
GaussDB(for MySQL)

TroubleShooting

Issue 01

Date 2024-09-04

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 Backup and Restoration Issues...1
1.1 Insufficient Permissions During Data Export Using mysqldump.. 1
1.2 How Do I use mysqlbinlog to Obtain Binlog Files?...1
1.3 Canal Fails to Parse Binlogs... 2
1.4 Precautions for Exporting Large Tables Through mysqldump...3
1.5 Commands for Exporting Data Through mysqldump.. 3
1.6 System Inaccessible After Field Addition to a Database Table... 5
1.7 SQL Statements Such as SET @@SESSION.SQL_LOG_BIN Displayed After You Run mysqldump..............5
1.8 Insufficient Permissions Reported for Canal.. 6

2 Connection Issues.. 8
2.1 Login Failed After ssl_type of root Is Changed to ANY..8
2.2 Failed to Connect to a DB Instance Using SSL..9
2.3 Description of Each IP Address...10
2.4 SSL Connection Failed Due to Inconsistent TLS Versions... 11
2.5 Error Message "connection established slowly"...12
2.6 "Access denied" Displayed During Database Connection...13
2.7 Failed to Connect to a Database Using mariadb-connector in SSL Mode..15
2.8 Failed to Connect to a Database as User root..16
2.9 Client Automatically Disconnected from a DB Instance... 17
2.10 Disconnection Occurs Every 45 Days Due to the istio-citadel Certificate Mechanism.............................. 18

3 SQL Issues..20
3.1 Invalid TIMESTAMP Default Value during Table Creation..20
3.2 Failed to Change the VARCHAR Length Due to the Index Length Limit...21
3.3 Slow SQL Queries After a Large Amount of Data Is Deleted from a Large Table...22
3.4 Error 1366 Reported When Data Containing Emojis Is Updated... 23
3.5 Slow Stored Procedure Execution Due to Inconsistent Collations... 24
3.6 ERROR [1412] Reported for a DB Instance... 25
3.7 Failed to Delete a Table with a Foreign Key..25
3.8 Incorrect GROUP_CONCAT Results...26
3.9 Error Message "Too many keys specified" Displayed When a Secondary Index Is Created........................27
3.10 DISTINCT and GROUP BY Optimization... 28
3.11 Equivalent Comparison Failures with Floating-Point Numbers... 29

GaussDB(for MySQL)
TroubleShooting Contents

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

3.12 A Large Number of SELECT Requests Routed to The Primary Instance After Database Proxy Is
Enabled.. 31
3.13 Tablespace Bloat... 32
3.14 ERROR 1396 Reported When a User Is Created.. 33
3.15 Error Message Reported When alter table xxx discard/import tablespace Is Executed.............................35
3.16 Native Error 1461 Reported by a DB Instance... 35
3.17 "Row size too large" Reported When a Table Failed to Be Created...36
3.18 Duplicate Data Exists After ORDER BY LIMIT Is Executed... 36

4 Parameter-related Issues...39
4.1 Global Parameters Fail to Change on the Client... 39
4.2 Connection Exit Due to Improper Timeout Parameter Settings... 40
4.3 long_query_time Changes Fail to Take Effect... 40
4.4 Timeout Parameters...41

5 Performance Issues... 43
5.1 High CPU Usage.. 43
5.2 Out of Memory (OOM) Errors... 45
5.3 Tablespace Bloat... 47
5.4 Read Replica Uses Far More Storage Than the Primary Instance..48
5.5 Slow SQL Execution Due to Hot and Cold Data Problems...49
5.6 Full Storage Caused by Complex Queries.. 50
5.7 Slow Response Due to Deadlocks... 51
5.8 CPU Usage Increase... 52
5.9 CPU Resource Exhaustion Caused by Too Many Concurrent Slow Queries..54

6 Basic Issues..57
6.1 How Do I View Used Storage of My GaussDB(for MySQL) Instance?... 57
6.2 Renaming Databases and Tables.. 59
6.3 Character Set and Collation Settings... 59
6.4 Auto-Increment Field Value Jump.. 61
6.5 Starting Value and Increment of AUTO_INCREMENT... 67
6.6 Changing the AUTO_INCREMENT Value of a Table... 68
6.7 Failed to Insert Data Because Values for the Auto-increment Primary Key Field Reach the Upper Limit
.. 70
6.8 Auto-increment Field Values...71
6.9 AUTO_INCREMENT Not Displayed in the Table Structure... 74
6.10 Impact of Creating an Empty Username..75
6.11 No Scanned Rows Recorded in Slow Query Logs... 77
6.12 "handle_sync_msg_from_slave my_net_read error:-1" Displayed on the Error Logs Tab Page...............77

GaussDB(for MySQL)
TroubleShooting Contents

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

1 Backup and Restoration Issues

1.1 Insufficient Permissions During Data Export Using
mysqldump

Scenario
When you export database data with mysqldump using a specified user account,
the error message "Access denied; you need (at least one of) the PROCESS
privilege(s)" is displayed.

Possible Causes
The user account does not have the PROCESS permission.

Solution
Grant the PROCESS permission to the user account as the administrator.

GRANT SELECT, PROCESS ON *.* TO 'dump_user'@'%';

FLUSH PRIVILEGES;

1.2 How Do I use mysqlbinlog to Obtain Binlog Files?
Use an ECS-based instance as an example.

1. Install a MySQL client on the ECS. For details, see How Can I Install the
MySQL Client?

NO TE

GaussDB(for MySQL) is only compatible with MySQL 8.0 or later.

2. Download binlog files.

GaussDB(for MySQL)
TroubleShooting 1 Backup and Restoration Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

https://support.huaweicloud.com/intl/en-us/gaussdbformysql_faq/gaussdbformysql_faq_0011.html
https://support.huaweicloud.com/intl/en-us/gaussdbformysql_faq/gaussdbformysql_faq_0011.html

mysqlbinlog -hxxx -uxxx -Pxxx -pxxx binlog.xxxx --read-from-remote-server
Common mysqlbinlog parameters:
– -h: database host.
– -u: username.
– -P: port number.
– -p: password.
– --start-position: position where the decoding starts.
– --start-datetime: time when the decoding starts.
– --stop-position: position where the decoding stops.
– --stop-datetime: time where the decoding stops.
– --skip-gtids: gtid_log_event is not printed.
– --short-form: Only statements are displayed.
– --result-file: The SQL file that binlog decoding results are written to.
– --read-from-remote-server: Binary logs are read from a remote server

(It is available only when mysqlbinlogs and the database server are not
on the same computer).

1.3 Canal Fails to Parse Binlogs

Scenario
An error occurred when Canal parsed binlogs, interrupting binlog collection. The
error message is as follows:

com.alibaba.otter.canal.parse.exception.CanalParseException: java.lang.NumberFormatException:- Caused
by: java.lang.NumberFormatException: - at com.alibaba.fastsql.sql.parser.Lexer.integerValue(Lexer.java:2454)

Possible Causes
Check whether the value of binlog_rows_query_log_events of your instance is set
to 1 or ON.

● Canal supports only subscriptions to binlogs in row format.
● When the value of binlog_rows_query_log_events is set to 1 or ON,

Rows_query events are generated in binlogs. These events are not in row

GaussDB(for MySQL)
TroubleShooting 1 Backup and Restoration Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

format. In certain scenarios, blank topics may occur in Canal, resulting in a
binlog parsing failure.

Solution

Change the value of binlog_rows_query_log_events to OFF and restart the
interrupted Canal task.

1.4 Precautions for Exporting Large Tables Through
mysqldump

If the –q or --quick parameter is added when you use mysqldump to export data,
the results of SELECT statements are not buffered in memory but directly
exported. If this parameter is disabled, the results of SELECT statements are
buffered in memory and then sent to the client.

● If you use mysqldump to back up only a small amount of data which can be
stored in the idle memory buffer, disabling -q increases the export speed.

● Buffering a large amount of data may consume a large amount of memory,
causing a memory swapping. If you use mysqldump to back up a large
amount of data which cannot be stored in the memory buffer, enable -q. If -q
is not enabled, a large amount of memory will be consumed and may even
cause the database to break down due to out of memory.

Therefore, you are advised to enable the -q parameter when using mysqldump to
back up data.

Example command:

mysqldump -uroot -p-P8635 -h192.168.0.199 --set-gtid-purged=OFF --single-
transaction --flush-logs -q test t1>t1.sql

1.5 Commands for Exporting Data Through mysqldump

Background

mysqldump is the most commonly used tool for importing and exporting MySQL
data.

mysqldump Options

Table 1-1 Option description

Option Name Description

add-drop-table Adds the DROP TABLE statement before
each data table is created.

events, E Exports events.

GaussDB(for MySQL)
TroubleShooting 1 Backup and Restoration Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

Option Name Description

routines, R Exports stored procedures and
customized functions.

flush-logs Updates logs before the logs are
exported.

no-create-db, n Exports only data without adding of the
CREATE DATABASE statement.

add-drop-database Adds the DROP DATABASE statement
before each database is created.

no-create-info, t Exports only data without adding of the
CREATE TABLE statement.

no-data, d Exports only table structure data.

set-gtid-purged=OFF Does not export GTID statements.

hex-blob Exports binary string fields in
hexadecimal format.

Scenario
Examples are as follows:

1. Export all data of databases db1 and db2.
mysqldump -uroot -p -P8635 -h192.168.0.199 --hex-blob --set-gtid-
purged=OFF --single-transaction --order-by-primary --flush-logs -q --
databases db1 db2 >db12.sql

2. Export the t1 and t2 tables of database db1.
mysqldump -uroot -p -P8635 -h192.168.0.199 --hex-blob --set-gtid-
purged=OFF --single-transaction --order-by-primary --flush-logs -q --
databases db1 --tables t1 t2 >t1_t2.sql

3. Export data whose id equals 1 from table t1 in database db1.
mysqldump -uroot -p -P8635 -h192.168.0.199 --hex-blob --set-gtid-
purged=OFF --single-transaction --order-by-primary --flush-logs -q --
databases db1 --tables t1 --where='id=1'>t1_id.sql

4. Export all table structures in database db1 without exporting data.
mysqldump -uroot -p -P8635 -h192.168.0.199 --no-data --set-gtid-
purged=OFF --single-transaction --order-by-primary -n --flush-logs -q --
databases db1 >db1_table.sql

5. Export all data excluding the tables and data in database db1.
mysqldump -uroot -p -h192.168.0.199 -P8635 --set-gtid-purged=OFF -F -n
-t -d -E -R db1> others.sql

GaussDB(for MySQL)
TroubleShooting 1 Backup and Restoration Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

1.6 System Inaccessible After Field Addition to a
Database Table

Scenarios
After a field was added to a database table, the system becomes inaccessible.

Solution
The database performance is affected due to the addition of table fields. A
possible reason is that indexes are not added to the new table fields. As a result, a
large amount of data consumes a large number of CPU resources. You are advised
to:

● Add indexes and primary keys.
● Optimize slow SQL statements.

1.7 SQL Statements Such as SET
@@SESSION.SQL_LOG_BIN Displayed After You Run
mysqldump

Scenario
When you run mysqldump on a newly purchased Huawei Cloud database, the
following code is displayed.

GaussDB(for MySQL)
TroubleShooting 1 Backup and Restoration Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

Figure 1-1 Code

Fault Analysis

The parameter gtid-mode is set to ON.

If GTID is enabled for a database, you can use mysqldump to back up or dump all
Global Transaction Identifiers (GTIDs) in the database or even to back up the
whole MySQL database.

Solution

When GaussDB(for MySQL) databases are exported for backup and restoration,
check whether GTID is enabled.

If GTID is enabled, add –set-gtid-purged=OFF to the mysqldump command
during data dump.

1.8 Insufficient Permissions Reported for Canal

Scenario

When you start Canal while obtaining binlogs from GaussDB(for MySQL) using a
specified user account, the following error message is often displayed: 'show
master status' has an error! Access denied: you need (at least one of) the SUPER,
REPLICATION CLIENT privilege(s) for this operation.

The complete error information is as follows:

GaussDB(for MySQL)
TroubleShooting 1 Backup and Restoration Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

2021-01-10 23:58:32.964 [destination = evoicedc , address = /dbus-mysql:3306 , EventParser] ERROR
com.alibaba.ot ter.canal.common.alarm.LogAlarmHandler -
destination:evoicedc[com.alibaba.otter.canal.parse.exception.CanalParseEx ception: command : 'show master
status' has an error!
Caused by: java.io.IOException: ErrorPacket [errorNumber=1227, fieldCount=-1, message=Access denied;
you need (at least one of) the SUPER, REPLICATION CLIENT privilege(s) for this operation, sqlState=42000,
sqlStateMarker=#] with command: show master status at
com.alibaba.otter.canal.parse.driver.mysql.MysqlQueryExecutor.query(MysqlQueryExecutor.java:61)

Possible Causes
The user account does not have the REPLICATION SLAVE or REPLICATION CLIENT
permissions.

Solution
Grant the REPLICATION SLAVE and REPLICATION CLIENT permissions to the user
account as the administrator.

GRANT SELECT, REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO
'canal'@'%';

FLUSH PRIVILEGES;

GaussDB(for MySQL)
TroubleShooting 1 Backup and Restoration Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

2 Connection Issues

2.1 Login Failed After ssl_type of root Is Changed to
ANY

Scenario
When user root was used to log in to a DB instance through DAS on the console,
the error message "Access denied" was displayed.

Possible Causes
1. View the root account information in the mysql.user table to check whether

the client IP address is within the allowed range and whether SSL is enabled.
SELECT * FROM mysql.user WHERE User='root';

If ssl_type of the root account is set to ANY, the root account needs to use
SSL.

