_01_0017.html

Step 2 Device authentication: The platform checks whether the device has the access
permission.

Step 3 Device property reporting: Devices report property data using protocols such as
MQTT, HTTP, and LwM2M.

Use different APIs for different protocols.

● MQTT: Use the property reporting APIs for MQTT devices. The following is an
example of reporting MQTT device property.
Topic: $oc/devices/{device_id}/sys/properties/report
Data format example:
{
 "services": [
 {
 "service_id": "Temperature",
 "properties": {
 "value": 57,
 "value2": 60
 }
 }
]
}

● HTTPS: Use the property reporting APIs for HTTP devices. To obtain
access_token for HTTP devices, see Authenticating a Device. The following
is an example of reporting HTTPS device property.
POST https://{endpoint}/v5/devices/{device_id}/sys/properties/report
Content-Type: application/json
access_token: ********
{
 "services": [
 {
 "service_id": "serviceId",
 "properties": {
 "Height": 124,
 "Speed": 23.24
 }
 }
]
}

● LwM2M/CoAP: Use the property reporting APIs for devices using LwM2M
over CoAP. The following is an example of property reporting for devices
using LwM2M over CoAP.
// Assume that the data content (value) reported by the device is c4 0d 5a 6e 96 0b c3 0e 2b 30 37.
 NON-2.05 MID=48590, Token=********, OptionSet={"Observe":22, "Content-Format":"application/
octet-stream"}, c4 0d 5a 6e 96 0b c3 0e 2b 30 37

NO TE

● The reported device properties must match the properties defined in the product model.
● For details about devices using different protocols, see MQTT Device Reporting

Properties, HTTP Device Reporting Properties, and LwM2M/CoAP Device Reporting
Properties.

Step 4 The platform stores the latest data snapshot. If the reported data complies with
the product model definition, log in to the IoTDA console, choose Devices > All
Devices, and select a device to access its details page. The latest data snapshot is
displayed on the Device Info tab page. The following figure is as an example.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1327.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1327.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_7010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1327.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1327.html

Figure 5-11 Property reporting - Viewing data

Step 5 Data forwarding: With the data forwarding function, data can be forwarded to
applications or other Huawei Cloud services for storage and processing.

----End

Property Reporting Using Java SDK
This section describes how to use Java SDKs for the development of property
reporting. JDK 1.8 or later is used.

The reported properties must match the properties defined in the product model
corresponding to the device. The following figure provides the information of the
example product model used in the SDK code.

Figure 5-12 Model definition - smokeDetector

Configure the SDK on the device side:

Step 1 Download an SDK.

Step 2 Configure the Maven dependency of the SDK on devices.
<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>iot-device-sdk-java</artifactId>
 <version>1.1.4</version>
</dependency>

Step 3 Configure the SDK and device connection parameters on devices.
// Load the CA certificate of the IoT platform. For details about how to obtain the certificate, visit https://
support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html.
URL resource = BroadcastMessageSample.class.getClassLoader().getResource("ca.jks");
File file = new File(resource.getPath());

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_0005.html
https://support.huaweicloud.com/intl/en-us/sdkreference-iothub/iot_10_1002.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html

// The format is ssl://Domain name:Port number.
// To obtain the domain name, log in to the Huawei Cloud IoTDA console. In the navigation pane, choose
Overview and click Access Details in the Instance Information area. Select the access domain name
corresponding to port 8883.
String serverUrl = "ssl://localhost:8883";
// Device ID created on the IoT platform
String deviceId = "deviceId";
// Secret corresponding to the device ID
String deviceSecret = "secret";
// Create a device.
IoTDevice device = new IoTDevice(serverUrl, deviceId, deviceSecret, file);
if (device.init() != 0) {
 return;
}

Step 4 Report device properties.
Map<String ,Object> json = new HashMap<>();
Random rand = new Random();

// Set properties based on the product model.
json.put("alarm", alarm);
json.put("temperature", rand.nextFloat()*100.0f);
json.put("humidity", rand.nextFloat()*100.0f);
json.put("smokeConcentration", rand.nextFloat() * 100.0f);

ServiceProperty serviceProperty = new ServiceProperty();
serviceProperty.setProperties(json);
serviceProperty.setServiceId("smokeDetector");// The service ID must be consistent with that defined in the
product model.

device.getClient().reportProperties(Arrays.asList(serviceProperty), new ActionListener() {
 @Override
 public void onSuccess(Object context) {
 log.info("reportProperties success");
 }

 @Override
 public void onFailure(Object context, Throwable var2) {
 log.error("reportProperties failed" + var2.toString());
 }
});

----End

Verify the setting:

Step 1 Run the SDK code on the device. The following figure provides an example of the
property reporting log.

Figure 5-13 Java SDK property reporting result log

Step 2 Log in to the IoTDA console, choose Devices > All Devices, and click a device to
access its details page. The latest reported data is displayed on the Device Info
tab page.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

Figure 5-14 Property reporting - Viewing data

----End

5.2 Data Delivery

5.2.1 Overview
After a device is connected to IoTDA, the platform can send data to the device in
the following ways.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

Ty
p
e

Description Application Dev
ice
Sha
do
w

Sy
nc
hr
on
ou
s
or
As
yn
ch
ro
no
us

Cac
hed
by
the
Plat
for
m

Sup
port
ed
Prot
ocol
(De
vice
)

Pro
duc
t
Mo
del

M
es
sa
g
e
d
el
iv
er
y

The platform directly
delivers messages to
devices and does not rely
on product models. It is a
one-way notification to
devices. If a device is
offline, the platform can
cache messages (up to 24
hours) and send the data
to the device after it goes
online.

This API is
used by an
application to
deliver a
message in
custom format
to a device
when the
application
cannot deliver
data in the
format
defined in the
product
model. For
example,
sending data
to devices for
which no
product model
is defined.

Not
sup
port
ed

As
yn
ch
ro
no
us

Sup
port
ed

MQ
TT

Not
requ
ired

Pr
o
p
er
ty
d
el
iv
er
y

This mode is used to set
or query device properties.
After receiving the
properties, the device
needs to return the
property execution result
to the platform in a timely
manner. If the device does
not return a response, the
platform considers that
the property delivery
times out.

It is used by
the platform
to proactively
obtain or
modify the
device
property
value. For
example, an
app obtains
the
geographical
location of a
device at
intervals.

Sup
port
ed

Sy
nc
hr
on
ou
s

Not
sup
port
ed

MQ
TT
and
Lw
M2
M
over
CoA
P

Req
uire
d

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

Ty
p
e

Description Application Dev
ice
Sha
do
w

Sy
nc
hr
on
ou
s
or
As
yn
ch
ro
no
us

Cac
hed
by
the
Plat
for
m

Sup
port
ed
Prot
ocol
(De
vice
)

Pro
duc
t
Mo
del

C
o
m
m
a
n
d
d
el
iv
er
y

The platform delivers a
device control command
to a device and the device
needs to respond. The
response can carry
parameters indicating
operation success or
failure.
● When the platform

delivers a synchronous
command, the device
needs to return the
command execution
result within 20
seconds. Otherwise, the
command delivery is
considered failed.

● Asynchronous
command delivery can
cache messages. If a
device is offline, data is
sent after the device
goes online. The
maximum cache
duration is 48 hours.

It is used for
the command
that needs to
be confirmed
immediately.
For example,
turning on the
fan and
controlling the
street lamp
switch.

Not
sup
port
ed

Sy
nc
hr
on
ou
s

Not
sup
port
ed

MQ
TT

Req
uire
d

As
yn
ch
ro
no
us

Sup
port
ed

Lw
M2
M/
CoA
P

NO TE

It is not suitable to deliver data in JSON format for devices with low configuration and
limited resources or with limits on bandwidth usage. In this case, use codecs to convert the
JSON format data into binary data on applications.

APIs for Applications
● Deliver a Message to a Device

● Query Device Messages

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_9990.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0059.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0058.html

● Query Device Properties
● Modify Device Properties
● Deliver a Command to a Device
● Deliver an Asynchronous Command
● Query a Command with a Specific ID

APIs for MQTT Devices
● Platform Delivering a Command
● Platform Delivering a Message

APIs for Devices Using LwM2M over CoAP
● Platform Delivering a Command

5.2.2 Message Delivery

Overview
Message delivery does not rely on product models. The platform provides one-way
notifications for devices and caches messages. It delivers messages from the cloud
to devices in asynchronous mode (without waiting for responses from devices). If
a device is offline, data is sent after the device is online. The maximum cache
duration is 24 hours. By default, the platform stores a maximum of 20 messages
for each device. If the number of messages exceeds 20, subsequent messages will
replace the earliest messages. In addition, messages can be delivered in the format
of custom topics.

Table 5-2 Message delivery topic type

Message
Delivery Topic
Type

Description

System topic The platform predefines topics for communications with
devices. For details of the topic list and functions, see Topics.

Custom topic You can customize topics for device-platform
communications.
Types of custom topics:
● Topics defined in the product are prefixed with $oc/

devices/{device_id}/user/. During message reporting or
delivery, the platform checks whether the topic is defined
in the product. Undefined topics will be rejected by the
platform. For details about how to use this type of topics,
see Using a Custom Topic for Communication.

● Topics that do not start with $oc, for example, /
aircondition/data/up. This type of topics enables
upstream and downstream message communications
based on MQTT rules. The platform does not verify the
topic permission.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0035.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0034.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0038.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0040.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0042.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1328.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_02_9992.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0019.html

Scenarios
● The data format needs to be customized and does not rely on the product

model.

Constraints
● Max. size of a single message: 256 KB.

● Up to 20 messages can be cached for a single device.

● Max. length of a custom MQTT topic: 128 bytes.

● Max. cache duration (configurable): 24 hours.

Quality of Service
● IoTDA supports MQTT QoS 0 and QoS 1, but does not support QoS 2.

● If the QoS of a topic is 0, the message is delivered only once without waiting
for the device to return an ACK message. If the QoS of a topic is 1, the
message delivery is successful only after the device returns an ACK message.

● Devices subscribe to the system topic whose QoS is 0 by default. If the
downstream system topic whose QoS is 1 is required, devices need to be
configured to subscribe to the topic.

● If a device needs to subscribe to a custom topic that does not start with $oc
and the QoS is 1, submit a service ticket.

● If the QoS of the subscribed topic is 1 and the platform does not receive an
ACK message from the device, the platform resends the message every 2
seconds for three times by default.

If the device still does not return an acknowledgment response and the
message is still cached, the platform resends the message when the device
goes online again or subscribes to a topic. By default, the platform resends
the message every 10 seconds for five times.

In addition, the mechanism of resending every 2 seconds is triggered.
Therefore, the device may receive duplicate messages. It is recommended that
devices have deduplication mechanisms.

APIs
● Deliver a Message to a Device

● Platform Delivering a Message.

Delayed Message Delivery

Message delivery is a mode in which the platform directly delivers messages to
devices. When a device is offline, the platform caches messages to be delivered
until the device goes online.

The following describes how to use a system topic to cache and deliver messages
to devices.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

https://console-intl.huaweicloud.com/ticket?locale=en-us#/ticketindex/createIndex
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0059.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3017.html

Figure 5-15 Process of delayed message delivery

1. An application or the third-party platform calls the API for delivering a
message to a device to send a message to IoTDA. Example message:
POST https://{Endpoint}/v5/iot/{project_id}/devices/{device_id}/messages
Content-Type: application/json
X-Auth-Token: ********

{
 "message_id": "99b32da9-cd17-4cdf-a286-f6e849cbc364",
 "name": "messageName",
 "message": "HelloWorld"
}

2. The platform sends a 201 Created message carrying the message status
PENDING to the application.

3. The platform pushes the message result to the application through the API for
pushing a device message status change notification. If the device is
offline, the message status is PENDING.
Topic: $oc/devices/{device_id}/sys/messages/down
Data format:
{
 "resource": "device.message.status",
 "event": "update",
 "notify_data": {
 "message_id": "string",
 "name": "string",
 "device_id": "string",
 "status": "PENDING",
 "timestamp": "string"
 }
 }

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0059.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0059.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01203.html

4. The device goes online.
5. The device subscribes to the non-system topic to receive messages. (Implicit

subscription mode: Devices do not need to subscribe to downstream system
topics.)

6. The platform sends the message to the device according to the protocol
specifications. Example message:
Topic: $oc/devices/{device_id}/sys/messages/down
Data format:
{
 "object_device_id": "{object_device_id}",
 "name": "name",
 "id": "id",
 "content": "hello"
}

7. The platform pushes the final result of the message to the application. The
message status is DELIVERED. For details about the used APIs, see Push a
Device Message Status Change Notification.
Topic: $oc/devices/{device_id}/sys/messages/down
Data format:
{
 "resource": "device.message.status",
 "event": "update",
 "notify_data": {
 "message_id": "string",
 "name": "string",
 "device_id": "string",
 "status": "DELIVERED",
 "timestamp": "string"
 }
 }

Introduction for QoS 1
The following uses an MQTT device as an example to describe how to use a
system topic whose QoS is 1 to deliver messages to devices.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01203.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01203.html

Figure 5-16 Process of using QoS 1 for message delivery

1. The device goes online.
2. Subscribe to a topic for the device and set QoS to 1.

Figure 5-17 Setting QoS to 1 for the subscribed topic

3. An application or the third-party platform calls the API for delivering a
message to a device to send a message to IoTDA. Example message:
POST https://{Endpoint}/v5/iot/{project_id}/devices/{device_id}/messages
Content-Type: application/json
X-Auth-Token: ********

{
 "message_id": "99b32da9-cd17-4cdf-a286-f6e849cbc364",
 "name": "messageName",
 "message": "HelloWorld"
}

4. The platform sends the message to the device according to the protocol
specifications. An MQTT device needs to subscribe to the non-system topic to
receive messages. (Implicit subscription mode: Devices do not need to
subscribe to downstream system topics.) Example message:
Topic: $oc/devices/{device_id}/sys/messages/down
Data format:
{
 "object_device_id": "{object_device_id}",

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0059.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0059.html

 "name": "name",
 "id": "id",
 "content": "hello"
}

5. After delivering a message to the device, the platform returns a 201 Created
message to the application. The message status is DELIVERED. Message
delivery is an asynchronous operation. The platform can return the response
without waiting for an ACK message from the device.

6. If the IoT platform does not receive an ACK response from the device, it
resends the message every 2 seconds for three times by default.

7. The device goes online again or subscribes to a topic.
8. If the device does not return an ACK response for the previous message and

the message does not time out, the platform resends the message every 10
seconds for five times by default. This mechanism of resending every 2
seconds is triggered.

9. The platform pushes the final result of the message to the application. The
message status is DELIVERED or TIMEOUT. For details about the used APIs,
see Push a Device Message Status Change Notification.
Topic: $oc/devices/{device_id}/sys/messages/down
Data format:
{
 "resource": "device.message.status",
 "event": "update",
 "notify_data": {
 "message_id": "string",
 "name": "string",
 "device_id": "string",
 "status": "DELIVERED",
 "timestamp": "string"
 }
 }

Message Delivery Status
The following figure shows the MQTT device message execution status and status
change mechanism.

Figure 5-18 Device message status

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01203.html

Table 5-3 Status

Status Description

PENDING If an MQTT device is offline, the platform caches the message. In
this case, the task status is PENDING.

TIMEOUT If the platform does not deliver the message in the pending
status after one day, the task status changes to TIMEOUT.

DELIVERED After the platform sends the message to the device, the task
status changes to DELIVERED.

FAILED If the platform fails to send a message to the device, the task
status changes to FAILED.

Example of Platform Message Delivery

To deliver messages from the cloud, create a delivery task on the console. The
following uses an MQTT device as an example to describe how to cache and
deliver messages on the IoTDA console.

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Devices > All Devices. On the device list, click a
device to access its details page.

Step 3 Click the Cloud Delivery tab. On the Message Delivery tab page, click Deliver
Message. In the displayed dialog box, configure the content and the parameters
for the command to deliver.

Figure 5-19 Message delivery - MQTT

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Step 4 The delivery status is DELIVERED on the platform.

Figure 5-20 Querying results

----End

Configure the Java SDK on the application side:

Step 1 Configure the Maven dependency. In this example, the development environment
is JDK 1.8 or later. Download an SDK.
<dependency>
 <groupId>com.huaweicloud.sdk</groupId>
 <artifactId>huaweicloud-sdk-core</artifactId>
 <version>[3.0.40-rc, 3.2.0)</version>
</dependency>
<dependency>
 <groupId>com.huaweicloud.sdk</groupId>
 <artifactId>huaweicloud-sdk-iotda</artifactId>
 <version>[3.0.40-rc, 3.2.0)</version>
</dependency>

Step 2 The following is an example of a message sent by the application to a single
device:
public class MessageDistributionSolution {
 // REGION_ID: If CN East-Shanghai1 is used, enter cn-east-3. If CN North-Beijing4 is used, enter cn-
north-4. If CN South-Guangzhou is used, enter cn-south-4.
 private static final String REGION_ID = "<YOUR REGION ID>";
 // ENDPOINT: On the console, choose Overview and click Access Addresses to view the HTTPS
application access address.
 private static final String ENDPOINT = "<YOUR ENDPOINT>";
 // For the standard or enterprise edition, create a region object.
 public static final Region REGION_CN_NORTH_4 = new Region(REGION_ID, ENDPOINT);
 public static void main(String[] args) {
 String ak = "<YOUR AK>";
 String sk = "<YOUR SK>";
 String projectId = "<YOUR PROJECTID>";
 // Create a credential.
 ICredential auth = new
BasicCredentials().withDerivedPredicate(AbstractCredentials.DEFAULT_DERIVED_PREDICATE)
 .withAk(ak)
 .withSk(sk)
 .withProjectId(projectId);
 // Create and initialize an IoTDAClient instance.
 IoTDAClient client = IoTDAClient.newBuilder().withCredential(auth)
 // For the basic edition, select the region object in IoTDARegion.
 //.withRegion(IoTDARegion.CN_NORTH_4)
 // For the standard or enterprise edition, create a region object.
 .withRegion(REGION_CN_NORTH_4).build();
 // Instantiate a request object.
 CreateMessageRequest request = new CreateMessageRequest();
 request.withDeviceId("<YOUR DEVICE_ID>");
 DeviceMessageRequest body = new DeviceMessageRequest();
 body.withMessage("<YOUR DEVICE MESSAGE>");
 request.withBody(body);

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

https://support.huaweicloud.com/intl/en-us/sdkreference-iothub/iot_10_1002.html

 try {
 CreateMessageResponse response = client.createMessage(request);
 System.out.println(response.toString());
 } catch (ConnectionException e) {
 e.printStackTrace();
 } catch (RequestTimeoutException e) {
 e.printStackTrace();
 } catch (ServiceResponseException e) {
 e.printStackTrace();
 System.out.println(e.getHttpStatusCode());
 System.out.println(e.getRequestId());
 System.out.println(e.getErrorCode());
 System.out.println(e.getErrorMsg());
 }
 }
}

Table 5-4 Parameters

Parameter Description

ak Access key ID (AK) of your Huawei Cloud account. You can
create and check your AK/SK on the My Credentials > Access
Keys page of the Huawei Cloud console. For details, see
Access Keys.

sk Secret access key (SK) of your Huawei Cloud account.

projectId Project ID. For details on how to obtain a project ID, see
Obtaining a Project ID.

IoTDARegion.C
N_NORTH_4

Region where the platform to be accessed is located. The
available regions of the platform have been defined in the
SDK code IoTDARegion.java.
On the console, you can view the region name of the current
service and the mapping between regions and endpoints. For
details, see Platform Connection Information.

REGION_ID If CN East-Shanghai1 is used, enter cn-east-3. If CN North-
Beijing4 is used, enter cn-north-4. If CN South-Guangzhou is
used, enter cn-south-4.

ENDPOINT On the console, choose Overview and click Access Addresses
to view the HTTPS application access address.

DEVICE_ID Unique ID of the device that a message is delivered to. The
value of this parameter is allocated by the platform during
device registration. The value is a string of no more than 128
characters. Only letters, digits, underscores (_), and hyphens
(-) are allowed.

----End

In the example, JDK 1.8 or a later version is used. Download an SDK. Configure
the Java SDK on the device:

Step 1 Configure the Maven dependency of the SDK on devices.
<dependency>
 <groupId>com.huaweicloud</groupId>

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1001.html
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/tree/master/services/iotda/src/main/java/com/huaweicloud/sdk/iotda/v5/region/IoTDARegion.java
https://support.huaweicloud.com/intl/en-us/sdkreference-iothub/iot_10_1002.html

 <artifactId>iot-device-sdk-java</artifactId>
 <version>1.1.4</version>
</dependency>

Step 2 Configure the SDK and device connection parameters on devices.
// Load the CA certificate of the IoT platform. For details about how to obtain the certificate, visit https://
support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html.
URL resource = BroadcastMessageSample.class.getClassLoader().getResource("ca.jks");
File file = new File(resource.getPath());

// The format is ssl://Domain name:Port number.
// To obtain the domain name, log in to the Huawei Cloud IoTDA console. In the navigation pane, choose
Overview and click Access Details in the Instance Information area. Select the access domain name
corresponding to port 8883.
String serverUrl = "ssl://localhost:8883";
// Device ID created on the platform
String deviceId = "deviceId";
// Secret corresponding to the device ID
String deviceSecret = "secret";
// Create a device.
IoTDevice device = new IoTDevice(serverUrl, deviceId, deviceSecret, file);
if (device.init() != 0) {
 return;
}

Step 3 Define the message delivery callback function.
client.setDeviceMessageListener(deviceMessage -> {
 log.info("the onDeviceMessage is {}", deviceMessage.toString());
});

----End

Verify the setting:

Step 1 On the IoTDA console, click the target instance card. In the navigation pane,
choose Devices > All Devices. On the displayed page, locate the target device,
and click View in the Operation column to access its details page. Click the
Message Trace tab, and click Start Trace.

Figure 5-21 Message tracing - Starting message tracing

Step 2 Run the SDK code on the application and deliver a message. The following is an
example of the response from the platform.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html

Figure 5-22 Response indicating the delivery success of the application message

Step 3 The record can be checked on the Message Trace tab page.

Figure 5-23 Message tracing - Caching delivered messages

Step 4 Run the SDK code on the device. The following is an example of the log format
when the device receives a message.

Figure 5-24 Device receiving messages

----End

5.2.3 Property Delivery

Overview

Property delivery is used for property query or modification. An application or the
platform can obtain device property information or modify the properties, and
synchronize the modification result to the device. After receiving a message, the
device needs to return the property execution result to the platform in a timely
manner. If the device does not respond, the platform considers that the property
delivery times out.

Scenarios
● The platform proactively obtains or modifies device properties.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

● The platform standardizes, parses, and filters the data.

Constraints
● Max. size of a single message: 64 KB.
● Product models are required.

APIs
● Platform Setting Device Properties
● Platform Querying Device Properties

Property Delivery Usage
Property delivery is used for property modification or query. The following uses
property modification as an example.

Figure 5-25 Process of property delivery

1. An application calls the API for modifying device properties to deliver a
request to the platform. Example message:
PUT https://{endpoint}/v5/iot/{project_id}/devices/{device_id}/properties
{
 "services" : [{
 "service_id" : "Temperature",
 "properties" : {
 "value" : 57
 }
 }, {
 "service_id" : "Battery",
 "properties" : {
 "level" : 80
 }
 }]
}

2. The platform sends the property to the device according to the protocol
specifications. The following is an example of setting properties through the
APIs for MQTT devices.
Topic: $oc/devices/{device_id}/sys/properties/set/request_id={request_id}
Data format:
{
 "object_device_id": "{object_device_id} ",
 "services": [

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_0005.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3011.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0034.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html

 {
 "service_id": "Temperature",
 "properties": {
 "value": 57,
 "value2": 60
 }
 },
 {
 "service_id": "Battery",
 "properties": {
 "level": 80,
 "level2": 90
 }
 }
]
}

3. The device executes the command and returns the execution result. Example
message:
Topic: $oc/devices/{device_id}/sys/properties/set/response/request_id={request_id}
Data format:
{
 "result_code": 0,
 "result_desc": "success"
}

4. The platform synchronously sends a response to the HTTP command. Example
message:
Status Code: 200 OK
Content-Type: application/json
{
 "response" : {
 "result_code" : 0,
 "result_desc" : "success"
 }
}

Using the Java SDK for Property Delivery
This section describes how to use the Java SDK for the development of property
configuration. Download an SDK. JDK 1.8 or later is used.

Configure the SDK on the application side:

Step 1 Configure the Maven dependency.
<dependency>
 <groupId>com.huaweicloud.sdk</groupId>
 <artifactId>huaweicloud-sdk-core</artifactId>
 <version>[3.0.40-rc, 3.2.0)</version>
</dependency>
<dependency>
 <groupId>com.huaweicloud.sdk</groupId>
 <artifactId>huaweicloud-sdk-iotda</artifactId>
 <version>[3.0.40-rc, 3.2.0)</version>
</dependency>

Step 2 Set the device properties on the application by referring to the following example.
public class AttributeDistributionSolution {
 // REGION_ID: If CN East-Shanghai1 is used, enter cn-east-3. If CN North-Beijing4 is used, enter cn-
north-4. If CN South-Guangzhou is used, enter cn-south-4.
 private static final String REGION_ID = "<YOUR REGION ID>";
 // ENDPOINT: On the console, choose Overview and click Access Addresses to view the HTTPS
application access address.
 private static final String ENDPOINT = "<YOUR ENDPOINT>";
 // For the standard or enterprise edition, create a region object.
 public static final Region REGION_CN_NORTH_4 = new Region(REGION_ID, ENDPOINT);
 public static void main(String[] args) {

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

https://support.huaweicloud.com/intl/en-us/sdkreference-iothub/iot_10_1002.html

 String ak = "<YOUR AK>";
 String sk = "<YOUR SK>";
 String projectId = "<YOUR PROJECTID>";
 // Create a credential.
 ICredential auth = new
BasicCredentials().withDerivedPredicate(AbstractCredentials.DEFAULT_DERIVED_PREDICATE)
 .withAk(ak)
 .withSk(sk)
 .withProjectId(projectId);
 // Create and initialize an IoTDAClient instance.
 IoTDAClient client = IoTDAClient.newBuilder().withCredential(auth)
 // For the basic edition, select the region object in IoTDARegion.
 //.withRegion(IoTDARegion.CN_NORTH_4)
 // For the standard or enterprise edition, create a region object.
 .withRegion(REGION_CN_NORTH_4).build();
 // Instantiate a request object.
 UpdatePropertiesRequest request = new UpdatePropertiesRequest();
 request.withDeviceId("<YOUR DEVICE_ID>");
 DevicePropertiesRequest body = new DevicePropertiesRequest();
 body.withServices("[{\"service_id\":\"smokeDetector\",\"properties\":{\"alarm\":\"hello\"," +
 "\"temperature\":10.323,\"humidity\":654.32,\"smokeConcentration\":342.4}}]");
 request.withBody(body);
 try {
 UpdatePropertiesResponse response = client.updateProperties(request);
 System.out.println(response.toString());
 } catch (ConnectionException e) {
 e.printStackTrace();
 } catch (RequestTimeoutException e) {
 e.printStackTrace();
 } catch (ServiceResponseException e) {
 e.printStackTrace();
 System.out.println(e.getHttpStatusCode());
 System.out.println(e.getRequestId());
 System.out.println(e.getErrorCode());
 System.out.println(e.getErrorMsg());
 }
 }
}

Table 5-5 Parameters

Parameter Description

ak Access key ID (AK) of your Huawei Cloud account. You can
create and check your AK/SK on the My Credentials > Access
Keys page of the Huawei Cloud console. For details, see
Access Keys.

sk Secret access key (SK) of your Huawei Cloud account.

projectId Project ID. For details on how to obtain a project ID, see
Obtaining a Project ID.

IoTDARegion.C
N_NORTH_4

Region where the platform to be accessed is located. The
available regions of the platform have been defined in the
SDK code IoTDARegion.java.
On the console, you can view the region name of the current
service and the mapping between regions and endpoints. For
details, see Platform Connection Information.

REGION_ID If CN East-Shanghai1 is used, enter cn-east-3. If CN North-
Beijing4 is used, enter cn-north-4. If CN South-Guangzhou is
used, enter cn-south-4.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1001.html
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/tree/master/services/iotda/src/main/java/com/huaweicloud/sdk/iotda/v5/region/IoTDARegion.java

Parameter Description

ENDPOINT On the console, choose Overview and click Access Addresses
to view the HTTPS application access address.

DEVICE_ID Unique ID of the device that a message is delivered to. The
value of this parameter is allocated by the platform during
device registration. The value is a string of no more than 128
characters. Only letters, digits, underscores (_), and hyphens
(-) are allowed.

----End

Configure the SDK on the device side:

Step 1 Configure the Maven dependency of the SDK on devices.
<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>iot-device-sdk-java</artifactId>
 <version>1.1.4</version>
</dependency>

Step 2 Configure the SDK and device connection parameters on devices.
// Load the CA certificate of the IoT platform. For details about how to obtain the certificate, visit https://
support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html.
URL resource = AttributeSample.class.getClassLoader().getResource("ca.jks");
File file = new File(resource.getPath());

// Format: ssl://Domain name:Port number
// To obtain the domain name, log in to the Huawei Cloud IoTDA console. In the navigation pane, choose
Overview and click Access Details in the Instance Information area. Select the access domain name
corresponding to port 8883.
String serverUrl = "ssl://localhost:8883";
// Device ID created on the platform
String deviceId = "deviceId";
// Secret corresponding to the device ID
String deviceSecret = "secret";
// Create a device.
IoTDevice device = new IoTDevice(serverUrl, deviceId, deviceSecret, file);
if (device.init() != 0) {
 return;
}

Step 3 Define the property delivery callback function.
device.getClient().setPropertyListener(new PropertyListener() {

 // Process property writing.
 @Override
 public void onPropertiesSet(String requestId, List<ServiceProperty> services) {

 // Traverse services.
 for (ServiceProperty serviceProperty: services){

 log.info("OnPropertiesSet, serviceId = " + serviceProperty.getServiceId());

 // Traverse properties.
 for (String name :serviceProperty.getProperties().keySet()){
 log.info("property name = "+ name);
 log.info("set property value = "+ serviceProperty.getProperties().get(name));
 if (name.equals("alarm")){
 // Change the local value.
 alarm = (Integer) serviceProperty.getProperties().get(name);
 }

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html

 }

 }
 // Set property response.
 device.getClient().respondPropsSet(requestId, IotResult.SUCCESS);
 }

 // Process property reading.
 @Override
 public void onPropertiesGet(String requestId, String serviceId) {
 log.info("OnPropertiesGet " + serviceId);
 Map<String ,Object> json = new HashMap<>();
 Random rand = new Random();
 json.put("alarm", alarm);
 json.put("temperature", rand.nextFloat()*100.0f);
 json.put("humidity", rand.nextFloat()*100.0f);
 json.put("smokeConcentration", rand.nextFloat() * 100.0f);

 ServiceProperty serviceProperty = new ServiceProperty();
 serviceProperty.setProperties(json);
 serviceProperty.setServiceId("smokeDetector");

 // Report the property reading response.
 device.getClient().respondPropsGet(requestId, Arrays.asList(serviceProperty));
 }
});

----End

Verify the setting:

Step 1 On the IoTDA console, click the target instance card. In the navigation pane,
choose Devices > All Devices. On the displayed page, locate the target device,
and click View in the Operation column to access its details page. Click the
Message Trace tab, and click Start Trace.

Figure 5-26 Message tracing - Starting message tracing

Step 2 Run the SDK code on the device to bring the device online.

Step 3 Run the SDK code on the application and call the API for modifying device
properties to send a request to the device. The following provides the result
received by the device.

Figure 5-27 Property modification result on the device

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

Step 4 Check the result on the Message Trace tab page.

Figure 5-28 Message tracing - Delivering properties

----End

5.2.4 Command Delivery

Overview
A product model defines commands that can be delivered to the devices.
Applications can call platform APIs to deliver commands to the devices to
effectively manage these devices.

IoTDA supports synchronous and asynchronous command delivery.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

Table 5-6 Command delivery

Mechan
ism

Description Scenario Devices
Using
LwM2M
over
CoAP

Devices
Using
MQTT

Synchro
nous
comman
d
delivery

An application calls the
synchronous command
delivery API to deliver
a command to a
specified device for
device control. The
platform sends the
command to the device
and returns the
command execution
result in an HTTP
request to the
application. If the
device does not
respond, the platform
returns a timeout
message to the
application.

Applicable to
commands that must
be executed in real
time, for example,
turning on a street
lamp or closing a gas
meter switch.
Applications should
determine the
appropriate time to
deliver a command.

Not
applicab
le

Applica
ble

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

Mechan
ism

Description Scenario Devices
Using
LwM2M
over
CoAP

Devices
Using
MQTT

Asynchr
onous
comman
d
delivery

An application calls the
asynchronous
command delivery API
to deliver a command
to a specified device
for device control. The
platform sends the
command to the device
and asynchronously
pushes the command
execution result to the
application.
Asynchronous
command delivery is
classified into
immediate delivery and
delayed delivery.
● In immediate

delivery, the
platform delivers
commands to a
device regardless of
whether the device
is online. If the
device is offline or
the device does not
receive the
command, the
delivery fails.

● In delayed delivery,
the platform caches
a command and
delivers it to a
device when the
device goes online
or reports data. If a
device has multiple
pending commands,
the platform
delivers the
commands in
sequence.

● Immediate
delivery applies to
scenarios with
high real-time
requirements.

● Delayed delivery
applies to
commands that
do not need to be
executed
immediately, for
example,
configuring water
meter parameters.

Applicab
le

Not
applicab
le

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

NO TE

For details, see Synchronous Command Delivery and Asynchronous Command Delivery.

Scenarios
● Synchronous delivery applies to scenarios that require real-time command

delivery. Asynchronous delivery is used for device control.

● Data needs to be forwarded to other Huawei Cloud services for storage and
processing based on data forwarding rules.

Constraints
● Max. size of a single message: 256 KB.

● Product models are required.

● Devices need to respond to the synchronous command within 20 seconds.

● Up to 20 asynchronous commands can be cached at a time.

● Max. cache duration (configurable): 48 hours.

APIs
● APIs for the platform and applications

– Deliver a Command to a Device

– Deliver an Asynchronous Command

– Query a Command with a Specific ID

● APIs for MQTT devices

– Platform Delivering a Command

– Platform Delivering a Message.

● APIs for devices using LwM2M over CoAP

– Platform Delivering a Command

Synchronous Command Delivery

You can deliver synchronous commands to MQTT devices one by one or in
batches.

Table 5-7 Synchronous command delivery

Type Description Scenario Example

Synchrono
us
command
delivery to
a single
MQTT
device

IoTDA delivers a control
command to a single
device.

The function is used to
deliver a control
command to a single
device.

Synchronous
Command
Delivery to
an Individual
MQTT Device

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_0005.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0038.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0040.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0042.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1328.html

Type Description Scenario Example

Synchrono
us
command
delivery to
a batch of
MQTT
devices

IoTDA delivers control
commands to devices in
batches. You can create
a batch task to perform
operations on multiple
devices at a time.

The function is used to
deliver control
commands to devices in
batches.

Synchronous
Command
Delivery to a
Batch of
MQTT
Devices

Synchronous Command Delivery to an Individual MQTT Device
For details on how to set and query properties, see instructions of the APIs for
querying device properties and modifying device properties.

Figure 5-29 Command delivery process

1. An application calls the API for delivering a command to a device to send a
command to the platform. Example message:
POST https://{Endpoint}/v5/iot/{project_id}/devices/{device_id}/commands
Content-Type: application/json
X-Auth-Token: ********

{
 "service_id" : "WaterMeter",
 "command_name" : "ON_OFF",
 "paras" : {
 "value" : "ON"
 }
}

2. The platform sends the command to the device according to the protocol
specifications. Example message:
Topic: $oc/devices/{device_id}/sys/commands/request_id={request_id}
Data format:
{
 "object_device_id": "{object_device_id}",
 "command_name": "ON_OFF",
 "service_id": "WaterMeter",
 "paras": {
 "value": "ON"
 }
}

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0035.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0034.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0038.html

3. After executing the command, the device returns the command execution
result through the API for delivering a command. Example message:
Topic: $oc/devices/{device_id}/sys/commands/response/request_id={request_id}
Data format:
{
 "result_code": 0,
 "response_name": "COMMAND_RESPONSE",
 "paras": {
 "result": "success"
 }
}

4. The platform synchronously sends a response to the HTTP command. Example
message:
Status Code: 200 OK
Content-Type: application/json

{
 "command_id" : "b1224afb-e9f0-4916-8220-b6bab568e888",
 "response" : {
 "result_code" : 0,
 "response_name" : "COMMAND_RESPONSE",
 "paras" : {
 "result" : "success"
 }
 }
}

Synchronous Command Delivery to a Batch of MQTT Devices
The API for creating a batch task can be used to deliver a command to multiple
MQTT devices. The following describes how to call the API for creating a batch
task to deliver commands in batches.

1. An application calls the API for creating a batch task to send a command to
the platform. Example message:
POST https://{Endpoint}/v5/iot/{project_id}/batchtasks
Content-Type: application/json
X-Auth-Token: ********
{
 "app_id": "********",
 "task_name": "task123",
 "task_type": "createCommands",
 "targets": [
 "********",
 "********"
],
 "document": {
 "service_id": "water",
 "command_name": "ON_OFF",
 "paras": {
 "value": "ON"
 }
 }
}

Table 5-8 Parameters for creating a batch task of command delivery

Paramet
er

Mandator
y

Description

app_id No Resource space ID.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0045.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0045.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0045.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0045.html

Paramet
er

Mandator
y

Description

task_na
me

Yes Custom task name.

task_typ
e

Yes Type of the batch task. For details, see Create a
Batch Task. Options:
● createCommands: task for creating

synchronous commands in batches
● createAsyncCommands: task for creating

asynchronous commands in batches

targets No Device ID array, which is the target for executing
the batch task.

documen
t

No Task execution data file, in JSON format (key-value
pairs). For details, see Deliver a Command to a
Device.

2. The platform returns a 201 Created message to the application.
3. The device receives the command and sends the command result to the

platform through the upstream topic. For details, see Platform Delivering a
Command.

4. Call the API for querying the batch task list to query the execution status of
a batch command delivery task.

Asynchronous Command Delivery
Asynchronous command delivery is used for IoTDA or applications to deliver
commands to devices using LwM2M over CoAP to access IoTDA. Two modes are
available.

Table 5-9 Asynchronous command delivery

Type Description Scenario Process

Immediate
delivery of
asynchron
ous
command
s

IoTDA delivers
commands to a device
upon receiving a
command regardless of
whether the device is
online. If the device is
offline or the device
does not receive the
command, the delivery
fails.

It is used in scenarios
that have high
requirements for
timeliness.

Immediate
Delivery of
Asynchronous
Commands

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0045.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0045.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0038.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0038.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0028.html

Type Description Scenario Process

Delayed
delivery of
asynchron
ous
command
s

The platform caches a
command and delivers
it to a device when the
device goes online or
reports properties. If a
device has multiple
cached commands, the
platform delivers the
commands in sequence.

Delayed delivery
applies to commands
that do not need to
be executed
immediately, for
example, configuring
water meter
parameters.

Delayed
Delivery of
Asynchronous
Commands

Immediate Delivery of Asynchronous Commands

Figure 5-30 Command delivery for devices using LwM2M over CoAP

An example of the corresponding steps is as follows:

1. An application calls the API for delivering an asynchronous command to
send a command to the platform. The send_strategy parameter in the
command request is set to immediately. Example message:
POST https://{endpoint}/v5/iot/{project_id}/devices/{device_id}/async-commands
Content-Type: application/json
X-Auth-Token: ********

{
 "service_id" : "WaterMeter",
 "command_name" : "ON_OFF",
 "paras" : {
 "value" : "ON"
 },

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0040.html

 "expire_time": 0,
 "send_strategy": "immediately"
}

2. The platform uses the codec to encode the command request, and sends the
command through the Execute operation of the device management and
service implementation interface defined in the LwM2M protocol. The
message body is in binary format.

3. The platform sends a 200 OK message carrying the command status SENT to
the application. (If the device is offline or the device does not receive the
command, the delivery fails and the command status is FAILED.)

4. The device returns an ACK message after receiving the command.
5. If the application has subscribed to command status change notifications, the

platform pushes a message to the application by calling the API for pushing a
command status change notification. The command status carried in the
message is DELIVERED. Example message:
Method: POST
request:
Body:
{
 "resource": "device.command.status",
 "event": "update",
 "event_time": "20200811T080745Z",
 "notify_data": {
 "header": {
 "app_id": "********",
 "device_id": "********",
 "node_id": "test0001",
 "product_id": "********",
 "gateway_id": "********",
 "tags": []
 },
 "body": {
 "command_id": "********",
 "created_time": "20200811T080738Z",
 "sent_time": "20200811T080738Z",
 "delivered_time": "20200811T080745Z",
 "response_time": "",
 "status": "DELIVERED",
 "result": null
 }
 }
}

6. After the command is executed, the device returns the command execution
result in a 205 Content message.

7. If the application has subscribed to command status change notifications, the
platform uses the codec to decode the command response and sends a push
message to the application by calling the API for pushing a command status
change notification. The command status carried in the message is
SUCCESSFUL. Example message:
Method: POST
request:
Body:
{
 "resource": "device.command.status",
 "event": "update",
 "event_time": "20200811T080745Z",
 "notify_data": {
 "header": {
 "app_id": "********",
 "device_id": "********",
 "node_id": "test0001",
 "product_id": "********",

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 120

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_0008.html

 "gateway_id": "********",
 "tags": []
 },
 "body": {
 "command_id": "********",
 "created_time": "20200811T080738Z",
 "sent_time": "20200811T080738Z",
 "delivered_time": "20200811T080745Z",
 "response_time": "20200811T081745Z",
 "status": "SUCCESSFUL",
 "result": {
 "resultCode":"SUCCESSFUL",
 "resultDetail": {
 "value": "ON"
 }
 }
 }
 }
}

Delayed Delivery of Asynchronous Commands

Figure 5-31 Delayed command delivery for devices using LwM2M over CoAP

1. An application calls the API for delivering an asynchronous command to
send a command to the platform. The send_strategy parameter in the
command request is set to delay.

2. The platform adds the command to the cache queue and reports a 200 OK
message. The command status is PENDING.

3. The device goes online or reports data to the platform.
4. The platform uses the codec to encode the command request and sends the

command to the device according to the protocol specifications.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0040.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_9990.html

5. If the application has subscribed to command status change notifications, the
platform pushes a message to the application by calling the API for pushing a
command status change notification. The command status carried in the
message is SENT.

6. The subsequent flow is the same as 4 to 7 described in the immediate
delivery scenario.

LwM2M/CoAP Device Command Execution Status
The figure below illustrates the command execution status and the table below
describes the status change mechanism.

Figure 5-32 LwM2M/CoAP command delivery status

Table 5-10 LwM2M/CoAP command execution status

Status Description

PENDING ● For a device using LwM2M over CoAP in delayed delivery
mode, the platform caches a command if the device has not
reported data. The command status is PENDING.

● This status does not exist for devices using LwM2M over CoAP
in immediate delivery mode.

EXPIRED ● For a device using LwM2M over CoAP in delayed delivery
mode, if the platform does not deliver a command to the
device within a specified time, the command status is
EXPIRED. The expiration time is subject to the value of
expireTime carried in the command request. If expireTime is
not carried, the default value (24 hours) is used.

● This status does not exist for devices using LwM2M over CoAP
in immediate delivery mode.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 122

Status Description

SENT ● For a device using LwM2M over CoAP in delayed delivery
mode, the platform sends a cached command when receiving
data reported by the device. In this case, the command status
changes from PENDING to SENT.

● For a device using LwM2M over CoAP in immediate delivery
mode, if the device is online when the platform delivers a
command, the command status is SENT.

TIMEOUT If the platform does not receive a response within 180 seconds
after delivering a command to a device using LwM2M over CoAP,
the command status is TIMEOUT.

DELIVERED If the platform receives a response from a device, the command
status is DELIVERED.

SUCCESSFU
L

If the platform receives a result indicating that the command is
executed, the command status is SUCCESSFUL.

FAILED ● If the platform receives a result indicating that the command
execution failed, the command status is FAILED.

● For a device using LwM2M over CoAP in immediate delivery
mode, if the device is offline when the platform delivers a
command, the command status is FAILED.

Platform Command Delivery Example
Step 1 Access the IoTDA service page and click Access Console. Click the target instance

card.

Step 2 In the navigation pane, choose Devices > All Devices. On the device list, click a
device to access its details page.

Step 3 The Cloud Delivery tab page varies according to the device protocol.
● Devices using MQTT support only synchronous command delivery. Click

Command Delivery on the right. In the displayed dialog box, select the
command to be delivered and set command parameters.

Figure 5-33 Command delivery - Synchronous command delivery

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 123

https://www.huaweicloud.com/intl/en-us/product/iotda.html

● Devices using LwM2M over CoAP support only asynchronous command
delivery. Click Deliver Command on the right. In the displayed dialog box,
select the command to be delivered and set command parameters. You can
choose to send the command immediately or after a delay.

Figure 5-34 Command delivery - Asynchronous command delivery

----End

NO TE

● On the Message Trace tab page, you can view the creation time, sending time,
delivered time, and the delivery status of a command delivery task. This information
helps you learn the command execution status.

● In addition, you can call the API for querying a command with a specific ID to query
the status and content of delivered commands on the platform.

The application uses the Java SDK for the development of synchronous command
delivery. The development environment used in the example is JDK 1.8 or later.
Download an SDK.

Step 1 Configure the Maven dependency.
<dependency>
 <groupId>com.huaweicloud.sdk</groupId>
 <artifactId>huaweicloud-sdk-core</artifactId>
 <version>[3.0.40-rc, 3.2.0)</version>
</dependency>
<dependency>
 <groupId>com.huaweicloud.sdk</groupId>
 <artifactId>huaweicloud-sdk-iotda</artifactId>
 <version>[3.0.40-rc, 3.2.0)</version>
</dependency>

Step 2 The following is an example of delivering a synchronous command:
public class CommandSolution {
 // REGION_ID: If CN East-Shanghai1 is used, enter cn-east-3. If CN North-Beijing4 is used, enter cn-
north-4. If CN South-Guangzhou is used, enter cn-south-4.
 private static final String REGION_ID = "<YOUR REGION ID>";
 // ENDPOINT: On the console, choose Overview and click Access Addresses to view the HTTPS
application access address.
 private static final String ENDPOINT = "<YOUR ENDPOINT>";
 // For the standard or enterprise edition, create a region object.
 public static final Region REGION_CN_NORTH_4 = new Region(REGION_ID, ENDPOINT);
 public static void main(String[] args) {
 String ak = "<YOUR AK>";
 String sk = "<YOUR SK>";
 String projectId = "<YOUR PROJECTID>";
 // Create a credential.
 ICredential auth = new

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 124

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0042.html
https://support.huaweicloud.com/intl/en-us/sdkreference-iothub/iot_10_1002.html

BasicCredentials().withDerivedPredicate(AbstractCredentials.DEFAULT_DERIVED_PREDICATE)
 .withAk(ak)
 .withSk(sk)
 .withProjectId(projectId);
 // Create and initialize an IoTDAClient instance.
 IoTDAClient client = IoTDAClient.newBuilder().withCredential(auth)
 // For the basic edition, select the region object in IoTDARegion.
 //.withRegion(IoTDARegion.CN_NORTH_4)
 // For the standard or enterprise edition, create a region object.
 .withRegion(REGION_CN_NORTH_4).build();
 // Instantiate a request object.
 CreateCommandRequest request = new CreateCommandRequest();
 request.withDeviceId("<YOUR DEVICE_ID>");
 DeviceCommandRequest body = new DeviceCommandRequest();
 body.withParas("{\"value\":\"1\"}");
 request.withBody(body);
 try {
 CreateCommandResponse response = client.createCommand(request);
 System.out.println(response.toString());
 } catch (ConnectionException e) {
 e.printStackTrace();
 } catch (RequestTimeoutException e) {
 e.printStackTrace();
 } catch (ServiceResponseException e) {
 e.printStackTrace();
 System.out.println(e.getHttpStatusCode());
 System.out.println(e.getRequestId());
 System.out.println(e.getErrorCode());
 System.out.println(e.getErrorMsg());
 }
 }
}

Table 5-11 Parameters

Parameter Description

ak Access key ID (AK) of your Huawei Cloud account. You can
create and check your AK/SK on the My Credentials > Access
Keys page of the Huawei Cloud console. For details, see
Access Keys.

sk Secret access key (SK) of your Huawei Cloud account.

projectId Project ID. For details on how to obtain a project ID, see
Obtaining a Project ID.

IoTDARegion.C
N_NORTH_4

Region where the platform to be accessed is located. The
available regions of the platform have been defined in the
SDK code IoTDARegion.java.
On the console, you can view the region name of the current
service and the mapping between regions and endpoints. For
details, see Platform Connection Information.

REGION_ID If CN East-Shanghai1 is used, enter cn-east-3. If CN North-
Beijing4 is used, enter cn-north-4. If CN South-Guangzhou is
used, enter cn-south-4.

ENDPOINT On the console, choose Overview and click Access Addresses
to view the HTTPS application access address.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1001.html
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/tree/master/services/iotda/src/main/java/com/huaweicloud/sdk/iotda/v5/region/IoTDARegion.java

Parameter Description

DEVICE_ID Unique ID of the device that a message is delivered to. The
value of this parameter is allocated by the platform during
device registration. The value is a string of no more than 128
characters. Only letters, digits, underscores (_), and hyphens
(-) are allowed.

----End

To configure the device to use the Java SDK to deliver synchronous commands,
perform the following steps. In this example, JDK 1.8 or a later version is used.

Step 1 Configure the Maven dependency of the SDK on devices.
<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>iot-device-sdk-java</artifactId>
 <version>1.1.4</version>
</dependency>

Step 2 Configure the SDK and device connection parameters on devices.
// Load the CA certificate of the IoT platform. For details about how to obtain the certificate, visit https://
support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html.
URL resource = BroadcastMessageSample.class.getClassLoader().getResource("ca.jks");
File file = new File(resource.getPath());

// The format is ssl://Domain name:Port number.
// To obtain the domain name, log in to the Huawei Cloud IoTDA console. In the navigation pane, choose
Overview and click Access Details in the Instance Information area. Select the access domain name
corresponding to port 8883.
String serverUrl = "ssl://localhost:8883";
// Device ID created on the platform
String deviceId = "deviceId";
// Secret corresponding to the device ID
String deviceSecret = "secret";
// Create a device.
IoTDevice device = new IoTDevice(serverUrl, deviceId, deviceSecret, file);
if (device.init() != 0) {
 return;
}

Step 3 Set the command delivery callback function and send a response.
 client.setCommandListener(new CommandListener() {
 @Override
 public void onCommand(String requestId, String serviceId, String commandName, Map<String,
Object> paras) {
 log.info("onCommand, serviceId = " +serviceId);
 log.info("onCommand , name = " + commandName);
 log.info("onCommand, paras = " + paras.toString());

 // Define the processing command.

 // Send a command response.
 device.getClient().respondCommand(requestId, new CommandRsp(0));
 }
});

----End

Verify the setting:

Step 1 On the IoTDA console, click the target instance card. In the navigation pane,
choose Devices > All Devices. On the displayed page, locate the target device,

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html

and click View in the Operation column to access its details page. Click the
Message Trace tab, and click Start Trace.

Figure 5-35 Message tracing - Starting message tracing

Step 2 Run the SDK code on the device to bring the device online.

Step 3 Run the application code. After receiving a command, the device processes and
responds to the command. The following is an example of a command received by
the device.

Figure 5-36 Successful command delivery result on the device

Step 4 Check the result on the Message Trace tab page.

Figure 5-37 Message tracing - Delivering commands

----End

5.3 Custom Topic Communications

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 127

5.3.1 Overview

Introduction

IoTDA uses topics to communicate with devices connected using MQTT. There are
custom topics and system topics. System topics are basic communications topics
preconfigured on the platform. You can also customize topics on the platform
based on service requirements. Note that message through both custom topics
and system topics are transparently transmitted on the platform, which means
that the platform does not proactively parse data content.

Table 5-12 Topic categories

Category Description Scenario

System
topic

The platform predefines topics for communications
with devices. For details of the topic list and functions,
see Topics.

Message
reporting,
property
reporting,
command
delivery,
and
events

Custom
topic

You can customize topics for device-platform
communications.

Types of custom topics:

● Custom Topics Starting with $oc: Topics defined
in the product are prefixed with $oc/devices/
{device_id}/user/. During message reporting or
delivery, the platform checks whether the topic is
defined in the product. Undefined topics will be
rejected by the platform.

● Custom Topics Not Starting with $oc: Topics that
do not start with $oc, for example, /aircondition/
data/up. They are used for upstream and
downstream message communications based on
MQTT rules. The platform checks the topic
permission using topic policies.

Scenarios
where
services
require
specific
topics,
such as
M2M
communi
cations,
broadcast
communi
cations,
and
device
migration.

Scenarios
● Devices publish messages to custom topics. Applications smoothly forward

data to message middleware, storage, data analysis, and service applications.

● An application calls the API for delivering a message to a device to publish
messages to a specified custom topic. The device subscribes to this topic to
receive messages from the server.

