High Performance Application
Programming Guide

Issue 01
Date 2020-05-30

V.

HUAWEI

HUAWEI TECHNOLOGIES CO., LTD.



Copyright © Huawei Technologies Co., Ltd. 2020. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

QD

nuawer and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. i



High Performance Application Programming Guide Contents

Contents

T OVEIVIEW....ueieeeeeeieneeeecniestesanesessnssssesssessesssessessssssessssssssssessssssessessssssessssssssssessssssesssssassassssasanss 1
2 K@Y POINTS.....ceeiceieeiecnieneeieiennteseeseessenesassssesssnsssssssssesassssssssssesssssassssesssssssassssasssssssasssassssasssnsss 2
2.1 MEMOIY MaNAGEMENT ...ttt ettt ettt st b ettt et sttt st b e bt ae bbb neas 3
2.1.1 Memory Management APIs Provided by the Native Language..........ccceeerreeireerrsnenesesess s 3
2.1.2 Memory Management APIs Provided by the Matrix MOAULE............ccoourierieriniineieeeeinieie s 3
2.2 HOSt-DeViCe Data TranSMISSION.....c.ccvuriririeereeeieiseeteesisestseastseas s ssesstsesstsssstssessssssassssassstasssesssseassssssssssssssssssssesssesnses 8
2.3 USQGE OF DVPP.......ee ettt ettt ettt st s bbbt s et ae s e en et b s bbb ansebansnas 12
2.3.1 Image and Video ENcoding and DECOAING.......ccoouuiuiuierieeierinieieeisesieses st ssssessssssssss st sssssssssasssssensns 12
2.3.2 Image Cropping @Nd RESIZING......cccoviririrrinririirininisieisississessessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssseses 12
2.4 Model Conversion Pre-Processing CONfIQUIAtioN.........ccieuieiiueierieieieesieee et ssss s sssss s sessssessnsnes 14
2.5 BAtCN @Nd TIMEOUL......ooieiiiieicteeteeeieiists sttt a ettt se bbb b s s s b s bbbt e s s s ssesasbanbansas 14
2.6 Processing the Input and Output Data of Algorithm INfEreNCe........eeiererreseree e 15
2.7 Optimization of Data BaCKNQUL........c.ocieeece ettt ettt b e se s s s s s sassenans 15
3 Operator Usage SUGQGESHIONS.........cccieiereierienensennrceesnncseesansssssassssssasessesassssssassssssassssasases 17
4 SAIMPLES....eeeeeeeeeeeeeeceeeseecsteseesseeseesseessesssessessessssssessssssesssessessassssessessesssesssesassssessssssessessasssasss 19
A1 DALA FLOW.erveieieeirisie sttt sttt sttt st s s s se s s s a bbbt ea s e s s s A bbbt en s st st s s sae s sensnsns 19
A.2 ZEIO-COPY.erteiurerireiererisissesssstssssasssssssssssessssssssssssssssssessssssssessssssesessssssssasassssssasassssssesssssesesssssssssessssssesessssssesessssssesessssssseses 19
B FAQS. ... eeiiiniiennnetecssnnseessnssessssnssesssnssssssnsssssssnssssssssassssssssssssnssssssssssssssnssssssnnsssssnssssssnssssssnns 21
5.1 What Do | Do If an Exception Occurs Because a Smart Pointer Is Used to Automatically Free Memory

but the DeStrUCLOr IS NOT EMPLY?. ...ttt ae s ess st bbb s s s ssssesassnnas 21
5.2 What Do | Do If an Exception Occurs Because a Smart Pointer Is Used to Manually Free Memory but

THE DESEIUCTON IS INOT HIAI DFIEE?......oeeeeeeeeeeeeeeeeeeee ettt ettt ettt sese st et e s seseseses st sesesesesssesesesesesesssesesesesssesesasas 22
6 APPENAIX...cuiiiiiireiiinnnieinsniesssanssssssssssssasessesssossossssssssassssssssossssssssssssssssssssssssssssssssssssssssssssssass 24
6.1 CRANGE HISTOIY ...ttt bbbttt bbbt s et bbb bbbt s e s s s bbb senees 24

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. i



High Performance Application Programming Guide 1 Overview

Overview

Purpose
This document describes the constraints and suggestions for building high-
performance applications on the Ascend 310, helping users understand the
samples and quickly build high-performance applications.

Scope

This document describes the key knowledge points for high-performance
programming on the Ascend 310. It is intended for users who use chip hardware
decoding, inference, and general image processing on the Ascend 310.

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 1



High Performance Application Programming Guide 2 Key Points

Key Points

During application development, the Matrix module processes data in the
following phases:

Calls an API to transfer data (images) from the host to the device.
Calls DVPP APIs to encode, decode, and resize data.

Calls the model manager APIs provided by Framework to infer data.
Calls an API to send the inference result from the device to the host.

A wnN =

Figure 2-1 Data processing

Host Device

Data pre-processing

]

I

|

Data (image) input R Ea ot (o = e o |
_ ' data) g DVPP (DVPP Executor) [
I

I

I

I;
I
|
|
|
: g Pre-processing engine
|
|
|

'@ Model |
inference

I
[ 1
I I
I 1
I I
: T ET N Framework (model ]
| g manager) |
I 1
I I
[ 1

DestEngine (for returning "
the inference result)

During Matrix module processing, data transfer, DVPP processing, and model
inference are most time-consuming. This document mainly describes how to
streamline these phases and boost the performance.

For details about each API, see Matrix APl Reference and DVPP APl Reference
2.1 Memory Management

2.2 Host-Device Data Transmission
2.3 Usage of DVPP

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 2



High Performance Application Programming Guide 2 Key Points

2.4 Model Conversion Pre-Processing Configuration

2.5 Batch and Timeout

2.6 Processing the Input and Output Data of Algorithm Inference
2.7 Optimization of Data Backhaul

2.1 Memory Management

The Ascend 310 supports two types of APIs for memory management: memory
management APIs provided by the native language and memory management
APIs provided by the Matrix module.

2.1.1 Memory Management APIs Provided by the Native
Language

The native language (C/C++) provides the malloc, free, memcpy, memset, new,
and delete APIs for memory management. You can manage and control the
lifecycle of memory allocated by using these APIs. If the memory to be allocated is
less than 256 KB, memory management APIs provided by the native language and
those provided by the Matrix module show similar performance. Therefore, you
are advised to use a memory management API provided by the native language to
simplify programming.