2. Check whether SSL is enabled.
show variables like '%ssl%';
SSL was not enabled for the instance.

GaussDB(for MySQL)
TroubleShooting 2 Connection Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

The cause is that ssl_type of the root account was changed to ANY. As a
result, the login failed.

Solution
Run the following command to change the value of ssl_type to be empty for the
root account:

update mysql.user set ssl_type='' where user = 'root';

To change the ssl_type of all other user accounts to be empty, run the following
command:

update mysql.user set ssl_type='' where user not like 'mysql%';

2.2 Failed to Connect to a DB Instance Using SSL

Scenario
Your DB instance cannot be connected using SSL.

Possible Causes
There may be a network connection issue. If your DB instance can be connected
without SSL, the MySQL client or the corresponding database driver version may
be incompatible with your DB instance.

Solution
GaussDB(for MySQL) is compatible with MySQL Community Edition 8.0 or later.
Install a MySQL client or database driver 8.0 or later.

Secure Socket Layer (SSL) uses data encryption, identity verification, and message
integrity check to ensure connection security.

SSL provides the following functions:

1. Data encryption: A symmetric key algorithm encrypts data in transit.
2. Identity verification: Digital signatures authenticate clients and servers based

on certificates.
3. Message integrity check: A MAC algorithm checks the integrity of messages in

transit.

Notice

● If SSL is enabled on the server, the client can connect to the server without
using SSL and data is not encrypted.

● If SSL is not used, data is transmitted in plaintext and there are potential
security risks.

● SSL is enabled by default on GaussDB(for MySQL) instances. For details about
how to disable SSL, see Configuring SSL.

● For details about how to use SSL to connect to a MySQL client, see
Connecting to a DB Instance over a Private Network.

GaussDB(for MySQL)
TroubleShooting 2 Connection Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

https://support.huaweicloud.com/intl/en-us/usermanual-gaussdbformysql/gaussdbformysql_03_0142.html
https://support.huaweicloud.com/intl/en-us/qs-gaussdbformysql/gaussdbformysql_02_0009.html

● For details about how to use SSL for JDBC connection, see How Can I
Connect to a MySQL Database Through JDBC?

2.3 Description of Each IP Address
If you create a GaussDB(for MySQL) instance with one primary node and a read
replica, there are up to five different IP addresses.

NO TE

If you connect your application to a node of the DB instance through a private IP address
for read and the node becomes faulty, the IP address cannot be accessed before the fault is
rectified.

1. Private IP address for read of the primary node (not recommended)
After a DB instance is created, the system assigns a private IP address for read
to the primary node. If your applications are deployed on a server that is in
the same VPC as the DB instance, you can use the IP address to connect to
the instance for read and write operations. But if a failover occurs and the
primary node becomes a read replica, the IP address can only be used for read
operations.

2. Private IP address for read of a read replica (not recommended).
After a DB instance is created, the system assigns a private IP address to the
read replica. If your applications are deployed on a server that is in the same
VPC as the DB instance, you can use this IP address to connect to the instance
for read operations. But if a failover occurs and the read replica is promoted
to primary, the IP address can be used for read and write operations.

3. Private IP address
After a DB instance is created, the system assigns a private IP address to the
primary node. If your applications are deployed on a server that is in the same
VPC as the DB instance, you can use the IP address to connect to the instance
for read and write operations. But this IP address is always bound to the
primary node. If a failover occurs, the IP address is reassigned to the new
primary node, and can then still be used for read and write operations.

GaussDB(for MySQL)
TroubleShooting 2 Connection Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

https://support.huaweicloud.com/intl/en-us/gaussdbformysql_faq/gaussdbformysql_faq_0020.html
https://support.huaweicloud.com/intl/en-us/gaussdbformysql_faq/gaussdbformysql_faq_0020.html

4. Public IP address (EIP)
After you buy a DB instance, you can bind an EIP to the instance to enable
public accessibility, but can also unbind it later if needed. Just like a private IP
address, an EIP is always bound to the primary node for read and write
operations.

5. Proxy address
After you buy a DB instance, you can enable database proxy and create a
proxy instance. Then, the system assigns an IP address to the proxy instance.
The proxy instance sends write requests to the primary node and read
requests to the read replica based on the IP address, offloading the pressure
on the primary node. Currently, read/write splitting IP addresses can only be
used for intranet access.

NO TE

Failover
By default, a GaussDB(for MySQL) instance contains at least two nodes, one primary node
(read/ write node) and one read replica (only-read node). You can create multiple read
replicas if needed.
If the primary node becomes faulty, the system promotes a read replica to primary and
demotes the primary node to read replica status.

2.4 SSL Connection Failed Due to Inconsistent TLS
Versions

Scenario
A client failed to connect to a cloud-based GaussDB(for MySQL) instance using
SSL, but could connect to a self-built database using SSL.

Possible Causes
Troubleshooting:

1. View error logs of the DB instance.
2021-07-09T10:30:58.476586+08:00 212539 [Warning] SSL errno: 337678594, SSL errmsg:
error:14209102:SSL routines:tls_early_post_process_client_hello:unsupported
protocol2021-07-09T10:30:58.476647+08:00 212539 [Note] Bad
handshake2021-07-09T10:32:43.535738+08:00 212631 [Warning] SSL errno: 337678594, SSL errmsg:
error:14209102:SSL routines:tls_early_post_process_client_hello:unsupported
protocol2021-07-09T10:32:43.535787+08:00 212631 [Note] Bad
handshake2021-07-09T10:50:03.401100+08:00 213499 [Warning] SSL errno: 337678594, SSL errmsg:
error:14209102:SSL routines:tls_early_post_process_client_hello:unsupported

GaussDB(for MySQL)
TroubleShooting 2 Connection Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

https://support.huaweicloud.com/intl/en-us/usermanual-gaussdbformysql/gaussdbformysql_03_0018.html

protocol2021-07-09T10:50:03.401161+08:00 213499 [Note] Bad
handshake2021-07-09T10:53:44.458404+08:00 213688 [Warning] SSL errno: 337678594, SSL errmsg:
error:14209102:SSL routines:tls_early_post_process_client_hello:unsupported
protocol2021-07-09T10:53:44.458475+08:00 213688 [Note] Bad handshake

2. According to unsupported protocol in the error information, the problem
may be related to the TLS version. Run the following command to check the
TLS versions of the GaussDB(for MySQL) instance and self-built database:
show variables like '%tls_version%';
It was found that the GaussDB(for MySQL) instance used TLS v1.2 and the
self-built database used TLS v1.1. The TLS version of the client was the same
as that of the self-built database. The self-built database is successfully
connected, but the GaussDB(for MySQL) instance failed to be connected.

Solution
Upgrade the TLS version of the client to TLS v1.2.

If the official JDBC driver mysql-connector/J is used, see Connecting Securely
Using SSL for the configuration method.

2.5 Error Message "connection established slowly"

Scenario
During peak hours, the connection between a client and a GaussDB(for MySQL)
instance often times out. As a result, it takes more than 10 seconds to log in to
the instance.

Possible Causes
1. View error logs of the DB instance to check whether the information

"connection xxx is established slowly" is displayed. Example:

If yes, some connections have timed out and have not been processed by the
DB instance yet. When the connection between a client and the instance
exceeds the specified timeout duration, an error is reported.

2. Check the thread pool configuration (enabled by default) on the console.

In the preceding figure, threadpool_size is set to 1, threadpool_stall_limit is
set to 500 ms, and threadpool_oversubscribe is set to 3. The wait time for

GaussDB(for MySQL)
TroubleShooting 2 Connection Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

https://dev.mysql.com/doc/connector-j/en/connector-j-reference-using-ssl.html
https://dev.mysql.com/doc/connector-j/en/connector-j-reference-using-ssl.html
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdbformysql/gaussdbformysql_03_0018.html

the thread pool to process connections is mainly related to the three
parameters.
– When all threads in the thread pool are busy, the scheduling thread in

the thread pool creates a new thread every 500 ms
(threadpool_stall_limit). Each thread group can process a new
connection every 500 ms on average. If the queue is too long, the client
may time out.

– If all threads in the thread pool are busy, it means that the number of the
threads has reached the upper limit. So when there are a large number of
connections to be established, the number of total threads is calculated
as follows: threadpool_size x (threadpool_oversubscribe + 1)

Solution

If there are a large number of new connections, increase the value of
threadpool_oversubscribe to increase the total number of threads.

This reduces the overhead of repeated thread creation and destruction, and limits
the number of running threads, thus protecting the system from crashing.

In normal cases, the thread pool is used when there are a large number of short
connections. If persistent connections are used and there are a few connections
(for example, the client uses a connection pool), the thread pool is not so helpful.
In this case, adjust the values of threadpool_size and threadpool_oversubscribe
to increase the total number of threads, or close the thread pool.

2.6 "Access denied" Displayed During Database
Connection

Scenario

A client failed to connect to a database, and the error message "Error 1045: Access
denied for user xxx" was displayed.

Handling Methods
1. An incorrect host is connected.

Cause: An incorrect database host is connected, and the user or client IP
address does not have the access permission.
Solution: Ensure that the host name of the database to be connected is
correctly specified.

2. The user does not exist.
Cause: The user account used for connecting to the database does not exist.
Solution:
– Log in to the database as an administrator and run the following

command to check whether the target user exists:
SELECT User FROM mysql.user WHERE User='xxx';

– If the user does not exist, create the user.
CREATE USER 'xxx'@'xxxxxx' IDENTIFIED BY 'xxxx';

GaussDB(for MySQL)
TroubleShooting 2 Connection Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

3. The client IP address does not have the access permission.
Cause: The user used by the client exists, but the client IP address is not
allowed to access the database.
Solution:
– Log in to the database as an administrator and run the following

command to check which client IP addresses are allowed to connect to
the database for the target user:
SELECT Host, User FROM mysql.user WHERE User='xxx';

– If the client IP address is not within the allowed network segment, assign
the access permission to the client IP address. For example, run the
following command to grant the test user the permission to access the
192.168.0 network segment:
GRANT ALL PRIVILEGES ON *.* TO'root'@'192.168.0.%' IDENTIFIED BY 'password' WITH GRANT
OPTION;
FLUSH PRIVILEGES;

4. The password is incorrect.
Cause: The password of the user is incorrect.
Solution:
– Check whether the target password is correct. Because the password is

used for identity authentication, the user password cannot be read from
GaussDB(for MySQL) in plain text. However, you can compare the hash
string with the PASSWORD function value of the target password to
check whether the target password is correct. The following is an
example of SQL statements:
mysql> SELECT Host, User, authentication_string, PASSWORD('12345') FROM mysql.user
WHERE User='test';
+-----------+------+---+---+
| Host | User | authentication_string | PASSWORD('12345') |
+-----------+------+---+---+
| % | test | *6A23DC5E7446019DC9C1778554ED87BE6BA61041 |
*00A51F3F48415C7D4E8908980D443C29C69B60C9 |
+-----------+------+---+---+
2 rows in set, 1 warning (0.00 sec)

The preceding example shows that the hash value of
PASSWORD('12345') does not match the authentication_string field,
indicating that the target password 12345 is incorrect.

– To reset the user password, run the following SQL statement:
set password for 'test'@'%' = 'new_password';

5. The password contains special characters and is escaped by Bash.
Cause: In the default Bash environment of Linux, when the CLI is used to
connect to a database, special characters in the password will be escaped by
the environment. As a result, the password becomes invalid.
For example, in the Bash environment, the password of user test is test$123.
When you run the mysql -hxxx -u test -ptest$123 command to connect to a
database, the error message "ERROR 1045 (28000): Access denied" will be
displayed.
Solution: Enclose the password in single quotation marks to prevent Bash
from interpreting special characters.
mysql -hxxx -u test -p'test$123'

6. REQUIRE SSL is configured for the user, but the client uses a non-SSL
connection.
Troubleshooting:

GaussDB(for MySQL)
TroubleShooting 2 Connection Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

– Run the show create user 'xxx' command to check whether the user
must use the SSL connection. If the REQUIRE SSL attribute is displayed,
the user must use the SSL connection.

– Check whether statements similar to the following have been used to
grant permissions to the user:
GRANT ALL PRIVILEGES ON . TO 'ssluser'@'localhost' IDENTIFIED BY 'password' REQUIRE SSL;

– Check the ssl_type value of the target user. If the value is not empty, the
user must use SSL.
SELECT User, Host, ssl_type FROM mysql.user WHERE User='xxx';

Solution:
– Connect the client to the database in SSL mode. For details, see SSL

Connection.
– Run the ALTER USER 'username'@'host' REQUIRE NONE; command to

remove the SSL permission from the user.

2.7 Failed to Connect to a Database Using mariadb-
connector in SSL Mode

Scenario

A database could not be connected using JDBC, and the following error message
was displayed:

unable to find certification path to requested target

Possible Causes

As shown in the figure above, the JAR package of MariaDB is used to connect to
the database, which is slightly different from the official driver package of MySQL.

Solution

The connection string for MariaDB is as follows:
String url = "jdbc:mysql://xxx.xxx.xxx.xxx:xxxx/mysql?useSsl=true&serverSslCert=D:\
\ca.pem&disableSslHostnameVerification=true";

GaussDB(for MySQL)
TroubleShooting 2 Connection Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://support.huaweicloud.com/intl/en-us/qs-gaussdbformysql/gaussdbformysql_02_0009.html
https://support.huaweicloud.com/intl/en-us/qs-gaussdbformysql/gaussdbformysql_02_0009.html

Note: GaussDB(for MySQL) instances do not support hostname verification.
Therefore, you need to set disableSslHostnameVerification to true. The setting
method varies depending on the MariaDB JAR package version. For details, see the
notes on usage of the corresponding version.

2.8 Failed to Connect to a Database as User root

Scenario
A database failed to be connected using the root account.

Possible Causes
1. View the kernel error.log to check whether any connection denial records

exist.
2. Check the root permissions. There are two root accounts. One of them is

allowed to access only hosts whose IP addresses start with 192.