● M2M communications, broadcast communications, and device migration.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 128

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0059.html

Constraints
● You can define a maximum of 50 custom topics for a product model.
● Custom topics are only available for message communications.
● Max. length of a custom MQTT topic: 128 bytes.

5.3.2 Custom Topics Starting with $oc

Process

Figure 5-38 Communications with custom topics starting with $oc

Step 1 Product creation: Access the IoTDA service page and click Access Console. Click
the target instance card. For details, see Creating a Product.

Step 2 Topic setting: On the product details page, create a custom topic prefixed with
$oc/devices/{device_id}/user/.

1. Select an MQTT product. On the product details page, click the Topic
Management tab, select Custom Topic, and click Add Topic.

Figure 5-39 Topic management - Custom topics

2. In the displayed dialog box, select device operation permissions and enter the
topic name.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 129

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_01_0053.html

Figure 5-40 Topic management - Adding a custom topic

Table 5-13 Parameters

Parameter Description

Name The topic prefix is fixed at $oc/devices/{device_id}/user/.
Replace {device_id} with the actual device ID during
publishing and subscription. A custom topic must be in a
slash-separated format.
Enter 1 to 64 characters. Use only digits, letters,
underscores (_), and slashes (/). The slashes cannot be
consecutive.
NOTE

Custom topics do not support custom variables. For example,
{type} in $oc/devices/{device_id}/user/setting/{type} is a
variable and is not supported.

Device
Operation
Permissions

– Publish: Devices can report messages using this topic.
A topic is carried in a device message during data
transfer for better classification.

– Subscribe: Applications can specify a topic to deliver
messages to devices.

– Publish and subscription: Devices can report and
receive messages using this topic.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 130

Parameter Description

Description Provide a description of the topic.

3. Click OK. After the topic is added, you can modify or delete it in the custom

topic list.

Step 3 Device creation: Create a device under the product. The created device inherits the
custom topics set for the product. For details, see Registering an Individual
Device.

Step 4 Device subscription/publishing: For details about how to publish and subscribe to
messages through custom topics, see Using a Custom Topic for Communication.

----End

Java SDK Usage on the Device Side
Devices can integrate the device SDKs provided by Huawei Cloud IoT to quickly
connect to Huawei Cloud IoTDA and report messages. The following example uses
the Java SDK to connect a device to IoTDA for publishing and subscribing to
messages through the custom topic $oc/devices/ + device.getDeviceId() + /user/
wpy.

1. Configure the Maven dependency of the SDK on the device.
<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>iot-device-sdk-java</artifactId>
 <version>1.1.4</version>
</dependency>

2. Configure the SDK and device connection parameters on the device.
// Load the CA certificate of the IoT platform. For details about how to obtain the certificate, visit
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html.
URL resource = MessageSample.class.getClassLoader().getResource("ca.jks");
File file = new File(resource.getPath());

// The format is ssl://Domain name:Port number.
// To obtain the domain name, log in to the Huawei Cloud IoTDA console. In the navigation pane,
choose Overview and click Access Details in the Instance Information area. Select the access
domain name corresponding to port 8883.
String serverUrl = "ssl://localhost:8883";
// Device ID created on the IoT platform
String deviceId = "deviceId";
// Secret corresponding to the device ID
String deviceSecret = "secret";
// Initialize the device connection.
IoTDevice device = new IoTDevice(serverUrl, deviceId, deviceSecret, file);
if (device.init() != 0) {
 return;
}

3. Report a device message.
device.getClient().publishRawMessage(new RawMessage("$oc/devices/" + device.getDeviceId() + "/
user/wpy", "hello", 1), new ActionListener() {
 @Override
 public void onSuccess(Object context) {
 System.out.println("reportDeviceMessage success: ");
 }
 @Override
 public void onFailure(Object context, Throwable var2) {
 System.out.println("reportDeviceMessage fail: " + var2);
 }
});

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 131

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0019.html
https://support.huaweicloud.com/intl/en-us/sdkreference-iothub/iot_02_0178.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html

4. Subscribe to the topic.
device.getClient().subscribeTopic(new RawMessage("$oc/devices/" + device.getDeviceId() + "/user/
wpy", new ActionListener() {
 @Override
 public void onSuccess(Object context) {
 System.out.println("subscribeTopic success: ");
 }
 @Override
 public void onFailure(Object context, Throwable var2) {
 System.out.println("subscribeTopic fail: " + var2);
 }
}, 0);

5.3.3 Custom Topics Not Starting with $oc

Process

Figure 5-41 Communications with custom topics not starting with $oc

NO TE

● By default, communications can be performed based on all custom topics not starting
with $oc. The system_default_policy policy is added to newly created resource spaces
by default, allowing all associated devices to publish or subscribe to messages through
all topics. You can delete the policy if necessary.

● Policies are only used for communications with custom topics that do not start with $oc.
For custom topics starting with $oc, their permissions are determined by product
settings.

● Policies are not available in the following regions: CN South-Guangzhou, CN North-
Beijing4, and CN East-Shanghai1.

Step 1 Create a product and create a device on the platform.

Step 2 Create a policy to control the topics subscription/publishing permissions.
(optional)

1. Go to the policy page. Access the IoTDA service page and click Access
Console. Click the target instance card. In the navigation pane, choose
Devices > Policies.

Figure 5-42 Device policy - Access page

2. Create a policy. Click Create Policy, set policy parameters, and click Generate.
The following figure shows how to publish and subscribe to messages through
topic /v1/test/hello.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 132

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_01_0053.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

Table 5-14 Parameters

Parameter Description

Resource
Space

Select a resource space from the drop-down list box or create
one.

Policy
Name

Customize a value, for example, PolicyTest. Max: 128
characters. Use only letters, digits, underscores (_), and
hyphens (-).

Resource For MQTT topic publishing and subscription, topic: must be
used as the parameter prefix. For example, to forbid the
subscription to /test/v1, set this parameter to topic:/test/v1.

Operation Options: Publish and Subscribe, meaning the topic
publishing and subscription requests of MQTT devices.

Permission Options: Allowed and Denied, meaning whether the
permission to publish or subscribe to messages through a
topic is assigned.

Step 3 Bind the policy target. A policy can be bound to resource spaces, products, or
devices. The bound devices are allowed or disallowed to publish or subscribe to
messages through a specific topic accordingly. (optional)

Figure 5-43 Device policy - Binding a device

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 133

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0006.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0006.html

Table 5-15 Parameters

Parameter Description

Target Type You can set resource spaces, products, or devices as the target
type. The three types can coexist. For example, product A and
device C (under product B) can be bound to the same policy.
● Resource space: used for domain-based management of

multiple service applications. After a resource space is bound
to a policy, all devices in this resource space adopt the policy.
You can also select multiple resource spaces for binding.

● Product: Generally, a product has multiple devices. After a
product is bound to a policy, all devices of this product adopt
the policy. Compared with the resource space, the binding
scope is smaller. You can select products in different resource
spaces for binding.

● Device: minimum unit for the target bound to a policy. You
can select devices from different resource spaces and products
for binding.

Target After you select a policy target type, available targets are
displayed in the Target area. Select targets as required.

Step 4 Use the device to subscribe to or publish messages through the specified topic.
Only custom topics successfully bound in the policy can be used.

----End

Java SDK Usage on the Device Side
Devices can integrate the device SDKs provided by Huawei Cloud IoT to quickly
connect to Huawei Cloud IoTDA and report messages. The following example uses
the Java SDK to connect a device to IoTDA for publishing and subscribing to
messages through the custom topic /test/deviceToCloud.

1. Configure the Maven dependency of the SDK on the device.
<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>iot-device-sdk-java</artifactId>
 <version>1.1.4</version>
</dependency>

2. Configure the SDK and device connection parameters on the device.
// Load the CA certificate of the IoT platform. For details about how to obtain the certificate, visit
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html.
URL resource = MessageSample.class.getClassLoader().getResource("ca.jks");
File file = new File(resource.getPath());

// The format is ssl://Domain name:Port number.
// To obtain the domain name, log in to the Huawei Cloud IoTDA console. In the navigation pane,
choose Overview and click Access Details in the Instance Information area. Select the access
domain name corresponding to port 8883.
String serverUrl = "ssl://localhost:8883";
// Device ID created on the IoT platform
String deviceId = "deviceId";
// Secret corresponding to the device ID
String deviceSecret = "secret";
// Initialize the device connection.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 134

https://support.huaweicloud.com/intl/en-us/sdkreference-iothub/iot_02_0178.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html

IoTDevice device = new IoTDevice(serverUrl, deviceId, deviceSecret, file);
if (device.init() != 0) {
 return;
}

3. Report a device message.
device.getClient().publishRawMessage(new RawMessage("/test/deviceToCloud", "hello", 1), new
ActionListener() {
 @Override
 public void onSuccess(Object context) {
 System.out.println("reportDeviceMessage success: ");
 }
 @Override
 public void onFailure(Object context, Throwable var2) {
 System.out.println("reportDeviceMessage fail: " + var2);
 }
});

4. Subscribe to the topic.
device.getClient().subscribeTopic(new RawMessage("/test/deviceToCloud", new ActionListener() {
 @Override
 public void onSuccess(Object context) {
 System.out.println("subscribeTopic success: ");
 }
 @Override
 public void onFailure(Object context, Throwable var2) {
 System.out.println("subscribeTopic fail: " + var2);
 }
}, 0);

5.4 M2M Communications

5.4.1 Overview

Introduction
IoTDA supports MQTT-based machine-to-machine (M2M) communications. The
platform processes the connection and communication requests from devices, so
you can focus on service implementation. With M2M communications, devices can
communicate with each other flexibly.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 135

Figure 5-44 Service flow

NO TE

● During M2M communications, messages sent through the PUB interface and messages
received through the SUB interface are counted as charging messages. No additional fee
is generated.

Scenarios
● Instant messaging scenario where a sender and recipient communicate with

each other.
● Smart home scenario where messages are exchanged between mobile apps

and smart devices.
● Device linkage scenario where devices exchange data and communicate with

each other.

Constraints
● Not available for the basic edition users.
● Only available for devices connected using MQTT.
● Max. topic length: 128 bytes.
● Max. MQTT message size: 1 MB.
● Max. subscribers of a topic: 1,000 devices.
● An MQTT device can subscribe to up to 100 topics (50 custom topics at most).
● Max. upstream messages for an MQTT device: 50 messages per second.

5.4.2 Usage

Process
This section takes one-to-one communications between devices as an example.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 136

Figure 5-45 M2M communication process

Step 1 Rule and topic setting: Create an M2M data forwarding rule and set a forwarding
topic on the console.

Step 2 Policy configuration: On the console, configure policies to allow devices that send
and receive data to publish and subscribe to data.

Step 3 Device authentication: Devices A and B initiate connection authentication requests.
For details about authentication parameters, see Device Connection
Authentication.

Step 4 Topic subscription: Device B subscribes to a cloud-based topic that is set during
the data forwarding rule creation. If the subscription is successful, the platform
returns an ACK message.

Step 5 Data reporting: Device A publishes data through the cloud-based topic. If the
publishment is successful, the platform returns an ACK message.

Step 6 Data receiving: If the data forwarding is successful, device B receives the data from
device A.

----End

Procedure

The following example describes how to create a data forwarding rule on the
platform. You can modify the rule for different scenarios.

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card. In the navigation pane, choose Rules > Data Forwarding.

Figure 5-46 Data forwarding - List

Step 2 Click Create Rule, configure the parameters based on the service requirements,
and click Create Rule. The following figure shows an example.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 137

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 5-47 Creating a forwarding rule - M2M

Table 5-16 Parameters for creating a data forwarding rule

Parameter Description

Rule Name Customize a value, for example, test. The value can contain up
to 256 characters. Only letters, digits, and special characters
(_?'#().,&%@!-) are allowed.

Description Description of the rule, which is user-defined.

Data Source Data source of the forwarding rule. You can select multiple data
sources from the drop-down list. In the M2M scenario, select
Device message.

Trigger Available trigger events vary with the data sources. In the M2M
scenario, select Device message reported.

Resource
Space

Select an existing resource space from the drop-down list or
create a Resource Space first.

SQL Filter
Statements

You can use SQL statements to filter data. For details, see SQL
Statements. In the example figure, notify_data.body.topic IN
('/test/M2M') in the WHERE statement indicates that only the
data whose topic is /test/M2M will be forwarded.

Step 3 Go to the second stage. You can set the data forwarding target, topic, and cache
time. In M2M scenario, select Device for Forwarding Target, set the parameters
based on service requirements, and click OK.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 138

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0006.html

Figure 5-48 Creating a forwarding target - to a device

Table 5-17 Parameters for setting a forwarding target

Parameter Description

Forwarding
Target

Select a forwarding target from the drop-down list. In the M2M
scenario, select Device.

Topic Max: 128 characters. It can start with dollar signs ($) and slashes
(/) but cannot end with them. Use only digits, letters, and the
following characters: () ',-.:=@;_!*'%?+\.

ttl The platform caches messages when a device is offline, and
delivers them when the device comes back online. ttl is the data
cache time whose value ranges from 0 to 1,440 (one day)
minutes and must be a multiple of 5. When the value is set to 0,
data is not cached.

Step 4 Go to the third stage and enable the rule.

Figure 5-49 Enabling a rule - Forwarding data to a device

----End

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 139

5.4.3 Example

Preparations
1. Creating a product and device

– Create a product. Access the IoTDA service page and click Access
Console. Click the target instance card. Choose Products in the
navigation pane and click Create Product. Set the parameters as
prompted and click OK. For details, see Creating a Product.

– Create a device. On the IoTDA console, choose Devices > All Devices in
the navigation pane, and click Register Device. Set the parameters as
prompted and click OK. For details, see Registering an Individual
Device.

Configuring a Data Forwarding Rule
Step 1 Access the IoTDA service page and click Access Console. Click the target instance

card.

Step 2 In the navigation pane, choose Rules > Data Forwarding.

Figure 5-50 Data forwarding - List

Step 3 On the Rule List tab page, click Create Rule. Set the rule parameters and
forwarded data, and configure the data filtering statement as follows:
STARTS_WITH(notify_data.body.topic,'/test/M2M/').

Figure 5-51 Creating a forwarding rule - M2M

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 140

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_01_0053.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

NO TE

● Configuration of Figure 2: For all devices in the resource space XXX, when they report
messages with topics containing /test/M2M/, the forwarding rule will be triggered and
the messages will be forwarded to the specified forwarding target.

● To forward the data reported by a specified device, add AND
notify_data.header.device_id='${Device ID}' to the SQL statements.

● To forward the data reported by a specified product, add AND
notify_data.header.product_id='${Product ID}' to the SQL statements.

Figure 5-52 Data forwarding - M2M_SQL statement example

● For details about SQL settings, see SQL Statements.

Step 4 Set the forwarding target. Click Add. Select Device for Forwarding Target, set
Topic to $topic() (the topic remains unchanged after forwarding), and set ttl to 5
minutes (data is cached for 5 minutes). Click OK.

Figure 5-53 Creating a forwarding target - to a device

Step 5 Click Enable Rule in the middle of the page.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 141

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_01_0058.html

Figure 5-54 Enabling a rule - Forwarding data to a device

----End

Test
1. To use the M2M communication function, perform the following steps:

a. Access the IoTDA service page and click Access Console. Click the target
instance card.

b. Create a product. Select MQTT for Protocol.

Figure 5-55 Creating a product - M2M

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 142

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0054.html

2. Register device A (test111) and device B (test222) under the product created
in step 1. For details, see Registering an Individual Device.

Figure 5-56 Device - Registering an M2M device

3. This section uses MQTT.fx as an example to describe how to implement M2M
communications. You can also test based on your service requirements.
a. Open two MQTT.fx to simulate devices A (test111) and B (test222).
b. On the Subscribe page of device B, enter the topic /test/M2M/# and

click Subscribe.

Figure 5-57 Entering a topic on the Subscribe page of device B

c. Let device A send a message to device B. On the Publish page of device
A, enter the topic /test/M2M/${Any word}. Enter the message to be sent
(for example, hello) in the text box, and click Publish.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 143

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html

Figure 5-58 Entering a message on the Publish page of device A

On the Subscribe page of device B, you can see the received message, as
shown in the following figure.

Figure 5-59 Subscribe page of device B

5.5 Device Topic Policies

5.5.1 Overview

Overview
IoTDA provides device topic policies, with which you can implement flexible role-
based access control, and authorize clients to publish or subscribe to messages
through topics not starting with $oc. You can manage the topic-based data
publishing and subscription permissions of devices, products, or groups, improving
communications security. Device policies are mainly used for protocols used in
data publishing and subscription mechanisms, for example, MQTT and MQTTS on
the device side. Currently, this feature is available for users in invitation-only
regions of south China and international regions.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 144

NO TICE

The system_default_policy policy is added to the newly created resource space by
default, which allows devices in this resource space to publish or subscribe to
messages through topics (not starting with $oc) of all devices under all resource
spaces. You can delete the policy if necessary.

Figure 5-60 Conceptual diagram of topic policies

Scenarios
● Group-based communications: For example, devices A, B, and C belong to a

group, and only devices A, B, and C are allowed to subscribe to the topic of
the group.

● Region-based communications: Regions are divided based on the data
publishing and subscription permissions. Only devices of the same region can
communicate with each other.

Restrictions
● Max. policies for a tenant: 50.

● Applicable topics: custom topics that do not start with $oc.

● Max. policy file size: 10 KB. Max. files configured for a policy: 10.

● Max. policies configured for a device or product: 5.

● Max. topics subscribed by a device (client): 50.

● Max. topic length: 128 bytes.

● Supported QoS: QoS 0 and QoS 1.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 145

5.5.2 Content
IoTDA provides device topic policies, with which you can authorize clients to
publish or subscribe to messages through custom topics not starting with $oc,
enhancing communications security. Device policies are mainly used for protocols
used in data publishing and subscription mechanisms, for example, MQTT and
MQTTS on the device side. Currently, this feature is available for users in
invitation-only regions of south China.

Policy Wildcards
You can use wildcards for policies. An asterisk (*) indicates any combination of
characters, and a question mark (?) indicates a character of any kinds. Plus signs
(+) and number signs (#) do not have special meanings.

Table 5-18 Policy wildcards

Wild
card

MQTT
Wildcar
d

Applica
ble to
Policy

Example MQTT Topic Example MQTT Topic
for Policy

Yes No test/# Not applicable. The
number sign (#) is
regarded as a character
without special
meaning.

+ Yes No test/+/some Not applicable. The plus
sign (+) is regarded as a
character without
special meaning.

* No Yes Not applicable. The
asterisk (*) is regarded
as a character without
special meaning.

test/*
test/*/some

? No Yes Not applicable. The
question mark (?) is
regarded as a character
without special
meaning.

test/????/some
test/set?????/some

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 146

Table 5-19 Example usage of wildcards in policies

Target Topic Topic Definition in Policy Description

Example topics:
test/topic1/
some
test/topic2/
some
test/topic3/
some

topic:test/topic?/some Common points: test/topic
+ a character + /some. In
the policy definition, a
question mark (?) indicates
a character. Therefore, the
policy topic can be defined
as topic:test/topic?/some.

Example topics:
test/
topic1/pub/
some
test/topic2/sub/
some
test/topic3/
some

topic:test/topic*/some Common points: test/topic
+ one or more characters + /
some. In policy definition,
the asterisk (*) indicates
multiple or one character.
Therefore, the policy topic
can be defined as topic:test/
topic*/some.

Policy Variables
You can use a policy variable as a placeholder for resource or condition key to
filter topics when defining policy resource. During MQTT topic verification, the
system replaces the variable with the corresponding ID for matching.

Variables are prefixed with a dollar sign ($), followed by a pair of braces ({}),
which contain the variable name in the request. The following table lists the
supported variables. Assume that the client ID of an MQTT device is test_clientId,
the product ID is test_productId, and the device ID is test_deviceId.

Table 5-20 Policy variables

Policy
Variable

Descrip
tion

Example MQTT Topic Example MQTT Topic for
Policy

$
{devices.deviceI
d}

Device
ID

test/test_deviceId/topic test/${devices.deviceId}/
topic

$
{devices.clientI
d}

Client
ID

test/test_clientId/topic test/${devices.clientId}/
topic

$
{devices.produc
tId}

Product
ID

test/test_productId/
topic

test/${devices.productId}/
topic

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 147

Table 5-21 Example usage of variables in policies

Scenario Example Policy Topic
Definition

Description

Distinguishing topics by
device

test/${devices.deviceId}/
topic

Devices can subscribe to
or publish messages
through topic test/$
{Device ID}/topic with
their data isolated.

Distinguishing topics by
device and time segment

test/${devices.clientId}/
topic

Devices can subscribe to
or publish messages
through topic test/$
{Device client ID}/topic.
Different from deviceId,
clientId carries a
timestamp to distinguish
time segments.

Policy Priority
If multiple policies with different effect are bound to the same device, the policy
with higher priority (Denied over Allowed) takes effect.

For example, a device has two policies: policy 1 and policy 2. Policy 1 denies
subscription to topic A, and policy 2 allows subscription to topic A. When the
device subscribes to topic A, the platform rejects the subscription request from the
device.

Table 5-22 Policy priority

Topic Policy 1 Policy 2 Effective
Policy

test/topic "effect": "ALLOW",
"resources": ["topic:test/
topic"]

"effect": "DENY",
"resources":
["topic:test/topic"]

Denied

Policy Topic Constraints
1. Max. length: 128 bytes.
2. Unallowed wildcards for topic publishing: number signs (#) and plus signs (+).
3. Consecutive slashes (/) are not allowed, for example, ////test/.
4. Max. slashes (/) in a topic: 7.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 148

CA UTION

If the topic to be published or subscribed to does not meet the preceding
requirements, the subscription or publishing request will be rejected. On the device
details page, choose the Message Trace tab. The error information is displayed.

Figure 5-61 Message tracing - Verifying a policy

5.5.3 Usage

Process

Figure 5-62 Device policy usage process

Step 1 Policy creation: A user creates a device policy on the console. For details, see
Examples.

Step 2 Device authentication: An MQTT device initiates a connection authentication
request. For details about authentication parameters, see Device Connection
Authentication.

Step 3 Message subscription or publishing: The device applies to publishing or subscribing
to messages through a specific topic on the cloud server.

Step 4 Policy authentication: The cloud server filters topics subscribed to or published by
the device based on the policy. If the device is not allowed to subscribe to the
topic, the cloud server returns a failure ACK message and the subscription fails.
Otherwise, a successful ACK message is returned, indicating that the subscription
is successful.

Step 5 Data push: Messages successfully published by the device can be pushed to the
application through data transfer.

----End

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 149

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html

Procedure

The following example describes how to set topic policies and bind policy targets
on the IoTDA console for MQTT device.

1. Go to the policy page. Access the IoTDA service page and click Access
Console. Click the target instance card. In the navigation pane, choose
Devices > Policies.

Figure 5-63 Device policy - Access page

2. Create a policy. Click Create Policy, set policy parameters based on service
requirements, and click Generate. The following figure shows the example
parameter values.

Figure 5-64 Device policy - Creating a policy

Table 5-23 Parameter description

Parameter Description

Resource
Space

Select a resource space from the drop-down list box or create
one.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 150

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0006.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0006.html

Policy
Name

Customize a value, for example, PolicyTest. The value is a
string of no more than 128 characters. Only letters, digits,
underscores (_), and hyphens (-) are allowed.

Resource For MQTT topic publishing and subscription, topic: must be
used as the parameter prefix. For example, to forbid the
subscription to /test/v1, set this parameter to topic:/test/v1.

Operation Options: Publish and Subscribe, meaning the topic
publishing and subscription requests of MQTT devices.

Permission Options: Allowed and Denied, meaning whether the
permission to publish or subscribe to messages of a topic is
assigned.

3. Bind the policy target. A policy can be bound to resource spaces, products, or

devices. The bound devices are allowed or disallowed to publish or subscribe
to messages through a specific topic accordingly.

Figure 5-65 Device policy - Binding a device

Table 5-24 Parameter description

Parameter Description

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 151

Target Type You can set resource spaces, products, or devices as the target
type. The three types can coexist. For example, product A and
device C (under product B) can be bound to the same policy.
● Resource space: used for domain-based management of

multiple service applications. After a resource space is
bound to a policy, all devices in this resource space adopt
the policy. You can also select multiple resource spaces for
binding.

● Product: Generally, a product has multiple devices. After a
product is bound to a policy, all devices of this product
adopt the policy. Compared with the resource space, the
binding scope is smaller. You can select products in
different resource spaces for binding.

● Device: minimum unit for the target bound to a policy. You
can select devices from different resource spaces and
products for binding.

Target After you select a policy target type, available targets are
displayed in the Target area. Select targets as required.

5.5.4 Examples

Scenarios
● Scenario 1: Allowing or Denying the Message Publishing Through a

Specific Topic
● Scenario 2: Using Policy in E2E (M2M) Communications

Scenario 1: Allowing or Denying the Message Publishing Through a Specific
Topic

1. Create a product and device.
– Create a product. Access the IoTDA service page and click Access

Console. Click the target instance card. Choose Products in the
navigation pane and click Create Product. Set the parameters as
prompted and click OK. For details, see Creating a Product.

– Create a device. On the IoTDA console, choose Devices > All Devices in
the navigation pane, and click Register Device. Set the parameters as
prompted and click OK. For details, see Registering an Individual
Device.

2. Create a policy.
– Access the IoTDA service page and click Access Console. Click the target

instance card.
– Choose Devices > Policies in the navigation pane.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 152

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_01_0053.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 5-66 Device policy - Access page

– Click Create Policy, set policy parameters, and click Generate. The
application scope of the policy is the resource space (appId). Resources
starting with topic: indicate topics in MQTT communications and are
used for publishing and subscription. In this example, the topic that can
be published and subscribed to is /v1/test/hello.

Figure 5-67 Device policy - Creating a policy

– Bind the policy. In this example, set Target Type to Devices and select
the devices to which the policy is to be bound.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 153

Figure 5-68 Device policy - Binding a device

– Verify the policy.

i. Obtain connection parameters. In the navigation pane, choose
Devices > All Devices, find the devices bound to the policy in the
preceding step, go to the device details page, and view the
connection parameters.

Figure 5-69 Device - Device details

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 154

Figure 5-70 Device - Device details - MQTT connection parameters

ii. Use the MQTT.fx tool to connect to the cloud platform. Open the
MQTT.fx tool, set authentication parameters for the devices bound to
the policy in the preceding step, click Apply, and click Connect for
connection authentication.

iii. Use the device to subscribe to the allowed topic /v1/test/hello. The
subscription is successful.

Figure 5-71 Successful subscription

iv. Use the device to subscribe to another topic /v2/test/hello. The
subscription failed.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 155

Figure 5-72 Failed subscription

Scenario 2: Using Policy in E2E (M2M) Communications
In this example, you can enable device A under product A and all devices under
product B to communicate with each other, and only allow them to subscribe to or
publish messages through topics starting with /test/M2M/.

1. Create a product and device.
– Create a product. Access the IoTDA service page and click Access

Console. Click the target instance card. Choose Products in the
navigation pane and click Create Product. Set the parameters as
prompted and click OK. For details, see Creating a Product.

– Create a device. On the IoTDA console, choose Devices > All Devices in
the navigation pane, and click Register Device. Set the parameters as
prompted and click OK. For details, see Registering an Individual
Device.

2. Configure a data forwarding rule.
– Access the IoTDA service page and click Access Console. Click the target

instance card. In the navigation pane, choose Rules > Data Forwarding.

Figure 5-73 Data forwarding - List

– Click Create Rule, set the parameters as required, and click Create Rule.
Set the SQL filter statement to STARTS_WITH(notify_data.body.topic,'/
test/M2M/').

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 156

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_01_0053.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 5-74 Creating a forwarding rule - M2M

NO TE

For details about how to use SQL filter statements, see SQL Statements.
STARTS_WITH(notify_data.body.topic,'/test/M2M/') indicates that data with
topics starting with /test/M2M/ is filtered.

– Set the forwarding target. Set Forwarding Target to Device, set Topic to
$topic() (indicating that the forwarded topic remains unchanged and the
original topic is delivered), and click OK.

Figure 5-75 Creating a forwarding target - to a device

– Click Enable Rule in the middle of the page.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 157

Figure 5-76 Enabling a rule - Forwarding data to a device

3. Set a policy.
– Choose Devices > Policies in the navigation pane.

Figure 5-77 Device policy - Access page

– Click Create Policy, set policy parameters, and click Generate, as shown
in the following figure.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 158

Figure 5-78 Device policy - Creating a policy (M2M)

– Bind the policy to the target products and devices. Set Target Type to
Products and select the products to which the policy is to be bound. You
can later modify the policy on the policy details page to add the devices
to be bound.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 159

Figure 5-79 Device policy - Binding a product

Figure 5-80 Device policy - Encoding a policy

4. Verify the policy.

a. Open two MQTT.fx tools to simulate device A (test111) under product A
and device B (test222) under product B.

b. On the Subscribe page of device B, enter the topic /test/M2M/# and
click Subscribe.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 160

Figure 5-81 Entering a topic on the Subscribe page of device B

c. Let device A send a message to device B. On the Publish page of device
A, enter the topic /test/M2M/${Any word}. Enter the message to be sent
(for example, hello) in the text box, and click Publish.

Figure 5-82 Entering a message on the Publish page of device A

On the Subscribe page of device B, you can see the received message, as
shown in the following figure.

Figure 5-83 Subscribe page of device B

d. For devices not belonging to product B, they cannot subscribe to or
publish messages through the topic /test/M2M/#.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 161

Figure 5-84 Failed subscription

5.6 Broadcast Communication

5.6.1 Broadcast Communication Overview

Introduction

Broadcast communication is often used for one-to-many message communication.
If multiple devices subscribe to the same broadcast topic, applications can call the
broadcast message delivery API to publish messages to these devices when they
are online. You can use broadcast to send notifications to devices of specific types.

For example, the Earthquake Administration sends earthquake warning
information to all citizens in a specified area.

Figure 5-85 Example broadcast communication scenario

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 162

Scenarios
● Broadcast messages are sent to devices in a specified group.
● Broadcast messages are sent to all online devices in a specified area for

earthquake warning.

Constraints
● The prefix of a broadcast topic subscribed by devices must be $oc/broadcast/.
● The length of a broadcast topic subscribed by devices cannot exceed 128

bytes.
● A maximum of seven slashes (/) can be used in a broadcast topic subscribed

by devices.
● A single device can subscribe to a maximum of 50 broadcast topics.
● A topic can be subscribed to by a maximum of 1000 devices.
● The broadcast communication API on the application side can be called only

once per minute.
● Currently, this function is available for standard instances in the CN North-

Beijing4 region.

5.6.2 Broadcast Communication Usage

Broadcast Communication Usage

Figure 5-86 Broadcast communication sequence diagram

Procedure

Step 1 Initiate the connection authentication for the device. For details, see Device
Connection Authentication.

Step 2 After the device is authenticated, initiate broadcast topic subscription. The
broadcast topic must be prefixed with $oc/broadcast/. An example is as follows:

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 163

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html

$oc/broadcast/test

Step 3 The application broadcasts a message with the topic name and message content
specified.
POST https://{Endpoint}/v5/iot/{project_id}/broadcast-messages
Content-Type: application/json
X-Auth-Token: ********

{
 "topic_full_name" : "$oc/broadcast/test",
 "message" : "eyJhIjoxfQ=="
}

CA UTION

The topic must be prefixed with $oc/broadcast/, and the message content must
be encoded using Base64.

Step 4 The device receives the broadcast message. Example message:
Topic: $oc/broadcast/test
Data content
{"a":1}

----End

5.6.3 Broadcast Communication Example

Java SDK Usage
This section describes how to use the Java SDK for the development of broadcast
communication.

Development Environment Requirements
JDK 1.8 or later has been installed.

Configuring the SDK for the Application
1. Configure the Maven dependency.

<dependency>
 <groupId>com.huaweicloud.sdk</groupId>
 <artifactId>huaweicloud-sdk-core</artifactId>
 <version>[3.0.40-rc, 3.2.0)</version>
</dependency>
<dependency>
 <groupId>com.huaweicloud.sdk</groupId>
 <artifactId>huaweicloud-sdk-iotda</artifactId>
 <version>[3.0.40-rc, 3.2.0)</version>
</dependency>

2. The following is a complete example of a broadcast message. The topic must
be prefixed with $oc/broadcast/, and the message content must be encoded
using Base64.
public class BroadcastMessageSolution {
 // REGION_ID: If CN East-Shanghai1 is used, enter cn-east-3. If CN North-Beijing4 is used, enter
cn-north-4. If CN South-Guangzhou is used, enter cn-south-4.
 private static final String REGION_ID = "<YOUR REGION ID>";
 // ENDPOINT: On the console, choose Overview and click Access Addresses to view the HTTPS

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 164

https://support.huaweicloud.com/intl/en-us/api-iothub/BroadcastMessage.html

application access address.
 private static final String ENDPOINT = "<YOUR ENDPOINT>";
 // For the standard or enterprise edition, create a region object.
 public static final Region REGION_CN_NORTH_4 = new Region(REGION_ID, ENDPOINT);
 public static void main(String[] args) {
 String ak = "<YOUR AK>";
 String sk = "<YOUR SK>";
 String projectId = "<YOUR PROJECTID>";
 // Create a credential.
 ICredential auth = new
BasicCredentials().withDerivedPredicate(AbstractCredentials.DEFAULT_DERIVED_PREDICATE)
 .withAk(ak)
 .withSk(sk)
 .withProjectId(projectId);
 // Create and initialize an IoTDAClient instance.
 IoTDAClient client = IoTDAClient.newBuilder().withCredential(auth)
 // For the basic edition, select the region object in IoTDARegion.
 //.withRegion(IoTDARegion.CN_NORTH_4)
 // For the standard or enterprise edition, create a region object.
 .withRegion(REGION_CN_NORTH_4).build();
 // Instantiate a request object.
 BroadcastMessageRequest request = new BroadcastMessageRequest();
 DeviceBroadcastRequest body = new DeviceBroadcastRequest();
 body.withMessage(Base64.getEncoder().encodeToString("hello".getBytes()));
 body.withTopicFullName("$oc/broadcast/test");
 request.withBody(body);
 try {
 BroadcastMessageResponse response = client.broadcastMessage(request);
 System.out.println(response.toString());
 } catch (ConnectionException e) {
 e.printStackTrace();
 } catch (RequestTimeoutException e) {
 e.printStackTrace();
 } catch (ServiceResponseException e) {
 e.printStackTrace();
 System.out.println(e.getHttpStatusCode());
 System.out.println(e.getRequestId());
 System.out.println(e.getErrorCode());
 System.out.println(e.getErrorMsg());
 }
 }
}

Table 5-25 Parameters

Parameter Description

ak Access key ID (AK) of your Huawei Cloud account. You can
create and view your AK/SK on the My Credentials >
Access Keys page of the Huawei Cloud console. For
details, see Access Keys.

sk Secret access key (SK) of your Huawei Cloud account.

projectId Project ID. For details on how to obtain a project ID, see
Obtaining a Project ID.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 165

https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1001.html

Parameter Description

IoTDARegion.C
N_NORTH_4

Region where the IoT platform to be accessed is located.
The available regions of the IoT platform have been
defined in the SDK code IoTDARegion.java.
On the console, you can view the region name of the
current service and the mapping between regions and
endpoints. For details, see Platform Connection
Information.

REGION_ID If CN East-Shanghai1 is used, enter cn-east-3. If CN
North-Beijing4 is used, enter cn-north-4. If CN South-
Guangzhou is used, enter cn-south-4.

ENDPOINT On the console, choose Overview and click Access
Addresses to view the HTTPS application access address.

Configuring the SDK on Devices
1. Configure the Maven dependency of the SDK on devices.

<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>iot-device-sdk-java</artifactId>
 <version>1.1.4</version>
</dependency>

2. Configure the SDK and device connection parameters on devices.
// Load the CA certificate of the IoT platform. For details about how to obtain the certificate, visit
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html.
URL resource = BroadcastMessageSample.class.getClassLoader().getResource("ca.jks");
File file = new File(resource.getPath());

// The format is ssl://Domain name:Port number.
// To obtain the domain name, log in to the Huawei Cloud IoTDA console. In the navigation pane,
choose Overview and click Access Details in the Instance Information area. Select the access
domain name corresponding to port 8883.
String serverUrl = "ssl://localhost:8883";
// Device ID created on the IoT platform
String deviceId = "deviceId";
// Secret corresponding to the device ID
String deviceSecret = "secret";
// Create a device.
IoTDevice device = new IoTDevice(serverUrl, deviceId, deviceSecret, file);
if (device.init() != 0) {
 return;
}

3. Subscribe to a broadcast topic for the device. The broadcast topic must be
prefixed with $oc/broadcast/.
device.getClient().subscribeTopic("$oc/broadcast/test", null, rawMessage -> {
 log.info(" on receive message topic : {} , payload : {}", rawMessage.getTopic(),
 new String(rawMessage.getPayload()));
 rawMessage.getPayload();
}, 0);

Testing and Verification
Run the SDK code on the device to bring the device online and subscribe to the
broadcast topic for the device. Run the SDK code on the application and call the
broadcastMessage API to send a broadcast message to the device. Example
message:

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 166

https://github.com/huaweicloud/huaweicloud-sdk-java-v3/tree/master/services/iotda/src/main/java/com/huaweicloud/sdk/iotda/v5/region/IoTDARegion.java
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html

Figure 5-87 Broadcast message example

5.7 Codecs

Definition
IoTDA uses codecs to convert data between the binary and JSON formats as well
as between JSON formats. For MQTT devices, use JavaScript and FunctionGraph to
develop codecs. For LwM2M devices, use online (graphical) and offline codec
development.

For example, in the NB-IoT scenario where devices use CoAP over UDP to
communicate with the platform, the payload of CoAP messages carries data at the
application layer, at which the data type is defined by the devices. As NB-IoT
devices require low power consumption, data at the application layer is generally
in binary format instead of JSON. However, the platform sends data in JSON
format to applications. Therefore, codec development is required for the platform
to convert data between binary and JSON formats.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 167

Data Reporting

Figure 5-88 Data reporting flowchart

In the data reporting process, the codec is used in the following scenarios:

● Decoding binary data reported by a device into JSON data and sending the
decoded data to an application

● Encoding JSON data returned by an application into binary data and sending
the encoded data to a device

Command Delivery

Figure 5-89 Command delivery flowchart

In the command delivery process, the codec is used in the following scenarios:

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 168

● Encoding JSON data delivered by an application into binary data and sending
the encoded data to a device

● Decoding binary data returned by a device into JSON data and reporting the
decoded data to an application

Development Methods
The platform provides multiple methods for developing codecs. You can select a
method as required. Offline codec development is complex and time-consuming.
Graphical codec development and script-based codec development are
recommended.

● Graphical development: The codec of a product can be quickly developed in a
visualized manner on the IoTDA console. For details, see Online
Development.

● Script-based development: JavaScript scripts are used to implement encoding
and decoding. For details, see JavaScript Script-based Development.

● FunctionGraph development: FunctionGraph is used to implement encoding
and decoding. For details, see FunctionGraph Documentation.

IoT Device Access
User Guide 5 Message Communications

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 169

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_0008.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_0008.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_0009.html
https://support.huaweicloud.com/intl/en-us/functiongraph/index.html

6 Device Management

6.1 Product Creation
The first step of using the IoT platform is to create a product on the IoTDA
console. A product is a collection of devices with the same capabilities or features.

Procedure

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 Choose Products in the navigation pane and click Create Product on the left. Set
the parameters as prompted and click OK.

Set Basic Info

Resource
Space

Select a resource space from the drop-down list box. If a
resource space does not exist, create it first.

Product
Name

Define a product name. The product name must be unique in the
same resource space. The value can contain up to 64 characters.
Only letters, digits, and special characters (_?'#().,&%@!-) are
allowed.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 170

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0006.html

Protocol ● MQTT: MQTT is used by devices to access the platform. The
data format can be binary or JSON. If the binary format is
used, the codec must be deployed.

● LwM2M over CoAP: LwM2M/CoAP is used only by NB-IoT
devices with limited resources (including storage and power
consumption). The data format is binary. The codec must be
deployed to interact with the platform.

● HTTPS is a secure communication protocol based on HTTP
and encrypted using SSL. IoTDA supports communication
through HTTPS.

● Modbus: Modbus is used by devices to access the platform.
Devices that use the Modbus protocol to connect to IoT edge
nodes are called indirectly connected devices. For details
about the differences between directly connected devices and
indirectly connected devices, see Gateways and Child
Devices.

● HTTP (TLS encryption), ONVIF, OPC UA, OPC DA, other, TCP,
and UDP: IoT Edge is used for connection.

Data Type ● JSON: JSON is used for the communication protocol between
the platform and devices.

● Binary: You need to develop a codec on the IoTDA console to
convert binary code data reported by devices into JSON data.
The devices can communicate with the platform only after the
JSON data delivered by the platform is parsed into binary
code.

Industry Set this parameter based on service requirements.

Device Type Set this parameter based on service requirements.

Advanced Settings

Product ID Set a unique identifier for the product. If this parameter is
specified, the platform uses the specified product ID. If this
parameter is not specified, the platform allocates a product ID.

Description Provide a description for the product. Set this parameter based
on service requirements.

You can click More > Delete to delete a product that is no longer used. After the
product is deleted, its resources such as the product models and codecs will be
cleared. Exercise caution when deleting a product.

----End

Follow-Up Procedure
1. In the product list, click the name of a product to access its details. On the

product details page displayed, you can view basic product information, such
as the product ID, product name, device type, data format, resource space,
and protocol type.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 171

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0052.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0052.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_9990.html

Figure 6-1 Product details

2. On the product details page, you can develop a product model, develop a
codec, perform online debugging, and customize topics.

Product Models
A product model describes the capabilities and features of a device. You can build
an abstract model of a device by defining a product model on the platform so that
the platform can know what services, properties, and commands are supported by
the device, such as its color or any on/off switches. After defining a product model,
you can use it during device creation.

A product model consists of product details and service capabilities.

● Product details
Product details describe basic information about a device, including the device
and protocol type.
Example device type: WaterMeter. Example protocol type: CoAP.

● Service capabilities
The capabilities of a device are divided into several services. Properties,
commands, and command parameters are defined for each service.
For example, a water meter has multiple capabilities. It reports the water
flow, alarms, battery life, and connection data, and it receives commands too.
The table below describes its capabilities from five services, each of which has
its own properties or commands.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 172

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_01_0017.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_9990.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_9990.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_9988.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_02_9992.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0031.html

Service Type Description

WaterMeterBasic Defines parameters reported by the water meter, such
as the water flow, temperature, and pressure. If these
parameters need to be controlled or modified using
commands, these parameters must be defined in the
commands.

WaterMeterAlarm Defines data reported by the water meter in various
alarm scenarios. Commands need to be defined if
necessary.

Battery Defines the voltage and current intensity of the water
meter.

DeliverySchedule Defines transmission rules for the water meter.
Commands need to be defined if necessary.

Connectivity Defines connectivity parameters of the water meter.

NO TE

You can define the number of services as required. For example, the
WaterMeterAlarm service can be further divided into WaterPressureAlarm and
WaterFlowAlarm services or be integrated into the WaterMeterBasic service.

Model Development
The platform provides multiple methods for developing product models. You can
select a method as required.

● Custom model (online development): Build a product model from scratch.
For details, see Developing a Product Model Online.

● Upload local profile (offline development): Upload a local product model
to the platform. For details, see Developing a Product Model Offline.

● Import from Excel: Develop a product model by importing an Excel file. For
details, see Import from Excel.

● Import from Library: You can use a preset product model to quickly develop
a product. The platform provides standard and manufacturer-specific product
models. Standard product models comply with industry standards and are
suitable for devices of most manufacturers in the industry. Manufacturer-
specific product models are suitable for devices provided by a small number
of manufacturers. You can select a product model as required.

6.2 Registering Devices

6.2.1 Registering an Individual Device
A device is a physical entity that belongs to a product. Each device has a unique
ID. It can be a device directly connected to the platform, or a gateway that

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 173

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_0005.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_4012.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_9995.html#section1

connects child devices to the platform. You can register a physical device with the
platform, and use the device ID and secret allocated by the platform to connect
your SDK-integrated device to the platform.

The platform allows an application to call the API Creating a Device to register
an individual device. Alternatively, you can register an individual device on the
IoTDA console. This topic describes the procedure on the IoTDA console.

Procedure

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Devices > All Devices. On the displayed page, click
Register Device, set parameters based on the table below, and click OK.

Figure 6-2 Device - Registering a secret device

Table 6-1 Registering a device with secret

Parameter Description

Resource
Space

Select the resource space to which a device belongs.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 174

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

Parameter Description

Product Select the product to which the device belongs.
You can select a product only after it is defined. If no product is
available, create a product by following the instructions
provided in Product Creation.

Node ID Set this parameter to the IMEI, MAC address, or serial number
of the device. If the device is not a physical one, set this
parameter to a custom string that contains letters, digits,
hyphens (-), and underscores (_).

Device ID Enter a unique device ID. If this parameter is carried, the
platform will use the parameter value as the device ID.
Otherwise, the platform will allocate a device ID, which is in the
format of product_id_node_id.

Device Name Customize the name of the device.

Description Customize device description.

Authenticatio
n Type

● Secret: The device uses the secret for identity verification.
● X.509 certificate: The device uses an X.509 certificate for

identity verification.

Secret Customize the secret used for device access. If the secret is left
blank, the platform automatically generates one.

Fingerprint This parameter is displayed when Authentication Type is set to
X.509 certificate. Import the fingerprint corresponding to the
preset device certificate on the device side. You can run
openssl x509 -fingerprint -sha256 -in deviceCert.pem in the
OpenSSL view to query the fingerprint.

Delete the colons (:) from the obtained fingerprint when filling
it.

Save the device ID and secret. They are used for authentication when the device
attempts to access the platform.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 175

Figure 6-3 Device registered

NO TE

If the secret is lost, you can update the secret. The secret generated during device
registration cannot be retrieved.

You can delete a device that is no longer used from the device list. Deleted
devices cannot be retrieved. Exercise caution when performing this operation.

----End

APIs
● Querying the Device List
● Creating a Device
● Querying a Device
● Modifying a Device
● Deleting a Device
● Resetting a Device Secret

6.2.2 Registering a Batch of Devices
IoTDA allows an application to call the API Creating a Batch Task to register a
batch of devices. Alternatively, you can perform batch registration on the IoTDA
console. This topic describes how to use the IoTDA console to register a batch of
devices.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 176

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0055.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1079.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0041.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0093.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0045.html

Procedure

Step 1 Access the IoTDA service page and click Access Console.

Step 2 In the navigation pane, choose Devices > All Devices, click the Batch
Registration tab, and then click Batch Register.

Step 3 In the displayed Batch Registration dialog box, enter the task name, download
and fill in the Batch Device Registration Template, upload the file, and click OK.

Figure 6-4 Device - Registering devices in batches

Step 4 If the devices use the native MQTT protocol, click the batch task registration
record to open the task execution details, and save the device IDs and secrets
generated, which will be used for device access.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 177

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 6-5 Batch device registering - Execution details

----End

APIs
● Creating a Device
● Querying the Batch Task List
● Creating a Batch Task
● Querying a Batch Task

6.2.3 Registering a Device Authenticated by an X.509
Certificate

An X.509 certificate is a digital certificate used for communication entity
authentication. IoTDA allows devices to use their X.509 certificates for
authentication. The use of X.509 certificate authentication protects devices from
being spoofed.

Before registering a device authenticated by an X.509 certificate, upload the device
CA certificate to the platform and bind the device certificate to the device during
device registration. This topic describes how to upload a device CA certificate to

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 178

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0028.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0045.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0017.html

the platform and register a device that uses the X.509 certificate for
authentication.

Constraints
● Only MQTT devices can use X.509 certificates for identity authentication.
● You can upload a maximum of 100 device CA certificates.

Uploading a Device CA Certificate
Step 1 Access the IoTDA service page and click Access Console. Click the target instance

card.

Step 2 In the navigation pane, choose Devices > Device Certificates. On the Device CA
Certificates tab page, click Upload Certificate.

Step 3 In the displayed dialog box, click Select File to add a file, and then click OK.

Figure 6-6 Device CA certificate - Uploading a certificate

NO TE

Device CA certificates are provided by device vendors. You can prepare a commissioning
certificate during commissioning. For security reasons, you are advised to replace the
commissioning certificate with a commercial certificate during commercial use. Purchased
CA certificates (in formats such as PEM and JKS) can be directly uploaded to the platform.

----End

Making a Device CA Commissioning Certificate
This section uses the Windows operating system as an example to describe how to
use OpenSSL to make a commissioning certificate. The generated certificate is in
PEM format.

1. Download and install OpenSSL.
2. Open the CLI as user admin.
3. Run cd c:\openssl\bin (replace c:\openssl\bin with the actual OpenSSL

installation directory) to access the OpenSSL view.
4. Generate a public/private key pair.

openssl genrsa -out rootCA.key 2048

5. Use the private key in the key pair to generate a CA certificate.
openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 1024 -out rootCA.pem

The system prompts you to enter the following information. All the
parameters can be customized.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 179

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://slproweb.com/products/Win32OpenSSL.html

– Country Name (2 letter code) [AU]: country, for example, CN
– State or Province Name (full name) []: state or province, for example, GD
– Locality Name (for example, city) []: city, for example, SZ
– Organization Name (for example, company) []: organization, for

example, Huawei
– Organizational Unit Name (for example, section) []: organization unit, for

example, IoT
– Common Name (e.g. server FQDN or YOUR name) []: common name, for

example, zhangsan
– Email Address []: email address, for example, 1234567@163.com
Obtain the generated CA certificate rootCA.pem from the bin folder in the
OpenSSL installation directory.

Uploading a Verification Certificate
If the uploaded certificate is a commissioning certificate, the certificate status is
Unverified. In this case, upload a verification certificate to verify that you have the
CA certificate.

Figure 6-7 Device CA certificate - Unverified certificate

The verification certificate is created based on the private key of the device CA
certificate. Perform the following operations to create a verification certificate:

Step 1 Generate a key pair for the verification certificate.
openssl genrsa -out verificationCert.key 2048

Step 2 Create a certificate signing request (CSR) for the verification certificate.
openssl req -new -key verificationCert.key -out verificationCert.csr

The system prompts you to enter the following information. Set Common Name
to the verification code and set other parameters as required.

● Country Name (2 letter code) [AU]: country, for example, CN
● State or Province Name (full name) []: state or province, for example, GD
● Locality Name (for example, city) []: city, for example, SZ
● Organization Name (for example, company) []: organization, for example,

Huawei
● Organizational Unit Name (for example, section) []: organization unit, for

example, IoT
● Common Name (e.g. server FQDN or YOUR name) []: verification code for

verifying the certificate. For details on how to obtain the verification code, see
Step 5.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 180

● Email Address []: email address, for example, 1234567@163.com
● Password[]: password, for example, 1234321
● Optional Company Name[]: company name, for example, Huawei

Step 3 Use the CSR to create a verification certificate.
openssl x509 -req -in verificationCert.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out
verificationCert.pem -days 500 -sha256

Obtain the generated verification certificate verificationCert.pem from the bin
folder of the OpenSSL installation directory.

Step 4 Select the corresponding certificate, click , and click Upload Verification
Certificate.

Figure 6-8 Device CA certificate - Verifying a certificate

Step 5 The verification code is displayed in the dialog box. Click Select File, upload the
verification certificate, and click OK. After the certificate is uploaded, the
certificate status changes to Verified, indicating that you have the CA certificate.

Figure 6-9 Device CA certificate - Uploading a verified certificate

----End

Presetting an X.509 Certificate
Before registering an X.509 device, preset the X.509 certificate issued by the CA on
the device.

NO TE

The X.509 certificate is issued by the CA. If no commercial certificate issued by the CA is
available, you can create an X.509 commissioning certificate. Purchased certificates or
certificates (in formats such as PEM and JKS) issued by authoritative organizations can be
directly uploaded to the platform.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 181

Creating an X.509 Commissioning Certificate

1. Run cmd as user admin to open the CLI and run cd c:\openssl\bin (replace
c:\openssl\bin with the actual OpenSSL installation directory) to access the
OpenSSL view.

2. Generate a public/private key pair.
openssl genrsa -out deviceCert.key 2048

3. Create a CSR for the device certificate.
openssl req -new -key deviceCert.key -out deviceCert.csr

The system prompts you to enter the following information. All the
parameters can be customized.
– Country Name (2 letter code) [AU]: country, for example, CN
– State or Province Name (full name) []: state or province, for example, GD
– Locality Name (for example, city) []: city, for example, SZ
– Organization Name (for example, company) []: organization, for

example, Huawei
– Organizational Unit Name (for example, section) []: organization unit, for

example, IoT
– Common Name (e.g. server FQDN or YOUR name) []: common name, for

example, zhangsan
– Email Address []: email address, for example, 1234567@163.com
– Password[]: password, for example, 1234321
– Optional Company Name[]: company name, for example, Huawei

4. Create a device certificate using CSR.
openssl x509 -req -in deviceCert.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out
deviceCert.pem -days 500 -sha256

Obtain the generated device certificate deviceCert.pem from the bin folder in
the OpenSSL installation directory.