The following code shows how to use memory management APIs provided by the

native language:

// Use malloc to alloc buffer

unsigned char* inbuf = (unsigned char*)malloc( fileLen );
// free buffer

free(inbuf);

inbuf = nullptr;

2.1.2 Memory Management APIs Provided by the Matrix
Module

The Matrix module provides a set of C/C++ APIs for allocating and freeing
memory, including HIAI_DMalloc/HIAI_DFree and HIAI_DVPP_DMalloc/
HIAI_DVPP_DFree. Among these APIs, HIAI_DMalloc and HIAI_DFree are used to
apply for memory and transfer data from the host to the device by working with
SendData. While HIAI_DVPP_DMalloc and HIAI_DVPP_DFree are used to
allocate memory for the DVPP on the device. You can call the HIAI_DMalloc/
HIAI_DFree and HIAI_DVPP_DMalloc/HIAI_DVPP_DFree APIs to allocate memory
to reduce copy operations and save time.

API Description

Table 2-1 describes the functions of the HIAI_DMalloc/HIAI_DFree and
HIAI_DVPP_DMalloc/HIAI_DVPP_DFree APIs.

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 3



High Performance Application Programming Guide

2 Key Points

Table 2-1 API description

APl Name

Function

HIAIMemory::HIAI_DMalloc (for C++
only)

Allocates memory. The memory is
similar to common memory but offers
better performance in cross-side
transmission (host-device/device-host)
and model inference.

HIAIMemory::HIAI_DFree (for C++
only)

Frees the memory allocated by
HIAIMemory::HIAI_DMalloc. This API
is used together with
HIAIMemory::HIAI_DMalloc.

When calling the
HIAIMemory::HIAI_DMalloc API, you
can set flag to
MEMORY_ATTR_AUTO_FREE. In this
case, if data is sent to the peer end by
calling the SendData API, the
allocated memory is automatically
freed without calling the
HIAIMemory::HIAI_DFree API after
the program is complete. However, if
the SendData API is not called to send
data to the peer end after memory is
allocated, you need to call
HIAIMemory::HIAI_DFree to free the
memory.

HIAI_DMalloc (for C/C++)

Allocates memory. The memory is
similar to common memory but offers
better performance in cross-side
transmission (host-device/device-host)
and model inference.

HIAI_DFree (for C/C++)

Frees the memory allocated by
HIAI_DMalloc. This API is used
together with HIAI_DMalloc.

When calling the HIAI_DMalloc API,
you can set flag to
MEMORY_ATTR_AUTO_FREE. In this
case, if data is sent to the peer end by
calling the SendData API, the
allocated memory is automatically
freed without calling the HIAI_DFree
API after the program is complete.
However, if the SendData API is not
called to send data to the peer end
after memory is allocated, you need to
call HIAI_DFree to free the memory.

HIAIMemory::HIAI_DVPP_DMalloc
(for C++ only)

Allocates memory for the DVPP on the
device.

Issue 01 (2020-05-30)

Copyright © Huawei Technologies Co., Ltd. 4



High Performance Application Programming Guide 2 Key Points

APl Name Function

HIAIMemory::HIAI_DVPP_DFree (for Frees the memory allocated by the

C++ only) HIAIMemory::HIAI_DVPP_DMalloc
API.

HIAI_DVPP_DMalloc (for C/C++) Allocates memory for the DVPP on the
device.

HIAI_DVPP_DFree (for C/C++) Frees the memory allocated by the

HIAI_DVPP_DMalloc API.

API Calling Process

Figure 2-2 API Calling Process

(1) The input data of the

preprocessing engine is the data

transferred to the device memory. Device
(2) The DVPP output data \s_amred in side
the memaory allocated by calling

HIAI_DVPP_DMalloc.

(1) Register the serialization and
deserialization functions using the
Host side HIAI_REG\STER_SERIAUZI?_FUNC
macro.
{2) You are advised to use
HIAI_DMalloc to allocate memory on
the host side, and then transfer the
data on the host side to the device
side by using SendData.

) SourceEngine 5 5
— . L 1y eprocessing en
i (for cata reading) o o _

You are advised to
allocate memory an the
host side using

HIAL DMalloc and then
transfer the inference
result of the model
manager back to the o
host side using Model
SendData. nference |

[ESENE
{for returning the —_— Inference engine an}.ﬁfﬁ;k S:;OGEI
inference result) i

|
Data preprocessing

1
The inference engine directly reuses data in the memory allocated by
calling HIAIL_DVPP_DMalloc and uses the output data in the DVPP
memory as the input for inference.

The usage of APIs in Figure 2-2 is described as follows:

e The memory allocated by using the HIAI_DMalloc or
HIAIMemory::HIAI_DMalloc API can be used in end-to-end data transmission
and model inference. The data transmission efficiency and performance can
be improved by calling the HIAI_DMalloc or HIAIMemory::HIAI_DMalloc API
and using the HIAI_REGISTER_SERIALIZE_FUNC macro that serializes or
deserializes user-defined data types.

Allocating memory by using the HIAI_DMalloc or
HIAIMemory::HIAI_DMalloc API has the following advantages:

- The allocated memory can be directly used by host-device
communication (HDC) module for data transmission to avoid data copy
between the Matrix module and HDC.

- You can use the allocated memory for zero-copy inference to reduce data
copy time.

e The memory allocated by using the HIAI_DVPP_DMalloc or
HIAIMemory::HIAI_DVPP_DMalloc API can be used by the DVPP. After being

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 5



High Performance Application Programming Guide 2 Key Points

used by the DVPP, data in the memory can be transparently transmitted to
the inference model. If model inference is not required, data in the memory
allocated by using the HIAI_DVPP_DMalloc API can be directly sent back to
the host.

The memory allocated by using the HIAI_DMalloc,
HIAIMemory::HIAI_DMalloc, HIAI_DVPP_DMalloc, and
HIAIMemory::HIAI_DVPP_DMalloc APIs is compatible with memory
management APIs provided by the native language. It can be used as
common memory, but cannot be freed by using APIs such as free and delete.
Generally, memory allocated by using the HIAI_DMalloc,
HIAIMemory::HIAI_DMalloc, HIAI_DVPP_DMalloc, and
HIAIMemory::HIAI_DVPP_DMalloc APIs needs to be freed by calling
HIAI_DFree, HIAIMemory::HIAI_DFree, HIAI_DVPP_DFree, and
HIAIMemory::HIAI_DVPP_DFree, respectively.