Solution
Contact Huawei Cloud customer service to delete the extra root account.

GaussDB(for MySQL)
TroubleShooting 2 Connection Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

https://mariadb.com/kb/en/about-mariadb-connector-j/

2.9 Client Automatically Disconnected from a DB
Instance

Scenarios

The GaussDB(for MySQL) client was automatically disconnected from the DB
instance. The following error information is displayed: ERROR 2013: Lost
connection to MySQL server during query.

Solution

ERROR 2013 is usually caused by incorrect configuration.

● wait_timeout: indicates the number of seconds the server waits for activity
on a non-interactive connection before closing it.

● interactive_timeout: indicates the number of seconds the server waits for
activity on an interactive connection before closing it.

Step 1 Check whether the DB instance is available.

If the DB instance is available, check for other possible causes.

Step 2 View error logs.

Step 3 Use the MySQL command-line client to connect to the target database. Run
status to check whether the DB instance has been rebooted frequently.

Uptime indicates the running time of the DB instance. The command output
shows that the database has not been restarted frequently. The client
disconnection is not caused by a database restart.

Step 4 Check parameters. If the values of wait_timeout and interactive_timeout are too
small, the client automatically stops connections that timed out.

Step 5 You can change the values of wait_timeout and interactive_timeout based on
service requirements without the need of rebooting the DB instance.

Step 6 After about 10 minutes, run the show databases command to check whether the
connection is normal.

GaussDB(for MySQL)
TroubleShooting 2 Connection Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

If information similar to the preceding figure is returned, the connection is normal.

----End

2.10 Disconnection Occurs Every 45 Days Due to the
istio-citadel Certificate Mechanism

Scenario

The number of connections of multiple DB instances decreased sharply at the
same time every 45 days. The following figure shows the number of total
connections on the Cloud Eye console.

A large number of errors were reported on the client, as shown in the following
figure.

Possible Causes
1. Check whether a scheduled task with an interval of 45 days exists on the

service side.

GaussDB(for MySQL)
TroubleShooting 2 Connection Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

2. If the client uses a certificate encryption mechanism such as istio, analyze
certificate-related logs and check whether information similar to the following
is displayed: If yes, the problem is caused by certificate expiration.

The expiration duration of the istio-citadel certificate is 45 days on the client.
When the certificate has expired, the client initiates a database disconnection
request.

Solution
● Set a proper expiration time for the istio-citadel certificate on the client and

take preventive measures when the certificate expires.
● Check whether any other certificates have expired on the client.

GaussDB(for MySQL)
TroubleShooting 2 Connection Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

3 SQL Issues

3.1 Invalid TIMESTAMP Default Value during Table
Creation

Scenario
The CREATE TABLE statement failed to be executed.

CREATE TABLE cluster_membership
(
...
session_start TIMESTAMP DEFAULT '1970-01-01 00:00:01',
...
);

Failure cause: ERROR 1067: Invalid default value for 'session_start'

Possible Causes
The table column type is TIMESTAMP.

GaussDB(for MySQL) converts the value inserted to the TIMESTAMP column from
the current time zone to the UTC time for storage. During query, it returns the
value by converting the UTC time to the current time zone.

1. The time range for the TIMESTAMP column is from '1970-01-01 00:00:01' UTC
to '2038-01-19 03:14:07' UTC. For details, see the DATE, DATETIME, and
TIMESTAMP types.

2. Run the following command to check the time zone:
show variables like "%zone%";

3. The UTC+8 time zone is used. The valid range for the default value starts from
1970-01-01 08:00:01.

GaussDB(for MySQL)
TroubleShooting 3 SQL Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html

Solution

Change the default value of the TIMESTAMP column.

session_start TIMESTAMP DEFAULT '1970-01-01 08:00:01',

3.2 Failed to Change the VARCHAR Length Due to the
Index Length Limit

Scenario

The alter table command failed to modify a table structure. The following error
information was displayed:

Specified key was too long; max key length is 3072 bytes

Possible Causes
● If innodb_large_prefix is set to OFF, the allowed maximum length for a

single-column index in an InnoDB table cannot exceed 767 bytes, while that
for a composite index cannot exceed 3072 bytes, with each column in the
composite index no more than 767 bytes.

GaussDB(for MySQL)
TroubleShooting 3 SQL Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

● If innodb_large_prefix is set to ON, the allowed maximum length for a
single-column index is 3072 bytes, and that for a composite index is also 3072
bytes.

● The index length is related to the character set. When the utf8 character set is
used, a character occupies three bytes. If innodb_large_prefix is set to ON,
the allowed maximum length for all columns in an index is 1072 characters.

The table structure is as follows:

CREATE TABLE `xxxxx` (
......
`subscription_type` varchar(64) NOT NULL DEFAULT 'DEVICE_EXCEPTION' COMMENT 'Subscription type',
`auth_key` varchar(255) DEFAULT'' COMMENT 'Signature. A token is added to the API request header based
on the value of this parameter',
`create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT 'Creation time',
`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
COMMENT 'Update time',
PRIMARY KEY (`id`) USING BTREE,
UNIQUE KEY `enterprise_id` (`subscription_type`,`enterprise_id`,`callback_url`) USING BTREE)
) ENGINE=InnoDB AUTO_INCREMENT=1039 DEFAULT CHARSET=utf8 ROW_FORMAT=DYNAMIC

This table uses the utf8 character set. One character occupies three bytes. The
composite index enterprise_id contains the callback_url column. If a DDL
operation is performed and callback_url to is changed to varchar(1024), the
maximum length of the composite index is exceeded. As a result, an error is
reported.

Solution
Modify the index or column length.

3.3 Slow SQL Queries After a Large Amount of Data Is
Deleted from a Large Table

Scenario
After multiple wide columns of data (the length of each record is about 1 GB) are
deleted at a time, performing an INSERT, DELETE, UPDATE, or SELECT operation
on the same table again takes an extended period of time. After about 20
minutes, the problem is resolved.

Problem Reproduction
1. Assume that the value of max_allowed_packet is 1073741824.
2. Create a table.

CREATE TABLE IF NOT EXISTS zstest1
(
id int PRIMARY KEY not null,
c_longtext LONGTEXT
);

3. Insert data to the table.
insert into zstest1 values(1, repeat('a', 1073741800));
insert into zstest1 values(2, repeat('a', 1073741800));
insert into zstest1 values(3, repeat('a', 1073741800));
insert into zstest1 values(4, repeat('a', 1073741800));
insert into zstest1 values(5, repeat('a', 1073741800));
insert into zstest1 values(6, repeat('a', 1073741800));

GaussDB(for MySQL)
TroubleShooting 3 SQL Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

insert into zstest1 values(7, repeat('a', 1073741800));
insert into zstest1 values(8, repeat('a', 1073741800));
insert into zstest1 values(9, repeat('a', 1073741800));
insert into zstest1 values(10, repeat('a', 1073741800));

4. Delete data from the table.
delete from zstest1;

5. Execute a query statement.
select id from zstest1; //The execution is slow.

Possible Causes
After the DELETE operation is performed, the background purge thread clears the
records marked with delete mark. Due to the large amount of data to be deleted,
the purge thread obtains the SX lock of the index root node where the page is
located when traversing and releasing the page. As a result, the SELECT statement
cannot obtain the RW lock of the root page and keeps waiting.

Solution
● This phenomenon is normal. After the purge operation is complete, the fault

is rectified.
● Scale up the instance specifications to improve the purge efficiency.
● Do not delete a large amount of data at a time. To delete all data from a

table, use the truncate table statement.

3.4 Error 1366 Reported When Data Containing Emojis
Is Updated

Scenario
Error 1366 was reported when data containing emojis was inserted or updated.

java.sql.SQLException: Incorrect string value: '\xF0\x9F\x90\xB0\xE5\xA4...' for column 'username' at row 1 ;
uncategorized SQLException for SQL []; SQL state [HY000]; error code [1366];
Incorrect string value: '\xF0\x9F\x90\xB0\xE5\xA4...' for column 'username' at row 1;

Possible Causes
The cause is that the character set is incorrectly configured.

● An emoji is a special character and needs to be stored in a 4-byte character
set.

● In this scenario, the database character set is utf-8, which supports a
maximum of three bytes. The utf8mb4 character set supports a maximum of
four bytes.

Solution
1. Change the character set for the field that stores emojis to utf8mb4.

If a large number of tables and fields are involved, you are advised to set the
encoding format of the tables and databases to utf8mb4. Sample commands:
ALTER DATABASE database_name CHARACTER SET= utf8mb4 COLLATE=
utf8mb4_unicode_ci;

GaussDB(for MySQL)
TroubleShooting 3 SQL Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

ALTER TABLE table_name CONVERTTOCHARACTER SET utf8mb4 COLLATE
utf8mb4_unicode_ci;
ALTER TABLE table_name MODIFY Field name VARCHAR(128) CHARSET
utf8mb4 COLLATE utf8mb4_unicode_ci;

2. If the character set for the field is already utf8mb4, set the character sets of
the client and server to utf8mb4.

3.5 Slow Stored Procedure Execution Due to
Inconsistent Collations

Scenario
It took more than 1 minute to process a small amount of data using a stored
procedure in a GaussDB(for MySQL) instance. However, executing the SQL
statement in the stored procedure was much faster.

Possible Causes
The collation of the stored procedure is inconsistent with that of the related table
and database. As a result, a large number of characters need to be converted in
the query result, and the execution is slow.

Troubleshooting:

Run the following commands to view the definitions of the stored procedure and
related table and check whether the collations are the same:

SHOW CREATE PROCEDURE xxx;
SHOW CREATE TABLE xxx

For example:

mysql> SHOW CREATE PROCEDURE testProc \G
*************************** 1. row ***************************
Procedure: showstuscore
sql_mode: STRICT_TRANS_TABLES,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION
Create Procedure: xxx
character_set_client: utf8mb4
collation_connection: utf8mb4_general_ci
Database Collation: utf8_general_ci
1 row in set (0.01 sec)

The collation of the stored procedure is utf8mb4_general_ci, but the collation of
the database is utf8_general_ci by default. The collations are inconsistent, which
may cause performance issues.

Solution
Change the collation of the stored procedure to be the same as that of the related
table and database.

GaussDB(for MySQL)
TroubleShooting 3 SQL Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

3.6 ERROR [1412] Reported for a DB Instance

Scenario

When an SQL statement was executed on a DB instance, the following error
message was displayed:

ERROR[1412]:Table definition has changed, please retry transaction``

Possible Causes

After a transaction with consistent snapshot was started, another session was
executing DDL statements. Procedure for reproducing the problem:

1. Session 1 starts a transaction with consistent snapshot.

2. Session 2 executes a DDL statement to modify the table structure.

3. Session 1 executes a common query statement.

You can also analyze binlogs or audit logs to check whether a DDL statement and
transaction with consistent snapshot are executed concurrently on the same table.

Solution

Do not execute a DDL statement and transaction with consistent snapshot
concurrently on the same table.

3.7 Failed to Delete a Table with a Foreign Key

Scenario

When a table with a foreign key is deleted, the following error message will be
displayed, which is irrelevant to user permissions:

ERROR 1451 (23000): Cannot delete or update parent row: a foreign key constraint fails

Possible Causes

A foreign key relationship exists between this table and another table. A link is
established between the data in the two tables. To prevent foreign key constraints
from being violated, data in the tables cannot be updated or deleted.

GaussDB(for MySQL)
TroubleShooting 3 SQL Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

You can set FOREIGN_KEY_CHECKS to off to remove the foreign key relationship.
For details, see FOREIGN KEY Constraints.

Solution
Set FOREIGN_KEY_CHECKS to off.

set session foreign_key_checks=off;
drop table table_name;

3.8 Incorrect GROUP_CONCAT Results

Scenario
When the GROUP_CONCAT() function was used in an SQL statement, the result
did not meet the expectation.

Possible Causes
The GROUP_CONCAT() function returned a string result consisting of
concatenated values in the group. However, the group_concat_max_len
parameter limited the result length of this function.

For example:

GaussDB(for MySQL)
TroubleShooting 3 SQL Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

https://dev.mysql.com/doc/refman/8.0/en/create-table-foreign-keys.html

Solution
Change the value of group_concat_max_len to adapt to the result length of the
GROUP_CONCAT() function.

3.9 Error Message "Too many keys specified" Displayed
When a Secondary Index Is Created

Scenario
A secondary index failed to be created, and the error message "Too many keys
specified; max 64 keys allowed" was displayed.

Fault Analysis
GaussDB(for MySQL) limits the maximum number of secondary indexes in each
InnoDB table to 64. If the number of secondary indexes exceeds 64, the error
message "Too many keys specified; max 64 keys allowed" will be displayed. For
details, see InnoDB Limits.

Solution
Do not create too many indexes for a single table.

GaussDB(for MySQL)
TroubleShooting 3 SQL Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

https://dev.mysql.com/doc/refman/5.7/en/innodb-limits.html

NO TE

Other restrictions on InnoDB tables:
1. A table can contain a maximum of 1017 columns (including virtual generated columns).
2. The index key prefix limit is 3072 bytes for InnoDB tables that use the DYNAMIC or

COMPRESSED row format.
3. A maximum of 16 columns is permitted for multicolumn indexes. Exceeding the limit

returns an error.

3.10 DISTINCT and GROUP BY Optimization

Scenario
The execution of the DISTINCT or GROUP BY statement is slow.

Possible Causes
In most cases, DISTINCT can be converted into an equivalent GROUP BY
statement. DISTINCT is mainly used to remove duplicate records from database
tables and fetch only the unique records.

The DISTINCT statement groups data first, and then fetches a piece of data from
each group and returns the data to the client. There are two scenarios for
grouping data:

● All DISTINCT fields are included in the same index. In this scenario,
GaussDB(for MySQL) directly uses the index to group data, obtains a piece of
data from each group, and returns the data.