Registering a Device Authenticated by an X.509 Certificate

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Devices > All Devices, click Register Device, set
parameters based on the table below, and click OK.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 182

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 6-10 Device - Registering an X.509 device

Table 6-2 Registering a device using X.509 certificate

Parameter Description

Resource
Space

Select the resource space to which a device belongs.

Product Select the product to which the device belongs.
You can select a product only after it is defined. If no product is
available, create a product by following the instructions
provided in Product Creation.

Node ID Set this parameter to the IMEI, MAC address, or serial number
of the device. If the device is not a physical one, set this
parameter to a custom string that contains letters, digits,
hyphens (-), and underscores (_).

Device ID Enter a unique device ID. If this parameter is carried, the
platform will use the parameter value as the device ID.
Otherwise, the platform will allocate a device ID, which is in the
format of product_id_node_id.

Device Name Customize the device name.

Description Customize device description.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 183

Parameter Description

Authenticatio
n Type

X.509 certificate: The device uses an X.509 certificate for
identity verification.

Fingerprint This parameter is displayed when Authentication Type is set to
X.509 certificate. Import the fingerprint corresponding to the
preset device certificate on the device side. You can run
openssl x509 -fingerprint -sha256 -in deviceCert.pem in the
OpenSSL view to query the fingerprint. Note: Delete the colon
(:) from the obtained fingerprint when filling it.

----End

APIs
● Obtaining the Device CA Certificate List
● Uploading a Device CA Certificate
● Deleting a Device CA Certificate
● Verifying a Device CA Certificate

6.2.4 Device Self-Registration

Overview
For security, devices can connect to IoTDA only after their basic information (such
as the device ID and authentication information) is registered on the platform. You
can register a device on the platform manually or use self-registration templates,
with which the device information is automatically registered when the device
connects to the platform for the first time. This section describes how to use
certificates and server name indication (SNI) to implement device self-registration.

Figure 6-11 Service flow

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 184

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0099.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0022.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0016.html

Scenarios
● Common scenarios: With self-registration, devices are registered automatically

with device certificates, free of device provisioning.
● IoV: With self-registration, head units can go online immediately upon

starting, simplifying application development.
● Large enterprise customers: With self-registration, the customers who have

purchased multiple IoTDA instances do not need to register and provision
devices under different instances separately in advance.

Constraints
● A maximum of 10 self-registration templates can be created for an account.
● To use the device self-registration function, the device must use TLS and

enable the SNI extension. The SNI must carry the domain name allocated by
the platform. You can obtain the domain name by choosing Overview and
clicking Access Details.

● Currently, this function supports only bidirectional MQTTS certificate
authentication.

Procedure

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 Create a self-registration template. In the navigation pane, choose Devices > Self-
Registration Template, and click Create Template. You can bind policies to
devices in the template in advance. For details about how to use device policies,
see Device Topic Policies. Set the node ID and product ID (mandatory). Set the
device ID to the value of Username in the MQTT connection parameters. The
product must be created on the platform in advance.

Figure 6-12 Self-registration template - Creating a template

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 185

https://datatracker.ietf.org/doc/html/rfc3546#section-3.1
https://www.huaweicloud.com/intl/en-us/product/iotda.html

NO TE

The platform predefines the parameters that can be declared and referenced in the
template, as shown below. The certificate must contain the parameters referenced in the
template.
● iotda::certificate::country: country
● iotda::certificate::organization: organization
● iotda::certificate::organizational_unit: department
● iotda::certificate::distinguished_name_qualifier: distinguished name
● iotda::certificate::state_name: province/state
● iotda::certificate::common_name: common name
● iotda::certificate::serial_number: serial number

Step 3 Create a device certificate by referring to Registering a Device Authenticated by
an X.509 Certificate. Upload the CA certificate to the platform, verify the
certificate, bind the self-registration template created in Step 2, and enable the
self-registration function.

Figure 6-13 Device CA certificate - Binding a template

NO TICE

The device to register and its CA certificate must be in the same resource space.
Ensure that the CA certificate and the product corresponding to the product ID in
the template are in the same resource space.

Step 4 In the navigation pane, choose Devices > Device Certificates. On the Device CA
Certificates tab page, click Debug to upload the device certificate created in Step
3, and check whether the pre-parsed device information meets the expectation.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 186

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0055.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0055.html#section2

Figure 6-14 Device CA certificate - Debugging a certificate

----End

Verification
1. Use the MQTT.fx tool to simulate the connection of a device to the platform

for the first time and the automatic registration. Set the client ID by referring
to Connection Parameters. Set User Name to the ID of the device registered
in the platform. Password is not required. Obtain the CA certificate of the
platform by referring to Certificates. After the connection is successful, check
the registered device information on the platform.

Figure 6-15 Connection parameters

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 187

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html#section1
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3

Figure 6-16 Certificate information

2. After the connection is successful, you can find the self-registered device in
the device list on the console.

Figure 6-17 Device - Self-registered device details

6.3 Device Management
After a device is registered, you can manage the device, view device information,
and freeze the device on the IoTDA console.

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Devices > All Devices. By default, all devices in the
current instance are displayed in the device list.

Figure 6-18 Device - Device list

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 188

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Table 6-3 Device list functions

Function Description

Search for a device Search for a specific device based on the status,
device name, node ID, device ID, resource space,
product, and node type.

View device information View the device status, device name, and node ID
in the device list. Click View in the row of a device
to access the device details.

Delete a device Click Delete in the row of a device to delete the
device.
NOTE

After a device is deleted, the related device data is
deleted. Exercise caution when performing this
operation.

To delete a large number of devices, you can call
the API for creating a batch task or delete
devices in batches on the IoTDA console. For
details, see Deleting a Batch of Devices.

Freeze a device Click Freeze in the row of a device to freeze the
device.
NOTE

A frozen device cannot go online. Only devices that are
directly connected to the platform can be frozen.

To freeze a large number of devices, you can call
the API for creating a batch task.

Unfreeze a device Click Unfreeze in the row of a device to unfreeze
the device.
To unfreeze a large number of devices, you can
call the API for creating a batch task.

Debug a device Click Debug in the row of a device to debug the
device.

----End

Device Status
You can view the device status (online, offline, inactive, abnormal, or frozen) on
the IoTDA console. You can also learn the device status by means of subscription.
The table below describes the device statuses.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 189

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0045.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0045.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0045.html

Type Status Short-Connection Device
(Such as NB-IoT Devices)

Persistent Connection Device
(MQTT Device)

Conn
ectio
n
statu
s

Online If a device has reported
data within 25 hours, the
device status is Online. If
no data has been reported
within the past 25 hours,
the device status is
Abnormal.

The device is connected to the
platform.

Offlin
e

If a device reports no data
for 49 hours after
connecting to the platform,
the platform sets the
device status to Offline.

After the device is disconnected
from the platform for 1 minute
(the data is automatically
updated every minute), the
device status is set to Offline.
If you manually refresh the status
on the page, the device status is
displayed as Offline.

Abnor
mal

If a device reports no data
for 25 hours after
connecting to the platform,
the platform sets the
device status to Abnormal.

This status does not apply to
persistent connection devices.

Inactiv
e

The device is registered
with but does not connect
to the platform. The device
activation procedure is
described in Initializing a
Device.

The device is registered with but
does not connect to the platform.
The device activation procedure is
described in Initializing a
Device.

Mana
geme
nt
statu
s

Frozen After a device is frozen, it cannot be connected to the IoT
platform. Currently, only devices directly connected to the IoT
platform can be frozen.

Viewing Device Details
In the device list, click View in the row of a device to access its details.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 190

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_0089.html#section4
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_0089.html#section4
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_0089.html#section4
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_0089.html#section4

Figure 6-19 Device - Device details

Tab Description

Device
Info

● Viewing device information: You can view basic device
information, including the node ID, device ID, node type, software
version, and firmware version. You can also call the API for
modifying a device.
– Node ID is a unique physical identifier for the device, such as

its IMEI or MAC address. This parameter is used by the
platform to authenticate the device during device access.

– Device ID uniquely identifies a device. It is allocated by the
platform during device registration and used for device access
authentication and message transmission.

● Resetting a secret: The secret is used for authentication when
MQTT devices, NB-IoT devices, or SDK-integrated devices access
the platform. After the secret is reset, the new secret must be
updated on the device, and the device must carry the new secret
for authentication during platform connection.

● Viewing the latest reported data: View the latest data reported by
the device to the platform.

Cloud
Run Logs

IoTDA records connections with devices and applications. You can
view the information on the console. For details, see Run Logs
(New Version).

Cloud
Delivery

You can create a command or message (MQTT device only) delivery
task for an individual device on the IoTDA console. For details, see
Data Delivery.

Device
Shadow

The platform provides the device shadow to cache the device status.
When the device is online, delivered commands can be directly
obtained. When the device is offline, it can proactively obtain the
delivered commands after going online. For details, see Device
Shadow.

Message
Trace

The platform supports quick fault locating and cause analysis
through message trace. For details, see Message Trace.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 191

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1079.html

Tab Description

Device
Monitori
ng

● Device run logs: If you enable device log collection, local logs can
be uploaded to Log Tank Service (LTS). (Note that this function is
available only for MQTT devices.)

● Anomaly detection: IoTDA provides device anomaly detection
functions. For details, see Anomaly Detection.

Child
Devices

Devices can be directly or indirectly connected to the IoT platform.
Indirectly connected devices access the platform through gateways.
For details, see Gateways and Child Devices.

Tags You can define tags and bind tags to devices. For details, see Tags.

Groups You can add devices to different groups for batch operations. For
details, see Groups and Tags.

Deleting a Batch of Devices

To delete devices in batches on the IoTDA console, perform the following steps:

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Devices > All Devices, click the Batch Deletion
tab, and click Batch Deletion.

Step 3 In the displayed dialog box, download Batch Device Deletion Template, enter the
IDs of the devices to be deleted in the template, specify Task Name, upload the
file, and click OK. Alternatively, you can specify a product to delete devices in
batches.

Figure 6-20 Device - Deleting devices in batches (by file)

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 192

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 6-21 Device - Deleting devices in batches (by product)

The task execution status and result are displayed. If the success rate is not 100%,
click the task name to open the task details page and view the failure cause.

----End

6.4 Groups and Tags

Group Introduction
A device group is a collection of devices. You can create groups for all the devices
in a resource space based on rules (such as regions and types), and operate these
devices by group. For example, you can perform a firmware upgrade on a group of
water meters in the resource space. Devices in a group can be added, deleted,
modified, and queried. A device can be bound to and unbound from multiple
groups.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 193

Table 6-4 Classification

Group
Type

Description

Static
group

You need to manually add devices to or remove devices from a
group. Group nesting is supported.
Restrictions:
● A maximum of 1,000 groups (including nested child groups)

can be created for a single instance of an account.
● A maximum of 20,000 devices can be added to a group.
● A device can be bound to a maximum of 10 groups.
● A maximum of five group layers are supported.
● A child group can belong to only one parent group.
● If a group has child groups, the group cannot be deleted

directly. You need to delete the child groups before deleting the
parent group.

Dynamic
group

Devices are automatically added to or removed from the group
based on the dynamic query rules of SQL-like statements. You
cannot manually manage devices in a dynamic group.
Restrictions:
● A maximum of 10 dynamic groups can be created for a single

instance of an account.
● When a dynamic group is created for the first time, a maximum

of 100,000 devices can be matched. (There is no limit on the
number of devices that can be added to the dynamic group
later.)

● Dynamic groups are parent groups by default. Dynamic groups
cannot be nested.

● After a dynamic group is created, its rules cannot be modified.
● Devices in a dynamic group cannot be manually managed.
● This API is supported only by standard and enterprise editions.
● The maximum TPS for an account to create a dynamic group is

1 (one request per second).

Managing Groups

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Devices > Groups.

Step 3 You can add, modify, or delete a group.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 194

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 6-22 Device - Group

----End

Static Group

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Devices > Groups.

Step 3 Click Add Root Group to add a group. Set group type to Static Group, set
parameters as prompted, and click OK.

Figure 6-23 Group - Creating a static group

Step 4 Access the static group details page. Bind or unbind devices in the group. For
details, see Table 6-5.

Figure 6-24 Static group - Binding a device

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 195

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Table 6-5 Description

Operatio
n

Description

Binding Click Bind to bind a device to a group.

Batch
unbindin
g

Select multiple devices (up to 100 devices at a time) and click Batch
Unbind to unbind the selected devices from the current group.

Unbindin
g

Locate the target device and click Unbind to unbind the device from
the group.

Step 5 In the navigation pane, choose Devices > All Devices. On the displayed page,
locate the target device, click View in the Operation column. Click the Groups tab
page to check and manage the associated groups. For details, see Table 6-5.

Figure 6-25 Device - Group management

----End

Dynamic group

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Devices > Groups.

Step 3 Click Add Root Group to add a group. Set Group Type to Dynamic.

Step 4 Set parameters as prompted, enter SQL-like statements, and click Configure Rule
to check the matched devices. Click OK to complete the dynamic group creation.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 196

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 6-26 Group - Creating a dynamic group

NO TE

● For details about the dynamic rule syntax, see Advanced Search.
● The difference between dynamic group rules and advanced search is that dynamic

group rules do not support app_id and group_id filtering.
● You can click Try to enter a dynamic rule. After you enter a dynamic rule, click OK. The

rule is automatically written back.

----End

Dynamic Group Example
Create a dynamic group based on the device name fuzzy match rule (other
conditions can be selected based on the site requirements) and select the dynamic
group to execute the OTA upgrade task.

Devices in a dynamic group are dynamically adjusted based on device names, and
the status of the OTA upgrade task associated with the dynamic group also
changes dynamically.

For details, see Upgrading the Firmware for a Batch of Devices and Dynamic
group.

Step 1 Create a dynamic group named HuaweiDeviceGroup and set the group rule to
device_name like'HuaweiDevice %'.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 197

Figure 6-27 Dynamic group - Details

Step 2 Create a device firmware upgrade task and select the dynamic group
HuaweiDeviceGroup.

Figure 6-28 Creating a firmware upgrade task - Dynamic group

Step 3 After the dynamic group is created, you can view that the devices in the dynamic
group are added to the upgrade task.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 198

Figure 6-29 Firmware upgrade task - Details (dynamic group)

Step 4 Register a device by referring to Registering a Single Device. The device name is
HuaweiDevice011. After the registration is successful, you can view that the
device has been automatically added to the dynamic group HuaweiDeviceGroup.

Figure 6-30 Dynamic group - Adding a device

Step 5 View the sub-task details of the software and firmware upgrade task. You can see
that the device has been automatically added to the upgrade task.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 199

Figure 6-31 Firmware upgrade task - Adding a device to a dynamic group

Step 6 On the HuaweiDevice001 details page, change the device name to
AbandonedHuaweiDevice001.

Figure 6-32 Device - Changing device name

Step 7 After the device name is changed successfully, the device is automatically removed
from the HuaweiDeviceGroup dynamic group.

Figure 6-33 Dynamic group - Removing a device

Step 8 Check the sub-task details of the software and firmware upgrade task. The
upgrade status of the device is Removed.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 200

Figure 6-34 Firmware upgrade task - Removing a device from a dynamic group

----End

Tags
Tags are used to classify devices. You can bind tags to devices on the device details
page to manage devices.

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Devices > All Devices. On the displayed page,
locate the target device, and click View in the Operation column to access its
details page.

Step 3 On the Tags tab page, click Bind Tags to bind one or more tags to the device.

Figure 6-35 Device - Binding a tag

----End

Group-related APIs
Query the Device Group List

Create a Device Group

Query a Device Group

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 201

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0053.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0051.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0075.html

Modify a Device Group

Delete a Device Group

Manage Devices in a Device Group

Query Devices in a Group

Tag-related APIs
Binding Tags

Unbinding Tags

6.5 Advanced Search

Overview
To quickly find the desired device, you can use advanced search to set flexible
search criteria using SQL-like statements to search. For example, you can search
for devices by prefix fuzzy match or by tag. This section guides you on using
advanced search and SQL-like syntax.

Constraints
● This API is supported only by Standard and Enterprise editions.
● The maximum TPS for an account to call this API is 1 (one request per

second).

Scenarios
Device search: On the All Devices > Device List page, use SQL-like statements to
search for specified devices for subsequent management operations.

Dynamic device grouping: Based on the rules of SQL-like statement, devices that
meet the filter criteria are automatically added to the group for management.

Procedure

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Devices > All Devices. By default, all devices under
your account are displayed in the device list.

Step 3 Click Advanced Search, enter an SQL-like statement, and click Search to display
the target devices.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 202

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0073.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0071.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0070.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0074.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0010.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 6-36 Device - Advanced search

----End

SQL-like Syntax Description

When using SQL-like statements on the console, omit the select, from, order by,
and limit clauses. You only need to enter a where clause to edit user-defined
conditions. The maximum length of a statement is 400 characters. The content in
the clause is case sensitive, but keywords in SQL statements are case insensitive.
On the console, data is sorted based on the marker field desc by default.

A where clause:

[condition1] AND [condition2]

Example:

product_id = 'testProductId'

Up to five conditions are supported. Conditions cannot be nested. For details
about the parameters that support query, see Table 6-6 and Table 6-7.

AND and OR are supported. For details about the priority, see the standard SQL
syntax. By default, the priority of AND is higher than that of OR.

Table 6-6 Description of query condition parameters

Paramete
r

Data
Type

Descriptio
n

Value Range

app_id string Resource
space ID.

The value can contain up to 36 characters.
Only letters, digits, underscores (_), and
hyphens (-) are allowed.

device_id string Device ID. The value can contain up to 128 characters.
Only letters, digits, underscores (_), and
hyphens (-) are allowed.

gateway_i
d

string Gateway
ID.

The value can contain up to 128 characters.
Only letters, digits, underscores (_), and
hyphens (-) are allowed.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 203

Paramete
r

Data
Type

Descriptio
n

Value Range

product_id string ID of the
product
associated
with the
device.

The value can contain up to 36 characters.
Only letters, digits, underscores (_), and
hyphens (-) are allowed.

device_na
me

string Device
name.

The value can contain up to 256 characters.
Only letters, digits, and special characters
(_?'#().,&%@!-) are allowed.

node_id string Node ID. The value can contain up to 64 characters.
Only letters, digits, underscores (_), and
hyphens (-) are allowed.

status string Device
status.

The value can be ONLINE, OFFLINE,
ABNORMAL, INACTIVE, or FROZEN.

node_type string Device
node type.

The value can be GATEWAY (a directly
connected device or gateway) and
ENDPOINT (an indirectly connected
device).

tag_key string Tag key. The value can contain up to 64 characters.
Only letters, digits, underscores (_), periods
(.), and hyphens (-) are allowed.

tag_value string Tag value. The value can contain up to 128 characters.
Only letters, digits, underscores (_), periods
(.), and hyphens (-) are allowed.

sw_versio
n

string Software
version.

The value can contain up to 64 characters.
Only letters, digits, underscores (_),
hyphens (-), and periods (.) are allowed.

fw_version string Firmware
version.

The value can contain up to 64 characters.
Only letters, digits, underscores (_),
hyphens (-), and periods (.) are allowed.

group_id string Group ID. The value can contain up to 36 characters,
including hexadecimal strings and hyphens
(-).

create_tim
e

string Device
registratio
n time.

Format: yyyy-MM-dd'T'HH:mm:ss.SSS'Z', for
example, 2015-06-06T12:10:10.000Z

marker string Result
record ID.

The value is a string of 24 hexadecimal
characters, for example,
ffffffffffffffffffffffff.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 204

Table 6-7 Supported operators

Operator Supported By

= All parameters

!= All parameters

> create_time and marker

< create_time and marker

like device_name, node_id, tag_key, and
tag_value

in Parameters except tag_key and tag_value.

not in Parameters except tag_key and tag_value.

SQL Restrictions

● like: Only prefix match is supported. Suffix match or wildcard match is not
supported. At least four characters must be contained for prefix match.
Special characters cannot be contained. Only letters, digits, underscores (_),
and hyphens (-) are allowed. The prefix must end with %.

● Other SQL statements, such as nested SQL statements, union, join, and alias,
are not supported.

● The SQL statement can contain up to 400 characters. Up to five request
conditions are supported.

● The condition value cannot be null or an empty string.

APIs

Query Device List Flexibly

6.6 Device Shadow

Overview

IoTDA supports the creation of device shadows. A device shadow is a JSON file
that stores the device status, latest device properties reported, and device
configurations to deliver. Each device has only one shadow. A device can retrieve
and set its shadow to synchronize properties, either from the shadow to the device
or from the device to the shadow.

The device shadow contains two sections: desired and reported.
● The desired section stores the desired configurations of device properties. You

can modify the desired properties in the device shadow when needed. If the
device is online, the desired properties are synchronized to the device
immediately. If the device is offline, the desired properties are synchronized to
the device when the device goes online or reports data.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 205

https://support.huaweicloud.com/intl/en-us/api-iothub/SearchDevices.html

● The reported section stores the properties most recently reported by the
device. When the device reports data, the platform changes the properties in
the reported section to those reported by the device.

NO TE

● You can configure the device shadow by calling the application API or using the
IoTDA console. (Specifically, access a device details page, click the Device Shadow
tab, and click Configure Property.) The device shadow is mainly used to configure
device properties. Its configuration depends on the product model.

● The device shadow configuration is an asynchronous command. The platform
directly returns a configuration response. Then, the platform determines whether
to deliver the configuration immediately or cache the configuration based on the
device status.

● When the device goes online, the device shadow delivers the desired properties to
the device. After the device reports its properties, the device shadow checks
whether the reported properties match the delivered ones. If they match, the
shadow data is configured on the device and the cache is cleared. If they do not
match, the shadow data fails to be configured on the device. When the device goes
online or reports properties next time, the platform delivers the desired properties
to the device again until the configuration delivery is successful.

● Restriction: Keys in the device shadow JSON file cannot contain periods (.), dollar
signs ($), and the null character (hexadecimal ASCII code 00). Otherwise, the
device shadow file cannot be refreshed.

● When desired properties are delivered to a device, the device needs to return a
response to indicate that the request has been received. If the device does not
respond, the platform considers that the device does not support device shadow
configuration and sets device properties. The IoT platform has a 5-minute
protection period to prevent excessive traffic from affecting the device. During this
period, the platform does not deliver the difference between reported and desired
properties even if they are different. If the device responds to property
configuration in the delivery process properly, the platform delivers the difference
to the device each time the properties are reported.

Application Scenarios

The device shadow is applicable to devices with limited resources and low power
consumption or devices in the dormant state for a long time.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 206

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html

● Querying the latest data reported by the device and the latest online status of
the device:
– You may not be able to query the console for the mostly recent data

because the device is offline or the network is unstable. With the device
shadow, the platform can obtain the data from the shadow.

– There may be too many applications simultaneously querying the device.
IoT devices typically have limited processing capabilities, so too many
queries can adversely affect their performance. With the device shadow,
the device can synchronize its status to the shadow just once. The
applications can obtain the device status from the device shadow,
without reaching the real device.

● Modifying device properties: You can modify device properties on the device
details page. Because the device may be offline for a long time, the modified
device properties cannot be delivered to the device in time. The platform
stores these properties in the device shadow. When the device goes online,
the platform synchronizes the properties from the shadow to the device.

Service Flow
Modifying a Device Property

After a property in the desired section is modified, it is synchronized to the device
immediately if the device is online, or cached and delivered until the device goes
online or reports data.

1. A user modifies a device property on the console or application. Example
message:
PUT https://{Endpoint}/v5/iot/{project_id}/devices/{device_id}/shadow
Content-Type: application/json
X-Auth-Token: ********

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 207

Instance-Id: ********

{
 "shadow" : [{
 "desired" : {
 "temperature" : "60"
 },
 "service_id" : "WaterMeter",
 "version" : 1
 }]
}

2. The platform modifies the property in the desired section.
3. The platform sends a response.
4. The platform detects that the device goes online or reports data.
5. The platform synchronizes the property to the device. Example message:

Topic: $oc/devices/{device_id}/sys/properties/set/request_id={request_id}
Data format:
{
 "object_device_id": "{object_device_id} ",
 "services": [
 {
 "service_id": "Temperature",
 "properties": {
 "value": 57,
 "value2": 60
 }
 },
 {
 "service_id": "Battery",
 "properties": {
 "level": 80,
 "level2": 90
 }
 }
]
}

6. The device sends a response. When desired properties are delivered to a
device, the device needs to return a response to indicate that the request has
been received. Example message:
Topic: $oc/devices/{device_id}/sys/properties/set/response/request_id={request_id}
Data format:
{
 "result_code": 0,
 "result_desc": "success"
}

7. When a device reports properties, the platform stores the latest property values
reported by the device.

● When the device reports properties, the platform changes the properties in
the reported section to those reported by the device. Example message:

Topic: $oc/devices/{device_id}/sys/properties/report
Data format:
{
 "services": [
 {
 "service_id": "Temperature",
 "properties": {
 "value": 57,
 "value2": 60
 },
 "event_time": "20151212T121212Z"
 },
 {

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 208

 "service_id": "Battery",
 "properties": {
 "level": 80,
 "level2": 90
 },
 "event_time": "20151212T121212Z"
 }
]
}

● The device proactively deletes the reported section of the device shadow.
– The device proactively deletes a single property from services in the

reported section.
When a device reports a null property, the platform deletes the property
from the reported section of the device shadow. An example message is
as follows:
Topic: $oc/devices/{device_id}/sys/properties/report
{
 "services": [
 {
 "service_id": "Temperature",
 "properties": {
 "value": null,
 "value2": 60
 },
 "event_time": "20151212T121212Z"
 }
]
}

– The device proactively deletes all properties from services in the reported
section.
When a device reports properties that are set to {}, the platform deletes
all property from services in reported section of the device shadow. An
example message is as follows:
Topic: $oc/devices/{device_id}/sys/properties/report
{
 "services": [
 {
 "service_id": "Temperature",
 "properties": {},
 "event_time": "20151212T121212Z"
 }
]
}

Querying Device Properties

The device shadow saves the most recent device properties. Once the device
properties change, the device synchronizes the changes to the device shadow.
Using the device shadow, a user can obtain the device status quickly regardless of
whether the device is online.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 209

1. A user queries device properties on the console or application. Example
message:
GET https://{Endpoint}/v5/iot/{project_id}/devices/{device_id}/shadow
Content-Type: application/json
X-Auth-Token: ********
Instance-Id: ********

2. The platform returns the desired and reported properties. Example message:
Status Code: 200 OK
Content-Type: application/json

{
 "device_id" : "********",
 "shadow" : [{
 "desired" : {
 "properties" : {
 "temperature" : "60"
 },
 "event_time" : "20151212T121212Z"
 },
 "service_id" : "WaterMeter",
 "reported" : {
 "properties" : {
 "temperature" : "60"
 },
 "event_time" : "20151212T121212Z"
 },
 "version" : 1
 }]
}

Query, Modification, and Deletion

Querying a device shadow

Method 1: Use an application to call the API for querying a device shadow.

Method 2: Log in to the console and click the target instance card. In the
navigation pane, choose Devices > All Devices. On the displayed page, locate the
target device, and click View in the Operation column to access its details page.
Click the Device Shadow tab, and check the device properties, including the
reported and desired values.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 210

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0079.html
https://console-intl.huaweicloud.com/iotdm/?locale=en-us#/dm-portal/home

● If the reported value is inconsistent with the desired value, the desired value is
highlighted. This may occur when the device is offline and the value is still in
the device shadow waiting to be synchronized to the device.

● If the reported value matches the desired value, the desired value is not
highlighted. The latest property reported by the device matches the desired
property.

Figure 6-37 Device shadow - Viewing

Modifying a device shadow

Method 1: Use an application to call the API for configuring desired properties
in a device shadow.

Method 2: Log in to the console and click the target instance card. In the
navigation pane, choose Devices > All Devices. On the displayed page, locate the
target device, and click View in the Operation column to access its details page.
Click the Device Shadow tab, and click Configure Property. In the displayed
dialog box, enter the desired value and click OK.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 211

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0072.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0072.html
https://console-intl.huaweicloud.com/iotdm/#/dm-portal/home

Figure 6-38 Device shadow - Configuring property

Deleting a device shadow

After a device shadow is deleted, the platform clears all data (including the
reported and desired values) in the device shadow.

Figure 6-39 Deleting a device shadow

APIs
Querying a Device Shadow

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 212

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0079.html

Configuring Desired Properties in a Device Shadow

6.7 OTA Upgrade

6.7.1 Software/Firmware Package Upload

Overview
Software includes system software and application software. The system software
provides the basic device functions, such as the compilation tool and system file
management. The application software provides functions such as data collection,
analysis, and processing, depending on the features the device provides. Software
upgrade, also called software over the air (SOTA), allows you to upgrade the
software of LwM2M or MQTT devices in OTA mode.

● For an LwM2M product model, the software upgrade complies with PCP. You
must comply with PCP during device adaptation development of software
upgrades.

● For an MQTT product model, the software upgrade protocol is not verified.

Firmware is like a device driver for the hardware. It is responsible for the
underlying work of a system, for example, the basic input/output system (BIOS)
on a computer mainboard. Firmware upgrade, also called firmware over the air
(FOTA), allows you to upgrade the firmware of LwM2M or MQTT devices in OTA
mode.

Procedure
You need to add an upgrade package on the IoTDA console to upgrade device
software and firmware. You can either use an OBS file as an upgrade package or
upload a local upgrade package.

NO TE

● The size of the OBS file cannot exceed 1 GB. You will be billed for storing and
downloading the OBS file.
OBS billing items include the storage space, request, data transfer, data restoration, and
data processing. Billing modes include pay-per-use and yearly/monthly. For details, see
Billing.
For example, if a user in CN North-Beijing4 needs to upgrade 10,000 devices per month
and the size of the upgrade package is 100 MB, you will be charged CNY512.15 in total
(including CNY0.139 for storage, CNY512 for data transfer, and 0.01 for requests) on a
pay-per-use basis.
If the yearly/monthly billing mode is used, you will be charged CNY506.01 in total
(including CNY1.00 for storage, CNY505.00 for 1 TB Internet outbound traffic package
for a month, and CNY0.01 for requests).

● You are not billed for uploading local upgrade packages. The maximum package size is
20 MB.

● The upgrade package format can only
be .bin, .dav, .tar, .gz, .zip, .gzip, .apk, .tar.gz, .tar.xz, .pack, .exe, .bat, or .img.

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 213

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0072.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_01_0047_3.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_01_0047_2.html
https://support.huaweicloud.com/intl/en-us/price-obs/obs_42_0001.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

Step 2 In the navigation pane, choose Devices > Software/Firmware Upgrades.

Step 3 To upload a firmware upgrade package, click the Firmware List tab and click
Upload. To upload a software upgrade package, click the Software List tab and
click Upload.

Step 4 On the package upload page, select OBS or Local for Upload Mode.

● OBS: Before using this mode, click Agree in the displayed authorization dialog
box. After authorization, select the bucket where the upgrade file is located. If
no bucket is available, click Create Bucket to go to the OBS page and create
a bucket. If the upgrade file is not uploaded to the corresponding bucket, click
Upload Object to go to the OBS bucket page and upload the upgrade file.
Select the target OBS object and click Next.

NO TICE

If you have not authorized IoTDA to access Key Management Service (KMS),
click Authorize Access in Encryption Service Authorization. Otherwise,
upgrade file downloading will be affected if you set or modify Default
Encryption for the bucket on the OBS console.

Figure 6-40 Uploading the upgrade package - OBS file

● Local: Drag and drop a file or click Select File to upload a software/firmware
upgrade package.

Figure 6-41 Uploading the upgrade package - local file

Step 5 Configure parameters in the upgrade package list based on the following
information, and click OK.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 214

Figure 6-42 Uploading the upgrade package - OBS file parameters

Fill in the parameters as follows:

Parameter Description

Firmware/Software Version Version of the firmware/software
package. (A device reports the version
number after the upgrade. The
platform checks whether the version
number reported by the device is the
same as the value of this parameter. If
they are the same, the upgrade is
successful.)

Product Select the product model of the
corresponding device.

Source Versions Source version of the device that can be
upgraded. Enter the version manually.
To add multiple versions, press Enter
after inputting one version, and then
input the next.
NOTE

Currently, the platform does not support
automatic differential upgrade packages.
You can prepare differential packages on
your local PC and upload them to the
platform. Then, specify different source
versions for these differential packages. You
can select multiple differential packages
when creating an upgrade task. During a
software/firmware upgrade, the platform
delivers differential packages based on
source versions reported by devices.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 215

Parameter Description

Software Package Segment Size Size of each segment of the software
package downloaded by the device, in
bytes. The value ranges from 32 to 500.
The default value is 500. This function
is supported only by NB-IoT device
software upgrade tasks.

Description Description of the firmware/software
package.

Customized information pushed to
devices

The platform delivers the custom
information when delivering an
upgrade notification to devices.

NO TE

● The function of uploading signed software/firmware packages has been brought offline.
Uploaded signed software/firmware packages can still be used for upgrade. To ensure
proper use of software/firmware upgrades, directly upload the upgrade files to be
delivered to devices.

● Only MQTT devices can use OBS files as software/firmware upgrade files. You need to
configure a new event_type value on the device side.

● If no device source version is specified for an upgrade package, all selected devices will
be upgraded.

----End

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 216

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3030.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3030.html

6.7.2 OTA Upgrade for NB-IoT Devices

Software Upgrade for Devices Using LwM2M over CoAP

The software upgrade process for a device using LwM2M over CoAP is as follows:

1–2: A user uploads a software package on the IoTDA console and creates a
software upgrade task on the console or an application.

3. A device reports data to the platform. The platform detects that the device is
online and triggers the upgrade negotiation process. (The timeout interval is 24
hours.)

4–5: The platform delivers a command to the device to query its software version
and determines whether an upgrade is required based on the target version. (In
step 4, the timeout interval for the device to report the software version is 3
minutes.)

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 217

● If the returned software version is the same as the target version, no upgrade
is required.

● If the returned software version is different from the target version, the
platform continues the upgrade.

6. The platform subscribes to the software upgrade status from the device.

7–8: The platform queries the radio coverage of the cell where the device resides,
and obtains the cell ID, reference signal received power (RSRP), and signal to
interference plus noise ratio (SINR). (The timeout interval for the reporting of the
radio coverage level and cell ID is about 3 minutes.)
● If the query is successful, the platform calculates the number of concurrent

upgrade tasks based on the RSRP and SINR ranges described in the figure
below, and continues with step 10.
– RSRP and SINR in range 0: 50 devices in the cell can be upgraded

simultaneously.
– RSRP in range 0 and SINR in range 1: 10 devices in the cell can be

upgraded simultaneously.
– RSRP in range 1 and SINR in range 2: Only one device in the cell can be

upgraded at a time.
– RSRP and SINR can be queried but are not within any of the three ranges:

Only one device in the cell can be upgraded at a time.

NO TE

If only a small number of devices can be upgraded simultaneously, you can
contact the local carrier to see if coverage can be improved.

● If the query fails, the process continues with step 9.

9. The platform delivers a command to query the cell ID of the device.
● If the query is successful, 10 devices in the cell can be upgraded

simultaneously.
● If the query fails, the upgrade fails.

10–12: The platform notifies the device of a new software package version. The
device starts to download the software package. Software packages can be
downloaded in segments, and resumable download is supported. The
versionCheckCode field carried in a software package segment determines the
software package to which the segment belongs. After the download is complete,
the device notifies the platform. (The timeout interval for step 11 is 60 minutes.)

13–14: The platform delivers an upgrade command to the device, and the device
performs the upgrade. After the upgrade is complete, the device notifies the
platform. (The timeout interval for the device to report the upgrade result and
status is 30 minutes.)

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 218

15. The platform notifies the IoTDA console or application of the upgrade result.

Firmware Upgrade for Devices Using LwM2M

The firmware upgrade process for a device using LwM2M is as follows:

1–2: A user uploads a firmware package on the IoTDA console and creates a
firmware upgrade task on the console or an application.

3. A device reports data to the platform. The platform detects that the device is
online and triggers the upgrade negotiation process. (The timeout interval is 24
hours.)

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 219

4–5: The platform delivers a command to query the device firmware version and
determines whether an upgrade is required based on the target version. (In step 4,
the timeout interval for the device to report the firmware version is 3 minutes.)
● If the returned firmware version is the same as the target version, no upgrade

is required.
● If the returned firmware version is different from the target version, the

platform continues the upgrade.

6–7: The platform queries the radio coverage of the cell where the device resides,
and obtains the cell ID, RSRP, and SINR. (The timeout interval for the reporting of
the radio coverage level and cell ID is about 3 minutes.)
● If the query is successful, the platform calculates the number of concurrent

upgrade tasks based on the RSRP and SINR ranges described in the figure
below, and continues with step 9.
– RSRP and SINR in range 0: 50 devices in the cell can be upgraded

simultaneously.
– RSRP in range 0 and SINR in range 1: 10 devices in the cell can be

upgraded simultaneously.
– RSRP in range 1 and SINR in range 2: Only one device in the cell can be

upgraded at a time.
– RSRP and SINR can be queried but are not within any of the three ranges:

Only one device in the cell can be upgraded at a time.

NO TE

If only a small number of devices can be upgraded simultaneously, you can
contact the local carrier to see if coverage can be improved.

● If the query fails, the process continues with step 8.

8. The platform delivers a command to query the cell ID of the device.
● If the query is successful, 10 devices in the cell can be upgraded

simultaneously.
● If the query fails, the upgrade fails.

9. The platform subscribes to the firmware upgrade status from the device.

10–11: The platform delivers the package download URL. The device downloads
the firmware package from the URL. After the download is complete, the device
notifies the platform. (Firmware packages can be downloaded in segments, and
resumable download is supported.) (The timeout interval for step 11 is 60
minutes.)

12–13: The platform delivers an upgrade command to the device, and the device
performs the upgrade. After the upgrade is complete, the device notifies the

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 220

platform. (The timeout interval for the device to report the upgrade result and
status is 30 minutes.)

14–16: The platform delivers a command to query the firmware upgrade result.
After obtaining the result, the platform unsubscribes from the upgrade status and
notifies the IoTDA console or application of the upgrade result.

NO TE

The platform supports resumable download.

Firmware Upgrade Failure Causes

The following table lists the failure causes reported by the platform.

Error Message Description Solution

Device Abnormal is not
online

The device is offline
or abnormal.

Check the device.

Task Conflict A task conflict
occurs.

Check whether a software
upgrade, firmware upgrade, log
collection, or device restart task
is in progress.

Waiting for the device
online timeout

The device does not
go online within the
specified time.

Check the device.

Wait for the device to
report upgrade result
timeout

The device does not
report the upgrade
result within the
specified time.

Check the device.

Waiting for report
device firmware version
timeout

The device does not
report the firmware
version within the
specified time.

Check the device.

Waiting for report
cellId timeout

The device does not
report the cell ID
within the specified
time.

Check the device.

Updating timeout and
query device version
for check timeout

The device does not
report the upgrade
result or device
version within the
specified time.

Check the device.

Waiting for device
downloaded package
timeout

The device does not
finish downloading
the firmware
package within the
specified time.

Check the device.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 221

Error Message Description Solution

Waiting for device start
to update timeout

The device does not
start the update
within the specified
time.

Check the device.

Waiting for device start
download package
timeout

The device does not
start to download
the firmware
package within the
specified time.

Check the device.

The following table lists the failure causes reported by devices.

Error Message Description Solution

Not enough storage for
the new firmware
package

The storage space is
insufficient for the
firmware package.

Check the storage space of the
device.

Out of memory during
downloading process

The memory was
insufficient during
the download.

Check the device memory.

Connection lost during
downloading process

The connection was
interrupted during
the download.

Check the device connection
status.

Integrity check failure
for new downloaded
package

The integrity check
on the firmware
package fails.

Check whether the firmware
package downloaded is
complete.

Unsupported package
type

The firmware
package type is not
supported.

Check whether the device
status and firmware package
provided by the manufacturer
are correct.

Invalid URI The URI is invalid. Check whether the download
address of the firmware
package is correct.

Firmware update failed The firmware fails
to update.

Check the device.

FAQs

The following lists the frequently asked questions about software and firmware
upgrades. For more questions, see OTA Upgrades.

● Can the Target Version Be Earlier Than the Source Version?

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 222

https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01001.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01001.html#section2

● How Do I Obtain Software or Firmware Packages and Their Version
Numbers?

● Are Services Interrupted During a Software or Firmware Upgrade?
● What Are Common Software or Firmware Upgrade Errors?

APIs
● Create a Batch Task
● Query the Batch Task List
● Query a Batch Task

6.7.3 OTA Upgrade for MQTT Devices

Software Upgrade for Devices Using MQTT

The software upgrade process for a device using MQTT is as follows:

1–2: A user uploads a software package on the IoTDA console and creates a
software upgrade task on the console or an application.

3. The platform checks whether the device is online and triggers the upgrade
negotiation process immediately when the device is online. If the device is offline,

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 223

https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01001.html#section3
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01001.html#section3
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01001.html#section6
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01001.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0045.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0028.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0017.html

the platform waits for the device to go online and subscribes to the upgrade
topic. After detecting that the device goes online, the platform triggers the
upgrade negotiation process. (The timeout interval for the device to go online is
within 25 hours.)

4–5: The platform delivers a command to the device to query its software version
and determines whether an upgrade is required based on the target version. (The
timeout interval for step 5 is 3 minutes.)
● If the returned software version is the same as the target version, no upgrade

is required. The upgrade task is marked successful.
● If the returned software version is different from the target version and this

version supports upgrades, the platform continues the upgrade.

6–7: The platform delivers the package download URL, token, and package
information. The user downloads the software package using HTTPS based on the
package download URL and token. The token is valid for 24 hours. (The timeout
interval for package download and upgrade status reporting is 24 hours.)

8. The device upgrades the firmware. After the upgrade is complete, the device
returns the upgrade result to the platform. (If the version number returned after
the device upgrade is the same as the configured version number, the upgrade is
successful.)

9. The platform notifies the IoTDA console or application of the upgrade result.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 224

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3028.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3028.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3030.html

Firmware Upgrade for Devices Using MQTT

The firmware upgrade process for a device using MQTT is as follows:

1–2: A user uploads a firmware package on the IoTDA console and creates a
firmware upgrade task on the console or an application.

3. The platform checks whether the device is online and triggers the upgrade
negotiation process immediately when the device is online. If the device is offline,
the platform waits for the device to go online and subscribes to the upgrade
topic. After detecting that the device goes online, the platform triggers the
upgrade negotiation process. (The timeout interval for the device to go online is
within 25 hours.)

4–5: The platform delivers a command to query the device firmware version and
determines whether an upgrade is required based on the target version. (The
timeout interval for step 5 is 3 minutes.)

● If the returned firmware version is the same as the target version, no upgrade
is required. The upgrade task is marked successful.

● If the returned firmware version is different from the target version and this
version supports upgrades, the platform continues the upgrade.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 225

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3028.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3028.html

6–7: The platform delivers the package download URL, token, and package
information. The user downloads the software package using HTTPS based on the
package download URL and token. The token is valid for 24 hours. (The timeout
interval for package download and upgrade status reporting is 24 hours.)

8. The device upgrades the firmware. After the upgrade is complete, the device
returns the upgrade result to the platform. (If the version number returned after
the device upgrade is the same as the configured version number, the upgrade is
successful.)

9. The platform notifies the IoTDA console or application of the upgrade result.

NO TE

The platform supports resumable download.

Firmware Upgrade Failure Causes
The following table lists the failure causes reported by the platform.

Error Message Description Solution

Device Abnormal is not
online

The device is offline
or abnormal.

Check the device.

Task Conflict A task conflict
occurs.

Check whether a software
upgrade, firmware upgrade, log
collection, or device restart task
is in progress.

Waiting for the device
online timeout

The device does not
go online within the
specified time.

Check the device.

Wait for the device to
report upgrade result
timeout

The device does not
report the upgrade
result within the
specified time.

Check the device.

Waiting for report
device firmware version
timeout

The device does not
report the firmware
version within the
specified time.

Check the device.

Waiting for report
cellId timeout

The device does not
report the cell ID
within the specified
time.

Check the device.

Updating timeout and
query device version
for check timeout

The device does not
report the upgrade
result or device
version within the
specified time.

Check the device.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 226

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3030.html#section4

Error Message Description Solution

Waiting for device
downloaded package
timeout

The device does not
finish downloading
the firmware
package within the
specified time.

Check the device.

Waiting for device start
to update timeout

The device does not
start the update
within the specified
time.

Check the device.

Waiting for device start
download package
timeout

The device does not
start to download
the firmware
package within the
specified time.

Check the device.

The following table lists the failure causes reported by devices.

Error Message Description Solution

Not enough storage for
the new firmware
package

The storage space is
insufficient for the
firmware package.

Check the storage space of the
device.

Out of memory during
downloading process

The memory was
insufficient during
the download.

Check the device memory.

Connection lost during
downloading process

The connection was
interrupted during
the download.

Check the device connection
status.

Integrity check failure
for new downloaded
package

The integrity check
on the firmware
package fails.

Check whether the firmware
package downloaded is
complete.

Unsupported package
type

The firmware
package type is not
supported.

Check whether the device
status and firmware package
provided by the manufacturer
are correct.

Invalid URI The URI is invalid. Check whether the download
address of the firmware
package is correct.

Firmware update failed The firmware fails
to update.

Check the device.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 227

FAQs
The following lists the frequently asked questions about software and firmware
upgrades. For more questions, see OTA Upgrades.
● Can the Target Version Be Earlier Than the Source Version?
● How Do I Obtain Software or Firmware Packages and Their Version

Numbers?
● Are Services Interrupted During a Software or Firmware Upgrade?
● What Are Common Software or Firmware Upgrade Errors?

APIs
● Create a Batch Task
● Query the Batch Task List
● Query a Batch Task

6.7.4 OTA Upgrade for a Batch of Devices

Uploading a Software/Firmware Package
You need to upload a software/firmware upgrade package before creating a batch
software/firmware upgrade task. The platform supports the following upload
modes:

1. Use the application to call the API for creating an OTA upgrade package.
2. On the console, choose Software/Firmware Upgrades, and upload a

software/firmware upgrade package. For details, see Software/Firmware
Package Upload.

NO TE

● The OTA upgrade package uploaded using the API can be used only for upgrading
MQTT devices.

● If the upgrade package is an OBS object, the delivered upgrade package link is the
OBS link no matter whether the CDN domain name acceleration is configured for
the OBS bucket.

Upgrading the Software for a Batch of Devices
There are two ways to upgrade the software for a batch of devices:

1. Use the application to call the API for creating a batch task to create an
upgrade task for a batch of devices.

2. Create a software upgrade task on the IoTDA console.

The following describes how to create a software upgrade task for a batch of
devices on the console.

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Devices > Software/Firmware Upgrades, and
click Create Upgrade Task.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 228

https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01001.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01001.html#section2
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01001.html#section3
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01001.html#section3
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01001.html#section6
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01001.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0045.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0028.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0017.html
https://support.huaweicloud.com/intl/en-us/api-iothub/CreateOtaPackage.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0155.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0155.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0045.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

Step 3 On the Software Upgrades tab page, click Create Task.

Figure 6-43 Software/Firmware upgrade - Creating a software upgrade task

Step 4 In the Set Basic Information pane, set the task name, execution time, and retry
policy.

If Retry is enabled, you can set the number of retry attempts and retry interval.
You are advised to set Retry Attempts to 2 and Retry Interval (min) to 5. If an
upgrade fails, the upgrade will be retried 5 minutes later.

Figure 6-44 Creating a software upgrade task - Basic information

Step 5 Select a software package.

Figure 6-45 Creating a software upgrade task - Selecting an upgrade package

Step 6 Select the device or device group to upgrade and click Create Now.

For details on how to create a group and add devices to the group, see Groups
and Tags.

Figure 6-46 Creating a software upgrade task - Selecting a device group

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 229

Step 7 View the result on the task list. Click View to check the result for each device on
the execution details page.

NO TE

An upgrade task that is being executed cannot be deleted. To delete an upgrade task,
manually stop the task first.

----End

Upgrading the Firmware for a Batch of Devices
There are two ways to upgrade the firmware for a batch of devices:

1. Use the application to call the API for creating a batch task to create an
upgrade task for a batch of devices.

2. Create a firmware upgrade task on the IoTDA console.

The following describes how to create a firmware upgrade task for a batch of
devices on the console.

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Devices > Software/Firmware Upgrades, and
click Create Upgrade Task.

Step 3 On the Firmware Upgrades tab page, click Create Task.

Figure 6-47 Software/Firmware upgrade - Creating a firmware upgrade task

Step 4 In the Set Basic Information pane, set the task name, execution time, and retry
policy.

If Retry is enabled, you can set the number of retry attempts and retry interval.
You are advised to set Retry Attempts to 2 and Retry Interval (min) to 5. That is,
if the upgrade fails, the upgrade will be retried in 5 minutes. (The maximum
number of retry attempts is 5 and the maximum retry interval is 1,440 minutes.)

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 230

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0045.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 6-48 Creating a firmware upgrade task - Basic information

Step 5 Select a firmware package.

Figure 6-49 Creating a firmware upgrade task - Selecting an upgrade package

Step 6 Select the device group to upgrade and click Create Now.

For details on how to create a group and add devices to the group, see Groups
and Tags.

Figure 6-50 Creating a firmware upgrade task - Selecting a device group

Step 7 View the result on the task list. Click View to check the result for each device on
the Execution Details page.

NO TE

An upgrade task that is being executed cannot be deleted. To delete an upgrade task,
manually stop the task first.

----End

Troubleshooting Software/Firmware Upgrade Failure

The following table lists the failure causes reported by the platform.

Error Message Description Solution

Device Abnormal is not
online

The device is offline
or abnormal.

Check the device.

Task Conflict A task conflict
occurs.

Check whether a software
upgrade, firmware upgrade, log
collection, or device restart task
is in progress.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 231

Error Message Description Solution

Waiting for the device
online timeout

The device does not
go online within the
specified time.

Check the device.

Wait for the device to
report upgrade result
timeout

The device does not
report the upgrade
result within the
specified time.

Check the device.

Waiting for report
device firmware version
timeout

The device does not
report the firmware
version within the
specified time.

Check the device.

Waiting for report
cellId timeout

The device does not
report the cell ID
within the specified
time.

Check the device.

Updating timeout and
query device version
for check timeout

The device does not
report the upgrade
result or device
version within the
specified time.

Check the device.

Waiting for device
downloaded package
timeout

The device does not
finish downloading
the firmware
package within the
specified time.

Check the device.

Waiting for device start
to update timeout

The device does not
start the update
within the specified
time.

Check the device.

Waiting for device start
download package
timeout

The device does not
start to download
the firmware
package within the
specified time.

Check the device.

The following table lists the failure causes reported by devices.

Error Message Description Solution

Not enough storage for
the new firmware
package

The storage space is
insufficient for the
firmware package.

Check the storage space of the
device.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 232

Error Message Description Solution

Out of memory during
downloading process

The memory was
insufficient during
the download.

Check the device memory.

Connection lost during
downloading process

The connection was
interrupted during
the download.

Check the device connection
status.

Integrity check failure
for new downloaded
package

The integrity check
on the firmware
package fails.

Check whether the firmware
package downloaded is
complete.

Unsupported package
type

The firmware
package type is not
supported.

Check whether the device
status and firmware package
provided by the manufacturer
are correct.

Invalid URI The URI is invalid. Check whether the download
address of the firmware
package is correct.

Firmware update failed The firmware fails
to update.

Check the device.

FAQs
The following lists the frequently asked questions about software and firmware
upgrades. For more questions, see OTA Upgrades.
● Can the Target Version Be Earlier Than the Source Version?
● How Do I Obtain Software or Firmware Packages and Their Version

Numbers?
● Are Services Interrupted During a Software or Firmware Upgrade?
● What Are Common Software or Firmware Upgrade Errors?

APIs
● Create a Batch Task
● Query the Batch Task List
● Query a Batch Task

6.8 File Upload

Overview
Devices can upload run logs, configuration files, and other files to the platform for
log analysis, fault locating, and device data backup. When a device uploads files to
Object Storage Service (OBS) using HTTPS, you can manage the uploaded files on
OBS.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 233

https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01001.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01001.html#section2
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01001.html#section3
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01001.html#section3
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01001.html#section6
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01001.html#section4
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0045.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0028.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0017.html

Service Flow

Figure 6-51 File upload process

1. A user grants IoTDA the permission to access OBS.

2. The user configures an OBS bucket.

3–4. A device requests a file upload URL, and the platform delivers a URL. For
details on the URL format, see Device Requesting a URL for File Upload.

5. The device calls the OBS API and uses the URL delivered by the platform to
upload a device file. The validity period of the URL is subject to the value of expire
(in seconds) delivered by the platform. The default validity period is 1 hour.
● Method 1: Directly use the URL. Postman is used as an example.

Use the PUT method to call the URL, set the body to binary, and select the file
to upload. The file name must be the same as the reported file name.
The header of the API does not need to contain Content-Type or Host. If
carried, Content-Type must be set to text/plain and Host must be set to the
domain name of the URL. Otherwise, the 403 status code
SignatureDoesNotMatch is returned.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 234

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3033.html

● Method 2: Integrate the OBS SDK to call the API.
Follow the instructions provided in Accessing OBS Using a Temporary URL
to use a PUT request to upload an object's SDK to upload the file.

