
RDS for MySQL

Troubleshooting

Issue 01

Date 2025-08-20

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 Backup and Restoration Issues...1
1.1 No SUPER Permissions When Restoring an RDS for MySQL Full Backup to a Local MySQL Database
.. 1
1.2 Backup Failures Due to DDL Operations...3
1.3 Restoring an On-Premises or Huawei Cloud Backup File to an RDS DB Instance... 3
1.4 RDS for MySQL Backup Job Failure.. 4
1.5 Manual Backups Taking More Time Than Automated Full Backups.. 6
1.6 Incorrect Login Password During Data Restoration from a Local Backup File.. 6
1.7 Automated Incremental Backup Failed Due to Full Storage..7
1.8 RDS Point-in-Time Restoration Task Failure.. 7
1.9 SQL Statements Such as SET @@SESSION.SQL_LOG_BIN Displayed After You Run mysqldump..............8
1.10 Insufficient Permissions During Data Export Using mysqldump..9
1.11 Key Considered Invalid or Deleted During Table-Level PITR...10

2 Primary/Standby Replication Issues... 12
2.1 How Primary/Standby Replication Works.. 12
2.2 Automatic Recovery of Extended Primary/Standby Replication Delay.. 14
2.3 Primary/Standby Replication Delay Scenarios and Solutions..15
2.4 Abnormal Replication Between Primary and Standby RDS DB Instances...17
2.5 Primary/Standby Replication Delay Increases Sharply and Then Decreases..18
2.6 Insufficient Permissions Reported for Canal..19
2.7 Canal Fails to Parse Binlogs.. 20
2.8 RDS for MySQL Binlog Issues... 21

3 Parameter-related Issues...22
3.1 long_query_time Changes Fail to Be Applied..22
3.2 Incorrect GROUP_CONCAT Results...23
3.3 [ERROR] 1071 Reported When an Index Creation Fails for RDS for MySQL... 24
3.4 Tables Failed to Be Found After Case-Sensitivity Setting Changes for RDS for MySQL...............................26
3.5 Timeout Parameters...27
3.6 Global Parameters Fail to Change.. 29

4 Performance Issues... 30
4.1 High CPU Usage.. 30
4.2 Out of Memory (OOM) Errors... 33

RDS for MySQL
Troubleshooting Contents

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

4.3 Insufficient Disk Bandwidth.. 36
4.4 Slow SQL Statements Due to Improper Composite Index Settings...37
4.5 DB Instance Becoming Read-Only Due to Insufficient Storage..40
4.6 High Storage Usage Due to Uncleared Old Binlogs... 42
4.7 Slow Response Due to Deadlocks... 42
4.8 Read Replica Uses Far More Storage Than the Primary Instance..44
4.9 CPU Usage Increase... 44
4.10 Slow SQL Execution Due to Hot and Cold Data Problems.. 47
4.11 High Table Fragmentation Rate.. 48
4.12 Full Storage Caused by Complex Queries.. 51
4.13 Why Is My SQL Query So Slow?..52
4.14 Instance Class Change or Minor Version Upgrade Failure Caused by Long Transactions.........................52
4.15 Native Error 1461 Reported by an RDS for MySQL DB Instance... 53
4.16 System Inaccessible After Field Addition to an RDS for MySQL Database Table.. 54
4.17 Storage Filled Up by Undo Logs Due to Long Transactions.. 54
4.18 Locating Long Transactions.. 55
4.19 Sharp Increase in the Commit Time of Some SQL Statements..55
4.20 Oversized ibdata1...56

5 SQL Issues..57
5.1 Double Quotation Marks Cannot Be Identified During SQL Statement Execution....................................... 57
5.2 Error 1366 Reported When Data Containing Emojis Is Updated... 58
5.3 Failed to Change the varchar Length Due to the Index Length Limit..58
5.4 Invalid TIMESTAMP Default Value during Table Creation..60
5.5 AUTO_INCREMENT Not Displayed in the Table Structure... 61
5.6 Slow Stored Procedure Execution Due to Inconsistent Collations... 62
5.7 ERROR [1412] Reported for a DB Instance... 62
5.8 Error Message "Too many keys specified" Displayed When a Secondary Index Is Created........................63
5.9 Failed to Delete a Table with a Foreign Key..64
5.10 DISTINCT and GROUP BY Optimization... 64
5.11 Character Set and Collation Settings...66
5.12 An Error Message Is Displayed When a User Is Created for a DB Instance...68
5.13 Slow SQL Queries After a Large Amount of Data Is Deleted from a Large Table...................................... 70
5.14 Event Scheduler Not Taking Effect Immediately After Being Enabled.. 71
5.15 Equivalent Comparison Failures with Floating-Point Numbers... 72
5.16 A Large Number of SELECT Requests Routed to The Primary Instance After Database Proxy Is
Enabled.. 74
5.17 RENAME USER Execution Failure.. 75
5.18 ERROR[1451] Reported When a Table with Foreign Keys Cannot Be Deleted...76
5.19 Solution to the Failure of Converting the Field Type ..76
5.20 "Row size too large" Reported When an RDS for MySQL Table Failed to Be Created.............................. 77
5.21 ERROR [1412] Reported by an RDS for MySQL DB Instance..78
5.22 Instance Reboot Failure or ERROR 1146: Table 'xxx' doesn't exist Reported During Table Operations
.. 79

RDS for MySQL
Troubleshooting Contents

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

5.23 Error Reported During Pagination Query...80
5.24 Error Reported During User Creation.. 80
5.25 Syntax Error Reported When GRANT Is Used to Grant All Privileges.. 81
5.26 Error Reported During Table Creation for an RDS for MySQL 5.6 DB Instance... 81
5.27 Inconsistent Data Obtained on the Primary and Standby Nodes When a Query Is Performed Using
an Auto-Increment Primary Key Value... 82
5.28 "Data too long for column" Displayed When Data Is Inserted into an RDS for MySQL Instance.........83

6 Connection Issues..84
6.1 "Access denied" Displayed During Database Connection...84
6.2 Failed to Connect to a Database Using mariadb-connector in SSL Mode..86
6.3 Error Message "connection established slowly"...87
6.4 Login Failed After ssl_type of root Is Changed to ANY... 88
6.5 Error Reported During Login to a DB Instance Through DAS... 89
6.6 "Your password does not satisfy the current policy requirements" Displayed When Permissions Are
Granted or Revoked on DAS.. 89
6.7 SSL Connection Failed Due to Inconsistent TLS Versions... 90
6.8 Failed to Connect to a Database as root.. 91
6.9 RDS for MySQL Client Automatically Disconnected from a DB Instance..92
6.10 RDS for MySQL DB Instance Inaccessible.. 93
6.11 Login Failed After the authentication_string Field Is Changed to Display the Password for RDS for
MySQL.. 96
6.12 MySQL-server Connection Failure After a Version Upgrade of RDS for MySQL.. 97
6.13 Connection Exit Due to Improper Timeout Parameter Settings...99
6.14 Database Connection Through Code (php/java/python) Failed After SSL Is Enabled............................... 99
6.15 There Is a Disconnection Every 45 Days Due to the istio-citadel Certificate System...............................100
6.16 Error 1251 Reported During Login to a DB Instance on the Navicat Client After the Database Version
Is Upgraded..101

7 Other Issues..102
7.1 No Scanned Rows Recorded in Slow Query Logs... 102
7.2 Rows Recorded in the SQL Diagnosis Result Far Less Than the Scanned Rows Recorded in Slow Query
Logs.. 103
7.3 Millisecond-Level SQL Statements Recorded in Slow Query Logs.. 103
7.4 Viewing Storage of RDS DB Instances.. 103
7.5 "The table is full" Displayed in Error Logs...104
7.6 Audit Log Upload Policy Description... 104
7.7 Auto-increment Field Values.. 105
7.8 Starting Value and Increment of AUTO_INCREMENT... 107
7.9 AUTO_INCREMENT Value Exceeding the Maximum Value of This Field plus 1.. 110
7.10 Auto-Increment Field Value Jump..113
7.11 Changing the AUTO_INCREMENT Value of a Table.. 118
7.12 Failed to Insert Data Because Values for the Auto-increment Primary Key Field Reach the Upper
Limit... 120
7.13 The Impact of Creating an Empty Username.. 122

RDS for MySQL
Troubleshooting Contents

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iv

7.14 Connection to a Primary/Standby DB Instance Suspended Using pt-osc...124
7.15 Error Reported During Payment for a DB Instance..126
7.16 Failed to Change a Database Name... 127
7.17 Error Reported When a DB Instance Is Purchased... 127

RDS for MySQL
Troubleshooting Contents

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. v

1 Backup and Restoration Issues

1.1 No SUPER Permissions When Restoring an RDS for
MySQL Full Backup to a Local MySQL Database

Scenario
If you want to set up a local standby MySQL database for your RDS for MySQL
instance, you can restore your instance data to the local database from full
backups. When you run the change master command to establish a primary/
standby relationship between the local database and your RDS for MySQL
instance, the following error may occur:

Error 1227

ERROR 1227 (42000): Access denied; you need (at least one of) the SUPER privilege(s) for this operation

Possible Causes
The root user of your RDS for MySQL instance does not have the SUPER
permission.

Solution
Grant the SUPER permission to the root user. Do as follows:

1. To enable password-free authentication for the local MySQL database, add
skip-grant-tables=on under [mysqld] in the my.cnf configuration file.
Example:

RDS for MySQL
Troubleshooting 1 Backup and Restoration Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

2. Restart the mysqld process.
systemctl restart mysqld

3. Log in to the local database as user rdsAdmin in password-free mode.
mysql -urdsAdmin

4. Grant permissions to the root user.
grant all on *.* to root @'%';
flush privileges;

5. To disable password-free authentication, delete skip-grant-tables=on under
[mysqld] from the my.cnf configuration file.

6. Restart the mysqld process.
7. Log in to the local database as root and check the permissions.

RDS for MySQL
Troubleshooting 1 Backup and Restoration Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

Run the change master command as the root user again.

1.2 Backup Failures Due to DDL Operations

Scenario

Backups failed to be created for a DB instance two days in a row because there
were DDL operations performed during the time window defined in the backup
policy.

Possible Causes

RDS for MySQL uses XtraBackup to create full backups. To ensure data
consistency, there are metadata lock conflicts between full backups and DDL
operations. As a result, backups are blocked and fail due to timeouts.

Run the show processlist command to check whether any DDL operation was
performed in the backup time window.

Solution
1. Stop the DDL operations and perform a manual backup.
2. Do not perform DDL operations in the backup time window.

1.3 Restoring an On-Premises or Huawei Cloud Backup
File to an RDS DB Instance

To restore a Huawei Cloud RDS backup file to an RDS DB instance:

RDS for MySQL
Troubleshooting 1 Backup and Restoration Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

Restore the backup file to a DB instance by referring to Restoring a DB Instance
from Backups.

To restore an on-premises MySQL backup file to an RDS DB instance:

Use the DRS real-time migration to migrate on-premises MySQL databases to RDS
by referring to To the Cloud.

1.4 RDS for MySQL Backup Job Failure

Scenario
When a user runs mysqldump to back up RDS for MySQL data to an ECS in a
different subnet from RDS, the backup job runs for 300 seconds and then fails.

Troubleshooting
Replace the ECS where the backup job is executed with an ECS that is in the same
subnet as RDS. The backup job is successfully executed.

● Network: There are no differences on latency and bandwidth between the
two ECSs.

● Database: The net_write_timeout parameter is set to 300 on the RDS for
MySQL database. The connection between the ECS and RDS for MySQL is
interrupted after 300s regardless of whether data writes have been
completed.

Procedure

Step 1 Identify the backup data flow, protocol, and port.

mysqldump uses TCP to connect to port 8635 of RDS. After the connection is
established, the backup job starts.

Step 2 Compare the hardware configuration and OS version of the two ECSs.

1. Both of them use the same hardware configuration: two cores and 6 GB of
memory.

2. Both of them use the same OS version: CentOS 7.4.

Step 3 Check whether the NIC rates are the same.

Step 4 Check whether the kernel parameter settings are the same. The result shows that
the network parameters on the ECS where the backup job failed are not
optimized.

RDS for MySQL
Troubleshooting 1 Backup and Restoration Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_08_0007.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_08_0007.html
https://support.huaweicloud.com/intl/en-us/realtimemig-drs/drs_online_migration.html

Step 5 Set the kernel parameters of the ECS where the backup job failed to the same as
those of the ECS where the backup job succeeded. Start a backup job again. The
backup job is successful.

----End

Solution
There is a large volume of data writes during the backup process across networks.
The data write capability and TCP buffer on the backup end do not match the
sending capability of the RDS. When the timeout period reaches the preset
threshold (300s), the backup job failed. You can increase the TCP buffer by
modifying the ECS kernel parameters to resolve this issue.

RDS for MySQL
Troubleshooting 1 Backup and Restoration Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

1.5 Manual Backups Taking More Time Than
Automated Full Backups

Scenario

When 20 GB of data needs to be backed up, a full backup automatically
performed by RDS takes less time than a full backup performed manually.

Possible Causes

The disk throughput during the manual backup was lower than that during the
automated backup.

Check the disk reads and writes on the Cloud Eye console. The following figure is
for reference only.

Backups are stored in OBS buckets. The automated backup was performed during
off-peak hours of OBS, and therefore took a short period of time. The manual
backup was performed during peak hours of OBS, and therefore took much more
time.

Solution

Perform full backups during OBS off-peak hours.

1.6 Incorrect Login Password During Data Restoration
from a Local Backup File

Scenario

After data is restored from a local backup, a message is displayed when you log in
to the local database, indicating that the login credentials were incorrect.

Possible Causes

When data is restored from a local backup, the password of the local database
may have been overwritten by the password of the cloud database. As a result,
you cannot log in to the database using the password of the local database.

RDS for MySQL
Troubleshooting 1 Backup and Restoration Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

Solution
Use the root password of the cloud database for login or reset the password of the
local database.

1.7 Automated Incremental Backup Failed Due to Full
Storage

Scenario
Automated incremental backup failed.

Possible Causes
As the amount of service data grows over time, it can eventually use up all the
space available for your DB instance. When the DB instance status is Storage full,
data cannot be written to databases, and the instance is no longer possible to
perform an incremental backup.

Solution
Scale up storage space for your RDS instance. On the Instance Management
page, locate the target DB instance and choose More > Scale Storage Space in
the Operation column. Perform a full backup after the storage space is
successfully scaled up and the incremental backup will be successful.

1.8 RDS Point-in-Time Restoration Task Failure

Scenario
A point-in-time restoration of an RDS DB instance fails.

Possible Causes
The backup timestamp is incorrect. As a result, an error is reported when the DB
instance is restored to a specific point in time.

Solution
Restore your instance data from a full backup file. For details, see Restoration
Solutions.

RDS for MySQL
Troubleshooting 1 Backup and Restoration Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_08_0023.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_08_0023.html

1.9 SQL Statements Such as SET
@@SESSION.SQL_LOG_BIN Displayed After You Run
mysqldump

Scenario

When you run mysqldump on a database, the following code is displayed:

Figure 1-1 Code

Fault Analysis

The parameter gtid-mode is set to ON.

If GTID is enabled for a database, you can use mysqldump to back up or dump all
Global Transaction Identifiers (GTIDs) in the database or even to back up the
whole RDS for MySQL database.

Solution

When the primary and standby RDS for MySQL databases are exported for backup
and restoration, check whether GTID is enabled.

If GTID is enabled, add –set-gtid-purged=OFF to the mysqldump command
during data dump.

RDS for MySQL
Troubleshooting 1 Backup and Restoration Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

1.10 Insufficient Permissions During Data Export Using
mysqldump

Case 1
When you export database data with mysqldump using a specified user account,
the error message "Access denied; you need (at least one of) the PROCESS
privilege(s)" is displayed.

● Cause analysis: The user used to export data does not have the PROCESS
privilege.

● Solution: Use the administrator account to grant the PROCESS privilege to the
user.
GRANT SELECT, PROCESS ON *.* TO '<username>'@'%';
FLUSH PRIVILEGES;

Case 2
The error message "Access denied; you need (at least one of) the RELOAD
privilege(s) for this operation (1227)" is displayed when mysqldump is used to
export data.

● Cause analysis: The user used to export data does not have the RELOAD
privilege.

● Solution: Use Data Admin Service (DAS) to grant the RELOAD privilege to the
user.
GRANT RELOAD ON *.* TO '<username>';
FLUSH PRIVILEGES;

Case 3
The error message "Access denied; you need (at least one of) the LOCK TABLES
privilege(s) for this operation (1227)mysqldump" is displayed when mysqldump is
used to export data.

● Cause analysis: The user used to export data does not have the LOCK TABLES
privilege.

● Solution: Grant the LOCK TABLES privilege to the user.
GRANT LOCK TABLES ON DATABASE.* TO '<username>';
FLUSH PRIVILEGES;

RDS for MySQL
Troubleshooting 1 Backup and Restoration Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

1.11 Key Considered Invalid or Deleted During Table-
Level PITR

Scenario
During table-level point-in-time recovery (PITR) of an RDS for MySQL instance, a
message is displayed indicating that the key is invalid or has been deleted.

Figure 1-2 Restoring tables to a specified point in time

Troubleshooting
On the Overview page of the DB instance, check whether the key associated with
the instance is disabled.

If the key is disabled or deleted, you cannot scale up the storage space, change
specifications, or restore databases or tables for the instance.

RDS for MySQL
Troubleshooting 1 Backup and Restoration Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Figure 1-3 Checking a key

Solution
Enable the key.

RDS for MySQL
Troubleshooting 1 Backup and Restoration Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

2 Primary/Standby Replication Issues

2.1 How Primary/Standby Replication Works
RDS for MySQL standby instances, read replicas, self-built standby databases, and
DR instances established through DRS all use MySQL primary/standby (also called
"master/slave") replication. This section describes how MySQL Primary/Standby
Replication works.

Primary/Standby Replication Process

● When data is updated on the master node, the update is written to the binlog
of the master node as an event. The event types include INSERT, DELETE,
UPDATE, and QUERY.

● When slave nodes are connected to the master node, a binlog dump thread is
created for each slave node.

RDS for MySQL
Troubleshooting 2 Primary/Standby Replication Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

● When the binlog of the master node changes, the binlog dump threads notify
all the slave nodes of the change and push the binlog updates to the slave
nodes.

● After receiving the binlog updates, the I/O thread of each slave node writes
the updates to the local relay log.

● The SQL thread of each slave node reads the relay log and replays the
operation (such as DML and DDL) based on the event in the relay log.

Seconds_Behind_Master Calculation Method
Seconds_Behind_Master indicates the primary/standby replication delay, which can
be obtained by running show slave status. The following pseudocode shows how
the Seconds_Behind_Master value is calculated.

if (SQL thread is running)
//If the SQL thread is started
{
 if (SQL thread processed all the available relay log)
 //If the binlog pulled by the I/O thread from the master node is the same as that read by the SQL
thread from the relay log
 {
 if (IO thread is running)
 //If the I/O thread is started, Seconds_Behind_Master is set to 0.
 print 0;
 else
 //If the I/O thread is not started, Seconds_Behind_Master is set to NULL.
 print NULL;
 }
 else
 //If the SQL thread did not process all events written by the I/O thread, the value of
Seconds_Behind_Master needs to be calculated.
 Calculate the value of Seconds_Behind_Master using the formula;
}
else
 //If the SQL thread is not started, Seconds_Behind_Master is set to NULL.
 print NULL;

In the pseudocode, the following formula is used to calculate the value of
Seconds_Behind_Master:

Seconds_Behind_Master = time(0) - last_master_timestamp -
clock_diff_with_master

Explanations of the variables:

1. time(0): The system time of the current slave server.
2. clock_diff_with_master: The difference between the system time of the slave

server and that of the master server. Generally, the value is 0. If the system
time of the slave server is different from that of the master server, the
calculated value of Seconds_Behind_Master is inaccurate.

3. last_master_timestamp: The execution time of an event on the master node
that is updated by the SQL thread. This variable is calculated and updated
when the slave node replays the event in the relay log. The update time in the
multi-threaded slave (MTS) replication is different from that in single-
threaded replication. MTS is enabled by default.
– MTS: The SQL thread of the slave node updates the value of

last_master_timestamp after each transaction is executed. The update is
performed by transaction. Therefore, large transactions and DDL
operations may cause a long primary/standby replication delay. For

RDS for MySQL
Troubleshooting 2 Primary/Standby Replication Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

details, see Automatic Recovery of Extended Primary/Standby
Replication Delay.

– Single-threaded replication: After the SQL thread of the slave node reads
a transaction from the relay log, last_master_timestamp is updated
before the transaction is executed. The update is performed by
transaction.

The formula for calculating Seconds_Behind_Master can be understood as
follows:

Seconds_Behind_Master = System time of the current slave server – Execution time
of the transaction on the master node that is updated by the SQL thread –
Difference between the system time of the slave server and that of the master
server

2.2 Automatic Recovery of Extended Primary/Standby
Replication Delay

Scenario
The primary/standby replication delay of a DB instance was long, kept increasing
for a period of time, and then automatically recovered.

The following figure is an example showing how the real-time replication delay
metric changes on the Cloud Eye console.

Possible Causes
According to Primary/Standby Replication Delay Scenarios and Solutions and
How Primary/Standby Replication Works, this problem is caused by large
transactions or DDL operations.

You can analyze full logs or slow query logs to check whether there are large
transactions or DDL operations.