● Not all DISTINCT fields are included in the index. In this scenario, qualified
data is written to a temporary table and grouped in the temporary table.
Using temporary tables causes extra overhead, deteriorating the performance.

In conclusion, when using DISTINCT or GROUP BY, set an index that contains all
dependent fields. The following is an optimization example:

● No proper index is available. As a result, temporary tables are used.

● A proper index is available, and temporary tables are not required.

GaussDB(for MySQL)
TroubleShooting 3 SQL Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

Solution
When using DISTINCT or GROUP BY, create an index that contains all dependent
fields.

3.11 Equivalent Comparison Failures with Floating-
Point Numbers

Possible Causes
Equivalent comparison of floating-point numbers is a common problem. In
computing, floating-point numbers are stored as approximate values instead of
exact values. Therefore, unexpected problems may occur during equivalent
comparison and mathematical operations.

In GaussDB(for MySQL), FLOAT and DOUBLE are floating-point types. The
following figure shows an example for equivalent comparison using floating-point
numbers:

GaussDB(for MySQL)
TroubleShooting 3 SQL Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

Solution
1. Decide on an acceptable tolerance for differences between the field and the

value and then do the comparison against the tolerance value. For example:

2. Use the fixed-point number type (DECIMAL) to replace the floating-point
number type. Example:

GaussDB(for MySQL)
TroubleShooting 3 SQL Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

3.12 A Large Number of SELECT Requests Routed to
The Primary Instance After Database Proxy Is Enabled

Possible Causes

1. Read weight parameter

This parameter specifies read weights distributed to the primary node and
read replicas. It is only applied when there are read replicas.

For example, if a DB instance contains one primary node and two read
replicas and the read weights are set, respectively, to 1, 2, and 3 for the
primary node and two read replicas, read requests are distributed to the
primary node and read replicas based on the ratio of 1:2:3. If the read weights
are set to 0, 2, and 3, respectively, read requests are distributed to only the
read replicas based on the ratio of 2:3.

For more information, see Assigning Read Weights.

2. Transactions

SQL statements in a transaction are sent to the primary instance. If set
autocommit=0 is configured before a query statement is executed, the query
statement is routed to the primary node as a transaction.

3. Connection binding

GaussDB(for MySQL)
TroubleShooting 3 SQL Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

https://support.huaweicloud.com/intl/en-us/usermanual-gaussdbformysql/gaussdbformysql_11_0018.html

If multi-statements (for example, insert xxx;select xxx) are executed, all
subsequent requests will be routed to the primary node because the SQL
statement for creating temporary tables binds the connection to the primary
node. To restore read/write splitting, disconnect your application from your
instance and then connect it back again.

4. Custom variables
SQL statements containing custom variables will be routed to the primary
node.

5. Read operations with locks (for example, SELECT for UPDATE) will be routed
to the primary node.

6. You can use hints to specify whether an SQL statement is routed to the
primary node or read replicas
– /*FORCE_MASTER*/: A SQL statement is executed on the primary node.
– /*FORCE_SLAVE*/: A SQL statement is executed on read replicas.
Hints are only used as routing suggestions. In non-read-only SQL and non-
transaction scenarios, SQL statements cannot be routed to read replicas.

7. Session consistency
In a given session, read requests may be sent to the primary node.
For more information, see Introducing Consistency Levels.

3.13 Tablespace Bloat

Scenario
Tablespace bloat often occurs in GaussDB(for MySQL) instances. For example, a
table contains only 11,774 rows of data but occupies 49.9 GB of storage space.
After the table is exported to a local directory, it occupies only 800 MB.

Possible Causes
Cause 1: Parallel Migration During DRS Full Migration

During full migration, DRS uses row-level parallel migration to ensure migration
performance and transmission stability. If the source database data is compact,
table bloat may occur after data is migrated to the GaussDB(for MySQL)
database. As a result, the disk space required is much greater than that of the
source database.

Cause 2: Table Fragmentation After a Large Number of Deletions Are
Performed

When data is deleted, GaussDB(for MySQL) does not reclaim the storage occupied
by the deleted data. Instead, it only marks the deletion and fills the space with
new data if any. If there is no data to fill, tablespace bloat occurs, causing table
fragmentation.

You can run the following SQL statement to query detailed information about a
table. The DATA_FREE field indicates the size of tablespace fragmentation.

select * from information_schema.tables where table_schema='db_name' and table_name = 'table_name'\G

GaussDB(for MySQL)
TroubleShooting 3 SQL Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

https://support.huaweicloud.com/intl/en-us/usermanual-gaussdbformysql/gaussdbformysql_11_0041.html

Solution
Run the following SQL command to optimize the tablespace:

optimize table table_name;

NO TE

The optimize table command locks tables for a short period of time. Therefore, you are
advised to optimize tablespaces during off-peak hours.

3.14 ERROR 1396 Reported When a User Is Created

Scenario
A user account disappeared from the console, but the account and its password
could still be used to connect to the instance.

When a new account with the same name as the disappeared account was
created, the following error information was displayed:

ERROR 1396 (HY000): Operation CREATE USER failed for xxx.

Possible Causes
1. The disappeared account has been deleted from the mysql.user table and

therefore was not displayed on the console.
2. Because the account and its password could still be used to log in to the

instance, the account was deleted using delete from mysql.user. If you use
delete from mysql.user to delete an account, you also need to run the flush
privileges command to delete related data from the memory. Then, the
account cannot log in to the instance any more.

3. The reason why a new account with the same name as the disappeared
account could not be created is that there was still related data about the
disappeared account in the memory.

GaussDB(for MySQL)
TroubleShooting 3 SQL Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

The correct way to delete an account is using the drop user statement. When
running drop user, pay attention to that:

● drop user can be used to delete one or more users and revoke their
permissions.

● drop user requires the DELETE permission or the global CREATE USER
permission on the GaussDB(for MySQL) instance.

● If the host name of the account is not specified in the drop user statement,
the host name % is used by default.

Troubleshooting example:

After an account is created, the delete statement is used to delete the account.
When a new account with the same name as the disappeared account is created,
error 1396 is reported. After the flush privileges command is executed, an
account with the same name can be created.

Solution
● Method 1 (recommended): During off-peak hours, run the drop user

user_name command as the administrator to delete the disappeared account
and then create an account with the same name.

● Method 2: During off-peak hours, run the flush privileges command as the
administrator and then create an account with the same name. You are
advised to enable SQL Explorer to locate which client deletes the user.

GaussDB(for MySQL)
TroubleShooting 3 SQL Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

3.15 Error Message Reported When alter table xxx
discard/import tablespace Is Executed

Scenario

When alter table xxx discard or import tablespace is executed in GaussDB(for
MySQL), the following error message was displayed: "ERROR 3658 (HY000):
Feature IMPORT/DISCARD TABLESPACE is unsupported ()".

Possible Causes

MySQL Community Edition uses alter table xxx discard or import tablespace to
physically replace table data based on local .ibd tablespace files for data
migration, data backups, and data restoration.

GaussDB(for MySQL) decouples storage from compute. Data is stored using
shared storage and there is no local .ibd file.

Solution

Import and export data, use DRS for data synchronization, or back up data and
restore data.

3.16 Native Error 1461 Reported by a DB Instance

Scenario

The following error information is displayed when there are large amounts of
concurrent read and write requests, large amounts of SQL statements, or in data
migration scenarios:

mysql_stmt_prepare failed! error(1461)Can't create more than
max_prepared_stmt_count statements (current value: 16382)

Fault Analysis

The max_prepared_stmt_count value ranges from 0 to 1048576. The default
value is 16382. This parameter limits the total number of prepared statements in
all sessions on mysqld. The current value exceeds the value range of this
parameter.

Solution

Set max_prepared_stmt_count to a larger value. The recommended value is
65535.

GaussDB(for MySQL)
TroubleShooting 3 SQL Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

3.17 "Row size too large" Reported When a Table
Failed to Be Created

Scenario
A table failed to be created and the following information is displayed:

Row size too large. The maximum row size for the used table type, not
counting BLOBs, is 65535. This includes storage overhead, check the manual.
You have to change some columns to TEXT or BLOBs

Fault Analysis
The total length of the varchar fields exceeds 65535, resulting in a table creation
failure.

Solution
1. Reduce the length.

CREATE TABLE t1 (a VARCHAR(10000),b VARCHAR(10000),c VARCHAR(10000),d VARCHAR(10000),e
VARCHAR(10000),f VARCHAR(10000)) ENGINE=MyISAM CHARACTER SET latin1;

2. Change a column to TEXT by referring to the Limits on Table Column Count
and Row Size.

3.18 Duplicate Data Exists After ORDER BY LIMIT Is
Executed

Scenario
Sorting a table and paginating the results did not yield the expected outcome.

Suppose there is a table called merchants with only two columns: id and
category. The table structure is as follows:

mysql> show create table merchants;
+-----------
+--
---+
| Table | Create
Table
 |
+-----------
+--
---+
| merchants | CREATE TABLE `merchants` (
 `id` int NOT NULL AUTO_INCREMENT,
 `category` int DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=11 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci |
+-----------
+--
---+
1 row in set (0.00 sec)

GaussDB(for MySQL)
TroubleShooting 3 SQL Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

https://dev.mysql.com/doc/refman/5.7/en/column-count-limit.html
https://dev.mysql.com/doc/refman/5.7/en/column-count-limit.html

Run the following SQL statement to view data in the table:

mysql> select * from merchants;
+----+----------+
| id | category |
+----+----------+
1	1
2	3
3	2
4	2
5	1
6	2
7	3
8	3
9	2
10	1
+----+----------+
10 rows in set (0.00 sec)

Run the following SQL statement to sort the data by category:

mysql> select * from merchants order by category;
+----+----------+
| id | category |
+----+----------+
1	1
5	1
10	1
3	2
4	2
6	2
9	2
2	3
7	3
8	3
+----+----------+
10 rows in set (0.00 sec)

Run the following SQL statement to paginate the sorted results with a limit of two
rows per page:

mysql> select * from merchants order by category limit 0,2;
+----+----------+
| id | category |
+----+----------+
| 1 | 1 |
| 5 | 1 |
+----+----------+
2 rows in set (0.00 sec)

mysql> select * from merchants order by category limit 2,2;
+----+----------+
| id | category |
+----+----------+
| 1 | 1 |
| 9 | 2 |
+----+----------+
2 rows in set (0.00 sec)

The data on the second page is incorrect. According to the original sorting order
without pagination, the second page should display rows with IDs 10 and 3.
However, the actual result shows rows with IDs 1 and 9.

Possible Causes
When the optimizer encounters an ORDER BY LIMIT statement, the optimizer uses
a priority queue structure for sorting. However, this sorting method is considered

GaussDB(for MySQL)
TroubleShooting 3 SQL Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

unstable. Once the LIMIT n results are filtered, they are directly returned without
any guarantee of order.

Solution
● Solution 1: Add an index to the column that needs to be sorted.

Example: alter table ratings add index idx_category (category);
● Solution 2: Add the primary key column after ORDER BY in the sorting

statement.
Example: select * from ratings order by category, id limit 2,2;

● Solution 3: On the Parameters page of the GaussDB(for MySQL) console, set
rds_force_stable_sort to ON. This parameter forces the use of stable sorting
algorithms to ensure stable sorting results.

Figure 3-1 Setting the rds_force_stable_sort parameter

GaussDB(for MySQL)
TroubleShooting 3 SQL Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

4 Parameter-related Issues

4.1 Global Parameters Fail to Change on the Client

Scenario
A global parameter failed to be changed on the client, the error message "ERROR
1227 (42000): Access denied" was displayed.

Possible Causes
GaussDB(for MySQL) does not support global parameter changes using
commands.

Solution
Log in to the console and modify the parameters on the console.

Step 1 Log in to the management console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 Click in the upper left corner of the page, choose Databases > GaussDB(for
MySQL).

Step 4 On the Instances page, click the instance name to go to the Basic Information
page.

Step 5 In the navigation pane, choose Parameters. On the Parameters tab, view and
modify parameters.

----End

GaussDB(for MySQL)
TroubleShooting 4 Parameter-related Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

https://console-intl.huaweicloud.com/?locale=en-us

4.2 Connection Exit Due to Improper Timeout
Parameter Settings

Scenario
A database connection exit often occurs. As a result, subsequent statements fail to
be executed.

Possible Causes
When a connector or API is used to connect to a database, the client has some
default parameter settings. The settings of some important parameters, such as
socketTimeout and connectTimeout, determine the client connection timeout
duration. If the wait time of a connection exceeds the value of one of these
parameters, the connection will be interrupted.

Solution
● Change the default values of parameters such as socketTimeout and

connectTimeout to appropriate values.
● Pay attention to the reconnection function in the program.
● Using connection pools is recommended.

4.3 long_query_time Changes Fail to Take Effect

Scenario
The value of long_query_time was successfully changed on the console, but
changed value failed to be applied.

Possible Causes
When you change the long_query_time value on the console, the system actually
uses set global <variable name> = <new variable value> to modify global
parameters.

The new parameter value cannot be applied for the current connection and other
connections that have been connected to the database. It means that the new
parameter value is applied only for new connections. After you disconnect and
reconnect all connections, the new parameter value is applied.

Example
Commands in this example explain how to apply the changed parameter value.