6–7. When the device requests to download a file stored in OBS, the platform
delivers a file download URL. For details on the URL format, see Platform
Delivering a Temporary URL for File Upload.

8. The device calls the OBS API and uses the URL delivered by the platform to
download the file.
● Method 1: Use the GET method to call the URL. The header of the API does

not need to contain Content-Type or Host. If carried, Content-Type must be
set to text/plain and Host must be set to the domain name of the URL.
Otherwise, the 403 status code SignatureDoesNotMatch is returned.

● Method 2: Integrate the OBS SDK to call the API and use the GET request to
download the object's SDK to download the file.

Configuring File Upload
Step 1 Access the IoTDA service page and click Access Console. Click the target instance

card.

Step 2 In the navigation pane, choose Devices > All Devices. On the displayed page, click
File Uploads.

Step 3 Click Authorize Service. In the dialog box displayed, click Agree.

Figure 6-52 File uploading - Authorization

Note: If you have only granted IoTDA the permissions to access OBS, choose
Devices > All Devices in the navigation pane, click the File Uploads tab, and click
Authorize KMS to grant IoTDA the permissions to access Key Management
Service (KMS).

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 235

https://support.huaweicloud.com/intl/en-us/sdk-java-devg-obs/obs_21_0901.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3034.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3034.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

Step 4 (Optional) Create a bucket on the OBS console if no bucket is available.
1. Log in to the OBS console.
2. Click Create Bucket in the upper right corner to create a bucket.

NO TE

If you use OBS to manage files, you will be charged by OBS. IoTDA does not charge
you for file storage. For details about OBS billing, see Billing.

Step 5 Click Edit OBS Storage and select a bucket. All device files in the instance will be
uploaded to this bucket. You can click Edit to select another bucket.

Figure 6-53 File uploading - Storage configuration

NO TE

When you call the OBS API used for uploading device files, only one file can be uploaded at
a time, and the file size cannot exceed 5 GB.

Step 6 If you want to use a custom domain name, enable User-Defined Domain Name,
select the required domain name configured for the OBS bucket, select HTTPS or
HTTP for Access Mode, and click OK.

Figure 6-54 File uploading - Configuring a custom domain name

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 236

https://support.huaweicloud.com/intl/en-us/usermanual-obs/en-us_topic_0045853662.html
https://support.huaweicloud.com/intl/en-us/price-obs/obs_42_0001.html

NO TE

The custom domain name is the temporary URL domain name delivered by the platform to
the device for OBS file uploading or downloading.

----End

6.9 Gateways and Child Devices

Overview

IoT devices can connect to IoTDA in two modes.

● Directly connected devices: Devices directly connect to the platform using
specified protocols.

● Indirectly connected devices: Devices that do not support the TCP/IP protocol
stack cannot directly communicate with the platform and need to use
gateways as media for data forwarding. Devices directly connected to the
platform through MQTT can be used as gateways.

The following figure shows the relationship between directly connected devices
and indirectly connected devices.

Figure 6-55 Gateways and child devices

Service Flow

You can use the APIs provided by IoT device SDKs to connect gateways and child
devices to the platform. API names of SDKs vary depending on the language. For
details, see IoT Device SDK (Java), IoT Device SDK (C), IoT Device SDK (C#),
IoT Device SDK (Android), and IoT Device SDK Tiny (C).

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 237

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_0089.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_0090.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_0091.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_0092.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_9980.html

Table 6-8 Service Flow

Child Device Management Process at
the Application Side

Child Device Management Process at
the Gateway Side

Figure 6-56 Child device management
process at the application side

Figure 6-57 Child device management
process at the gateway side

1. A user uploads the product model of a gateway to the platform and registers
the gateway.

2. The gateway calls the authentication API to go online.

3. The user uploads the product model of a child device to the platform.

4. After the gateway authentication is
successful, an application calls the API
for creating a device. (The device
information entered in the API request
must be consistent with that defined
in the product model). After the child
device is added, the user can view it
on the console. For details, see
Viewing a Child Device. The user can
also add child devices on the console.
For details, see Adding a Child Device
on the Platform.

4. After the gateway authentication is
successful, the gateway calls the API
described in Platform Notifying a
Gateway of New Child Device
Connection. (The device information
entered in the API request must be
consistent with that defined in the
product model). After the processing is
complete, the platform sends the
processing result to the gateway
through the API described in Platform
Responding to a Request for Adding
Child Devices.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 238

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_30182.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_30182.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_30182.html

Child Device Management Process at
the Application Side

Child Device Management Process at
the Gateway Side

5. The status of the newly added child device is still displayed as Inactive on the
console. This is because the gateway has not reported the latest status of the
child device to the platform. Call the API described in Gateway Updating Child
Device Status after the child device is added or before the child device reports
data.
NOTE

The status of a child device indicates whether the child device is connected to the gateway,
and the gateway reports the status to the platform for status updates. If the gateway
cannot report the status of a child device, the child device status is not updated on the
platform. For example, after a child device connects to the platform through a gateway, the
child device status is displayed as online. If the gateway is disconnected from the platform,
the gateway can no longer report the child device status and the platform will consider the
child device online.

6. The gateway calls the API described in Gateway Reporting Device
Properties in Batches to report the data of the child device. The parameters in
the API request are the information about the gateway and the child device.

7. The gateway subscribes to a topic for command delivery, and receives and
processes commands delivered by the application or platform.

8. The application calls the API for
deleting a device to command the
gateway to delete the child device. The
gateway deletes the device upon
receiving the command.

8. The gateway calls the API described
in Gateway Requesting for Deleting
Child Devices. After receiving the
request, the platform processes the
data and sends the result to the device
through the API described in Platform
Responding to a Request for
Deleting Child Devices.

Connecting a Gateway to the Platform
Connect a gateway to the platform by integrating the gateway with the SDK. For
details, see Indirectly Connecting to the Platform.

Adding a Child Device on the Platform
● Method 1

After the gateway is connected to the platform, call the API Creating a
Device to connect the child device to the platform.

● Method 2
Access the IoTDA service page and click Access Console. Click the target
instance card. In the navigation pane, choose Devices > All Devices. On the
device list, click a gateway to access its details page. On the Child Devices
tab page, click Add Child Device.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 239

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3022.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3022.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0041.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_30183.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_30183.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_30184.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_30184.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_30184.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_0178.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 6-58 Device - Adding a child device

Viewing a Child Device

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Devices > All Devices. In the device list, click View
in the row of a gateway to access its details.

Step 3 On the Child Devices tab page, view the status, device ID, and node ID of the
child devices connected to the platform through the gateway.

Step 4 Click View in the row of a child device to view its details.

Figure 6-59 Device - Child device details

----End

6.10 Authentication Credentials

Introduction

When connecting to IoTDA, a device must carry a credential for authentication.
Currently, two types of authentication credentials are available.

● Secret: the device secret you preset on IoTDA during device registration for
future authentication. After successful authentication, the device is activated
and communicates with the platform. There are two types of secrets:
– Master secret: primary secret used for device access authentication.
– Sub secret: secondary secret used when the master secret fails to pass the

authentication. Unavailable for devices accessed using CoAP.
● X.509 certificate: a digital certificate used for communication entity

authentication. IoTDA allows devices to use their own X.509 certificates. For
details, see Connecting a Device That Uses the X.509 Certificate Based on
MQTT.fx. In this mode, the platform verifies the device certificate fingerprints

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 240

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0077.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0077.html

that you preset on the platform for authentication during connection
establishment. There are two types of fingerprints:
– Master fingerprint: primary fingerprint used for device access certificate

authentication.
– Sub fingerprint: secondary fingerprint used when the master fingerprint

fails to pass the authentication. Unavailable for devices accessed using
CoAP.

Updating
You need to update a device access credential in some scenarios, for example,
when an X.509 certificate is about to expire. You can reset device credentials by
calling the APIs for resetting a device fingerprint or resetting a device secret.
IoTDA provides master/sub fingerprints and secrets to prevent device
authentication failure and service interruption during credential update and
resetting. For example, when you add a new certificate fingerprint, the platform
sets the fingerprint as a backup (sub fingerprint). In this way, the corresponding
device can use both the old certificate (if not updated on the device side timely)
and the new certificate to connect to the platform smoothly.

Scenarios
1. In high availability (HA) scenarios, a device has two secrets to connect to the
platform.

2. During the credential update and resetting, a device does not disconnect from
the platform and causes no service losses.

Procedure

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Devices > All Devices. By default, all devices in the
current instance are displayed in the device list.

Step 3 Click View in the Operation column of the target device. On the displayed page,
click Reset Secret or Reset Fingerprint. In the displayed dialog box, select Sub
secret or Sub fingerprint.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 241

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0196.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0093.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 6-60 Device details - Resetting sub secret

Figure 6-61 Device details - Resetting sub fingerprint

----End

APIs
● Reset a Device Fingerprint
● Reset a Device Secret

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 242

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0196.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0093.html

6.11 Device Certificates

Overview
For a device using MQTTS X.509 certificates, when it connects to the platform for
the first time, IoTDA utilizes the uploaded and verified device CA certificate to
authenticate the device certificate. After the authentication is successful, the
platform automatically saves the device certificate and generates expiration
warnings. You can check and disable device certificates.

Constraints
1. IoTDA generates alarms for device certificates that are about to expire within

30 days. Update the certificates in a timely manner to prevent access failures.
2. The device certificate quota provided by IoTDA is 1.5 times of the device

quantity quota. To ensure smooth storage of new certificates, delete expired
certificates in a timely manner. Failure to do so may result in the inability to
check certificates on the console. However, this does not affect device access
to the platform.

3. A device is associated with a device certificate through the certificate
fingerprint. After a device certificate is disabled, all devices associated with it
cannot access the platform.

Procedure

Step 1 Upload and verify the device CA certificate. For details about how to create and
verify a device CA certificate, see Registering a Device Authenticated by an
X.509 Certificate.

Step 2 Register a device that uses the X.509 certificate for authentication. Log in to the
IoTDA console. In the navigation pane, choose Devices > All Devices. On the
displayed page, click Register Device. Set Authentication Type to X.509
certificate and Fingerprint to the SHA-256 fingerprint of the device certificate. If
you do not specify the fingerprint, the device certificate fingerprint carried when
the device successfully accesses the platform for the first time is recorded by
default.

Step 3 Use the device certificate to access the device to the platform.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 243

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0055.html#section1
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0055.html#section1

Figure 6-62 Device connection parameters

Step 4 Log in to the IoTDA console. In the navigation pane, choose Devices > Device
Certificates. Click the Device Certificates tab to check the device certificate list
and details.

Figure 6-63 Device certificate - Certificate list

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 244

Figure 6-64 Device certificate - Certificate details

Step 5 In the navigation pane, choose Devices > All Devices. Locate the target device,
click View in the Operation column. On the displayed page, click the button for
checking the certificate details.

Figure 6-65 Device - Device details - Certificate details

----End

Device Certificate Alarms
● IoTDA generates an expiration warning for device certificates. You can check

the certificates that are about to expire in the recent month in the Application
Operations Management (AOM) alarm list.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 245

Figure 6-66 Device certificate expiration alarm -AOM

● IoTDA generates a warning when the number of device certificates exceeds
the threshold. Delete expired certificates in a timely manner.

Figure 6-67 Insufficient device certificate quota -AOM

AOM allows you to create an alarm action rule to send alarm notifications
through SMSs, emails, and WeCom messages. For details, see Creating an
Alarm Action Rule.

IoT Device Access
User Guide 6 Device Management

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 246

https://support.huaweicloud.com/intl/en-us/usermanual-aom2/mon_01_0015.html
https://support.huaweicloud.com/intl/en-us/usermanual-aom2/mon_01_0015.html

7 Rules

7.1 Overview
You can set rules for devices connected to the platform. If the conditions set in a
rule are met, the platform triggers the corresponding action. Device linkage and
data forwarding rules are available.

● Device linkage
When specific conditions are met, the platform triggers collaborative response
of multiple devices to implement device linkage and intelligent control.
Currently, IoTDA supports cloud rules and device rules. If you want to create a
cloud rule and select Send notifications for Action in a rule, the platform will
work with Huawei Cloud Simple Message Notification (SMN) to set and
deliver topic notifications. If you want to create a device rule, the platform
will deliver the rule to devices for unified management and execution.

● Data forwarding
IoT Device Access (IoTDA) can seamlessly forward data to other Huawei
Cloud services and third-party applications, providing full-stack services for
device data storage, computing, and analysis.

Cloud Service Access Authorization
The platform can connect to Huawei Cloud services. When creating a rule for
connecting to Data Ingestion Service (DIS), Distributed Message Service (DMS) for
Kafka, Object Storage Service (OBS), ROMA Connect, or SMN for the first time,
you must authorize the platform to access the cloud service.

After the authorization, data on the platform can be forwarded to other Huawei
Cloud services using data forwarding rules, or the platform can send commands to
control devices using device linkage rules.

An agency named iotda_admin_trust is created on the Identity and Access
Management (IAM) console and an administrator role is bound by default.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 247

https://www.huaweicloud.com/intl/en-us/product/smn.html
https://console-intl.huaweicloud.com/iam/?region=ap-southeast-1&locale=en-us#/iam/users
https://console-intl.huaweicloud.com/iam/?region=ap-southeast-1&locale=en-us#/iam/users

Figure 7-1 Agency - iotda_admin_trust

7.2 Data Forwarding Process

Overview
The data forwarding function connects IoTDA with other Huawei Cloud or third-
party cloud services to smoothly transfer device data to the message middleware,
storage and data analysis services, and applications. Currently, IoTDA supports
multiple forwarding types.

Table 7-1 Data forwarding types

Typ
e

Forwardi
ng
Target

Description Operation

Thir
d-
par
ty
ser
vice
s

Third-
party
applicatio
n (HTTP
push)

Data is transferred to customers' HTTP servers
with URL specified in the data forwarding rule.

HTTP/
HTTPS
Data
Forwarding

AMQP
message
queue

Data is transferred to the AMQP channels
specified in the data forwarding rule for client-
platform connection and data exchange.

AMQP
Data
Forwarding

MQTT
message
queue

Data is transferred to the MQTT topics
specified in the data forwarding rule for client-
platform connection and data exchange.

MQTT Data
Forwarding

M2M
communi
cation

IoTDA supports MQTT-based message
communication between devices based on
topics specified in the data forwarding rule.
The platform pushes messages reported by
devices to the specified topics. Other devices
can receive messages from different devices by
subscribing to the specified topics.

M2M
Communic
ations

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 248

Typ
e

Forwardi
ng
Target

Description Operation

Dat
a
stor
age

GeminiD
B Influx

Data is transferred to GeminiDB Influx, a
cloud-native time series database compatible
with InfluxDB. GeminiDB Influx reads and
writes time series data with high performance
and compression ratio in high concurrency
scenarios, provides cold and hot tiered storage,
elastic scale-out, and monitoring and alarm
reporting. It stores the data with compression
algorithms, allows you to query data using
SQL-like statements, and supports multi-
dimensional aggregation computing and visual
analysis.
Scenarios: It is widely used to monitor
resources, services, IoT devices, and industrial
production processes, evaluate production
quality, and trace faults. With high throughput
and concurrency, it can handle a large number
of connections in a very short period of time,
making it an excellent choice for IoT
applications.
Learn more about InfluxDB instance
specifications.

Forwarding
Data to
GeminiDB
Influx

RDS for
MySQL

Data is transferred to RDS for MySQL.
Compared with self-managed databases, this
service is cheaper, out-of-the-box, and easy to
operate and maintain. It supports auto scaling
and provides functions such as instance
management and monitoring, backup and
restoration, log management, and parameter
management. Standalone and primary/standby
deployment modes are available.
Scenarios: website, gaming, e-commerce, and
financial services, and mobile and enterprise
applications
Learn more about RDS for MySQL instance
specifications.

Forwarding
Data to
MySQL for
Storage

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 249

https://www.huaweicloud.com/intl/en-us/product/gaussdbforinflux.html
https://www.huaweicloud.com/intl/en-us/product/gaussdbforinflux.html
https://support.huaweicloud.com/intl/en-us/influxug-nosql/nosql_05_0045.html
https://support.huaweicloud.com/intl/en-us/influxug-nosql/nosql_05_0045.html
https://www.huaweicloud.com/intl/en-us/product/mysql.html
https://www.huaweicloud.com/intl/en-us/product/mysql.html
https://support.huaweicloud.com/intl/en-us/pwp-rds/rds_swp_mysql_01.html
https://support.huaweicloud.com/intl/en-us/pwp-rds/rds_swp_mysql_01.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_bp_00014.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_bp_00014.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_bp_00014.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_bp_00014.html

Typ
e

Forwardi
ng
Target

Description Operation

Object
Storage
Service
(OBS)

Data is transferred to OBS. OBS provides
customers with massive, secure, reliable, and
cost-effective data storage capabilities and
multiple storage types. OBS can work with
Cloud Stream Service (CS) to analyze stream
data in real time. The analysis results can be
used for data visualization in other cloud
services or third-party applications.
Scenarios: massive big data storage and
analysis
Learn more about OBS storage specifications.

Forwarding
Device
Data to
OBS for
Long-Term
Storage

NO TICE

Maximum data forwarding rate through the public network: 1 Mbit/s. The excess
messages will be discarded.

Procedure

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Rules > Data Forwarding, and click Create Rule
in the upper left corner.

Step 3 Configure related parameters and click Create Rule.

Table 7-2 Parameters for creating a rule

Parameter Description

Rule Name Name of the rule to be created.

Description Description of the rule.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 250

https://www.huaweicloud.com/intl/en-us/product/obs.html
https://www.huaweicloud.com/intl/en-us/product/obs.html
https://www.huaweicloud.com/intl/en-us/product/obs.html
https://www.huaweicloud.com/intl/en-us/product/obs.html
https://www.huaweicloud.com/intl/en-us/product/cs.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_41_0006.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

Parameter Description

Data Source ● Device: Device information, such as device addition, deletion,
and update, will be forwarded. When Data Source is set to
Device, quick configuration is not supported.

● Device property: A property value reported by a device in a
resource space will be forwarded. Click Quick Configuration
on the right and select the product, property, and service
data to forward.

● Device message: A message reported by a device in a
resource space will be forwarded. Click Quick Configuration
on the right and select data of a specified topic to forward.
Select the product to which the topic belongs and enter the
topic name. You can use a custom topic on the product
details page or a preset topic.

● Device message status: The status of device messages
exchanged between the device and platform will be
forwarded. For details on the device message status, see
Message Delivery Status. When Data Source is set to
Device message status, quick configuration is not supported.

● Device status: The status change of a directly or an indirectly
connected device in a resource space will be forwarded. Click
Quick Configuration on the right to forward information
about devices whose status is Online, Offline, or Abnormal
to other services. For details on the status of devices directly
connected to the platform, see Device Management.

● Batch task: The batch task status will be forwarded. When
Data Source is set to Batch Task, quick configuration is not
supported.

● Product: Product information, such as product addition,
deletion, and update, will be forwarded. When Data Source
is set to Product, quick configuration is not supported.

● Asynchronous command status of the device: Status
changes of asynchronous commands to devices using
LwM2M over CoAP will be forwarded. For details on the
asynchronous command status of devices, see Asynchronous
Command Delivery. When Data Source is set to
Asynchronous command status of the device, quick
configuration is not supported.

● Run log: Service run logs of MQTT devices will be forwarded.
When Data Source is set to Run log, quick configuration is
not supported.

Trigger After you select a data source, the platform automatically
matches trigger events.

Resource
Space

You can select a single resource space or all resource spaces. If
All resource spaces is selected, quick configuration is not
supported.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 251

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html

Step 4 Click the Set Forwarding Target tab, and then click Add to set a forwarding
target.

Data can be forwarded to Data Ingestion Service (DIS), Distributed Message
Service (DMS) for Kafka, Object Storage Service (OBS), FunctionGraph, Log
Tank Service (LTS), GeminiDB Influx, RDS for MySQL, third-party applications
(HTTP push), AMQP message queues, MQTT message queues, and devices.

Table 7-3 Parameters for setting the forwarding target

Forwarding Target Description

Data Ingestion Service (DIS) ● Region: Select the region of the service to
which data will be forwarded. If you are not
authorized to access the service in this region,
perform authorization as required.

● Stream Homing: You can select either of the
following:
– In-house stream: Select a stream. If no

DIS stream is available, create one on the
DIS console.

– Delegated by others: You can use DIS
streams authorized by other users. Obtain
the stream ID from the DIS console.

Distributed Message Service
(DMS) for Kafka
NOTE

Data can be forwarded only to
Kafka premium instances. You
need to enable automatic topic
creation.

● Region: Select the region of the service to
which data will be forwarded. If you are not
authorized to access the service in this region,
perform authorization as required.

● Connection Address: Obtain the connection
address by following the instructions provided
in Accessing a Kafka Instance with SASL.
Basic and standard instances support only
access to Kafka premium instances over the
Internet. Enterprise instances support access
to Kafka premium instances over a private
network.

● Topic: Customize a topic.
● SASL-based authentication: If SASL

authentication is enabled, enter the SASL
username and password entered in Buying a
Kafka Instance.

● Kafka Security Protocol: If SASL
authentication is enabled, select the security
protocol supported by the Kafka instance you
purchased.

● SASL Mechanism: If SASL authentication is
enabled, select the SASL authentication
mechanism supported by the Kafka instance
you purchased.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 252

https://www.huaweicloud.com/intl/en-us/product/dis.html
https://www.huaweicloud.com/intl/en-us/product/dmskafka.html
https://www.huaweicloud.com/intl/en-us/product/dmskafka.html
https://www.huaweicloud.com/intl/en-us/product/obs.html
https://www.huaweicloud.com/intl/en-us/product/functiongraph.html
https://www.huaweicloud.com/intl/en-us/product/lts.html
https://www.huaweicloud.com/intl/en-us/product/lts.html
https://www.huaweicloud.com/intl/en-us/product/geminidb/influx.html
https://www.huaweicloud.com/intl/en-us/product/mysql.html
https://www.huaweicloud.com/intl/en-us/product/dis.html
https://support.huaweicloud.com/intl/en-us/usermanual-kafka/kafka-ug-180801001.html#section0
https://support.huaweicloud.com/intl/en-us/usermanual-kafka/kafka-ug-180604013.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-kafka/kafka-ug-180604013.html#section2

Forwarding Target Description

Object Storage Service
(OBS)

● Region: Select the region of the service to
which data will be forwarded. If you are not
authorized to access the service in this region,
perform authorization as required.

● OBS Bucket: Select a bucket as required. If no
OBS bucket is available, create one on the
OBS console.

● Custom Directory: Separate different
directory levels by slashes (/). The directory
cannot start or end with a slash (/) or contain
two or more consecutive slashes (/).

Third-party application
(HTTP push)

You can use HTTP or HTTPS to push messages.
For details on how to set parameters, see HTTP/
HTTPS Subscription/Push.

AMQP message queue Message Queue: Select the queue to which
messages are to be pushed. If no queue is
available, create one. For details on the
restrictions on message queue names, see AMQP
Server Configuration.

FunctionGraph
NOTE

Currently, only data of
instances of Enterprise and
Standard editions can be
forwarded to FunctionGraph.

● Function Name: Select the name (latest
version) of the function to be called.
Currently, cross-region function calling is not
supported. If no function is available, create
one.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 253

https://console-intl.huaweicloud.com/obs/?locale=en-us#/obs/manager/buckets
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0153.html
https://support.huaweicloud.com/intl/en-us/usermanual-functiongraph/functiongraph_01_0153.html

Forwarding Target Description

GeminiDB Influx
NOTE

Currently, only data of
instances of Enterprise and
Standard editions can be
forwarded to GeminiDB Influx.

● Database Instance Address: Enter the
address for connecting to the GeminiDB Influx
instance. IoTDA enterprise edition instances
can connect to GeminiDB Influx using private
network IP addresses, while standard edition
instances support only public network
connection. For details, see Connection
Methods.

● Database Name: Enter a database name. If
no database exists, go to the GeminiDB Influx
console to create a database.

● Access Account and Access Password: Access
the GeminiDB Influx console to obtain the
account and password. For details, see
Resetting the Administrator Password.

● Table: Enter the name of the target table
(measurement). If the table does not exist, it
will be automatically created.

● Field Mappings:
– Forwarding Field: Enter the attribute

name of the data to be forwarded. Data to
be forwarded is in JSON format. Separate
multi-level attribute names with periods
(.). For details about the format of data to
be forwarded, see Data Transfer APIs.

– Target Field: Enter the column name of
the database.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 254

https://support.huaweicloud.com/intl/en-us/influxug-nosql/nosql_05_0048.html
https://support.huaweicloud.com/intl/en-us/influxug-nosql/nosql_05_0048.html
https://www.huaweicloud.com/intl/en-us/product/geminidb/influx.html
https://support.huaweicloud.com/intl/en-us/influxug-nosql/nosql_03_0211.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01200.html

Forwarding Target Description

RDS for MySQL
NOTE

Currently, only data of
instances of Enterprise and
Standard editions can be
forwarded to RDS for MySQL.

● Database Instance Address: Enter the
address for connecting to the RDS instance.
IoTDA enterprise edition instances can
connect to RDS using private network IP
addresses, while standard edition instances
support only public network connection. For
details, see Connection Management.

● Database Name: Enter a database name. If
no database exists, go to the RDS for MySQL
console to create a database.

● Access Account and Access Password: Access
the RDS console to obtain the account and
password. For details, see Resetting a
Password for a Database Account.

● SSL: Select whether to connect to the
database in SSL mode. You are advised to use
the SSL mode. If not, security risks may exist
during data transmission. To use the SSL
mode, configure an SSL connection in the
database instance first.

● Table: Select the name of the table to which
data is forwarded.

● Field Mappings:
– Forwarding Field: Enter the attribute

name of the data to be forwarded. Data to
be forwarded is in JSON format. Separate
multi-level attribute names with periods
(.). For details about the format of data to
be forwarded, see Data Transfer APIs.

– Target Field: Enter the column name of
the database.

MQTT message queue Push Topic: Select the topic to which the
message is to be pushed.

Device MQTT is used to implement message
communications between devices. For details
about the parameters, see Usage.

Step 5 Start a rule.

After the rule is configured, click the button for enabling the rule to start data
forwarding.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 255

https://support.huaweicloud.com/intl/en-us/usermanual-rds/rds_05_0005.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds/rds_10_0028.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds/rds_05_0011.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds/rds_05_0011.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds/rds_mysql_0001.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01200.html

Figure 7-2 Data forwarding - Enabling a rule

Step 6 IoTDA provides connectivity testing of the rule action forwarding target. For
details, see Connectivity Tests.

----End

7.3 SQL Statements
When creating a data forwarding rule, you must compile SQL statements to parse
and process JSON data reported by devices. For details about the JSON data
format, see Data Transfer APIs. This section describes how to compile SQL
statements used in data forwarding rules.

SQL Statements
An SQL statement consists of the SELECT and WHERE clauses. Each clause can
contain a maximum of 500 characters. Chinese and other character sets are not
supported. Contents in the SELECT and WHERE clauses are case-sensitive.
However, keywords such as SELECT, WHERE, and AS are case-insensitive.

The following example uses messages reported by a device as the source data.
{
 "resource" : "device.message",
 "event" : "report",
 "event_time" : "20151212T121212Z",
 "notify_data" : {
 "header" : {
 "device_id" : "********",
 "product_id" : "ABC123456789",
 "app_id" : "********",
 "gateway_id" : "********",
 "node_id" : "ABC123456789",
 "tags" : [{
 "tag_value" : "testTagValue",
 "tag_key" : "testTagName"
 }]
 },
 "body" : {
 "topic" : "topic",
 "content" : {
 "temperature" : 40,
 "humidity" : 24
 }
 }
 }
}

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 256

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01200.html

In the source data, content in the body is the data reported by the device. You
can set temperature greater than 38 as the trigger condition, and filter out other
fields to obtain only device_id and content. The example SQL statement is as
follows:

SELECT notify_data.header.device_id AS device_id, notify_data.body.content WHERE
notify_data.body.content.temperature > 38

When the temperature reported by the device is higher than 38°C, data
forwarding is triggered. The data format after forwarding is as follows:

{
 "device_id": "********",
 "notify_data.body.content" : {
 "temperature" : 40,
 "humidity" : 24
 }
}

SELECT Clause

The SELECT clause consists of SELECT followed by multiple SELECT subexpressions,
which can be *, JSON variables, string constants, or integer constants. A JSON
variable is followed by an AS keyword and an AS variable, 32 characters in total. If
a constant or function is used, you must use AS to specify the name.

● JSON variable
A JSON variable can contain letters, digits, underscores (_), and hyphens (-).
To distinguish a hyphen (-) from the minus sign, use double quotation marks
(") to enclose the JSON variable with a hyphen, for example, "msg-type".
The JSON variable extracts data of the nested structure.
{
 "a":"b",
 "c": {
 "d" : "e"
 }
}

c.d can be used to extract character string e, which can be nested at multiple
layers.

● AS variable
An AS variable consists of letters and is case sensitive. The variable [a-zA-
Z_-]* is supported. If a hyphen (-) is used, enclose it with double quotation
marks (").

● Constant integer
SELECT supports constant integers, which must be followed by an AS clause.
For example:

NO TE

Value range of the constant integer: –2147483648 to 2147483647
SELECT 5 AS number

● Constant character string
SELECT supports constant character strings, which must meet the [a-zA-Z_-]*
expression. The character strings must be enclosed in single quotation marks
(') and followed by an AS clause.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 257

NO TE

A string can contain up to 50 characters.
SELECT 'constant_info' AS str

WHERE Clause

In the WHERE clause, you can perform Boolean operations using JSON variables,
make some non-null judgments, and combine the results using AND or OR.

● IS NULL and IS NOT NULL
Null judgment can be used in the WHERE clause. If the JSON variable cannot
extract data or the extracted array is empty, IS NULL is true. Otherwise, IS
NOT NULL is true.
WHERE data IS NULL

● IN and NOT IN
The IN operator can be used in the WHERE clause. If the target value is in the
specified value set, IN is true. Otherwise, NOT IN is true. The IN operator
supports strings and numbers, the IN set only supports constants. The types of
all elements in the IN set must be the consistent and be the same as the type
of the target value.
WHERE notify_data.header.product_id IN ('productId1','productId2')

● Operators > <
The greater than (>) and less than (<) operators can be used in the WHERE
clause. The operators can be used between two JSON variables, between a
JSON variable and a constant, or between a constant and a constant only
when the value of a JSON variable is a constant integer. The operators can be
used together with AND or OR.
For example:
WHERE data.number > 5 Obtains the information of the target whose data.number is greater than 5.
WHERE data.tag < 4 Obtains the information of the target whose data.tag is less than 4.
WHERE data.number > 5 AND data.tag < 4 Obtains the information of the target whose
data.number is greater than 5 and data.tag less than 4.

● Equals sign (=)
The equals sign (=) can be used in the WHERE clause for comparison between
JSON variables, between JSON variable integers and integer constants, and
between JSON variable strings and string constants. If IS NULL for the two
JSON variables is true, the comparison result of the equals sign (=) is false.
The operators can be used together with AND or OR.
WHERE data.number = 5 Obtains the information of the target whose data.number is 5.
WHERE data.tag = 4 Obtains the information of the target whose data.tag is 4.
WHERE data.number = 5 OR data.tag = 4 Obtains the information of the target whose data.number
is 5 or data.tag is 4.

Constraints

Table 7-4 Restrictions on using SQL statements

Object Restriction

SELECT clause 500 characters

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 258

Object Restriction

WHERE clause 500 characters

AS clause 10 AS clauses

JSON data depth 400 levels

Debugging SQL Statements
The IoT platform provides the online SQL debugging function. To debug SQL
statements, perform the following operations:

1. After compiling the SQL statements, click Debug.
2. On the Debug Parameters tab page, enter the data to debug, and click Start

Debugging.

Function List
Multiple functions are used in rules. You can use these functions when compiling
SQL statements to implement diversified data processing.

Table 7-5 Function list

Function
Name

Parameter Function Return
Value
Type

Restriction

GET_TAG String
tagKey

Obtains tag_value
corresponding to a
specified tag_key.
GET_TAG('testTagName')

String -

CONTAINS_TA
G

String
tagKey

Checks whether the
specified tag_key is
contained.
CONTAINS_TAG('testTagNa
me')

Boolean -

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 259

Function
Name

Parameter Function Return
Value
Type

Restriction

GET_SERVICE String
serviceId
and boolean
fuzzy

Obtains the service.
If fuzzy is set to
false or left blank,
the service with the
specified service ID is
obtained. If fuzzy is
set to true, the
service is queried
through fuzzy match.
If multiple services
with the same
service ID exist in a
message body, the
result is not
guaranteed.
GET_SERVICE('Battery',true)

JSON
structure

Used only
for property
reporting

GET_SERVICES String
serviceId
and boolean
fuzzy

Obtains services. If
fuzzy is set to false
or left blank, services
with the specified
service ID are
obtained. If fuzzy is
set to true, services
are queried through
fuzzy match. The
query results are
combined into an
array.
GET_SERVICES('Battery',true
)

JSON
array

Used only
for property
reporting

CONTAINS_SE
RVICES

String
serviceId
and boolean
fuzzy

If fuzzy is set to
false or left empty,
the system checks
whether the specified
service ID exists. If
fuzzy is set to true,
fuzzy match is used
to determine
whether service ID in
the property contains
the specified
parameter.
CONTAINS_SERVICES('Batte
ry',true)

Boolean Used only
for property
reporting

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 260

Function
Name

Parameter Function Return
Value
Type

Restriction

GET_SERVICE_
PROPERTIES

String
serviceId

Obtains the
properties field of
the service with a
specific service ID.
GET_SERVICE_PROPERTIES('
Battery')

JSON
structure

Used only
for property
reporting

GET_SERVICE_
PROPERTY

String
serviceId,
String
propertyKey

Obtain the value of
propertyKey in
properties of a
service with a specific
service ID.
Example:
GET_SERVICE_PROPERTY('B
attery','batteryLevel')

String Used only
for property
reporting

STARTS_WITH String input,
String prefix

Checks whether the
value of input starts
with prefix.
STARTS_WITH('abcd','abc')
STARTS_WITH(notify_data.h
eader.device_id,'abc')
STARTS_WITH(notify_data.h
eader.device_id,notify_data.
header.product_id)

Boolean -

ENDS_WITH String input,
String suffix

Checks whether the
value of input ends
with suffix.
ENDS_WITH('abcd','bcd')
ENDS_WITH(notify_data.he
ader.device_id,'abc')
ENDS_WITH(notify_data.he
ader.device_id,notify_data.h
eader.node_id)

Boolean -

CONCAT String
input1,
String
input2

Concatenates
character strings and
returns the results.
CONCAT('ab','cd')
CONCAT(notify_data.heade
r.device_id,'abc')
CONCAT(notify_data.heade
r.product_id,notify_data.hea
der.node_id)

String -

REPLACE String input,
String
target,
String
replacement

Replaces a part of a
character string. That
is, replace target in
the input with
replacement.
REPLACE(notify_data.heade
r.node_id,'nodeId','IMEI')

- -

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 261

Function
Name

Parameter Function Return
Value
Type

Restriction

SUBSTRING String input,
int
beginIndex,
int
endIndex(re
quired=false
)

Obtains the substring
of the returned
string. That is, the
beginIndex
(included) to
endIndex (excluded)
characters of the
input value.
Note: endIndex is
optional.
SUBSTRING(notify_data.hea
der.device_id,3)
SUBSTRING(notify_data.hea
der.device_id,3,12)

- -

LOWER String input Converts all values in
input to lowercase
letters.
LOWER(notify_data.header.
app_id)

- -

UPPER String input Converts all values in
input to uppercase
letters.
UPPER(notify_data.header.a
pp_id)

- -

7.4 Connectivity Tests

Overview
IoTDA provides connectivity tests on the forwarding targets. In the service
debugging phase, you can simulate service data to test the availability of rule
actions and the consistency of forwarded data. If a fault occurs in data forwarding
during service running, you can perform connectivity tests to reproduce and locate
the fault.

Procedure
1. After creating a forwarding rule, click Test in row of the forwarding target to be
debugged.

Figure 7-3 Forwarding target - Test

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 262

2. In the Connectivity Test dialog box, enter the test data for forwarding in Test
Data, or click Analog Input Template in the upper right corner to use the
template data, and then click Connectivity Test.

Figure 7-4 Forwarding target - Connectivity test results

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 263

7.5 Data Forwarding to Huawei Cloud Services

7.5.1 Forwarding Data to DIS

Scenarios

Forwarding data to Data Ingestion Service (DIS) allows you to collect, process, and
distribute real-time streaming data efficiently. DIS interconnects with multiple
third-party data collection tools and provides cloud service connectors, agents, and
SDKs. You can also dump data to other cloud services for subsequent data
processing like data storage and analysis.

Purchasing a DIS Stream (Example: Forwarding Data to DIS and Dumping
Data to OBS)

Step 1 Log in to Huawei Cloud and access the Object Storage Service (OBS) console.

Step 2 Click Create Bucket, configure the parameters as required, and click Create Now.

Step 3 In the bucket list, click the created bucket. The Objects page is displayed. Click
Create Folder and enter a folder name as prompted.

Step 4 Log in to Huawei Cloud and access Data Ingestion Service (DIS).

Step 5 Click Access Console to go to the DIS console.

Step 6 Click Buy Stream in the upper right corner, configure parameters as required, and
click Next.

Figure 7-5 Buying a DIS stream

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 264

https://www.huaweicloud.com/intl/en-us/product/obs.html
https://www.huaweicloud.com/intl/en-us/product/dis.html

Step 7 In the navigation pane, choose Stream Management and click a purchased
stream. Click the Dump Tasks tab. Click Create Dump Task. Set Dump
Destination to OBS, Dump Bucket to the bucket created in step 2, and File
Directory to the folder created in step 3. Click Create Now.

Figure 7-6 Selecting a stream

Figure 7-7 Accessing the dump task tab

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 265

Figure 7-8 Configuring a dump task

----End

Configuring IoTDA
You can configure data forwarding rules in IoTDA to forward data reported by
devices to DIS.

Step 1 Go to the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Rules > Data Forwarding, and click Create Rule
in the upper left corner.

Step 3 Configure the parameters based on the following table. The following parameter
values are only examples. You can configure the parameters by referring to Data
Forwarding Overview and click Create Rule.

Table 7-6 Rule parameters

Parameter Description

Rule Name Customize a name, for example, iotda-dis.

Description Enter a rule description, for example, forwarding data to DIS.

Data Source Select Device property.

Trigger Device property reported is automatically configured.

Resource
Space

Select All resource spaces.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 266

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0024.html#section1
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0024.html#section1

Step 4 Click the Set Forwarding Target tab, click Add to set a forwarding target, and
click OK.

Table 7-7 Forwarding target parameters

Parameter Description

Forwarding Target Choose Data Ingestion Service (DIS).

Region Currently, you can only forward data to DIS in the same
region. If IoTDA is not authorized to access the service in
this region, configure cloud service access authorization as
prompted.

Stream Homing Select either of the in-house stream or the stream
Delegated by others.

Stream Select a stream.

Figure 7-9 Creating a forwarding target - to DIS

Step 5 Click Enable Rule to activate the configured data forwarding rule.

----End

Verifying Configurations
● You can use a registered physical device to access the platform and enable the

device to report data.

● You can also use a simulator to simulate a device to report data. For details,
see Developing an MQTT-based Smart Street Light Online.

Expected result:

Log in to the OBS console, click the bucket created in 2, and click the folder
created in 3 to view the latest data forwarded from DIS to OBS.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 267

https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_00016.html

Figure 7-10 Viewing OBS data

7.5.2 Forwarding Data to GeminiDB Influx

Scenarios
Forward data to GeminiDB Influx and cloud-native time series database with full
compatibility with the service. GeminiDB Influx reads and writes time series data
with high performance and compression ratio in high concurrency scenarios,
provides cold and hot tiered storage, elastic scale-out, and monitoring and alarm
reporting. It stores the data with compression algorithms, allows you to query
data using SQL-like statements, and supports multi-dimensional aggregation
computing and visual analysis. It is widely used to monitor resources, services, IoT
devices, and industrial production processes, evaluate production quality, and trace
faults. GeminiDB Influx can achieve very high throughput and concurrency, so it
can handle a large number of connections in a very short period of time, making
it an excellent choice for IoT applications.

Buying GeminiDB Influx Instances

Step 1 Log in to GeminiDB Influx and click Buy Now.

Step 2 Select either of the Pay-per-use or Yearly/Monthly as the Billing Mode,
configure specifications and storage space as required, and set Compatible API to
InfluxDB. For details, see Buying a Cluster Instance.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 268

https://www.huaweicloud.com/intl/en-us/product/geminidb/influx.html
https://support.huaweicloud.com/intl/en-us/influxug-nosql/nosql_02_0051.html

Figure 7-11 Buying an InfluxDB Instance

Step 3 Download the InfluxDB client and connect to an instance through the client by
referring to Connecting to an Instance over a Public Network.

Step 4 After connecting to the instance through the client, run the following command to
create a database. ${databaseName} can be customized.
create database ${databaseName}

Figure 7-12 Creating a database

----End

Configuring IoTDA
You can configure data forwarding rules in IoTDA to forward data reported by
devices to InfluxDB.

Step 1 Go to the IoTDA service page and click Access Console.

Step 2 In the navigation pane, choose Rules > Data Forwarding, and click Create Rule
in the upper left corner.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 269

https://support.huaweicloud.com/intl/en-us/influxug-nosql/nosql_02_0115.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

Step 3 Set the parameters based on the table below. The following parameter values are
only examples. You can create a rule by referring to Data Forwarding Overview
and click Create Rule.

Table 7-8 Rule parameters

Parameter Description

Rule Name Customize a name, for example, iotda-InfluxDB.

Description Enter a rule description, for example, forwarding data to
InfluxDB.

Data Source Select Device.

Trigger Device added is automatically configured.

Resource
Space

Select All resource spaces.

Step 4 Click the Set Forwarding Target tab, click Add to set a forwarding target, and
click Next.

Table 7-9 Forwarding target parameters

Parameter Description

Forwarding Target Select GeminiDB Influx.

Database Instance
Address

Enter the connection address of the Influx instance you
purchased. IoTDA enterprise edition instances support
private network access of Influx instances in the same VPC
and subnet.

Database Name Enter the name of the database created in InfluxDB.

Access Account Enter the InfluxDB account name.

Access Password Password of the InfluxDB.

Certificate ID Truststore certificate, which is used by the client to verify
the server certificate. If this parameter is left blank, the
default certificate provided by GeminiDB Influx is used. For
GeminiDB Influx instances using private certificates,
upload a custom CA on the Rules > Server Certificates
page and complete binding.

Step 5 Set the target fields and click OK to complete configuration.

Table 7-10 Field mapping parameters

Parameter Description

Save To Enter the table name, which is user-defined.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 270

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0024.html#section1
https://support.huaweicloud.com/intl/en-us/influxug-nosql/nosql_09_0070.html#section3

Parameter Description

Field Mappings Configure the field mappings. You can customize the target
field and configure the forwarding field by referring to
Push a Device Addition Notification.

Figure 7-13 Creating a forwarding target - to InfluxDB

Figure 7-14 Setting InfluxDB field mapping

Step 6 Click Enable Rule to activate the configured data forwarding rule.

----End

Verifying Configurations

Log in to the IoTDA console and create a device.

Expected result:

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 271

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01206.html

Log in to InfluxDB through the client. Access the database and query data.

show databases //Query the database.
use test_influxdb //Switch the database.
select * from demo //Query data.

Figure 7-15 Test message

7.5.3 Forwarding Data to DMS for Kafka for Storage

Scenarios
If you want to store data reported by devices, you can either forward the data to
application servers or to Distributed Message Service (DMS) for Kafka for storage.

In this example, data reported by all devices is forwarded to DMS for Kafka.

Buying a Kafka Instance
1. Log in to Huawei Cloud and visit DMS for Kafka.
2. Click Access Console to go to the DMS for Kafka console.
3. Click Buy Instance in the upper right corner, select instance specifications and

configure a security group as required, and click Buy.

Figure 7-16 Buying a Kafka Instance

Configuring IoTDA
Using IoTDA, you can create a product model, register a device, and set a data
forwarding rule to forward data reported by the device to DMS for Kafka.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 272

https://www.huaweicloud.com/intl/en-us/product/dmskafka.html
https://support.huaweicloud.com/intl/en-us/kafka_faq/kafka-faq-180604024.html

1. Access the IoTDA service page and click Access Console. Click the target
instance card.

2. In the navigation pane, choose Rules > Data Forwarding, and click Create
Rule in the upper left corner.

3. Set the parameters based on the table below. The following parameter values
are only examples. You can create a rule by referring to Data Forwarding
Overview and click Create Rule.

Parameter Description

Rule Name Customize a name, for example, iotda-kafka.

Description Customize a rule description, for example, forwarding data
to DMS for Kafka for storage.

Data Source Select Device property.

Trigger Device property reported is automatically populated.

Resource
Space

Select All resource spaces.

Figure 7-17 Rules triggered by property reporting - Forwarding data to Kafka

4. Click the Set Forwarding Target tab, and then click Add to set a forwarding
target.

Parameter Description

Forwarding
Target

Select Distributed Message Service (DMS) for Kafka.

Region Select the region where DMS for Kafka is located. If
IoTDA is not authorized to access the service in this
region, configure cloud service access authorization as
prompted.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 273

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0024.html#section1
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0024.html#section1

Parameter Description

Connection
Address

Obtain the connection address by following the
instructions provided in Accessing a Kafka Instance
with SASL. Basic and standard instances support only
access to Kafka premium instances over the Internet.
Enterprise instances support access to Kafka premium
instances over a private network.

Topic Customize a topic. For details, see Creating a Topic.

SASL If SASL authentication is enabled, enter the security
protocol, SASL authentication mechanism, and SASL
username and password you used when you buy a
Kafka instance.

Kafka Security
Protocol

Select the Kafka security protocol you used when you
buy a Kafka instance.

SASL Mechanism Select the SASL authentication mechanism you enabled
when you buy a Kafka instance.

SASL Username Enter the SASL username you entered when buying a
Kafka instance.

Password Enter the password you entered when buying a Kafka
instance.

Figure 7-18 Creating a forwarding target - to Kafka with a custom certificate

5. Click Enable Rule to activate the configured data forwarding rule.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 274

https://support.huaweicloud.com/intl/en-us/usermanual-kafka/kafka-ug-180801001.html#section0
https://support.huaweicloud.com/intl/en-us/usermanual-kafka/kafka-ug-180801001.html#section0
https://support.huaweicloud.com/intl/en-us/usermanual-kafka/kafka-ug-180604018.html
https://support.huaweicloud.com/intl/en-us/usermanual-kafka/kafka-ug-180604013.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-kafka/kafka-ug-180604013.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-kafka/kafka-ug-180604013.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-kafka/kafka-ug-180604013.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-kafka/kafka-ug-180604013.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-kafka/kafka-ug-180604013.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-kafka/kafka-ug-180604013.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-kafka/kafka-ug-180604013.html#section2

Figure 7-19 Enabling a rule - Forwarding data to Kafka

Verifying the Configurations
● You can use a registered physical device to access the platform and enable the

device to report data.
● You can also use a simulator to simulate a device to report data. For details,

see Developing an MQTT-based Smart Street Light Online.

Expected result:

Log in to the DMS for Kafka management console and click the Kafka instance
name to go to the instance management page. On the Message Query page, you
can view the data reported by the device.

Figure 7-20 Viewing Kafka messages - Kafka

You can also use the DMS for Kafka API Querying Messages to read files.

7.5.4 Forwarding Data to FunctionGraph

Scenarios
FunctionGraph processes the real-time stream data reported by devices to IoTDA.
With FunctionGraph, you only need to upload your code and set running
conditions to track device properties, message reporting, and status changes as
well as analyze, sort out, and measure data flows.

In this example, all properties reported by devices are forwarded to
FunctionGraph. The properties are pushed to different paths on your HTTP server
based on the resource space ID. You need to deploy an HTTP server. In this
example, the data forwarding capability of IoTDA triggers the event function. No
additional trigger is required.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 275

https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_00016.html
https://console-intl.huaweicloud.com/dms/?locale=en-us#/queue/newCreateKafka
https://support.huaweicloud.com/intl/en-us/api-kafka/ShowInstanceMessages.html

Building a Function Project
You can download and use the source code (including function dependencies) for
converting the format of reported device properties and forwarding the data to a
third-party application.

Creating a project

This example uses the Java language to implement device connection, data stream
conversion, and data push. For details about function development, see
Developing Functions in Java.

Download the sample source code, decompress it, and import it to IDEA. For
details about the code, see Sample code. Transfer your server address through the
function environment variable NA_MOCK_SERVER_ADDRESS.

Figure 7-21 Sample code

Packaging the project

Package the project into a JAR file using Build Artifacts of IDEA. The following
figure shows the IDEA configuration and packaging.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 276

https://support.huaweicloud.com/intl/en-us/devg-functiongraph/functiongraph_02_0430.html
https://obs-pipeline.obs.cn-north-4.myhuaweicloud.com/sdkDeploy/FunctionGraphFun.zip
https://support.huaweicloud.com/intl/en-us/devg-functiongraph/functiongraph_02_0430.html

Figure 7-22 Artifacts Output configuration

Figure 7-23 Build Artifacts

Uploading the Function to FunctionGraph

Create a function on the FunctionGraph console.

Step 1 Log in to the FunctionGraph console, and choose Functions > Function List in
the navigation pane.

Step 2 Click Create Function.

Step 3 Configure the function information, as shown in the following figure.

Click Create from scratch.

Enter IoTDA_FUNCTION_HTTPCLIENT_DEMO in Function Name.

Select Java 8 for Runtime.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 277

https://www.huaweicloud.com/intl/en-us/product/functiongraph.html

Figure 7-24 Creating a function

Step 4 Click Create Function. After the function is created, the function details page is
displayed.

Step 5 Click the Code tab and click Upload > Local JAR to upload the code package
FunctionGraphFun.jar.

Figure 7-25 Uploading the code

Step 6 Modify the function runtime parameters. Click the Configuration tab, choose
Basic Settings, and set Handler to
com.huawei.iot.function.gamma.IoTDataFlowHttpClientTrigger.funTest. Click
Save to save the configuration.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 278

Figure 7-26 Setting the handler

NO TICE

The default function memory size is 512 MB, and the default timeout interval is
15s. This example is only for demonstration. For commercial use, optimize the
function parameters based on the site requirements.

Step 7 Modify the environment variables transferred during function calling. Set the
environment variable NA_MOCK_SERVER_ADDRESS to the target HTTP server
address. Note that the server address in the example is not a real one. Replace it
with your actual HTTP server address. Click Save to save the configuration.

Figure 7-27 Configuring environment variables for function calling

----End

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 279

Adding an Event Source

After creating the function, you can add an event source. In this example, an HTTP
push test event is configured to simulate device data forwarded by IoTDA. The
procedure is as follows:

Step 1 On the IoTDA_FUNCTION_HTTPCLIENT_DEMO function page, click the Code tab
and select Configure Test Event.

Figure 7-28 Configuring a test event

Step 2 In the Configure Test Event dialog box, enter the test event information.

Select Create new test event.

Event Templates: Select blank-template.

Event Name: Enter event-property.

The following is an example of the test parameters for reporting device properties:

{
 "resource":"device.property",
 "event":"report",
 "event_time":"string",
 "notify_data":{
 "header":{
 "app_id":"********",
 "device_id":"********",
 "node_id":"ABC123456789",
 "product_id":"ABC123456789",
 "gateway_id":"********",
 "tags":[{
 "tag_key":"testTagName",
 "tag_value":"testTagValue"
 }]
 },
 "body":{
 "services":[{
 "service_id":"string",
 "properties":{
 },
 "event_time":"string"
 }]
 }
 }
}

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 280

Figure 7-29 Configuring a test event

Step 3 Click Save.

----End

Testing Data
Perform the following steps to process the simulated data:

Step 1 On the function details page, select test event event-property, and click Test to
test the function.

Figure 7-30 Configuring a test event

Step 2 After the function is executed, view the function execution status in the log on the
right of the function details page.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 281

Figure 7-31 Function execution result

----End

Configuring IoTDA
You can set configure data forwarding rules in IoTDA to forward data reported by
devices to FunctionGraph.

Step 1 Visit the IoTDA product page and click Try Now.

Step 2 In the navigation pane, choose Rules>Data Forwarding, and click Create Rule in
the upper left corner.

Step 3 Set the parameters based on the table below. The following parameter values are
only examples. You can create a rule by referring to Data Forwarding Overview
and click Create Rule.

Parameter Description

Rule Name Customize a name, for example, iotda-functiongraph.

Description Enter a rule description, for example, forwarding data to
FunctionGraph.

Data Source Select Device property.

Trigger Device property reported is automatically populated.

Resource
Spaces

Select All resource spaces.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 282

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0024.html#section1

Figure 7-32 Rules triggered by property reporting - Forwarding data to
FunctionGraph

Step 4 Click the Set Forwarding Target tab, click Add to set a forwarding target, and
click OK.

Parameter Description

Forwarding Target Select FunctionGraph.

Region Currently, you can only forward data to FunctionGraph in
the same region. If IoTDA is not authorized to access the
service in this region, configure cloud service access
authorization as prompted.

Target Function Select the function created in FunctionGraph.