RDS for MySQL
Troubleshooting 2 Primary/Standby Replication Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

As shown in the following figure, if a DDL operation for adding an index was
recorded in the slow query logs, the table contained hundreds of millions of data
records, and the execution took about one day, the replication delay kept
increasing when the DDL operation was replayed on the read replica or standby
node. After the DDL operation was replayed, the replication delay dropped back to
the normal range.

Solution
● Wait until the DDL operation is complete.
● Add indexes during off-peak hours.

2.3 Primary/Standby Replication Delay Scenarios and
Solutions

RDS for MySQL standby instances, read replicas, self-built standby databases, and
DR instances established through DRS all use MySQL Primary-Secondary
Replication. Primary/standby replication can be implemented in asynchronous or
semi-synchronous mode. In either mode, primary/standby replication delay is
inevitable for some statements.

Symptom: The replication delay of the standby instance or read replica is too long,
or even an alarm is generated for too long replication delay.

Scenario 1: Large Transaction Executed on the Primary Instance
A large transaction is a transaction containing a large quantity of data update
operations, for example, a transaction including tens of thousands of DML
(INSERT, UPDATE, and DELETE) operations, or an SQL statement that updates tens
of thousands of rows of data in batches. The execution of a large transaction
usually takes a long time (minutes). After a large transaction is executed on the
primary instance, a large number of binlogs are generated. It takes much more
time for the standby instance or read replica to obtain these binlogs than for a
common transaction. In addition, replaying the transaction also takes much time,
at least the same as the time for the transaction being executed on the primary
instance. As a result, replication delay occurs on the standby node or read replica.

Troubleshooting:

● For a large transaction that contains a large number of DML statements, run
the following command to find the statement that is executed for a long
time:
select t.*,to_seconds(now())-to_seconds(t.trx_started) idle_time from
INFORMATION_SCHEMA.INNODB_TRX t \G;

● For a large transaction where an SQL statement executes a large amount of
data updates, run show full processlist to check whether any DELETE or
UPDATE statements are taking a long time to execute.

RDS for MySQL
Troubleshooting 2 Primary/Standby Replication Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

● Analyze full logs or slow query logs to check whether there are any large
transactions.

Solution:

● To ensure data consistency between the primary and standby instances, wait
until the large transaction is complete.

● Split a large transaction into small transactions and execute them in batches.
For example, you can use the WHERE condition or LIMIT statement to limit
the amount of data to be updated each time.

Scenario 2: Table Without a Primary Key Updated
RDS for MySQL binlogs use row-based logging. When data in a row is updated, an
event record in row format is generated in the binlog. For example, if an UPDATE
statement updates 100 rows of data in a table, 100 rows of update records will be
generated in the binlog. During playback on the standby instance or read replica,
100 single-row updates are executed.

When replaying binlog events of the primary instance, the standby instance or
read replica searches for rows to be modified based on the primary key or unique
secondary index of the table. If no primary key is created for the table, a large
number of full table scans are generated. As a result, the application speed of the
binlog is reduced and replication delay occurs.

Troubleshooting:

Use show create table xxx to find out which table has the problematic UPDATE
or DELETE statement and check whether the table has a primary key.

Solution:

Add a primary key to the table without a primary key or add a unique secondary
index as required.

Scenario 3: DDL Operation Performed
A DDL operation typically takes a long time to complete, especially if the table
contains a large amount of data. Generally, the time for replaying a DDL
operation on the standby instance or read replica is almost the same as that for
executing the DDL operation on the primary instance. Therefore, after a DDL
operation is performed on a large table in the primary instance, the replication
time will increase when the standby instance or read replica replays the operation.

Solution:

Wait for the DDL execution to complete, or perform DDL operations during off-
peak hours.

Scenario 4: Read Replica Waiting for a Metadata Lock
When a long transaction is being executed on a table in a read replica, the DDL
operation of the table synchronized from the primary instance will be blocked due
to a metadata lock, and subsequent binlog playback of the table is also blocked.
As a result, the replication delay increases.

Troubleshooting:

RDS for MySQL
Troubleshooting 2 Primary/Standby Replication Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

1. Log in to the read replica and run the following command to check whether
there are any transactions that are taking a long time to complete:
select t.*,to_seconds(now())-to_seconds(t.trx_started) idle_time from
INFORMATION_SCHEMA.INNODB_TRX t \G;

2. View the metadata lock view of the read replica to check whether a metadata
lock conflict occurs.
select * from information_schema.metadata_lock_info;
Find the blocked session based on the thread ID in the metadata lock view.
For more information, see MDL Views.

Solution:

Kill the long transaction that blocks DDL operations on the read replica, or commit
the long transaction on the application.

Scenario 5: Read Replica Specifications Smaller Than the Primary Instance
If the specifications of the read replica or DR instance established through DRS are
smaller than those of the primary instance and the write load of the primary
instance increases somewhat, the read replica or DR instance cannot replay
binlogs in a timely manner due to insufficient resources. As a result, the replication
delay increases.

Solution:

Scale up the specifications of the read replica or DR instance to match the
specifications of the primary instance.

Scenario 6: Sudden Increase in Read Requests
In addition to synchronizing data from the primary instance, the read replica also
processes read requests. If read requests soar up, the replay threads of the read
replica may be affected, leading to an increase in the replication delay.

2.4 Abnormal Replication Between Primary and
Standby RDS DB Instances

Scenario
The replication relationship between primary and standby RDS DB instances is
abnormal. The default security group rule may have been deleted.

Solution

Step 1 Log in to the management console.

Step 2 Click in the upper left corner and select a region.

Step 3 Click in the upper left corner of the page and choose Databases > Relational
Database Service.

RDS for MySQL
Troubleshooting 2 Primary/Standby Replication Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

https://support.huaweicloud.com/intl/en-us/kerneldesc-rds-mysql/rds_05_0000.html
https://console-intl.huaweicloud.com/?locale=en-us

Step 4 On the Instances page, click the target instance name.

Step 5 On the Overview page, click the security group name.

Step 6 On the Inbound Rules tab, click Add Rule. In the displayed dialog box, select All
for Protocol & Port and Security group for Source. In the drop-down list, select
the same security group as the displayed one on the Basic Information page.

Step 7 Wait until the rule is added. Check that the replication relationship between
primary and standby DB instances is restored.

----End

2.5 Primary/Standby Replication Delay Increases
Sharply and Then Decreases

Scenario
The following figure shows a Cloud Eye console display indicating that the Real-
Time Replication Delay metric of a read replica increased sharply and then fell
back down again.

Possible Causes
● This problem is related to how the value of Seconds_Behind_Master is

calculated. For details about how to calculate this value, see How Primary/
Standby Replication Works.

● The replication delay peak occurred because the I/O thread of the read replica
received a new binlog file, but the SQL thread did not start to replay the new
binlog file. As a result, the value of last_master_timestamp for calculating
Seconds_Behind_Master was the time when the previous binlog transaction
was executed on the primary node, which was different from the system time
(time (0)) of the read replica. When the SQL thread started to parse the new
binlog file, the replication delay immediately decreased.

● This problem occurs occasionally and does not affect your workloads.

The following symptom was found in the binlog files generated during the period
when the replication delay increased sharply and then fell back:

RDS for MySQL
Troubleshooting 2 Primary/Standby Replication Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

The difference between the start time of the first transaction in the new binlog file
and the end time of the last transaction in the previous binlog file was the same
as the difference between the sudden increase and fallback times.

Solution
No action is required. This happens sometimes but is completely normal.

2.6 Insufficient Permissions Reported for Canal

Scenario
When you start Canal while obtaining binlogs from RDS for MySQL using a
specified user account, the following error message is often displayed: 'show
master status' has an error! Access denied: you need (at least one of) the SUPER,
REPLICATION CLIENT privilege(s) for this operation.

The complete message will look something like this:

2021-01-10 23:58:32.964 [destination = evoicedc , address = /dbus-mysql:3306 , EventParser] ERROR
xxx.common.alarm.LogAlarmHandler - destination:evoicedc[xxx.parse.exception.CanalParseEx ception:
command : 'show master status' has an error!
Caused by: java.io.IOException: ErrorPacket [errorNumber=1227, fieldCount=-1, message=Access denied;
you need (at least one of) the SUPER, REPLICATION CLIENT privilege(s) for this operation, sqlState=42000,
sqlStateMarker=#] with command: show master status at
xxx.parse.driver.mysql.MysqlQueryExecutor.query(MysqlQueryExecutor.java:61)

Possible Causes
The user account does not have the REPLICATION SLAVE or REPLICATION CLIENT
permissions.

RDS for MySQL
Troubleshooting 2 Primary/Standby Replication Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

Solution
Grant the REPLICATION SLAVE and REPLICATION CLIENT permissions to the user
account as the administrator.

GRANT SELECT, REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO
'canal'@'%';

FLUSH PRIVILEGES;

2.7 Canal Fails to Parse Binlogs

Scenario
An error occurred when Canal parsed binlogs, interrupting binlog collection. The
error message is as follows:

xxx.otter.canal.parse.exception.CanalParseException: java.lang.NumberFormatException:- Caused by:
java.lang.NumberFormatException: - at xxx.fastsql.sql.parser.Lexer.integerValue(Lexer.java:2454)

Troubleshooting
Check whether the value of binlog_rows_query_log_events of your RDS for
MySQL instance is set to 1 or ON.

● Canal supports only subscriptions to binlogs in row format.
● When the value of binlog_rows_query_log_events is set to 1 or ON,

Rows_query events are generated in binlogs. These events are not in row
format. In certain scenarios, blank topics may occur in Canal, resulting in a
binlog parsing failure.

Solution
Change the value of binlog_rows_query_log_events to OFF and restart the
interrupted Canal task.

RDS for MySQL
Troubleshooting 2 Primary/Standby Replication Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

2.8 RDS for MySQL Binlog Issues

Scenario 1
The binlog retention period was set to 7 days for an RDS for MySQL instance. A
binlog was generated every 5 minutes. The actual data volume was not the same
as expected.

Cause analysis:

After a DB instance is created, a full backup is generated automatically and a
binlog is generated every 5 minutes.

If there are no data changes, no binlog is generated.

Scenario 2
The service volume remained almost unchanged, but the storage usage of
generated binlogs increased greatly.

Cause analysis:

RDS for MySQL binlogs are row-based, so the entire rows of data before and after
the modification are recorded.

Suppose that there is a table containing a column with much data and you
perform an update operation on certain data except those in that column. But
binlogs completely record the data of the whole rows before and after the update
operation. As a result, the storage usage of binlogs increases.

RDS for MySQL
Troubleshooting 2 Primary/Standby Replication Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

3 Parameter-related Issues

3.1 long_query_time Changes Fail to Be Applied

Scenario

After the value of long_query_time was changed from 0.1s to 0.2s on the console,
slow query logs still included slow SQL statements whose execution duration was
less than 0.2s.

Possible Causes

Changes to long_query_time on the console take effect globally, but only for new
connections. As existing connections continue to use the original value (0.1s in this
case), slow SQL queries whose execution duration was less than 0.2s are still
reported for existing connections.

This problem is caused by the MySQL engine. Changing any of the parameters
that take effect for all databases may also have this problem.

RDS for MySQL
Troubleshooting 3 Parameter-related Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Solution

If you need certain session connections to use the new value, close the session
connections and re-establish them.

3.2 Incorrect GROUP_CONCAT Results

Scenario

When the GROUP_CONCAT() function is used in an SQL statement, the result
does not meet expectations.

Possible Causes

The GROUP_CONCAT() function returned a string result consisting of
concatenated values in the group. However, the group_concat_max_len
parameter limited the result length of this function.

Example:

RDS for MySQL
Troubleshooting 3 Parameter-related Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

Solution
Change the value of group_concat_max_len to adapt to the result length of the
GROUP_CONCAT() function.

3.3 [ERROR] 1071 Reported When an Index Creation
Fails for RDS for MySQL

Scenario
The index failed to be created because it was too long. The following error was
reported:

[ERROR] 1071 - Specified key was too long; max key length is 3072 bytes

This problem may occur in MySQL-8.0.20.5.

Fault Analysis
The InnoDB table engine has a length limit on index prefixes.

By default, an index prefix can contain a maximum of 767 bytes, but if
innodb_large_prefix is set to ON, the index prefix length is increased to 3,072
bytes.

SHOW VARIABLES LIKE '%innodb_large_prefix%';

The length of an index prefix also depends on the InnoDB page size. If the
parameter innodb_page_size is set to its default value 16 KB, the maximum index
prefix length is 3,072 bytes, but if this parameter is set to 8 KB, the maximum
index prefix length is 1,536 bytes. If this parameter is set to 4 KB, the maximum
length of the index prefix is 768 bytes.

SHOW VARIABLES LIKE '%innodb_page_size%';

Check the structure of the problematic table and query all supported character
sets and their byte usage:

SHOW CHARACTER SET;

RDS for MySQL
Troubleshooting 3 Parameter-related Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

When a problematic table uses the utf8mb4 character set, each character uses 4
bytes. This means that if the index prefix has 3072 bytes, it can only contain 768
(3072/4 = 768) characters. You just need to set the index prefix length in the
CREATE TABLE statement to 768 or modify the index field to keep it less than
3072 bytes.

Solutions
Change the length of the index field.

RDS for MySQL
Troubleshooting 3 Parameter-related Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

3.4 Tables Failed to Be Found After Case-Sensitivity
Setting Changes for RDS for MySQL

Scenario

The RDS for MySQL parameter lower_case_table_names was set to case sensitive,
and then a table containing uppercase letters was created. The parameter setting
was later changed to case insensitive, and now the table containing uppercase
letters, such as tbl_newsTalking, cannot be found.

Case: When a backup is restored to a new instance, restoration will fail if the
parameter controlling case-sensitivity for the new instance is different from that of
the original instance.

For more sensitive parameters, see Suggestions on Tuning RDS for MySQL
Parameters.

NO TE

● For RDS for MySQL 5.6 and 5.7, you can specify case sensitivity for table names when
creating an instance on the console or using APIs, or set the lower_case_table_names
parameter after an instance is created.

● For RDS for MySQL 8.0, you can only specify case sensitivity for table names when
creating an instance on the console or using APIs.

● For community version 8.0, lower_case_table_names can only be configured during
server initialization. Changing the lower_case_table_names setting after the server is
initialized is prohibited. For details, see the community documentation.

Solution

Step 1 Log in to the management console.

Step 2 Click in the upper left corner and select a region.

Step 3 Click in the upper left corner of the page and choose Databases > Relational
Database Service.

Step 4 On the Instances page, click the target instance name to go to the Overview
page.

RDS for MySQL
Troubleshooting 3 Parameter-related Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_08_00001.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_08_00001.html
https://dev.mysql.com/doc/refman/8.0/en/identifier-case-sensitivity.html
https://console-intl.huaweicloud.com/?locale=en-us

Step 5 In the navigation pane, choose Parameters.

Step 6 Change the value of lower_case_table_names to 0, indicating that table names
are case sensitive.

Step 7 Click Save. In the displayed dialog box, click Yes.

Step 8 Return to the DB instance list, locate the DB instance, and choose More > Reboot
in the Operation column.

Step 9 In the displayed dialog box, click OK to reboot the DB instance for the
modification to take effect.

Step 10 Log in to the database and change uppercase letters in table names to lowercase
letters.

Step 11 Change the value of lower_case_table_names to 1, indicating that table names
are case insensitive.

Step 12 Reboot the instance again.

----End

NO TE

● Database names and variable names must be case sensitive.
● Column names and aliases are case insensitive by default.
● You can set Table Name to Case sensitive or Case insensitive on the RDS console

during instance creation. For details, see Buying an RDS for MySQL DB Instance.
● You can set parameter lower_case_table_names to 0 or 1 when calling an API to create

a DB instance. For details, see Creating a DB Instance.
Value range:
● 0: Table names are case sensitive.
● 1: Table names are stored in lowercase and are case insensitive.

3.5 Timeout Parameters
The following table lists the RDS for MySQL timeout parameters.

Table 3-1 Parameter description

Parameter Reboot
Required

Description

connect_timeout No Number of seconds that the mysqld
server waits for a connection packet
before responding with Bad
handshake. If the network quality is
poor, you can increase the value of this
parameter.

RDS for MySQL
Troubleshooting 3 Parameter-related Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_10_0028.html
https://support.huaweicloud.com/intl/en-us/api-rds/rds_01_0002.html

Parameter Reboot
Required

Description

idle_readonly_transacti
on_timeout

No Number of seconds that the server
waits for idle read-only transactions
before killing the connection.
(Supported in versions later than
5.7.23)

idle_transaction_timeo
ut

No Number of seconds that the server
waits for idle transactions before killing
the connection. If this parameter is set
to the default value 0, connections are
never killed. (Supported in versions
later than 5.7.23)

idle_write_transaction_
timeout

No Number of seconds that the server
waits for idle read-write transactions
before killing the connection. If this
parameter is set to the default value 0,
connections are never killed.
(Supported in versions later than
5.7.23)

innodb_lock_wait_time
out

No Number of seconds an InnoDB
transaction waits for a row lock before
giving up.

innodb_rollback_on_ti
meout

Yes InnoDB rolls back only the last
statement on a transaction timeout by
default. If
innodb_rollback_on_timeout is
specified, a transaction timeout causes
InnoDB to abort and roll back the
entire transaction.

lock_wait_timeout No Timeout in seconds for attempts to
acquire metadata locks

net_read_timeout No Number of seconds to wait for more
data from a connection before
aborting the read.

net_write_timeout No Number of seconds to wait for a
network packet to be written to a TCP
connection before aborting the write.

interactive_timeout No Number of seconds the server waits for
activity on an interactive connection
before closing it.

wait_timeout No Number of seconds the server waits for
activity on a noninteractive connection
before closing it.

RDS for MySQL
Troubleshooting 3 Parameter-related Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

3.6 Global Parameters Fail to Change

Scenario
A global parameter failed to be changed for an RDS for MySQL instance.

MySQL [(none)]> show variables like 'binlog_expire_logs_seconds';
+----------------------------+-------+
| Variable_name | Value |
+----------------------------+-------+
| binlog_expire_logs_seconds | 3600 |
+----------------------------+-------+
1 row in set (0.00 sec)
MySQL [(none)]> set global binlog_expire_logs_seconds=600;
ERROR 1227 (42000): Access denied; you need (at least one of) the SUPER or SYSTEM_VARIABLES_ADMIN
privilege(s) for this operation
MySQL [(none)]>

Solution
Change global parameters on the RDS console because RDS for MySQL does not
support global parameter changes using commands. For details, see Can I Use
SQL Commands to Modify Global Parameters of My RDS Instance?

RDS for MySQL
Troubleshooting 3 Parameter-related Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

https://support.huaweicloud.com/intl/en-us/rds-mysql_faq/rds_faq_0175.html
https://support.huaweicloud.com/intl/en-us/rds-mysql_faq/rds_faq_0175.html

4 Performance Issues

4.1 High CPU Usage

Scenario
The SQL statement execution of an RDS for MySQL instance slows down, and a
timeout error is reported.

Troubleshooting
1. Check the CPU usage. In this example, the CPU usage of the instance soared

to 100% at about 16:08 and remained at the high line.

Figure 4-1 CPU usage

2. Check the QPS, slow SQL queries, and active connections. The QPS and active
connections increased sharply at about 16:08 and a large number of slow SQL
queries were generated.

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

Figure 4-2 QPS

Figure 4-3 Active connections

Figure 4-4 Slow SQL queries

3. Check the InnoDB logical read rate. The logical read rate of InnoDB also
increased sharply around 16:08, and the pattern was similar to that for the
slow SQL queries.

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Figure 4-5 InnoDB logical read rate

4. Log in to the instance and check real-time sessions. There were a large
number of sessions executing SELECT COUNT(*).

Run EXPLAIN to check the execution plan of the SQL statement. It was found
that the SQL statement was not indexed and the entire table was scanned
with rows to be scanned reaching over 350,000.

5. Check the table structure. Only the IDX_XX_USERID index was added for the
is_deleted field. Therefore, no index was available for the preceding query.
After an index was added for the idx_user_id field, the CPU usage of the
instance decreased to a normal level at about 16:37 and services were
recovered.

Solution
1. Before deploying new workloads, use EXPLAIN and SQL diagnosis tools to

analyze the execution plans of key SQL statements and add indexes based on
the optimization suggestions to avoid full table scanning.

2. If the high CPU usage is caused by a large number of concurrent requests,
upgrade the DB instance specifications or use exclusive resources to avoid
CPU contention, or create read replicas to reduce the read pressure of the
primary instance.

3. Use show processlist to view the current session information to locate the
fault. Any session whose status is Sending data, Copying to tmp table,
Copying to tmp table on disk, Sorting result, or Using filesort may have
performance problems.

4. In emergency scenarios, enable SQL throttling or kill sessions to temporarily
limit the number of slow SQL queries.

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

4.2 Out of Memory (OOM) Errors

RDS for MySQL Memory Description
The memory of an RDS for MySQL instance can be roughly divided into two parts:
globally shared memory and session-level private memory.

● Shared memory is allocated upon the creation of an instance based on
parameter settings and is shared by all connections.

● Private memory is allocated by the system upon connection to the RDS for
MySQL instance and is released only when the connection is released.

Inefficient SQL statements or improper database parameter settings may increase
memory usage and even cause an OOM error during peak hours.

Scenario
The memory usage of an RDS for MySQL instance increased sharply. An OOM
error occurred and then the instance restarted.