1. Create session 1.
Check the value of long_query_time.
show variables like 'long_query_time';
+-----------------+-----------+
| Variable_name | Value |

GaussDB(for MySQL)
TroubleShooting 4 Parameter-related Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

+-----------------+-----------+
| long_query_time | 10.000000 |
+-----------------+-----------+
1 row in set (0.08 sec)
Change the value of long_query_time.
set global long_query_time=1;
Query OK, 0 rows affected (0.02 sec)
View the value of long_query_time. The changed value is not applied.
show variables like 'long_query_time';
+-----------------+-----------+
| Variable_name | Value |
+-----------------+-----------+
| long_query_time | 10.000000 |
+-----------------+-----------+
1 row in set (0.01 sec)

2. Create session 2.
show variables like 'long_query_time';
+-----------------+-----------+
| Variable_name | Value |
+-----------------+-----------+
| long_query_time | 10.000000 |
+-----------------+-----------+
1 row in set (0.01 sec)

3. Execute the following commands in session 1.
After the set global command is executed in connection 1, the changed parameter value is not
applied.
show variables like 'long_query_time';
+-----------------+-----------+
| Variable_name | Value |
+-----------------+-----------+
| long_query_time | 10.000000 |
+-----------------+-----------+
1 row in set (0.01 sec)
After you disconnect session 1 and reconnect it, the new parameter value is applied.
show variables like 'long_query_time';
+-----------------+----------+
| Variable_name | Value |
+-----------------+----------+
| long_query_time | 1.000000 |
+-----------------+----------+
1 row in set (0.00 sec)

4. Disconnect session 2 and reconnect it. The new parameter value is applied.
show variables like 'long_query_time';
+-----------------+----------+
| Variable_name | Value |
+-----------------+----------+
| long_query_time | 1.000000 |
+-----------------+----------+
1 row in set (0.01 sec)

4.4 Timeout Parameters
The following table lists the GaussDB(for MySQL) timeout parameters.

GaussDB(for MySQL)
TroubleShooting 4 Parameter-related Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

Table 4-1 Parameter description

Parameter Reboot
Require
d

Description

connect_timeout No Number of seconds that GaussDB(for
MySQL) waits for a connection packet
before responding with Bad handshake. If
the network quality is poor, you can
increase the value of this parameter.

innodb_flush_log_at_ti
meout

No How frequently the log buffer flushes to
disk, in seconds. This parameter is valid only
when innodb_flush_log_at_trx_commit is
set to 2.

innodb_lock_wait_time
out

No Length of time in seconds an InnoDB
transaction waits for a row lock before
giving up.

parallel_queue_timeou
t

No Waiting time for the parallel execution. If
the number of parallel-executed threads in
the system is still greater than the value of
parallel_max_threads after the waiting
time, new queries will be executed in
single-thread mode.

lock_wait_timeout No Timeout in seconds for attempts to acquire
metadata locks

net_read_timeout No Number of seconds to wait for more data
from a connection before aborting the read

net_write_timeout No Number of seconds to wait for a block to be
written to a connection before aborting the
write

interactive_timeout No Number of seconds the server waits for
activity on an interactive connection before
closing it

wait_timeout No Number of seconds the server waits for
activity on a non-interactive connection
before closing it

GaussDB(for MySQL)
TroubleShooting 4 Parameter-related Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

5 Performance Issues

5.1 High CPU Usage

Scenario
The SQL statement execution of a GaussDB(for MySQL) instance slowed down at
about 16:08, and a timeout error was reported.

Troubleshooting
1. Check the CPU usage. In this example, the CPU usage of the instance soared

to 100% at about 16:08 and remained at the high line.

Figure 5-1 CPU usage

2. Check the QPS, slow SQL queries, and active connections. The QPS and active
connections increased sharply at about 16:08 and a large number of slow SQL
queries were generated.

GaussDB(for MySQL)
TroubleShooting 5 Performance Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

Figure 5-2 QPS

Figure 5-3 Active connections

Figure 5-4 Slow SQL queries

3. Check the InnoDB logical read rate. The logical read rate of InnoDB also
increased sharply around 16:08, and the pattern was similar to that for the
slow SQL queries.

Figure 5-5 InnoDB logical read rate

4. Log in to the instance and check real-time sessions. There were a large
number of sessions executing SELECT COUNT(*).

GaussDB(for MySQL)
TroubleShooting 5 Performance Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

Run EXPLAIN to check the execution plan of the SQL statement. It was found
that the SQL statement was not indexed and the entire table was scanned
with rows to be scanned reaching over 350,000.

5. Check the table structure. Only the IDX_XX_USERID index was added for the
is_deleted field. Therefore, no index was available for the preceding query.
After an index was added for the idx_user_id field, the CPU usage of the
instance decreased to a normal level at about 16:37 and services were
recovered.

Solution
1. Before deploying new workloads, use EXPLAIN and SQL diagnosis tools to

analyze the execution plans of key SQL statements and add indexes based on
the optimization suggestions to avoid full table scanning.

2. If the high CPU usage is caused by a large number of concurrent requests,
upgrade the DB instance specifications or use exclusive resources to avoid
CPU contention, or create read replicas to reduce the read pressure of the
primary instance.

3. Use show processlist to view the current session information to locate the
fault. Any session whose status is Sending data, Copying to tmp table,
Copying to tmp table on disk, Sorting result, or Using filesort may have
performance problems.

4. In emergency scenarios, enable SQL statement concurrency control or kill
sessions to temporarily limit the number of slow SQL queries.

5.2 Out of Memory (OOM) Errors

GaussDB(for MySQL) Memory Description

The memory of a GaussDB(for MySQL) instance can be roughly divided into two
parts: globally shared memory and session-level private memory.

● Shared memory is allocated upon the creation of an instance based on
parameter settings and is shared by all connections.

● Private memory is allocated by the system upon connection to the
GaussDB(for MySQL) instance and is released only when the connection is
released.

Inefficient SQL statements or improper database parameter settings may increase
memory usage and even cause an OOM error during peak hours.

Scenario

The memory usage of a GaussDB(for MySQL) instance increased sharply at 16:30.
An OOM error occurred and then the instance restarted.

GaussDB(for MySQL)
TroubleShooting 5 Performance Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

Troubleshooting
1. Check the memory usage. In this example, it shot up around 16:30.

Figure 5-6 Memory usage

2. Check for slow SQL queries. The number of slow SQL queries increased
sharply in that period.

Figure 5-7 Slow SQL queries

3. Check the disk throughput. There were a large number of read and write
operations being performed on the disk in that period.

Figure 5-8 Disk throughput

4. Analyze slow query logs generated in that period. There were a large number
of multi-value INSERT statements, which cause every session to request a
large amount of session-level memory at the same time. Therefore, an OOM
error occurred.

GaussDB(for MySQL)
TroubleShooting 5 Performance Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

Figure 5-9 Slow query logs

Solution
1. For the OOM error caused by multi-value INSERT statements, reduce the

amount of data inserted at a time and disconnect sessions to release memory.
You can run the show full processlist command to check whether there are
sessions with high memory usage.

2. Set the session-level memory parameter to an appropriate value. You can
estimate the maximum memory based on the following formula: Global
memory + Session-level memory x Maximum number of sessions. Note that
setting performance_schema to ON also causes memory overhead.

3. Upgrade the instance specifications to maintain the memory usage within a
proper range, preventing a sudden increase in traffic from causing an OOM
crash.

5.3 Tablespace Bloat

Scenario
Tablespace bloat often occurs in GaussDB(for MySQL) instances. For example, a
table contains only 11,774 rows of data but occupies 49.9 GB of storage space.
After the table is exported to a local directory, it occupies only 800 MB.

GaussDB(for MySQL)
TroubleShooting 5 Performance Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

Possible Causes
Cause 1: Parallel Migration During DRS Full Migration

During full migration, DRS uses row-level parallel migration to ensure migration
performance and transmission stability. If the source database data is compact,
table bloat may occur after data is migrated to the GaussDB(for MySQL)
database. As a result, the disk space required is much greater than that of the
source database.

Cause 2: Table Fragmentation After a Large Number of Deletions Are
Performed

When data is deleted, GaussDB(for MySQL) does not reclaim the storage occupied
by the deleted data. Instead, it only marks the deletion and fills the space with
new data if there is any. If there is no data to fill up the space, tablespace bloat is
the result, along with table fragmentation.

You can run the following SQL statements to query details about a table. The
DATA_FREE field indicates the size of tablespace fragmentation.

1. Updating statistics
analyze table db_name.table_name;

2. Checking the fragmentation size
select * from information_schema.tables where table_schema='db_name' and table_name =
'table_name'\G;

Solution
Run the following SQL command to optimize the tablespace:

optimize table table_name;

The optimize table command briefly locks tables, so you should optimize
tablespaces during off-peak hours.

5.4 Read Replica Uses Far More Storage Than the
Primary Instance

Scenario
The storage usage of a GaussDB(for MySQL) read replica was, for example, 195
GB higher than that of the primary instance.

GaussDB(for MySQL)
TroubleShooting 5 Performance Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

Troubleshooting
The storage space is calculated as follows: Shared storage space + Space occupied
by binlogs + Space occupied by data disks (for storing temporary tables)

Check the transactions running on the read replica.

As shown in the preceding figure, there was a long transaction started a day ago
that has not been committed yet. The temporary tables generated by this
transaction were not cleared, which took up a lot of storage space.

Solution
● Method 1: Wait until the transaction is committed. After that, the temporary

tables will be automatically cleared, releasing storage space.
● Method 2: Kill the corresponding session to stop the long transaction.

5.5 Slow SQL Execution Due to Hot and Cold Data
Problems

Scenario
When you migrate data from a self-managed MySQL database or a peer vendor's
MySQL database to a GaussDB(for MySQL) DB instance on the cloud, the
execution speed of the same SQL statement is much lower than that of the source
database.

Possible Causes
The execution speed of the same SQL statement differs greatly when it is executed
for the first time and the second time. This is determined by the MySQL buffer
pool mechanism.

● When the statement is executed for the first time, data is stored on the disk,
which is called cold data. Reading cold data takes a certain period of time.

GaussDB(for MySQL)
TroubleShooting 5 Performance Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

● The data you have queried is then cached in the buffer pool of the memory. It
is called hot data and can be quickly accessed in the memory. When you
execute the same statement for the second time, data is read from the buffer
pool, which is much faster than reading data from disks.

In this troubleshooting case, the data you queried in the source database is
frequently accessed data, that is, hot data. Thus, it can be read at a high speed.
After the data is migrated to the GaussDB(for MySQL) instance, when you execute
the same SQL statement on the new database for the first time, the data you
expect to query is probably cold data. This time, the access speed is slow. If you
run the statement again, the data access speed will greatly improve.

Solution

This issue is not an exception. In the same database, it usually takes much time to
execute a statement for the first time, but when the statement is executed again,
it gets much faster. The access speed improves because reading hot data from the
buffer pool is much faster than reading cold data from disks.

5.6 Full Storage Caused by Complex Queries

Scenario

The storage usage of the primary node or read replica is occasionally high or
reaches 100%, while the storage usage of other read replicas is within a normal
range.

Possible Causes

When you run complex queries on data of a GaussDB(for MySQL) database,
GaussDB(for MySQL) creates temporary tables to store the data and operations
such as GROUP BY, ORDER BY, DISTINCT, and UNION are executed on the data in
the temporary tables. When memory is insufficient, storage space is consumed.

Troubleshooting:

1. Check the storage usage of other read replicas. If the storage usage of such
read replicas is normal, the high storage usage of the primary node or read
replica is related to SQL queries running on it.

2. Check the instance slow query logs to find whether any slow-running queries
occurred when the storage usage was high.

3. If there is a slow-running query, run the explain [slow SQL statement]
command to analyze the SQL statement.

4. Check whether the extra column in the command output contains using
temporary or using filesort. If yes, a temporary table or file is used during
the statement execution. If a large amount of data is queried, the storage
usage is high.

Solution
1. Optimize the query statement by adopting the following measures:

GaussDB(for MySQL)
TroubleShooting 5 Performance Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

– Add a proper index.
– Use the WHERE condition.
– Rewrite the SQL statement to optimize the execution plan.
– If temporary tables are necessary, reduce the number of concurrent

requests.
2. Workaround: Scale up storage space temporarily. Optimizing complex query

statements cannot reduce the storage usage right away.

5.7 Slow Response Due to Deadlocks

Scenario

A large number of row lock conflicts occurred in a database between 14:00 and
15:00. The database response became slow because a large number of update and
insert sessions in the kernel were waiting for row lock release and the CPU usage
reached about 70%.

The following figure shows the row lock waits and metadata locks on the Cloud
Eye console.

Table where a deadlock occurred:

********* 1. row *********
Table: table_test Create Table: CREATE TABLE table_test(
...
CONSTRAINT act_fk_exe_parent FOREIGN KEY (parent_id_) REFERENCES act_ru_execution (id_) ON DELETE
CASCADE,
CONSTRAINT act_fk_exe_procdef FOREIGN KEY (proc_def_id_) REFERENCES act_re_procdef (id_),
CONSTRAINT act_fk_exe_procinst FOREIGN KEY (proc_inst_id_) REFERENCES act_ru_execution (id_) ON
DELETE CASCADE ON UPDATE CASCADE, CONSTRAINT act_fk_exe_super FOREIGN KEY (super_exec_)
REFERENCES act_ru_execution (id_) ON DELETE CASCADE) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_bin

Possible Causes
1. Deadlocks occurred in some tables. As a result, the CPU usage increased.

GaussDB(for MySQL)
TroubleShooting 5 Performance Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

2. If a table contains a large number of foreign keys, updating records in the
table requires not only the row lock of the table but also the corresponding
locks of the tables associated with its foreign keys. In high concurrency
scenarios, lock conflicts or deadlocks are more likely to occur than common
tables. For details, see FOREIGN KEY Constraints.

3. When detecting a deadlocked table, GaussDB(for MySQL) rolls back the
transaction. The tables associated with the foreign keys of the deadlocked
table are also impacted. As a result, the database response becomes slow.

Solution
Check and optimize deadlocked tables and use proper foreign keys to avoid
update conflicts and deadlocks.

5.8 CPU Usage Increase
If the CPU usage of your instance increases or reaches 100%, the database
response may become slow and new connections may time out.