Figure 7-33 Creating a forwarding target - to FunctionGraph

Step 5 Click Enable Rule to activate the configured data forwarding rule.

----End

Verifying the Configurations
● You can connect a physical device registered with IoTDA to the platform and

report properties defined in the product model.
● You can also use a simulator to simulate device properties reporting. For

details, see Developing an MQTT-based Smart Street Light Online.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 283

https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_00016.html

Expected result: The data reported by the device is displayed in the server logs.

Figure 7-34 Expected result

7.5.5 Forwarding Data to MySQL for Storage

Scenarios

IoTDA can forward data reported by devices to RDS for MySQL for storage. You
can use device data for service processing without developing additional code to
store data.

In this example, data reported by all devices is forwarded to a MySQL database.

Prerequisites
● You have purchased an IoTDA Enterprise or Standard edition instance.
● You have purchased an RDS for MySQL instance.

Creating a MySQL Database

Step 1 Log in to the Huawei Cloud official website, visit RDS for MySQL, and purchase an
instance. IoTDA enterprise edition instances support connecting to an RDS for
MySQL DB instance through a private network. IoTDA standard edition
instances support connecting to an RDS for MySQL DB instance through a
public network.

Step 2 When you purchase a MySQL instance, design database tables by referring to
Data Transfer APIs to enable editing of forwarded data using filter statements. In
this example, the default formats in Push a Device Property Reporting
Notification are used to store the resource, event, notify_data, and event_time
fields in the forwarded data to the resource, event, content, and event_time
fields in the database table.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 284

https://www.huaweicloud.com/intl/en-us/product/mysql.html
https://support.huaweicloud.com/intl/en-us/qs-rds/rds_02_0101.html
https://support.huaweicloud.com/intl/en-us/qs-rds/rds_02_0101.html
https://support.huaweicloud.com/intl/en-us/qs-rds/rds_02_0048.html
https://support.huaweicloud.com/intl/en-us/qs-rds/rds_02_0048.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01200.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01202.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01202.html

Figure 7-35 Example of creating a database table

----End

Configuring IoTDA
Using IoTDA, you can create a product model, register a device, and set a data
forwarding rule to forward data reported by the device to MySQL.

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Products. Click Create Product and select the
resource space to which the new product will belong.

NO TE

The product model and device used in this topic are only examples. You can use your own
product model and device.

Step 3 Click Create Product to create a product using MQTT. Set the parameters and
click OK.

Basic Information

Product
Name

Enter a value, for example, MQTT_Device.

Protocol Type Select MQTT.

Data Type Select JSON.

Industry Set the parameters as required.

Device Type

Step 4 Click here to download a sample product model.

Step 5 On the Basic Information tab page, click Import from Local. In the displayed
dialog box, load the local product model and click OK.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 285

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://obs-pipeline.obs.cn-north-4.myhuaweicloud.com/sdkDeploy/Profile_01.zip

Figure 7-36 Product - Uploading a product model

Step 6 In the navigation pane, choose Devices > All Devices. Click Register Device, set
device registration parameters, and click OK. Save the device ID and secret
returned after the registration.

Figure 7-37 Device - Registering a secret device

Parameter Description

Resource
Space

Select the resource space (created in step 3) to which the
product will belong.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 286

Parameter Description

Product Select the product created in step 3.

Node ID Set this parameter to the IMEI, MAC address, or serial number
of the device. If the device is not a physical one, set this
parameter to a custom character string that contains letters
and digits.

Device Name Customize the product name.

Device ID Customize the value. You can leave it empty, then the platform
will automatically generate a device ID.

Authenticatio
n Type

Select Secret.

Secret Customize the secret used for device access. If the secret is left
blank, the platform automatically generates one.

Step 7 In the navigation pane, choose Rules > Data Forwarding, and click Create Rule
in the upper left corner.

NO TE

You can also add a MySQL database as the forwarding target on the details page of a
created rule.

Step 8 Set the parameters based on the table below. The following parameter values are
only examples. You can configure parameters of data forwarding rules by referring
to Data Forwarding. After configuring the parameters, click Create Rule.

Parameter Description

Rule Name Customize a name, for example, iotda-mysql.

Description Enter a rule description, for example, forwarding data to
MySQL for storage.

Data Source Select Device property.

Trigger Device property reported is automatically populated.

Resource
Spaces

Select a resource space to which the data source to be
forwarded belongs or all resource spaces.

Step 9 Click the Set Forwarding Target tab, and then click Add to set a forwarding
target.

Parameter Description

Forwarding Target Select MySQL (RDS).

Database Instance
Address

Enter the IP address (or port number) for connecting the
database instance.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 287

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0024.html

Parameter Description

Database Name Enter the name of the destination database in the
database instance.

Access Account Enter the account of the database instance.

Access Password Enter the password of the database instance.

SSL Select whether to connect to the database in SSL mode.
You are advised to use SSL for connection. If not, security
risks may exist during data transmission. To use the SSL
mode, configure an SSL connection in the database
instance first.

Certificate ID Truststore certificate, which is used by the client to verify
the server certificate. If this parameter is left blank, the
default certificate provided by RDS for MySQL is used. For
RDS for MySQL instances using custom certificates,
upload the custom CA on the Rules > Server Certificates
page and complete the binding.

Step 10 Click Next. IoTDA will connect to the database during the process.

Step 11 Select the target table and configure the mapping between the data to forward
and the database table.
● Forwarding Field: JSON key of the data to forwarded.
● Target Field: field in the database table. After a target field is selected, the

field type is automatically matched.

Figure 7-38 Setting MySQL field mapping

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 288

https://support.huaweicloud.com/intl/en-us/usermanual-rds/rds_mysql_0001.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds/rds_11_0029.html

Step 12 Click Enable Rule to activate the configured data forwarding rule.

----End

Verifying the Configurations
An event (for example, device property reporting) triggers data forwarding.

Expected result:

Log in to the RDS for MySQL console and open the target table. Data forwarded
to the target fields is displayed in the table.

Figure 7-39 Querying data reported

7.5.6 Forwarding Device Data to OBS for Long-Term Storage

Scenarios
If you want to store data reported by devices for a long term, you can either
forward the data to applications or to Object Storage Service (OBS) for storage.

In this example, data reported by all devices is forwarded to OBS.

Creating an OBS Bucket

Step 1 Log in to Huawei Cloud and visit OBS.

Step 2 Click Access Console to go to the OBS console.

Step 3 Click Create Bucket in the upper right corner of the page, select bucket
specifications as required, and click Create Now.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 289

https://www.huaweicloud.com/intl/en-us/product/mysql.html
https://www.huaweicloud.com/intl/en-us/product/obs.html

Figure 7-40 Purchasing OBS

----End

Configuring IoTDA

Using IoTDA, you can create a product model, register a device, and set a data
forwarding rule to forward data reported by the device to OBS.

Creating a rule

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Rules > Data Forwarding, and click Create Rule
in the upper left corner.

Step 3 Set the parameters based on the table below. The following parameter values are
only examples. You can create a rule by referring to Data Forwarding and click
Create Rule.

Parameter Description

Rule Name Customize a name, for example, iotda-obs.

Description Enter a rule description, for example, forwarding data to OBS
for storage.

Data Source Select Device property.

Trigger Device property reported is automatically populated.

Resource
Spaces

Select All resource spaces.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 290

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0024.html

Figure 7-41 Rules triggered by property reporting - Forwarding data to OBS

Step 4 Click the Set Forwarding Target tab, and then click Add to set a forwarding
target.

Parameter Description

Forwarding Target Select Object Storage Service (OBS).

Region Select the region where OBS is located. If IoTDA is not
authorized to access the service in this region, configure
cloud service access authorization as prompted.

OBS Bucket Select the bucket where data is to be stored. If no OBS
bucket is available, create one on the OBS console.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 291

https://console-intl.huaweicloud.com/obs/?locale=en-us#/obs/manager/buckets

Figure 7-42 Creating a forwarding target - to OBS in JSON

Step 5 Click Enable Rule to activate the configured data forwarding rule.

Figure 7-43 Enabling a rule - Forwarding data to OBS

----End

Verifying the Configurations
● You can use a registered physical device to access the platform and enable the

device to report data.
● You can also use a simulator to report data by simulating a device. For details,

see Developing an MQTT-based Smart Street Light Online.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 292

https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_00016.html

Log in to the OBS console, and click the bucket name. On the Objects page, you
can view the data reported by the device.

Figure 7-44 Querying reported data in OBS

You can also use the OBS API Downloading Objects to read files.

7.6 Data Forwarding to Third-Party Applications

7.6.1 Forwarding Modes
A device can connect to and communicate with the platform. The device reports
data to the platform using custom topics or product models. After the
subscription/push configuration on the console is complete, the platform forwards
messages about device lifecycle changes, reported device properties, reported
device messages, device message status changes, device status changes, and batch
task status changes to the application.

The platform supports four data forwarding modes: HTTP/HTTPS, AMQP, MQTT,
and M2M communications.

● HTTP/HTTPS mode
– Subscription: You can use an application to call the platform APIs to

configure and activate rules, or create a subscription task on the console
for obtaining changed device service and management details. Service
details involve device lifecycle, device data reporting, device message
status, and device status. Management details involve software/firmware
upgrade status and result. Related APIs: Create a Rule Triggering
Condition, Create a Rule Action, and Modify a Rule Trigger Condition.
The URL of the application, also called the callback URL, must be
specified during subscription. For details, see How Do I Obtain the
Callback URL When Calling the Subscription API? .

– Push: After a subscription is successful, the platform pushes the
corresponding change to a specified callback URL based on the type of
data subscribed. (For details on the pushed content, see Data Transfer
APIs.) If an application does not subscribe to a specific type of data
notification, the platform does not push the data to the application even
if the data has changed. The platform pushes data, in JSON format, using

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 293

https://www.huaweicloud.com/intl/en-us/product/obs.html
https://support.huaweicloud.com/intl/en-us/api-obs/obs_04_0083.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00101.html#section0
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00101.html#section0
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01200.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01200.html

HTTP or HTTPS. HTTPS requires authentication and is more secure.
Therefore, HTTPS is recommended.

For details, see HTTP/HTTPS Data Forwarding.
● AMQP mode

– Subscription: AMQP is short for Advanced Message Queuing Protocol. You
can create a subscription task on the IoTDA console, or call platform APIs
to configure and activate rules for obtaining changed device service and
management details. Service details involve device lifecycle, device data
reporting, device message status, and device status. Management details
involve software/firmware upgrade status and result. Related APIs:
Create a Rule Triggering Condition, Create a Rule Action, and Modify
a Rule Triggering Condition. The AMQP message channel must be
specified during subscription creation.

– Push: After a subscription is created, the platform pushes the
corresponding change to the specified AMQP message queue based on
the type of data subscribed. If an application does not subscribe to a
specific type of data notification, the platform does not push the data to
the application even if the data has changed. You can use the AMQP
client to establish a connection with the platform to receive data.

For details, see AMQP Data Forwarding.
● MQTT mode

– Subscription: You can call platform APIs to configure and activate rules
for obtaining the changed device service and management details.
Service details involve device lifecycle, device data reporting, device
message reporting, and device status. Management details involve
software/firmware upgrade status and result. Related APIs:Create a Rule
Triggering Condition, Create a rule action, and Modify a Rule
Triggering Condition. The topic for receiving push messages must be
specified during subscription creation.

– Push: After a subscription is created, the platform pushes the
corresponding change to the specified topic based on the type of data
subscribed. If an application does not subscribe to a specific type of data
notification, the platform does not push the data to the application even
if the data has changed. You can use the MQTT client to establish a
connection with the platform to receive data.

For details, see MQTT Data Forwarding.
● M2M communications

– Subscription: You can create rules on the console or call the platform APIs
to configure and activate rules for obtaining messages reported by
devices from the platform. Related APIs: Create a Rule Trigger
Condition, Create a Rule Action, and Modify the Rule Triggering
Condition. Device subscription supports only message reporting.

– Push: After the subscription is successful, the platform pushes messages
reported by devices to the specified MQTT topic. After devices are
connected to the platform, you can subscribe to the topic to receive data
for inter-device message communications.

For details, see M2M Communications.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 294

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01309.html

Data
Forwarding
Mode

Application Scenario Advantage Restrictions

HTTP/HTTPS
subscription/
push

An application functions as
the server and passively
receives messages from the
platform.

- The traffic
control limit
is 800 TPS
per second.
HTTP/HTTPS
is not
recommende
d for large-
traffic push.

AMQP
subscription/
push

An application functions as
the client and proactively pulls
messages from the platform
or passively receives messages
from the platform by means
of listening.

Data can be
obtained
proactively.

For details,
see
Connection
Specificatio
ns.

MQTT
subscription/
push

An application functions as a
client and can receive
messages from IoT cloud
services through subscription.

- For details,
see
Constraints.

M2M
communicatio
ns

● Smart home scenario
where messages are
exchanged between mobile
apps and smart devices.

● Device linkage scenario
where devices exchange
data and communicate
with each other.

Communicatio
ns among
devices are
supported.

For details,
see
Overview.

7.6.2 HTTP/HTTPS Data Forwarding

Overview
The figure below shows the subscription and push process.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 295

Before pushing HTTPS messages to an application, the platform must verify the
application authenticity. Therefore, the application CA certificate must be loaded
to the platform. (You can create a commissioning certificate during
commissioning and replace it with a commercial certificate during commercial use
to avoid security risks.)

Push mechanism: After receiving a push message from the platform, the
application returns a 200 OK message. If the application does not respond within
15 seconds or returns a non-200 response code (500, 501, 502, 503, or 504), the
message push fails and the message will be discarded. If the platform fails to push
the message for 10 times in a row, IoTDA adds the host address of the
subscription URL to the blocklist and messages to push will be stacked on the
platform for one day or until the stack size of data become 1 GB. To retain only
the latest data, see Data Forwarding Stack Policies. Then, the platform attempts
to push messages to the host address in the blocklist every 3 minutes. If the push
fails, the platform keeps the blocklist. If the push succeeds, the platform removes
the host address from the blocklist. After the host address is removed from the
blocklist, the latest messages are pushed only after all stacked messages are
pushed based on the maximum flow control value. The default flow control value
is 800 TPS per second. For details about the customized configuration, see Data
Forwarding Flow Control Policies.

Subscribing to Data

After connecting to IoTDA, an application calls an API to subscribe to data.

● For details on how to configure HTTP or HTTPS subscriptions on the console,
see Configuring HTTP/HTTPS Subscription and Loading the CA Certificate.

● For details on how to subscribe to data through APIs, see Calling APIs,
Creating a Rule Trigger Condition, Creating a Rule Action, and Modifying
a Rule Trigger Condition.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 296

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0038.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0037.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0037.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0090.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01309.html

Format of Pushed Data
For details on the format of data pushed by the platform to applications after
data subscription is created, see Data Transfer APIs.

NO TE

In the HTTP message header, the value of Content-Type is application/json, and the
character set is UTF-8.

Loading the CA Certificate
If HTTPS is used, you must load the push certificate by following the instructions
provided in this section. Then create a subscription task on the console by
following the instructions provided in Configuring HTTP/HTTPS Subscription.

● If the application cancels the subscription and then re-subscribes the data
again (with the URL unchanged), the CA certificate must be loaded to the
platform again.

● If a subscription type (URL) is added, you must load the CA certificate
corresponding to the URL to the platform. Even if the CA certificate used by
the new URL is the same as that used by the original URL, the CA certificate
must be loaded again.

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Rules > Server Certificates. Click Upload
Certificate, configure parameters based on the following table, and click OK.

Parameter Description

Certificate
Name

Used to distinguish different certificates and can be customized.

CA
Certificate

A CA certificate from the application can be applied for and
purchased in advance.
NOTE

You can create a commissioning certificate during commissioning. For
security reasons, you are advised to replace the commissioning certificate
with a commercial certificate during commercial use.

Step 3 In the navigation pane, choose Rules > Server Certificate, locate the target
certificate, click to obtain the certificate ID, which is used as a parameter in
the API Creating a Rule Action.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 297

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01200.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01302.html

Figure 7-45 Server certificate - Obtaining the certificate ID

----End

Creating a Commissioning Certificate
A commissioning certificate, or a self-signed certificate, is used for authentication
when the client accesses the server through HTTPS. When the platform uses
HTTPS to push data to an application, the platform authenticates the application.
This section uses the Windows operating system as an example to describe how to
use OpenSSL to make a commissioning certificate. The generated certificate is in
PEM format and the suffix is .cer.

The table below lists common certificate storage formats.

Storage
Format

Description

DER Binary code. The suffix is .der, .cer, or .crt.

PEM Base64 code. The suffix is .pem, .cer, or .crt.

JKS Java certificate storage format. The suffix is .jks.

NO TE

The commissioning certificate is used only for commissioning. During commercial use, you
must apply for certificates from a trusted CA. Otherwise, security risks may occur.

Step 1 Download and install OpenSSL.

Step 2 Open the CLI as user admin.

Step 3 Run cd c:\openssl\bin (replace c:\openssl\bin with the actual OpenSSL
installation directory) to access the OpenSSL view.

Step 4 Generate the private key file ca_private.key of the CA root certificate.
openssl genrsa -passout pass:123456 -aes256 -out ca_private.key 2048

● aes256: cryptographic algorithm
● passout pass: private key password
● 2048: key length

Step 5 Use the private key file of the CA root certificate to generate the ca.csr file to be
used in 6.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 298

https://slproweb.com/products/Win32OpenSSL.html

openssl req -passin pass:123456 -new -key ca_private.key -out ca.csr -subj "/C=CN/ST=GD/L=SZ/O=Huawei/
OU=IoT/CN=CA"

Modify the following information based on actual conditions:

● C: country, for example, CN
● ST: region, for example, GD
● L: city, for example, SZ
● O: organization, for example, Huawei
● OU: organization unit, for example, IoT
● CN: common name (the organization name of the CA), for example, CA

Step 6 Create the CA root certificate ca.cer.
openssl x509 -req -passin pass:123456 -in ca.csr -out ca.cer -signkey ca_private.key -CAcreateserial -days
3650

Modify the following information based on actual conditions:

● passin pass: The value must be the same as the private key password set in 4.
● days: validity period of the certificate.

Step 7 Generate the private key file for the application.
openssl genrsa -passout pass:123456 -aes256 -out server_private.key 2048

Step 8 Generate the .csr file for the application.
openssl req -passin pass:123456 -new -key server_private.key -out server.csr -subj "/C=CN/ST=GD/L=SZ/
O=Huawei/OU=IoT/CN=appserver.iot.com"

Modify the following information based on actual conditions:

● C: country, for example, CN
● ST: region, for example, GD
● L: city, for example, SZ
● O: organization, for example, Huawei
● OU: organization unit, for example, IoT
● CN: common name. Enter the domain name or IP address of the application.

Step 9 Use the CA private key file ca_private.key to sign the file server.csr and generate
the server certificate file server.cer.
openssl x509 -req -passin pass:123456 -in server.csr -out server.cer -sha256 -CA ca.cer -CAkey ca_private.key
-CAserial ca.srl -CAcreateserial -days 3650

Step 10 (Optional) If you need a .crt or .pem certificate, proceed this step. The following
uses the conversion from server.cer to server.crt as an example. To convert the
ca.cer certificate, replace server in the command with ca.
openssl x509 -inform PEM -in server.cer -out server.crt

Step 11 In the bin folder of the OpenSSL installation directory, obtain the CA certificate
(ca.cer/ca.crt/ca.pem), application server certificate (server.cer/server.crt/
server.pem), and private key file (server_private.key). The CA certificate is loaded
to the platform, and the application server certificate and private key file are
loaded to the application.

----End

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 299

Configuring HTTP/HTTPS Subscription
This section describes how to configure HTTP or HTTPS subscription on the
console.

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Rules > Data Forwarding, and click Create Rule
in the upper left corner.

Step 3 Set the parameters based on the table below and click Create Rule.

Table 7-11 Parameters for creating a rule

Parameter Description

Rule Name Name of the rule to be created.

Description Description of the rule.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 300

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Parameter Description

Data Source ● Device: Device information, such as device addition, deletion,
and update, will be forwarded. When Data Source is set to
Device, quick configuration is not supported.

● Device property: A property value reported by a device in a
resource space will be forwarded. Click Quick Configuration
on the right and select the product, property, and service
data to forward.

● Device message: A message reported by a device in a
resource space will be forwarded. Click Quick Configuration
on the right and select data of a specified topic to forward.
Select the product to which the topic belongs and enter the
topic name. You can use a custom topic on the product
details page or a preset topic.

● Device message status: The status of device messages
exchanged between the device and platform will be
forwarded. For details on the device message status, see
Message Delivery Status. When Data Source is set to
Device message status, quick configuration is not supported.

● Device status: The status change of a directly or an indirectly
connected device in a resource space will be forwarded. Click
Quick Configuration on the right to forward information
about devices whose status is Online, Offline, or Abnormal
to other services. For details on the status of devices directly
connected to the platform, see Device Management.

● Batch task: The batch task status will be forwarded. When
Data Source is set to Batch Task, quick configuration is not
supported.

● Product: Product information, such as product addition,
deletion, and update, will be forwarded. When Data Source
is set to Product, quick configuration is not supported.

● Asynchronous command status of the device: Status
changes of asynchronous commands to devices using
LwM2M over CoAP will be forwarded. For details on the
asynchronous command status of devices, see Asynchronous
Command Delivery. When Data Source is set to
Asynchronous command status of the device, quick
configuration is not supported.

● Run log: Service run logs of MQTT devices will be forwarded.
When Data Source is set to Run log, quick configuration is
not supported.

Trigger After you select a data source, the platform automatically
matches trigger events.

Resource
Space

You can select a single resource space or all resource spaces. If
All resource spaces is selected, quick configuration is not
supported.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 301

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html

Step 4 Under Set Forwarding Target, click Add. On the displayed page, set the
parameters based on the table below and click OK.

Parameter Description

Forwarding
Target

Select Third-party application (HTTP push).

Push URL Enter the URL for IoTDA to push messages to the application.
For example, if the URL is https://www.example.com:8443/
example/, set Domain/IP and Port to
www.example.com:8443 in Loading the CA Certificate.
● If the push URL uses HTTP, the CA certificate is not

required.
● If the push URL uses HTTPS, upload the CA certificate. For

details about how to upload a certificate, see Loading the
CA Certificate.

Token Used for signature authentication. The value can contain 3 to
32 characters, including letters and digits. When pushing data
to the user server, the platform signs the token and
assembles the signature information into the header.

Certificate ID This configuration is valid only for the HTTPS server. It is used
as the truststore certificate for the client to verify the
compliance of the commercial certificate of the server. This
configuration is unavailable for non-compliant certificates
such as self-signed certificates and certificates with
incomplete certificate chains.

Certificate
Domain Name

To enable SNI, configure corresponding certificate and
domain name on the server in advance.

Step 5 After the rule is defined, click Enable Rule to start forwarding data to the HTTP or
HTTPS message queue.

----End

Token-based Platform Authentication for HTTP/HTTPS Push
If you select Authentication and enter the token when adding the Third-party
application (HTTP push) forwarding target, the platform will add the following
parameters to the header of the HTTP or HTTPS request:

Paramete
r

Description

timestam
p

Timestamp when the platform pushes data.

nonce Random number generated by the platform.

signature Signature consisting of token, timestamp, and nonce.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 302

Signature rules:

1. Sort token, timestamp, and nonce in alphabetical order.

2. Encrypt the sorted string using SHA-256.

3. After receiving the pushed message, you can encrypt timestamp and nonce
in the header and token based on rules and compare the obtained value with
the signature in the header to determine whether the message is from the
platform.

Java example for signature verification:

1. Add the dependency. Use a specific version based on the actual service
requirements.
<dependency>
 <groupId>commons-codec</groupId>
 <artifactId>commons-codec</artifactId>
 <version>${commons.version}</version>
</dependency>

2. Obtain the signature information from the request header and use the
commons-codec dependency package for signature.
public boolean checkSignature(String nonce, String timestamp, String signature, String token) {
 List<String> list = new ArrayList<>();
 list.add(token);
 if (StringUtil.isNotEmpty(nonce)) {
 list.add(nonce);
 }
 if (StringUtil.isNotEmpty(timestamp)) {
 list.add(timestamp);
 }
 Collections.sort(list);
 StringBuilder signatureBuilder = new StringBuilder();
 for (String s : list) {
 signatureBuilder.append(s);
 }
 String serverSignature = DigestUtils.sha256Hex(signatureBuilder.toString());
 if (StringUtil.isNotEmpty(serverSignature) && serverSignature.equals(signature)) {
 return true;
 }
 return false;
}

3. For example, the token is set to aaaaaa in a request, and the header contains
the following parameters:
nonce: 8b9b796d388d49bba43adaa53aaf5bc4
timestamp: 1675654743514
signature: 2ff821fb8a976ede7d06434395ec8c25e4100bff8b3d12d8099ef7e30b58bd4c

The string after sorting is
16756547435148b9b796d388d49bba43adaa53aaf5bc4aaaaaa. The string
encrypted using SHA-256 is
2ff821fb8a976ede7d06434395ec8c25e4100bff8b3d12d8099ef7e30b58bd4c
.

CA UTION

After a token is created, you need to configure a new token each time you
modify the forwarding target. Otherwise, the token does not take effect.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 303

Platform Certification
As a server, if an application needs to authenticate the platform, the platform CA
certificate must be loaded on the application. For details, see Obtaining
Resources.

FAQ
The following lists the frequently asked questions about the subscription and push
service. For more questions, see Subscription and Push.
● How Do I Obtain the Access Addresses and Certificates of the Old and

New Domain Names?
● How Do I Obtain the Callback URL When Calling the Subscription API?
● Can a Domain Name Be Used in a Callback URL?
● What Do I Do If Message Push Fails After Subscription?
● Why Does the Application Receive Multiple Push Messages After a Device

Reports a Piece of Data?

● Why Was the Callback URL Invalid During the Subscription API Call?
● How Can I Obtain the subscriptionId Needed in Calling the API for

Deleting a Subscription?
● Can an Application Subscribe to the Platform Data When the Application

Only Has an Internal IP Address?

APIs
Creating a Rule Action

Creating a Rule Trigger Condition

Modifying a Rule Trigger Condition

Data Transfer APIs

7.6.3 AMQP Data Forwarding

7.6.3.1 Overview
The figure below shows the subscription and push process.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 304

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section3
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00101.html
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01004.html#section2
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_01004.html#section2
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00101.html#section0
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00101.html#section2
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00101.html#section14
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00101.html#section17
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00101.html#section17
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00101.html#section4
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00101.html#section9
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00101.html#section9
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00101.html#section3
https://support.huaweicloud.com/intl/en-us/iothub_faq/iot_faq_00101.html#section3
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01200.html

Push mechanism: After receiving a message from the platform, the application
returns a response. (The automatic response mode is recommended.) If the
application does not pull data after the connection is established, data will be
stacked on the server. The server stores only the data that is received in the last 24
hours and occupies less than 1 GB disk space. If the application does not pull data
in a timely manner, the platform clears expired and excess data on a rolling basis.
If the application does not respond in time after receiving the message and the
persistent connection is interrupted, the corresponding data will be pushed again
in the next connection established.

Subscribing to Data
After connecting to IoTDA, an application calls an API to subscribe to data.

● For details on how to configure subscriptions on the console, see AMQP
Server Configuration.

● For details on how to subscribe to data through APIs, see Calling APIs,
Creating a Rule Trigger Condition, Creating a Rule Action, and Modifying
a Rule Trigger Condition.

Format of Pushed Data
For details on the format of data pushed by the platform to applications after
data subscription is created, see Data Transfer APIs.

NO TE

In the HTTP message header, the value of Content-Type is application/json, and the
character set is UTF-8.

APIs
Creating a Rule Action

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 305

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0090.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01200.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01302.html

Creating a Rule Trigger Condition

Modifying a Rule Trigger Condition

Data Transfer APIs

Creating an AMQP Queue

Querying the AMQP List

Querying an AMQP Queue

Generating an Access Credential

7.6.3.2 AMQP Server Configuration
This topic describes how to set and manage AMQP server subscription on the IoT
platform.

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Rules > Data Forwarding, and click Create Rule
in the upper left corner.

Step 3 Set the parameters based on the table below and click Create Rule.

Table 7-12 Parameters for creating a rule

Parameter Description

Rule Name Name of the rule to be created.

Description Description of the rule.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 306

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01200.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0103.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0102.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0104.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0111.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

Parameter Description

Data Source ● Device: Device information, such as device addition, deletion,
and update, will be forwarded. When Data Source is set to
Device, quick configuration is not supported.

● Device property: A property value reported by a device in a
resource space will be forwarded. Click Quick Configuration
on the right and select the product, property, and service
data to forward.

● Device message: A message reported by a device in a
resource space will be forwarded. Click Quick Configuration
on the right and select data of a specified topic to forward.
Select the product to which the topic belongs and enter the
topic name. You can use a custom topic on the product
details page or a preset topic.

● Device message status: The status of device messages
exchanged between the device and platform will be
forwarded. For details on the device message status, see
Message Delivery Status. When Data Source is set to
Device message status, quick configuration is not supported.

● Device status: The status change of a directly or an indirectly
connected device in a resource space will be forwarded. Click
Quick Configuration on the right to forward information
about devices whose status is Online, Offline, or Abnormal
to other services. For details on the status of devices directly
connected to the platform, see Device Management.

● Batch task: The batch task status will be forwarded. When
Data Source is set to Batch Task, quick configuration is not
supported.

● Product: Product information, such as product addition,
deletion, and update, will be forwarded. When Data Source
is set to Product, quick configuration is not supported.

● Asynchronous command status of the device: Status
changes of asynchronous commands to devices using
LwM2M over CoAP will be forwarded. For details on the
asynchronous command status of devices, see Asynchronous
Command Delivery. When Data Source is set to
Asynchronous command status of the device, quick
configuration is not supported.

● Run log: Service run logs of MQTT devices will be forwarded.
When Data Source is set to Run log, quick configuration is
not supported.

Trigger After you select a data source, the platform automatically
matches trigger events.

Resource
Space

You can select a single resource space or all resource spaces. If
All resource spaces is selected, quick configuration is not
supported.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 307

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html

Step 4 Under Set Forwarding Target, click Add. On the displayed page, set the
parameters based on the table below and click OK.

Parameter Description

Forwarding
Target

Select AMQP message queue.

Message Queue Click Select to select a message queue.
● If no message queue is available, create one. The queue

name must be unique under a tenant and can contain 8–
128 characters, including letters, numbers, underscores (_),
hyphens (-), periods (.), and colons (:).

● To delete a message queue, click Delete on the right of
the message queue.
NOTE

A subscribed queue cannot be deleted.

Step 5 After the rule is defined, click Enable Rule to start forwarding data to the AMQP
message queue.

----End

7.6.3.3 AMQP Queue Alarm Configuration
When you consume messages from a subscribed AMQP queue, the consumer side
may go offline and message consumption may slow down due to network
communication problems or untimely acknowledgements to received messages. In
this case, messages are stacked and cannot be processed in real time.

IoTDA supports AMQP queue alarm configuration. You can set alarm rules to
monitor AMQP queue message stacking and consumption speed. After a rule is
triggered, alarm information is sent to you immediately so that you can locate
and rectify faults in a timely manner. This section describes how to configure
alarm rules for AMQP queues.

Procedure
Step 1 Access the IoTDA service page and click Access Console. Click the target instance

card.

Step 2 In the navigation pane, choose Rules > Data Forwarding.

Step 3 Click the AMQP Queues tab, locate the queue to configure alarms, and click
View.

Figure 7-46 Data forwarding - AMQP message queue details

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 308

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Step 4 Click Configure Alarm.

Figure 7-47 AMQP message queue - Alarm configuration

Figure 7-48 Creating an alarm rule

Step 5 Click Select Resource Object. Set Add By to Dimension, and select a proper
metric and dimension based on the following tables.

CA UTION

Search for the iotda_amqp_forwarding_backlog_message_count and
iotda_amqp_forwarding_consume_rate under all metrics.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 309

Figure 7-49 Selecting the object to be monitored

Table 7-13 Metric description

Metric Name Description

iotda_amqp_forwarding_backlog_message
_count

Number of stacked messages in
the queue.

iotda_amqp_forwarding_consume_rate Queue message consumption
speed.

Table 7-14 Metric dimension description

Dimension Description

clusterId Cluster ID.

namespace Namespace. The value is fixed to AOM.IoTDA.

queueName AMQP queue name.

userName Username.

Step 6 Set an alarm condition based on the site requirements.

Figure 7-50 Alarm condition

Step 7 Select an alarm tag. If you want to view the alarm on the Device Alarms page in
IoTDA, configure the following custom tag.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 310

Table 7-15 Custom tag

Tag Name Tag Value

resource_provider IoTDA

Figure 7-51 Current alarms - AMQP alarms

Figure 7-52 Adding a custom tag

Step 8 Specify an action rule for alarm notifications. When an alarm is triggered, the
action rule notifies topic subscribers of the alarm through different channels (for
example, emails or SMSs) based on the topic. For details, see Creating an Alarm
Action Rule.

Figure 7-53 Alarm notification

Step 9 Click Create Now.

----End

7.6.3.4 AMQP Client Access

After configuring and activating rules by calling the platform APIs Creating a Rule
Triggering Condition, Creating a Rule Action, and Modifying a Rule Triggering
Condition, connect the AMQP client to IoTDA. Then run the AMQP client on your
server to receive subscribed-to messages.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 311

https://support.huaweicloud.com/intl/en-us/usermanual-aom/aom_02_0926.html
https://support.huaweicloud.com/intl/en-us/usermanual-aom/aom_02_0926.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01309.html

Protocol Version
For details on AMQP, see AMQP.

The IoT platform supports only AMQP 1.0.

Connection Establishment and Authentication
1. The AMQP client establishes a TCP connection with the platform and

performs TLS handshake verification.

NO TE

To ensure security, the AMQP client must use TLS 1.2 for encryption. Non-encrypted
TCP transmission is not supported. The difference between the client time and
standard time cannot be greater than 5 minutes. Otherwise, the connection will fail.

2. The client requests to set up a connection.
3. The client sends a request to the platform to establish a receiver link (a

unidirectional channel for the platform to push data to the client). The
receiver link must be set up within 15 seconds after the connection is set up
on the client. Otherwise, the platform will close the connection. After the
receiver link is set up, the client is connected to the platform.

NO TE

A maximum of 10 receiver links can be created for a connection, and sender links
cannot be created. Therefore, the platform can push messages to the client, but the
client cannot send messages to the platform.

Connection Configuration Parameters
The table below describes the connection address and connection authentication
parameters for the AMQP client to connect to the platform.

● AMQP access address: amqps://${server.address}:5671
● Connection string: amqps://${server.address}:5671?

amqp.vhost=default&amqp.idleTimeout=8000&amqp.saslMechanisms=PLAIN

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 312

https://www.amqp.org/?spm=a2c4g.11186623.2.16.4954719fdfh8Qf

Parameter Description

server.address AMQP server access address. Obtaining method: Log in to
the console, choose IoTDA Instances, and click the target
instance card. In the navigation pane, choose Overview.
Click Access Details in the Instance Information area,
and check the AMQPS access address.

Figure 7-54 Obtaining access information

amqp.vhost Currently, AMQP uses the default host. Only the default
host is supported.

amqp.saslMech
anisms

Connection authentication mode. Currently, PLAIN-SASL is
supported.

amqp.idleTime
out

Heartbeat interval, in milliseconds. If the heartbeat
interval expires and no frame is transmitted on the
connection, the platform closes the connection.

● Port: 5671
● Client identity authentication parameters

username ="accessKey=${accessKey}|timestamp=${timestamp}|instanceId=$
{instanceId}"
password = "${accessCode}"

Parameter Mandato
ry or
Optional

Description

accessKey Mandator
y

An accessKey can be used to establish a
maximum of 32 concurrent connections. When
establishing a connection for the first time, preset
the parameter by following the instructions
provided in Obtaining the AMQP Access
Credential.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 313

https://console-intl.huaweicloud.com/iotdm/#/dm-portal/home

Parameter Mandato
ry or
Optional

Description

timestamp Mandator
y

Indicates the current time. The value is a 13-digit
timestamp, accurate to milliseconds.
The server verifies the client timestamp. There is a
5-minute difference between the client timestamp
and server timestamp.

instanceId Optional Instance ID. This parameter is mandatory when
multiple instances of the standard edition are
purchased in the same region. For details, see
Viewing Instance Details.

accessCode Mandator
y

The value can contain a maximum of 256
characters. When establishing a connection for
the first time, preset the parameter by following
the instructions provided in Obtaining the AMQP
Access Credential. If the accessCode is lost, you
can call the API Generating an Access
Credential or follow the instructions provided in
Obtaining the AMQP Access Credential to reset
the accessCode.

Obtaining the AMQP Access Credential
If an application uses AMQP to access the platform for data transfer, preset an
access credential. You can call the API Generating an Access Credential or use
the console to preset an access credential. The procedure for using the console to
generate an access credential is as follows:

Step 1 Choose IoTDA Instances, select the edition of your instance, and click Details to
go to the instance details page.

Step 2 Click Preset Access Credential to preset the accessCode and accessKey.

Figure 7-55 Instance management - Preset access credential

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 314

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0111.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0111.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0111.html

NO TE

If you already have an access credential, the accessKey cannot be used after you preset the
access credential again.

----End

Connection Specifications

Key Documentation

Maximum number of queues that can
be subscribed for a connection

10

Maximum number of queues for a
user

100

Maximum number of connections for
a tenant

32

Cache duration of a message (days) 1

Receiving Push Messages

After the receiver link between the client and platform is established, the client
can proactively pull data or register a listener to enable the platform to push data.
The proactive mode is recommended, because the client can pull data based on its
own capability.

7.6.3.5 Java SDK Access Example

This topic describes how to connect an AMQP-compliant JMS client to the IoT
platform and receive subscribed messages from the platform.

Development Environment Requirements

JDK 1.8 or later has been installed.

Obtaining the Java SDK

The AMQP SDK is an open-source SDK. If you use Java, you are advised to use the
Apache Qpid JMS client. Visit Qpid JMS to download the client and view the
instructions for use.

Adding a Maven Dependency
<!-- amqp 1.0 qpid client -->
 <dependency>
 <groupId>org.apache.qpid</groupId>
 <artifactId>qpid-jms-client</artifactId>
 <version>0.61.0</version>
 </dependency>

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 315

https://qpid.apache.org/releases/index.html

Sample Code
You can click here to obtain the Java SDK access example. For details on the
parameters involved in the demo, see AMQP Client Access.

CA UTION

All sample code contains the logic of server reconnection upon disconnection.
You can obtain AmqpClient.java, AmqpClientOptions.java, and
AmqpConstants.java used in the sample code from here.

1. Create AmqpClient.

// Change the values of the following parameters as required.
AmqpClientOptions options = AmqpClientOptions.builder()
 .host(AmqpConstants.HOST)
 .port(AmqpConstants.PORT)
 .accessKey(AmqpConstants.ACCESS_KEY)
 .accessCode(AmqpConstants.ACCESS_CODE)
 .queuePrefetch(1000) // The SDK allocates the queue with the memory size set in this parameter
to receive messages. If the client memory size is small, set this parameter to a smaller value.
 .build();
 AmqpClient amqpClient = new AmqpClient(options);
 amqpClient.initialize();

2. Configure a listener to consume AMQP messages.

 try {
 MessageConsumer consumer = amqpClient.newConsumer(AmqpConstants.DEFAULT_QUEUE);
 consumer.setMessageListener(message -> {
 try {
 // Process messages. If the processing is time-consuming, you are advised to start a new thread.
Otherwise, the connection may be cut off due to heartbeat timeout.
 processMessage(message.getBody(String.class));
 // If options.isAutoAcknowledge==false is configured, call message.acknowledge();
 } catch (Exception e) {
 log.warn("message.getBody error,exception is ", e);
 }
 });
 } catch (Exception e) {
 log.warn("Consumer initialize error,", e);
 }

3. Pull AMQP messages.

 // Create a thread pool to pull messages.
 ExecutorService executorService = new ThreadPoolExecutor(1, 1, 60, TimeUnit.SECONDS,new
LinkedBlockingQueue<>(1));

 try {
 MessageConsumer consumer = amqpClient.newConsumer(AmqpConstants.DEFAULT_QUEUE);
 executorService.execute(() -> {
 while (!isClose.get()) {
 try {
 Message message = consumer.receive();
 // Process messages. If the processing is time-consuming, you are advised to start a new
thread. Otherwise, the connection may be cut off due to heartbeat timeout.
 processMessage(message.getBody(String.class));
 // If options.isAutoAcknowledge==false is configured, call message.acknowledge();
 } catch (JMSException e) {
 log.warn("receive message error,", e);
 }
 }
 });

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 316

https://developer.obs.myhuaweicloud.com/manage/amqp/amqp-demo.zip

 } catch (Exception e) {
 log.warn("Consumer initialize error,", e);
 }

4. For more demos about AMQP message consumption, see the access demo
project that uses the java SDK.

Resources

AmqpClient.java

package com.iot.amqp;

import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.StringUtils;
import org.apache.qpid.jms.JmsConnection;
import org.apache.qpid.jms.JmsConnectionExtensions;
import org.apache.qpid.jms.JmsConnectionFactory;
import org.apache.qpid.jms.JmsQueue;
import org.apache.qpid.jms.transports.TransportOptions;
import org.apache.qpid.jms.transports.TransportSupport;

import javax.jms.Connection;
import javax.jms.JMSException;
import javax.jms.MessageConsumer;
import javax.jms.Session;
import java.util.Collections;
import java.util.HashSet;
import java.util.Set;

@Slf4j
public class AmqpClient {
 private final AmqpClientOptions options;
 private Connection connection;
 private Session session;
 private final Set<MessageConsumer> consumerSet = Collections.synchronizedSet(new HashSet<>());

 public AmqpClient(AmqpClientOptions options) {
 this.options = options;
 }

 public String getId() {
 return options.getClientId();
 }

 public void initialize() throws Exception {
 String connectionUrl = options.generateConnectUrl();
 log.info("connectionUrl={}", connectionUrl);
 JmsConnectionFactory cf = new JmsConnectionFactory(connectionUrl);
 // Trust the server.
 TransportOptions to = new TransportOptions();
 to.setTrustAll(true);
 cf.setSslContext(TransportSupport.createJdkSslContext(to));
 String userName = "accessKey=" + options.getAccessKey();
 cf.setExtension(JmsConnectionExtensions.USERNAME_OVERRIDE.toString(), (connection, uri) -> {
 String newUserName = userName;
 if (connection instanceof JmsConnection) {
 newUserName = ((JmsConnection) connection).getUsername();
 }
 if (StringUtils.isEmpty(options.getInstanceId())) {
 // userName of IoTDA is in the following format: accessKey=${accessKey}|timestamp=${timestamp}.
 return newUserName + "|timestamp=" + System.currentTimeMillis();
 } else {
 //If multiple Standard Editions are purchased in the same region, the format of userName is
accessKey=${accessKey}|timestamp=${timestamp}|instanceId=${instanceId}.
 return newUserName + "|timestamp=" + System.currentTimeMillis() + "|instanceId=" +
options.getInstanceId();
 }

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 317

 });
 // Create a connection.
 connection = cf.createConnection(userName, options.getAccessCode());
 // Create sessions Session.CLIENT_ACKNOWLEDGE and Session.AUTO_ACKNOWLEDGE. For
Session.CLIENT_ACKNOWLEDGE, manually call message.acknowledge() after receiving a message. For
Session.AUTO_ACKNOWLEDGE, the SDK automatically responds with an ACK message (recommended).
 session = connection.createSession(false, options.isAutoAcknowledge() ?
Session.AUTO_ACKNOWLEDGE : Session.CLIENT_ACKNOWLEDGE);
 connection.start();
 }

 public MessageConsumer newConsumer(String queueName) throws Exception {
 if (connection == null || !(connection instanceof JmsConnection) || ((JmsConnection)
connection).isClosed()) {
 throw new Exception("create consumer failed,the connection is disconnected.");
 }
 MessageConsumer consumer;

 consumer = session.createConsumer(new JmsQueue(queueName));
 if (consumer != null) {
 consumerSet.add(consumer);
 }
 return consumer;
 }

 public void close() {
 consumerSet.forEach(consumer -> {
 try {
 consumer.close();
 } catch (JMSException e) {
 log.warn("consumer close error,exception is ", e);
 }
 });

 if (session != null) {
 try {
 session.close();
 } catch (JMSException e) {
 log.warn("session close error,exception is ", e);
 }
 }

 if (connection != null) {
 try {
 connection.close();
 } catch (JMSException e) {
 log.warn("connection close error,exception is", e);
 }
 }
 }
}

AmqpClientOptions.java

package com.iot.amqp;

import lombok.Builder;
import lombok.Data;
import org.apache.commons.lang3.StringUtils;

import java.text.MessageFormat;
import java.util.HashMap;
import java.util.Map;
import java.util.UUID;
import java.util.stream.Collectors;

@Data
@Builder
public class AmqpClientOptions {

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 318

 private String host;
 @Builder.Default
 private int port = 5671;
 private String accessKey;
 private String accessCode;
 private String clientId;

 /**
 * Specifies the instance ID. This parameter is required when multiple instances of the Standard Edition
are purchased in the same region.
 */
 private String instanceId;

 /**
 * Only true is supported.
 */
 @Builder.Default
 private boolean useSsl = true;

 /**
 * IoTDA supports default only.
 */
 @Builder.Default
 private String vhost = "default";

 /**
 * IoTDA supports PLAIN only.
 */
 @Builder.Default
 private String saslMechanisms = "PLAIN";

 /**
 * true: The SDK automatically responds with an ACK message (default).
 * false: After receiving a message, manually call message.acknowledge().
 */
 @Builder.Default
 private boolean isAutoAcknowledge = true;

 /**
 * Reconnection delay (ms)
 */
 @Builder.Default
 private long reconnectDelay = 3000L;

 /**
 * Maximum reconnection delay (ms). The reconnection delay increases with the number of reconnection
times.
 */
 @Builder.Default
 private long maxReconnectDelay = 30 * 1000L;

 /**
 * Maximum number of reconnection times. The default value is –1, indicating that the number of
reconnection times is not limited.
 */
 @Builder.Default
 private long maxReconnectAttempts = -1;

 /**
 * Idle timeout interval. If the peer end does not send an AMQP frame within the interval, the connection
will be cut off. The default value is 30000, in milliseconds.
 */
 @Builder.Default
 private long idleTimeout = 30 * 1000L;

 /**
 * The values below control how many messages the remote peer can send to the client and be held in a
pre-fetch buffer for each consumer instance.
 */

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 319

 @Builder.Default
 private int queuePrefetch = 1000;

 /**
 * Extended parameters
 */
 private Map<String, String> extendedOptions;

 public String generateConnectUrl() {
 String uri = MessageFormat.format("{0}://{1}:{2}", (useSsl ? "amqps" : "amqp"), host,
String.valueOf(port));
 Map<String, String> uriOptions = new HashMap<>();
 uriOptions.put("amqp.vhost", vhost);
 uriOptions.put("amqp.idleTimeout", String.valueOf(idleTimeout));
 uriOptions.put("amqp.saslMechanisms", saslMechanisms);

 Map<String, String> jmsOptions = new HashMap<>();
 jmsOptions.put("jms.prefetchPolicy.queuePrefetch", String.valueOf(queuePrefetch));
 if (StringUtils.isNotEmpty(clientId)) {
 jmsOptions.put("jms.clientID", clientId);
 } else {
 jmsOptions.put("jms.clientID", UUID.randomUUID().toString());
 }
 jmsOptions.put("failover.reconnectDelay", String.valueOf(reconnectDelay));
 jmsOptions.put("failover.maxReconnectDelay", String.valueOf(maxReconnectDelay));
 if (maxReconnectAttempts > 0) {
 jmsOptions.put("failover.maxReconnectAttempts", String.valueOf(maxReconnectAttempts));
 }
 if (extendedOptions != null) {
 for (Map.Entry<String, String> option : extendedOptions.entrySet()) {
 if (option.getKey().startsWith("amqp.") || option.getKey().startsWith("transport.")) {
 uriOptions.put(option.getKey(), option.getValue());
 } else {
 jmsOptions.put(option.getKey(), option.getValue());
 }
 }
 }
 StringBuilder stringBuilder = new StringBuilder();
 stringBuilder.append(uriOptions.entrySet().stream()
 .map(option -> MessageFormat.format("{0}={1}", option.getKey(), option.getValue()))
 .collect(Collectors.joining("&", "failover:(" + uri + "?", ")")));
 stringBuilder.append(jmsOptions.entrySet().stream()
 .map(option -> MessageFormat.format("{0}={1}", option.getKey(), option.getValue()))
 .collect(Collectors.joining("&", "?", "")));
 return stringBuilder.toString();
 }
}

AmqpConstants.java

package com.iot.amqp;

public interface AmqpConstants {
 /**
 * AMQP access domain name
 * eg: "****.iot-amqps.cn-north-4.myhuaweicloud.com";
 */
 String HOST = "127.0.0.1";

 /**
 * AMQP access port
 */
 int PORT = 5671;

 /**
 * Access key
 * A timestamp does not need to be combined.
 */

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 320

 String ACCESS_KEY = "accessKey";

 /**
 * Access code
 */
 String ACCESS_CODE = "accessCode";

 /**
 * Default queue
 */
 String DEFAULT_QUEUE = "DefaultQueue";
}

7.6.3.6 Node.js SDK Access Example
This topic describes how to use a Node.js AMQP SDK to connect to the Huawei
Cloud IoT platform and receive subscribed messages from the platform.

Development Environment
Node.js 8.0.0 or later is used. Download it from the Node.js official website. After
installation, run the following command to check the version:

node --version

If the version is displayed and is later than 8.0.0, the installation is successful.

Sample Code
1. Create a JavaScript file (for example, HwIotAmqpClient.js) on the local

computer and save the following sample code to the file. Modify related
connection parameters by referring to AMQP Client Access.
const container = require('rhea');
// Obtain the timestamp.
var timestamp = Math.round(new Date());

// Set up a connection.
var connection = container.connect({
 // Access domain name. For details, see AMQP Client Access.
 'host': '${UUCID}.iot-amqps.cn-north-4.myhuaweicloud.com',
 'port': 5671,
 'transport': 'tls',
 'reconnect': true,
 'idle_time_out': 8000,
 // Method to assemble username. For details, see AMQP Client Access.
 'username': 'accessKey=${yourAccessKey}|timestamp=' + timestamp + '|instanceId=${instanceId}',
 // accessCode. For details, see AMQP Client Access.
 'password': '${yourAccessCode}',
 'saslMechannisms': 'PLAIN',
 'rejectUnauthorized': false,
 'hostname': 'default',
});

// Create a Receiver connection. You can use DefaultQueue.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 321

https://nodejs.org/en/download/

var receiver = connection.open_receiver('${yourQueue}');

// Callback function for receiving messages pushed from the cloud
container.on('message', function (context) {
 var msg = context.message;
 var content = msg.body;
 console.log(content);
 // Send an ACK message. Note that the callback function should not contain time-consuming logic.
 context.delivery.accept();
 });

2. Go to the directory where the HwIotAmqpClient.js file is located and run the
following command to install the rhea library:
npm install rhea

After installation, the project files shown in the following figure are displayed.

3. Run the following command to start the AMQP client:
node HwIotAmqpClient.js

4. Running result examples

● Successful subscription:
If the following log information is displayed, the AMQP client successfully
subscribes to the IoT platform and obtains data from the platform.

● Failed subscription:
The following log indicates that the AMQP client authentication fails on the
IoT platform. Check whether the access code is correct and whether the
difference between the timestamp and the standard time is greater than 5
minutes.

7.6.3.7 C# SDK Access Example

This topic describes how to connect an AMQP.Net Lite client to the IoT platform
and receive subscribed messages from the platform.

Requirements for the Development Environment

.NET Framework 4.6 or later has been installed.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 322

Obtaining the Java SDK
1. Right-click the project directory and choose Manage NuGet Packages.