When calling the HIAI_DMalloc or HIAIMemory::HIAlI_DMalloc API, you can
set flag to MEMORY_ATTR_AUTO_FREE. In this case, if data is sent to the
peer end by calling the SendData API, the allocated memory is automatically
freed without calling the HIAIMemory::HIAI_DFree API after the program is
complete. However, if the SendData API is not called to send data to the peer
end after memory is allocated, you need to call HIAIMemory::HIAI_DFree to
free the memory.

The memory allocated by using the HIAI_DVPP_DMalloc or
HIAIMemory::HIAI_DVPP_DMalloc API meets the requirements of the DVPP.
Therefore, when the resources are limited, you are advised to use these APIs
only for the DVPP.

Precautions for APl Usage

When allocating memory by using HIAI_DMalloc or HIAIMemory::HIAI_DMalloc,
pay attention to the following issues about memory management:

When allocating memory to be automatically freed for host-device or device-
host data transmission, if a smart pointer is used, the Matrix module
automatically frees the memory. Therefore, the destructor specified by the
smart pointer must be empty. If the pointer is not a smart pointer, the Matrix
module automatically frees the memory.

When allocating memory to be manually freed for host-device or device-host

data transmission, if a smart pointer is used, you need to set the destructor to
HIAI_DFree or HIAIMemory::HIAI_DFree. If the pointer is not a smart pointer,
you need to call HIAI_DFree or HIAIMemory::HIAI_DFree to free the memory
after data transmission is complete.

When memory to be manually freed is allocated, the SendData API cannot be
called repeatedly to send data in the memory.

When allocating memory to be manually freed, if the memory is used for
data transmission between the host and device, do not reuse the data in the
memory before the memory is freed. If the memory is used for host-host or
device-device data transmission, the data in the memory can be reused before
the memory is freed.

When allocating memory to be manually freed, if the SendData API is called
to asynchronously send data, data in the memory cannot be modified after
data is sent.

Issue 01 (2020-05-30)

Copyright © Huawei Technologies Co., Ltd. 6



High Performance Application Programming Guide 2 Key Points

If the HIAI_DVPP_MAIlloc or HIAIMemory::HIAI_DVPP_DMalloc API is called to
allocate memory for device-host data transmission, you need to call the
HIAI_DVPP_DFree or HIAIMemory::HIAI_DVPP_DFree API to manually free the
memory, because the HIAI_DVPP_MAlloc or HIAIMemory::HIAI_DVPP_DMalloc
API does not automatically free the memory. If a smart pointer is used to store the
allocated memory address, the destructor must be set to HIAI_DVPP_DFree or
HIAIMemory::HIAI_DVPP_DFree.

API Calling Example

(1) When the performance optimization solution is used to transmit data, the data transmit APl must be
manually serialized and deserialized.

// Note: The serialization function is used at the transmit end and the deserialization function is used at the
receive end. Therefore, you are advised to register this function with both transmit and receive ends.

// Data structure

typedef struct

uint32_t left_offset = 0;

uint32_t right_offset = 0;

uint32_t top_offset = 0;

uint32_t bottom_offset = 0;

// The serialize function is used to serialize a structure.
template <class Archive>

void serialize(Archive & ar)

ar(left_offset,right_offset,top_offset,bottom_offset);
}

} crop_rect;

// Registers the structure to be transferred between engines.
typedef struct EngineTransNew

std::shared_ptr<uint8_t> trans_buff = nullptr; // Transfer buffer
uint32_t buffer_size = 0; // Transfer buffer size
std::shared_ptr<uint8_t> trans_buff_extend = nullptr;

uint32_t buffer_size_extend = 0;

std::vector<crop_rect> crop_list;

// The serialize function is used to serialize a structure.
template <class Archive>

void serialize(Archive & ar)

ar(buffer_size, buffer_size_extend, crop_list);
}
}EngineTransNewT;
// Serialization function

/**

* @ingroup hiaiengine

* @brief GetTransSearPtr, // Serializes the Trans data.

* @param [in]: data_ptr // Structure pointer

* @param [out]: struct_str // Structure buffer

* @param [out]: data_ptr // Structure data pointer buffer
* @param [out]: struct_size // Structure size

* @param [out]: data_size // Structure data size

*/

void GetTransSearPtr(void* data_ptr, std::string& struct_str,
uint8_t*& buffer, uint32_t& buffer_size)
{

EngineTransNewT* engine_trans = (EngineTransNewT*)data_ptr;
uint32_t datalen = engine_trans->buffer_size;

uint32_t dataLen_extend = engine_trans->buffer_size_extend;

// Obtains the structure buffer and size.

buffer_size = datalLen + datalLen_extend;

buffer = (uint8_t*)engine_trans->trans_buff.get();

// Serialization

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 7



High Performance Application Programming Guide 2 Key Points

std::ostringstream outputStr;
cereal::PortableBinaryOutputArchive archive(outputStr);
archive((*engine_trans));
struct_str = outputStr.str();
}
// Deserialization function
/**
* @ingroup hiaiengine
* @brief GetTransSearPtr, // Deserializes the Trans data.
* @param [in]: ctrl_ptr // Structure pointer
* @param [in]: data_ptr // Structure data pointer
* @param [out]: std::shared_ptr<void> // Structure pointer assigned to the engine
*/
std::shared_ptr<void> GetTransDearPtr(
const char* ctrlPtr, const uint32_t& ctrlLen,
const uint8_t* dataPtr, const uint32_t& datalen)

if(ctrlPtr == nullptr) {
return nullptr;

std::shared_ptr<EngineTransNewT> engine_trans_ptr = std::make_shared<EngineTransNewT>();
// Assigns a value to engine_trans_ptr.
std:istringstream inputStream(std::string(ctrlPtr, ctrlLen));
cereal::PortableBinarylnputArchive archive(inputStream);
archive((*engine_trans_ptr));
uint32_t offsetLen = engine_trans_ptr->buffer_size;
if(dataPtr != nullptr) {
(engine_trans_ptr->trans_buff).reset((const_cast<uint8_t*>(dataPtr)), ReleaseDataBuffer);
// trans_buff and trans_buff_extend point to a contiguous memory space whose address starts with
dataPtr;
// therefore, you only need to bind trans_buff to the destructor, and then the destructor will free the
contiguous memory space after being used.
(engine_trans_ptr->trans_buff_extend).reset((const_cast<uint8_t*>(dataPtr + offsetLen)),
SearDeleteNothing);
}
return std::static_pointer_cast<void>(engine_trans_ptr);
}
// Registers EngineTransNewT
HIAI_REGISTER_SERIALIZE_FUNC("EngineTransNewT", EngineTransNewT, GetTransSearPtr, GetTransDearPtr);

(2) When sending data, you can use only the registered data types. Use HIAI_DMalloc to allocate memory
to optimize performance.