Scenario 1: CPU Usage Increase Caused by Slow Queries
Cause: A large number of slow SQL queries cause an increase in CPU usage. The
slow SQL queries need to be optimized.

Troubleshooting:

View the CPU usage and slow query logs.

● If a large number of slow query logs are generated and the number change is
consistent with the CPU usage curve, the CPU usage increase is caused by
slow SQL queries.

● If there are a few slow query logs but the number change is basically
consistent with the CPU usage curve, check whether the row read rate change
is consistent with the CPU curve.

GaussDB(for MySQL)
TroubleShooting 5 Performance Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

https://dev.mysql.com/doc/refman/5.7/en/create-table-foreign-keys.html#foreign-key-restrictions

If yes, the CPU usage increase is caused by access to a large amount of row
data. Although there are a small number of slow SQL queries, the queries
need to access a large amount of row data, causing high average I/O.
Therefore, even if the QPS is not high (for example, the website access traffic
is not heavy), the CPU usage of the instance is also high.

Solution:

1. View slow query logs generated within the corresponding time period.

2. Pay attention to slow queries with more than one million rows scanned or
more than one million rows returned, and slow queries with long lock waiting
time.

3. Analyze slow queries or use SQL Diagnosis.

4. Create read replicas and enable Database Proxy to split read and write
requests. Read replicas can offload the read pressure from the primary
instance, thus improving the database throughput. For details, see
Introducing Read/Write Splitting.

5. Analyze live sessions on the database to locate slow SQL statements.

a. Connect to the database.

b. Run the show full processlist; command.

c. Analyze sessions that take a long time to execute and are in the Sending
data, Copying to tmp table, Copying to tmp table on disk, Sorting
result, or Using filesort state.

Scenario 2: CPU Usage Increase Caused by Increased Connections and QPS

Cause: Increased requests cause an increase in CPU usage.

Troubleshooting:

Check whether the changes of the QPS, active connections, total connections, and
CPU usage are consistent.

QPS refers to the number of queries per second. If the QPS and active connections
increase at the same time, and the QPS curve matches the CPU usage curve, the
CPU usage increase is caused by increased requests, as shown in the following
figure.

GaussDB(for MySQL)
TroubleShooting 5 Performance Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

https://support.huaweicloud.com/intl/en-us/usermanual-das/das_04_0100.html
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdbformysql/gaussdbformysql_11_0016.html

In this scenario, SQL statements are usually simple and the execution efficiency is
high. There is little room for optimization on SQL statements. You need to
optimize the database.

Solution:

1. Upgrade the vCPU specifications of your instance because this problem
usually occurs in instances with smaller vCPU specifications.

2. Optimize slow queries by referring to Scenario 1: CPU Usage Increase
Caused by Slow Queries. If this method is not so helpful, upgrade the vCPU
specifications of your instance.

3. Use database and table sharding for tables with a large amount of data to
reduce the amount of data accessed in a single query.

4. Create read replicas and enable Database Proxy to split read and write
requests. Read replicas can offload the read pressure from the primary
instance, thus improving the database throughput. For details, see
Introducing Read/Write Splitting.

5.9 CPU Resource Exhaustion Caused by Too Many
Concurrent Slow Queries

Scenario
A large number of slow select count(0) operations are being concurrently
executed on a DB instance. As a result, CPU resources are exhausted, causing
system breakdown risks.

After your ran Show processlist, the command output showed that select
count(0) operations are concurrently executed for multiple times.

GaussDB(for MySQL)
TroubleShooting 5 Performance Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

https://support.huaweicloud.com/intl/en-us/usermanual-gaussdbformysql/gaussdbformysql_11_0016.html

Possible Causes
Applications triggered a large number of concurrent and slow select count(0)
operations, exhausting CPU resources.

Solution

Step 1 Apply for permissions to intermittently kill the slow select count(0) operations in
batches. Locate the source of triggering the slow operations, stop the source, and
optimize SQL statements.

Kill the slow operations in batches.

Step 2 Increase CPU idle time.

GaussDB(for MySQL)
TroubleShooting 5 Performance Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

----End

GaussDB(for MySQL)
TroubleShooting 5 Performance Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

6 Basic Issues

6.1 How Do I View Used Storage of My GaussDB(for
MySQL) Instance?

GaussDB(for MySQL) decouples compute and storage, so data is stored in the
shared storage. You can view the used storage of your instance on the console and
the used storage is updated every 30 minutes.

Procedure

Step 1 Log in to the management console.

Step 2 Click in the upper left corner and select a region and a project.

Step 3 Click in the upper left corner of the page, choose Databases > GaussDB(for
MySQL).

Step 4 On the Instances page, click the instance name to go to the Basic Information
page.

Step 5 In the Storage/Backup Space area, view the used storage of your instance.

NO TE

Storage is calculated differently for GaussDB(for MySQL) and open-source MySQL. To query
used storage of an open-source MySQL instance: run select sum(data_length
+index_length+data_free) from information_schema.tables;
To query used storage of a GaussDB(for MySQL) instance, log in to GaussDB(for MySQL)
console or run show spaceusage;.

GaussDB(for MySQL)
TroubleShooting 6 Basic Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

https://console-intl.huaweicloud.com/?locale=en-us

Figure 6-1 Viewing the storage of a DB instance

● Shared storage:

– The total and used storage of your yearly/monthly instance is displayed.

– If this storage is used up, storage grows as data volume increases and
you will be billed on a pay-per-use basis for any additional storage. To
keep costs down, make sure you scale up storage in a timely manner so
you can take advantage of yearly/monthly rates.

● Backup space:

GaussDB(for MySQL) provides free backup storage equal to the amount of
the used storage of your pay-per-use instances or the purchased storage of
your yearly/monthly instance.

----End

The following table describes the calculation items of GaussDB(for MySQL)
instance storage.

Item Command Description

Table data select sum(data_length
+index_length+data_free) from
information_schema.tables;

Size of table data. If the
statistics data is not
updated, the result may be
inaccurate. Open-source
MySQL uses this command
to obtain the used storage
of a DB instance.

Pre-
allocated
table space

select count(*) from
information_schema.tables;

Pre-allocated space of
tables. The statement is
used to query the number
of tables and the total pre-
allocated space of tables is
(Number of tables X 4 MB).
The system pre-allocates 4
MB of storage to each table.

GaussDB(for MySQL)
TroubleShooting 6 Basic Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

Pre-
allocated
partition
space

select count(*) from
INFORMATION_SCHEMA.PARTITIO
NS where PARTITION_NAME is not
null;

Pre-allocated space of
partitions. The statement is
used to query the number
of partitions and the total
pre-allocated space of
partitions is (Number of
partitions X 4 MB). The
system pre-allocates 4 MB
of storage to each partition.

Binlog show binary logs; Total size of all binlog files.

Redolog show lsninfo; flushed_to_disk_lsn-
truncate_lsn

Undolog N/A Size of undo logs. To obtain
it, contact the customer
service.

6.2 Renaming Databases and Tables
GaussDB(for MySQL) uses the MySQL Community Edition to rename databases
and tables.

● Renaming table names: Run the rename table a to b; statement. You can
rename a table to move a table from one database to another. For example,
rename table da.ta to db.ta moves the table ta from the database da to the
database db.

● Renaming database names: Use the rename table command to move all
tables from the original database to a new database, and then delete the
original database. Example:
Access the original database.
use ta;
Show all table names in the original database.
Show tables;
View the CREATE DATABASE statement in the original database.
Show create database ta;
Use the CREATE DATABASE statement in the original database to create a new database. (Change
only the database name.)
create database tb;
Move all tables from the original database to the new database.
rename table da.ta to db.ta;
rename table da.tb to db.tb;
rename table da.tc to db.tc;
...
Delete the original database.
Drop database ta;

6.3 Character Set and Collation Settings

Related Variables
By default, character_set_server is set to utf8 and collation_server to
utf8_general_ci for your DB instance. You can change the values on the console.

GaussDB(for MySQL)
TroubleShooting 6 Basic Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

Configuring Character Sets and Collations for Databases, Tables, and Fields
● If the character set and collation are not explicitly specified for a database

during database creation, the values of character_set_server and
collation_server are used for the database. If the character set and collation
are explicitly specified, the specified character set and collation are used for
the database.

● If the character set and collation are not explicitly specified for a table during
table creation, the character set and collation of the database hosting the
table are used for the table. If the character set and collation are explicitly
specified, the specified character set and collation are used for the table.

● If the character set and collation are not explicitly specified for a field during
table creation, the character set and collation of the table hosting the field
are used for the field. If the character set and collation are explicitly specified,
the specified character set and collation are used for the field.

Example 1: Create a database and table without explicitly specifying the character
set and collation.

GaussDB(for MySQL)
TroubleShooting 6 Basic Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

Example 2: Create a database with the character set and collation explicitly
specified.

Example 3: Create a table with the character set and collation explicitly specified
for the table.

Example 4: Create a table with the character set and collation explicitly specified
for a field.

6.4 Auto-Increment Field Value Jump
If the values of the auto-increment field are discontinuous, the possible causes are
as follows:

● The increment is not 1.
mysql> show variables like 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 2 |
| auto_increment_offset | 1 |
+--------------------------+-------+
mysql> select * from auto_test1;
+----+

GaussDB(for MySQL)
TroubleShooting 6 Basic Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

| id |
+----+
| 2 |
| 4 |
| 6 |
| 8 |
+----+

● The value of AUTO_INCREMENT is changed.
mysql> select * from animals;
+----+-----------+
| id | name |
+----+-----------+
1	dog
2	cat
3	penguin
+----+-----------+	
mysql> show create table animals;	
+---------+---+	
Table	Create Table
+---------+---+	
animals	CREATE TABLE `animals` (
`id` mediumint NOT NULL AUTO_INCREMENT,	
`name` char(30) NOT NULL,	
PRIMARY KEY (`id`))	
ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8	
+---------+---+	
mysql> alter table animals AUTO_INCREMENT=100;	
Query OK, 0 rows affected (0.04 sec)	
Records: 0 Duplicates: 0 Warnings: 0	
mysql> show create table animals;	
+---------+---+	
Table	Create Table
+---------+---+	
animals	CREATE TABLE `animals` (
`id` mediumint NOT NULL AUTO_INCREMENT,	
`name` char(30) NOT NULL,	
PRIMARY KEY (`id`)	
) ENGINE=InnoDB AUTO_INCREMENT=100 DEFAULT CHARSET=utf8	
+---------+---+	
mysql> INSERT INTO animals (id,name) VALUES(0,'rabbit');	
Query OK, 1 row affected (0.00 sec)	
mysql> select * from animals;	
+-----+-----------+	
id	name
+-----+-----------+	
1	dog
2	cat
3	penguin
100	rabbit
+-----+-----------+
9 rows in set (0.00 sec)

● The value of the auto-increment field is specified when data is inserted.
mysql> select * from animals;
+----+-----------+
| id | name |
+----+-----------+
1	dog
2	cat
3	penguin
+----+-----------+	
mysql> INSERT INTO animals (id,name) VALUES(100,'rabbit');	
Query OK, 1 row affected (0.00 sec)	
mysql> select * from animals;	
+-----+-----------+	
id	name
+-----+-----------+	
1	dog
2	cat

GaussDB(for MySQL)
TroubleShooting 6 Basic Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

| 3 | penguin |
| 100 | rabbit |
+-----+-----------+
9 rows in set (0.00 sec)

● If a transaction is not committed or is rolled back, the value of
AUTO_INCREMENT increases but does not decrease after the transaction is
rolled back. When data is inserted again, the value of the auto-increment
field jumps.
mysql> show create table auto_test1;
+------------+--+
| Table | Create Table |
+------------+--+
| auto_test1 | CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8 |
+------------+--+
1 row in set (0.00 sec)
mysql> select * from auto_test1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
+----+
mysql> begin;
Query OK, 0 rows affected (0.02 sec)
mysql> insert into auto_test1 values (0),(0),(0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> select * from auto_test1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
+----+
6 rows in set (0.00 sec)
mysql> show create table auto_test1;
+------------+--+
| Table | Create Table |
+------------+--+
| auto_test1 |
CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8 |
+------------+--+
1 row in set (0.00 sec)
mysql> rollback;
Query OK, 0 rows affected (0.05 sec)
mysql> select * from auto_test1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
+----+
3 rows in set (0.00 sec)
mysql> show create table auto_test1;
+------------+--+
| Table | Create Table |

GaussDB(for MySQL)
TroubleShooting 6 Basic Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

+------------+--+
| auto_test1 | CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8 |
+------------+--+
mysql> insert into auto_test1 values (0),(0),(0);
Query OK, 3 rows affected (0.01 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> select * from auto_test1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
| 7 |
| 8 |
| 9 |
+----+
6 rows in set (0.00 sec)
mysql> show create table auto_test1;
+------------+---+
| Table | Create Table |
+------------+---+
| auto_test1 | CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=10 DEFAULT CHARSET=utf8 |
+------------+---+

● After data is inserted, the value of AUTO_INCREMENT changes. But when the
corresponding data row is deleted, the value of AUTO_INCREMENT does not
decrease. When data is inserted again, the value of the auto-increment field
jumps.
mysql> show create table auto_test1;
+------------+--+
| Table | Create Table |
+------------+--+
| auto_test1 | CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8 |
+------------+--+
1 row in set (0.00 sec)
mysql> select * from auto_test1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
+----+
mysql> insert into auto_test1 values (0),(0),(0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> select * from auto_test1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
+----+
6 rows in set (0.00 sec)
mysql> show create table auto_test1;

GaussDB(for MySQL)
TroubleShooting 6 Basic Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