2. In the NuGet manager, search for AmqpNetLite and install the required version.

Sample Code
For details about the parameters in the demo, see AMQP Client Access.
using Amqp;
using Amqp.Framing;
using Amqp.Sasl;
using System;
using System.Threading;

namespace AmqpDemo
{
 class Program
 {
 /// <summary>
 /// Access domain name. For details, see "AMQP Client Access".
 /// See Connection Configuration Parameters.
 /// </summary>
 static string Host = "${Host}";

 /// <summary>
 /// Port
 /// </summary>
 static int Port = 5671;

 /// <summary>
 /// Access key
 /// </summary>
 static string AccessKey = "${YourAccessKey}";

 /// <summary>

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 323

 /// Access code
 /// </summary>
 static string AccessCode = "${yourAccessCode}";

 /// <summary>
 /// Instance ID. This parameter is required when multiple instances of the Standard Edition are
purchased in the same region.
 /// </summary>
 static string InstanceId = "${instanceId}";

 /// <summary>
 /// Queue name
 /// </summary>
 static string QueueName = "${yourQueue}";

 static Connection connection;

 static Session session;

 static ReceiverLink receiverLink;

 static DateTime lastConnectTime = DateTime.Now;

 static void Main(string[] args)
 {
 try
 {
 connection = CreateConnection();
 // Add a connection exception callback.
 connection.AddClosedCallback(ConnectionClosed);

 // Create a session.
 var session = new Session(connection);

 // Create a receiver link.
 receiverLink = new ReceiverLink(session, "receiverName", QueueName);

 // Receive a message.
 ReceiveMessage(receiverLink);
 }
 catch (Exception e)
 {
 Console.WriteLine(e);
 }

 // Press Enter to exit the program.
 Console.ReadLine();

 ShutDown();
 }

 /// <summary>
 /// Create a connection.
 /// </summary>
 /// <returns>Connection</returns>
 static Connection CreateConnection()
 {
 lastConnectTime = DateTime.Now;
 long timestamp = new DateTimeOffset(DateTime.UtcNow).ToUnixTimeMilliseconds();
 string userName = "accessKey=" + AccessKey + "|timestamp=" + timestamp + "|instanceId=" +
InstanceId;
 Address address = new Address(Host, Port, userName, AccessCode);
 ConnectionFactory factory = new ConnectionFactory();
 factory.SASL.Profile = SaslProfile.External;
 // Trust the server and skip certificate verification.
 factory.SSL.RemoteCertificateValidationCallback = (sender, certificate, chain, sslPolicyError) =>
{ return true; };
 factory.AMQP.IdleTimeout = 8000;
 factory.AMQP.MaxFrameSize = 8 * 1024;

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 324

 factory.AMQP.HostName = "default";
 var connection = factory.CreateAsync(address).Result;
 return connection;
 }

 static void ReceiveMessage(ReceiverLink receiver)
 {
 receiver.Start(20, (link, message) =>
 {
 // Process the message in the thread pool to prevent the thread that pulls the message from
being blocked.
 ThreadPool.QueueUserWorkItem((obj) => ProcessMessage(obj), message);
 // Return an ACK message.
 link.Accept(message);
 });
 }

 static void ProcessMessage(Object obj)
 {
 if (obj is Message message)
 {
 string body = message.Body.ToString();
 Console.WriteLine("receive message, body=" + body);
 }
 }

 static void ConnectionClosed(IAmqpObject amqpObject, Error e)
 {
 // Reconnection upon disconnection
 ThreadPool.QueueUserWorkItem((obj) =>
 {
 ShutDown();
 int times = 0;
 while (times++ < 5)
 {
 try
 {
 Thread.Sleep(1000);
 connection = CreateConnection();
 // Add a connection exception callback.
 connection.AddClosedCallback(ConnectionClosed);

 // Create a session.
 session = new Session(connection);

 // Create a receiver link.
 receiverLink = new ReceiverLink(session, "receiverName", QueueName);

 // Receive a message.
 ReceiveMessage(receiverLink);
 break;
 }
 catch (Exception exception)
 {
 Console.WriteLine("reconnect error, exception =" + exception);
 }
 }
 });
 }

 static void ShutDown()
 {
 if (receiverLink != null)
 {
 try
 {
 receiverLink.Close();

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 325

 }
 catch (Exception e)
 {
 Console.WriteLine("close receiverLink error, exception =" + e);
 }

 }
 if (session != null)
 {
 try
 {
 session.Close();
 }
 catch (Exception e)
 {
 Console.WriteLine("close session error, exception =" + e);
 }

 }

 if (connection != null)
 {
 try
 {
 connection.Close();
 }
 catch (Exception e)
 {
 Console.WriteLine("close connection error, exception =" + e);
 }

 }
 }
 }
}

7.6.3.8 Android SDK Access Example
This topic describes how to use AMQP to connect the Android system to the IoT
platform and receive subscribed messages from the platform.

Preparations
● Install Android Studio. Go to the Android Studio website to download and

install a desired version. The following uses Android Studio 4.1.1 running on
64-bit Windows as an example.

Figure 7-56 Downloading Android Studio

● Install the JDK. You can also use the built-in JDK of the IDE.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 326

https://developer.android.google.cn/studio/#downloads

a. Go to the Oracle website to download a desired version. The following
uses JDK 8 for Windows x64 as an example.

b. After the download is complete, run the installation file and install
Node.js as prompted.

Development Environment
The development environments used in this example are as follows:

● JDK 1.8 or later
● Android SDK Platform of API level 28 or later
● Apache Qpid Proton-J client

Sample Code

Step 1 Download the AMQP demo.

Step 2 Run Android Studio, click Open, and select the sample code downloaded in 1.

Figure 7-57 Incorporate into existing projects

Step 3 Import the sample code.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 327

https://www.oracle.com/java/technologies/javase-downloads.html
https://qpid.apache.org/proton/index.html
https://iot-developer.obs.cn-north-4.myhuaweicloud.com/amqp/amqp-demo%28android%29.zip

Figure 7-58 Importing the project structure

Step 4 (Optional) Set AMQP connection parameters in the res\values\strings.xml file in
advance. For details, see AMQP Client Access.

Figure 7-59 Modifying connection parameters

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 328

Step 5 In the AVD Manager configuration, select a device model and a virtual device of
API level 28 for debugging.

Figure 7-60 Configuring the AVD Manager

Step 6 Start the demo for debugging.

Figure 7-61 Starting the demo

----End

Related Information

AMQP connection configuration page is displayed in the following figure.
INSTANCE ID is mandatory when multiple standard IoTDA instances are
purchased in the same region. For details about the parameters, see AMQP Client
Access.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 329

Figure 7-62 AMQP connection configuration

● The following figure shows the page indicating that the connection is
successful after the parameter modification.

Figure 7-63 Connection succeeded

● The following figure shows the page indicating that the transfer data is
successfully obtained.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 330

Figure 7-64 Receiving platform messages

● The following figure shows the page indicating that the network connection
failed.

Figure 7-65 Network connection failed

● The following figure shows the page indicating that access information
(accessKey, accessCode, and instanceId) is incorrect.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 331

Figure 7-66 Incorrect access information

● The following figure shows the page indicating that the queue does not exist.

Figure 7-67 Queue not existing

7.6.3.9 Python SDK Access Example
This topic describes how to use a Python 3 SDK to connect to the Huawei Cloud
IoT platform and receive subscribed messages from the platform based on AMQP.

Development Environment
Python 3.0 or later is required. In this example, Python 3.9 is used.

Downloading the SDK
In this example, AMQP SDK python-qpid-proton (version 0.37.0) is used. You can
run the following command to install the SDK of the latest version:

pip install python-qpid-proton

You can also manually install it by referring to Installing Qpid Proton.

Sample Code
import threading
import time

from proton import SSLDomain

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 332

https://qpid.apache.org/proton/
https://github.com/apache/qpid-proton/blob/main/INSTALL.md

from proton.handlers import MessagingHandler
from proton.reactor import Container

Reconnection times
reconnectTimes = 0

def current_time_millis():
 return str(int(round(time.time() * 1000)))

class AmqpClient(MessagingHandler):
 def __init__(self, host, port, accessKey, accessCode, queueName, instanceId):
 super(AmqpClient, self).__init__()
 self.host = host
 self.port = port
 self.accessKey = accessKey
 self.accessCode = accessCode
 self.queueName = queueName
 self.instanceId = instanceId

 def on_start(self, event):
 # Access domain name. For details, see "AMQP Client Access".
 url = "amqps://%s:%s" % (self.host, self.port)

 timestamp = current_time_millis()
 userName = "accessKey=" + self.accessKey + "|timestamp=" + timestamp + "|instanceId=" +
self.instanceId
 passWord = self.accessCode
 # By default, the server certificate is not verified.
 sslDomain = SSLDomain(SSLDomain.MODE_CLIENT)
 sslDomain.set_peer_authentication(SSLDomain.ANONYMOUS_PEER)
 self.conn = event.container.connect(url, user=userName, password=passWord, heartbeat=60,
ssl_domain=sslDomain,
 reconnect=False)
 event.container.create_receiver(self.conn, source=self.queueName)

 # Called when the connection is established.
 def on_connection_opened(self, event):
 global reconnectTimes
 reconnectTimes = 0
 print("Connection established, remoteUrl: %s", event.connection.hostname)

 # Called when the connection is cut off.
 def on_connection_closed(self, event):
 print("Connection closed: %s", self)
 ReconnectThread("reconnectThread").start()

 # Called when the remote end is disconnected due to an error.
 def on_connection_error(self, event):
 print("Connection error:%s", self)
 ReconnectThread("reconnectThread").start()

 # Called when an error occurs during AMQP connection establishment. Such errors include
authentication and socket errors.
 def on_transport_error(self, event):
 if event.transport.condition:
 if event.transport.condition.info:
 print("%s: %s: %s" % (event.transport.condition.name, event.transport.condition.description,
 event.transport.condition.info))
 else:
 print("%s: %s" % (event.transport.condition.name, event.transport.condition.description))
 else:
 print("Unspecified transport error")
 ReconnectThread("reconnectThread").start()

 # Called when a message is received.
 def on_message(self, event):
 message = event.message

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 333

 content = message.body
 print("receive message: content=%s" % content)

class ReconnectThread(threading.Thread):
 def __init__(self, name):
 threading.Thread.__init__(self)
 self.name = name

 def run(self):
 global reconnectTimes
 reconnectTimes = reconnectTimes + 1
 time.sleep(15 if reconnectTimes > 15 else reconnectTimes)
 Container(AmqpClient(amqpHost, amqpPort, amqpAccessKey, amqpAccessCode, amqpQueueName,
instanceId)).run()

For details about how to set the following parameters, see Connection Configuration Parameters.
AMQP access domain name
amqpHost = "127.0.0.1"

AMQP access port
amqpPort = 5671

Access key
amqpAccessKey = 'your AccessKey'

Access code
amqpAccessCode = 'your AccessCode'

Name of the subscription queue
amqpQueueName = 'DefaultQueue'

Instance ID. This parameter is mandatory when multiple instances of the standard edition are purchased
in the same region.
instanceId = ''

Container(AmqpClient(amqpHost, amqpPort, amqpAccessKey, amqpAccessCode, amqpQueueName,
instanceId)).run()

7.6.3.10 Go SDK Access Example
This topic describes how to use a Go SDK to connect to the Huawei Cloud IoT
platform and receive subscribed messages from the platform based on AMQP.

Development Environment Requirements
Go 1.16 or later has been installed.

Adding Dependencies
Add the following dependencies to go.mod:

require (
 pack.ag/amqp v0.12.5 // v0.12.5 is used in this example. Select a version as required.
)

Sample Code
package main

import (
 "context"
 "crypto/tls"
 "fmt"

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 334

 "pack.ag/amqp"
 "time"
)

type AmqpClient struct {
 Title string
 Host string
 AccessKey string
 AccessCode string
 InstanceId string
 QueueName string

 address string
 userName string
 password string

 client *amqp.Client
 session *amqp.Session
 receiver *amqp.Receiver
}

type MessageHandler interface {
 Handle(message *amqp.Message)
}

func (ac *AmqpClient) InitConnect() {
 if ac.QueueName == "" {
 ac.QueueName = "DefaultQueue"
 }
 ac.address = "amqps://" + ac.Host + ":5671"
 ac.userName = fmt.Sprintf("accessKey=%s|timestamp=%d|instanceId=%s", ac.AccessKey,
time.Now().UnixNano()/1000000, ac.InstanceId)
 ac.password = ac.AccessCode
}

func (ac *AmqpClient) StartReceiveMessage(ctx context.Context, handler MessageHandler) {
 childCtx, _ := context.WithCancel(ctx)
 err := ac.generateReceiverWithRetry(childCtx)
 if nil != err {
 return
 }
 defer func() {
 _ = ac.receiver.Close(childCtx)
 _ = ac.session.Close(childCtx)
 _ = ac.client.Close()
 }()

 for {
 // Block message receiving. If ctx is a context created based on the background function, message
receiving will not be blocked.
 message, err := ac.receiver.Receive(ctx)
 if nil == err {
 go handler.Handle(message)
 _ = message.Accept()
 } else {
 fmt.Println("amqp receive data error: ", err)

 // If message receiving is manually disabled, exit the program.
 select {
 case <-childCtx.Done():
 return
 default:
 }

 // If message receiving is not manually disabled, retry the connection.
 err := ac.generateReceiverWithRetry(childCtx)
 if nil != err {
 return
 }

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 335

 }
 }
}

func (ac *AmqpClient) generateReceiverWithRetry(ctx context.Context) error {
 // Retries with exponential backoff, from 10 ms to 20s.
 duration := 10 * time.Millisecond
 maxDuration := 20000 * time.Millisecond
 times := 1

 // Retries with exponential backoff
 for {
 select {
 case <-ctx.Done():
 return amqp.ErrConnClosed
 default:
 }

 err := ac.generateReceiver()
 if nil != err {
 fmt.Println("amqp ac.generateReceiver error ", err)
 time.Sleep(duration)
 if duration < maxDuration {
 duration *= 2
 }
 fmt.Println("amqp connect retry,times:", times, ",duration:", duration)
 times++
 return nil
 } else {
 fmt.Println("amqp connect init success")
 return nil
 }
 }
}

// The statuses of the connection and session cannot be determined because the packets are unavailable.
Retry the connection to obtain the information.
func (ac *AmqpClient) generateReceiver() error {

 if ac.session != nil {
 receiver, err := ac.session.NewReceiver(
 amqp.LinkSourceAddress(ac.QueueName),
 amqp.LinkCredit(20),
)
 // If a network disconnection error occurs, the connection is ended and the session fails to be
established. Otherwise, the connection is established.
 if err == nil {
 ac.receiver = receiver
 return nil
 }
 }

 // Delete the previous connection.
 if ac.client != nil {
 _ = ac.client.Close()
 }
 ac.userName = fmt.Sprintf("accessKey=%s|timestamp=%d|instanceId=%s", ac.AccessKey,
time.Now().UnixNano()/1000000, ac.InstanceId)
 fmt.Println("[" + ac.Title + "] Dial... addr=[" + ac.address + "], username=[" + ac.userName + "],
password=[" + ac.password + "]")
 client, err := amqp.Dial(ac.address,
 amqp.ConnSASLPlain(ac.userName, ac.password),
 amqp.ConnProperty("vhost", "default"),
 amqp.ConnServerHostname("default"),
 amqp.ConnTLSConfig(&tls.Config{InsecureSkipVerify: true,
 MaxVersion: tls.VersionTLS12,
 }),
 amqp.ConnConnectTimeout(8*time.Second))
 if err != nil {

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 336

 fmt.Println("Dial", err)
 return err
 }
 ac.client = client
 session, err := client.NewSession()
 if err != nil {
 XDebug("Error: NewSession", err)
 return err
 }
 ac.session = session

 receiver, err := ac.session.NewReceiver(
 amqp.LinkTargetDurability(amqp.DurabilityUnsettledState),
 amqp.LinkSourceAddress(ac.QueueName),
 amqp.LinkCredit(100),
)
 if err != nil {
 XDebug("Error: NewReceiver", err)
 return err
 }
 ac.receiver = receiver

 return nil
}

func XDebug(s string, err error) {
 fmt.Println(s, err)
}

type CustomerMessageHandler struct {
}

func (c *CustomerMessageHandler) Handle(message *amqp.Message) {
 fmt.Println("AMQP receives messages.", message.Value)
}

func main() {
 // For details about how to set the following parameters, see Connection Configuration Parameters.
 // AMQP access domain name
 amqpHost := "127.0.0.1"

 // Access key
 amqpAccessKey := "your accessKey"

 // Access code
 amqpAccessCode := "your accessCode"

 // Instance ID
 instanceId:= "your intanceId"

 // Name of the subscription queue
 amqpQueueName := "DefaultQueue"

 amqpClient := &AmqpClient{
 Title: "test",
 Host: amqpHost,
 AccessKey: amqpAccessKey,
 AccessCode: amqpAccessCode,
 InstanceId: instanceId,
 QueueName: amqpQueueName,
 }

 handle := CustomerMessageHandler{}
 amqpClient.InitConnect()
 ctx := context.Background()
 amqpClient.StartReceiveMessage(ctx, &handle)
}

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 337

7.6.4 MQTT Data Forwarding

7.6.4.1 Overview

The figure below shows the subscription and push process.

Push mechanism: The IoT platform pushes QoS 0 messages to users. If a user
does not establish a connection or does not subscribe to the topic after the
connection is established, the IoT platform will delete expired data and data that
exceeds the capacity limit in rolling mode when the maximum cache duration (24
hours) or maximum cache size (1 GB) is reached or exceeded.

Subscribing to Data
1. You can create a rule and add an MQTT message queue as the forwarding

target on the console to subscribe to data. For details, see MQTT Server
Configuration.

2. Call APIs to subscribe to data. For details, see Calling APIs, Creating a Rule
Triggering Condition, Creating a Rule Action, and Modifying a Rule
Triggering Condition.

Format of Pushed Data

For details on the format of data pushed by the platform to applications after
data subscription is created, see Data Transfer APIs.

Constraints

Description Constraint

Supported MQTT version 3.1.1

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 338

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0090.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01200.html

Description Constraint

Differences from the standard
MQTT protocol

● QoS 0 is supported.
● Custom topics are supported.
● Shared subscription is supported.
● QoS 1 and QoS 2 are not supported.
● Will and retained messages are not

supported.
● Client publishing is not supported.

Security level supported by MQTTS TCP + TLS (TLS v1.2)
Supported cipher suites:
● TLS_ECDHE_RSA_WITH_AES_128_GCM_

SHA256
● TLS_ECDHE_RSA_WITH_AES_256_GCM_

SHA384

MQTT connection requests for an
account per second

10

MQTT connections for an account 10 per access credential

Push rate of an MQTT connection 1,000 TPS

Message cache duration and size The maximum duration is one day, and
the maximum size is 1 GB. Caching is
limited by either of the item. For example,
if the cache duration exceeds one day,
data will not be cached even if the size
does not reach 1 GB.

Recommended heartbeat interval
for MQTT connections

Range: 30s to 1200s; recommended: 120s

Message publishing and
subscription

● Shared subscription is supported.
Clients that subscribe to the same topic
consume pushed data in polling mode.
Clients can subscribe to only the topics
created in the forwarding rule.

● Message publishing is not supported.

Subscriptions per subscription
request

Maximum number of topics supported by
an account

Topics subscribed to by an account
(created during rule action
creation)

100

7.6.4.2 MQTT Server Configuration
This topic describes how to set and manage MQTT server subscription on the IoT
platform.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 339

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Rules > Data Forwarding, and click Create Rule
on the left.

Figure 7-68 Data forwarding - Creating a rule

Step 3 Set the parameters based on the table below and click Create Rule.

Table 7-16 Parameters for creating a rule

Parameter Description

Rule Name Name of the rule to be created.

Description Description of the rule.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 340

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Parameter Description

Data Source ● Device: Device information, such as device addition, deletion,
and update, will be forwarded. When Data Source is set to
Device, quick configuration is not supported.

● Device property: A property value reported by a device in a
resource space will be forwarded. Click Quick Configuration
on the right and select the product, property, and service
data to forward.

● Device message: A message reported by a device in a
resource space will be forwarded. Click Quick Configuration
on the right and select data of a specified topic to forward.
Select the product to which the topic belongs and enter the
topic name. You can use a custom topic on the product
details page or a preset topic.

● Device message status: The status of device messages
exchanged between the device and platform will be
forwarded. For details on the device message status, see
Message Delivery Status. When Data Source is set to
Device message status, quick configuration is not supported.

● Device status: The status change of a directly or an indirectly
connected device in a resource space will be forwarded. Click
Quick Configuration on the right to forward information
about devices whose status is Online, Offline, or Abnormal
to other services. For details on the status of devices directly
connected to the platform, see Device Management.

● Batch task: The batch task status will be forwarded. When
Data Source is set to Batch Task, quick configuration is not
supported.

● Product: Product information, such as product addition,
deletion, and update, will be forwarded. When Data Source
is set to Product, quick configuration is not supported.

● Asynchronous command status of the device: Status
changes of asynchronous commands to devices using
LwM2M over CoAP will be forwarded. For details on the
asynchronous command status of devices, see Asynchronous
Command Delivery. When Data Source is set to
Asynchronous command status of the device, quick
configuration is not supported.

● Run log: Service run logs of MQTT devices will be forwarded.
When Data Source is set to Run log, quick configuration is
not supported.

Trigger After you select a data source, the platform automatically
matches trigger events.

Resource
Space

You can select a single resource space or all resource spaces. If
All resource spaces is selected, quick configuration is not
supported.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 341

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3004.html

Step 4 Under Set Forwarding Target, click Add. On the displayed page, set the
parameters based on the table below and click OK.

Parameter Description

Forwarding
Target

Select MQTT message queue.

Push Topic Enter the MQTT topic to which data is forwarded.
● The topic queue name can be customized and must be

unique under an account. It can contain up to 128
characters. Use only letters, digits, underscores (_),
hyphens (-), and slashes (/).

● The topic that is used for the first time belongs to the
resource space selected during rule creation. The topic can
be used only in the resource space. If All resource spaces
is selected during rule creation, the topic can be used in all
resource spaces.

Figure 7-69 Creating a forwarding target - to an MQTT push message queue

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 342

Step 5 After the rule is defined, click Enable Rule to start forwarding data to the MQTT
message queue.

----End

7.6.4.3 MQTT Client Access
After configuring and activating rules by calling the platform APIs Creating a Rule
Triggering Condition, Creating a Rule Action, and Modifying a Rule Triggering
Condition, connect the MQTT client to IoTDA. Then run the MQTT client on your
server to receive subscribed-to messages.

Connection Configuration Parameters
The table below describes the connection address and connection authentication
parameters for the MQTT client to connect to the platform.

● MQTT access domain name
It is automatically generated for each account. Log in to the IoTDA console
to obtain it on the Access Details page.

Figure 7-70 Access information - MQTT access address on the application
side

● Port: 8883
● Client identity authentication parameters

clientId: The value must be globally unique. You are advised to use username.
username ="accessKey=${accessKey}|timestamp=${timestamp}|instanceId=$
{instanceId}"
password ="${accessCode}"

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 343

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01309.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01309.html
https://console-intl.huaweicloud.com/iotdm/?region=cn-north-4&locale=en-us#/dm-portal/home

Parameter Mandato
ry

Description

$
{accessKey
}

Yes An accessKey can be used to establish a
maximum of 10 concurrent connections. When
establishing a connection for the first time, preset
the parameter by following the instructions
provided in Obtaining the AMQP Access
Credential.

$
{timestam
p}

Yes Current time. The value is a 13-digit timestamp,
accurate to milliseconds. The server verifies the
client timestamp. There is a 5-minute difference
between the client timestamp and server
timestamp.

instanceId Optional Instance ID. This parameter is mandatory when
multiple instances of the standard edition are
purchased in the same region. For details, see
Viewing Instance Details.

$
{accessCod
e}

Yes The value can contain a maximum of 256
characters.

Obtaining the MQTT Access Credential
An access credential is required for an application that uses MQTT to connect to
the platform for data forwarding. If you use an access credential for the first time
or forget it, preset an access credential. You can call the API for generating an
access credential or use the console to preset an access credential. The procedure
for using the console to generate an access credential is as follows:

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 Choose Rules > Data Forwarding. The Rule List page is displayed.

Figure 7-71 Rule details - Viewing rule details

Step 3 Click View. (If no rule exists, create one.) On the rule details page that is
displayed, click the Set Forwarding Target tab.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 344

https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0079.html#section1
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0111.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0111.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 7-72 Forwarding target - Setting a target

Step 4 Click Add. On the Add Forwarding Target page that is displayed, select MQTT
message queue for Forwarding Target, and click Preset Access Credential to
preset the access code and access key.

Figure 7-73 Creating a forwarding target - to an MQTT push message queue with
preset credentials

NO TE

If you already have an access credential, the accessKey cannot be used after you preset the
access credential again.

----End

Receiving Push Messages
After a connection is established between the client and the platform, subscribe to
the MQTT topic in the data forwarding rule. When a device reports data and the
rule is triggered, the platform pushes the data to the MQTT client.

7.6.4.4 Java Demo Usage Guide
This topic uses Java as an example to describe how to connect an MQTTS client to
the platform and receive subscribed messages from the platform.

Prerequisites
You have installed IntelliJ IDEA by following the instructions provided in For details
about the installation, see Installing IntelliJ IDEA.

Installing IntelliJ IDEA
1. Go to the IntelliJ IDEA website to download and install a desired version.

The following uses 64-bit IntelliJ IDEA 2019.2.3 Ultimate as an example.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 345

https://www.jetbrains.com/idea/

2. After the download is complete, run the installation file and install Node.js as
prompted.

Importing Sample Code

Step 1 Download the Java demo.

Step 2 Open the IDEA developer tool and click Import Project.

Step 3 Select the Java demo downloaded in 1 and click Next.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 346

https://obs-pipeline.obs.cn-north-4.myhuaweicloud.com/north/mqttdemo-new.zip

Step 4 Import the sample code.

----End

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 347

Establishing a Connection

Step 1 Set the access address and authentication parameters in
com.iot.mqtt.example.demo.MqttConstants.
// Address for connecting the MQTT client to the platform. Replace it with the MQTT access domain name
in "Connection Configuration Parameters".
String HOST = "${HOST}";
// Access credential. Replace it with the access credential obtained in "Obtaining the MQTT Access
Credential".
String ACCESS_KEY = "${accessKey}";
String ACCESS_CODE = "${accessCode}";
// Instance ID. This parameter is mandatory when multiple standard instances are purchased in the same
region.
String INSTANCE_ID = "${instanceId}";
// Topic for receiving data. Replace it with the topic used for rule action creation.
String SUBSCRIBE_TOPIC = "${subscribeTopic}";

NO TE

For details about the parameters in the demo, see Connection Configuration Parameters.

Step 2 Run the sample code (com.iot.mqtt.example.demo.MqttDemo) and check whether
the subscription is successful based on the log information. This example does not
involve the server certificate verification. For details about how to verify the server
certificate, see com.iot.mqtt.example.demo.MqttTlsDemo.
● Successful subscription

Figure 7-74 Successful subscription

● Failed subscription

a. The username or password is incorrect.

Figure 7-75 Incorrect username or password

b. The topic does not exist.

Figure 7-76 The topic does not exist

----End

Receiving Data
After topic subscription, when a device reports data and a rule is triggered, the
MQTT client can receive the forwarded data. The following figure shows the logs
generated when the forwarded data is received.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 348

Figure 7-77 Receiving the forwarded data

7.6.4.5 Python Demo
This section uses Python as an example to describe how to connect an MQTTS
client to the platform and receive subscribed messages from the platform.

Prerequisites
Knowledge of basic Python syntax and how to configure development
environments.

Development Environment
In this example, Python 3.8.8 is used.

Dependency
In this example, paho-mqtt (version 2.0.0) is used. You can run the following
command to download the dependency:

pip install paho-mqtt==2.0.0

Sample Code
ClientConf code:

from typing import Optional
class ClientConf:
 def __init__(self):
 # MQTT subscription address
 self.__host: Optional[str] = None
 # MQTT subscription port number
 self.__port: Optional[int] = None
 # MQTT access credential access_key
 self.__access_key: Optional[str] = None
 # MQTT access credential access_code
 self.__access_code: Optional[str] = None
 # MQTT subscription topic
 self.__topic: Optional[str] = None
 # Instance ID. This parameter is mandatory when multiple instances of the standard edition are
purchased in the same region.
 self.__instance_id: Optional[str] = None
 # mqtt qos
 self.__qos = 1

 @property
 def host(self):
 return self.__host
 @host.setter
 def host(self, host):
 self.__host = host
 @property
 def port(self):
 return self.__port
 @port.setter

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 349

https://github.com/eclipse/paho.mqtt.python

 def port(self, port):
 self.__port = port
 @property
 def access_key(self):
 return self.__access_key
 @access_key.setter
 def access_key(self, access_key):
 self.__access_key = access_key
 @property
 def access_code(self):
 return self.__access_code
 @access_code.setter
 def access_code(self, access_code):
 self.__access_code = access_code
 @property
 def topic(self):
 return self.__topic
 @topic.setter
 def topic(self, topic):
 self.__topic = topic
 @property
 def instance_id(self):
 return self.__instance_id
 @instance_id.setter
 def instance_id(self, instance_id):
 self.__instance_id = instance_id
 @property
 def qos(self):
 return self.__qos
 @qos.setter
 def qos(self, qos):
 self.__qos = qos

MqttClient code:

import os
import ssl
import threading
import time
import traceback
import secrets
from client_conf import ClientConf
import paho.mqtt.client as mqtt
class MqttClient:
 def __init__(self, client_conf: ClientConf):
 self.__host = client_conf.host
 self.__port = client_conf.port
 self.__access_key = client_conf.access_key
 self.__access_code = client_conf.access_code
 self.__topic = client_conf.topic
 self.__instance_id = client_conf.instance_id
 self.__qos = client_conf.qos
 self.__paho_client: Optional[mqtt.Client] = None
 self.__connect_result_code = -1
 self.__default_backoff = 1000
 self.__retry_times = 0
 self.__min_backoff = 1 * 1000 # 1s
 self.__max_backoff = 30 * 1000 # 30s

 def connect(self):
 self.__valid_params()
 rc = self.__connect()
 while rc != 0:
 # Backoff reconnection
 low_bound = int(self.__default_backoff * 0.8)
 high_bound = int(self.__default_backoff * 1.0)
 random_backoff = secrets.randbelow(high_bound - low_bound)
 backoff_with_jitter = int(pow(2, self.__retry_times)) * (random_backoff + low_bound)
 wait_time_ms = self.__max_backoff if (self.__min_backoff + backoff_with_jitter) > self.__max_backoff
else (

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 350

 self.__min_backoff + backoff_with_jitter)
 wait_time_s = round(wait_time_ms / 1000, 2)
 print("client will try to reconnect after " + str(wait_time_s) + " s")
 time.sleep(wait_time_s)
 self.__retry_times += 1
 self.close() # Release the previous connection.
 rc = self.__connect()
 # If the value of rc is 0, the connection is set up successfully. If not, the connection fails.
 if rc != 0:
 print("connect with result code: " + str(rc))
 if rc == 134:
 print("connect failed with bad username or password, "
 "reconnection will not be performed")
 pass
 return rc
 def __connect(self):
 try:
 timestamp = self.current_time_millis()
 user_name = "accessKey=" + self.__access_key + "|timestamp=" + timestamp
 if self.__instance_id:
 user_name = user_name + "|instanceId=" + self.__instance_id
 pass_word = self.__access_code
 self.__paho_client = mqtt.Client(mqtt.CallbackAPIVersion.VERSION2, "mqttClient")
 # Disable automatic retry and update the timestamp by manual retry.
 self.__paho_client._reconnect_on_failure = False
 # Set the callback function.
 self._set_callback()
 # Topics are stored in userdata. The callback function directly subscribes to topics.
 self.__paho_client.user_data_set(self.__topic)
 self.__paho_client.username_pw_set(user_name, pass_word)
 # Currently, the MQTT broker supports only TLS 1.2.
 context = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2)
 # Not verifying the server certificate.
 context.verify_mode = ssl.CERT_NONE
 context.check_hostname = False
 self.__paho_client.tls_set_context(context)
 rc = self.__paho_client.connect(self.__host, self.__port)
 self.__connect_result_code = rc
 if rc == 0:
 threading.Thread(target=self.__paho_client.loop_forever, args=(1, False),
name="MqttThread").start()
 # Wait for connection establishment.
 time.sleep(1)
 except Exception as e:
 self.__connect_result_code = -1
 print("Mqtt connection error. traceback: " + traceback.format_exc())
 if self.__paho_client.is_connected():
 return 0
 else:
 return self.__connect_result_code
 def __valid_params(self):
 assert self.__access_key is not None
 assert self.__access_code is not None
 assert self.__topic is not None

 @staticmethod
 def current_time_millis():
 return str(int(round(time.time() * 1000)))
 def _set_callback(self):
 # Execute self._on_connect() when the platform responds to the connection request.
 self.__paho_client.on_connect = self._on_connect
 # Execute self._on_disconnect() when disconnecting from the platform.
 self.__paho_client.on_disconnect = self._on_disconnect
 # Execute self._on_subscribe when subscribing to a topic.
 self.__paho_client.on_subscribe = self._on_subscribe
 # Execute self._on_message() when an original message is received.
 self.__paho_client.on_message = self._on_message
 def _on_connect(self, client, userdata, flags, rc: mqtt.ReasonCode, properties):
 if rc == 0:

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 351

 print("Connected to Mqtt Broker! topic " + self.__topic)
 client.subscribe(userdata, 1)
 else:
 # Automatic reconnection is not performed only when the username or password is incorrect.
 # If the disconnect() method is not used here, loop_forever keeps reconnecting.
 if rc == 134:
 self.__paho_client.disconnect()
 print("Failed to connect. return code :" + str(rc.value) + ", reason" + rc.getName())
 def _on_subscribe(self, client, userdata, mid, granted_qos, properties):
 print("Subscribed: " + str(mid) + " " + str(granted_qos) + " topic: " + self.__topic)
 def _on_message(self, client, userdata, message: mqtt.MQTTMessage):
 print("topic " + self.__topic + " Received message: " + message.payload.decode())
 def _on_disconnect(self, client, userdata, flags, rc, properties):
 print("Disconnect to Mqtt Broker. topic: " + self.__topic)
 # Shut down the client after the disconnection and manually reconnect the client to refresh the
timestamp.
 try:
 self.__paho_client.disconnect()
 except Exception as e:
 print("Mqtt connection error. traceback: " + traceback.format_exc())
 self.connect()
 def close(self):
 if self.__paho_client is not None and self.__paho_client.is_connected():
 try:
 self.__paho_client.disconnect()
 print("Mqtt connection close")
 except Exception as e:
 print("paho client disconnect failed. exception: " + str(e))
 else:
 pass

MqttDemo code:

from client_conf import ClientConf
from mqtt_client import MqttClient
import os
from typing import Optional
def main():
 client_conf = ClientConf()
 client_conf.host = "your ip host"
 client_conf.port = 8883
 client_conf.topic = "your mqtt topic"
 # MQTT access credential access_key can be injected using environment variables.
 client_conf.access_key = os.environ.get("MQTT_ACCESS_KEY")
 # MQTT access credential access_code can be injected using environment variables.
 client_conf.access_code = os.environ.get("MQTT_ACCESS_CODE")
 client_conf.instance_id = "your instance id"
 mqtt_client = MqttClient(client_conf)
 if mqtt_client.connect() != 0:
 print("init failed")
 return
if __name__ == "__main__":
 main()

Success Example
After the access is successful, the following information is displayed on the client.

Figure 7-78 Example of successful MQTT subscription using Python

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 352

7.6.4.6 GO Demo
This section uses Go as an example to describe how to connect an MQTTS client
to the platform and receive subscribed messages from the platform.

Prerequisites
Knowledge of basic Go syntax and how to configure development environments.

Development Environment
In this example, Go 1.18 is used.

Dependency
In this example, paho.mqtt.golang (version 1.4.3) is used. You can run the
following command to add the dependency to go.mod.

require (
 github.com/eclipse/paho.mqtt.golang v1.4.3
)

Sample Code
package main

import (
 "crypto/tls"
 "fmt"
 mqtt "github.com/eclipse/paho.mqtt.golang"
 "os"
 "os/signal"
 "time"
)
type MessageHandler func(message string)
type MqttClient struct {
 Host string
 Port int
 ClientId string
 AccessKey string
 AccessCode string
 Topic string
 InstanceId string
 Qos int
 Client mqtt.Client
 messageHandlers []MessageHandler
}
func (mqttClient *MqttClient) Connect() bool {
 return mqttClient.connectWithRetry()
}
func (mqttClient *MqttClient) connectWithRetry() bool {
 // Retries with exponential backoff, from 10 ms to 20s.
 duration := 10 * time.Millisecond
 maxDuration := 20000 * time.Millisecond
 // Retry upon connection establishment failure.
 internal := mqttClient.connectInternal()
 times := 0
 for !internal {
 time.Sleep(duration)
 if duration < maxDuration {
 duration *= 2
 }
 times++

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 353

 fmt.Println("connect mqttgo broker retry. times: ", times)
 internal = mqttClient.connectInternal()
 }
 return internal
}
func (mqttClient *MqttClient) connectInternal() bool {
 // Close the existing connection before establishing a connection.
 mqttClient.Close()
 options := mqtt.NewClientOptions()
 options.AddBroker(fmt.Sprintf("mqtts://%s:%d", mqttClient.Host, mqttClient.Port))
 options.SetClientID(mqttClient.ClientId)
 userName := fmt.Sprintf("accessKey=%s|timestamp=%d", mqttClient.AccessKey, time.Now().UnixNano()/
1000000)
 if len(mqttClient.InstanceId) != 0 {
 userName = userName + fmt.Sprintf("|instanceId=%s", mqttClient.InstanceId)
 }
 options.SetUsername(userName)
 options.SetPassword(mqttClient.AccessCode)
 options.SetConnectTimeout(10 * time.Second)
 options.SetKeepAlive(120 * time.Second)
 // Disable the SDK internal reconnection and use the custom reconnection to refresh the timestamp.
 options.SetAutoReconnect(false)
 options.SetConnectRetry(false)
 tlsConfig := &tls.Config{
 InsecureSkipVerify: true,
 MaxVersion: tls.VersionTLS12,
 MinVersion: tls.VersionTLS12,
 }
 options.SetTLSConfig(tlsConfig)
 options.OnConnectionLost = mqttClient.createConnectionLostHandler()
 client := mqtt.NewClient(options)
 if token := client.Connect(); token.Wait() && token.Error() != nil {
 fmt.Println("device create bootstrap client failed,error = ", token.Error().Error())
 return false
 }
 mqttClient.Client = client
 fmt.Println("connect mqttgo broker success.")
 mqttClient.subscribeTopic()
 return true
}
func (mqttClient *MqttClient) subscribeTopic() {
 subRes := mqttClient.Client.Subscribe(mqttClient.Topic, 0, mqttClient.createMessageHandler())
 if subRes.Wait() && subRes.Error() != nil {
 fmt.Printf("sub topic failed,error is %s\n", subRes.Error())
 panic("subscribe topic failed.")
 } else {
 fmt.Printf("sub topic success\n")
 }
}
func (mqttClient *MqttClient) createMessageHandler() func(client mqtt.Client, message mqtt.Message) {
 messageHandler := func(client mqtt.Client, message mqtt.Message) {
 fmt.Println("receive message from server.")
 go func() {
 for _, handler := range mqttClient.messageHandlers {
 handler(string(message.Payload()))
 }
 }()
 }
 return messageHandler
}
func (mqttClient *MqttClient) createConnectionLostHandler() func(client mqtt.Client, reason error) {
 // Perform custom reconnection after disconnection.
 connectionLostHandler := func(client mqtt.Client, reason error) {
 fmt.Printf("connection lost from server. begin to reconnect broker. reason: %s\n", reason.Error())
 connected := mqttClient.connectWithRetry()
 if connected {
 fmt.Println("reconnect mqttgo broker success.")
 }
 }

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 354

 return connectionLostHandler
}
func (mqttClient *MqttClient) Close() {
 if mqttClient.Client != nil {
 mqttClient.Client.Disconnect(1000)
 }
}
func main() {
 // For details about how to set the following parameters, see the connection configuration description.
 // MQTT access domain name
 mqttHost := "your mqtt host"
 // MQTT access port
 mqttPort := 8883
 // Access credential key value
 mqttAccessKey := os.Getenv("MQTT_ACCESS_KEY")
 // Access credential secret
 mqttAccessCode := os.Getenv("MQTT_ACCESS_CODE")
 // Name of the subscribed topic
 mqttTopic := "your mqtt topic"
 // Instance ID
 instanceId := "your instance Id"
 //mqttgo client id
 clientId := "your mqtt client id"

 mqttClient := MqttClient{
 Host: mqttHost,
 Port: mqttPort,
 Topic: mqttTopic,
 ClientId: clientId,
 AccessKey: mqttAccessKey,
 AccessCode: mqttAccessCode,
 InstanceId: instanceId,
 }
 // Customize the handler for processing messages.
 mqttClient.messageHandlers = []MessageHandler{func(message string) {
 fmt.Println(message)
 }}
 connect := mqttClient.Connect()
 if !connect {
 fmt.Println("init mqttgo client failed.")
 return
 }
 // Block method to keep the MQTT client always pulling messages.
 interrupt := make(chan os.Signal, 1)
 signal.Notify(interrupt, os.Interrupt)
 for {
 <-interrupt
 break
 }
}

Success Example
After the access is successful, the following information is displayed on the client.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 355

Figure 7-79 Example of successful MQTT client access using Go

7.6.4.7 Node.js Demo
This section uses Node.js as an example to describe how to connect an MQTTS
client to the platform and receive subscribed messages from the platform

Prerequisites
Knowledge of basic Node.js syntax and how to configure development
environments.

Development Environment
In this example, Node.js 13.14.0 is used. Download it from the Node.js official
website. After installation, run the following command to check the version:

node --version

Dependency
In this example, mqtt (version 4.0.0) is used. You can run the following command
to download the dependency:

npm install mqtt@4.0.0

Sample Code
const mqtt = require('mqtt');
// Name of the subscribed topic
var topic = "your mqtt topic";
// Key value of the access credential, which can be preset using environment variables.
var accessKey = process.env.MQTT_ACCESS_KEY;
// Access credential secret, which can be preset using environment variables.
var accessCode = process.env.MQTT_ACCESS_CODE;
// MQTT access address
var mqttHost = "your mqtt host";
// MQTT access port
var mqttPort = 8883;
// Instance ID
var instanceId = "your instanceId";
// mqtt client id
var clientId = "your clientId";
// MQTT client
var client = null;
connectWithRetry();
async function connectWithRetry() {
 // Retries with exponential backoff, from 1s to 20s.
 var duration = 1000;

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 356

https://nodejs.org/en/download/

 var maxDuration = 20000;
 var success = connect(topic);
 var times = 0;
 while (!success) {
 await sleep(duration)
 if (duration < maxDuration) {
 duration *= 2
 }
 times++
 console.log('connect mqtt broker retry. times: ' + times)
 if (client == null) {
 connect(topic)
 continue
 }
 client.end(true, function() {
 connect(topic)
 });
 }
}
function sleep(ms) {
 return new Promise(resolve => setTimeout(() => resolve(), ms))
}
function connect(topic) {
 try {
 client = mqtt.connect(getClientOptions())
 if (client == null) {
 return false
 }
 client.on('connect', connectCallBack)
 client.subscribe(topic, subscribeCallBack)
 client.on('message', messageCallBack)
 client.on('error', clientErrorCallBack)
 client.on('close', closeCallBack)
 return true
 } catch (error) {
 console.log('connect to mqtt broker failed. err ' + error)
 }
 return false
}
function getClientOptions() {
 var timestamp = Math.round(new Date);
 const username = 'accessKey=' + accessKey + '|timestamp=' + timestamp + '|instanceId=' + instanceId;
 var options = {
 host: mqttHost,
 port: mqttPort,
 connectTimeout: 4000,
 clientId: clientId,
 protocol: 'mqtts',
 keepalive: 120,
 username: username,
 password: accessCode,
 rejectUnauthorized: false,
 secureProtocol: 'TLSv1_2_method'
 };
 return options;
};
function connectCallBack() {
 console.log('connect mqtt server success');
};
function subscribeCallBack(err, granted) {
 if (err != null || granted[0].qos === 128) {
 console.log('subscribe topic failed. granted: ' + granted[0].qos)
 return
 }
 console.log('subscribe topic success. granted: ' + granted[0].qos);
};
function clientErrorCallBack(err) {
 console.log('mqtt client error ' + err);
};

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 357

function messageCallBack(topic, message) {
 console.log('receive message ' + message);
};
function closeCallBack() {
 console.log('Disconnected from mqtt broker')
 client.end(true, function() {
 console.log('close connection');
 connectWithRetry();
 });
}

Success Example
After the access is successful, the following information is displayed on the client.

Figure 7-80 Example of successful MQTT client access using Node.js

7.6.4.8 C# Demo
This section uses C# as an example to describe how to connect an MQTTS client
to the platform and receive subscribed messages from the platform

Prerequisites
Knowledge of basic C# syntax and how to configure .NET Framework
development environments.

Development Environment
In this example, .NET Framework 4.6.2 and .NET SDK 6.0.421 are used. Download
them from the .NET official website. After installation, run the following command
to check the version:

dotnet -v

Dependency
In this example, MQTTnet and MQTTnet.Extension.ManagedClient (version
3.0.11) are used. You can search for MQTTnet in the NuGet manager and install
the required version.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 358

https://dotnet.microsoft.com/en-us/download

Figure 7-81 nuget installation dependency

Sample Code
ClientConf.cs code:

using MQTTnet.Protocol;

namespace mqttcs
{
 public class ClientConf
 {
 // MQTT subscription address
 public string ServerUri { get; set; }

 // MQTT subscription port number
 public int Port { get; set; }

 // MQTT access credential access_key
 public string AccessKey { get; set; }

 // MQTT access credential access_code
 public string AccessCode { get; set; }

 // MQTT client ID
 public string ClientId { get; set; }

 // Instance ID. This parameter is mandatory when multiple instances of the standard edition are
purchased in the same region.
 public string InstanceId { get; set; }

 // MQTT subscription topic
 public string Topic { get; set; }

 // mqtt qos
 public MqttQualityOfServiceLevel Qos { get; set; }

 }
}

MqttListener code:

using System;
using MQTTnet.Client.Connecting;
using MQTTnet.Client.Disconnecting;
using MQTTnet.Extensions.ManagedClient;

namespace mqttcs
{
 public interface MqttListener
 {
 // Callback function when the MQTT client is disconnected from the server
 void ConnectionLost(MqttClientDisconnectedEventArgs e);

 // Callback function for successful connection establishment between the MQTT client and server

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 359

 void ConnectComplete(MqttClientConnectResultCode resultCode, String reason);

 // Callback function for consuming messages on the MQTT client
 void OnMessageReceived(String message);

 // Callback function when the MQTT client fails to establish a connection with the server
 void ConnectFail(ManagedProcessFailedEventArgs e);
 }
}

MqttConnection.cs code:

using System;
using System.Text;
using System.Threading;
using MQTTnet;
using MQTTnet.Client.Connecting;
using MQTTnet.Client.Disconnecting;
using MQTTnet.Client.Options;
using MQTTnet.Client.Receiving;
using MQTTnet.Extensions.ManagedClient;
using MQTTnet.Formatter;

namespace mqttcs
{
 public class MqttConnection
 {
 private static IManagedMqttClient client = null;

 private static ManualResetEvent mre = new ManualResetEvent(false);

 private static readonly ushort DefaultKeepLive = 120;

 private static int _retryTimes = 0;

 private readonly int _retryTimeWait = 1000;

 private readonly ClientConf _clientConf;

 private MqttListener _listener;

 public MqttConnection(ClientConf clientConf, MqttListener listener)
 {
 _clientConf = clientConf;
 _listener = listener;
 }

 public int Connect()
 {
 client?.StopAsync();
 // Backoff retry from 1s to 20s
 var duration = 1000;
 var maxDuration = 20 * 1000;
 var rc = InternalConnect();
 while (rc != 0)
 {
 Thread.Sleep((int)duration);
 if (duration < maxDuration)
 {
 duration *= 2;
 }
 client?.StopAsync();
 _retryTimes++;
 Console.WriteLine("connect mqtt broker retry. times: " + _retryTimes);
 rc = InternalConnect();
 }

 return rc;
 }

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 360

 private int InternalConnect()
 {
 try
 {
 client = new MqttFactory().CreateManagedMqttClient();
 client.ApplicationMessageReceivedHandler =
 new
MqttApplicationMessageReceivedHandlerDelegate(ApplicationMessageReceiveHandlerMethod);
 client.ConnectedHandler = new MqttClientConnectedHandlerDelegate(OnMqttClientConnected);
 client.DisconnectedHandler = new
MqttClientDisconnectedHandlerDelegate(OnMqttClientDisconnected);
 client.ConnectingFailedHandler = new
ConnectingFailedHandlerDelegate(OnMqttClientConnectingFailed);
 IManagedMqttClientOptions options = GetOptions();
 // Connects to the platform.
 client.StartAsync(options);
 mre.Reset();

 mre.WaitOne();
 if (!client.IsConnected)
 {
 return -1;
 }

 var mqttTopicFilter = new
MqttTopicFilterBuilder().WithTopic(_clientConf.Topic).WithQualityOfServiceLevel(_clientConf.Qos).Build();

 client.SubscribeAsync(mqttTopicFilter).Wait();
 Console.WriteLine("subscribe topic success.");
 return 0;
 }
 catch (Exception e)
 {
 Console.WriteLine("Connect to mqtt server failed. err: " + e);
 return -1;
 }
 }

 private void ApplicationMessageReceiveHandlerMethod(MqttApplicationMessageReceivedEventArgs e)
 {
 string payload = null;
 if (e.ApplicationMessage.Payload != null)
 {
 payload = Encoding.UTF8.GetString(e.ApplicationMessage.Payload);
 }
 try
 {
 _listener?.OnMessageReceived(payload);
 }
 catch (Exception ex)
 {
 Console.WriteLine("Message received error, the message is " + payload);
 }

 }

 private void OnMqttClientConnected(MqttClientConnectedEventArgs e)
 {
 try
 {
 _retryTimes = 0;
 _listener?.ConnectComplete(e.AuthenticateResult.ResultCode, e.AuthenticateResult.ReasonString);
 mre.Set();
 }
 catch (Exception exception)
 {
 Console.WriteLine("handle connect callback failed. e: " + exception.Message);
 }
 }

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 361

 private void OnMqttClientDisconnected(MqttClientDisconnectedEventArgs e)
 {
 try
 {
 _listener?.ConnectionLost(e);
 }
 catch (Exception exception)
 {
 Console.WriteLine("handle disConnect callback failed. e: " + exception.Message);
 }

 }

 private void OnMqttClientConnectingFailed(ManagedProcessFailedEventArgs e)
 {
 try
 {
 if (_listener != null)
 {
 _listener.ConnectFail(e);
 }
 Thread.Sleep(_retryTimeWait);
 Connect();
 }
 catch (Exception exception)
 {
 Console.WriteLine("handle connect failed callback failed. e: " + exception.Message);
 }
 }

 private IManagedMqttClientOptions GetOptions()
 {
 IManagedMqttClientOptions options = null;
 long timestamp = new DateTimeOffset(DateTime.UtcNow).ToUnixTimeMilliseconds();
 string userName = "accessKey=" + _clientConf.AccessKey + "|timestamp=" + timestamp + "|
instanceId=" + _clientConf.InstanceId;

 options = new ManagedMqttClientOptionsBuilder()
 .WithClientOptions(new MqttClientOptionsBuilder()
 .WithTcpServer(_clientConf.ServerUri, _clientConf.Port)
 .WithCredentials(userName, _clientConf.AccessCode)
 .WithClientId(_clientConf.ClientId)
 .WithKeepAlivePeriod(TimeSpan.FromSeconds(DefaultKeepLive))
 .WithTls(new MqttClientOptionsBuilderTlsParameters()
 {
 AllowUntrustedCertificates = true,
 UseTls = true,
 CertificateValidationHandler = delegate { return true; },
 IgnoreCertificateChainErrors = false,
 IgnoreCertificateRevocationErrors = false,
 SslProtocol = System.Security.Authentication.SslProtocols.Tls12,
 })
 .WithProtocolVersion(MqttProtocolVersion.V500)
 .Build())
 .Build();
 return options;
 }
 }
}

MqttClient.cs code:

using System;
using System.Threading;
using System.Threading.Tasks;
using MQTTnet.Client.Connecting;
using MQTTnet.Client.Disconnecting;
using MQTTnet.Extensions.ManagedClient;
using MQTTnet.Protocol;

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 362

namespace mqttcs
{
 class MqttClient: MqttListener
 {
 private static ManualResetEvent mre = new ManualResetEvent(false);

 public static async Task Main(string[] args)
 {
 ClientConf clientConf = new ClientConf();
 clientConf.ClientId = "your mqtt clientId";
 clientConf.ServerUri = "your mqtt host";
 clientConf.Port = 8883;
 clientConf.AccessKey = Environment.GetEnvironmentVariable("MQTT_ACCESS_KEY");
 clientConf.AccessCode = Environment.GetEnvironmentVariable("MQTT_ACCESS_CODE");
 clientConf.InstanceId = "your instanceId";
 clientConf.Topic = "your mqtt topic";
 clientConf.Qos = MqttQualityOfServiceLevel.AtMostOnce;

 MqttConnection connection = new MqttConnection(clientConf, new MqttClient());
 var connect = connection.Connect();
 if (connect == 0)
 {
 Console.WriteLine("success to init mqtt connection.");
 mre.WaitOne();
 }
 }

 public void ConnectionLost(MqttClientDisconnectedEventArgs e)
 {
 if (e?.Exception != null)
 {
 Console.WriteLine("connect was lost. exception: " + e.Exception.Message);
 return;
 }
 Console.WriteLine("connect was lost");

 }

 public void ConnectComplete(MqttClientConnectResultCode resultCode, String reason)
 {
 Console.WriteLine("connect success. resultCode: " + resultCode + " reason: " + reason);
 }

 public void OnMessageReceived(string message)
 {
 Console.WriteLine("receive msg: " + message);
 }

 public void ConnectFail(ManagedProcessFailedEventArgs e)
 {
 Console.WriteLine("connect mqtt broker failed. e: " + e.Exception.Message);
 }
 }
}

Success Example
After the access is successful, the following information is displayed on the client.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 363

Figure 7-82 Example of successful client access using C#

7.6.5 M2M Communications

Overview

Subscription: You can create rules on the console or call the platform APIs to
configure and activate rules for obtaining messages reported by devices from the
platform. Related APIs: Create a Rule Trigger Condition, Create a Rule Action,
and Modify the Rule Triggering Condition. Device subscription supports only
message reporting.