Note: When transferring data from the host to the device, you are advised to use HIAI_DMalloc to
optimize transmission efficiency. The data size supported by the HIAI_DMalloc API ranges from 0 bytes to
(256 MB - 96 bytes). If the data size exceeds this range, use the malloc API to allocate memory.

// Allocates the data memory by calling the HIAI_DMalloc API. The value 10000 indicates the delay in
microseconds, that is, if the memory space is insufficient, the program waits 10000 ms.

HIAI_StatusT get_ret = HIAIMemory::HIAI_DMalloc(width*align_height*3/2,(void*&)align_buffer, 10000);

// Sends data. After the SendData API is called, the HIAI_DFree API does not need to be called. The
value 10000 indicates the delay.

graph->SendData(engine_id_0, "TEST_STR", std::static_pointer_cast<void>(align_buffer), 10000);

2.2 Host-Device Data Transmission

// EngineTransNewT structure
typedef struct EngineTransNew

std::shared_ptr<uint8_t> trans_buff = nullptr; // Transfer buffer
uint32_t buffer_size = 0; // Transfer buffer size
std::shared_ptr<uint8_t> trans_buff_extend = nullptr;

uint32_t buffer_size_extend = 0;

std::vector<crop_rect> crop_list;

// The serialize function is used to serialize a structure.
template <class Archive>

void serialize(Archive & ar)

ar(buffer_size, buffer_size_extend, crop_list);

}

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 8



High Performance Application Programming Guide 2 Key Points

}EngineTransNewT;

/**
* @ingroup hiaiengine
* @brief GetTransSearPtr, // Serializes the Trans data.

* @param [in]: dataPtr // Structure pointer

* @param [out]: structStr // Structure buffer

* @param [out]: buffer // Structure data pointer buffer
* @param [out]: buffSize // Structure data size

void GetTransSearPtr(void* data_ptr, std::string& struct_str,
uint8_t*& buffer, uint32_t& buffer_size)
{
EngineTransNewT* engine_trans = (EngineTransNewT*)data_ptr;
uint32_t datalen = engine_trans->buffer_size;
uint32_t dataLen_extend = engine_trans->buffer_size_extend;
// Obtains the structure buffer and size.
buffer_size = datalLen + datalLen_extend;
buffer = (uint8_t*)engine_trans->trans_buff.get();

// Serialization

std::ostringstream outputStr;
cereal::PortableBinaryOutputArchive archive(outputStr);
archive((*engine_trans));

struct_str = outputStr.str();

}

/**

* @ingroup hiaiengine

* @brief GetTransSearPtr, // Deserializes the Trans data.

* @param [in] : ctrlPtr // Structure pointer

* @param [in]: ctrlLen // Control information size of the data structure

* @param [in] : dataPtr // Structure data pointer

* @param [in]: datalen // Data storage size of the structure, which is used only for verification

and does not represent the original data size
* @param [out]: std::shared_ptr<void> // Structure pointer assigned to the engine
*/
std::shared_ptr<void> GetTransDearPtr(
const char* ctrlPtr, const uint32_t& ctrlLen,
const uint8_t* dataPtr, const uint32_t& datalen)

if(ctrlPtr == nullptr) {
return nullptr;

std::shared_ptr<EngineTransNewT> engine_trans_ptr = std::make_shared<EngineTransNewT>();
// Assigns a value to engine_trans_ptr.
std:istringstream inputStream(std::string(ctrlPtr, ctrlLen));
cereal::PortableBinarylnputArchive archive(inputStream);
archive((*engine_trans_ptr));
uint32_t offsetLen = engine_trans_ptr->buffer_size;
if(dataPtr != nullptr) {
(engine_trans_ptr->trans_buff).reset((const_cast<uint8_t*>(dataPtr)), ReleaseDataBuffer);
// trans_buff and trans_buff_extend point to a contiguous memory space whose address starts with
dataPtr;
// therefore, you only need to bind trans_buff to the destructor, and then the destructor will free the
contiguous memory space after being used.
(engine_trans_ptr->trans_buff_extend).reset((const_cast<uint8_t*>(dataPtr + offsetLen)),
SearDeleteNothing);
}
return std::static_pointer_cast<void>(engine_trans_ptr);
}
// Registers EngineTransNewT
HIAI_REGISTER_SERIALIZE_FUNC("EngineTransNewT", EngineTransNewT, GetTransSearPtr, GetTransDearPtr);

In the case of a large amount of image data or code stream transmission,
HIAI_REGISTER_SERIALIZE_FUNC is used to serialize or deserialize the user-
defined data types, which can implement high-performance data transmission and
save the transmission time.

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 9



High Performance Application Programming Guide 2 Key Points

The Matrix module describes the data to be transmitted in the form of "control
information+data information". The control information refers to a user-defined
data type, and the data information refers to content to be transmitted. The
Matrix module provides the following mechanism to ensure data transmission
between the host and device.

1.

Before data transmission, you can call the HIAI_REGISTER_SERIALIZE_FUNC
macro to register user-defined data types, user-defined serialization functions,
and user-defined deserialization functions.

After you call the SendData API to send data at the local end, the Matrix
module performs the operations. Figure 2-3 shows the processing process.

a.

Call the user-defined serialization function to serialize the control
information and save the serialized control information to the memory
(ctrlBuf).

Copy the control information and store it in the memory of the peer end
through the Direct Memory Access (DMA) mapping, and maintain the
mapping between the control information of the local end and that of
the peer end.

The pointer to the memory (dataBuf) has been transferred through the
input parameter of the SendData API. dataBuf is allocated by calling the
HIAI_DMalloc/HIAI_DVPP_DMalloc API. After the memory is allocated,
the system copies the local data information through DMA mapping and
stores it to the memory of the peer end, and maintains the mapping
between the local end and the peer end.