Troubleshooting
1. Check the memory usage. In this example, it shot up around 16:30.

Figure 4-6 Memory usage

2. Check for slow SQL queries. The number of slow SQL queries increased
sharply in that period.

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

Figure 4-7 Slow SQL queries

3. Check the disk throughput. There were a large number of read and write
operations being performed on the disk in that period.

Figure 4-8 Disk throughput

4. Analyze slow query logs generated in that period. There were a large number
of multi-value INSERT statements, which cause every session to request a
large amount of session-level memory at the same time. Therefore, an OOM
error occurred.

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

Figure 4-9 Slow query logs

Solution
1. For the OOM error caused by multi-value INSERT statements, reduce the

amount of data inserted at a time and disconnect sessions to release memory.
You can run the show full processlist command to check whether there are
sessions with high memory usage.

2. Set the session-level memory parameter to an appropriate value. You can
estimate the maximum memory based on the following formula: Global
memory + Session-level memory x Maximum number of sessions. Note that
setting performance_schema to ON also causes memory overhead.

3. Upgrade the instance specifications to maintain the memory usage within a
proper range, preventing a sudden increase in traffic from causing an OOM
crash.

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

4.3 Insufficient Disk Bandwidth

Scenario
The SQL statement execution of an RDS for MySQL instance slows down (for
more than 5 seconds), and an error is reported due to a timeout.

Troubleshooting
1. Check for slow SQL queries. In this example, slow SQL queries of the instance

started to increase at 18:03 and reached up to 700 per second.

Figure 4-10 Slow SQL queries

2. Check the CPU usage. The CPU usage was 88% at the time and was not a
performance bottleneck.

Figure 4-11 CPU usage

3. Check the QPS. The QPS increased by more than three times from 18:03 to
18:05, indicating that the service was being provided during peak hours.

Figure 4-12 QPS

4. Check the disk read and write throughput. The disk throughput reached 350
MB/s, making it a performance bottleneck.

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

For details about storage performance, see DB Instance Storage Types.

Figure 4-13 Disk throughput

Solution
1. Adjust the value of innodb_io_capacity or innodb_io_capacity_max to

prevent high I/O throughput because underlying data reads and writes will
generate physical I/Os if the requested data page cannot be hit in the buffer
pool.

2. Purchase a DB instance with high-performance extreme SSD as the storage
type or upgrade the instance memory specifications to cache more data to
the buffer pool.

4.4 Slow SQL Statements Due to Improper Composite
Index Settings

Scenario
On an RDS for MySQL instance, an SQL query that ran at 11:00 and was expected
to take 8 seconds took more than 30 seconds.

Troubleshooting
1. Check the CPU usage. In this example, during that time period, the CPU usage

of the instance did not increase sharply and remained low, so we know that
the slow query was not caused by high CPU usage.

Figure 4-14 CPU usage

2. Analyze slow query logs generated in that time period. In this example, shown
below, there were several SQL statements that involved millions of rows being
scanned. These were the slow statements. But no large amount of data was
inserted into the table during that time, so we know that the slow execution

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

https://support.huaweicloud.com/intl/en-us/productdesc-rds-mysql/rds_01_0020.html

was caused by missing or incorrect index settings. By running EXPLAIN, you
can find that the execution plan of the SQL statement was full table scanning.

Figure 4-15 Slow query logs

3. Run SHOW INDEX FROM to check the index cardinalities of the three fields.

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

Figure 4-16 Viewing index cardinality

The query_date field with the smallest cardinality was in the first place of the
composite index, and the group_id field with the largest cardinality was in
the last place of the composite index. In addition, the SQL statement
contained the range query of the query_date field. As a result, only the
query_date field was indexed. Therefore, the SQL statement could only use
the index of the query_date column. Additionally, the optimizer may have
selected full table scanning during cost estimation because the cardinality
was too small.

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

A new composite index was created with the group_id field in the first place
and the query_date field in the last place. The query time met the
expectation.

Solution
1. Check whether the slow query is caused by a performance bottleneck, such as

insufficient CPU resources.
2. Check whether the table structure is properly designed and whether index

settings are correct.
3. Execute the ANALYZE TABLE statement periodically to prevent incorrect

execution plans because performing a large number of INSERT or DELETE
operations for table data may result in outdated statistics.

4.5 DB Instance Becoming Read-Only Due to
Insufficient Storage

Scenario
The following error is displayed for an RDS for MySQL instance:

The MySQL server is running with the --read-only option so it cannot execute this statement

Troubleshooting
1. Go to the instance details page and check whether the storage is full.

2. Log in to the database and check the read_only variable.
show variables like 'read_only';

3. From the previous steps, you can find that the storage space is full and the
instance status has changed to read-only. As a result, the SQL statement fails
to be executed.

4. Check disk space distribution on the Storage Analysis page. For details, see
Storage Analysis.

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_08_0028.html

Figure 4-17 Disk space distribution

Solution
1. For insufficient storage caused by increased workload data, scale up storage

space.

If the original storage has reached the maximum, upgrade the specifications
first.

For instances using cloud disks, you can configure storage autoscaling so
that RDS can autoscale your storage when the storage usage reaches the
specified threshold.

2. If too much data is stored, delete unnecessary historical data.

a. If the instance becomes read-only, unlock it from this state first. If it is
not read-only, delete the data directly.

b. Check the top 50 databases and tables with large physical files and
identify the historical table data that can be deleted. For details, see
Storage Analysis.

c. To clear up space, you can optimize tables with a high fragmentation rate
during off-peak hours.

To delete data of an entire table, run DROP or TRUNCATE. To delete part
of table data, run DELETE and OPTIMIZE TABLE.

3. If binlog files occupy too much space, clear local binlogs.

4. If temporary files generated by sorting queries occupy too much storage
space, optimize your SQL statements.

You can query slow query logs and top SQL statements, and analyze and
optimize the problematic SQL statements.

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/en-us_topic_scale_cluster.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/en-us_topic_scale_cluster.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/en-us_topic_scale_rds.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_05_0039.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/en-us_topic_scale_cluster.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_08_0028.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_05_0037.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_08_0030.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_08_0031.html

5. Subscribe to daily health reports to obtain SQL and performance analysis
results, including slow SQL analysis, all SQL analysis, performance & storage
analysis, and performance metric trend charts. You can receive a diagnosis
report if there are any risks detected.
For details, see Daily Reports.

4.6 High Storage Usage Due to Uncleared Old Binlogs

Scenario
The storage usage of a read replica or primary instance was high. By running
SHOW BINARY LOGS or SHOW MASTER LOGS, it was found that a large number
of old binlogs were not cleared.

Possible Causes
In most cases, if the binlog retention period is configured, the binlogs that have
been backed up to OBS but exceed the retention period will be automatically
deleted. If binlogs are not deleted for a long period of time, check whether it is
caused by replication exceptions.

Troubleshooting:

1. Check error logs of the instance for any records about binlog purging
failures.
2022-01-18T05:39:03.139207+08:00 29 [Warning] file ./mysql-bin.106259 was not purged because it
was being readby thread number 27490757

2. Check whether a local standby database exists or whether tools such as Canal
are used to listen to binlogs of the instance. If the primary database does not
receive the information that the binlogs have been obtained by the standby
database or tool, the binlogs will not be deleted. As a result, binlogs are
stacked.

3. Based on the records obtained in 1, analyze the logs of the local standby
database or Canal and check network connectivity to identify the cause.

Solution
● Temporarily stop the binlog listening task of the instance so that the instance

can automatically clear binlogs.
● If there is a local standby database, re-establish the replication relationship.
● If a tool such as Canal is used, re-create a binlog pull task.

4.7 Slow Response Due to Deadlocks

Scenario
A large number of row lock conflicts occurred in a database between 14:00 and
15:00. The database response became slow because a large number of update and
insert sessions in the kernel were waiting for row lock release and the CPU usage
reached about 70%.

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_08_0035.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_05_0037.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_mysql_error_log.html

The following figure shows the row lock waits and metadata locks on the Cloud
Eye console.

Table where a deadlock occurred:

********* 1. row *********
Table: table_test Create Table: CREATE TABLE table_test(
...
CONSTRAINT act_fk_exe_parent FOREIGN KEY (parent_id_) REFERENCES act_ru_execution (id_) ON DELETE
CASCADE,
CONSTRAINT act_fk_exe_procdef FOREIGN KEY (proc_def_id_) REFERENCES act_re_procdef (id_),
CONSTRAINT act_fk_exe_procinst FOREIGN KEY (proc_inst_id_) REFERENCES act_ru_execution (id_) ON
DELETE CASCADE ON UPDATE CASCADE, CONSTRAINT act_fk_exe_super FOREIGN KEY (super_exec_)
REFERENCES act_ru_execution (id_) ON DELETE CASCADE) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_bin

Possible Causes
1. Deadlocks occurred in some tables. As a result, the CPU usage increased.
2. If a table contains a large number of foreign keys, updating records in the

table requires not only the row lock of the table but also the corresponding
locks of the tables associated with its foreign keys. In high concurrency
scenarios, lock conflicts or deadlocks are more likely to occur than common
tables. For details, see FOREIGN KEY Constraints.

3. If it detects a deadlocked table, RDS for MySQL rolls back the transaction. The
tables associated with the foreign keys of the deadlocked table are also
impacted. As a result, the database responsiveness slows down.

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

https://dev.mysql.com/doc/refman/5.7/en/create-table-foreign-keys.html#foreign-key-restrictions

Solution

Check and optimize deadlocked tables and use the right foreign keys to avoid
update conflicts and deadlocks.

4.8 Read Replica Uses Far More Storage Than the
Primary Instance

Scenario

The storage usage of an RDS for MySQL read replica was, for example, 195 GB
higher than that of the primary DB instance.

Troubleshooting

Check the transactions running on the read replica.

As shown in the preceding figure, there was a long transaction started a day ago
that has still not committed. The undo logs accumulated for almost a whole day
and were not cleared, which takes up a lot of storage.

Solution
● Method 1: Wait until the transaction is committed. After that, the undo logs

will be cleared, releasing storage space.

● Method 2: Kill the corresponding session to stop the long transaction.

4.9 CPU Usage Increase
If the CPU usage of an RDS for MySQL instance increases or reaches 100%, the
database response may become slow and new connections may time out.

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

Scenario 1: CPU Usage Increase Caused by Slow Queries

Cause: Too many slow SQL queries increase CPU usage. The slow SQL queries
need to be optimized.

Troubleshooting

View the CPU usage and slow query logs.

● If a large number of slow query logs are generated and the change is
consistent with the CPU usage curve, you know it is the slow SQL queries that
are increasing the CPU usage.

● If there are not very many slow query logs but the change is basically
consistent with the CPU usage curve, check whether the row read rate change
is consistent with the CPU curve.

If yes, the CPU usage increase is caused by access to a large amount of row
data. Although there are a small number of slow SQL queries, the queries
need to access a large amount of row data, causing high average I/O.
Therefore, even if the QPS is not high (for example, the website access traffic
is not heavy), the CPU usage of the instance is also high.

Solution:

1. View slow query logs generated within the corresponding time period.

2. Note any slow queries with more than a million rows scanned or more than a
million rows returned, and slow queries with long lock waiting time.

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

3. Analyze slow queries or use SQL Diagnosis.
4. Create read replicas and enable Database Proxy to split read and write

requests. Read replicas can offload the read pressure from the primary
instance, thus improving the database throughput. For details, see
Introducing Read/Write Splitting.

5. Analyze live sessions on the database to locate slow SQL statements.

a. Connect to the database.
b. Run the show full processlist; command.
c. Analyze sessions that take a long time to execute and are in the Sending

data, Copying to tmp table, Copying to tmp table on disk, Sorting
result, or Using filesort state.

Scenario 2: CPU Usage Increase Caused by Increased Connections and QPS
Cause: Too many requests

Troubleshooting:

Check whether the changes of the QPS, active connections, total connections, and
CPU usage are consistent.

QPS refers to the number of queries per second. If the QPS and active connections
increase at the same time, and the QPS curve matches the CPU usage curve, the
CPU usage increase is caused by increased requests, as shown in the following
figure.

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

https://support.huaweicloud.com/intl/en-us/usermanual-das/das_04_0100.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_11_0035.html

In this scenario, SQL statements are usually simple and the execution efficiency is
high. There is little room for optimization on SQL statements. You need to
optimize the database.

Solution:

1. Upgrade the vCPU specifications of your instance because this problem
usually occurs in instances with vCPU specifications such as 1 vCPU, 2 vCPUs,
and 4 vCPUs.

2. Optimize slow queries by referring to Scenario 1: CPU Usage Increase
Caused by Slow Queries. If this method is not so helpful, upgrade the vCPU
specifications of your instance.

3. Use database and table sharding for tables with a large amount of data to
reduce the amount of data accessed in a single query.

4. Create read replicas and enable Database Proxy to split read and write
requests. Read replicas can offload the read pressure from the primary
instance, thus improving the database throughput. For details, see
Introducing Read/Write Splitting.

4.10 Slow SQL Execution Due to Hot and Cold Data
Problems

Scenario
When you migrate data from a self-built MySQL database or a peer vendor's
MySQL database to an RDS for MySQL instance, the execution speed of the same
SQL statement is much lower than that of the source database.

Possible Causes
The execution speed of a given SQL statement differs greatly when it is executed
the first and second times. This is determined by the MySQL buffer pool
mechanism.

● The first time the statement is executed, data is stored on the disk. This data
is cold data. Reading cold data takes a certain period of time.

● The data you have queried is then cached in the buffer pool of the memory. It
is called hot data and can be quickly accessed in the memory. When you

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_11_0035.html

execute the same statement for the second time, data is read from the buffer
pool, which is much faster than reading data from a disk.

In this example, the data you queried in the source database is frequently
accessed data. It is hot data. It can be read very quickly. After the data is migrated
to the RDS for MySQL instance, when you execute the same SQL statement on the
new database for the first time, the data you expect to query is probably cold
data. This time, the access speed is slow. If you run the statement again, the data
will become hot data again and the speed will improve significantly.

Solution

This issue is not an exception. Within a given database, it usually takes much more
time to execute a statement for the first time, but when the statement is executed
again later, it gets much faster. The access speed improves because the
subsequent reads are reads of hot data from the buffer pool, which is much faster
than reading cold data from a disk.

4.11 High Table Fragmentation Rate

Scenario

High table fragmentation rate is a common problem in RDS for MySQL instances.
Table fragments mean that table data and indexes are scattered in different
physical blocks. These physical blocks may be discontinuous or have some free
space, so the storage of table data and indexes on disks is not optimal.

This problem is caused by operations (such as deletion, update, and insertion) on
table data. If data rows in tables are frequently modified and moved, data
segments in the tables become discontinuous.

Impact and Risk
● Tablespace bloat

High table fragmentation rate causes a large amount of unused space in the
instance. It is a waste of space.

● Poor query optimization
If the table fragmentation rate is too high, the optimizer cannot correctly and
effectively use indexes, affecting execution plan selection and degrading the
query performance.

● Slow SQL execution
If the table fragmentation rate is too high, extra time is required for I/O
scanning and defragmentation when SQL statements are executed. As a
result, the query and update operations are slow and the response time is
prolonged.

Troubleshooting

Method 1: Use DBA Assistant to view the storage usage of your DB instance in
real time to prevent storage space from being insufficient.

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

1. Log in to the management console.

2. Click in the upper left corner and select a region.

3. Click in the upper left corner of the page and choose Databases >
Relational Database Service.

4. On the Instances page, click the DB instance name.
5. In the navigation pane, choose DBA Assistant > Real-Time Diagnosis.
6. Click the Storage Analysis tab. On the displayed page, you can view the

fragment space and fragmentation rate in the top 50 databases and tables
area.

Figure 4-18 Top 50 databases and tables

Method 2: Run commands to view the fragmentation rate.

1. Run the following command to analyze a table and update the table
statistics:
ANALYZE TABLE table_name;

2. Run the following commands to view details about a table:
SELECT
 table_name,
 data_length,
 data_free
FROM
 information_schema.tables
WHERE
 table_schema = 'database_name'
 AND
 table_name = 'table_name';

– table_name: name of the table
– data_length: size of data stored in the table (in byte)
– data_free: size of free space of the table (in byte)
Generally, you can preliminarily determine the fragmentation rate based on
the ratio of data_free to data_length.

Possible Causes
Cause 1: Parallel Migration During DRS Full Migration

During a full migration, DRS uses row-level parallel migration to ensure migration
performance and transmission stability. If the source database data is compact, a
high fragmentation rate may cause data bloat after data is migrated to RDS for
MySQL. As a result, storage usage of the destination database is much higher than
that of the source database.

Cause 2: Table Fragmentation After a Large Number of Deletions

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

https://console-intl.huaweicloud.com/?locale=en-us

When data is deleted, RDS for MySQL does not reclaim the storage occupied by
the deleted data. Instead, it only marks the deletion and fills the space with new
data if there is any. If there is no data to fill up the space, tablespace bloat is the
result, along with table fragmentation.

You can run the SQL statement shown below to query details about a table. The
DATA_FREE field in the command output indicates the size of tablespace
fragments.

select * from information_schema.tables where table_schema='db_name' and table_name =
'table_name'\G;

Figure 4-19 Command output

Solution

Optimize the table fragmentation rate in the following scenarios:

● The instance has been running for a long period of time.

Data operations, such as insertion, update, and deletion, may generate table
fragments.

● There are a large number of data changes.

A large number of data changes may cause fragments.

● Database performance deteriorates.

If you identify obvious performance deterioration when querying a given
amount of data, you may need to check the fragmentation rate.

● The storage space is insufficient.

If the storage space usage is too high, you can check the fragment space and
defragment the table to release the storage space.

To solve the problem of high table fragmentation rate, you are advised to
periodically analyze fragments of frequently accessed tables, clear the fragments,
and optimize tablespaces to improve performance.

To optimize a table, run the following command:

OPTIMIZE TABLE table_name;

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

NO TICE

The optimize table statement locks the table for a short period of time. The
overall execution time depends on the table size. Generally, the execution takes a
long time and occupies many resources (the storage space that is 1.5 times the
size of the table to be optimized must be reserved). To avoid impact on your
workloads, you are advised to optimize a table during off-peak hours.

4.12 Full Storage Caused by Complex Queries

Scenario

The storage usage of a primary instance or read replica is occasionally high or
reaches 100%, while the storage usage of the standby instance or other read
replicas is within a normal range.

Possible Causes

When you run complex queries on the data of an RDS for MySQL database, RDS
creates temporary tables to store the data and operations such as GROUP BY,
ORDER BY, DISTINCT, and UNION are executed on the data in the temporary
tables. When memory is insufficient, storage space is consumed.

Troubleshooting:

1. Check the storage usage of the standby instance and other read replicas. If
the storage usage of such instances is normal, the high storage usage of the
primary instance or read replica is related to SQL queries running on it.

2. Check the instance slow query logs to find whether there were any slow
queries when the storage usage was high.

3. If there is a slow query, run the explain [slow SQL statement] command to
analyze the SQL statement.

4. Check whether the extra column in the command output contains using
temporary or using filesort. If yes, a temporary table or file is used during
the statement execution. If a large amount of data is queried, the storage
usage is high.

Solution
1. Optimize the query statement by adopting the following measures:

– Add a proper index.

– Use the WHERE condition.

– Rewrite the SQL statement to optimize the execution plan.

– If temporary tables are necessary, reduce the number of concurrent
requests.

2. Workaround: Temporarily scale up storage space. Optimizing complex query
statements cannot reduce the storage usage right away.

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

4.13 Why Is My SQL Query So Slow?
1. You can view the slow SQL logs for slow SQL queries and view their

performance characteristics (if any) to locate the cause.
To learn how to view RDS for MySQL logs, see Viewing and Downloading
Slow Query Logs.

2. View the CPU usage metric of your DB instance.
For details, see Viewing Performance Metrics of a DB Instance.

3. Create read replicas to offload read pressure on primary DB instances.
4. When multiple associated tables are queried, indexes must be created for the

associated fields.
5. Do not use the SELECT statement to scan all tables. You can specify fields or

add the WHERE condition.

4.14 Instance Class Change or Minor Version Upgrade
Failure Caused by Long Transactions

Scenario
An instance class change or a minor version upgrade fails due to long
transactions.

Possible Causes
● To minimize the impact on workloads, an instance class change or a minor

version upgrade is performed in rolling mode, so a primary/standby
switchover is required.

● To ensure data consistency, the primary instance needs to be set to read-only
before the switchover. This is a requirement for a successful class change or
version upgrade.

● If there are long transactions executing on the primary instance, the primary
instance may not be able to be set to read only. This operation may time out
or fail. As a result, the instance class change or minor version upgrade fails.

Solution
1. Run the show processlist command to view the transactions that are being

executed. Then run the following command to identify which one is taking
too long:
select t.*,to_seconds(now())-to_seconds(t.trx_started) idle_time from
INFORMATION_SCHEMA.INNODB_TRX t \G;
Example output:

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_mysql_slow_query_log.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_mysql_slow_query_log.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_08_0027.html

In the preceding command output, idle_time is the calculated time the
transaction stays idle. trx_mysql_thread_id indicates the thread ID of the
transaction, which is the thread ID queried by running show processlist.
The value of trx_query is NULL, but it does not mean that the transaction is
not executed. If the transaction contains multiple SQL statements and all of
them have been executed, no statement is displayed in the trx_query field. If
the transaction is being executed, InnoDB cannot determine whether there
are any subsequent SQL statements and when the transaction is committed.
In this case, trx_query cannot determine which SQL statement is being
executed, so NULL is displayed.