Push: After the subscription is successful, the platform pushes messages reported
by devices to the specified MQTT topic. After devices are connected to the
platform, you can subscribe to the topic to receive data for inter-device message
communications. The following figure shows the message communications process
between devices.

Figure 7-83 M2M communications

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 364

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01307.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01302.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_01309.html

Device Subscription
For details, see Usage.

7.7 Data Forwarding Channel Details

Overview
When using the data forwarding function, you can check whether the
performance of the forwarding target (such as a third-party application) meets
service requirements based on the usage of the data forwarding channel. For
example, if the data forwarded to the target (third-party application) cannot be
quickly processed, the data will be stacked (cached) on the platform. In this case,
you can view the channel details. If you find that the message production rate is
always higher than the push rate, and the number of stacked messages keeps
increasing, it may indicate that the performance of the target (third-party
application) cannot meet the service requirements and scale-out is required. In
addition, you can clear stacked data in the data forwarding channel.

Viewing Forwarding Channel Details

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Rules > Data Forwarding, locate the target rule,
and click View in the Operation column.

Figure 7-84 Rule details - Viewing rule details

Step 3 Click Set Forwarding Target, find the target data forwarding channel, and click
Details. View the push details in the displayed dialog box.

Figure 7-85 Forwarding rule details

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 365

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 7-86 Push details - Data forwarding rule

Table 7-17 Parameter description

Parameter Description

Message Push Rate Number of messages forwarded by the
platform to the target per second.

Message Creation Rate Number of messages sent by the
device to the platform per second.

Stacked Messages Number of messages stacked on the
platform when the production rate is
higher than the push rate. For a data
forwarding rule, the max. stacking
(cache) data size is 1 GB, and the max.
stacking (cache) duration is 24 hours
by default. To change the values, see
Data Forwarding Stack Policies.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 366

----End

Clearing Stacked Messages

When the rule engine forwards messages to a third-party application, if the
application cannot process the data in real time, the data will be stacked on the
platform. You can clear the data stacked in the forwarding channel for timely
processing.

For example, a water meter periodically reports user usage to a server. When the
server is faulty, the forwarded data piles up. In this case, you can clear the stacked
data and let the system process the newly reported data.

NO TICE

In the details page of a forwarding target, if you click Clear Stacked Messages, all
data that has not been transferred to the forwarding target will be cleared.
Exercise caution.

7.8 Data Forwarding Stack Policies

Overview

If the forwarding target (such as a third-party application server) cannot process
data forwarded by IoTDA in a timely manner due to insufficient performance,
unprocessed data will be stacked (cached) on IoTDA. By default, the maximum
stack (cache) size of data to forward for a single forwarding rule is 1 GB, and the
maximum stack duration is 24 hours. If the maximum stack size or stack duration
is exceeded, the earliest unprocessed data will be discarded to meet the stack size
and duration requirements.

To control data stacking on IoTDA, you can create stack policies based on specific
service scenarios and performance of the forwarding target (for example, a third-
party application server).

If your service has higher requirements on real-time data than integrity and the
performance of the forwarding target is insufficient or the service fails to process
forwarded data in a timely manner due to an interruption, a large amount of data
will be stacked on IoTDA. As a result, the forwarding target always receives
delayed data. You can use a stack policy to configure a small stack size and stack
duration. In this way, outdated data will be discarded, and real-time data will be
received and processed.

Constraints

You can create one stack policy for an IoTDA instance.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 367

NO TICE

1. After a stack policy is created, it applies to all forwarding rules.and overwrites
the default stack size (1 GB) and stack duration (24 hours).

2. If the maximum stack size or stack duration is exceeded, the earliest
unprocessed data will be discarded. Use a stack policy carefully and configure a
proper stack size and duration.

Procedure

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Rules > Data Forwarding, click Configure Policy,
and click Stack Policies.

Figure 7-87 Data forwarding - Policy configuration

Step 3 In the displayed dialog box, set Policy Name, Description, Stack Size, and Stack
Time, and click OK.

Figure 7-88 Data forwarding - Creating a stack policy

Table 7-18 Parameters

Parameter Description

Policy Name The value can contain 4 to 256
characters. Only letters, digits, and
special characters (_?'#().,&%@!-) are
allowed.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 368

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Parameter Description

Description Description of the policy. The value
can contain 4 to 256 characters. Only
letters, digits, and special characters
(_?'#().,&%@!-) are allowed.

Stack Size Maximum stack (cache) size of data to
forward in a rule on IoTDA. The unit is
byte. The maximum value is
1073741823 bytes (1 GB).

Stack Time Maximum stack (cache) duration of
data to forward in a rule on IoTDA.
The unit is second. The maximum
value is 86399 seconds (24 hours).

----End

7.9 Data Forwarding Flow Control Policies

Overview

You can create flow control policies in different dimensions on IoTDA based on
your service scenarios and performance of the forwarding target (such as a third-
party application server) to control data forwarding flows.

Dimensions of Flow Control Policies

Table 7-19 Types of flow control policies

Policy Type Description

By instance The policy applies to all data
forwarding flows on the instance. Data
that exceeds the threshold will be
discarded.

By forwarding target The policy applies to all data
forwarding flows of the forwarding
target you specify.

By forwarding rule The policy applies to all data
forwarding flows of the forwarding
rule you specify. Data that exceeds the
threshold will be discarded.

By forwarding action The policy applies to all data
forwarding flows of the forwarding
action you specify.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 369

NO TICE

1. After a flow control policy is created, the policy type cannot be modified.

2. Data that exceeds the threshold set in instance- and rule-level flow control
policies will be discarded. Use flow control policies carefully.

3. If you create different types of flow control policies, the policy with the
threshold reached first takes effect. For example, if the threshold in the flow
control policy for forwarding rule A is 50 TPS, the threshold in the policy for
action B of forwarding rule A is 100 TPS, and the actual data flow of
forwarding rule A is 80 TPS, the flow control policy for forwarding rule A is
triggered.

Constraints

You can create up to four flow control policies for an IoTDA instance.

Procedure

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Rules > Data Forwarding, and click Configure
Policy. The Flow Control Policies page is displayed.

Figure 7-89 Data forwarding - Policy configuration

Step 3 In the displayed dialog box, configure parameters and click OK.

Figure 7-90 Data forwarding - Creating a flow control policy

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 370

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Table 7-20 Parameters

Parameter Description

Policy Name The value can contain 4 to 256
characters. Only letters, digits, and
special characters (_?'#().,&%@!-) are
allowed.

Description Description of the policy. The value
can contain 4 to 256 characters. Only
letters, digits, and special characters
(_?'#().,&%@!-) are allowed.

Threshold The value ranges from 1 to 1000.

Policy Type The options include By instance, By
target, By rule, and By action.

Forwarding Target Forwarding targets supported by the
current instance. This parameter is
available only when Policy Type is set
to By target.

Bound Rule Data forwarding rules on IoTDA. This
parameter is available only when
Policy Type is set to By rule.

Bound Action Data forwarding actions on IoTDA.
This parameter is available only when
Policy Type is set to By action.

----End

7.10 Abnormal Data Target

Overview
When data is forwarded to other Huawei Cloud services or third-party
applications, IoTDA stops message pushing if the target server is unreachable due
to insufficient permissions or service unavailability. It checks the channel status
every 3 minutes, and if the check result is normal, the channel will be restored. If
you require real-time messages, you can configure abnormal data forwarding
targets to obtain abnormal data. In this way, you can continue service processing
and analyze failure causes, reducing the impact of single channel faults on
services.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 371

Figure 7-91 Example of abnormal data targets

NO TE

If the normal data target is unreachable within 24 hours, data is directly pushed to the
configured abnormal data target. If the normal data target remains unreachable after 24
hours, the platform suspends data push.

Constraints
● If there is only 1 normal data target, 1 abnormal data target can be added.
● Up to five abnormal data targets can be created for each IoTDA instance.
● Supported rule data sources for abnormal data targets: device, device

property, device message, device message status, device status, batch task,
product, and device asynchronous command status.

● Configurable normal data targets for abnormal data forwarding: Data
Ingestion Service (DIS), Distributed Message Service for Kafka, Object Storage
Service (OBS), ROMA Connect, third-party application service (HTTP push),
Distributed Message Service (DMS) for RocketMQ, FunctionGraph, GeminiDB
Influx, Relational Database Service (RDS) for MySQL, MapReduce Service
(MRS) Kafka, Blockchain Service (BCS), and Document Database Service
(DDS).

● AMQP message queues can be used as abnormal data targets.

Data Format
The following is an example of the abnormal data forwarding format:

{
 "request_id": "2131d048-234f-4564-9190-6030234678ad",
 "rule_id": "6519d048-3b7f-442b-9190-6030773879cc",
 "action_id": "f376ab9f-d060-4fbf-a383-3e52af98ae9d",
 "channel": "MYSQL_FORWARDING",

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 372

 "base64_original_payload":
"ewogICAgInJlc291cmNlIjogImRldmljZS5tZXNzYWdlIiwKICAgICJldmVudCI6ICJyZXBvcnQiLAogICAgImV2ZW50
X3RpbWUiOiAiMjAyNDA2MDFUMDAwMDAwWiIsCiAgICAiZXZlbnRfdGltZV9tcyI6ICIyMDI0LTA2LTAxVDAwOjA
wOjAwLjAwMFoiLAogICAgInJlcXVlc3RfaWQiOiAiMjEzMWQwNDgtMjM0Zi00NTY0LTkxOTAtNjAzMDIzNDY3O
GFkIiwKICAgICJub3RpZnlfZGF0YSI6IHsKICAgICAgICAiaGVhZGVyIjogewogICAgICAgICAgICAiYXBwX2lkIjogIjU4
N2MyMzc3ZGRmYzQzMmI4OTMxZGNhYmNhODkyOTUyIiwKICAgICAgICAgICAgImRldmljZV9pZCI6ICIwMDA
wMDAwMDAwMDAwMCIsCiAgICAgICAgICAgICJub2RlX2lkIjogIjIwMjAwNzExMTk5OTkxMDAwIiwKICAgICAgI
CAgICAgInByb2R1Y3RfaWQiOiAiMTIzNDU2Nzg5MDAiLAogICAgICAgICAgICAiZ2F0ZXdheV9pZCI6ICIyMDIwM
DcxMTE5OTk5MTAwMCIKICAgICAgICB9LAogICAgICAgICJib2R5IjogewogICAgICAgICAgICAidG9waWMiOiAidG
VzdFRvcGljIiwKICAgICAgICAgICAgImNvbnRlbnQiOiAiV2VsY29tZSB0byBIdWF3ZWkgQ2xvdWQgSW9UIERldml
jZSBBY2Nlc3MoSW9UREEpIgogICAgICAgIH0KICAgIH0KfQo=",
 "error_message": "Push failed. Cause: Table 'xxx' doesn't exist. The iot platform will resume the push
within 3 minutes after the channel is restored."
}

Table 7-21 Abnormal data forwarding

Parameter Type Description

request_id String ID of the message that
fails to be pushed, which
is specified by the device
or generated by the
platform and is used to
trace the service process.

rule_id String Unique ID of the rule
triggering condition,
which is allocated by the
platform during rule
creation.

action_id String Unique ID of the data
target to which a push
exception occurs. The ID
is allocated by the
platform during
forwarding target
creation.

channel String Type of the data target
to which an exception
occurs.

base64_original_payload String Base64-encoded raw
stream data.

error_message String Error description.

NO TE

There may be additional fields during abnormal data forwarding. Ensure serialization
compatibility when using the data format.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 373

Procedure

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Rules > Data Forwarding. On the displayed page,
click Create Rule.

Figure 7-92 Creating a data forwarding rule

Step 3 On the displayed page, enter related information and click Create Rule.

Figure 7-93 Rules triggered by message reporting - forwarding data to Kafka

Step 4 Click the Set Forwarding Target tab and click Add to add a normal data target.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 374

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 7-94 Adding a normal data target

Step 5 Click Add to add an abnormal data target.

Figure 7-95 Adding an abnormal data target

Step 6 Click Enable Rule.

Figure 7-96 Data forwarding - Enabling a rule

----End

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 375

7.11 Device Linkage

Overview
When specific conditions are met, the platform triggers collaborative response of
multiple devices to implement device linkage and intelligent control. For example,
when the battery level of a water meter drops to 20% or less, a low battery alarm
is reported so that the battery can be replaced before it goes dead.

Figure 7-97 Device linkage architecture

To further explore device linkage, see Triggering Alarms and Sending Email or
SMS Notifications.

7.11.1 Cloud Rules

Overview
If you set a cloud rule, IoTDA determines whether the rule triggering condition is
met. If the condition is met, IoTDA performs actions you set, such as alarm
reporting, topic notification, and command delivery.

Procedure

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Rules > Device Linkage. Click Create Rule.

Step 3 Create a device linkage rule based on the table below.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 376

https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0003.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0003.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

Param
eter

Description Best
Practice

Rule
Name

Specify the name of a rule to create. ● Automat
ic Device
Shutdow
n Upon
High
Tempera
ture

● Triggerin
g Alarms
and
Sending
Email or
SMS
Notificat
ions

● Automat
ically
Opening
the
Window
upon
High Gas
Concentr
ation

● Monitori
ng
Device
Status
Changes
and
Sending
Notificat
ions

Activat
e
upon
creatio
n

● Selected: The rule is activated upon creation.
● Deselected: The rule is not activated after creation.

Rule
Type

● Cloud: The rule to create is executed on the
platform.

● Device side: The rule to create is delivered to devices
for execution. Target devices must have the SDK with
the device-side rule engine. For details, see Device-
side Rules.

Effecti
ve
Period

● Always effective: There is no time limit. IoTDA
always checks whether conditions are met.

● Specific time: You can select a time segment during
which the platform checks whether the conditions
are met.

Descri
ption

Describe the rule.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 377

https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0004.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0004.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0004.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0004.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0004.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0004.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0004.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0003.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0003.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0003.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0003.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0003.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0003.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0003.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0003.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0021.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0021.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0021.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0021.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0021.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0021.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0021.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0021.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0021.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0043.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0043.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0043.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0043.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0043.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0043.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0043.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0043.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0043.html

Param
eter

Description Best
Practice

Set
Trigge
rs

You can set whether all conditions or any of the
conditions need to meet.
● Device Property: Properties reported by devices can

be used as a trigger. For example, the device is
powered off when the temperature reaches 80°C.
– Select product: Select a specific product.
– Select the device range:

▪ All Devices: Set the trigger for all devices
under the selected product.

▪ Specified device: Set the trigger for a specified
device under the selected product.

– Select service: Select a service type.
– Select property: Select a property.

NOTE

▪ If the data type of a property is int, long, or
decimal, you can select multiple operators.

▪ If the data type of a property is string, date time, or
jsonObject, you can only select the equal sign (=) as
the operator.

– Triggering Mechanism: Select a trigger strategy.
Repetition suppression is recommended.

– Data Validity Period (s): Specify the data validity
period. For example, if Data Validity Period is set
to 30 minutes, a device generates data at 19:00,
and the platform receives the data at 20:00, the
action is not triggered even if the conditions are
met.

● Timer: Set the time at which the rule is triggered. It
is usually used for periodic triggering conditions, such
as turning off street lights at 07:00 every day.
NOTE

If Timer is selected, Send notifications, Report alarms,
and Clear alarms cannot be selected for Actions.

– Triggered every day: The rule is triggered at a
specified time every day.

– Triggered by policy:

▪ Select a date and time: start time for
triggering the rule.

▪ Repeat: number of times that the rule can be
triggered. The value ranges from 1 to 1440.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 378

Param
eter

Description Best
Practice

▪ Interval: interval for triggering the rule after
the start time. The value ranges from 1 to
1440, in units of minutes.

● Device Status: The online/offline status of a device
can be used as a trigger. For example, if a device has
been offline for 5 minutes, an alarm will be reported.
– Select product: Select a specific product.
– Select the device range:

▪ All Devices: Set the trigger for all devices
under the selected product.

▪ Specified device: Set the trigger for a specified
device under the selected product.

– Select the device status:

▪ Online: The device status changes from offline
to online.

▪ Offline: The device status changes from online
to offline.

▪ Online and Offline: The device status changes.

– Duration: duration of the new status after the
device status change, in minutes. The value range
is 0–60.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 379

Param
eter

Description Best
Practice

Set
Action
s

Click Add Action to set the action to execute after the
rule is triggered.
● Deliver commands: Select the device, service, and

command to be delivered in sequence, and set the
command delivery parameters.

● Send notifications: Select the region where the SMN
service is located. If the platform has not been
granted with the permissions to access SMN, perform
the authorization as prompted. Click the
corresponding link to go to the SMN console and set
the topic.
– Message Title: used as the email subject when an

email is sent to an email subscriber.
– Message Type: Use a temple or customize the

settings.
– Message Content: content of the message to be

sent.
– Template: Use the template defined by SMN.

When sending messages, the variables in the
template is replaced with corresponding
parameter values. IoTDA defines some common
template variables. After a rule is triggered, the
following template variables will be replaced with
specific values.
{ruleName}: name of the triggered rule
{ruleId}: ID of the triggered rule
{deviceId}: ID of the device that triggers the rule
{deviceName}: name of the device that triggers
the rule
{productId}: ID of the product to which the device
that triggers the rule belongs
{productName}: name of the product to which the
device that triggers the rule belongs
{YYYY}: year (UTC) when the rule is triggered.
{MM}: month when the rule is triggered (UTC)
{DD}: date when the rule is triggered (UTC)
{HH}: hour (UTC) when the rule is triggered.
{mm}: minute (UTC) when the rule is triggered
{ss}: second (UTC) when the rule is triggered

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 380

Param
eter

Description Best
Practice

NOTE
Example SMN template:
Time: {YYYY}-{MM}-{DD} {HH}:{mm}:{ss}
Rule name: {ruleName}
Rule ID: {ruleId}
Product ID: {productId}
Product name: {productName}
Device ID: {deviceId}
Device name: {deviceName}
Event: device going online and offline
After the device goes online and the rule is triggered,
the received message is shown in the following figure.

● Report alarms: Define the alarm severity, name,
isolation dimension, and content. When the
configured condition is met, a device alarm is
generated on the Application Operations
Management (AOM) console.
– Alarm severity: Options include Info, Minor,

Major, and Critical.
– Alarm isolation dimension: Options include User,

Resource Space, and Device. Reported alarms
carry different isolation dimension identifiers. If
you select Device for the dimension, reported
alarms will carry device IDs as isolation dimension
identifiers.

– Alarm name: name of the reported alarm.
– Alarm content: content carried in the reported

alarm.
● Clear alarms: Define the alarm severity, name,

isolation dimension, and content. If conditions are
met, alarms reported by the device to the platform
will be cleared. The parameters are the same as
those for reporting alarms.
NOTE

In AOM, the alarm severity, alarm name, and alarm
isolation dimension together identify an alarm. When an
alarm is cleared, the three attributes must be the same as
those specified during alarm reporting.

Step 4 Click Create Rule in the lower right corner. Newly created rules are in the
activated state by default. You can disable a rule in the Status column of the rule
list.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 381

https://www.huaweicloud.com/intl/en-us/product/aom.html
https://www.huaweicloud.com/intl/en-us/product/aom.html

Figure 7-98 Creating a linkage rule - BatteryProperty

----End

7.11.2 Device-side Rules

Overview
Cloud rules are parsed and executed on the cloud. IoTDA determines whether
triggering conditions are met and triggers corresponding device linkage actions.
Device-side rules are device linkage rules delivered to devices, where the device-
side rule engine parses and executes the rules. Device-side rules can still run on
devices when the network is interrupted or devices cannot communicate with the
platform. Device-side rules can extend application scenarios and improve device
running stability and execution efficiency. For example, when the indoor light
intensity is lower than 20, lights can be automatically turned on. This implements
intelligent control independent of network devices.

Figure 7-99 Device-side rule architecture

For details, see Basic Concepts.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 382

https://support.huaweicloud.com/intl/en-us/productdesc-iothub/iot_04_0011.html

Scenarios
There are a large number of surveillance devices in highway tunnels. The network
environment is complex and the network quality is unstable. However, emergency
handling has high requirements on real-time network performance. Linkage
between emergency devices cannot completely depend on cloud rules. Device-side
rules are required to implement emergency plan linkage. Device linkage plans can
be formulated in advance based on different situations such as fires and traffic
accidents. Monitoring personnel can start device linkage plans with one click
based on tunnel conditions. Device-side rules enable simultaneous status changes
of different types of devices. This reduces dependency on network quality and
improves overall device linkage efficiency. For example, if the temperature of a
flue pipe is too high, the controller can be linked to open the drainage valve to
reduce the temperature. If the concentration of carbon monoxide (CO) is too high,
a COVI device can be linked to control fans for ventilation.

Constraints
● Device-side rules support only command delivery actions.
● Devices must be integrated with IoT Device SDK (C) v1.1.2 or later.
● Devices need to report the SDK version number to IoTDA using the APIs

provided by the SDK.

Procedure
The following uses a smart street light system as an example to describe how to
use device-side rules.

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 Create a product and model.

1. Log in to the IoTDA console and click the target instance card. Choose
Products from the navigation pane and click Create Product. In the displayed
dialog box, select StreetLampMonitoring for Device Type, enter the product
name, and click OK.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 383

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://console-intl.huaweicloud.com/iotdm/#/dm-portal/home

Figure 7-100 Creating a product - SmartLight

2. Locate the SmartLight product and click View.

Figure 7-101 Viewing SmartLight details

3. On the product details page, click Import from Library, select
SmartStreetLight, and click OK.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 384

Figure 7-102 Product - Import model SmartStreetLight

4. On the Basic Information page, BasicData and LightControl services are
displayed. The BasicData service contains the luminance property. The
LightControl service contains a switch command.

Figure 7-103 Model definition - SmartLight

Step 3 In the navigation pane, choose Devices > All Devices and click Register Device.
Select the resource space you select in Step 2 and a product, enter a node ID, and
click OK.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 385

Figure 7-104 Device - Registering a secret device

Step 4 After the device is created, copy and save the device secret for later use.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 386

Figure 7-105 Device registered

Step 5 Create a rule.

1. In the navigation pane, choose Rules > Device Linkage. In the upper part of
the page, select the resource space of the product to which the device
belongs. Click Create Rule.

Figure 7-106 Device linkage - Creating a rule

2. On the page for creating a rule, enter a rule name, select Device Side for
Rule Type, and select a device for Execution Device. The rule will be
delivered to the device you select for parsing and execution.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 387

Figure 7-107 Creating a linkage rule - Basic information on the device side

3. Select smartlight001 and click OK.

Figure 7-108 Creating a linkage rule - Selecting a device

NO TE

Device-side rules can be created only for devices with the IoT Device SDK. Currently,
only IoT Device SDK (C) v1.1.2 is supported.

4. Click Add Trigger. The current device is used by default, and other devices are
not available. Click Add Action and select the current device or other devices.

Figure 7-109 Creating a linkage rule - Conditions and actions

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 388

5. In Set Triggers, set the property trigger to luminance<= 27. In Set Actions,
configure the control_light command and configure the parameter to set
light_state to on.

Figure 7-110 Creating a linkage rule - Conditions and actions

Step 6 Create a device linkage rule based on the table below.

Table 7-22 Parameters

Parameter Description

Rule Name Specify the name of a rule to create.

Activate
upon
creation

Selected: The rule is activated upon creation.
Deselected: The rule is not activated after creation.

Effective
Period

● Always effective: There is no time limit. IoTDA always checks
whether conditions are met.

● Specific time: You can select a time segment during which the
platform checks whether the conditions are met.
NOTE

Device-side rules are stored in the memory. When a device is powered
off, rules stored on the device are cleared. When the device is restarted
or powered on, the device updates all historical rules from IoTDA.

Description Describe the rule.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 389

Parameter Description

Set Triggers You can set whether all conditions or any of the conditions need
to meet.
NOTE

If all conditions need to meet, Device Property and Timer cannot be both
set as triggers at the same time. You can only set multiple device
properties as triggers.

Trigger type: Currently, only Device Property and Timer are
supported.
● Device Property: The rule will be triggered when a device

reports properties.
– Select service: Select the corresponding service type.
– Select property: Select a property in the data reported.
NOTE

– If the data type of a property is int or decimal, you can select
multiple operators.

– If the data type of a property is string, you can only select the equal
sign (=) as the operator.

● Timer: You can select Triggered every day or Triggered by
policy.
– Triggered every day: Set the time at which the rule is

triggered. It is usually used for periodic triggering
conditions, such as turning off street lights at 07:00 every
day.

– Triggered by policy

▪ Select a date and time: start time for triggering the rule.

▪ Repeat: number of times that the rule can be triggered.
The value ranges from 1 to 1440.

▪ Interval: interval for triggering the rule after the start
time. The value ranges from 1 to 1440, in units of
minutes.

Set Actions Click Add Action to set the action to execute after the rule is
triggered.
Deliver commands: Select the device, service, and command to
be delivered in sequence, and set the command delivery
parameters.

Step 7 Click Create Rule in the lower right corner. Newly created rules are in the
activated state by default. You can disable a rule in the Status column of the rule
list.

Step 8 Compile the device-side code. In SDKs that supports device-side rules (only IoT
Device SDK C is supported currently), you only need to implement the callback
functions for property reporting and command processing. Click here to obtain the
IoT Device SDK (C) and perform the following operations after the operations in
Preparations are complete.

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 390

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c/blob/master/README.md#3

1. Open the src/device_demo/device_demo.c file and find the
HandleCommandRequest function.

Figure 7-111 Command processing

The following commands are use for demonstration only.
 printf("----- execute command----- \n");
 printf("service_id: %s\n", command->service_id);
 printf("command_name: %s\n", command->command_name);
 printf("paras: %s\n", command->paras);

2. Open the src/device_demo/device_demo.c file and find the
TestPropertiesReport function.

Figure 7-112 Replacing the code

Use the following code:
const int serviceNum = 1; // reported services' total count
ST_IOTA_SERVICE_DATA_INFO services[serviceNum];

#define MAX_BUFFER_LEN 70
char propsBuffer[MAX_BUFFER_LEN];
// This is an example of obtaining a temperature value. Obtain the actual value from a sensor.
if(sprintf_s(propsBuffer, sizeof(propsBuffer), "{\"luminance\": %d}", 20) == -1){
printf("can't create string of properties\n");
return;
}

services[0].event_time = GetEventTimesStamp(); // if event_time is set to NULL, the time will be the

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 391

iot-platform's time.
services[0].service_id = "BasicData";
services[0].properties = propsBuffer;

int messageId = IOTA_PropertiesReport(services, serviceNum, 0, NULL);
if (messageId != 0) {
printf("report properties failed, messageId %d\n", messageId);
}
free(services[0].event_time);

3. Compile and run the SDK. You can see the corresponding command from the
output.
----- execute command-----
service_id: BasicData
command_name: control_light
paras: {
 "light_state": "on"
}

The preceding log is only an example. You need to implement the specific
command processing code in 1.
Before running commands across devices, ensure that the devices can
communicate with each other. You may use different communication
protocols, such as Wi-Fi, BLE, and ZigBee, so you need to call
IOTA_SetDeviceRuleSendMsgCallback to register a custom sending function.
HandleDeviceRuleSendMsg is registered in the demo by default. You need to
implement message sending in HandleDeviceRuleSendMsg. After receiving
the message, the target device needs to parse and execute the command.

Figure 7-113 Parsing and executing commands

----End

IoT Device Access
User Guide 7 Rules

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 392

8 Monitoring and O&M

8.1 Message Trace
Message trace can be used to quickly locate and analyze faults that occur during
device authentication, command delivery, data reporting, and data forwarding.
The platform supports message trace for NB-IoT and MQTT devices. You can trace
messages for up to 10 devices simultaneously.

Procedure

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose Devices > All Devices.

Step 3 Search for the device to trace and click View to access its details page.

Step 4 On the Message Trace tab page, click Start Trace, and set the message trace
duration, which indicates the duration from the time when message trace starts to
the time when message trace ends. You can also click Edit Configuration to
modify the message trace configuration. The message trace duration is subject to
the new one.

Figure 8-1 Message tracing - Starting message tracing

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 393

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Step 5 View the services that are being traced. You can also click Stop Trace to stop the
task.

If a large number of message trace records are displayed, you can filter the
records by message status, service type, and recording time. If you need to further
analyze the result data, you can export the data.

Figure 8-2 Message tracing - Viewing data

If the message status is Failed, you can click View to view the result details and
locate the fault based on the failure handling suggestions.

----End

NO TE

During data reporting, you can specify request_id by adding ?request_id={request_id}
after a topic. For example, use $oc/devices/{device_id}/sys/properties/report?
request_id={request_id} for property reporting. If you do not specify request_id, the
platform automatically generates one.

8.2 Reports
IoTDA has various dashboards to intuitively present data.

In the navigation pane of the IoTDA console, choose Overview. The multiple
reports displayed are from collected data of each instance and are valid for one
month. The following table describes each report's name and function.

Table 8-1 Overview page

Report
Name

Description Data
Upda
te

Time
Frame

Register
ed
Devices

Number of registered devices. Every
hour

Hour, day,
and
month

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 394

Report
Name

Description Data
Upda
te

Time
Frame

Online
Devices

Number of online devices. This number is the
highest collected in the time period (by hour or
by day).

Every
hour

Hour, day,
and
month

Device
Messag
es

Number of device messages in either direction.
Upstream messages are involved in message,
property, and event reporting. Downstream
messages are involved in message and
command delivery, and property setting and
query.
NOTE

Supported by the basic and enterprise editions.

Every
hour

Hour, day,
and
month

Upstrea
m
Messag
e TPS

Highest throughput of upstream messages per
second, that is, the total number of messages
sent from all devices to the platform in an
instance per second. Only MQTT messages can
be reported. The chart data comes from the
average value every ten seconds.
NOTE

Supported by the standard edition.

Every
minu
te

10
minutes,
30
minutes, 1
hour, or 1
day

User
Messag
es

Number of user messages. This is mainly
messages sent from devices to the cloud and
vice versa. Any forward messages in excess of
the messages sent from devices to the cloud are
also counted.

Every
hour

Hour, day,
and
month

In the navigation pane of the IoTDA console, choose O&M > Reports to see
multiple O&M reports. Click the + icon in the upper right corner of a report to
view data by instance or resource space. Each report is valid for one month. The
following table describes each report's name and function.

Table 8-2 O&M reports

Report
Name

Description Data
Updat
e

Tim
e
Fra
me

Device
Connect
ion
Status

Number of devices (and percentage of total number
of devices) in each status.
Statuses: Online, Inactive, Offline, Abnormal

Every
hour

-

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 395

Report
Name

Description Data
Updat
e

Tim
e
Fra
me

Device
Messag
es

Messages reported: number of messages reported by
devices to the platform.
Downstream messages: number of messages
delivered by the platform to devices.

Every
hour

Hou
r
and
day

MQTT
Reporte
d
Messag
es TPS

Maximum number of upstream requests sent by
MQTT devices to the platform per second in the
current instance. The chart data comes from the
average value every ten seconds.
NOTE

Supported by the standard edition.

Every
minute

10
min
utes,
30
min
utes,
1
hour,
or 1
day

MQTT
Concurr
ent
Connect
ion
Setup
TPS

The most new connection requests from MQTT
devices per second. The chart data comes from the
average value every ten seconds.
NOTE

Supported by the standard edition.

Every
minute

10
min
utes,
30
min
utes,
1
hour,
or 1
day

General
Device
Trends

Trends in the number of devices. Total and online
devices counted separately.

Every
hour

Hou
r
and
day

Device
Online
Trends

Trends in the number (and percentage of total
number devices) of devices. Online and offline
devices counted separately.

Every
hour

Hou
r
and
day

Devices
by
Status

Trends in the number of devices in each status.
Statuses: Inactive, Abnormal, Offline

Every
hour

Hou
r
and
day

Number
of
Online
Devices
(Accum
ulated)

Total number of online devices.
NOTE

Supported by the standard edition.

Every
hour

Hou
r
and
day

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 396

Report
Name

Description Data
Updat
e

Tim
e
Fra
me

Softwar
e
Upgrad
e
Statuse
s

Number of upgrades of device software from the
start. Successful and failed upgrades counted
separately.

Every
hour

-

Firmwa
re
Upgrad
e
Statuse
s

Number of upgrades of device firmware from the
start. Successful and failed upgrades counted
separately.

Every
hour

-

Device
Configu
ration
Statuse
s

Number of updates of device configuration from the
start. Successful and failed updates counted
separately.

Every
hour

-

For more reports, log in to the AOM console, and choose Monitoring > Cloud
Service Monitoring > IoT > IoT Device Access (IoTDA). Currently, AOM shows
you the IoTDA monitoring information by instance or resource space.

Table 8-3 Dashboards

Report
Name

Description Data
Upda
te

Time Frame

Device
Status

Number of devices in each status.
Statuses: Online, Inactive, Offline,
Abnormal.

Every
10
minu
tes

1 hour, 6
hours, 12
hours, 1 day,
or 7 days

General
Device
Trends

Trends in the number of devices. Total, online,
and offline devices counted separately.

Every
10
minu
tes

1 hour, 6
hours, 12
hours, 1 day,
or 7 days

Data
Transfer
Trend

Trends in the number of data transfers.
AMQP transfers and HTTP message pushes
counted separately.

Every
minu
te

1 hour, 6
hours, 12
hours, 1 day,
or 7 days

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 397

https://console-intl.huaweicloud.com/aom/?locale=en-us#/aom/ams/cloudMonitoring

Report
Name

Description Data
Upda
te

Time Frame

Data
Report
Trend

Trends in the number of reporting records.
Reporting of NB-IoT data, MQTT events,
MQTT properties, and MQTT messages
counted separately.

Every
minu
te

1 hour, 6
hours, 12
hours, 1 day,
or 7 days

Table 8-4 Metrics

Report
Name

Description Data
Upda
te

Time Frame

Total
Devices

Trends in the total number of devices and
the number of devices in each status.
Statuses: Online, Offline, Abnormal,
Inactive

Every
10
minu
tes

1 hour, 6
hours, 12
hours, 1 day,
or 7 days

Reported
NB Data
Records

Trends in the number of NB-IoT data
reporting records. Total, successful, and
failed reporting counted separately.

Every
minu
te

1 hour, 6
hours, 12
hours, 1 day,
or 7 days

Reported
MQTT
Events

Trends in the number of MQTT event
reporting records. Total, successful, and
failed reporting counted separately.

Every
minu
te

1 hour, 6
hours, 12
hours, 1 day,
or 7 days

Reported
MQTT
Properties

Trends in the number of MQTT property
reporting records. Total, successful, and
failed reporting counted separately.

Every
minu
te

1 hour, 6
hours, 12
hours, 1 day,
or 7 days

Reported
MQTT
Messages

Trends in the number of MQTT message
reporting records. Total, successful, and
failed reporting counted separately.

Every
minu
te

1 hour, 6
hours, 12
hours, 1 day,
or 7 days

AMQP
Transfers

Trends in the number of AMQP transfers.
Total, successful, and failed transfers
counted separately.

Every
minu
te

1 hour, 6
hours, 12
hours, 1 day,
or 7 days

FunctionG
raph
Transfers

Trends in the number of FunctionGraph
transfers. Total, successful, and failed
transfers counted separately.

Every
minu
te

1 hour, 6
hours, 12
hours, 1 day,
or 7 days

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 398

Report
Name

Description Data
Upda
te

Time Frame

MRS
Kafka
Transfers

Trends in the number of MRS Kafka
transfers. Total, successful, and failed
transfers counted separately.

Every
minu
te

1 hour, 6
hours, 12
hours, 1 day,
or 7 days

MQTT
Transfers

Trends in the number of MQTT transfers.
Total, successful, and failed transfers
counted separately.

Every
minu
te

1 hour, 6
hours, 12
hours, 1 day,
or 7 days

MySQL
Transfers

Trends in the number of MySQL transfers.
Total, successful, and failed transfers
counted separately.

Every
minu
te

1 hour, 6
hours, 12
hours, 1 day,
or 7 days

InfluxDB
Transfers

Trends in the number of InfluxDB transfers.
Total, successful, and failed transfers
counted separately.

Every
minu
te

1 hour, 6
hours, 12
hours, 1 day,
or 7 days

HTTP
Message
Pushes

Trends in the number of HTTP message
pushes. Total, successful, and failed pushes
counted separately.

Every
minu
te

1 hour, 6
hours, 12
hours, 1 day,
or 7 days

OBS
Transfers

Trends in the number of OBS transfers.
Total, successful, and failed transfers
counted separately.

Every
minu
te

1 hour, 6
hours, 12
hours, 1 day,
or 7 days

DMS
Kafka
Transfers

Trends in the number of DMS for Kafka
transfers. Total, successful, and failed
transfers counted separately.

Every
minu
te

1 hour, 6
hours, 12
hours, 1 day,
or 7 days

DIS
Transfers

Trends in the number of DIS transfers.
Total, successful, and failed transfers
counted separately.

Every
minu
te

1 hour, 6
hours, 12
hours, 1 day,
or 7 days

ROMA
Transfers

Trends in the number of ROMA Connect
transfers. Total, successful, and failed
transfers counted separately.

Every
minu
te

1 hour, 6
hours, 12
hours, 1 day,
or 7 days

LTS
Transfers

Trends in the number of LTS transfers.
Total, successful, and failed transfers
counted separately.

Every
minu
te

1 hour, 6
hours, 12
hours, 1 day,
or 7 days

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 399

Report
Name

Description Data
Upda
te

Time Frame

BCS
Huawei
Cloud
Blockchai
n
Transfers

Trends in the number of BCS Huawei Cloud
Blockchain transfers. Total, successful, and
failed transfers counted separately.

Every
minu
te

1 hour, 6
hours, 12
hours, 1 day,
or 7 days

BCS-
Hyperledg
er Fabric
Enhanced
Edition
Transfers

Trends in the number of BCS-Hyperledger
Fabric Enhanced Edition transfers. Total,
successful, and failed transfers counted
separately.

Every
minu
te

1 hour, 6
hours, 12
hours, 1 day,
or 7 days

MongoDB
Transfers

Trends in the number of MongoDB
transfers. Total, successful, and failed
transfers counted separately.

Every
minu
te

1 hour, 6
hours, 12
hours, 1 day,
or 7 days

To obtain report data using an AOM API, see Querying Monitoring Data. The
following tables show the details about custom parameters of IoTDA metrics. In
Table 5, Name corresponds to metrics[].metric.dimensions[].name and Value to
metrics[].metric.dimensions[].value. In Table 6, Namespace corresponds to
metrics[].metric.namespace and MetricName to metrics[].metric.metricName.

Table 8-5 Dimensions

Name Value

app Resource space ID

instance Instance ID

taskType Task type: software upgrade status (softwareUpgrade),
firmware upgrade status (firmwareUpgrade), and device
configuration status (deviceConfig)

Table 8-6 Metrics and namespaces

Report Name Namespace MetricName

Total Devices IoTDA.DEVICE_STATUS Total number of devices:
iotda_device_status_totalCount

Number of online devices:
iotda_device_status_onlineCount

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 400

https://support.huaweicloud.com/intl/en-us/api-aom/ShowMetricsData.html

Report Name Namespace MetricName

Number of offline devices:
iotda_device_status_offlineCount

Number of abnormal devices:
iotda_device_status_abnormalCou
nt

Number of inactive devices:
iotda_device_status_inactiveCoun
t

Reported NB
Data Records

IoTDA.NB_DATA_REPO
RT

Total number of reported NB-IoT
data records:
iotda_south_dataReport_totalCou
nt

Number of NB-IoT data reporting
successes:
iotda_south_dataReport_successC
ount

Number of NB-IoT data reporting
failures:
iotda_south_dataReport_failedCo
unt

Reported MQTT
Events

IoTDA.EVENT_UP Total number of reported MQTT
event records:
iotda_south_eventUp_totalCount

Number of MQTT event reporting
successes:
iotda_south_eventUp_successCou
nt

Number of MQTT event reporting
failures:
iotda_south_eventUp_failedCount

Reported MQTT
Properties

IoTDA.PROPERTIES_RE
PORT

Total number of reported MQTT
property records:
iotda_south_propertiesReport_tot
alCount

Number of MQTT property
reporting successes:
iotda_south_propertiesReport_suc
cessCount

Number of MQTT property
reporting failures:
iotda_south_propertiesReport_fail
edCount

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 401

Report Name Namespace MetricName

Reported MQTT
Messages

IoTDA.MESSAGE_UP Total number of reported MQTT
message records:
iotda_south_messageUp_totalCou
nt

Number of MQTT message
reporting successes:
iotda_south_messageUp_successC
ount

Number of MQTT message
reporting failures:
iotda_south_messageUp_failedCo
unt

AMQP Transfers IoTDA.AMQP_FORWA
RDING

Total number of AMQP transfers:
iotda_amqp_forwarding_totalCou
nt

Number of successful AMQP
transfers:
iotda_amqp_forwarding_successC
ount

Number of failed AMQP transfers:
iotda_amqp_forwarding_failedCo
unt

FunctionGraph
Transfers

IoTDA.FUNCTIONGRA
PH_FORWARDING

Total number of FunctionGraph
transfers:
iotda_functionGraph_forwarding_
totalCount

Number of successful
FunctionGraph transfers:
iotda_functionGraph_forwarding_
successCount

Number of failed FunctionGraph
transfers:
iotda_functionGraph_forwarding_
failedCount

MRS Kafka
Transfers

IoTDA.MRS_KAFKA_FO
RWARDING

Total number of MRS Kafka
transfers:
iotda_mrsKafka_forwarding_total
Count

Number of successful MRS Kafka
transfers:
iotda_mrsKafka_forwarding_succe
ssCount

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 402

Report Name Namespace MetricName

Number of failed MRS Kafka
transfers:
iotda_mrsKafka_forwarding_faile
dCount

MQTT Transfers IoTDA.MQTT_FORWAR
DING

Total number of MQTT transfers:
iotda_mqtt_forwarding_totalCoun
t

Number of successful MQTT
transfers:
iotda_mqtt_forwarding_successCo
unt

Number of failed MQTT transfers:
iotda_mqtt_forwarding_failedCou
nt

MySQL Transfers IoTDA.MYSQL_FORWA
RDING

Total number of MySQL transfers:
iotda_mysql_forwarding_totalCou
nt

Number of successful MySQL
transfers:
iotda_mysql_forwarding_successC
ount

Number of failed MySQL transfers:
iotda_mysql_forwarding_failedCo
unt

InfluxDB
Transfers

IoTDA.INFLUXDB_FOR
WARDING

Total number of InfluxDB transfers:
iotda_influxDB_forwarding_totalC
ount

Number of successful InfluxDB
transfers:
iotda_influxDB_forwarding_succes
sCount

Number of failed InfluxDB
transfers:
iotda_influxDB_forwarding_failed
Count

HTTP Message
Pushes

IoTDA.HTTP_FORWAR
DING

Total number of HTTP message
push transfers:
iotda_http_forwarding_totalCoun
t

Number of successful HTTP
message push transfers:
iotda_http_forwarding_successCo
unt

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 403

Report Name Namespace MetricName

Number of failed HTTP message
push transfers:
iotda_http_forwarding_failedCou
nt

OBS Transfers IoTDA.OBS_FORWARD
ING

Total number of OBS transfers:
iotda_obs_forwarding_totalCount

Number of successful OBS
transfers:
iotda_obs_forwarding_successCou
nt

Number of failed OBS transfers:
iotda_obs_forwarding_failedCoun
t

DMS Kafka
Transfers

IoTDA.DMS_KAFKA_FO
RWARDING

Total number of DMS for Kafka
transfers:
iotda_dmsKafka_forwarding_total
Count

Number of successful DMS for
Kafka transfers:
iotda_dmsKafka_forwarding_succ
essCount

Number of failed DMS for Kafka
transfers:
iotda_dmsKafka_forwarding_faile
dCount

DIS Transfers IoTDA.DIS_FORWARDI
NG

Total number of DIS transfers:
iotda_dis_forwarding_totalCount

Number of successful DIS transfers:
iotda_dis_forwarding_successCou
nt

Number of failed DIS transfers:
iotda_dis_forwarding_failedCount

ROMA Transfers IoTDA.ROMA_FORWA
RDING

Total number of ROMA Connect
transfers:
iotda_roma_forwarding_totalCou
nt

Number of successful ROMA
Connect transfers:
iotda_roma_forwarding_successC
ount

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 404

Report Name Namespace MetricName

Number of failed ROMA Connect
transfers:
iotda_roma_forwarding_failedCou
nt

LTS Transfers IoTDA.LTS_FORWARDI
NG

Total number of LTS transfers:
iotda_lts_forwarding_totalCount

Number of successful LTS transfers:
iotda_lts_forwarding_successCoun
t

Number of failed LTS transfers:
iotda_lts_forwarding_failedCount

BCS Huawei
Cloud Blockchain
Transfers

IoTDA.BCS_HW_FORW
ARDING

Total number of BCS Huawei Cloud
blockchain transfers:
iotda_bcshw_forwarding_totalCou
nt

Number of successful BCS Huawei
Cloud blockchain transfers:
iotda_bcshw_forwarding_successC
ount

Number of failed BCS Huawei
Cloud blockchain transfers:
iotda_bcshw_forwarding_failedCo
unt

BCS-Hyperledger
Fabric Enhanced
Edition Transfers

IoTDA.BCS_FABRIC_FO
RWARDING

Total number of BCS-Hyperledger
Fabric Enhanced Edition transfers:
iotda_bcsfabric_forwarding_total
Count

Number of successful BCS-
Hyperledger Fabric Enhanced
Edition transfers:
iotda_bcsfabric_forwarding_succe
ssCount

Number of failed BCS-Hyperledger
Fabric Enhanced Edition transfers:
iotda_bcsfabric_forwarding_failed
Count

MongoDB
Transfers

IoTDA.MONGODB_FO
RWARDING

Total number of MongoDB
transfers:
iotda_mongodb_forwarding_total
Count

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 405

Report Name Namespace MetricName

Number of successful MongoDB
transfers:
iotda_mongodb_forwarding_succe
ssCount

Number of failed MongoDB
transfers:
iotda_mongodb_forwarding_faile
dCount

Software and
Firmware
Upgrades/
Remote
Configuration

AOM.IoTDA Number of successes: count:
iotda_batchtask_success_count

Number of failures:
iotda_batchtask_failure_count

8.3 Alarms
The IoT platform generates an alarm when it detects that the alarm triggering
condition set in a rule is met or the device message reporting rate exceeds the
threshold preset on the platform. Pay close attention to the alarms and handle
them in a timely manner to ensure the normal device running.

Alarms are classified into rule alarms, system alarms, and custom metric alarms.
● Rule alarms: If you set the action Report alarms when configuring a device

linkage rule and define the alarm properties and severity, the platform
reports an alarm when the trigger condition is met. For example, if a smart
water meter does not report data for three consecutive days, the platform
generates an alarm to notify maintenance personnel of the water meter fault.
Maintenance personnel then locate the faulty water meter based on the
alarm information and repair it promptly.

● System alarms: When some resources of a user, for example, the number of
devices, reach the upper limit of the user quota, the IoTDA platform reports a
system alarm to the AOM. This type of alarm is automatically triggered by
the IoTDA platform, but notification rules need to be configured. Table 8-7
lists the system alarms.

Table 8-7 System alarms

Alarm Description

MQTT Message
Flow Control for a
Single Device

When the volume of data sent by an MQTT device
per second exceeds the threshold (3 KB/s by default),
the platform starts flow control on the MQTT device
and generates this alarm.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 406

Alarm Description

Device Upstream
Messages Exceeding
the Tenant Flow
Control

The sum of the upstream message rate and
connection setup rate exceeds the threshold.
(PUBLISH indicates upstream message, CONNECT
indicates connection setup, and BANDWIDTH
indicates bandwidth.) By default, the rate of
upstream messages is 500 messages per second in
the basic edition, and the rate of link setup is 100
messages per second in the basic edition. For details
about the standard and enterprise editions, see
Specifications. If the rate exceeds the default value,
flow control will be performed and an alarm will be
generated.

Number of User
Devices Reaching
the Threshold

This alarm is generated when the number of
registered user devices reaches 80% or 100% of the
instance threshold (50,000 for the basic edition, and
20 times of the number of online devices for the
standard or enterprise edition. For details, see
Specifications).

Number of Online
User Devices
Reaching the
Threshold

This alarm is generated when the number of online
user devices reaches 80% or 100% of the threshold.
(The threshold depends on the number of purchased
units. For the standard or enterprise edition, see
Specifications.) When the number of online user
devices exceeds the threshold, device access is
rejected. The alarm is triggered once an hour.

Number of Child
Devices Under a
Gateway Reaching
the Threshold

This alarm is generated when the number of child
devices under a gateway reaches 80% or 100% of
the threshold.

Linkage Rule
Triggering
Concurrency
Threshold

This alarm is generated when the number of linkage
rules triggered per second exceeds the threshold
(10/s for the basic or standard edition and 100/s for
the enterprise edition), and flow control is triggered
on the excess part. This alarm is triggered only once
a day.

Number of API Calls
from a Tenant
Reaching the Flow
Control Threshold

This alarm is generated when the TPS of API calls
made by a tenant exceeds the threshold. (Unless
otherwise specified, the default limit of an API is
50/s. Maximum number of API calls made by an
account per second: 100/s for the basic and standard
editions.) Flow control is triggered on the excess
part. This alarm is triggered only once a day.

Dafa Forwarding
Target Added to the
Blacklist

This alarm is generated when the number of data
forwarding failures reaches a specified value (10 by
default) and the current forwarding target is added
to the blacklist.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 407

https://support.huaweicloud.com/intl/en-us/productdesc-iothub/iot_04_0014.html
https://support.huaweicloud.com/intl/en-us/productdesc-iothub/iot_04_0014.html
https://support.huaweicloud.com/intl/en-us/productdesc-iothub/iot_04_0014.html

● Custom metric alarms: You can log in to the AOM 1.0 or AOM 2.0 console to
configure custom metric alarms. For details, see Configuration Procedure for
AOM 1.0. Currently, the following metrics are supported.

Table 8-8 Custom alarm metrics

Metric Name

Total number of devices iotda_device_status_totalCount

Number of online devices iotda_device_status_onlineCount

Number of offline devices iotda_device_status_offlineCount

Number of abnormal
devices

iotda_device_status_abnormalCount

Number of inactive
devices

iotda_device_status_inactiveCount

Number of activated
devices

iotda_device_status_activeCount

Number of online devices
(accumulated)

iotda_device_status_dailyOnlineCount

Total number of reported
NB-IoT data records

iotda_south_dataReport_totalCount

Number of NB-IoT data
reporting failures

iotda_south_dataReport_failedCount

Total number of MQTT
event reporting times

iotda_south_eventUp_totalCount

Number of MQTT event
reporting successes

iotda_south_eventUp_successCount

Number of MQTT event
reporting failures

iotda_south_eventUp_failedCount

Total number of MQTT
property reporting times

iotda_south_propertiesReport_totalCount

Number of MQTT
property reporting
successes

iotda_south_propertiesReport_successCount

Number of MQTT
property reporting failures

iotda_south_propertiesReport_failedCount

Total number of MQTT
message reporting times

iotda_south_messageUp_totalCount

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 408

https://console-intl.huaweicloud.com/aom/?locale=en-us#/aom/ams/cloudMonitoring
https://console-intl.huaweicloud.com/aom2/?locale=en-us#/aom2/alarm/alarmNotification

Metric Name

Number of MQTT
message reporting
successes

iotda_south_messageUp_successCount

Number of MQTT
message reporting failures

iotda_south_messageUp_failedCount

AMQP transfers iotda_amqp_forwarding_totalCount

Number of AMQP transfer
successes

iotda_amqp_forwarding_successCount

Number of AMQP transfer
failures

iotda_amqp_forwarding_failedCount

FunctionGraph transfers iotda_functionGraph_forwarding_totalCount

Number of FunctionGraph
transfer successes

iotda_functionGraph_forwarding_successCount

Number of FunctionGraph
transfer failures

iotda_functionGraph_forwarding_failedCount

MRS Kafka transfers iotda_mrsKafka_forwarding_totalCount

Number of MRS Kafka
transfer successes

iotda_mrsKafka_forwarding_successCount

Number of MRS Kafka
transfer failures

iotda_mrsKafka_forwarding_failedCount

MQTT transfers iotda_mqtt_forwarding_totalCount

Number of MQTT transfer
successes

iotda_mqtt_forwarding_successCount

Number of MQTT transfer
failures

iotda_mqtt_forwarding_failedCount

MySQL transfers iotda_mysql_forwarding_totalCount

Number of MySQL
transfer successes

iotda_mysql_forwarding_successCount

Number of MySQL
transfer failures

iotda_mysql_forwarding_failedCount

InfluxDB transfers iotda_influxDB_forwarding_totalCount

Number of InfluxDB
transfer successes

iotda_influxDB_forwarding_successCount

Number of InfluxDB
transfer failures

iotda_influxDB_forwarding_failedCount

HTTP message pushes iotda_http_forwarding_totalCount

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 409

Metric Name

Number of HTTP message
push transfer successes

iotda_http_forwarding_successCount

Number of HTTP message
push transfer failures

iotda_http_forwarding_failedCount

OBS transfers iotda_obs_forwarding_totalCount

Number of OBS transfer
successes

iotda_obs_forwarding_successCount

Number of OBS transfer
failures

iotda_obs_forwarding_failedCount

DMS Kafka transfers iotda_dmsKafka_forwarding_totalCount

Number of DMS Kafka
transfer successes

iotda_dmsKafka_forwarding_successCount

Number of DMS Kafka
transfer failures

iotda_dmsKafka_forwarding_failedCount

DIS transfers iotda_dis_forwarding_totalCount

Number of DIS transfer
successes

iotda_dis_forwarding_successCount

Number of DIS transfer
failures

iotda_dis_forwarding_failedCount

ROMA transfers iotda_roma_forwarding_totalCount

Number of ROMA
Connect transfer successes

iotda_roma_forwarding_successCount

Number of ROMA
Connect transfer failures

iotda_roma_forwarding_failedCount

LTS transfers iotda_lts_forwarding_totalCount

Number of LTS transfer
successes

iotda_lts_forwarding_successCount

Number of LTS transfer
failures

iotda_lts_forwarding_failedCount

Configuration Procedure for AOM 1.0

Step 1 Log in to the AOM console. In the navigation pane, choose Alarm Center > Alarm
Action Rules. Click Create and configure parameters.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 410

https://console-intl.huaweicloud.com/aom/?locale=en-us#/aom/ams/cloudMonitoring

Figure 8-3 Creating an alarm action rule

Step 2 In the navigation pane, choose Alarm Center > Alarm Rules. Click Create Alarm
Rule in the upper right corner.