A message including the addresses and sizes of ctrlBuf and dataBuf is
sent to the peer end.

After the peer end receives the message, the Matrix module calls the
user-defined deserialization function to parse the control information and
data information obtained by the peer end, and sends the parsed data to
the corresponding receiving engine for processing.

After the peer end parses the data, the control information is used out.
Therefore, the memory (ctrlBuf) for storing the control information can
be freed. This memory is allocated at the local end, so the peer end needs
to send the local end a message for freeing ctrlBuf.

After receiving the message, the local end frees ctrlBuf.

After the engine receives and processes the data, dataBuf can be freed.
The Matrix module does not know when dataBuf is used up. Therefore,
when the deserialization function is implemented, dataBuf needs to
return a smart pointer and bound to the destructor
hiai::Graph::ReleaseDataBuffer. When the smart pointer ends the
lifecycle destruction, the destructor is automatically called to send a
message to the local end for freeing dataBuf.

After receiving the message, the local end frees dataBuf.

Issue 01 (2020-05-30)

Copyright © Huawei Technologies Co., Ltd. 10



High Performance Application Programming Guide 2 Key Points

Figure 2-3 Data processing process

PCle Bus

Data ' Data
ortto the sddres of data nfermation | DMAmapping B
P \‘ DMA mapping
e itired controt sntit Control . Control
iatriz allocates mmory for serialized cantrol inforfa * DMAmapping -

Folloui-up.
procedures
including DVPP and
model nference.

Local end (host side) Peer end (device side)

Example scenario: The following code declares the serialization/deserialization
function, defines the data type (struct), and registers the user-defined data type,
serialization function, and deserialization function using the
HIAI_REGISTER_SERIALIZE_FUNC macro. Before data transmission, the Matrix
module calls the registered serialization function. After data transmission, the
Matrix module calls the registered deserialization function.

// EngineTransNewT structure
struct EngineTransNewT
{
std::shared_ptr<uint8_t> transBuff;
uint32_t bufferSize; // Buffer size
std::string url;
// The serialize function is used to serialize a structure.
template <class Archive>
void serialize(Archive & ar)

ar(url);
}
}

/**
* @ingroup hiaiengine
* @brief GetTransSearPtr, // Serializes the Trans data.

* @param [in]: dataPtr // Structure pointer

* @param [out]: structStr // Structure buffer

* @param [out]: buffer // Structure data pointer buffer
* @param [out]: buffSize // Structure data size

*

void GetTransSearPtr(void* dataPtr, std::string& structStr, uint8_t*& buffer, uint32_t& bufferSize)
{

EngineTransNewT* engineTrans = (EngineTransNewT *)dataPtr;

std::shared_ptr<uint8_t> transBuff = ((EngineTransNewT *)dataPtr)->transBuff;

buffer = (uint8_t*)engineTrans->transBuff.get();

bufferSize = engineTrans->bufferSize;

engineTrans->transBuff = nullptr;
engineTrans->buffSize = 0;

std::ostringstream outputStr;
cereal::PortableBinaryOutputArchive archive(outputStr);
archive((*engineTrans));

struct_str = outputStr.str();

((EngineTransNewT*)dataPtr)->transBuff = transBuff;
engineTrans->buffSize = bufferSize;

}
/**

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 11



High Performance Application Programming Guide 2 Key Points

* @ingroup hiaiengine

* @brief GetTransSearPtr, // Deserializes the Trans data.

* @param [in] : ctrlPtr // Structure pointer

* @param [in]: ctrlLen // Control information size of the data structure

* @param [in] : dataPtr // Structure data pointer

* @param [in]: datalen // Data storage size of the structure, which is used only for verification

and does not represent the original data size
* @param [out]: std::shared_ptr<void> // Structure pointer assigned to the engine
*/
std::shared_ptr<void> GetTransDearPtr(char* ctrlPtr, const uint32_t& ctrlLen, uint8_t* dataPtr, const
uint32_t& datalen)
{
std::shared_ptr<EngineTransNewT> engineTransPtr = std::make_shared<EngineTransNewT>();
std:istringstream inputStream(std::string(ctrlPtr, ctrlLen));
cereal::PortableBinarylnputArchive archive(inputStream);
archive((*engineTransPtr));
engineTransPtr->bufferSize = dataLen;
engineTransPtr->transBuff.reset(dataPtr, hiai:Graph::ReleaseDataBuffer);
return std::static_pointer_cast<void>(engineTransPtr);
}
// Registers EngineTransNewT
HIAI_REGISTER_SERIALIZE_FUNC("EngineTransNewT", EngineTransNewT, GetTransSearPtr, GetTransDearPtr);

2.3 Usage of DVPP

2.3.1 Image and Video Encoding and Decoding

The Matrix module provides APIs for image processing and video encoding/
decoding. You can perform image/video decoding on the device to reduce the data
traffic between the host and device, the data transmission time, and the
bandwidth pressure.

On the host, the HIAI_DMalloc API provided by the Matrix module is called to
allocate memory on the device. The allocated memory is used as the input of
image and video encoding and decoding. It is recommended that the start address
of the memory for data storage be 128-byte aligned. On the device, after image
or video pre-processing, the DVPP calls the HIAI_DVPP_DMalloc API provided by
the Matrix module to allocate memory. The memory is used to store the image/
video pre-processing output.

2.3.2 Image Cropping and Resizing

When programming with Ascend 310, you are advised to use digital vision pre-
processing (DVPP) for image cropping and resizing.

Figure 2-4 Cropping and resizing process

| in_width |

. Align_up(out_width,128) |

ght

AR After Cropping and Resizing

out_hei

JE—— Expected Output Image

in_hight

Expected Output Image Resizing
"4

Align_up(out_height, 16}

Actual Output Image

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 12



High Performance Application Programming Guide 2 Key Points

Figure 2-4 shows the cropping/resizing process. This process crops the region of
interest (ROI) and uses the cropped area for re-sampling. The process of cutting
out the ROI is called cropping, and the process of re-sampling is called resizing.

When the resizing coefficient is 1, only cropping is performed. When the original
image is the cropping output, only resizing is performed.