2. Kill the long transaction, and then change the instance class or upgrade the
minor version.

3. Do not execute any long transactions when you are changing the instance
class or upgrading the minor version.

4.15 Native Error 1461 Reported by an RDS for MySQL
DB Instance

Scenario

The following error is displayed when there are a lot of concurrent read and write
requests, large amounts of SQL statements, or in data migration scenarios:

mysql_stmt_prepare failed! error(1461)Can't create more than
max_prepared_stmt_count statements (current value: 16382)

Fault Analysis

The max_prepared_stmt_count value ranges from 0 to 1048576. The default
value is 16382. This parameter limits the total number of prepared statements in

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

all sessions on mysqld. The current value exceeds the value range of this
parameter.

Solution
Set max_prepared_stmt_count to a larger value. The recommended value is
65535.

4.16 System Inaccessible After Field Addition to an RDS
for MySQL Database Table

Description
After a field was added to an RDS for MySQL database table, the system becomes
inaccessible.

Solution
The database performance is affected due to the addition of table fields. A
possible reason is that indexes are not added to the new table fields. As a result, a
large amount of data consumes a large number of CPU resources. You are advised
to:

● Add indexes and primary keys.
● Optimize slow SQL statements.

4.17 Storage Filled Up by Undo Logs Due to Long
Transactions

Scenario
An instance triggered an alarm reporting full storage. After a period of time, the
alarm was automatically cleared.

Possible Causes
● Because Multi-Version Concurrency Control (MVCC) is used, RDS generates

undo logs when you update data in database tables and stores the undo logs
in your storage. Only after the transactions of all your sessions are committed
or rolled back, the undo logs can be removed from the storage.

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

● If there is a long-running transaction in one of the sessions, the undo logs
generated for the table update sessions cannot be cleared as long as the long
transaction is not committed. As a result, the storage usage keeps increasing.

Troubleshooting:

● Run the following statement to check whether any transaction has been
running for a long period of time and is still not committed:
select t.*,to_seconds(now())-to_seconds(t.trx_started) idle_time from
INFORMATION_SCHEMA.INNODB_TRX t \G;

● View audit logs or slow query logs to check whether a large amount of data
is inserted at a time by a large transaction.

Solution
● Kill the long-running transaction.
● Do not execute long-running transactions or insert a large amount of data

when the storage is limited.
● Scale up storage space in advance.

4.18 Locating Long Transactions

Scenario
If a long transaction alarm is generated, you can locate the long transaction.

Troubleshooting
Run the following statement to check the execution duration of the current
transaction and determine whether it is a long transaction:

Select t.*,to_seconds(now())-to_seconds(t.trx_started) idle_time from
INFORMATION_SCHEMA.INNODB_TRX t;

In the command output, trx_query indicates the SQL statement that is being
executed by the transaction. If its value is NULL, the transaction is in the waiting
state and does not execute any SQL statement.

For details, see The INFORMATION_SCHEMA INNODB_TRX Table.

4.19 Sharp Increase in the Commit Time of Some SQL
Statements

Scenario
The commit time of some SQL statements of an RDS for MySQL instance
occasionally surges from several milliseconds to hundreds of milliseconds.

Possible Causes
When the thread pool is enabled, SQL requests are put in the task queue and wait
to be processed by the worker thread. There is no performance optimization for

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

https://dev.mysql.com/doc/refman/5.7/en/information-schema-innodb-trx-table.html

low-concurrency persistent connections. As a result, a short delay may occur due
to the thread pool scheduling mechanism.

If there are a large number of concurrent requests or short connections,
performance may deteriorate due to too much thread creation and destruction
and context switching.

Solution
Set the threadpool_enabled parameter to OFF, restart the application or
database during off-peak hours, and observe the delay. This setting takes effect
immediately only for new connections.

4.20 Oversized ibdata1

Possible Causes
ibdata1 is the system tablespace of InnoDB. It contains:

● Data related to multi-version concurrency control (MVCC): undo logs
● Metadata of InnoDB tables, such as data dictionaries
● Change buffer and double write buffer

The primary reason for the increase in ibdata1 is excessive undo logs. The reasons
for excessive undo logs are as follows:

● Long-running transactions not committed block undo logs from being purged.
● A large number of concurrent writes lead to excessive undo logs which cannot

be purged fast enough.

To see the number of undo logs that are not purged, you can check the value of
History list length in the command output of show engine innodb status.

Solution
● If the ibdata1 file of the primary instance is too large but that of the standby

instance is not, perform a primary/standby switchover.
● If the ibdata1 file of the standby instance is too large but that of the primary

instance is not, submit a service ticket to rebuild the standby instance.
● If the ibdata1 files of both the primary instance and standby instance are

large, use Data Replication Service (DRS) to migrate data.

RDS for MySQL
Troubleshooting 4 Performance Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

https://console-intl.huaweicloud.com/ticket/?locale=en-us#/ticketindex/createIndex

5 SQL Issues

5.1 Double Quotation Marks Cannot Be Identified
During SQL Statement Execution

Scenario
Double quotation marks cannot be identified when SQL statements are executed
on an RDS for MySQL instance.

Troubleshooting
Check whether the sql_mode parameter is set to ANSI_QUOTES.

If it is set to ANSI_QUOTES, double quotation marks are considered as identifier
quote characters. For details, see Server SQL Modes.

Figure 5-1 Checking the parameter value

Solution
Delete ANSI_QUOTES from the values of sql_mode.

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_ansi_quotes

5.2 Error 1366 Reported When Data Containing Emojis
Is Updated

Scenario

Error 1366 was reported when data containing emojis was inserted or updated.

java.sql.SQLException: Incorrect string value: '\xF0\x9F\x90\xB0\xE5\xA4...' for column 'username' at row 1 ;
uncategorized SQLException for SQL []; SQL state [HY000]; error code [1366];
Incorrect string value: '\xF0\x9F\x90\xB0\xE5\xA4...' for column 'username' at row 1;

Possible Causes

The character set of the RDS for MySQL instance is incorrectly configured.

● An emoji is a special character and needs to be stored in a 4-byte character
set.

● In this scenario, the MySQL character set is utf-8, which supports a maximum
of three bytes. You need to change the character set to utf8mb4 to support
four bytes.

Solution
1. Change the character set for the field that stores emojis to utf8mb4.

If a large number of tables and fields are involved, you are advised to set the
encoding format of the tables and databases to utf8mb4. Sample commands:

ALTER DATABASE database_name CHARACTER SET= utf8mb4 COLLATE=
utf8mb4_unicode_ci;

ALTER TABLE table_name CONVERT TO CHARACTER SET utf8mb4
COLLATE utf8mb4_unicode_ci;

ALTER TABLE table_name MODIFY {field name} VARCHAR(128) CHARSET
utf8mb4 COLLATE utf8mb4_unicode_ci;

2. If the character set for the field is already utf8mb4, set the character sets of
the client and RDS for MySQL server to utf8mb4.

5.3 Failed to Change the varchar Length Due to the
Index Length Limit

Scenario

The alter table command failed to modify a table structure. The following error
information was displayed:

Specified key was too long; max key length is 3072 bytes

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

Possible Causes
● If innodb_large_prefix is set to OFF, the maximum length allowed for a

single-column index in an InnoDB table is 767 bytes, while that for a
composite index is 3,072 bytes, with each column in the composite index no
more than 767 bytes.

● If innodb_large_prefix is set to ON, the allowed maximum length for a
single-column index is 3,072 bytes, and that for a composite index is also
3,072 bytes.

● The index length is related to the character set. When the utf8 character set is
used, a character occupies three bytes. If innodb_large_prefix is set to ON,
the allowed maximum length for all columns in an index is 1,072 characters.

The table structure is as follows:

CREATE TABLE `xxxxx` (
......
`subscription_type` varchar(64) NOT NULL DEFAULT 'DEVICE_EXCEPTION' COMMENT 'Subscription type',
`auth_key` varchar(255) DEFAULT'' COMMENT 'Signature. A token is added to the API request header based
on the value of this parameter',
`create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT 'Creation time',
`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
COMMENT 'Update time',
PRIMARY KEY (`id`) USING BTREE,
UNIQUE KEY `enterprise_id` (`subscription_type`,`enterprise_id`,`callback_url`) USING BTREE)
) ENGINE=InnoDB AUTO_INCREMENT=1039 DEFAULT CHARSET=utf8 ROW_FORMAT=DYNAMIC

This table uses the utf8 character set. Each character occupies three bytes. The
composite index enterprise_id contains the callback_url column. If a DDL
operation is performed and callback_url to is changed to varchar(1024), the
maximum length of the composite index is exceeded. As a result, an error is
reported.

Solution
Modify the index or column length.

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

5.4 Invalid TIMESTAMP Default Value during Table
Creation

Scenario
The CREATE TABLE statement failed to be executed, and the error message
"ERROR 1067: Invalid default value for 'session_start'" was displayed.

CREATE TABLE cluster_membership
(
...
session_start TIMESTAMP DEFAULT '1970-01-01 00:00:01',
...
);

Possible Causes
RDS for MySQL converts the value inserted to the TIMESTAMP column from the
current time zone to the UTC time for storage. During query, it returns the value
by converting the UTC time to the current time zone.

The time range for the TIMESTAMP column is from '1970-01-01 00:00:01' UTC to
'2038-01-19 03:14:07' UTC. For details, see The DATE, DATETIME, and
TIMESTAMP Types.

Run the following command to check the time zone:

show variables like "%zone%";

UTC+8 is the time zone, so the valid range for the default value starts with
1970-01-01 08:00:01.

Solution
Change the default value of the TIMESTAMP column.

session_start TIMESTAMP DEFAULT '1970-01-01 08:00:01',

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html

5.5 AUTO_INCREMENT Not Displayed in the Table
Structure

Scenario

When a table was created, AUTO_INCREMENT was set to 1. After show create
table was executed, AUTO_INCREMENT was not displayed in the table structure.

A table was created:

After show create table table_name was executed, AUTO_INCREMENT was not
displayed in the table structure:

Possible Causes

sql_mode was set to NO_FIELD_OPTIONS.

Valid values for sql_mode are as follows:

● NO_FIELD_OPTIONS: Do not print MySQL-specific column options in the
output of SHOW CREATE TABLE.

● NO_KEY_OPTIONS: Do not print MySQL-specific index options in the output
of SHOW CREATE TABLE.

● NO_TABLE_OPTIONS: Do not print MySQL-specific table options (such as
ENGINE) in the output of SHOW CREATE TABLE.

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

Solution
Change the value of sql_mode.

5.6 Slow Stored Procedure Execution Due to
Inconsistent Collations

Scenario
It took more than a minute to process just a small amount of data using a stored
procedure in an RDS for MySQL instance. Executing the SQL statement in the
stored procedure was much faster.

Possible Causes
The collation of the stored procedure is inconsistent with that of the related table
and database. As a result, a large number of characters need to be converted in
the query result, and the execution is slow.

Troubleshooting:

Run the following commands to view the definitions of the stored procedure and
related table and check whether the collations are the same:

SHOW CREATE PROCEDURE xxx;
SHOW CREATE TABLE xxx

Example:

mysql> SHOW CREATE PROCEDURE testProc \G
*************************** 1. row ***************************
Procedure: showstuscore
sql_mode: STRICT_TRANS_TABLES,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION
Create Procedure: xxx
character_set_client: utf8mb4
collation_connection: utf8mb4_general_ci
Database Collation: utf8_general_ci
1 row in set (0.01 sec)

The collation of the stored procedure is utf8mb4_general_ci, but the collation of
the database is utf8_general_ci by default. The collations are inconsistent, which
may cause performance issues.

Solution
Change the collation of the stored procedure to be the same as that of the related
table and database.

5.7 ERROR [1412] Reported for a DB Instance

Scenario
When an SQL statement was executed on an RDS for MySQL instance, the
following error message was displayed:

ERROR[1412]:Table definition has changed, please retry transaction``

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

Possible Causes
After a transaction with consistent snapshot was started, another session was
executing DDL statements. Procedure for reproducing the problem:

1. Session 1 starts a transaction with consistent snapshot.

2. Session 2 executes a DDL statement to modify the table structure.

3. Session 1 executes a common query statement.

You can also analyze binlogs or audit logs to check whether a DDL statement and
transaction with consistent snapshot are executed concurrently on the same table.

Solution
Do not execute a DDL statement and transaction with consistent snapshot
concurrently on the same table.

5.8 Error Message "Too many keys specified" Displayed
When a Secondary Index Is Created

Scenario
A secondary index failed to be created, and the error message "Too many keys
specified; max 64 keys allowed" was displayed.

Fault Analysis
RDS for MySQL limits the maximum number of secondary indexes in each InnoDB
table to 64. If the number of secondary indexes exceeds 64, the error message
"Too many keys specified; max 64 keys allowed" will be displayed. For details, see
InnoDB Limits.

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

https://dev.mysql.com/doc/refman/5.7/en/innodb-limits.html

Solution
Do not create too many indexes for a single table.

NO TE

Other restrictions on InnoDB tables include the following:
1. A table can contain a maximum of 1,017 columns (including virtual generated

columns).
2. The index key prefix limit is 3,072 bytes for InnoDB tables that use the DYNAMIC or

COMPRESSED row format.
3. A maximum of 16 columns is permitted for multicolumn indexes. Exceeding the limit

returns an error.

5.9 Failed to Delete a Table with a Foreign Key

Scenario
When an RDS for MySQL table with a foreign key is deleted, the following error
message will be displayed, which is irrelevant to user permissions:

ERROR 1451 (23000): Cannot delete or update parent row: a foreign key constraint fails …………

Possible Causes
There is a foreign key relationship between this table and another table. A link is
established between the data in the two tables. To prevent foreign key constraints
from being violated, data in the tables cannot be updated or deleted.

You can set FOREIGN_KEY_CHECKS to off to remove the foreign key relationship.
For details, see FOREIGN KEY Constraints.

Solution
Set FOREIGN_KEY_CHECKS to off.

set session foreign_key_checks=off;
drop table table_name;

5.10 DISTINCT and GROUP BY Optimization

Scenario
The execution of the DISTINCT or GROUP BY statement is slow.

Possible Causes
In most cases, DISTINCT can be converted into an equivalent GROUP BY
statement. In RDS for MySQL, DISTINCT is mainly used to remove duplicate
records from database tables and fetch only the unique records.

The DISTINCT statement groups data first, and then fetches a piece of data from
each group and returns the data to the client. There are two scenarios for
grouping data:

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

https://dev.mysql.com/doc/refman/8.0/en/create-table-foreign-keys.html

● All DISTINCT fields are included in the same index. In this scenario, RDS for
MySQL directly uses the index to group data, obtains a piece of data from
each group, and returns the data.

● Not all DISTINCT fields are included in the index. In this scenario, qualified
data is written to a temporary table and grouped in the temporary table.
Using temporary tables causes extra overhead, deteriorating the performance.

In conclusion, when using DISTINCT or GROUP BY, set an index that contains all
dependent fields. The following is an optimization example:

● No suitable index is available, so temporary tables are used.

● A suitable index is found, and temporary tables are not required.

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

Solution
When using DISTINCT or GROUP BY, create an index that contains all dependent
fields.

5.11 Character Set and Collation Settings

Related Variables
By default, character_set_server is set to utf8 and collation_server to
utf8_general_ci for your DB instance. You can change the values on the RDS
console.

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

Configuring Character Sets and Collations for Databases, Tables, and Fields
● If the character set and collation are not explicitly specified for a database

during database creation, the values of character_set_server and
collation_server are used for the database. If the character set and collation
are explicitly specified, the specified character set and collation are used for
the database.

● If the character set and collation are not explicitly specified for a table during
table creation, the character set and collation of the database hosting the
table are used for the table. If the character set and collation are explicitly
specified, the specified character set and collation are used for the table.

● If the character set and collation are not explicitly specified for a field during
table creation, the character set and collation of the table hosting the field
are used for the field. If the character set and collation are explicitly specified,
the specified character set and collation are used for the field.

Example 1: Create a database and table without explicitly specifying the character
set and collation.

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

Example 2: Create a database with the character set and collation explicitly
specified.

Example 3: Create a table with the character set and collation explicitly specified
for the table.

Example 4: Create a table with the character set and collation explicitly specified
for a field.

5.12 An Error Message Is Displayed When a User Is
Created for a DB Instance

Scenario
A user account disappeared from the console, but the account and its password
could still be used to connect to the instance.

When a new account with the same name as the missing account was created, the
following error was displayed:

ERROR 1396 (HY000): Operation CREATE USER failed for xxx

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

Possible Causes
1. The account was deleted from the mysql.user table and therefore was not

displayed on the console.
2. Because the account and its password could still be used to log in to the

instance, the account was deleted using delete from mysql.user. If you use
delete from mysql.user to delete an account, you also need to run the flush
privileges command to delete related data from the memory. Then, the
account can no longer log in to the instance.

3. The reason why a new account with the same name as the missing account
could not be created is that there was still related data about the disappeared
account in the memory.

The correct way to delete an account is using the drop user statement. When
running drop user, note that:

● drop user can be used to delete one or more users and revoke their
permissions.

● drop user requires the DELETE permission or the global CREATE USER
permission on the RDS for MySQL instance.

● If the host name of the account is not specified in the drop user statement,
the host name % is used by default.

Troubleshooting example:

After an account is created, the delete statement is used to delete the account.
When a new account with the same name as the deleted account is created, error
1396 is reported. After the flush privileges command is executed, an account with
the same name can be created.

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

Solution
● Method 1 (recommended): During off-peak hours, run the drop user

user_name command as the administrator to delete the disappeared account
and then create an account with the same name.

● Method 2: During off-peak hours, run the flush privileges command as the
administrator and then create an account with the same name. You are
advised to enable SQL Audit to locate which client deletes the user.

5.13 Slow SQL Queries After a Large Amount of Data Is
Deleted from a Large Table

Scenario

After multiple wide columns of data (records about 1 GB long) are deleted at the
same time, performing an INSERT, DELETE, UPDATE, or SELECT operation on the
same table again takes a long time. After about 20 minutes, the problem is
resolved.

Problem Reproduction
1. Suppose, for example, that the value of max_allowed_packet is 1073741824.

2. Create a table.
CREATE TABLE IF NOT EXISTS zstest1
(
id int PRIMARY KEY not null,
c_longtext LONGTEXT
);

3. Insert data to the table.
insert into zstest1 values(1, repeat('a', 1073741800));
insert into zstest1 values(2, repeat('a', 1073741800));
insert into zstest1 values(3, repeat('a', 1073741800));
insert into zstest1 values(4, repeat('a', 1073741800));
insert into zstest1 values(5, repeat('a', 1073741800));
insert into zstest1 values(6, repeat('a', 1073741800));
insert into zstest1 values(7, repeat('a', 1073741800));
insert into zstest1 values(8, repeat('a', 1073741800));
insert into zstest1 values(9, repeat('a', 1073741800));
insert into zstest1 values(10, repeat('a', 1073741800));

4. Delete data from the table.
delete from zstest1;

5. Execute a query.
select id from zstest1; //The execution is slow.

Possible Causes

After the DELETE operation is performed, the background purge thread clears all
records marked with a delete mark. Due to the large amount of data to be
deleted, the purge thread obtains the SX lock of the index root node where the
page is located when traversing and releasing the page. As a result, the SELECT
statement cannot obtain the RW lock of the root page and keeps waiting.

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

Solution
● This phenomenon is normal. After the purge operation is complete, the issue

will resolve itself.
● Scale up the instance specifications to improve the purge efficiency.
● Do not delete a large amount of data at the same time. To delete all data

from a table, use the truncate table statement.

5.14 Event Scheduler Not Taking Effect Immediately
After Being Enabled

Scenario
The event scheduler did not take effect immediately after being enabled.

Troubleshooting
1. On the Overview page of the DB instance, check whether Event Scheduler is

enabled.

2. Check whether the scheduled event is in the ENABLED state.
show events;

3. Check the time zone configured for the instance.
show variables like "%time_zone%";

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

In the preceding figure, the instance uses UTC time, so the event scheduler,
which was configured based on Beijing time, does not take effect
immediately.

Solution
Configure the event scheduler based on the time zone of your instance.

5.15 Equivalent Comparison Failures with Floating-
Point Numbers

Possible Causes
Equivalent comparison of floating-point numbers is a common problem. In
computing, floating-point numbers are stored as approximate values instead of
exact values. Therefore, unexpected problems may occur during equivalent
comparison and mathematical operations.

In RDS for MySQL, FLOAT and DOUBLE are floating-point types. The following
figure shows an example for equivalent comparison using floating-point numbers:

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

Solution
1. Decide on an acceptable tolerance for differences between the field and the

value and then do the comparison against the tolerance value. Example:

2. Use the fixed-point number type (DECIMAL) to replace the floating-point
number type. Example:

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

5.16 A Large Number of SELECT Requests Routed to
The Primary Instance After Database Proxy Is Enabled

Possible Causes

1. Delay threshold parameter
This parameter specifies the maximum delay for data to be synchronized from
the primary instance to read replicas. It is only applied when there are read
replicas. To prevent long-time data inconsistency between the primary
instance and read replicas, when the delay of a read replica exceeds the
preset threshold, read requests are not forwarded to the read replica
regardless of the read weight distributed to it.
For more information, see Configuring Delay Threshold and Distributing
Read Weight.