+------------+--+
| Table | Create Table |
+------------+--+
| auto_test1 | CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8 |
+------------+--+
1 row in set (0.00 sec)
mysql> delete from auto_test1 where id>3;
mysql> select * from auto_test1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
+----+
3 rows in set (0.00 sec)
mysql> show create table auto_test1;
+------------+--+
| Table | Create Table |
+------------+--+
| auto_test1 | CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8 |
+------------+--+
mysql> insert into auto_test1 values (0),(0),(0);
Query OK, 3 rows affected (0.01 sec)
Records: 3 Duplicates: 0 Warnings: 0
mysql> select * from auto_test1;
+----+
| id |
+----+
| 1 |
| 2 |
| 3 |
| 7 |
| 8 |
| 9 |
+----+
6 rows in set (0.00 sec)
mysql> show create table auto_test1;
+------------+---+
| Table | Create Table |
+------------+---+
| auto_test1 | CREATE TABLE `auto_test1` (
`id` int NOT NULL AUTO_INCREMENT,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=10 DEFAULT CHARSET=utf8 |
+------------+---+

● If data insertion fails due to some reasons (for example, unique key conflict),
the value of AUTO_INCREMENT may jump.
mysql> create table auto_test7(`id` int NOT NULL AUTO_INCREMENT, cred_id int UNIQUE, PRIMARY
KEY (`id`));
Query OK, 0 rows affected (0.64 sec)
mysql> insert into auto_test7 values(null, 1);
Query OK, 1 row affected (0.03 sec)
mysql> show create table auto_test7;
+------------+-------------------------------+
| Table | Create Table |
+------------+-------------------------------+
| auto_test7 | CREATE TABLE `auto_test7` (`id` int NOT NULL AUTO_INCREMENT, `cred_id` int
DEFAULT NULL, PRIMARY KEY (`id`), UNIQUE KEY `cred_id` (`cred_id`)) ENGINE=InnoDB
AUTO_INCREMENT=2 DEFAULT CHARSET=utf8 |
+------------+--+
1 row in set (0.00 sec)
mysql> insert into auto_test7 values(null, 1);

GaussDB(for MySQL)
TroubleShooting 6 Basic Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

ERROR 1062 (23000): Duplicate entry '1' for key 'auto_test7.cred_id'
mysql> show create table auto_test7;
+------------+--+
| Table | Create Table |
+------------+--+
| auto_test7 | CREATE TABLE `auto_test7` (`id` int NOT NULL AUTO_INCREMENT, `cred_id` int
DEFAULT NULL, PRIMARY KEY (`id`), UNIQUE KEY `cred_id` (`cred_id`)) ENGINE=InnoDB
AUTO_INCREMENT=3 DEFAULT CHARSET=utf8 |
+------------+---+

● When data is inserted in batches (such as insert...select and load file), the
auto-increment key is requested in batches. Two to the power of n sequence
numbers are requested in each batch. If the sequence numbers are not used
up, the sequence numbers will not be returned. As a result, the value of
AUTO_INCREMENT may jump.
mysql> create table auto_test5_tmp(id tinyint not null AUTO_INCREMENT, name varchar(8), PRIMARY
KEY (`id`));
Query OK, 0 rows affected (0.08 sec)
mysql> select * from auto_test5;
+----+------+
| id | name |
+----+------+
1	A
2	B
3	C
4	X
5	Y
6	Z
8	A
9	B
10	C
11	X
12	Y
13	Z
+----+------+	
12 rows in set (0.00 sec)	
mysql> insert into auto_test5_tmp select 0,name from auto_test5;	
Query OK, 12 rows affected (0.01 sec)	
Records: 12 Duplicates: 0 Warnings: 0	
mysql> select * from auto_test5_tmp;	
+----+------+	
id	name
+----+------+	
1	A
2	B
3	C
4	X
5	Y
6	Z
7	A
8	B
9	C
10	X
11	Y
12	Z
+----+------+	
12 rows in set (0.00 sec)	
mysql> show create table auto_test5_tmp;	
+----------------+---+	
Table	Create Table
+----------------+---+	
auto_test5_tmp	CREATE TABLE `auto_test5_tmp` (`id` tinyint NOT NULL AUTO_INCREMENT,
`name` varchar(8) DEFAULT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=16
DEFAULT CHARSET=utf8 |
+----------------+---+

GaussDB(for MySQL)
TroubleShooting 6 Basic Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

6.5 Starting Value and Increment of AUTO_INCREMENT
The starting value and increment of AUTO_INCREMENT are determined by the
auto_increment_offset and auto_increment_increment parameters.

● auto_increment_offset determines the starting point for the
AUTO_INCREMENT column value.

● auto_increment_increment controls the interval between successive column
values.

● When the value of auto_increment_offset is greater than that of
auto_increment_increment, the value of auto_increment_offset is ignored.

● When the value of auto_increment_offset is less than or equal to that of
auto_increment_increment, the value of AUTO_INCREMENT:
auto_increment_offset + N x auto_increment_increment (N indicates the
number of inserted data records).

The default values of the two parameters in GaussDB(for MySQL) are 1. To modify
the parameters, perform the following steps:

Step 1 On the Instances page, click the instance name to go to the Basic Information
page.

Step 2 In the navigation pane on the left, choose Parameter Modification. On the
displayed page, change parameters as needed.

----End

For example:

1. If both auto_increment_offset and auto_increment_increment are set to 1,
the starting value is 1 and the increment is 1.
show variables like 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 1 |
| auto_increment_offset | 1 |
+--------------------------+-------+

2. If auto_increment_increment is set to 2, the increment is 2.
set session auto_increment_offset=2;
Query OK, 0 rows affected (0.02 sec)
show variables like 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 2 |
| auto_increment_offset | 1 |
+--------------------------+-------+

3. If auto_increment_offset is set to 10 and auto_increment_increment is set
to 2, the starting value is 2 (because the value of auto_increment_offset is
greater than that of auto_increment_increment) and the increment is 2.
set session auto_increment_offset=10;
set session auto_increment_increment=2;
show variables like 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+

GaussDB(for MySQL)
TroubleShooting 6 Basic Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

| auto_increment_increment | 2 |
| auto_increment_offset | 10 |
+--------------------------+-------+
create table auto_test2(id int NOT NULL AUTO_INCREMENT, PRIMARY KEY (`id`));
Query OK, 0 rows affected (0.08 sec)
show create table auto_test2;
CREATE TABLE `auto_test2` (`id` int NOT NULL AUTO_INCREMENT, PRIMARY KEY (`id`))
ENGINE=InnoDB DEFAULT CHARSET=utf8
1 row in set (0.01 sec)
insert into auto_test2 values(0), (0), (0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
select * from auto_test2;
+----+
| id |
+----+
| 2 |
| 4 |
| 6 |
+----+
3 rows in set (0.01 sec)

4. If auto_increment_offset is set to 5 and auto_increment_increment is set to
10, the starting value is 5 and the increment is 10.
set session auto_increment_offset=5;
set session auto_increment_increment=10;
show variables like 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 5 |
+--------------------------+-------+
create table auto_test3(id int NOT NULL AUTO_INCREMENT, PRIMARY KEY (`id`));
insert into auto_test3 values(0), (0), (0);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0
select * from auto_test3;
+----+
| id |
+----+
| 5 |
| 15 |
| 25 |

6.6 Changing the AUTO_INCREMENT Value of a Table
The methods are as follows:

1. If the value of AUTO_INCREMENT is greater than the maximum value of the
auto-increment column in the table, AUTO_INCREMENT can be changed to a
larger value within the value range.
show create table animals;
+---------+--+
| Table | Create Table |
+---------+--+
| animals | CREATE TABLE `animals` (
`id` mediumint NOT NULL AUTO_INCREMENT, `name` char(30) NOT NULL,
PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=101 DEFAULT CHARSET=utf8 |
+---------+--+
1 row in set (0.00 sec)
mysql> select * from animals;
+-----+-----------+
| id | name |
+-----+-----------+
| -50 | -middle |

GaussDB(for MySQL)
TroubleShooting 6 Basic Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

1	dog
2	cat
50	middle
100	rabbit
+-----+-----------+	
11 rows in set (0.00 sec)	
alter table animals AUTO_INCREMENT=200;	
Query OK, 0 rows affected (0.22 sec)	
Records: 0 Duplicates: 0 Warnings: 0	
show create table animals;	
+---------+---+	
Table	Create Table
+---------+---+	
animals	CREATE TABLE `animals` (
`id` mediumint NOT NULL AUTO_INCREMENT, `name` char(30) NOT NULL,
PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=200 DEFAULT CHARSET=utf8 |
+---------+---+

2. If the new value of AUTO_INCREMENT is still greater than the maximum
value of the auto-increment column in the table, the value change is
successful. Otherwise, the value is changed to the maximum value of the
auto-increment column plus 1 by default.
mysql> select * from animals;
+-----+-----------+
| id | name |
+-----+-----------+
| -50 | -middle |
| 1 | dog |
| 2 | cat |
| 50 | middle |
| 100 | rabbit |
+-----+-----------+
mysql> show create table animals;
+---------+---+
| Table | Create Table |
+---------+---+
| animals | CREATE TABLE `animals` (
`id` mediumint NOT NULL AUTO_INCREMENT, `name` char(30) NOT NULL,
PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=200 DEFAULT CHARSET=utf8 |
+---------+---+
mysql> alter table animals AUTO_INCREMENT=150;
Query OK, 0 rows affected (0.05 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> show create table animals;
+---------+---+
| Table | Create Table |
+---------+---+
| animals | CREATE TABLE `animals` (
`id` mediumint NOT NULL AUTO_INCREMENT, `name` char(30) NOT NULL,
PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=150 DEFAULT CHARSET=utf8 |
+---------+---+
mysql> alter table animals AUTO_INCREMENT=50;
Query OK, 0 rows affected (0.04 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> show create table animals;
+---------+---+
| Table | Create Table |
+---------+---+
| animals | CREATE TABLE `animals` (
`id` mediumint NOT NULL AUTO_INCREMENT, `name` char(30) NOT NULL,
PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=101 DEFAULT CHARSET=utf8 |
+---------+---+
mysql> delete from animals where id=100;
Query OK, 1 row affected (0.00 sec)
mysql> select * from animals;
+-----+-----------+
| id | name |
+-----+-----------+
| -50 | -middle |

GaussDB(for MySQL)
TroubleShooting 6 Basic Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

1	dog
2	cat
50	middle
+-----+-----------+	
10 rows in set (0.00 sec)	
mysql> alter table animals AUTO_INCREMENT=50;	
Query OK, 0 rows affected (0.04 sec)	
Records: 0 Duplicates: 0 Warnings: 0	
mysql> show create table animals;	
+---------+---+	
Table	Create Table
+---------+---+	
animals	CREATE TABLE `animals` (
`id` mediumint NOT NULL AUTO_INCREMENT, `name` char(30) NOT NULL,
PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=51 DEFAULT CHARSET=utf8 |
+---------+---+
1 row in set (0.00 sec)

3. The value of AUTO_INCREMENT cannot be changed to a negative number.
alter table animals AUTO_INCREMENT=-1;
ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to
your MySQL server version for the right syntax to use near '-1' at line 1

6.7 Failed to Insert Data Because Values for the Auto-
increment Primary Key Field Reach the Upper Limit

Scenario
The error message "ERROR 1062 (23000): Duplicate entry 'xxx' for key 'xxx'" was
displayed when data was inserted into a table.

Possible Causes
The value for the auto-increment primary key field has reached the upper limit
and cannot be increased. As a result, the auto-increment primary key value
generated for the newly inserted data is the same as that of the previous data
record in the table. Since the auto-increment primary key value cannot be
duplicate, an error is reported.

Solution
1. If there are too many data changes and the actual data volume in the table is

far less than the capacity of the auto-increment primary key, import all data
in the table to a new table, delete the original table, and change the name of
the new table back to the original table. (There are multiple methods for
importing and exporting data. The following is only an example.

a. Create the table auto_test5_tmp.
create table auto_test5_tmp(id tinyint not null AUTO_INCREMENT, name varchar(8), PRIMARY
KEY (`id`));
Query OK, 0 rows affected (0.07 sec)

b. Insert records into the table auto_test5_tmp.
insert into auto_test5_tmp select 0,name from auto_test5;
Query OK, 6 rows affected (0.01 sec)
Records: 6 Duplicates: 0 Warnings: 0

c. Query the data in auto_test5_tmp.
select * from auto_test5_tmp;
+----+------+

GaussDB(for MySQL)
TroubleShooting 6 Basic Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

| id | name |
+----+------+
1	A
2	B
3	C
4	X
5	Y
6	Z
+----+------+

d. Deletes the original table auto_test5.
drop table auto_test5;

e. Rename the table auto_test5_tmp to auto_test5.
rename table auto_test5_tmp to auto_test5;
Query OK, 0 rows affected (0.12 sec)

2. If the value for the auto-increment primary key is too small, change the field
type of the auto-increment primary key to store more data.
alter table auto_test6 modify column id int NOT NULL AUTO_INCREMENT;
Query OK, 6 rows affected (0.15 sec)
Records: 6 Duplicates: 0 Warnings: 0

6.8 Auto-increment Field Values
GaussDB(for MySQL) uses the following methods to assign values to an auto-
increment field:

Table structure
CREATE TABLE animals (
 id MEDIUMINT NOT NULL AUTO_INCREMENT,
 name CHAR(30) NOT NULL,
 PRIMARY KEY (id)
);

1. If no value is specified for the auto-increment field, GaussDB(for MySQL)
automatically enters the value of AUTO_INCREMENT to the field.

a. Insert records into the table.
 INSERT INTO animals (name) VALUES ('dog'),('cat'),('penguin'),('lax'),('whale'),('ostrich');

b. Querying table data
 select * from animals;
+----+---------+
| id | name |
+----+---------+
1	dog
2	cat
3	penguin
4	lax
5	whale
6	ostrich
+----+---------+

c. Query the table structure.
 show create table animals;
+---------+--+
| Table | Create Table |
+---------+--+
| animals | CREATE TABLE `animals` (`id` mediumint NOT NULL AUTO_INCREMENT, `name`
char(30) NOT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT
CHARSET=utf8 |
+---------+--+

2. If 0 or NULL is specified for the auto-increment field, GaussDB(for MySQL)
automatically enters the value of AUTO_INCREMENT to the field.