The restrictions on cropping/resizing input are as follows:

e Input data address (OS virtual address): 16-byte aligned
e  Buffer restriction for the input image width: 16-byte aligned
e  Buffer restriction for the input image height: 2-byte aligned

To achieve zero-copy during high performance programming, the memory
addresses assigned to users on the device (receive end) must meet the preceding
restrictions when the memory is allocated. Generally, you can use either of the
following methods depending on different input types:

e Method 1: If the app uses the host or other hardware for decoding, perform
data cropping or padding on the host (transmit end) to meet the 16 x 2
alignment requirement. In this way, the Matrix module automatically
allocates data memory that meets the preceding restrictions at the data
receive end.

(11 NOTE

The input data in the sample is a YUV image. Therefore, the size of the image is
calculated by using the following formula: (/mage width x Image height) x 3/2. You
need to change the formula according to the image format.

static const uint32_t ALIGN_W = 16;

static const uint32_t ALIGN_H = 2;

uint32_t imageWidth = 500;

uint32_t imageHeight = 333;

uint32_t imageSize = imageWidth * imageHeight *3/2;

uint32_t align_width = image_width, align_height = image_height;

// Performs width and height alignment.

alignWidth = (alignWidth % ALIGN_W) ? alignWidth : (imageWidth + ALIGN_W)/ALIGN_W*
ALIGN_W;

alignHeight = (alignHeight % ALIGN_H) ? alignHeight : (imageHeight + ALIGN_H)/ALIGN_H *
ALIGN_H;

uint32_t alignSize = alignWidth * alignHeight *3/2;

// Reads the file data and copies the aligned memory.

FILE *fpIn = fopen(filePath.data(), "rb");

Uint8_t* imageBuffer = (uint8_t*) malloc(imageSize);

HIAI_StatusT getRet = hiai::HIAIMemory::HIAI_DMalloc(fileLen, (void*&)alignBuffer, 10000);

size_t size = fread(imageBuffer, 1, imageSize, fpin);
// Copies data.

Uint32_t tempLen = imageWidth * imageHeight;

if (alignWidth == imageWidth)

{

if(alignHeight > imageHeight)
{

memcpy_s(alignBuffer, tempLen, imageBuffer, tempLen);
memcpy_s(alignBuffer + alignHeight * alignWidth,
tempLen/2, imageBuffer + tempLen, tempLen/2);
}

} else {
for(int32_t n=0;n<imageHeight;n++)
{
memcpy_s(alignBuffer+n*alingWidth,imageWidth,
imageBuffer+n*imageWidth,imageWidth);

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 13



High Performance Application Programming Guide 2 Key Points

}
for(int32_t n=0;n<imageHeight/2;n++)
{
memcpy_s(alignBuffer+n*alignWidth+alignHeight* alignWidth,
imageWidth, imageBuffer+n* imageWidth + imageHeight*imageWidth,imageWidth);//UV
}

}

e Method 2: Decode the image or video on the device to generate 16 x 2
aligned output that can be used as the input for DVPP VPC cropping and
resizing.

2.4 Model Conversion Pre-Processing Configuration

2.5 Batch

As shown in Figure 2-4, the cropped or resized image are aligned. As a result,
some areas are padded and are not the input required by the original model. To
obtain the required image, you can copy the data to a new buffer and input the
data to the model inference module. However, this process causes overheads. To
reduce such overheads, the Matrix module provides a mechanism that allows
padded areas in input images to the model manager (modelManager). The AIPP
module of the model manager crops the image based on the user-defined width
and height to generate an image that meets the model input requirements. When
the image generated by the AIPP module is used, the inference module does not
need to copy data, greatly improving the performance.

In the following example, the input image size for module inference is 224 pixels x
224 pixels, and the data obtained from DVPP is 128 pixels x 16 pixels aligned (the
aligned image size is 256 pixels x 224 pixels).

and Timeout

For most models, especially small models, chip inference using batch input brings
performance improvement. Batch inference greatly improves the data throughput
and chip utilization. Although a certain amount of latency is generated, the overall
performance of the system is improved. Therefore, to build a high-performance
application, the input batch needs to be the largest batch allowed by the latency.

To make batch operations more simple and flexible, the Matrix module supports
the timeout mechanism. Users can configure is_repeat_timeout_flag in the
config file to set whether to enable timeout waiting, and configure
wait_inputdata_max_time to set the timeout duration. If timeout parameters are
set, the system transfers null pointers when calling the Process function after
timeout. You need to compile the code logic for timeout processing, which stores
the received data in a queue and performs inference until the received data is
sufficient to form a batch. You can use the hiai::MultiTypeQueue queue provided
by the Matrix module. To prevent data starvation, a timeout duration must be
specified by using the timeout setting APl based on the latency requirement of the
application. When the timeout duration expires, the Matrix module calls the main
processing flow of the engine. Users can obtain and process the data in the queue
to avoid starvation.

If the model input is multiple batches and you want to send data of each batch to
the model manager (inference engine) for inference, you need to add the
following code logic:

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 14



High Performance Application Programming Guide 2 Key Points

1.  You need to apply for a buffer space on the device side to store the data of
each batch.

2. When the inference engine on the device side receives data of all batches, you
need to combine the data and store it in the buffer space allocated in 1.

3. You can use the data in batches stored in the buffer space for inference only
when the number of received batches on the device side is the same as that
required for model inference.

2.6 Processing the Input and Output Data of Algorithm
Inference

To avoid memory copy during algorithm inference, you are advised to use the
HIAI_DMalloc API to allocate memory for the input and output data when calling
the process API of the model manager. In this way, zero-copy can be achieved and
the processing time is optimized. If DVPP processing is required before inference,
use the memory transferred by the Matrix module as the DVPP input memory, use
the HIAI_DVPP_DMalloc API to allocate the DVPP output memory, and use the
DVPP output memory as the input memory of the inference engine.

2.7 Optimization of Data Backhaul

After the inference is complete, the inference result or inference end signal needs
to be sent to the host. If the inference engine calls SendData to send data back to
the host, the time of the inference engine is consumed. It is recommended that an
independent engine (for example, DataOptEngine) be deployed to return data.
After the inference is completed, the inference engine transparently transmits the
processed data to DataOptEngine, which forwards the data to an engine (for
example, DstEngine) on the host side.