2. Read weight parameter
This parameter specifies read weights distributed to the primary instance and
read replicas. It takes effect only when there are read replicas.
For example, if a primary instance has two read replicas and the read weights
are set to 1, 2, and 3 for the primary instance and two read replicas,
respectively, read requests are distributed to the primary instance and read
replicas based on the ratio of 1:2:3. If the read weights are set to 0, 2, and 3,

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_11_0018.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_11_0018.html

respectively, read requests are distributed to only the read replicas based on
the ratio of 2:3.
For more information, see Configuring Delay Threshold and Distributing
Read Weight.

3. Transactions
SQL statements in a transaction are sent to the primary instance. If set
autocommit=0 is configured before a query statement is executed, the query
statement is routed to the primary instance as a transaction.

4. Connection binding
If multi-statements (for example, insert xxx;select xxx) are executed, all
subsequent requests will be routed to the primary instance because the SQL
statement for creating temporary tables binds the connection to the primary
instance. To restore read/write splitting, disconnect your application from the
RDS instance and connect to the instance again.

5. Custom variables
SQL statements containing custom variables will be routed to the primary
instance.

6. Read operations with locks (for example, SELECT for UPDATE) will be routed
to the primary instance.

7. Using hints to specify whether an SQL statement is routed to the primary
instance or read replica
In addition to weight distribution rules, you can add one of the following
hints before an SQL statement for forcible routing:
/*FORCE_MASTER*/: The SQL statement is forcibly routed to the primary
instance.
/*FORCE_SLAVE*/: The SQL statement is forcibly routed to a read replica.
Hints are only used as routing suggestions. In non-read-only SQL and
transaction scenarios, SQL statements cannot be routed to read replicas.

5.17 RENAME USER Execution Failure

Scenario

The execution of the RENAME USER statement failed.

The failure may occur in MySQL-5.6.41.5.

Fault Analysis

The username does not exist but the memory indicates that it actually does.

Solution

Perform the following statements:

drop user 'xxx'@'%';
flush privileges;

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_11_0018.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_11_0018.html

5.18 ERROR[1451] Reported When a Table with
Foreign Keys Cannot Be Deleted

Scenario

The root user does not have the permissions required to delete or modify tables in
the database. Error message is as follows:

ERROR[1451] -Cannot deleteorupdatea parent row:

aforeignkeyconstraintfails (…)

Fault Analysis

The FRM file also exists in sys_tables. This table has foreign key relationships with
other tables and cannot be deleted directly.

A foreign key association has been configured in the RDS for MySQL DB instance.
As a result, data cannot be updated or deleted. You can use the
foreign_key_checks parameter to avoid this problem.

Solution
set session foreign_key_checks=off;
drop table table_name;

To delete the table, set foreign_key_checks to off.

5.19 Solution to the Failure of Converting the Field
Type

Scenario

The varchar field is read using the char data type, and cannot be converted
through the char() function.

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

Fault Analysis

The char() function cannot be used to convert data types.

Solution

The CAST() function and CONVERT() function of RDS for MySQL can be used to
obtain values of one type and generate values of another type. The syntax is as
follows:

CAST(value as type);
CONVERT(value, type);

That is, CAST(xxx AS type) and CONVERT(xxx, type).

NO TE

The data types that can be converted are limited. The supported data types are as follows:

● BINARY: the same as adding a binary prefix to a data string

● CHAR(): characters. You can specify the length of the characters.

● DATE: calendar date

● Time: time of day

● DATETIME: date and time

● DECIMAL: floating point number

● SIGNED: integer

● UNSIGNED: unsigned integer

5.20 "Row size too large" Reported When an RDS for
MySQL Table Failed to Be Created

Scenario

An RDS for MySQL table failed to be created and the following information is
displayed:

Row size too large. The maximum row size for the used table type, not
counting BLOBs, is 65535. This includes storage overhead, check the manual.
You have to change some columns to TEXT or BLOBs

Fault Analysis

The total length of the varchar fields exceeds 65535, resulting in a table creation
failure.

Solution
1. Reduce the length.

CREATE TABLE t1 (a VARCHAR(10000),b VARCHAR(10000),c VARCHAR(10000),d VARCHAR(10000),e
VARCHAR(10000),f VARCHAR(10000)) ENGINE=MyISAM CHARACTER SET latin1;

2. Change a column to TEXT by referring to the official documentation.

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

https://dev.mysql.com/doc/refman/5.7/en/column-count-limit.html

5.21 ERROR [1412] Reported by an RDS for MySQL DB
Instance

Scenario
The following error is displayed:

ERROR[1412]:Table definition has changed, please retry transaction

This problem may occur in MySQL-5.7.31.2.

Fault Analysis
Cause 1: A transaction is started using START TRANSACTION WITH CONSISTENT
SNAPSHOT.

Scenario 1

Scenario 2

Scenario 3

Cause 2: DDL operations are performed for binlog files.

Solution
If the error is caused by any of the preceding causes, the fault needs to be rectified
on the service side.

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

5.22 Instance Reboot Failure or ERROR 1146: Table
'xxx' doesn't exist Reported During Table Operations

Scenario
● After an RDS for MySQL DB instance is rebooted, the following error message

is displayed when you perform any table operation:
ERROR 1146: Table `xxx` doesn't exist

In addition, the following information is displayed in the error log:
[Warning] InnoDB: Load table `xxx` failed, the table has missing foreign key indexes. Turn off
'foreign_key_checks' and try again.
[Warning] InnoDB: Cannot open table 'xxx' from the internal data dictionary of InnoDB through
the .frm file for the table exists.

● A DB instance fails to be rebooted due to incorrect foreign key usage and the
following error information is displayed in the error log:
[Warning] InnoDB: Load table `xxx` failed, the table has missing foreign key indexes. Turn off
'foreign_key_checks' and try again.
[Warning] InnoDB: Cannot open table xxx/xxx from the internal data dictionary of InnoDB through
the .frm file for the table exists.

Fault Analysis
The possible cause is that the foreign key added does not meet the corresponding
conditions and constraints. For details about the foreign key usage rules, see
FOREIGN KEY Constraints.

RDS for MySQL uses variable foreign_key_checks (default value: ON) to control
foreign key constraint check. When foreign_key_checks is set to OFF, the foreign
key constraint check does not take effect. In this case, no error will be reported
even if you add an incorrect foreign key. After the DB instance is rebooted,
foreign_key_checks is enabled by default. InnoDB checks foreign key constraints
when opening a table, thus generating an error.

The common reasons are as follows:

● The character set of the foreign key-related column in the parent or child
table has been changed.
RDS for MySQL 5.6, 5.7, and 8.0 allow you to modify the character set of the
foreign key-related column in the parent or child table when
foreign_key_checks is set to OFF. After the DB instance is rebooted:
– RDS for MySQL 5.6 and 5.7: A warning will be displayed in the error log

and the parent table cannot be used.
– RDS for MySQL 8.0: No warning will be displayed in the error log and the

parent table can be used.
● The index of the foreign key-related column in the parent or child table has

been deleted.
– RDS for MySQL 5.7 and 8.0: The index of the foreign key-related column

in the parent or child table cannot be deleted when foreign_key_checks
is set to OFF.

– RDS for MySQL 5.6: The index of the foreign key-related column in the
parent or child table can be deleted when foreign_key_checks is set to

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

https://dev.mysql.com/doc/refman/8.0/en/create-table-foreign-keys.html

OFF. After the index is deleted, a warning will be displayed when the DB
instance is rebooted. In addition, the table whose index was deleted
cannot be used.

Solution
● If the problem is caused by character set modification, set

foreign_key_checks to OFF and change the character sets of the foreign key-
related columns in the parent and child tables to be the same.

● If the problem is caused by index deletion, set foreign_key_checks to OFF
and recreate an index.

5.23 Error Reported During Pagination Query

Scenario
The following error is reported during pagination query of an RDS for MySQL
instance: ERROR 1038 (HY001): Out of sort memory, consider increasing server
sort buffer size.

Solution
Set the sort_buffer_size parameter to a value greater than the default value 256
KB.

sort_buffer_size is a MySQL server system variable that may affect your query
performance. It is defined on a per-session basis and affects MySQL memory
consumption.

5.24 Error Reported During User Creation

Scenario
The saas_cash_user user fails to be created after the following SQL statement is
executed:

/*COMMON SETTINGS*/ CREATE USER 'saas_cash_user'@'10.11.3.%' IDENTIFIED BY '******'

Error: (conn=288831) Operation CREATE USER failed for
'saas_cash_user'@'10.11.3. %'

Possible Causes
If a user is deleted using the delete command, an error is reported when the user
is created again.

Generally, you can use the create user or grant statement to create a user. A user
created using the create syntax does not have any permission, and you need to
use the grant syntax to assign permissions. A user created using the grant syntax
has the assigned permissions.

When you use the drop user statement to delete a user, the database table and
permission table are deleted together. However, delete from mysql.user only

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

deletes records in the user table. If you run show grants for username, you can
find that the permissions of the user still exist. In this case, creating a same user
can fail due to a verification failure.

Solution

To delete a user, run the drop command.

5.25 Syntax Error Reported When GRANT Is Used to
Grant All Privileges

Scenario

The grant statement can be used to grant all privileges on a database whose
name is in letters. If this statement is used to grant all privileges on a database
whose name is in digits, the following error is reported: You have an error in your
SOL syntax.

Database name in letters:

grant all PRIVILEGES on aaaaa.* to 'TA01'@'%';

Database name in digits:

grant all PRIVILEGES on 11111.* to 'TA01'@'%';

Possible Causes

This problem is caused by a syntax error. In MySQL, backquotes (`) are introduced
to distinguish MySQL keywords from common characters. You can enter a
backquote (`) to ensure correct syntax.

Solution

If the database name is in digits, add a backquote (`) before and after the
database name.

grant all PRIVILEGES on `11111`.* to 'TA01'@'%';

5.26 Error Reported During Table Creation for an RDS
for MySQL 5.6 DB Instance

Scenario

An error is reported when a table creation statement is executed on an RDS for
MySQL 5.6 DB instance.

Index column size too large. The maximum column size is 767 bytes.

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

Possible Causes

When you create tables for an RDS for MySQL 5.6 instance, use indexes based on
the following rules:

● For a single-field index, the field length cannot exceed 767 bytes.
● For a composite index, the length of each field cannot exceed 767 bytes, and

the total length of all fields cannot exceed 3,072 bytes.
● Use the 4-byte character set utf8mb4 for table creation.

If the maximum length of an index is 767 bytes, the length allowed for a varchar
field is 191.75 bytes (767/4=191.75). If the length of the varchar field in the table
creation statement exceeds this value, an error is reported.

Solution
1. Ensure that the value of innodb_large_prefix is ON.
2. Create a table by referring to the rules in Possible Causes.

5.27 Inconsistent Data Obtained on the Primary and
Standby Nodes When a Query Is Performed Using an
Auto-Increment Primary Key Value

Scenario

When an auto-increment primary key value is used to query data on the primary
and standby nodes, data inconsistency occurs in the query results.

Possible Causes

For a table without a primary key, the order of data in the table is determined by
the ROWID of the storage engine. The ROWIDs may be different on the primary
and standby nodes, so the orders of data on the primary and standby nodes may
be different. When an auto-increment primary key is added to the table, the
values of the auto-increment primary key are initialized based on the data order in
the table. As a result, the auto-increment primary key values are different for the
same data, that is, the data queried on the primary and standby nodes by using
the same auto-increment primary key value is different. For details, see
Replication and AUTO_INCREMENT.

Solution

To add an auto-increment column to a table containing data, create a new table
with the same table structure, add the auto-increment column to the new table,
and then import data from the original table to the new table. (When importing
data, ensure that no write operation is being performed on the original table, to
prevent data inconsistency between the two tables.)

The detailed procedure is as follows:

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

https://dev.mysql.com/doc/refman/8.0/en/replication-features-auto-increment.html

Step 1 On the primary node, create a new table named t2 that is the same as the table
without a primary key (original table t1), and add an auto-increment primary key
to the new table.

Example:
CREATE TABLE t2 LIKE t1;
ALTER TABLE t2 ADD id INT AUTO_INCREMENT PRIMARY KEY;

Step 2 Insert all data of the original table t1 to the new table t2.

Example:

INSERT INTO t2(col1, col2) SELECT col1, col2 FROM t1 ORDER BY col1, col2;

NO TE

To ensure that the orders of data in the corresponding tables on the primary and standby
nodes are the same, the ORDER BY clause must contain all columns of t1.

Step 3 Delete t1 and rename t2 as t1.

Example:

DROP TABLE t1;
RENAME TABLE t2 TO t1;

----End

5.28 "Data too long for column" Displayed When Data
Is Inserted into an RDS for MySQL Instance

Scenario

The following message is displayed when data is inserted into an RDS for MySQL
instance through JDBC:

Data truncation: Data too long for column 'field_name'

Troubleshooting

Check whether the sql_mode parameter is set to STRICT_TRANS_TABLES at the
session level.

STRICT_TRANS_TABLES indicates the strict mode. If sql_mode is set to
STRICT_TRANS_TABLES, errors about long fields can be reported.

Solution
● Increase the allowed field length during off-peak hours.

ALTER TABLE table_name MODIFY COLUMN field_name VARCHAR(128);

● Insert data through Data Admin Service (DAS). If there is overlong data, DAS
truncates the data.

RDS for MySQL
Troubleshooting 5 SQL Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

6 Connection Issues

6.1 "Access denied" Displayed During Database
Connection

Scenario

A client failed to connect to a database, and the error message "Error 1045: Access
denied for user username" was displayed.

Handling Methods
1. An invalid host is connected.

Cause: An invalid database host is connected, and the user or client IP address
does not have the access permission.
Solution: Ensure that the host name of the database to be connected is
correctly specified.

2. The user does not exist.
Cause: The user account used for connecting to the database does not exist.
Solution:
– Log in to the database as an administrator and run the following

command to check whether the user exists:
SELECT User FROM mysql.user WHERE User='username';

– If the user does not exist, create the user.
CREATE USER 'xxx'@'xxxxxx' IDENTIFIED BY 'xxxx';

3. The client IP address does not have the access permission.
Cause: The user used by the client exists, but the client IP address is not
allowed to access the database.
Solution:
– Log in to the database as an administrator and run the following

command to check which client IP addresses are allowed to connect to
the database for the user:
SELECT Host, User FROM mysql.user WHERE User='username';

RDS for MySQL
Troubleshooting 6 Connection Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

– If the client IP address is not within the allowed network segment, assign
the access permission to the client IP address. For example, run the
following command to grant the test user the permission to access the
192.168.0 network segment:
GRANT ALL PRIVILEGES ON *.* TO'root'@'192.168.0.%' IDENTIFIED BY 'password' WITH GRANT
OPTION;
FLUSH PRIVILEGES;

4. The password is incorrect.
Cause: The password of the user is incorrect.
Solution:
– Check whether the password is correct. Because the password is used for

identity authentication, the user password cannot be read from RDS for
MySQL in plain text. However, you can compare the hash string with the
PASSWORD function value of the password to check whether the
password is correct. The following is an example of SQL statements:
mysql> SELECT Host, User, authentication_string, PASSWORD('12345') FROM mysql.user
WHERE User='test';
+-----------+------+---+---+
| Host | User | authentication_string | PASSWORD('12345') |
+-----------+------+---+---+
| % | test | *6A23DC5E7446019DC9C1778554ED87BE6BA61041 |
*00A51F3F48415C7D4E8908980D443C29C69B60C9 |
+-----------+------+---+---+
2 rows in set, 1 warning (0.00 sec)

The preceding example shows that the hash value of
PASSWORD('12345') does not match the authentication_string field,
indicating that the password 12345 is incorrect.

– To reset the user password, run the following SQL statement:
set password for 'test'@'%' = 'new_password';

5. The password contains special characters, which are treated as escape
characters by Bash.
Cause: In the default Linux Bash shell, when connecting to a database, special
characters in the password will be interpreted as escape characters. As a
result, the password becomes invalid.
For example, in a Bash shell, if the password test$123 is used, when you run
the mysql -hxxx -u test -ptest$123 command to connect to a database, the
error "ERROR 1045 (28000): Access denied" will be displayed.
Solution: Enclose the password in single quotation marks to prevent Bash
from interpreting special characters.
mysql -hxxx -u test -p'test$123'

6. REQUIRE SSL is configured for the user, but the client uses a non-SSL
connection.
Troubleshooting:
– Run the show create user 'xxx' command to check whether the user

must use the SSL connection. If the REQUIRE SSL attribute is displayed,
the user must use the SSL connection.

– Check whether statements similar to the following have been used to
grant permissions to the user:
GRANT ALL PRIVILEGES ON . TO 'ssluser'@'localhost' IDENTIFIED BY 'zdh1234' REQUIRE SSL;

– Check the ssl_type value of the user. If the value is not empty, the user
must use SSL.
SELECT User, Host, ssl_type FROM mysql.user WHERE User='xxx';

RDS for MySQL
Troubleshooting 6 Connection Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

Solution:
– Connect the client to the database in SSL mode. For details, see Using

MySQL CLI to Connect to an Instance Through a Private Network.
– Run the ALTER USER 'test'@'xxxxx' REQUIRE NONE; command to

remove the SSL permission from the user.

6.2 Failed to Connect to a Database Using mariadb-
connector in SSL Mode

Scenario
A database could not be connected using JDBC, and the following error message
was displayed:

unable to find certification path to requested target

Possible Causes
In the figure above, a MariaDB JAR package is used to connect to the database,
which is slightly different from the official driver package of MySQL.

Solution
The connection string for mariadb-java-client-2.7.5 is as follows:

● If the CA certificate is not provided and the certificate is not verified:
String url = "jdbc:mysql://ip:port/mysql?useSsl=true&trustServerCertificate=true";

● If the CA certificate is provided and the certificate is verified:
String url = "jdbc:mysql://ip:port/mysql?useSsl=true&serverSslCert=D:\
\ca.pem&disableSslHostnameVerification=true";

Note: RDS for MySQL DB instances do not support hostname verification, so you
need to set disableSslHostnameVerification to true. The way you set this
parameter depends on the MariaDB JAR package version. For details, see the
notes on usage of the corresponding version.

RDS for MySQL
Troubleshooting 6 Connection Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_mysql_connect_05.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_mysql_connect_05.html
https://mariadb.com/kb/en/about-mariadb-connector-j/

6.3 Error Message "connection established slowly"

Scenario
During peak hours, the connection between a client and an RDS for MySQL
instance often times out. As a result, it takes more than 10 seconds to log in to
the instance.

Possible Causes
1. View error logs of the instance to check whether the information

"connection xxx is established slowly" is displayed. Example:

If yes, some connections have timed out and have not been processed by the
RDS for MySQL instance yet. When the connection between a client and the
instance exceeds the specified timeout duration, an error is reported.

2. Check the thread pool configuration (enabled by default) on the console.

In the preceding figure, threadpool_oversubscribe is set to 3. The wait time
for the thread pool to process connections is related to this parameter.

Solution
If there are a large number of new connections, increase the value of
threadpool_oversubscribe to increase the total number of threads. This reduces
the overhead of repeated thread creation and destruction, and limits the number
of running threads to protect the system against avalanche.

In normal cases, the thread pool is used when there are a large number of short
connections. If persistent connections are used and there are a few connections
(for example, the client uses a connection pool), the thread pool is not so helpful.
In this case, adjust the value of threadpool_oversubscribe to increase the total
number of threads, or close the thread pool.

RDS for MySQL
Troubleshooting 6 Connection Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_mysql_error_log.html

6.4 Login Failed After ssl_type of root Is Changed to
ANY

Scenario
When user root was used to log in to a DB instance through DAS on the console,
the error message "Access denied" was displayed.

Troubleshooting
1. View the root account information in the mysql.user table to check whether

the client IP address is within the allowed range and whether SSL is enabled.
SELECT * FROM mysql.user WHERE User='root';

If ssl_type of the root account is set to ANY, the root account needs to use
SSL.

2. Check whether SSL is enabled.
show variables like '%ssl%';
SSL was not enabled for the instance.

The reason is that ssl_type of the root account was changed to ANY. As a
result, the login failed.

Solution
Run the following command to change the value of ssl_type to be empty for the
root account:

RDS for MySQL
Troubleshooting 6 Connection Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

update mysql.user set ssl_type='' where user = 'root';

To change the ssl_type of all other user accounts to be empty, run the following
command:

update mysql.user set ssl_type='' where user not like 'rds%';

6.5 Error Reported During Login to a DB Instance
Through DAS

Scenario

The following error is reported when user root is used to log in to an RDS for
MySQL instance on the DAS console: Client does not support authentication
protocol requested by server. plugin type was = 'sha256_password'.

Possible Causes

DAS does not support login of database accounts using sha256_password for
password encryption.

Solution

Run the following statement to change the password encryption mode to
mysql_native_password:

alter user 'user_name'@'%' identified with mysql_native_password by 'password';

6.6 "Your password does not satisfy the current policy
requirements" Displayed When Permissions Are
Granted or Revoked on DAS

Scenario

The error message "Your password does not satisfy the current policy
requirements" is displayed when the root user is used to log in to an instance and
run GRANT or REVOKE on Data Admin Service (DAS).