GaussDB(for MySQL)
TroubleShooting 6 Basic Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

a. Insert records into the table.
INSERT INTO animals (id,name) VALUES(0,'groundhog');
INSERT INTO animals (id,name) VALUES(NULL,'squirrel');

b. Query data.
select * from animals;
+----+-----------+
| id | name |
+----+-----------+
1	dog
2	cat
3	penguin
4	lax
5	whale
6	ostrich
7	groundhog
8	squirrel
+----+-----------+
8 rows in set (0.00 sec)

c. Query the table structure.
show create table animals;
+---------+--+
| Table | Create Table |
+---------+--+
| animals | CREATE TABLE `animals` (`id` mediumint NOT NULL AUTO_INCREMENT, `name`
char(30) NOT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=9 DEFAULT
CHARSET=utf8 |
+---------+--+

3. If the value X that is greater than the value of AUTO_INCREMENT is specified
for the auto-increment field, GaussDB(for MySQL) inserts X to the field and
changes AUTO_INCREMENT to X + 1.

a. Insert records into the table.
INSERT INTO animals (id,name) VALUES(100,'rabbit');

b. Query data.
select * from animals;
+-----+-----------+
| id | name |
+-----+-----------+
1	dog
2	cat
3	penguin
4	lax
5	whale
6	ostrich
7	groundhog
8	squirrel
100	rabbit
+-----+-----------+
9 rows in set (0.00 sec)

c. Query the table structure.
show create table animals;
+---------+--+
| Table | Create Table |
+---------+--+
| animals | CREATE TABLE `animals` (`id` mediumint NOT NULL AUTO_INCREMENT, `name`
char(30) NOT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=101 DEFAULT
CHARSET=utf8 |
+---------+--+

4. If a value less than the value of AUTO_INCREMENT is specified for the auto-
increment field, GaussDB(for MySQL) enters the value to the field and
AUTO_INCREMENT remains unchanged.
mysql> INSERT INTO animals (id,name) VALUES(50,'middle');
Query OK, 1 row affected (0.00 sec)
mysql> select * from animals;

GaussDB(for MySQL)
TroubleShooting 6 Basic Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

+-----+-----------+
| id | name |
+-----+-----------+
1	dog
2	cat
3	penguin
4	lax
5	whale
6	ostrich
7	groundhog
8	squirrel
50	middle
100	rabbit
+-----+-----------+	
10 rows in set (0.00 sec)	
mysql> show create table animals;	
+---------+--+	
Table	Create Table
+---------+--+	
animals	CREATE TABLE `animals` (`id` mediumint NOT NULL AUTO_INCREMENT, `name`
char(30) NOT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=101 DEFAULT
CHARSET=utf8 |
+---------+--+

5. If a negative value is specified for the auto-increment field, GaussDB(for
MySQL) enters the value to the field and AUTO_INCREMENT remains
unchanged.

a. Insert records into the table.
INSERT INTO animals (id,name) VALUES(-50,'-middle');

b. Queries data.
select * from animals;
+-----+-----------+
| id | name |
+-----+-----------+
-50	-middle
1	dog
2	cat
3	penguin
4	lax
5	whale
6	ostrich
7	groundhog
8	squirrel
50	middle
100	rabbit
+-----+-----------+
11 rows in set (0.00 sec)

c. Query the table structure.
show create table animals;
+---------+--+
| Table | Create Table
+---------+--+
| animals | CREATE TABLE `animals` (`id` mediumint NOT NULL AUTO_INCREMENT,
`name` char(30) NOT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=101
DEFAULT CHARSET=utf8 |
+---------+---+

GaussDB(for MySQL)
TroubleShooting 6 Basic Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

6.9 AUTO_INCREMENT Not Displayed in the Table
Structure

Scenario

When a table was created, AUTO_INCREMENT was set to 1. After show create
table was executed, AUTO_INCREMENT was not displayed in the table structure.

A table was created:

After show create table xxx was executed, AUTO_INCREMENT was not displayed
in the table structure:

Possible Causes

sql_mode was set to NO_FIELD_OPTIONS.

Valid values for sql_mode are as follows:

● NO_FIELD_OPTIONS: Do not print MySQL-specific column options in the
output of SHOW CREATE TABLE.

● NO_KEY_OPTIONS: Do not print MySQL-specific index options in the output
of SHOW CREATE TABLE.

● NO_TABLE_OPTIONS: Do not print MySQL-specific table options (such as
ENGINE) in the output of SHOW CREATE TABLE.

GaussDB(for MySQL)
TroubleShooting 6 Basic Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

Solution
Change the value of sql_mode.

6.10 Impact of Creating an Empty Username
The username '' is allowed in GaussDB(for MySQL) instances, but using such an
empty username has negative impacts on instances.

When you perform operations on a GaussDB(for MySQL) instance using an empty
username, any username can be matched. This brings security and functional
impacts on your instance. You are advised not to use empty usernames in actual
scenarios.

● Security impact
– Your instance can be connected using any username if there is an empty

username.
– Your database can be logged in using any username and the password of

the empty username and the login user will obtain all permissions of the
empty username. For example:
#If there is no empty username created and the invalid username abcd is used to connect to
the instance, the connection fails.
mysql> select user,host from mysql.user;
+------------------+-----------+
| user | host |
+------------------+-----------+
root	%
mysql.infoschema	localhost
mysql.session	localhost
mysql.sys	localhost
+------------------+-----------+
mysql -uabcd -h127.0.0.1 -P3306 -pTest_1234
mysql: [Warning] Using a password on the command line interface can be insecure.
ERROR 1045 (28000): Access denied for user 'abcd'@'localhost' (using password: YES)

#If an empty username has been created and the invalid username abcd and the password of
the empty username are used to connect to the instance, the connection is successful.
mysql> create user ''@'localhost' IDENTIFIED BY 'Test_1234';
mysql> select user,host from mysql.user;
+------------------+-----------+
| user | host |
+------------------+-----------+
root	%
	localhost
mysql.infoschema	localhost
mysql.session	localhost
mysql.sys	localhost
+------------------+-----------+
mysql -uabcd -h127.0.0.1 -P3306 -pTest_1234
mysql: [Warning] Using a password on the command line interface can be insecure.
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 37Server version: 8.0.22-debug Source distribution
Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql>

– If the empty user does not have a password, you can use any username
to log in to the instance without a password and obtain all permissions of
the empty user. For example:
#If there is an empty username that does not have a password, the database can be logged in
using any username without a password.

GaussDB(for MySQL)
TroubleShooting 6 Basic Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

mysql> create user ''@'localhost';
Query OK, 0 rows affected (8.87 sec)
mysql> select user,host from mysql.user;
+------------------+-----------+
| user | host |
+------------------+-----------+
root	%
	localhost
mysql.infoschema	localhost
mysql.session	localhost
mysql.sys	localhost
+------------------+-----------+
mysql -uabcd -h127.0.0.1 -P3306
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 39Server version: 8.0.22-debug Source distribution
Copyright (c) 2000, 2020, Oracle and/or its affiliates.
All rights reserved. Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql>
#-----------------
mysql -usdhsjkdshk -h127.0.0.1 -P3306
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 40Server version: 8.0.22-debug Source distribution
Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql>

● Functional impact
If there is an empty username, the database cannot be logged in using a
correct username due to a name matching error.
Example: If the host of an empty user overlaps that of the root user, the root
user cannot log in to the database using its password or it can log in to the
database using the password of the empty username but cannot obtain the
root user permissions.
mysql> create user ''@'localhost';
Query OK, 0 rows affected (8.87 sec)
mysql> select user,host from mysql.user;
+------------------+-----------+
| user | host |
+------------------+-----------+
root	%
	localhost
mysql.infoschema	localhost
mysql.session	localhost
mysql.sys	localhost
+------------------+-----------+
#The database cannot be logged in using the password of the root user.
mysql -uroot -h127.0.0.1 -P3306 -pTest_root
mysql: [Warning] Using a password on the command line interface can be insecure.
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
#The user who logs in to the database using the password of the empty user (password-free) is
actually an empty user so the user does not have the root permissions.
mysql -uroot -h127.0.0.1 -P3306
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 45Server version: 8.0.22-debug Source distribution
Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql> select user,host from mysql.user;
ERROR 1142 (42000): SELECT command denied to user ''@'localhost' for table 'user'

GaussDB(for MySQL)
TroubleShooting 6 Basic Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

6.11 No Scanned Rows Recorded in Slow Query Logs

Scenario

In slow query logs, an SQL statement was executed for 65 seconds, but the
number of scanned rows was 0.

Possible Causes

If an SQL statement is interrupted but its execution time exceeds the slow log
threshold, the statement will be recorded in slow query logs and the number of
scanned rows is 0. Timeout thresholds have been configured for the JDBC
connection from the client.

Solution

Optimize the SQL statement or set socketTimeout to an appropriate value.

6.12 "handle_sync_msg_from_slave my_net_read
error:-1" Displayed on the Error Logs Tab Page

Scenario

The error message "handle_sync_msg_from_slave my_net_read error:-1" was
displayed on the Error Logs tab page.

Possible Causes

During primary/standby synchronization, network data packet errors may
occasionally occur due to network jitter. In this case, the system automatically
retries.

Solution

No action is required.

GaussDB(for MySQL)
TroubleShooting 6 Basic Issues

Issue 01 (2024-09-04) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

	Contents
	1 Backup and Restoration Issues
	1.1 Insufficient Permissions During Data Export Using mysqldump
	1.2 How Do I use mysqlbinlog to Obtain Binlog Files?
	1.3 Canal Fails to Parse Binlogs
	1.4 Precautions for Exporting Large Tables Through mysqldump
	1.5 Commands for Exporting Data Through mysqldump
	1.6 System Inaccessible After Field Addition to a Database Table
	1.7 SQL Statements Such as SET @@SESSION.SQL_LOG_BIN Displayed After You Run mysqldump
	1.8 Insufficient Permissions Reported for Canal

	2 Connection Issues
	2.1 Login Failed After ssl_type of root Is Changed to ANY
	2.2 Failed to Connect to a DB Instance Using SSL
	2.3 Description of Each IP Address
	2.4 SSL Connection Failed Due to Inconsistent TLS Versions
	2.5 Error Message "connection established slowly"
	2.6 "Access denied" Displayed During Database Connection
	2.7 Failed to Connect to a Database Using mariadb-connector in SSL Mode
	2.8 Failed to Connect to a Database as User root
	2.9 Client Automatically Disconnected from a DB Instance
	2.10 Disconnection Occurs Every 45 Days Due to the istio-citadel Certificate Mechanism

	3 SQL Issues
	3.1 Invalid TIMESTAMP Default Value during Table Creation
	3.2 Failed to Change the VARCHAR Length Due to the Index Length Limit
	3.3 Slow SQL Queries After a Large Amount of Data Is Deleted from a Large Table
	3.4 Error 1366 Reported When Data Containing Emojis Is Updated
	3.5 Slow Stored Procedure Execution Due to Inconsistent Collations
	3.6 ERROR [1412] Reported for a DB Instance
	3.7 Failed to Delete a Table with a Foreign Key
	3.8 Incorrect GROUP_CONCAT Results
	3.9 Error Message "Too many keys specified" Displayed When a Secondary Index Is Created
	3.10 DISTINCT and GROUP BY Optimization
	3.11 Equivalent Comparison Failures with Floating-Point Numbers
	3.12 A Large Number of SELECT Requests Routed to The Primary Instance After Database Proxy Is Enabled
	3.13 Tablespace Bloat
	3.14 ERROR 1396 Reported When a User Is Created
	3.15 Error Message Reported When alter table xxx discard/import tablespace Is Executed
	3.16 Native Error 1461 Reported by a DB Instance
	3.17 "Row size too large" Reported When a Table Failed to Be Created
	3.18 Duplicate Data Exists After ORDER BY LIMIT Is Executed

	4 Parameter-related Issues
	4.1 Global Parameters Fail to Change on the Client
	4.2 Connection Exit Due to Improper Timeout Parameter Settings
	4.3 long_query_time Changes Fail to Take Effect
	4.4 Timeout Parameters

	5 Performance Issues
	5.1 High CPU Usage
	5.2 Out of Memory (OOM) Errors
	5.3 Tablespace Bloat
	5.4 Read Replica Uses Far More Storage Than the Primary Instance
	5.5 Slow SQL Execution Due to Hot and Cold Data Problems
	5.6 Full Storage Caused by Complex Queries
	5.7 Slow Response Due to Deadlocks
	5.8 CPU Usage Increase
	5.9 CPU Resource Exhaustion Caused by Too Many Concurrent Slow Queries

	6 Basic Issues
	6.1 How Do I View Used Storage of My GaussDB(for MySQL) Instance?
	6.2 Renaming Databases and Tables
	6.3 Character Set and Collation Settings
	6.4 Auto-Increment Field Value Jump
	6.5 Starting Value and Increment of AUTO_INCREMENT
	6.6 Changing the AUTO_INCREMENT Value of a Table
	6.7 Failed to Insert Data Because Values for the Auto-increment Primary Key Field Reach the Upper Limit
	6.8 Auto-increment Field Values
	6.9 AUTO_INCREMENT Not Displayed in the Table Structure
	6.10 Impact of Creating an Empty Username
	6.11 No Scanned Rows Recorded in Slow Query Logs
	6.12 "handle_sync_msg_from_slave my_net_read error:-1" Displayed on the Error Logs Tab Page