// DataOptEngine on the device side sends data to the host side.
HIAI_IMPL_ENGINE_PROCESS("DataOptEngine", DataOptEngine, 1)
{
HIAI_StatusT hiaiRet = HIAI_OK;
if (arg0 == nullptr) {
HIAI_ENGINE_LOG (HIAI_INVALID_INPUT_MSG, "get inference result timeout");
return HIAI_INVALID_INPUT_MSG;
}
hiaiRet = SendData(0, "EngineTransNewT", arg0);
}
// DataOptEngine on the device side sends data to the host side.
HIAI_IMPL_ENGINE_PROCESS("DstEngine", DstEngine, 1)
{
HIAI_StatusT ret = HIAI_OK;
if (nullptr '=arg0) {
printf("dest engine had receive data already\n");
std::shared_ptr<std::string> result =
std::static_pointer_cast<std::string>(arg0);
ret = SendData(0, "string", result);
if (HIAI_OK !=ret) {
HIAI_ENGINE_LOG(ret, "DstEngine SendData to recv failed");
return ret;
}
}
else {
HIAI_ENGINE_LOG (HIAI_INVALID_INPUT_MSG, "DestEngine Fail to receive data");
printf("destengine do not receive data arg0 is null\n");
return HIAI_INVALID_INPUT_MSG;

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 15



High Performance Application Programming Guide 2 Key Points

return HIAI_OK;
}

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 16



High Performance Application Programming Guide 3 Operator Usage Suggestions

Operator Usage Suggestions

Principles

On the Ascend 310 chip, you can improve the efficiency of the Cube to optimize
the algorithm performance. In this case, you need to reduce data transmission and
vector calculation. The general principles are as follows:

1.  Network structure

Mainstream network topologies such as ResNet and MobileNet are
recommended because their performance has been optimized.

Earlier network topologies such as VGG and AlexNet use large network
models and bring high bandwidth pressure.

In matrix multiplication, set the values of M, K, N to multiples of 16.
Increase the number of channels in the algorithm if possible and do not
reduce the number of channels by creating groups.

Increasing the parameter reuse rate can reduce the bandwidth pressure.
Therefore, you can increase the filter reuse rate to improve the
performance. For example, use greater feature map sizes, smaller stride
values, and smaller dilation values.

2. Conv operator

In non-quantization mode, it is recommended that the number of input
and output channels of a Conv operator be integral multiples of 16.

In quantization mode, it is recommended that the number of input and
output channels of a Conv operator be integral multiples of 32.

In quantization mode, it is recommended that fewer pooling operators be
inserted between multiple Conv operators.

3. Full connection (FC) operator

If FC operators exist on the network, use multiple batches to perform
inference at the same time.

4. Concat operator

In non-quantization mode, it is recommended that the number of input
channels of the Concat operator be integral multiples of 16.

In quantization mode, it is recommended that the input channel of the
Concat operator be integral multiples of 32.

Issue 01 (2020-05-30)

Copyright © Huawei Technologies Co., Ltd. 17



High Performance Application Programming Guide 3 Operator Usage Suggestions

Tips

Conv fusion operator

The Conv+BatchNorm+Scale+Relu/Relu6 combination is recommended. The
performance has been optimized.

Norm operator

- The BatchNorm operator is recommended, which uses the pre-trained
Norm parameter.

- Operators (such as LRN) that require the online calculation of the Norm
parameter are not recommended.

Detection operator

Mainstream detection network topologies such as Faster R-CNN and SSD are
recommended because their performance has been optimized.

The performance of Conv+(BatchNorm+Scale)+Relu is better than that of
Conv+(BatchNorm+Scale)+Tanh. Avoid using complex activation functions.

When Concat operators are assembled in the C dimension, the performance is
better if the values of Tensor and Channel are multiples of 16.

When the value of Batch is a multiple of 16, the performance is better.

The continuous convolution structure shows better performance. If multiple
vector operators (such as pooling) are inserted between the convolution
layers, the performance is poor. This is obvious in the INT8 model.

In early versions of AlexNet and GoogleNet, LRN is used as the normalization
operator. The calculation of this operator is complex. During the evolution of
the algorithm, the operator is replaced with other operators such as
BatchNorm. The LRN operator is no longer used in mainstream network
structures such as ResNet and Inception. For the Ascend310 platform, it is
recommended BatchNorm be used on the network.

Issue 01 (2020-05-30)

Copyright © Huawei Technologies Co., Ltd. 18



High Performance Application Programming Guide 4 Samples

Samples

If multiple inference models are run at the same time, multiple graphs are not
recommended. You are advised to use single graph multiple batches or single
graph multiple engines.

4.1 Data Flow
4.2 Zero-Copy

4.1 Data Flow

The sample code uses the classification network (ResNet-18) to process images.
Figure 4-1 shows the data flow.

Figure 4-1 API Calling Process

(1) The input data of the

preprocessing engine is the data .
transferred to the device memory. Device
(2) The DVPP output data \s_stored in side
the memory allocated by calling

HIAI_DVPP_DMalloc.

(1) Register the serialization and
deserialization functions using the
HIAI_REGISTER _SERIALIZE_FUNC
macro.

(2) You are advised to use
HIAI_DMalloc to allocate memory on
the host side, and then transfer the
data on the host side to the device
side by using SendData.

1
i
|
1
SourceEngine - . I
_ S . . ——
|
I
1

You are advised to

Host side

Data preprocessing

allocate memory an the
host side using

HIAL_ DMalloc and then
transfer the inference
result of the model
manager back to the
host side using
SendData_

DestEngine
(for returning the
inference result)

Model
inference

2 [REWELE]
Inference engine < ( .
manager)
1

——Fmmm———— -

-«

The inference engine directly reuses data in the memory allocated by
calling HIAI_DVPP_DMalloc and uses the output data in the DVPP
memory as the input for inference.

4.2 Zero-Copy

The sample code shows the idea of zero-copy. Zero-copy means that the user does
not perform any explicit copy operation on the image data in the entire process.
Zero-copy requires the following operations:

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 19



High Performance Application Programming Guide 4 Samples

Use HIAI_REGISTER_SERIALIZE_FUNC to register the serialization function
(GetSerializeFunc) and deserialization function (GetDeserializeFunc) to
implement serialization and deserialization of data types, respectively.

Call the HIAI_Dmalloc API provided by the Matrix module to allocate
memory and then call the SendData API to transfer data from the host to the
device.

The memory allocated by calling the HIAI_DMalloc API is used as the input of
image/video encoding and decoding without data copying.

The memory allocated by calling the HIAI_DVPP_DMalloc API provided by
the Matrix module meets the input/output address requirements of the DVPP
and can be used directly as the image/video output. After the
HIAI_DVPP_DMalloc API is called to allocate memory, the
HIAIMemory::HIAI_DVPP_DFree APl must be called to free the memory.