Solution
● MySQL 5.7

If permissions are granted to a user that does not exist, the message "Your
password does not satisfy the current policy requirements" will be displayed.
In MySQL 5.7, the GRANT statement can automatically create the user when
a user does not exist. You are advised to add IDENTIFIED BY to the end of the
statement so that the user can be created successfully.
Check whether a user exists.
select * from mysql.user where user='<username>';

RDS for MySQL
Troubleshooting 6 Connection Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

GRANT statement:
grant select on mysql.* to '<username>'@'%' IDENTIFIED BY '<password>';

● MySQL 8.0
If permissions are granted to a user that does not exist, the message "You are
not allowed to create a user with GRANT" will be displayed.
In MySQL 8.0, you need to create a user using create before granting
permissions to it.

6.7 SSL Connection Failed Due to Inconsistent TLS
Versions

Scenario

A client failed to connect to an RDS for MySQL instance using SSL, but could
connect to a self-built MySQL database using SSL.

Possible Causes

Troubleshooting:

1. View error logs of the instance. The following error was displayed:
2021-07-09T10:30:58.476586+08:00 212539 [Warning] SSL errno: 337678594, SSL errmsg:
error:14209102:SSL routines:tls_early_post_process_client_hello:unsupported
protocol2021-07-09T10:30:58.476647+08:00 212539 [Note] Bad
handshake2021-07-09T10:32:43.535738+08:00 212631 [Warning] SSL errno: 337678594, SSL errmsg:
error:14209102:SSL routines:tls_early_post_process_client_hello:unsupported
protocol2021-07-09T10:32:43.535787+08:00 212631 [Note] Bad
handshake2021-07-09T10:50:03.401100+08:00 213499 [Warning] SSL errno: 337678594, SSL errmsg:
error:14209102:SSL routines:tls_early_post_process_client_hello:unsupported
protocol2021-07-09T10:50:03.401161+08:00 213499 [Note] Bad
handshake2021-07-09T10:53:44.458404+08:00 213688 [Warning] SSL errno: 337678594, SSL errmsg:
error:14209102:SSL routines:tls_early_post_process_client_hello:unsupported
protocol2021-07-09T10:53:44.458475+08:00 213688 [Note] Bad handshake

2. Based on the unsupported protocol in the error, we know that the problem
may be related to the TLS version. Run the following command to check the
TLS versions of the RDS for MySQL instance and self-built MySQL database:
show variables like '%tls_version%';
It was found that the RDS for MySQL instance used TLS v1.2 and the self-built
MySQL database used TLS v1.1. The TLS version of the client was the same as
that of the self-built MySQL database. The self-built MySQL database was
able to connect, but the RDS for MySQL instance could not.

Solution

Upgrade the TLS version of the client to TLS v1.2.

If the official JDBC driver mysql-connector/J is used, see Connecting Securely
Using SSL for the configuration method.

RDS for MySQL
Troubleshooting 6 Connection Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_mysql_error_log.html
https://dev.mysql.com/doc/connector-j/en/connector-j-reference-using-ssl.html
https://dev.mysql.com/doc/connector-j/en/connector-j-reference-using-ssl.html

6.8 Failed to Connect to a Database as root

Scenario
A database could not be connected to using the root account.

Troubleshooting
1. Check the kernel error.log to for any records of a connection denial.
2. Use another account to log in to the database and check the root

permissions. There are two root accounts. One of them is allowed to access
only hosts whose IP addresses start with 192.

Solution
Contact technical support to delete the extra root account.

RDS for MySQL
Troubleshooting 6 Connection Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

6.9 RDS for MySQL Client Automatically Disconnected
from a DB Instance

Description

The RDS for MySQL client was automatically disconnected from the DB instance.
The following error is displayed: ERROR 2013: Lost connection to MySQL server
during query.

Solution

ERROR 2013 is usually caused by inappropriate settings.

● wait_timeout: indicates the number of seconds the server waits for activity
on a non-interactive connection before closing it.

● interactive_timeout: indicates the number of seconds the server waits for
activity on an interactive connection before closing it.

Step 1 Check whether the DB instance is available.

If the DB instance is available, check for other possible causes.

Step 2 View error logs.

Step 3 Use the RDS for MySQL command-line client to connect to the database. Run
status to check whether the DB instance has been rebooted a lot.

Uptime indicates the running time of the DB instance. The command output
shows that the database has not been restarted frequently. Therefore, the client
disconnection is not caused by a database restart.

Step 4 Check parameters. If the values of wait_timeout and interactive_timeout are too
small, the RDS for MySQL client automatically stops connections as they time out.

Step 5 You can change the values of wait_timeout and interactive_timeout based on
service requirements, and there is no need to reboot the DB instance.

Step 6 After about 10 minutes, run the show databases command to check whether the
connection is normal.

RDS for MySQL
Troubleshooting 6 Connection Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

If information similar to the preceding figure is returned, the connection is normal.

----End

6.10 RDS for MySQL DB Instance Inaccessible

Scenario
When the MySQL client attempted to connect to a database, the following error
information is displayed:

● Fault 1
ERROR 1045 (28000): Access denied for user 'root'@'192.168.0.30' (using password:YES)

● Fault 2
ERROR 1226 (42000): User 'test' has exceeded the 'max_user_connections' resource (current value:10)

● Fault 3
ERROR 1129 (HY000): Host '192.168.0.111' is blocked because of many connection errors; unblock
with 'mysqladmin flush-hosts'

Fault 1

Step 1 Check whether the password of user root is correct.

ERROR 1045 (28000) is usually caused by an incorrect password so you need to
check the password first.

select password('Test1i@123');
select host,user,Password from mysql.user where user='test1';

RDS for MySQL
Troubleshooting 6 Connection Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

An incorrect password will cause a login failure as shown in the following figure.

Step 2 Check whether the ECS or device has the permission to connect to the DB
instance.
select user,host from mysql.user where user='username';

If you want to log in to the database from another ECS or device, log in to the
database as user root and grant the permission to the user.

For example, if the IP address of the ECS or device is 192.168.0.76, run the
following command:

GRANT all privileges ON test.* TO 'test1'@'192.168.0.76' identified by
'Test1i@123';

flush privileges;

RDS for MySQL
Troubleshooting 6 Connection Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

Step 3 Check whether the RDS for MySQL client can ping the virtual IP address of the DB
instance and use telnet to check the connection to the port.

If the ping and telnet operations are successful, ERROR 1045 (28000) is not
caused by the virtual IP address or port of the DB instance.

Step 4 Check the security group and rules of the DB instance.

Step 5 Query the user table and check user information.

The command output indicates that there are two root users.

When the client is in the network segment 192.168.***.***, RDS for MySQL
authenticates the user root@'192.168.%'. However, if the password is root@'%',
there will be a login failure. ERROR 1045 (28000) is caused by an invalid
password.

NO TE

User root@'%' is used for setting a password when you create a DB instance on the RDS
console.

----End

Fault 2

Step 1 Check whether the max_user_connections option is set when you create an RDS
for MySQL user, which limits the number of connections.
select user,host ,max_user_connections from mysql.user where user='test';

RDS for MySQL
Troubleshooting 6 Connection Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

The command output indicates that the connection failed because the
max_user_connections option was used.

Step 2 Increase the maximum number of connections for the user.
alter user test@'192.168.0.100' with max_user_connections 15

Step 3 Query the modification result and check whether the database can be connected
to.

----End

Fault 3

Step 1 Check whether the number of failed connection attempts (not caused by incorrect
passwords) of the RDS for MySQL client exceeds the value of
max_connection_errors.

Step 2 Log in to the MySQL database as user root and run flush hosts.

Alternatively, run the following command:

mysqladmin flush-hosts –u<user> –p<password> -h<ip> -P<port >

Step 3 Use the MySQL client to connect to the database again.

----End

6.11 Login Failed After the authentication_string Field
Is Changed to Display the Password for RDS for MySQL

Scenario

After you use Navicat to modify the field authentication_string of the root
account in the user table to display the password, the user cannot log in to the
client.

This problem may occur in MySQL-8.0.20.6.

RDS for MySQL
Troubleshooting 6 Connection Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

Possible Causes

The way the password was changed was incorrect. The hash key of the
authentication_string field in the user table should not be changed directly. The
password of the root user should be reset on the console.

Solution

MySQL 8.0 does not support the password function. Therefore, you should perform
the following steps to rectify the fault:

Step 1 Locate the authentication_string field of account rdsAdmin and run the
following command:
update mysql.user set authentication_string='XXX'

XXX indicates the new password.

Step 2 Reset the password of account root.
ALTER USER 'root'@'%' IDENTIFIED WITH mysql_native_password BY 'XXX';
flush privileges;

After the password is changed, the user can log in to the system as user root.

----End

6.12 MySQL-server Connection Failure After a Version
Upgrade of RDS for MySQL

Scenario

The following error is displayed when a database is connected to using
commands:

Caused by: javax.net.ssl.SSLException: Received fatal alert: protocol_version

MySQL-server connection failed after RDS for MySQL 5.7.23 is upgraded to 5.7.25.
Figure 6-1 shows the captured packet.

The TLS version sent from the client to the server during the TLS handshake is 1.0.
A total number of 15 supported cipher suites are provided.

RDS for MySQL
Troubleshooting 6 Connection Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

Figure 6-1 Packets captured when connection failed

Fault Analysis
As shown in the MySQL-server response in Figure 6-2, the server rejects the client
connection because OpenSSL has been upgraded to 1.1.1a on MySQL 5.7.25,
resulting in the rejection of the insecure TLS version and password suite.

Figure 6-2 MySQL-server response

Solution
Upgrade your JDK client to JDK 8 or a later version. By default, TLS 1.2 is
supported and 30 cipher suites are provided. Figure 6-3 shows a normal captured
packet.

RDS for MySQL
Troubleshooting 6 Connection Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

https://www.oracle.com/technetwork/java/javase/downloads/index.html

Figure 6-3 Packets captured when connection is normal

6.13 Connection Exit Due to Improper Timeout
Parameter Settings

Scenario
There are frequent database connection exits. As a result, subsequent statements
fail to be executed.

Possible Causes
When a connector or API is used to connect to a database, the client has some
default parameter settings. The settings of some important parameters, such as
socketTimeout and connectTimeout, determine the client connection timeout
duration. If the wait time of a connection exceeds the value of one of these
parameters, the connection will be interrupted.

Solution
● Change the default values of parameters such as socketTimeout and

connectTimeout to appropriate values.
● Pay attention to the reconnection function in the program.
● Using connection pools is recommended.

6.14 Database Connection Through Code (php/java/
python) Failed After SSL Is Enabled

Scenario
After SSL is enabled, an error message is displayed when a database is connected
to using commands.

Figure 6-4 Connection failure

RDS for MySQL
Troubleshooting 6 Connection Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

Troubleshooting

Check whether the connection command uses SSL.

Solution
● Enable SSL and use an SSL connection to connect to a database. For details,

see Using MySQL CLI to Connect to an Instance Through a Private
Network.

● Disable SSL and use a non-SSL connection to connect to a database. For
details, see Buying a DB Instance and Connecting to It Using a MySQL
Client.

6.15 There Is a Disconnection Every 45 Days Due to the
istio-citadel Certificate System

Scenario

The number of connections of multiple DB instances decreased sharply at the
same time every 45 days. The following figure shows the number of total
connections on the Cloud Eye console.

A large number of errors were reported on the client, as shown in the following
figure.

Troubleshooting
1. Check whether a scheduled task with an interval of 45 days exists on the

service side.
2. If the client uses a certificate encryption system, such as istio, analyze

certificate-related logs and check whether information similar to the following
is displayed: If yes, the problem is caused by expired certificates.

RDS for MySQL
Troubleshooting 6 Connection Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_mysql_connect_05.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_mysql_connect_05.html
https://support.huaweicloud.com/intl/en-us/qs-rds-mysql/rds_02_0047.html
https://support.huaweicloud.com/intl/en-us/qs-rds-mysql/rds_02_0047.html

The life of an istio-citadel certificate is 45 days on the client. When the certificate
has expired, the client initiates a database disconnection request.

Solution
● Set a proper expiration time for the istio-citadel certificate on the client and

take preventive measures when the certificate expires.
● Check whether any other certificates have expired on the client.

6.16 Error 1251 Reported During Login to a DB
Instance on the Navicat Client After the Database
Version Is Upgraded

Scenario
The following error is reported when a regular user logs in to a DB instance
through the Navicat client after the database version is upgraded: 1251 - Client
does not support authentication protocol requested by server;consider upgrading
MySQL client.

Possible Causes
The authentication plugin caching_sha2_password is used for accounts. The
database proxy does not support this plugin of RDS for MySQL 8.0, so an error is
reported during the login.

Solution
● Update the Navicat driver.
● Change the encryption rule for user login to mysql_native_password for RDS

for MySQL 8.0 DB instances.
Run the select plugin from mysql.user where user="user_name"; statement
on the DAS console to change the identity authentication plugin.

RDS for MySQL
Troubleshooting 6 Connection Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

7 Other Issues

7.1 No Scanned Rows Recorded in Slow Query Logs

Scenario
In slow query logs, an SQL statement was executed for 65 seconds, but the
number of scanned rows was 0.

Possible Causes
If an SQL statement is interrupted but its execution time exceeds the slow log
threshold, the statement will be recorded in slow query logs and the number of
scanned rows is 0. Timeout thresholds have been configured for the JDBC
connection from the client.

Solution
Optimize the SQL statement or set socketTimeout to a more appropriate value.

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

7.2 Rows Recorded in the SQL Diagnosis Result Far Less
Than the Scanned Rows Recorded in Slow Query Logs

Scenario
When SQL diagnosis is performed on the DAS console for an RDS for MySQL DB
instance, the number of rows recorded in the execution plan in the SQL statement
diagnosis result is far less than the number of scanned rows in slow SQL logs.

Possible Causes
When the query optimizer determines to query a table through full table
scanning, the rows column in the execution plan indicates the estimated number
of rows to be read. The number of rows in the execution plan is not the number of
scanned rows, because the table may be scanned repeatedly during the query.

7.3 Millisecond-Level SQL Statements Recorded in Slow
Query Logs

Scenario
The value of long_query_time is 1 (unit: second) for RDS for MySQL slow query
logs. However, there are SQL statements whose average execution time is less
than 1 second in slow query logs.

Troubleshooting
Check whether log_queries_not_using_indexes is set to ON. If yes, the SQL
statements not using indexes will also be recorded in slow query logs.

7.4 Viewing Storage of RDS DB Instances

Scenario
The storage of an RDS instance refers to the data disk storage you have
purchased, not including the ECS system disks.

You can use Cloud Eye to monitor the size, usage, and utilization of your storage
space and set alarm rules.

NO TE

Storage of primary/standby DB instances refers to the storage of the primary DB instance.

Solution

Step 1 Log in to the management console.

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

https://console-intl.huaweicloud.com/?locale=en-us

Step 2 Click in the upper left corner and select a region.

Step 3 Click in the upper left corner of the page and choose Databases > Relational
Database Service.

Step 4 On the Instances page, click the DB instance name.

Step 5 On the Overview page, view the storage space usage in the Storage & Backup
area.

----End

7.5 "The table is full" Displayed in Error Logs

Scenario

The error message "ERROR [MY-013132] [Server] The table 'table_name' is full!"
is displayed in the error logs of an RDS for MySQL instance.

Possible Causes

This error may be reported when the TempTable engine is used. For details, see
the official documentation.

Solution

On the RDS console, change the value of internal_tmp_mem_storage_engine to
MEMORY.

7.6 Audit Log Upload Policy Description

Scenario

On the RDS console, audit logs are normally uploaded to OBS and a log file is
generated every half an hour or for every 100 MB. In this case, however, the audit
logs were uploaded twice within two minutes and the size of the audit logs was
less than 100 MB.

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

https://bugs.mysql.com/bug.php?id=99100

Possible Causes
Audit log rotation policy: Logs are uploaded to OBS every half an hour or when
the accumulated size reaches 100 MB.

1. The rotation interval for audit logs is half an hour. The time under Updated
on the console is when the last SQL statement is written to the audit log file.
Based on the update time, you can easily analyze downloaded logs.

2. In certain special cases, such as when the standby instance is being rebuilt or
a primary/standby switchover is being performed, audit logs are forcibly
rotated. As a result, a new audit log file less than 100 MB is generated within
half an hour. This scenario is normal.

7.7 Auto-increment Field Values
RDS for MySQL uses the following methods to assign values to an auto-increment
field:
Table structure
CREATE TABLE animals (
 id MEDIUMINT NOT NULL AUTO_INCREMENT,
 name CHAR(30) NOT NULL,
 PRIMARY KEY (id)
);

1. If no value is specified for the auto-increment field, RDS for MySQL
automatically enters the value of AUTO_INCREMENT to the field.
mysql> INSERT INTO animals (name) VALUES ('fish'),('cat'),('penguin'),('lax'),('whale'),('ostrich');
Query OK, 6 rows affected (0.01 sec)
Records: 6 Duplicates: 0 Warnings: 0
mysql> select * from animals;
+----+---------+
| id | name |
+----+---------+
| 1 | fish |
| 2 | cat |
| 3 | penguin |
| 4 | lax |
| 5 | whale |
| 6 | ostrich |
+----+---------+
6 rows in set (0.00 sec)
mysql> show create table animals;
+---------+--+
| Table | Create Table |
+---------+--+
| animals | CREATE TABLE `animals` (`id` mediumint NOT NULL AUTO_INCREMENT, `name`
char(30) NOT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT
CHARSET=utf8 |
+---------+--+

2. If 0 or NULL is specified for the auto-increment field, RDS for MySQL
automatically enters the value of AUTO_INCREMENT to the field.
mysql> INSERT INTO animals (id,name) VALUES(0,'groundhog');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO animals (id,name) VALUES(NULL,'squirrel');
Query OK, 1 row affected (0.01 sec)
mysql> select * from animals;
+----+-----------+
| id | name |
+----+-----------+
| 1 | fish |
| 2 | cat |
| 3 | penguin |

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

4	lax
5	whale
6	ostrich
7	groundhog
8	squirrel
+----+-----------+8	
rows in set (0.00 sec)	
mysql> show create table animals;	
+---------+--+	
Table	Create Table
+---------+--+	
animals	CREATE TABLE `animals` (`id` mediumint NOT NULL AUTO_INCREMENT, `name`
char(30) NOT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=9 DEFAULT
CHARSET=utf8 |
+---------+--+

3. If the value X that is greater than the value of AUTO_INCREMENT is specified
for the auto-increment field, RDS for MySQL inserts X to the field and
changes AUTO_INCREMENT to X + 1.
mysql> INSERT INTO animals (id,name) VALUES(100,'rabbit');
Query OK, 1 row affected (0.00 sec)
mysql> select * from animals;
+-----+-----------+
| id | name |
+-----+-----------+
| 1 | fish |
| 2 | cat |
| 3 | penguin |
| 4 | lax |
| 5 | whale |
| 6 | ostrich |
| 7 | groundhog |
| 8 | squirrel |
| 100 | rabbit |
+-----+-----------+
9 rows in set (0.00 sec)
mysql> show create table animals;
+---------+--+
| Table | Create Table |
+---------+--+
| animals | CREATE TABLE `animals` (`id` mediumint NOT NULL AUTO_INCREMENT, `name`
char(30) NOT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=101 DEFAULT
CHARSET=utf8 |
+---------+--+

4. If a value less than the value of AUTO_INCREMENT is specified for the auto-
increment field, RDS for MySQL enters the value to the field and
AUTO_INCREMENT remains unchanged.
mysql> INSERT INTO animals (id,name) VALUES(50,'middle');
Query OK, 1 row affected (0.00 sec)
mysql> select * from animals;
+-----+-----------+
| id | name |
+-----+-----------+
| 1 | fish |
| 2 | cat |
| 3 | penguin |
| 4 | lax |
| 5 | whale |
| 6 | ostrich |
| 7 | groundhog |
| 8 | squirrel |
| 50 | middle |
| 100 | rabbit |
+-----+-----------+
10 rows in set (0.00 sec)
mysql> show create table animals;
+---------+--+
| Table | Create Table |

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

+---------+--+
| animals | CREATE TABLE `animals` (`id` mediumint NOT NULL AUTO_INCREMENT, `name`
char(30) NOT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=101 DEFAULT
CHARSET=utf8 |
+---------+--+

5. If a negative value is specified for the auto-increment field, RDS for MySQL
enters the value to the field and AUTO_INCREMENT remains unchanged.
mysql> INSERT INTO animals (id,name) VALUES(-50,'-middle');
Query OK, 1 row affected (0.00 sec)
mysql> select * from animals;
+-----+-----------+
| id | name |
+-----+-----------+
| -50 | -middle |
| 1 | fish |
| 2 | cat |
| 3 | penguin |
| 4 | lax |
| 5 | whale |
| 6 | ostrich |
| 7 | groundhog |
| 8 | squirrel |
| 50 | middle |
| 100 | rabbit |
+-----+-----------+
11 rows in set (0.00 sec)
mysql> show create table animals;
+---------+--+
| Table | Create Table |
+---------+--+
| animals | CREATE TABLE `animals` (`id` mediumint NOT NULL AUTO_INCREMENT,
`name` char(30) NOT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=101 DEFAULT
CHARSET=utf8 |
+---------+--+

7.8 Starting Value and Increment of AUTO_INCREMENT
The starting value and increment of AUTO_INCREMENT are determined by the
auto_increment_offset and auto_increment_increment parameters.

● auto_increment_offset determines the starting point for the
AUTO_INCREMENT column value.

● auto_increment_increment controls the interval between successive column
values.