Step 3 Setting a threshold alarm rule

1. Set basic information such as the rule name and description.

Figure 8-4 Setting basic alarm information

2. Set details about the rule.

a. Set Rule Type to Threshold alarm.
b. Set Monitored Object to Command input and enter the corresponding

command.

Figure 8-5 Setting objects to be monitored

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 411

NO TE

Enter Prometheus commands. For details about Prometheus commands, move

the cursor to next to the search box and click Learn more.
For example, to query the number of DMS Kafka transfer failures in instance A,
run the following command:
sum(label_replace(sum_over_time(iotda_dmsKafka_forwarding_failedCount{i
nstance="ID of instance A"}
[59999ms]),"__name__","iotda_dmsKafka_forwarding_failedCount","",""))by(
__name__,instance)
iotda_dmsKafka_forwarding_failedCount indicates the metric name, which can
be obtained from Table 8-8.

c. Set Alarm Condition to Custom. In the Trigger Condition area, set
trigger condition parameters, such as the statistical period, consecutive
period, and threshold condition. For details about the parameters, see
Table 8-9.

Figure 8-6 Setting alarm conditions

Taking the preceding figure as an example, a minor alarm will be
generated when the total number is greater than 10 in three statistical
periods.

Table 8-9 Alarm condition parameters

Catego
ry

Parameter Description

Trigger
Conditi
on

Statistical
Period

Interval at which metric data is collected. By
default, only one period is measured. A
maximum of five periods can be measured.

Consecutive
Periods

When the metric value meets the threshold
condition for a specified number of
consecutive periods, a threshold alarm will
be generated.

Statistic Method used to measure metrics. Options:
Avg., Min., Max., Sum, and Samples.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 412

https://prometheus.io/docs/prometheus/latest/querying/basics/

Catego
ry

Parameter Description

Threshold
Condition

Trigger condition of a threshold alarm. A
threshold condition consists of two parts:
operators (≥, ≤, >, and <) and threshold
value. For example, if Threshold Condition
is set to > 85 and an actual metric value
exceeds 85, a threshold alarm will be
generated.

Alarm
Severity

Severity of a threshold alarm. Options:
Critical, Major, Minor, and Warning.

Advanc
ed
Config
uration

Alarm
Clearance

An alarm will be cleared if the monitored
object does not meet the trigger condition
within the monitoring period. By default,
metrics in only one period are monitored.
You can set up to five monitoring periods.

Action Taken
for
Insufficient
Data

Action to be taken when no metric data is
generated or metric data is insufficient
within the monitoring period. You can
configure this option based on your
requirements.
By default, metrics in only one period are
monitored. You can set up to five monitoring
periods.
Options: Alarm, Insufficient data, Keep
previous status, and Normal.

3. Configure alarm notifications.

a. Set Alarm Mode to Direct Alarm Reporting.
b. Select the action rule created in Step 1.
c. Enable Notification.

Figure 8-7 Setting alarm notifications

NO TE

For details about how to use alarm noise reduction, see Alarm Noise Reduction.

----End

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 413

https://support.huaweicloud.com/intl/en-us/usermanual-aom/aom_02_0951.html

Configuration Procedure for AOM 2.0

Step 1 Log in to the AOM console. In the navigation pane, choose Alarm Management >
Alarm Action Rules. On the displayed page, click Create and configure
parameters.

Figure 8-8 Creating an alarm action rule

Step 2 In the navigation pane, choose Alarm Management > Alarm Rules. On the
displayed page, click Create.

Step 3 Enter a rule name, select an enterprise project from the drop-down list, and enter
the rule description as required.

Figure 8-9 Creating an alarm rule

Step 4 Set details about the rule.

1. Rule Type: Select Metric alarm rule.
2. Configuration Mode: Select Select from all metrics.
3. Prometheus Instance: Select the target instance.
4. Alarm Rule Details: Select Multiple Metrics.
5. Metric: Enter iotda in the Metric text box to get related metrics. For details

about the metric, see Table 8-8.
6. Conditions: Specify the dimension name, filter criteria, and dimension value.
7. Rule: Enter the metric alarm threshold.
8. Trigger Condition: Enter the consecutive periods for triggering the alarm.
9. Alarm Severity: Select an alarm severity icon.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 414

https://console-intl.huaweicloud.com/aom2/?locale=en-us#/aom2/alarm/alarmNotification

Figure 8-10 Setting alarm rules

Step 5 Set alarm notification. Enable the alarm action rule and select a rule from the
drop-down list. If no action rule is available, click the check icon on the right to go
to the page for creating an alarm action rule.

Figure 8-11 Setting alarm rules

----End

Checking Alarm Information
You can use AOM to view alarms generated in the last 15 days. For details, see
Viewing Alarms.

1. Access the IoTDA service page and click Access Console. Click the target
instance card.

2. In the navigation pane, choose O&M > Device Alarms. Click Application
Operations Management (AOM) to access the AOM console and view
alarms generated for IoTDA.

3. Click an alarm to check the alarm details.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 415

https://support.huaweicloud.com/intl/en-us/usermanual-aom/aom_02_0004.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 8-12 Viewing alarm details

4. Clear an alarm. After the fault is rectified, click in the Operation column
of the target alarm.

8.4 Audit Logs

Scenarios
After you enable CTS and the management tracker is created, CTS starts recording
operations on cloud resources. After a data tracker is created, the system starts to
record user operations on data in OBS buckets. CTS retains operation records of
the latest seven days.

This section describes how to query and export operation records of the last seven
days on the CTS console.

● Viewing Real-Time Traces in the Trace List of the New Edition
● Viewing Real-Time Traces in the Trace List of the Old Edition

Constraints
● Traces of a single account can be viewed on the CTS console. Multi-account

traces can be viewed only on the Trace List page of each account, or in the
OBS bucket or the CTS/system log stream configured for the management
tracker with the organization function enabled.

● You can only query operation records of the last seven days on the CTS
console. To store operation records for more than seven days, you must
configure an OBS bucket to transfer records to it. Otherwise, you cannot
query the operation records generated seven days ago.

● After performing operations on the cloud, you can query management traces
on the CTS console 1 minute later and query data traces on the CTS console 5
minutes later.

Viewing Real-Time Traces in the Trace List of the New Edition

Step 1 Log in to the console.

Step 2 Click in the upper left corner and choose Management & Governance >
Cloud Trace Service.

Step 3 Choose Trace List in the navigation pane.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 416

Step 4 On the Trace List page, use advanced search to query traces. You can combine
one or more filters.
● Trace Name: Enter a trace name.
● Trace ID: Enter a trace ID.
● Resource Name: Enter a resource name. If the cloud resource involved in the

trace does not have a resource name or the corresponding API operation does
not involve the resource name parameter, leave this field empty.

● Resource ID: Enter a resource ID. Leave this field empty if the resource has no
resource ID or if resource creation failed.

● Trace Source: Select a cloud service name from the drop-down list.
● Resource Type: Select a resource type from the drop-down list.
● Operator: Select one or more operators from the drop-down list.
● Trace Status: Select normal, warning, or incident.

– normal: The operation succeeded.
– warning: The operation failed.
– incident: The operation caused a fault that is more serious than the

operation failure, for example, causing other faults.
● Time range: Select Last 1 hour, Last 1 day, or Last 1 week, or specify a

custom time range.

Step 5 On the Trace List page, you can also export and refresh the trace list, and
customize the list display settings.

1. Enter any keyword in the search box and click to filter desired traces.
2. Click Export to export all traces in the query result as an .xlsx file. The file can

contain up to 5,000 records.

3. Click to view the latest information about traces.

4. Click to customize the information to be displayed in the trace list. If Auto

wrapping is enabled (), excess text will move down to the next line;
otherwise, the text will be truncated. By default, this function is disabled.

Step 6 For details about key fields in the trace structure, see Trace Structure and
Example Traces.

Step 7 (Optional) On the Trace List page of the new edition, click Go to Old Edition in
the upper right corner to switch to the Trace List page of the old edition.

----End

Viewing Real-Time Traces in the Trace List of the Old Edition

Step 1 Log in to the console.

Step 2 Click in the upper left corner and choose Management & Governance >
Cloud Trace Service.

Step 3 Choose Trace List in the navigation pane.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 417

https://support.huaweicloud.com/intl/en-us/usermanual-cts/cts_03_0010.html
https://support.huaweicloud.com/intl/en-us/usermanual-cts/cts_03_0011.html

Step 4 Each time you log in to the CTS console, the new edition is displayed by default.
Click Go to Old Edition in the upper right corner to switch to the trace list of the
old edition.

Step 5 Specify the filters used for querying traces. The following filters are available:
● Trace Type, Trace Source, Resource Type, and Search By: Select a filter from

the drop-down list.
– If you select Resource ID for Search By, specify a resource ID.
– If you select Trace name for Search By, specify a trace name.
– If you select Resource name for Search By, specify a resource name.

● Operator: Select a specific operator (a user other than an account).
● Trace Status: Select All trace statuses, Normal, Warning, or Incident.
● Time Range: You can query traces generated during any time range of the

last seven days.
● Click Export to export all traces in the query result as a CSV file. The file can

contain up to 5,000 records.

Step 6 Click Query.

Step 7 On the Trace List page, you can also export and refresh the trace list.
● Click Export to export all traces in the query result as a CSV file. The file can

contain up to 5,000 records.

● Click to view the latest information about traces.

Step 8 Click on the left of a trace to expand its details.

Step 9 Click View Trace in the Operation column. The trace details are displayed.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 418

Step 10 For details about key fields in the trace structure, see Trace Structure and
Example Traces.

Step 11 (Optional) On the Trace List page of the old edition, click New Edition in the
upper right corner to switch to the Trace List page of the new edition.

----End

IoTDA Operations That Can Be Recorded by CTS

Using Cloud Trace Service (CTS), you can view user and platform operations and
results. If an exception occurs, you can locate and rectify the fault based on the
logs. The table below lists IoTDA operations that are logged.

Table 8-10 IoTDA operations that can be recorded by CTS

Category Operation Resource Type Trace Name

Linkage rule
management

Creating a rule rules createRules

Deleting a rule rules deleteRules

Updating a rule rules updateRules

Modifying the
rule status

rules changeRuleStatus

JavaScript script
management

Uploading
JavaScript plug-in
scripts

scripts createScript

Deleting
JavaScript plug-in
scripts

scripts deleteScript

Debugging
JavaScript plug-in
scripts

scripts runScript

Function plug-in
management

Uploading a
Function plug-in

functions createProductFunc-
tions

Deleting a
Function plug-in

functions deleteProductFunc-
tions

Downloading a
Function plug-in

functions getProductFunction
s

Batch task
management

Creating a batch
task

batchtasks createBatchtasks

Retrying a batch
task

batchtasks retryBatchtasks

Stopping a batch
task

batchtasks stopBatchtasks

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 419

https://support.huaweicloud.com/intl/en-us/usermanual-cts/cts_03_0010.html
https://support.huaweicloud.com/intl/en-us/usermanual-cts/cts_03_0011.html

Category Operation Resource Type Trace Name

Deleting a batch
task

batchtasks deleteBatchtasks

Batch task file
management

Uploading a
batch task file

batchtask-files uploadBatchTask-
File

Deleting a batch
task file

batchtask-files deleteBatchTaskFile

Export tasks Creating an
export task

export-tasks createExportTasks

Deleting an
export task

export-tasks deleteExportTask

Downloading an
export file

export-tasks createTaskreport

Application
certificate
management

Uploading a push
CA certificate

Certificate createCertificate

Updating a push
CA certificate

Certificate updateCertificate

Deleting a push
CA certificate

Certificate deleteCertificate

Certificate
management

Uploading a
device CA
certificate

certificate addCertificate

Deleting a device
CA certificate

certificate deleteCertificate

Commissioning
the device CA
certificate

certificate debugCertificate

Verifying a device
CA certificate

certificate verifyCertificate

Downloading a
device CA
certificate

certificate downloadCertifi-
cate

Server certificate
management

Creating a
certificate for the
enterprise edition

ServerCertificate addServerCertifi-
cate

Replacing the
certificate of the
enterprise edition

ServerCertificate updateServerCerti-
ficate

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 420

Category Operation Resource Type Trace Name

Deleting a
certificate of the
enterprise edition

ServerCertificate deleteServerCertifi-
cate

Resource space
management

Creating a
resource space

application addApplication

Deleting a
resource space

application deleteApplication

Modifying a
resource space

application updateApplication

Access code
management

Creating an
access code

accessCode createAccessCode

Verifying an
access code

accessCode verifyAccessCode

Software/
Firmware upgrade
package
management

Creating an OTA
upgrade package

upgradeTask uploadOtaPackages

Deleting an OTA
upgrade package

upgradeTask deleteOtaPackages

File storage and
management

Configuring an
OBS bucket for
file upload.

upgradeTask createBucket

Forwarding rule
management

Creating a rule
triggering
condition

routing-rule addRule

Modifying a rule
triggering
condition

routing-rule modifyRule

Deleting a rule
triggering
condition

routing-rule deleteRule

Testing the SQL
connectivity

rule-sql checkSql

Forwarding rule
action
management

Creating a rule
action

rule-action addAction

Modifying a rule
action

rule-action modifyAction

Deleting a rule
action

rule-action deleteAction

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 421

Category Operation Resource Type Trace Name

Testing the
connectivity
interface

rule-action sendMessage

Outbound flow
control policy
management

Creating an
outbound flow
control policy

create-flow-
control-policy

createRoutingFlow-
ControlPolicy

Updating an
outbound flow
control policy

update-flow-
control-policy

updateRoutingFlow
ControlPolicy

Deleting an
outbound flow
control policy

delete-flow-
control-policy

deleteRoutingFlow-
ControlPolicy

Outbound push
stacking policy
management

Creating an
outbound push
stacking policy

create-routing-
backlog-policy

createRoutingBack-
logPolicy

Modifying an
outbound push
stacking policy

update-routing-
backlog-policy

updateRoutingBack
logPolicy

Deleting an
outbound push
stacking policy

delete-routing-
backlog-policy

deleteRoutingBack-
logPolicy

Device shadow Configuring
desired data in
the device
shadow

deviceShadow updateDeviceShad-
ow

Plug-in mapping
management

Modifying the
mapping

plugin addMapping

Plug-in message
management

Modifying
message
information

plugin addMessage

Plug-in
management

Deploying an
online plug-in

plugin deployPlugin

Saving plug-in
information

plugin savePluginMessage

Updating plug-in
information

plugin modifyPluginMes-
sage

Deploying an
offline plug-in

plugin bundlePackages

Simulator
management

Registering and
debugging a
device simulator

plugin registerEmulated-
Device

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 422

Category Operation Resource Type Trace Name

Device debugging
messages

Sending upstream
code stream

plugin simulateReport

Tunnel
management

Creating a tunnel tunnels createTunnel

Deleting a tunnel tunnels deleteTunnel

Modifying a
tunnel

tunnels updateTunnel

Product
management

Creating a
product

product addProduct

Modifying
product
information

product updateProduct

Deleting a
product

product deleteProduct

Custom topic
management

Modifying a
custom topic

topic updateTopic

Deleting a custom
topic

topic deleteTopic

Creating a custom
topic

topic addTopic

Exception
detection
configuration

Configuring the
exception
detection

productConfig addProductConfig

AMQP queue
management

Creating an
AMQP queue

amqp addQueue

Deleting an
AMQP queue

amqp deleteQueue

Terminating the
receive-link
consumption
capability

amqp hangUpConnection

Cloud
interconnection
configuration
management

Creating cloud
interconnection
configurations

service-
integration

addServiceIntegra-
tionConfig

Deleting cloud
interconnection
configurations

service-
integration

deleteServiceInte-
grationConfig

Modifying cloud
interconnection
configurations

service-
integration

modifyServiceInte-
grationConfig

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 423

Category Operation Resource Type Trace Name

Group
management

Adding a group device-group addDeviceGroup

Modifying a
group

device-group updateDeviceGroup

Deleting a group device-group deleteDeviceGroup

Managing devices
in a group

device-group manageDevicesInGr
oup

Device tag
management

Binding a tag tag bindTagsToResourc
e

Unbinding a tag tag unbindTagsToResou
rce

Device
management

Creating a device device addDevice

Modifying device
information

device updateDevice

Deleting a device device deleteDevice

Resetting a device
secret

device resetDeviceSecret

Freezing a device device freeze-device

Unfreezing a
device

device unfreeze-device

HarmonyOS soft
bus

Creating a
HarmonyOS soft
bus

harmony-soft-
bus

create-harmony-
soft-bus

Deleting a
HarmonyOS soft
bus

harmony-soft-
bus

delete-harmony-
soft-bus

Resetting a
HarmonyOS soft
bus key

harmony-soft-
bus

reset-harmony-soft-
bus-key

Synchronizing a
HarmonyOS soft
bus

harmony-soft-
bus

sync-harmony-soft-
bus

Device proxy
management

Deleting a device
proxy

device-proxy deleteDeviceProxy

Creating a device
proxy

device-proxy addDeviceProxy

Modifying a
device proxy

device-proxy updateDeviceProxy

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 424

Category Operation Resource Type Trace Name

Device policy
management

Creating a device
policy

device-policy addDevicePolicy

Deleting a device
policy

device-policy deleteDevicePolicy

Updating a device
policy

device-policy updateDevicePolicy

Binding a device
policy

device-policy bindDevicePolicy

Unbinding a
device policy

device-policy unbindDevicePolicy

Message tracing
management

Modifying
message tracing
configurations

message-trace updateMessageTra-
ceConfig

Deleting message
tracing
configurations

message-trace deleteMessageTra-
ceConfig

Deleting message
tracing data

message-trace deleteMessageTra-
ceData

O&M
configuration
management

Modifying O&M
configurations

device-config updateDeviceConfig

Command
management

Delivering a
command

command sendCommand

Delivering an
asynchronous
command

asyncCommand sendAsyncComman
d

Remote login Creating an SSH
channel

SshConnect SshConnect

Delivering an SSH
command

SshComand SshComand

Disabling an SSH
channel

SshDisconnect SshDisconnect

8.5 Run Logs (Old Version)
IoTDA can record the connections with devices and applications and report logs to
Log Tank Service (LTS). LTS provides real-time query, massive log storage, log
structuring, visualization, and analysis capabilities. It provides a free quota of 500

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 425

MB per month. When this quota is used up, you will be billed for any excess usage
on a pay-per-use basis. For details, see What Is Log Tank Service?

Currently, only service run logs of MQTT devices can be recorded. For details, see
the following table.

Table 8-11 Service types

Service Type Service Flow

Device status Device going online

Device going offline

Device message Application requesting message delivery to devices

Platform delivering messages to devices

Device reporting messages

Device command Application requesting command delivery to devices

Platform delivering commands to devices

Platform receiving device response to commands

Device property Application requesting device property modification

Platform delivering property modification to devices

Device reporting properties

Gateway reporting device properties in batches

Device event Platform notifying a gateway of new child device
connection

Platform notifying a gateway of child device deletion

Gateway synchronizing child device information

Gateway updating child device statuses

Gateway requesting for adding child devices

Platform responding to a request for adding child
devices

Gateway requesting for deleting child devices

Platform responding to a request for deleting child
devices

Gateway updating child device statuses

Platform responding to a request for updating child
device statuses

Platform delivering a command to obtain version
information

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 426

https://support.huaweicloud.com/intl/en-us/productdesc-lts/lts-03201.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0059.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0038.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0034.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3019.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3019.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3020.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3021.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3022.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_30181.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_30182.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_30182.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_30183.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_30184.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_30184.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3022.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_30233.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_30233.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3028.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3028.html

Service Type Service Flow

Device reporting the software and firmware versions

Platform delivering an upgrade command

Device reporting the upgrade status

Device requesting a URL for file upload

Platform delivering a temporary URL for file upload

Device reporting file upload results

Device requesting a URL for file download

Platform delivering a temporary URL for file download

Device reporting file download results

Device requesting time synchronization

Platform responding to a request for time
synchronization

Device reporting information

Platform delivering a log collection notification

Device reporting log content

Platform delivering a configuration notification

Device reporting the configuration response

Device downloading upgrade package

Batch task Subtask execution result of a batch task

Device self-
registration

Device self-registration result.

Device
authentication

Custom device authentication result

Table 8-12 Format of batch task run logs

Field Description

appId Application ID.

deviceId Device ID.

categoryName Log type: batch.task.

operation Action. Set this parameter to the ID of a batch task. For
details, see Create a Batch Task.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 427

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3029.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3030.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3031.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3033.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3034.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3035.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3036.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3037.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3038.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3040.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3041.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3041.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3042.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1303.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1302.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_0802.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_0803.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0115.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0045.html

Field Description

request Request content in JSON format.
{
"task_type": "createDevices", / / Task type
"package_id": "f2303267a6e8f0053037c2a9", // Software/
Firmware upgrade package
"package_ids": ["65f3ebe2682b9f4bcc38baad"] // Software/
Firmware upgrade package
}
NOTE

When the batch task type is softwareUpgrade or
firmwareUpgrade, the package_id and package_ids parameters are
supported.

response Response content in JSON format.
Success:
{
"output" : "xxxxxxxxxxxx"
}
Failure:
{
"error" : {
"error_code" : "IOTDA.XXXXX",
"error_msg" : "XXXXX."
}
}

status Execution result. Subtask status. Options: Success, Fail,
Stopped, or Removed.

Table 8-13 Format of non-batch tasks

Field Description

recordTime Log collection time. The time format is yyyy-MM-
dd'T'HH:mm:ss,SSS'Z'.
Example: 2020-06-16T09:24:45,708Z

deviceId Device ID.

requestId Request ID.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 428

Field Description

categoryName Options:
device.status
device.message
device.command
device.property
device.event
device.auth
device.provisioning

operation Operation name. Example: API URL or MQTT message topic.

request Request parameter of an operation. Example: API request body.

response Operation result. Example: API response body or error
information.

result Operation status code.

Procedure

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose O&M > Run Logs, and click Configure Run Log.

Figure 8-13 Run log - Old version configuration

Step 3 On the displayed dialog box, select the service type for data collection and click
OK.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 429

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 8-14 Run log - Log switch of old version configuration

Step 4 Create a run log forwarding rule to forward the collected log data to other cloud
services, so that you can view and process it. You are advised to forward log data
to LTS. The following uses LTS as an example.

1. In the navigation pane, choose Rules > Data Forwarding, and click Create
Rule.

2. Configure parameters by referring to the following table, and click Create
Rule.

Table 8-14 Creating a rule

Parameter Description

Rule Name Specify the name of a rule to create.

Description Describe the rule.

Data Source Select Run log.

Trigger After the data source is selected, the platform automatically
matches the trigger event.

Resource
Space

You can select a single resource space or all resource spaces.

3. Click the Set Forwarding Target tab, and then click Add to set a forwarding

target.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 430

Table 8-15 Setting the forwarding target

Parameter Description

Forwarding
Target

Select Log Tank Service (LTS).

Region Currently, log data can be forwarded only to LTS in the
same region.

Log Group/log
Stream

Select a log group and log stream of LTS. If no log
group or log stream is available, create them by
referring to Managing Log Groups and Managing Log
Streams.

NO TE

Logs are retained in the log group for 7 days by default. Logs older than the retention
period will be automatically deleted. For long-term storage, you can transfer logs to
Object Storage Service (OBS) buckets. For details, see Transferring Logs to OBS.
LTS provides a free quota of 500 MB per month. By default, it continues to collect logs
when the quota is used up. You will be billed for the excess usage on a pay-per-use
basis. You can log in to the LTS console and choose Configuration Center to disable
this function.

4. Click OK, and then click Enable Rule to forward run logs to LTS.

Step 5 Log in to the LTS console and choose Log Management.

Step 6 Select the log group and log stream created in 3 to view the logs reported by
IoTDA. Search for raw and target logs by referring to Log Search. For example,
search for logs by device ID and service type.

Figure 8-15 Run logs - Checking the log list

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 431

https://support.huaweicloud.com/intl/en-us/usermanual-lts/lts_04_0003.html
https://support.huaweicloud.com/intl/en-us/usermanual-lts/lts_04_0004.html
https://support.huaweicloud.com/intl/en-us/usermanual-lts/lts_04_0004.html
https://support.huaweicloud.com/intl/en-us/usermanual-lts/lts_04_0041.html
https://console-intl.huaweicloud.com/lts/?locale=en-us#/log/manager/groups
https://support.huaweicloud.com/intl/en-us/usermanual-lts/lts_05_0005.html

Figure 8-16 Run logs - Searching for run logs

Step 7 On the log stream details page, click the Log Analysis tab. On the log structuring
page that is displayed, select JSON.

Figure 8-17 Run logs - Log analysis

Step 8 Select a sample log that contains time, device ID, request ID, service type,
operation, request parameter, result information, and execution status. Click the
button of intelligent extraction to modify the field names, for example,
recordTime, requestId, deviceId, categoryName, operation, request, response and
result. Change the field type to string. Click Save to complete the log structuring
configuration. For details, see Structuring Logs.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 432

https://support.huaweicloud.com/intl/en-us/usermanual-lts/lts_0822.html#section1

Figure 8-18 Run logs - Configuring log structuring

Step 9 After the raw logs are structured, the service will respond. On the Log
Management page, select the log group and log stream created in 3, and click
the button for log analysis to check the structured target logs. You can query logs
using SQL statements. For example, to query logs by device ID and service type,
run select * where deviceId = '{{deviceId}}' and categoryName = 'device.status'.

Figure 8-19 Run logs - Log analysis and search

----End

8.6 Run Logs (New Version)
Overview

IoTDA records connections with devices and applications and reports them as logs
to Log Tank Service (LTS). LTS provides real-time query, mass storage, structured
processing, and visualized chart analysis.

You do not need to manually create log groups, log streams, and forwarding rule
action when using the new version of run logs. The IoT platform automatically

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 433

completes configurations for you. You can long in to the IoT platform to view the
run logs.

Figure 8-20 Process of run logs

Constraints

Currently, only service run logs of MQTT devices can be recorded. For details, see
Table 1.

Table 8-16 Service type

Service Type Service Process

Device status Device going online

Device going offline

Device message Application requesting message delivery to devices

Platform delivering messages to devices

Device reporting messages

Device command Application requesting command delivery to devices

Platform delivering commands to devices

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 434

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3009.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0059.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3017.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3016.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0038.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html

Service Type Service Process

Platform receiving device response to commands

Device property Application requesting device property modification

Platform delivering property modification to devices

Device reporting properties

Gateway reporting device properties in batches

Device event Platform notifying a gateway of new child device
connection

Platform notifying a gateway of child device deletion

Gateway synchronizing child device information

Gateway updating child device status

Gateway requesting for adding child devices

Platform responding to a request for adding child
devices

Gateway requesting for deleting child devices

Platform responding to a request for deleting child
devices

Gateway updating child device status

Platform responding to a request for updating child
device statuses

Platform delivering a command to obtain version
information

Device reporting the software and firmware versions

Platform delivering an upgrade command

Device reporting the upgrade status

Device requesting a URL for file upload

Platform delivering a temporary URL for file upload

Device reporting file upload results

Device requesting a URL for file download

Platform delivering a temporary URL for file download

Device reporting file download results

Device requesting time synchronization

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 435

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3014.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0034.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3008.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3010.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3006.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3019.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3019.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3020.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3021.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3022.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_30181.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_30182.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_30182.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_30183.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_30184.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_30184.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3022.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_30233.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_30233.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3028.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3028.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3029.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3030.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3031.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3033.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3034.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3035.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3036.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3037.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3038.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3040.html

Service Type Service Process

Platform responding to a request for time
synchronization

Device reporting information

Platform delivering a log collection notification

Device reporting log content

Platform delivering a configuration notification

Device reporting the configuration response

Device downloading upgrade package

Batch task Subtask execution result of a batch task

Device self-
registration

Device self-registration result.

Device
authentication

Custom device authentication result

Table 8-17 Format of batch task run logs

Field Description

appId Application ID.

deviceId Device ID.

categoryName Log type: batch.task.

operation Action. Set this parameter to the ID of a batch task. For
details, see Create a Batch Task.

request Request content in JSON format.
{
"task_type": "createDevices", / / Task type
"package_id": "f2303267a6e8f0053037c2a9", // Software/
Firmware upgrade package
"package_ids": ["65f3ebe2682b9f4bcc38baad"] // Software/
Firmware upgrade package
}
NOTE

When the batch task type is softwareUpgrade or
firmwareUpgrade, the package_id and package_ids parameters are
supported.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 436

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3041.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3041.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_3042.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1303.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1302.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_0802.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_0803.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0115.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0045.html

Field Description

response Response content in JSON format.
Success:
{
"output" : "xxxxxxxxxxxx"
}
Failure:
{
"error" : {
"error_code" : "IOTDA.XXXXX",
"error_msg" : "XXXXX."
}
}

status Execution result. Subtask status. Options: Success, Fail,
Stopped, or Removed.

Procedure

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose O&M > Run Logs.

Step 3 If you are using run logs of an earlier version, you can click New Version in the
upper right corner. The new Run Logs page is displayed. If you have used the new
version, the new version page is auto displayed.

Figure 8-21 Run logs - Going to new version

Step 4 If you use the function for the first time, you need to click Enable and Configure.
Two configuration modes are available.

1. One-click configuration:
The platform automatically creates a log group and log stream, configures log
structuring, and sets corresponding forwarding rules and actions.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 437

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 8-22 Run log - One-click configuration

2. Custom configuration
You can flexibly set rules, log groups, and log streams for run logs.
If you configure a structuring rule for the log stream, the platform will modify
the structuring automatically.

Figure 8-23 Run log - Custom configuration

NO TE

Deleting a forwarding rule whose Data Source is Run log may affect functions. Exercise
caution.

Step 5 After configuration, you can view or search for run logs (by time, log type, device
ID, action, and request content) to analyze services. Run logs are stored in the LTS
for 30 days by default. You can modify the retention duration to 365 days at most
on the console.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 438

Figure 8-24 Run log - Modifying the storage time

NO TE

Run logs are stored in LTS. LTS provides a free quota of 500 MB per month. You can click
Quota in the upper right corner to configure the Extra Log Collection function. You can
also go to LTS Configuration Center and set the log resource quota alarm. For details, see
What Is Log Tank Service?
● If you enable Extra Log Collection, LTS will continue to collect log data when the

monthly free quota (500 MB) is reached. You will be billed for the excess part on a pay-
per-use basis. For details, see Billing.

● If you disable Extra Log Collection, LTS will discard log data when the monthly free
quota (500 MB) is reached.

Figure 8-25 Run log - Quota setting

Step 6 One or more service types can be enabled for run logs. You can click Configure
Run Log and change the log collection type in the displayed dialog box. If you do
not select any type, the function of collecting logs is disabled.

Figure 8-26 Run log - Configuring the log switch

----End

Example of Run Logs
This section describes how to use the Java SDK to report messages, trigger run
logs to be transferred to LTS, and check message reporting logs on IoTDA. JDK 1.8
or later is used.

Prerequisites:

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 439

https://console-intl.huaweicloud.com/?locale=en-us#/lts/#/cts/manager/config
https://support.huaweicloud.com/intl/en-us/productdesc-lts/lts-03201.html
https://www.huaweicloud.com/intl/en-us/pricing/index.html#/lts
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java

1. The device has been registered on IoTDA.

2. The run logs of the new version has been enabled and configured, and the
device message log switch has been enabled.

Configure the SDK on the device side:

Step 1 Configure the Maven dependency of the SDK on devices.
<dependency>
 <groupId>com.huaweicloud</groupId>
 <artifactId>iot-device-sdk-java</artifactId>
 <version>1.1.4</version>
</dependency>

Step 2 Configure the SDK and device connection parameters on devices. Note: Replace
the domain name (domain), device ID (deviceId), and device secret (secret) in the
actual code.
// Load the CA certificate of the IoT platform. For details about how to obtain the certificate, visit https://
support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html.
URL resource = BroadcastMessageSample.class.getClassLoader().getResource("ca.jks");
File file = new File(resource.getPath());

// The format is ssl://Domain name:Port number.
// To obtain the domain name, log in to the Huawei Cloud IoTDA console. In the navigation pane, choose
Overview and click Access Details in the Instance Information area. Select the access domain name
corresponding to port 8883.
String serverUrl = "ssl://{domain}:8883";
// Device ID created on the IoT platform
String deviceId = "{deviceId}";
// Secret corresponding to the device ID
String deviceSecret = "{secret}";
// Create a device.
IoTDevice device = new IoTDevice(serverUrl, deviceId, deviceSecret, file);
if (device.init() != 0) {
 return;
}

Step 3 Report a message.
device.getClient().reportDeviceMessage(new DeviceMessage("hello"), new ActionListener() {
 @Override
 public void onSuccess(Object context) {
 log.info("reportDeviceMessage ok");
 }

 @Override
 public void onFailure(Object context, Throwable var2) {
 log.error("reportDeviceMessagefail: "+ var2);
 }
});

----End

Verify the setting:

Step 1 Run the SDK code on the device. If the following information is displayed on the
console, the device goes online and reports messages successfully.
2023-04-27 17:05:26 INFO MqttConnection:88 - Mqtt client connected. address :ssl://{domain}:8883
2023-04-27 17:05:26 INFO MqttConnection:214 - publish message topic = $oc/devices/{deviceId}/sys/
messages/up, msg = {"name":null,"id":null,"content":"hello","object_device_id":null}
2023-04-27 17:05:26 INFO MessageSample:43 - reportDeviceMessage ok

Step 2 Check run logs on the console. You can check the records of device login and
logout and messages reported by devices.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 440

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html

Figure 8-27 Run logs - Log example

----End

8.7 Anomaly Detection
IoTDA provides device anomaly detection functions, including security checks and
disconnection analysis.

Security Checks

IoTDA continuously detects device security threats. This section describes security
check items and how to view and handle detected security risks.

Common detection items

Item Description

Connection
mode

No encryption protocol is used to establish secure
connections between devices and IoTDA. This may cause
man-in-the-middle and replay attacks and affect services.

TLS version Insecure TLS protocol versions (TLS v1.0 and v1.1) have
security vulnerabilities, which may cause security risks such
as device data leakage.

Cryptographic
algorithm suite

Currently, IoTDA checks the following insecure cryptographic
algorithm suites:
TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA,
TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA,
TLS_PSK_WITH_AES_128_CBC_SHA,
TLS_PSK_WITH_AES_256_CBC_SHA
Insecure cryptographic algorithm suites have security
vulnerabilities, which may cause security risks such as device
data leakage.

Device
connection

If a device attempts to establish connections with IoTDA
multiple times within 1 second, the device may be cracked
with brute force. As a result, identity information may be
leaked, normal devices may be forced to go offline, and
service data may be stolen.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 441

Item Description

Device
authentication

Incorrect device identity authentication information causes
device connection failures. This may affect services.

The preceding common check items are enabled by default. You can manually
enable other non-common check items as required.

Table 8-18 Non-common detection items

Item Description

Memory leak check Checks device memory leaks.

Abnormal port Checks whether abnormal ports are
enabled on the device.

CPU usage Checks whether the CPU usage of the
device is too high.

Disk space Checks whether the disk space of the
device is insufficient.

Battery level Checks whether the battery level of
the device is too low.

Malicious IP address Checks whether the device
communicates with malicious IP
addresses.

Local login Checks whether attackers log in to the
device through non-SSH networks.

Brute-force cracking login Checks whether attackers attempt to
log in to the device through brute
force cracking.

Device file tampering Checks whether files in a specified
directory of a device are tampered
with.

Disconnection Analysis
IoTDA help you analyze device disconnection causes by collecting statistics on the
disconnection time range and characteristics of disconnected devices.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 442

Disconnection
Cause

Description

Disconnection
requested by
device

The device sends an MQTT disconnect packet to IoTDA for
disconnection.

Device heartbeat
timed out

The device does not comply with the MQTT protocol. It sends
MQTT heartbeat packets to IoTDA within 1.5 times the
configured heartbeat interval. As a result, IoTDA considers
that the device connection is invalid and cuts off the
connection according to protocol requirements.
(Note: The heartbeat interval is specified when the device
establishes a connection with IoTDA.)

Device-platform
TCP connection
cut off

IoTDA receives a TCP disconnection packet from the device.
As a result, the TCP connection between the device and
IoTDA is cut off.

Device deleted The device is deleted from IoTDA, and IoTDA cuts off the
connection with the device.

Device frozen The device is frozen on IoTDA, and IoTDA cuts off the
connection with the device.

Connection cut
off by IoTDA

IoTDA cuts off the connection with the device during
upgrade.

Earlier
connection cut
off

The device establishes connections with IoTDA repeatedly.
IoTDA cuts off the existing connection and retains the new
connection.

Device secret
reset

When the device secret is reset and the connection is
manually cut off, IoTDA cuts off the connection with the
device.

Procedure

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose O&M > Anomaly Detection and click Authorize.
To use anomaly detection, authorize IoTDA service to perform operations on LTS.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 443

https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 8-28 Anomaly detection - Access authorization

Step 3 After authorization, Security Checks and Disconnection Analysis pages are
available. Click Enable to enable the two functions. Otherwise, they cannot be
used.

Figure 8-29 Anomaly detection - Security checks

Figure 8-30 Anomaly detection - Offline analysis

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 444

NO TE

1. When this function is enabled, IoTDA automatically creates a log group, a log stream,
and a data forwarding rule with the data source set to run logs of all resource spaces.
The log group name is {domainName}-device-exception-group, the log stream name is
{domainName}-device-exception-stream, and the forwarding rule name is
{domainName}-device-exception-rule.
If you delete the rule with the data source set to run logs, this function will be affected. If
you disable this function, rules will not be deleted and will be reused when you enable this
function again.
2. Pay attention to the storage space occupied by anomaly detection logs. When the free
quota (500 MB) is used up, LTS will discard data or continue collecting data after you
purchase LTS. You can click Quota in the upper right corner to modify the quota.

Step 4 To enable Security Checks, perform the following steps. Otherwise, skip them.

1. On the Security Checks tab page, click Security Check Configuration. In the
displayed dialog box, click Add.

Figure 8-31 Anomaly detection - Security check configuration

2. On the configuration page, select the resource space and product name to be
configured, and enable the corresponding check items as required.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 445

Figure 8-32 Anomaly detection - Security check item configuration

NO TE

Memory/CPU usage/Disk space/Battery level checks: The system compares the values
reported by the device with the thresholds configured in the check items to determine
whether to generate alarms. Abnormal port/Malicious IP address checks: Enter
whitelisted ports or IP addresses for checks. The system compares the parameters
reported by the device and the configured whitelist members. You can add IP address
segments to the whitelist, for example, 192.168.1.10/24.

Step 5 You can click Disable on the corresponding pages to manually disable the security
check and disconnection analysis functions, and click Enable to use them again.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 446

Figure 8-33 Anomaly detection - Disabling the function

NO TE

● After you enable security checks, IoTDA starts security checks on devices. Security check
data of the last seven days can be stored at most. You can search for anomaly records
by device ID, resource space, product, check item, and time range, and click the button
to check record details.

Figure 8-34 Anomaly detection - Security check overview

● After you enable disconnection analysis, IoTDA automatically analyzes the causes of
device disconnections. Disconnection analysis data of the last seven days can be stored
at most. You can search for disconnection data by device ID, resource space, product,
cause, and time range, and click the button to check record details.

Figure 8-35 Anomaly detection - Offline analysis overview

----End

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 447

8.8 Remote Login
IoTDA allows you to remotely log in to devices from the console over the Secure
Shell Protocol (SSH). You can enter commands supported by devices to debug
functions and locate faults. This facilitates device management and remote O&M.
The following describes how to use this function.

Prerequisites
1. The device runs on Linux.
2. An SSH server has been installed on the device.
3. The device has been IoTDA SDK integrated. IoT Device SDK C v1.1.1 or later is

supported. For details, see IoT Device SDK (C).
4. The device is online.

Constraints
1. Remote connections are based on SSH. IoTDA only establishes SSH channels

for devices. You need to develop the management capabilities supported by
the console on the device side.

2. Only the standard and enterprise editions support remote login. The domain
name access mode must be provided for application access of the enterprise
edition.

3. Only one remote connection can be enabled for a device at a time. Up to 100
devices can be remotely logged in at a time for each instance of a tenant.

Procedure
Step 1 Access the IoTDA service page and click Access Console. Click the target instance

card.

Step 2 In the navigation pane, choose O&M > Remote Login.

Figure 8-36 Remote login - Remote login page

Step 3 Click Select device to select the device you want to log in, and enter the
username and password for SSH login.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 448

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://www.huaweicloud.com/intl/en-us/product/iotda.html

NO TE

IoTDA does not save the username and password but transparently transfers them to the
device.

Figure 8-37 Remote login - Selecting a device

Step 4 Click OK, the following remote console page is displayed, prompting you to wait
for SSH to be enabled on the device.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 449

Figure 8-38 Remote login - Waiting for the SSH function to be enabled on the
device

Step 5 After the login is successful, the following page is displayed. You can manage the
device based on its functions.

Figure 8-39 Remote login - Successful remote login

----End

8.9 Remote Device Configuration

Overview
The platform allows you to perform remote configuration. You can remotely
update device configuration items such as system and running parameters without
interrupting device running.

For example, you can remotely modify system parameters of cashiers running in
Windows and the data reporting frequency of T-Boxes in the Internet of Vehicles
(IoV) scenarios.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 450

Service Flow

The remote device configuration process is described as follows:

1. A remote configuration task is created on the IoTDA console. Up to 10 remote
configuration tasks can run concurrently under an application. Each task can
deliver configurations to up to 100,000 devices. If a device is already in an
existing remote configuration task and the remote configuration is not
complete, a new remote configuration task that contains the device will fail.

2. The platform checks whether the device is online and delivers configurations
immediately when the device is online. When the device is offline, the
platform waits for the device to go online and subscribe to the remote
configuration topic. After detecting that the device goes online, the platform
delivers configurations. When creating a remote configuration task, you can
configure a timeout interval (1 to 30 days). The default timeout interval is 30
days.

3. After configurations are updated, the device calls the API for reporting the
configuration result.

Procedure

Step 1 Access the IoTDA service page and click Access Console. Click the target instance
card.

Step 2 In the navigation pane, choose O&M > Remote Configuration.

Step 3 Click Create Task.

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 451

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_0802.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_0802.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_0803.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_0803.html
https://www.huaweicloud.com/intl/en-us/product/iotda.html

Figure 8-40 Remote configuration - Remote configuration page

Step 4 On the page for creating a remote configuration task, enter a task name, select
the execution time, and configure the timeout interval and retry policy.

If Retry is enabled, you can set the number of retry attempts and retry interval.
You are advised to set Retry Attempts to 2 and Retry Interval (min) to 5. That is,
if the remote configuration fails, the remote configuration will be retried in 5
minutes. (The maximum number of retry attempts is 5 and the maximum retry
interval is 1,440 minutes.)

Figure 8-41 Adding remote configuration - Basic information

Step 5 Enter the configuration content in JSON format.

Figure 8-42 Adding remote configuration - Configuration content

Step 6 Select the devices to which the configuration to deliver. You can select a group,
upload a file (up to 100,000 devices), or select target devices (up to 30,000

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 452

devices) manually. If a large number of devices need to be configured, select a
group or upload a file.

Figure 8-43 Adding remote configuration - Device selection

Step 7 After a remote configuration task is created and the device goes online, the device
can receive a configuration notification delivered by the platform. After the device
updates its configuration and reports the result, you can view the remote
configuration result on the task details page. You can stop an executing remote
configuration task for a single device or multiple devices (up to 100 devices at a
time) in batches. You can also retry a task for a single device or multiple devices
(up to 100 devices at a time), or retry all failed remote configuration tasks.

Figure 8-44 Remote configuration - Viewing tasks

----End

IoT Device Access
User Guide 8 Monitoring and O&M

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 453

9 Granting Permissions Using IAM

9.1 Agency Authorization
Some functions provided by IoTDA need to access user resources. Therefore, you
need to create an agency to authorize the access. For details, see Table 9-1.

Table 9-1 Agency authorization scenarios

Scenario Authorization

Uploading a file obs:object:PutObject
obs:bucket:HeadBucket
obs:object:GetObject
obs:bucket:GetBucketCustomDomainConfigu-
ration
KMS Administrator (encryption scenario)

Upgrading software/firmware obs:object:GetObject
KMS Administrator (encryption scenario)

Forwarding data to DIS DIS Administrator

Forwarding data to
FunctionGraph

FunctionGraph:function:list
FunctionGraph:function:invokeAsync

Forwarding data to OBS obs:bucket:ListAllMyBuckets
obs:object:GetObject
obs:object:PutObject
KMS Administrator (encryption scenario)

Forwarding data to LTS lts:groups:get
lts:topics:get

IoT Device Access
User Guide 9 Granting Permissions Using IAM

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 454

Scenario Authorization

Forwarding data to BCS Fabric bcs:fabricInstance:getDetail
bcs:fabricInstance:downloadSdkCfg
bcs:fabricInstance:downloadCert

Forwarding data to BCS HW bcs:huaweiCloudChain-
Chain:downloadSdkConfig
bcs:huaweiCloudChainChain:getChain
bcs:huaweiCloudChainContract:get

Using codecs FunctionGraph:function:invoke
FunctionGraph:function:getConfig

Using custom authentication
functions

FunctionGraph:function:invoke
FunctionGraph:function:getConfig

Using SMN notifications of
linkage rules

smn:topic:list
smn:topic:publish

Using private images for
generic-protocol plug-in

swr:repo:listRepos
swr:repo:createRepoDomain

Using instance maintenance
window notifications

smn:topic:list
smn:topic:publish

Configuring private connections vpcep:permissions:update
vpcep:epservices:create
vpcep:epservices:list
vpcep:connections:update

Configuring private connections
to DMS

dms:instance:get
dms:instance:modify
vpcep:permissions:update
vpcep:epservices:create
vpcep:epservices:list
vpcep:connections:update

Creating an enterprise edition
instance

vpc:securityGroups:get
vpc:ports:delete
vpc:subnets:get
vpc:subnets:update
vpc:vpcs:get
vpcep:endpoints:create
vpcep:endpoints:get
vpcep:endpoints:delete

IoT Device Access
User Guide 9 Granting Permissions Using IAM

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 455

Authorization Scenarios
When you use Table 9-1 for the first time, the page for creating agency
authorization is displayed, showing the function list and scope of authorization.
After you agree to the authorization, IoTDA creates an agency named
iotda_admin_trust in IAM, after the authorization is successful, you can view the
created agency in the agency list on the IAM console.

IoT Device Access
User Guide 9 Granting Permissions Using IAM

Issue 1.0 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 456

	Contents
	1 Overview
	2 IoTDA Instances
	2.1 Overview
	2.2 Buying an Instance
	2.3 Instance Management
	2.4 Tag Management
	2.4.1 Overview
	2.4.2 Adding a Tag
	2.4.3 Deleting a Tag
	2.4.4 Searching for Resources by Tag

	3 Resource Spaces
	4 Device Access
	4.1 Overview
	4.2 Device Authentication
	4.2.1 Overview
	4.2.2 LwM2M/CoAP Authentication
	4.2.3 MQTT(S) Secret Authentication
	4.2.4 MQTT(S) Certificate Authentication
	4.2.5 MQTT(S) Custom Authentication
	4.2.5.1 Overview
	4.2.5.2 Usage

	4.2.6 MQTT(S) Custom Template Authentication
	4.2.6.1 Overview
	4.2.6.2 Usage
	4.2.6.3 Examples
	4.2.6.4 Internal Functions

	4.3 Open Protocol Access
	4.3.1 LwM2M/CoAP Access
	4.3.2 HTTPS Access
	4.3.3 MQTT(S) Access

	4.4 Custom Device Domain Name

	5 Message Communications
	5.1 Data Reporting
	5.1.1 Overview
	5.1.2 Device Reporting Messages
	5.1.3 Device Reporting Properties

	5.2 Data Delivery
	5.2.1 Overview
	5.2.2 Message Delivery
	5.2.3 Property Delivery
	5.2.4 Command Delivery

	5.3 Custom Topic Communications
	5.3.1 Overview
	5.3.2 Custom Topics Starting with $oc
	5.3.3 Custom Topics Not Starting with $oc

	5.4 M2M Communications
	5.4.1 Overview
	5.4.2 Usage
	5.4.3 Example

	5.5 Device Topic Policies
	5.5.1 Overview
	5.5.2 Content
	5.5.3 Usage
	5.5.4 Examples

	5.6 Broadcast Communication
	5.6.1 Broadcast Communication Overview
	5.6.2 Broadcast Communication Usage
	5.6.3 Broadcast Communication Example

	5.7 Codecs

	6 Device Management
	6.1 Product Creation
	6.2 Registering Devices
	6.2.1 Registering an Individual Device
	6.2.2 Registering a Batch of Devices
	6.2.3 Registering a Device Authenticated by an X.509 Certificate
	6.2.4 Device Self-Registration

	6.3 Device Management
	6.4 Groups and Tags
	6.5 Advanced Search
	6.6 Device Shadow
	6.7 OTA Upgrade
	6.7.1 Software/Firmware Package Upload
	6.7.2 OTA Upgrade for NB-IoT Devices
	6.7.3 OTA Upgrade for MQTT Devices
	6.7.4 OTA Upgrade for a Batch of Devices

	6.8 File Upload
	6.9 Gateways and Child Devices
	6.10 Authentication Credentials
	6.11 Device Certificates

	7 Rules
	7.1 Overview
	7.2 Data Forwarding Process
	7.3 SQL Statements
	7.4 Connectivity Tests
	7.5 Data Forwarding to Huawei Cloud Services
	7.5.1 Forwarding Data to DIS
	7.5.2 Forwarding Data to GeminiDB Influx
	7.5.3 Forwarding Data to DMS for Kafka for Storage
	7.5.4 Forwarding Data to FunctionGraph
	7.5.5 Forwarding Data to MySQL for Storage
	7.5.6 Forwarding Device Data to OBS for Long-Term Storage

	7.6 Data Forwarding to Third-Party Applications
	7.6.1 Forwarding Modes
	7.6.2 HTTP/HTTPS Data Forwarding
	7.6.3 AMQP Data Forwarding
	7.6.3.1 Overview
	7.6.3.2 AMQP Server Configuration
	7.6.3.3 AMQP Queue Alarm Configuration
	7.6.3.4 AMQP Client Access
	7.6.3.5 Java SDK Access Example
	7.6.3.6 Node.js SDK Access Example
	7.6.3.7 C# SDK Access Example
	7.6.3.8 Android SDK Access Example
	7.6.3.9 Python SDK Access Example
	7.6.3.10 Go SDK Access Example

	7.6.4 MQTT Data Forwarding
	7.6.4.1 Overview
	7.6.4.2 MQTT Server Configuration
	7.6.4.3 MQTT Client Access
	7.6.4.4 Java Demo Usage Guide
	7.6.4.5 Python Demo
	7.6.4.6 GO Demo
	7.6.4.7 Node.js Demo
	7.6.4.8 C# Demo

	7.6.5 M2M Communications

	7.7 Data Forwarding Channel Details
	7.8 Data Forwarding Stack Policies
	7.9 Data Forwarding Flow Control Policies
	7.10 Abnormal Data Target
	7.11 Device Linkage
	7.11.1 Cloud Rules
	7.11.2 Device-side Rules

	8 Monitoring and O&M
	8.1 Message Trace
	8.2 Reports
	8.3 Alarms
	8.4 Audit Logs
	8.5 Run Logs (Old Version)
	8.6 Run Logs (New Version)
	8.7 Anomaly Detection
	8.8 Remote Login
	8.9 Remote Device Configuration

	9 Granting Permissions Using IAM
	9.1 Agency Authorization