In the DVPP, the input of the VPC module can directly reuse the output data
of the JPEGD module in the memory.

The memory allocated by calling the HIAI_DVPP_DMalloc API can be used
directly as the input of the first-layer model inference without data copying.

Issue 01 (2020-05-30)

Copyright © Huawei Technologies Co., Ltd. 20



High Performance Application Programming Guide 5 FAQs

FAQs

5.1 What Do | Do If an Exception Occurs Because a Smart Pointer Is Used to
Automatically Free Memory but the Destructor Is Not Empty?

5.2 What Do | Do If an Exception Occurs Because a Smart Pointer Is Used to
Manually Free Memory but the Destructor Is Not HIAI_DFree?

5.1 What Do | Do If an Exception Occurs Because a
Smart Pointer Is Used to Automatically Free Memory
but the Destructor Is Not Empty?

Symptom

Solution

HIAI_DMalloc or HIAIMemory::HIAI_DMalloc is called to allocate memory for
host-device or device-host data transmission. flag is set to
MEMORY_ATTR_AUTO_FREE to automatically free memory. A smart pointer is
used to store the address of the allocated memory, but no destructor is defined
(the default destructor is called) or another destructor is called to free the
memory (such as HIAI_DFree, which causes repeated memory freeing). As a
result, the program becomes abnormal and memory leakage occurs.

The Matrix module automatically frees the memory. Therefore, set the destructor
of the smart pointer to empty to resolve the problem.

The reference code is as follows:

* @ Allocates memory to be automatically freed. If a smart pointer is used, the destructor must be empty
(the Matrix module automatically frees the memory).
**/
int main()
{
// Uses DMalloc to allocate memory to be automatically freed.
unsigned char* inbuf = nullptr;
uint32_t bufferLen = 1080*1920;
// The allocated memory is automatically freed. In this case, set flag to
hiai::HIAI_ MEMORY_ATTR::MEMORY_ATTR_ATUO_FREE.
HIAI_StatusT getRet = hiai::HIAIMemory::HIAI_DMalloc(bufferLen, (void*&)inbuf, 10000);

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 21



High Performance Application Programming Guide 5 FAQs

// getRet exception judgment

// Stores the data to be transmitted in inbuf. The size of the data is bufferLen.

// Assembles the engineTranData structure for sending data

EngineTransNewT engineTranData;

engineTranData->bufferSize = bufferLen;
engineTranData->transBuff.reset(std::static_pointer_cast<uint8_t *> (inbuf), [](uint8_t *) (addr )

// The destructor does not perform any operation. The Matrix module automatically frees the
memory. If the destructor is not defined, the default destructor is called, causing an exception.
// If another destructor such as HIAI_DFree is called, repeated memory freeing occurs, causing
an exception.
N;

// Sends data to the peer end by calling SendData.

HIAI_StatusT sendRet =
SendData(DEFAULT_PORT,"EngineTransNewT",std::static_pointer_cast<void>(engineTranData));
// sendRet exception judgment

}

5.2 What Do | Do If an Exception Occurs Because a
Smart Pointer Is Used to Manually Free Memory but
the Destructor Is Not HIAI_DFree?

Symptom
HIAI_DMalloc or HIAIMemory::HIAI_DMalloc is called to allocate memory for
host-device or device-host data transmission. flag is set to
MEMORY_ATTR_MANUAL_FREE to manually free memory. A smart pointer is
used to store the address of the allocated memory. If the destructor of the smart
pointer is incorrect, the program becomes abnormal and memory leakage occurs.
Solution

Set the destructor of the smart pointer to HIAI_DFree or
HIAIMemory::HIAI_DFree.

An example of the code is as follows:
/**

* @ Allocates memory to be manually freed. If a smart pointer is used, use HIAI_DFree as the destructor.
**/
int main()
{
// Uses DMalloc to manually free memory.
unsigned char* inbuf = nullptr;
uint32_t bufferLen = 1080*1920;
HIAI_StatusT getRet = hiai::HIAIMemory::HIAI_DMalloc(bufferLen, (void*&)inbuf,
10000, hiai::HIAI_ MEMORY_ATTR::MEMORY_ATTR_MANUAL_FREE);
// getRet exception judgment

// Stores the data to be transmitted in inbuf. The size of the data is bufferLen.
// Assembles the engineTranData structure for sending data
EngineTransNewT engineTranData;
engineTranData->bufferSize = bufferLen;
engineTranData->transBuff.reset(std::static_pointer_cast<uint8_t *> (inbuf), [J(uint8_t *) (addr )
{
// Uses HIAI_DFree as the destructor. Otherwise, memory leakage occurs.
hiai::HIAIMemory::HIAI_DFree(void * addr)
b
// Sends data to the peer end by calling SendData.
HIAI_StatusT sendRet =
SendData(DEFAULT_PORT,"EngineTransNewT",std::static_pointer_cast<void>(engineTranData));

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 22



High Performance Application Programming Guide 5 FAQs

// sendRet exception judgment

}

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 23



High Performance Application Programming Guide

6 Appendix

Appendix

6.1 Change History

6.1 Change History

Release Date

Description

2020-05-30

This issue is the first official release.

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd.

24



	Contents
	1 Overview
	2 Key Points
	2.1 Memory Management
	2.1.1 Memory Management APIs Provided by the Native Language
	2.1.2 Memory Management APIs Provided by the Matrix Module

	2.2 Host-Device Data Transmission
	2.3 Usage of DVPP
	2.3.1 Image and Video Encoding and Decoding
	2.3.2 Image Cropping and Resizing

	2.4 Model Conversion Pre-Processing Configuration
	2.5 Batch and Timeout
	2.6 Processing the Input and Output Data of Algorithm Inference
	2.7 Optimization of Data Backhaul

	3 Operator Usage Suggestions
	4 Samples
	4.1 Data Flow
	4.2 Zero-Copy

	5 FAQs
	5.1 What Do I Do If an Exception Occurs Because a Smart Pointer Is Used to Automatically Free Memory but the Destructor Is Not Empty?
	5.2 What Do I Do If an Exception Occurs Because a Smart Pointer Is Used to Manually Free Memory but the Destructor Is Not HIAI_DFree?

	6 Appendix
	6.1 Change History