● When the value of auto_increment_offset is greater than that of
auto_increment_increment, the value of auto_increment_offset is ignored.

● When the value of auto_increment_offset is less than or equal to that of
auto_increment_increment, the value of AUTO_INCREMENT is calculated as
auto_increment_offset + N x auto_increment_increment (N indicates the
number of inserted data records).

In RDS for MySQL, the values of auto_increment_increment and
auto_increment_offset are both 1 by default. You can change them on the RDS
console. For details, see Modifying Parameters of an RDS for MySQL Instance.

Example:

● If both auto_increment_offset and auto_increment_increment are set to 1,
the starting value is 1 and the increment is 1.
mysql> show variables like 'auto_inc%';
+--------------------------+-------+

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_configuration.html

| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 1 |
| auto_increment_offset | 1 |
+--------------------------+-------+
mysql> create table auto_test1(id int NOT NULL AUTO_INCREMENT, PRIMARY KEY (`id`));
Query OK, 0 rows affected (0.09 sec)
mysql> show create table auto_test1;
+------------+--+
| Table | Create Table |
+------------+--+
| auto_test1 | CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT, PRIMARY KEY (`id`)) ENGINE=InnoDB DEFAULT
CHARSET=utf8 |
+------------+--+
mysql> insert into auto_test1 values(0), (0), (0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> select * from auto_test1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
+----+
3 rows in set (0.01 sec)
mysql> show create table auto_test1;
+------------+---+
| Table | Create Table |
+------------+---+
| auto_test1 | CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=4
DEFAULT CHARSET=utf8 |
+------------+---+
1 row in set (0.00 sec)

● If auto_increment_increment is set to 2, the increment is 2.
mysql> set session auto_increment_offset=2;
Query OK, 0 rows affected (0.02 sec)
mysql> show variables like 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 2 |
| auto_increment_offset | 1 |
+--------------------------+-------+
mysql> insert into auto_test1 values(0), (0), (0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> select * from auto_test1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
| 4 |
| 6 |
| 8 |
+----+
6 rows in set (0.00 sec)
mysql> show create table auto_test1;
+------------+---+
| Table | Create Table |
+------------+---+
| auto_test1 | CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT, PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=10 DEFAULT CHARSET=utf8 |

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

+------------+---+
1 row in set (0.01 sec)

● If auto_increment_offset is set to 10 and auto_increment_increment is set
to 2, the starting value is 2 (because the value of auto_increment_offset is
greater than that of auto_increment_increment) and the increment is 2.
mysql> set session auto_increment_offset=10;
mysql> set session auto_increment_increment=2;
mysql> show variables like 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 2 |
| auto_increment_offset | 10 |
+--------------------------+-------+
mysql> create table auto_test2(id int NOT NULL AUTO_INCREMENT, PRIMARY KEY (`id`)); Query OK,
0 rows affected (0.08 sec)
mysql> show create table auto_test2;
+------------
+---
------+
| Table | Create Table |
+------------
+---
------+
| auto_test2 | CREATE TABLE `auto_test2` (`id` int NOT NULL AUTO_INCREMENT, PRIMARY KEY
(`id`)) ENGINE=InnoDB DEFAULT CHARSET=utf8 |
+------------
+---
------+
1 row in set (0.01 sec)
mysql> insert into auto_test2 values(0), (0), (0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> select * from auto_test2;
+----+
| id |
+----+
| 2 |
| 4 |
| 6 |
+----+
3 rows in set (0.01 sec)
mysql> show create table auto_test2;
+------------+---+
| Table | Create Table |
+------------+---+
| auto_test2 | CREATE TABLE `auto_test2` (
`id` int NOT NULL AUTO_INCREMENT, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=8
DEFAULT CHARSET=utf8 |
+------------+---+

● If auto_increment_offset is set to 5 and auto_increment_increment is set to
10, the starting value is 5 and the increment is 10.
mysql> set session auto_increment_offset=5; mysql> set session auto_increment_increment=10;
mysql> show variables like 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 5 |
+--------------------------+-------+
mysql> create table auto_test3(id int NOT NULL AUTO_INCREMENT, PRIMARY KEY (`id`));
mysql> show create table auto_test3;
+------------
+---
------+
| Table | Create Table |
+------------

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

+---
------+
| auto_test3 | CREATE TABLE `auto_test3` (`id` int NOT NULL AUTO_INCREMENT, PRIMARY KEY
(`id`)) ENGINE=InnoDB DEFAULT CHARSET=utf8 |
+------------
+---
------+
mysql> insert into auto_test3 values(0), (0), (0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> select * from auto_test3;
+----+
| id |
+----+
| 5 |
| 15 |
| 25 |
+----+
mysql> show create table auto_test3;
+------------+---+
| Table | Create Table |
+------------+---+
| auto_test3 | CREATE TABLE `auto_test3` (
`id` int NOT NULL AUTO_INCREMENT, PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=35 DEFAULT CHARSET=utf8 |
+------------+---+

7.9 AUTO_INCREMENT Value Exceeding the Maximum
Value of This Field plus 1

If the value of AUTO_INCREMENT is not equal to the maximum value of this field
plus 1 in a data table, the possible causes are as follows:

● If the increment is not 1, the value of AUTO_INCREMENT is equal to the
maximum value of this field plus the increment. For details, see Starting
Value and Increment of AUTO_INCREMENT.
mysql> show variables like 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 2 |
| auto_increment_offset | 1 |
+--------------------------+-------+
mysql> select * from auto_test1;
+----+
| id |
+----+
| 2 |
| 4 |
| 6 |
| 8 |
+----+
mysql> show create table auto_test1;
+------------+---+
| Table | Create Table |
+------------+---+
| auto_test1 | CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=10 DEFAULT CHARSET=utf8 |
+------------+---+

● The value of AUTO_INCREMENT was changed.
mysql> select * from animals;
+----+-----------+

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

| id | name |
+----+-----------+
1	fish
2	cat
3	penguin
+----+-----------+	
mysql> show create table animals;	
+---------+---+	
Table	Create Table
+---------+---+	
animals	CREATE TABLE `animals` (
`id` mediumint NOT NULL AUTO_INCREMENT,	
`name` char(30) NOT NULL,	
PRIMARY KEY (`id`)	
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8	
+---------+---+	
mysql> alter table animals AUTO_INCREMENT=100;	
Query OK, 0 rows affected (0.04 sec)	
Records: 0 Duplicates: 0 Warnings: 0	
mysql> show create table animals;	
+---------+---+	
Table	Create Table
+---------+---+	
animals	CREATE TABLE `animals` (
`id` mediumint NOT NULL AUTO_INCREMENT,
`name` char(30) NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=100 DEFAULT CHARSET=utf8 |
+---------+---+

● A transaction was not committed or was rolled back, so the value of
AUTO_INCREMENT increased but did not go back down after the transaction
was rolled back.
mysql> show create table auto_test1;
+------------+--+
| Table | Create Table |
+------------+--+
| auto_test1 | CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8 |
+------------+--+
1 row in set (0.00 sec)
mysql> select * from auto_test1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
+----+
mysql> begin;
Query OK, 0 rows affected (0.02 sec)
mysql> insert into auto_test1 values (0),(0),(0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> select * from auto_test1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
+----+
6 rows in set (0.00 sec)
mysql> show create table auto_test1;

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

+------------+--+
| Table | Create Table |
+------------+--+
| auto_test1 | CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8 |
+------------+--+
1 row in set (0.00 sec)
mysql> rollback;
Query OK, 0 rows affected (0.05 sec)
mysql> select * from auto_test1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
+----+
3 rows in set (0.00 sec)
mysql> show create table auto_test1;
+------------+--+
| Table | Create Table |
+------------+--+
| auto_test1 | CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8 |
+------------+--+

● After data is inserted, the value of AUTO_INCREMENT changed, but when
the corresponding data row was deleted, the value of AUTO_INCREMENT did
not decrease.
mysql> show create table auto_test1;
+------------+--+
| Table | Create Table |
+------------+--+
| auto_test1 | CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8 |
+------------+--+
1 row in set (0.00 sec)
mysql> select * from auto_test1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
+----+
mysql> insert into auto_test1 values (0),(0),(0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> select * from auto_test1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
+----+
6 rows in set (0.00 sec)
mysql> show create table auto_test1;
+------------+--+
| Table | Create Table |

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

+------------+--+
| auto_test1 | CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8 |
+------------+--+
1 row in set (0.00 sec)
mysql> delete from auto_test1 where id>3;
mysql> select * from auto_test1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
+----+
3 rows in set (0.00 sec) mysql> show create table auto_test1;
+------------+--+
| Table | Create Table |
+------------+--+
| auto_test1 | CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8 |
+------------+--+

7.10 Auto-Increment Field Value Jump
If the values of the auto-increment field are discontinuous, possible causes
including the following:

● If the increment is not 1, the values of the auto-increment field are
discontinuous.
mysql> show variables like 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 2 |
| auto_increment_offset | 1 |
+--------------------------+-------+
mysql> select * from auto_test1;
+----+
| id |
+----+
| 2 |
| 4 |
| 6 |
| 8 |
+----+

● The value of AUTO_INCREMENT was changed.
mysql> select * from animals;
+----+-----------+
| id | name |
+----+-----------+
1	fish
2	cat
3	penguin
+----+-----------+	
mysql> show create table animals;	
+---------+---+	
Table	Create Table
+---------+---+	
animals	CREATE TABLE `animals` (
`id` mediumint NOT NULL AUTO_INCREMENT,
`name` char(30) NOT NULL,
PRIMARY KEY (`id`))

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8 |
+---------+---+
mysql> alter table animals AUTO_INCREMENT=100;
Query OK, 0 rows affected (0.04 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> show create table animals;
+---------+---+
| Table | Create Table |
+---------+---+
| animals | CREATE TABLE `animals` (
`id` mediumint NOT NULL AUTO_INCREMENT,
`name` char(30) NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=100 DEFAULT CHARSET=utf8 |
+---------+---+
mysql> INSERT INTO animals (id,name) VALUES(0,'rabbit');
Query OK, 1 row affected (0.00 sec)
mysql> select * from animals;
+-----+-----------+
| id | name |
+-----+-----------+
1	fish
2	cat
3	penguin
100	rabbit
+-----+-----------+
9 rows in set (0.00 sec)

● The value of the auto-increment field was specified when data was inserted.
mysql> select * from animals;
+----+-----------+
| id | name |
+----+-----------+
1	fish
2	cat
3	penguin
+----+-----------+	
mysql> INSERT INTO animals (id,name) VALUES(100,'rabbit');	
Query OK, 1 row affected (0.00 sec)	
mysql> select * from animals;	
+-----+-----------+	
id	name
+-----+-----------+	
1	fish
2	cat
3	penguin
100	rabbit
+-----+-----------+
9 rows in set (0.00 sec)

● A transaction was not committed or was rolled back, so the value of
AUTO_INCREMENT increased, but then it did not go back down after the
rollback. When data is inserted again, the value of the auto-increment field
jumps.
mysql> show create table auto_test1;
+------------+--+
| Table | Create Table |
+------------+--+
| auto_test1 | CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8 |
+------------+--+
1 row in set (0.00 sec)
mysql> select * from auto_test1;
+----+
| id |
+----+
| 1 |

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

| 2 |
| 3 |
+----+
mysql> begin;
Query OK, 0 rows affected (0.02 sec)
mysql> insert into auto_test1 values (0),(0),(0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> select * from auto_test1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
+----+
6 rows in set (0.00 sec)
mysql> show create table auto_test1;
+------------+--+
| Table | Create Table |
+------------+--+
| auto_test1 |
CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8 |
+------------+--+
1 row in set (0.00 sec)
mysql> rollback;
Query OK, 0 rows affected (0.05 sec)
mysql> select * from auto_test1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
+----+
3 rows in set (0.00 sec)
mysql> show create table auto_test1;
+------------+--+
| Table | Create Table |
+------------+--+
| auto_test1 | CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8 |
+------------+--+
mysql> insert into auto_test1 values (0),(0),(0);
Query OK, 3 rows affected (0.01 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> select * from auto_test1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
| 7 |
| 8 |
| 9 |
+----+
6 rows in set (0.00 sec)
mysql> show create table auto_test1;
+------------+---+
| Table | Create Table |

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

+------------+---+
| auto_test1 | CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=10 DEFAULT CHARSET=utf8 |
+------------+---+

● After data is inserted, the value of AUTO_INCREMENT changes. But when the
corresponding data row is deleted, the value of AUTO_INCREMENT does not
decrease. When data is inserted again, the value of the auto-increment field
jumps.
mysql> show create table auto_test1;
+------------+--+
| Table | Create Table |
+------------+--+
| auto_test1 | CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8 |
+------------+--+
1 row in set (0.00 sec)
mysql> select * from auto_test1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
+----+
mysql> insert into auto_test1 values (0),(0),(0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> select * from auto_test1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
+----+
6 rows in set (0.00 sec)
mysql> show create table auto_test1;
+------------+--+
| Table | Create Table |
+------------+--+
| auto_test1 | CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8 |
+------------+--+
1 row in set (0.00 sec)
mysql> delete from auto_test1 where id>3;
mysql> select * from auto_test1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
+----+
3 rows in set (0.00 sec)
mysql> show create table auto_test1;
+------------+--+
| Table | Create Table |
+------------+--+
| auto_test1 | CREATE TABLE `auto_test1` (

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

`id` int NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8 |
+------------+--+
mysql> insert into auto_test1 values (0),(0),(0);
Query OK, 3 rows affected (0.01 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> select * from auto_test1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
| 7 |
| 8 |
| 9 |
+----+
6 rows in set (0.00 sec)
mysql> show create table auto_test1;
+------------+---+
| Table | Create Table |
+------------+---+
| auto_test1 | CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=10 DEFAULT CHARSET=utf8 |
+------------+---+

● If data insertion fails due to some reasons (for example, unique key conflict),
the value of AUTO_INCREMENT may jump.
mysql> create table auto_test7(`id` int NOT NULL AUTO_INCREMENT, cred_id int UNIQUE, PRIMARY
KEY (`id`));
Query OK, 0 rows affected (0.64 sec)
mysql> insert into auto_test7 values(null, 1);
Query OK, 1 row affected (0.03 sec)
mysql> show create table auto_test7;
+------------+-------------------------------+
| Table | Create Table |
+------------+-------------------------------+
| auto_test7 | CREATE TABLE `auto_test7` (`id` int NOT NULL AUTO_INCREMENT, `cred_id` int
DEFAULT NULL, PRIMARY KEY (`id`), UNIQUE KEY `cred_id` (`cred_id`)) ENGINE=InnoDB
AUTO_INCREMENT=2 DEFAULT CHARSET=utf8 |
+------------+--+
1 row in set (0.00 sec)
mysql> insert into auto_test7 values(null, 1);
ERROR 1062 (23000): Duplicate entry '1' for key 'auto_test7.cred_id'
mysql> show create table auto_test7;
+------------+--+
| Table | Create Table |
+------------+--+
| auto_test7 | CREATE TABLE `auto_test7` (`id` int NOT NULL AUTO_INCREMENT, `cred_id` int
DEFAULT NULL, PRIMARY KEY (`id`), UNIQUE KEY `cred_id` (`cred_id`)) ENGINE=InnoDB
AUTO_INCREMENT=3 DEFAULT CHARSET=utf8 |
+------------+---+

● When data is inserted in batches (such as insert...select and load file), the
auto-increment key is requested in batches. Two to the power of n sequence
numbers are requested in each batch. If the sequence numbers are not used
up, the sequence numbers will not be returned. As a result, the value of
AUTO_INCREMENT may jump.
mysql> create table auto_test5_tmp(id tinyint not null AUTO_INCREMENT, name varchar(8), PRIMARY
KEY (`id`));
Query OK, 0 rows affected (0.08 sec)
mysql> select * from auto_test5;
+----+------+
| id | name |
+----+------+
| 1 | A |

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

2	B
3	C
4	X
5	Y
6	Z
8	A
9	B
10	C
11	X
12	Y
13	Z
+----+------+	
12 rows in set (0.00 sec)	
mysql> insert into auto_test5_tmp select 0,name from auto_test5;	
Query OK, 12 rows affected (0.01 sec)	
Records: 12 Duplicates: 0 Warnings: 0	
mysql> select * from auto_test5_tmp;	
+----+------+	
id	name
+----+------+	
1	A
2	B
3	C
4	X
5	Y
6	Z
7	A
8	B
9	C
10	X
11	Y
12	Z
+----+------+	
12 rows in set (0.00 sec)	
mysql> show create table auto_test5_tmp;	
+----------------+---+	
Table	Create Table
+----------------+---+	
auto_test5_tmp	CREATE TABLE `auto_test5_tmp` (`id` tinyint NOT NULL AUTO_INCREMENT,
`name` varchar(8) DEFAULT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=16
DEFAULT CHARSET=utf8 |
+----------------+---+

7.11 Changing the AUTO_INCREMENT Value of a Table
The methods are as follows:

● If the value of AUTO_INCREMENT is greater than the maximum value of the
auto-increment column in the table, AUTO_INCREMENT can be changed to a
larger value within the value range.
mysql> show create table animals;
+---------+--+
| Table | Create Table |
+---------+--+
| animals | CREATE TABLE `animals` (
`id` mediumint NOT NULL AUTO_INCREMENT, `name` char(30) NOT NULL,
PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=101 DEFAULT CHARSET=utf8 |
+---------+--+
1 row in set (0.00 sec)
mysql> select * from animals;
+-----+-----------+
| id | name |
+-----+-----------+
-50	-middle
1	fish
2	cat
50	middle

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

| 100 | rabbit |
+-----+-----------+
11 rows in set (0.00 sec)
mysql> alter table animals AUTO_INCREMENT=200;
Query OK, 0 rows affected (0.22 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> show create table animals;
+---------+---+
| Table | Create Table |
+---------+---+
| animals | CREATE TABLE `animals` (
`id` mediumint NOT NULL AUTO_INCREMENT, `name` char(30) NOT NULL,
PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=200 DEFAULT CHARSET=utf8 |
+---------+---+

● If the new value of AUTO_INCREMENT is still greater than the maximum
value of the auto-increment column in the table, the change was successful.
Otherwise, the value is changed to the maximum value of the auto-increment
column plus 1 by default.
mysql> select * from animals;
+-----+-----------+
| id | name |
+-----+-----------+
-50	-middle
1	fish
2	cat
50	middle
100	rabbit
+-----+-----------+	
mysql> show create table animals;	
+---------+---+	
Table	Create Table
+---------+---+	
animals	CREATE TABLE `animals` (
`id` mediumint NOT NULL AUTO_INCREMENT, `name` char(30) NOT NULL,	
PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=200 DEFAULT CHARSET=utf8	
+---------+---+	
mysql> alter table animals AUTO_INCREMENT=150;	
Query OK, 0 rows affected (0.05 sec)	
Records: 0 Duplicates: 0 Warnings: 0	
mysql> show create table animals;	
+---------+---+	
Table	Create Table
+---------+---+	
animals	CREATE TABLE `animals` (
`id` mediumint NOT NULL AUTO_INCREMENT, `name` char(30) NOT NULL,	
PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=150 DEFAULT CHARSET=utf8	
+---------+---+	
mysql> alter table animals AUTO_INCREMENT=50;	
Query OK, 0 rows affected (0.04 sec)	
Records: 0 Duplicates: 0 Warnings: 0	
mysql> show create table animals;	
+---------+---+	
Table	Create Table
+---------+---+	
animals	CREATE TABLE `animals` (
`id` mediumint NOT NULL AUTO_INCREMENT, `name` char(30) NOT NULL,	
PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=101 DEFAULT CHARSET=utf8	
+---------+---+	
mysql> delete from animals where id=100;	
Query OK, 1 row affected (0.00 sec)	
mysql> select * from animals;	
+-----+-----------+	
id	name
+-----+-----------+	
-50	-middle
1	fish
2	cat
50	middle

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

+-----+-----------+
10 rows in set (0.00 sec)
mysql> alter table animals AUTO_INCREMENT=50;
Query OK, 0 rows affected (0.04 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> show create table animals;
+---------+---+
| Table | Create Table |
+---------+---+
| animals | CREATE TABLE `animals` (
`id` mediumint NOT NULL AUTO_INCREMENT, `name` char(30) NOT NULL,
PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=51 DEFAULT CHARSET=utf8 |
+---------+---+
1 row in set (0.00 sec)

● The value of AUTO_INCREMENT cannot be changed to a negative number.
mysql> alter table animals AUTO_INCREMENT=-1;
ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to
your MySQL server version for the right syntax to use near '-1' at line 1

7.12 Failed to Insert Data Because Values for the Auto-
increment Primary Key Field Reach the Upper Limit

Scenario
The error message "ERROR 1062 (23000): Duplicate entry 'xxx' for key 'xxx'" was
displayed when data was inserted into a table.

Possible Causes
The values for the auto-increment primary key field reach the upper limit and
cannot be increased. As a result, the auto-increment primary key value generated
for the newly inserted data is the same as that of the previous data record in the
table. Since the auto-increment primary key values cannot be duplicate, an error is
reported.

mysql> create table auto_test5(id tinyint not null AUTO_INCREMENT, name varchar(8), PRIMARY KEY
(`id`));
Query OK, 0 rows affected (0.06 sec) mysql> insert into auto_test5(name) values('A'),('B'),('C');
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> select * from auto_test5;
+----+------+
| id | name |
+----+------+
1	A
2	B
3	C
+----+------+	
3 rows in set (0.00 sec)	
mysql> alter table auto_test5 AUTO_INCREMENT=125;	
Query OK, 0 rows affected (0.05 sec)	
Records: 0 Duplicates: 0 Warnings: 0	
mysql> show create table auto_test5;	
+------------+---+	
Table	Create Table
+------------+---+	
auto_test5	CREATE TABLE `auto_test5` (
`id` tinyint NOT NULL AUTO_INCREMENT, `name` varchar(8) DEFAULT NULL,
PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=125 DEFAULT CHARSET=utf8 |
+------------+---+
mysql> insert into auto_test5(name) values('X'),('Y'),('Z');
Query OK, 3 rows affected (0.00 sec)

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 120

Records: 3 Duplicates: 0 Warnings: 0
mysql> select * from auto_test5;
+-----+------+
| id | name |
+-----+------+
1	A
2	B
3	C
125	X
126	Y
127	Z
+-----+------+	
6 rows in set (0.00 sec)	
mysql> show create table auto_test5;	
+------------+---+	
Table	Create Table
+------------+---+	
auto_test5	CREATE TABLE `auto_test5` (`id` tinyint NOT NULL AUTO_INCREMENT, `name` varchar(8)
DEFAULT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=127 DEFAULT CHARSET=utf8 |
+------------+---+
mysql> insert into auto_test5(name) values('D');
ERROR 1062 (23000): Duplicate entry '127' for key 'auto_test5.PRIMARY'

Solution
● If there are many data changes and the actual data volume in the table is far

less than the capacity of the auto-increment primary key, import all data in
the table to a new table, delete the original table, and change the name of
the new table to the original table name. (There are multiple methods for
importing and exporting data. The following is only an example.)
mysql> create table auto_test5_tmp(id tinyint not null AUTO_INCREMENT, name varchar(8),
PRIMARY KEY (`id`));
Query OK, 0 rows affected (0.07 sec)
mysql> insert into auto_test5_tmp select 0,name from auto_test5;
Query OK, 6 rows affected (0.01 sec)
Records: 6 Duplicates: 0 Warnings: 0
mysql> select * from auto_test5_tmp;
+----+------+
| id | name |
+----+------+
1	A
2	B
3	C
4	X
5	Y
6	Z
+----+------+	
mysql> drop table auto_test5;	
mysql> rename table auto_test5_tmp to auto_test5;	
Query OK, 0 rows affected (0.12 sec)	
mysql> select * from auto_test5;	
+----+------+	
id	name
+----+------+	
1	A
2	B
3	C
4	X
5	Y
6	Z
+----+------+	
6 rows in set (0.01 sec)	
mysql> show create table auto_test5;	
+------------+---+	
Table	Create Table
+------------+---+	
auto_test5	CREATE TABLE `auto_test5` (
`id` tinyint NOT NULL AUTO_INCREMENT, `name` varchar(8) DEFAULT NULL,

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=8 DEFAULT CHARSET=utf8 |
+------------+---+

● If the values for the auto-increment primary key are not enough, change the
field type of the auto-increment primary key to store more data.
mysql> select * from auto_test6;
+-----+------+
| id | name |
+-----+------+
1	A
2	B
3	C
125	X
126	Y
127	Z
+-----+------+	
6 rows in set (0.00 sec)	
mysql> show create table auto_test6;	
+------------+---+	
Table	Create Table
+------------+---+	
auto_test6	CREATE TABLE `auto_test6` (
`id` tinyint NOT NULL AUTO_INCREMENT, `name` varchar(8) DEFAULT NULL,	
PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=127 DEFAULT CHARSET=utf8	
+------------+---+	
mysql> alter table auto_test6 modify column id int NOT NULL AUTO_INCREMENT;	
Query OK, 6 rows affected (0.15 sec)	
Records: 6 Duplicates: 0 Warnings: 0	
mysql> show create table auto_test6;	
+------------+---+	
Table	Create Table
+------------+---+	
auto_test6	CREATE TABLE `auto_test6` (
`id` int NOT NULL AUTO_INCREMENT, `name` varchar(8) DEFAULT NULL,	
PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=128 DEFAULT CHARSET=utf8	
+------------+---+	
1 row in set (0.00 sec)	
mysql> insert into auto_test6(name) values('D');	
Query OK, 1 row affected (0.01 sec)	
mysql> select * from auto_test6;	
+-----+------+	
id	name
+-----+------+	
1	A
2	B
3	C
125	X
126	Y
127	Z
128	D
+-----+------+	
7 rows in set (0.00 sec)	
mysql> show create table auto_test6;	
+------------+---+	
Table	Create Table
+------------+---+	
auto_test6	CREATE TABLE `auto_test6` (
`id` int NOT NULL AUTO_INCREMENT, `name` varchar(8) DEFAULT NULL,
PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=129 DEFAULT CHARSET=utf8 |
+------------+---+
1 row in set (0.01 sec)

7.13 The Impact of Creating an Empty Username
The username '' is allowed in RDS for MySQL instances, but using such an empty
username negatively impacts instances.

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 122

When you perform operations on an RDS for MySQL instance using an empty
username, any username can be matched in RDS. This impacts both security and
functionality. You are advised not to use empty usernames.

● Security impact
– Your instance can be connected to using any username if an empty

username exists.
– Your database can be logged in to using any username and the password

of the empty username and the login user will obtain all permissions of
the empty username. Example:
#If there is no empty username created and the invalid username abcd is used to connect to
the instance, the connection fails.
mysql> select user,host from mysql.user;
+------------------+-----------+
| user | host |
+------------------+-----------+
root	%
mysql.infoschema	localhost
mysql.session	localhost
mysql.sys	localhost
+------------------+-----------+
mysql -uabcd -h127.0.0.1 -P3306 -pTest_1234
mysql: [Warning] Using a password on the command line interface can be insecure.
ERROR 1045 (28000): Access denied for user 'abcd'@'localhost' (using password: YES)

#If an empty username has been created and the invalid username abcd and the password of
the empty username are used to connect to the instance, the connection is successful.
mysql> create user ''@'localhost' IDENTIFIED BY 'Test_1234';
mysql> select user,host from mysql.user;
+------------------+-----------+
| user | host |
+------------------+-----------+
root	%
	localhost
mysql.infoschema	localhost
mysql.session	localhost
mysql.sys	localhost
+------------------+-----------+
mysql -uabcd -h127.0.0.1 -P3306 -pTest_1234
mysql: [Warning] Using a password on the command line interface can be insecure.
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 37Server version: 8.0.22-debug Source distribution
Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql>

– If the empty user does not have a password, you can use any username
to log in to the instance without a password and obtain all permissions of
the empty user. Example:
#If there is an empty username that does not have a password, the database can be logged in
to using any username without a password.
mysql> create user ''@'localhost';
Query OK, 0 rows affected (8.87 sec)
mysql> select user,host from mysql.user;
+------------------+-----------+
| user | host |
+------------------+-----------+
root	%
	localhost
mysql.infoschema	localhost
mysql.session	localhost
mysql.sys	localhost
+------------------+-----------+
mysql -uabcd -h127.0.0.1 -P3306

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 123

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 39Server version: 8.0.22-debug Source distribution
Copyright (c) 2000, 2020, Oracle and/or its affiliates.
All rights reserved. Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql>
#-----------------
mysql -usdhsjkdshk -h127.0.0.1 -P3306
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 40Server version: 8.0.22-debug Source distribution
Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql>

● Functional impact
If an empty username exists, the database cannot be logged in to using a
normal username due to a name matching error.
Example: If the host of an empty user overlaps that of the root user, the root
user cannot log in to the database using its password or it can log in to the
database using the password of the empty username but cannot obtain root
permissions.
mysql> create user ''@'localhost';
Query OK, 0 rows affected (8.87 sec)
mysql> select user,host from mysql.user;
+------------------+-----------+
| user | host |
+------------------+-----------+
root	%
	localhost
mysql.infoschema	localhost
mysql.session	localhost
mysql.sys	localhost
+------------------+-----------+
#The database cannot be logged in to using the password of the root user.
mysql -uroot -h127.0.0.1 -P3306 -pTest_root
mysql: [Warning] Using a password on the command line interface can be insecure.
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
#The user who logs in to the database using the password of the empty user (password-free) is
actually an empty user so the user does not have the root permissions.
mysql -uroot -h127.0.0.1 -P3306
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 45Server version: 8.0.22-debug Source distribution
Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql> select user,host from mysql.user;
ERROR 1142 (42000): SELECT command denied to user ''@'localhost' for table 'user'
mysql>

7.14 Connection to a Primary/Standby DB Instance
Suspended Using pt-osc
Scenario

The pt-online-schema-change (pt-osc) tool can be used to perform online DDL
operations on a local single instance, but cannot be used on an RDS for MySQL
primary/standby instance and the connection is suspended, as shown in the
following figure.

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 124

Possible Causes
How pt-osc works:

1. Create an empty table with the same structure as the original table but with
the suffix _new added to the table name.

2. Modify the structure of the empty table created in 1.
3. Add three triggers to the original table: delete, update, and insert. The

triggers are used to execute the statements to be executed in the original
table in the new table during data copy.

4. Copy the data in the original table to the new table in the form of data
chunks.

5. Rename the original table, change the name of the new table to that of the
original table, and delete the original table.

6. Delete the triggers.

A large amount of data needs to be copied. There will be a replication delay
between the RDS for MySQL primary and standby instances. Workloads running
on the standby instance may be affected. Considering the replication delay, the pt-
osc provides the following options:

● --max-lag
● --check-interval
● --recursion-method
● --check-slave-lag

If the replication delay of the standby instance exceeds the value of max-lag, the
tool stops copying data for check-interval seconds. If you specify check-slave-lag,
the tool only monitors that particular server for replication delay. It does not
monitor other servers. recursion-method is used to control exactly which servers
the tool monitors. Its values include processlist (default value, monitoring the
primary/standby replication delay), hosts, dsn, and none (ignoring the primary/
standby replication delay). For more information, see pt-online-schema-change.

In this case:

● When pt-osc is used to connect to the RDS for MySQL primary/standby
instance, the connection is suspended because there is a primary/standby
replication delay and the tool stops copying data. You can add --recursion-
method=none to solve the problem.

● If the primary/standby replication delay is ignored, data copy becomes fast. To
minimize the impact on workloads, you can set the --max-load configuration
item.

Solution
Add the --recursion-method=none configuration item to the pt-osc command to
ignore the replication delay.

Common uses of pt-osc:

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

https://www.percona.com/doc/percona-toolkit/LATEST/pt-online-schema-change.html

● Adding a field
pt-online-schema-change --user=root --password=xxx --host=xxx --alter "ADD
COLUMN content text" D=aaa,t=tmp_test --no-check-replication-filters --
alter-foreign-keys-method=auto --recursion-method=none --print --execute

● Deleting a field
pt-online-schema-change --user=root --password=xxx --host=xxx --alter
"DROP COLUMN content " D=aaa,t=tmp_test --no-check-replication-filters --
alter-foreign-keys-method=auto --recursion-method=none --quiet --execute

● Modifying a field
pt-online-schema-change --user=root --password=xxx --host=xxx --alter
"MODIFY COLUMN age TINYINT NOT NULL DEFAULT 0" D=aaa,t=tmp_test --
no-check-replication-filters --alter-foreign-keys-method=auto --recursion-
method=none --quiet --execute

● Renaming a field
pt-online-schema-change --user=root --password=xxx --host=xxx --alter
"CHANGE COLUMN age address varchar(30)" D=aaa,t=tmp_test --no-check-
alter --no-check-replication-filters --alter-foreign-keys-method=auto --
recursion-method=none --quiet --execute

● Adding an index
pt-online-schema-change --user=root --password=xxx --host=xxx --alter "ADD
INDEX idx_address(address)" D=aaa,t=tmp_test --no-check-alter --no-check-
replication-filters --alter-foreign-keys-method=auto --recursion-method=none
--print --execute

● Deleting an index
pt-online-schema-change --user=root --password=xxx --host=xxx --alter
"DROP INDEX idx_address" D=aaa,t=tmp_test --no-check-alter --no-check-
replication-filters --alter-foreign-keys-method=auto --recursion-method=none
--print --execute

If the primary/standby replication delay is important for your workloads, adjust
the following parameters as required: max-lag, check-interval, recursion-
method, and check-slave-lag. For more information, see pt-online-schema-
change.

7.15 Error Reported During Payment for a DB Instance

Scenario
When a user purchases a yearly/monthly RDS DB instance, the page does not
respond or the following error is reported after the user clicks Pay Now: Policy
doesn't allow bss:order:update to be performed.

Possible Causes
The user does not have operation permissions on orders.

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

https://www.percona.com/doc/percona-toolkit/LATEST/pt-online-schema-change.html
https://www.percona.com/doc/percona-toolkit/LATEST/pt-online-schema-change.html

Solution
Contact the master account administrator to add the bss:order:update
permission.

7.16 Failed to Change a Database Name

Scenario
Database names cannot be changed for RDS for MySQL DB instances on the RDS
or DAS console.

Solution
Use Data Replication Service (DRS) to migrate data from the source database to
the destination database with a different name. For details, see Migration
Solution Overview.

7.17 Error Reported When a DB Instance Is Purchased

Scenario
When an IAM user purchases an RDS DB instance, an error message is displayed,
indicating that the user is not granted the IAM agency permission.

Possible Causes
If the user selects Enable autoscaling when purchasing a DB instance, an error
may be reported due to the lack of required permissions.

Solution
Configure required actions for the user. For details, see "Common operations and
supported actions" > "Configuring autoscaling" in Permissions.

RDS for MySQL
Troubleshooting 7 Other Issues

Issue 01 (2025-08-20) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 127

https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_05_0001_03.html
https://support.huaweicloud.com/intl/en-us/usermanual-rds-mysql/rds_05_0001_03.html
https://support.huaweicloud.com/intl/en-us/productdesc-rds-mysql/rds_01_0017.html

	Contents
	1 Backup and Restoration Issues
	1.1 No SUPER Permissions When Restoring an RDS for MySQL Full Backup to a Local MySQL Database
	1.2 Backup Failures Due to DDL Operations
	1.3 Restoring an On-Premises or Huawei Cloud Backup File to an RDS DB Instance
	1.4 RDS for MySQL Backup Job Failure
	1.5 Manual Backups Taking More Time Than Automated Full Backups
	1.6 Incorrect Login Password During Data Restoration from a Local Backup File
	1.7 Automated Incremental Backup Failed Due to Full Storage
	1.8 RDS Point-in-Time Restoration Task Failure
	1.9 SQL Statements Such as SET @@SESSION.SQL_LOG_BIN Displayed After You Run mysqldump
	1.10 Insufficient Permissions During Data Export Using mysqldump
	1.11 Key Considered Invalid or Deleted During Table-Level PITR

	2 Primary/Standby Replication Issues
	2.1 How Primary/Standby Replication Works
	2.2 Automatic Recovery of Extended Primary/Standby Replication Delay
	2.3 Primary/Standby Replication Delay Scenarios and Solutions
	2.4 Abnormal Replication Between Primary and Standby RDS DB Instances
	2.5 Primary/Standby Replication Delay Increases Sharply and Then Decreases
	2.6 Insufficient Permissions Reported for Canal
	2.7 Canal Fails to Parse Binlogs
	2.8 RDS for MySQL Binlog Issues

	3 Parameter-related Issues
	3.1 long_query_time Changes Fail to Be Applied
	3.2 Incorrect GROUP_CONCAT Results
	3.3 [ERROR] 1071 Reported When an Index Creation Fails for RDS for MySQL
	3.4 Tables Failed to Be Found After Case-Sensitivity Setting Changes for RDS for MySQL
	3.5 Timeout Parameters
	3.6 Global Parameters Fail to Change

	4 Performance Issues
	4.1 High CPU Usage
	4.2 Out of Memory (OOM) Errors
	4.3 Insufficient Disk Bandwidth
	4.4 Slow SQL Statements Due to Improper Composite Index Settings
	4.5 DB Instance Becoming Read-Only Due to Insufficient Storage
	4.6 High Storage Usage Due to Uncleared Old Binlogs
	4.7 Slow Response Due to Deadlocks
	4.8 Read Replica Uses Far More Storage Than the Primary Instance
	4.9 CPU Usage Increase
	4.10 Slow SQL Execution Due to Hot and Cold Data Problems
	4.11 High Table Fragmentation Rate
	4.12 Full Storage Caused by Complex Queries
	4.13 Why Is My SQL Query So Slow?
	4.14 Instance Class Change or Minor Version Upgrade Failure Caused by Long Transactions
	4.15 Native Error 1461 Reported by an RDS for MySQL DB Instance
	4.16 System Inaccessible After Field Addition to an RDS for MySQL Database Table
	4.17 Storage Filled Up by Undo Logs Due to Long Transactions
	4.18 Locating Long Transactions
	4.19 Sharp Increase in the Commit Time of Some SQL Statements
	4.20 Oversized ibdata1

	5 SQL Issues
	5.1 Double Quotation Marks Cannot Be Identified During SQL Statement Execution
	5.2 Error 1366 Reported When Data Containing Emojis Is Updated
	5.3 Failed to Change the varchar Length Due to the Index Length Limit
	5.4 Invalid TIMESTAMP Default Value during Table Creation
	5.5 AUTO_INCREMENT Not Displayed in the Table Structure
	5.6 Slow Stored Procedure Execution Due to Inconsistent Collations
	5.7 ERROR [1412] Reported for a DB Instance
	5.8 Error Message "Too many keys specified" Displayed When a Secondary Index Is Created
	5.9 Failed to Delete a Table with a Foreign Key
	5.10 DISTINCT and GROUP BY Optimization
	5.11 Character Set and Collation Settings
	5.12 An Error Message Is Displayed When a User Is Created for a DB Instance
	5.13 Slow SQL Queries After a Large Amount of Data Is Deleted from a Large Table
	5.14 Event Scheduler Not Taking Effect Immediately After Being Enabled
	5.15 Equivalent Comparison Failures with Floating-Point Numbers
	5.16 A Large Number of SELECT Requests Routed to The Primary Instance After Database Proxy Is Enabled
	5.17 RENAME USER Execution Failure
	5.18 ERROR[1451] Reported When a Table with Foreign Keys Cannot Be Deleted
	5.19 Solution to the Failure of Converting the Field Type
	5.20 "Row size too large" Reported When an RDS for MySQL Table Failed to Be Created
	5.21 ERROR [1412] Reported by an RDS for MySQL DB Instance
	5.22 Instance Reboot Failure or ERROR 1146: Table 'xxx' doesn't exist Reported During Table Operations
	5.23 Error Reported During Pagination Query
	5.24 Error Reported During User Creation
	5.25 Syntax Error Reported When GRANT Is Used to Grant All Privileges
	5.26 Error Reported During Table Creation for an RDS for MySQL 5.6 DB Instance
	5.27 Inconsistent Data Obtained on the Primary and Standby Nodes When a Query Is Performed Using an Auto-Increment Primary Key Value
	5.28 "Data too long for column" Displayed When Data Is Inserted into an RDS for MySQL Instance

	6 Connection Issues
	6.1 "Access denied" Displayed During Database Connection
	6.2 Failed to Connect to a Database Using mariadb-connector in SSL Mode
	6.3 Error Message "connection established slowly"
	6.4 Login Failed After ssl_type of root Is Changed to ANY
	6.5 Error Reported During Login to a DB Instance Through DAS
	6.6 "Your password does not satisfy the current policy requirements" Displayed When Permissions Are Granted or Revoked on DAS
	6.7 SSL Connection Failed Due to Inconsistent TLS Versions
	6.8 Failed to Connect to a Database as root
	6.9 RDS for MySQL Client Automatically Disconnected from a DB Instance
	6.10 RDS for MySQL DB Instance Inaccessible
	6.11 Login Failed After the authentication_string Field Is Changed to Display the Password for RDS for MySQL
	6.12 MySQL-server Connection Failure After a Version Upgrade of RDS for MySQL
	6.13 Connection Exit Due to Improper Timeout Parameter Settings
	6.14 Database Connection Through Code (php/java/python) Failed After SSL Is Enabled
	6.15 There Is a Disconnection Every 45 Days Due to the istio-citadel Certificate System
	6.16 Error 1251 Reported During Login to a DB Instance on the Navicat Client After the Database Version Is Upgraded

	7 Other Issues
	7.1 No Scanned Rows Recorded in Slow Query Logs
	7.2 Rows Recorded in the SQL Diagnosis Result Far Less Than the Scanned Rows Recorded in Slow Query Logs
	7.3 Millisecond-Level SQL Statements Recorded in Slow Query Logs
	7.4 Viewing Storage of RDS DB Instances
	7.5 "The table is full" Displayed in Error Logs
	7.6 Audit Log Upload Policy Description
	7.7 Auto-increment Field Values
	7.8 Starting Value and Increment of AUTO_INCREMENT
	7.9 AUTO_INCREMENT Value Exceeding the Maximum Value of This Field plus 1
	7.10 Auto-Increment Field Value Jump
	7.11 Changing the AUTO_INCREMENT Value of a Table
	7.12 Failed to Insert Data Because Values for the Auto-increment Primary Key Field Reach the Upper Limit
	7.13 The Impact of Creating an Empty Username
	7.14 Connection to a Primary/Standby DB Instance Suspended Using pt-osc
	7.15 Error Reported During Payment for a DB Instance
	7.16 Failed to Change a Database Name
	7.17 Error Reported When a DB Instance Is Purchased

