
IoT Device Access

SDK Reference

Issue 1.0

Date 2022-08-30

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 Overview..1

2 SDKs for the Application Side...4
2.1 Application Java SDK..4
2.2 Application Python SDK.. 6
2.3 Application .NET SDK... 9
2.4 Application Go SDK.. 11
2.5 Application Node.js SDK... 13
2.6 Application PHP SDK... 15

3 Device SDKs.. 18
3.1 Introduction to IoT Device SDKs.. 18
3.2 IoT Device SDK (Java)... 22
3.3 IoT Device SDK (C)... 39
3.4 IoT Device SDK (C#).. 39
3.5 IoT Device SDK (Android).. 39
3.6 IoT Device SDK (Go Community Edition)...40
3.7 IoT Device SDK Tiny (C)... 40
3.8 IoT Device SDK (OpenHarmony)...40
3.9 IoT Device SDK (Python).. 40

IoT Device Access
SDK Reference Contents

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 Overview

The IoT platform provides SDKs for the application and device sides so that
devices can connect to the platform and applications can call platform APIs to
implement secure access, device management, data collection, and command
delivery.

Resource
Package

Description Download Link

Application Java
SDK

You can use Java methods to
call application-side APIs to
communicate with the
platform. For details, see Java
SDK.

Java SDK

Application .NET
SDK

You can use .NET methods to
call application-side APIs to
communicate with the
platform. For details, see .NET
SDK.

.NET SDK

Application
Python SDK

You can use Python methods to
call application-side APIs to
communicate with the
platform. For details, see
Python SDK.

Python SDK

Application Go
SDK

You can use Go methods to call
application-side APIs to
communicate with the
platform. For details, see Go
SDK.

Go SDK

Application
Node.js SDK

You can use Node.js methods to
call application-side APIs to
communicate with the
platform. For details, see
Node.js SDK.

Node.js SDK

IoT Device Access
SDK Reference 1 Overview

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-go-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-go-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-go-v3/releases
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/releases

Resource
Package

Description Download Link

Application PHP
SDK

You can use PHP methods to
call application-side APIs to
communicate with the
platform. For details, see PHP
SDK.

PHP SDK

IoT Device SDK
(Java)

Devices can connect to the
platform by integrating IoT
Device SDK (Java). The demo
provides the code sample for
calling the SDK APIs. For
details, see IoT Device SDK
(Java).

IoT Device SDK (Java)

IoT Device SDK
(C)

Devices can connect to the
platform by integrating IoT
Device SDK (C). The demo
provides the code sample for
calling the SDK APIs. For
details, see IoT Device SDK
(C).

IoT Device SDK (C)

IoT Device SDK
(C#)

Devices can connect to the
platform by integrating IoT
Device SDK (C#). The demo
provides the code sample for
calling the SDK APIs. For
details, see IoT Device SDK
(C).

IoT Device SDK (C#)

IoT Device SDK
(Android)

Devices can connect to the
platform by integrating IoT
Device SDK (Android). The
demo provides the code sample
for calling the SDK APIs. For
details, see IoT Device SDK
(Android).

IoT Device SDK
(Android)

IoT Device SDK
(Go Community
Edition)

Devices can connect to the
platform by integrating IoT
Device SDK (Go Community
Edition). The demo provides the
code sample for calling the SDK
APIs. For details, see IoT Device
SDK (Go Community Edition).

IoT Device SDK (Go
Community Edition)

IoT Device Access
SDK Reference 1 Overview

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://github.com/huaweicloud/huaweicloud-sdk-php-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-php-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-php-v3/releases
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_0089.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_0089.html
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-cSharp
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-cSharp
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-cSharp
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android
https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go
https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go
https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go
https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go

Resource
Package

Description Download Link

IoT Device SDK
Tiny (C)

Devices can connect to the
platform by integrating IoT
Device SDK Tiny (C). The demo
provides the code sample for
calling the SDK APIs. For
details, see IoT Device Tiny
SDK (C).

IoT Device SDK Tiny (C)

IoT Device Access
SDK Reference 1 Overview

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

https://github.com/LiteOS/LiteOS_Lab
https://github.com/LiteOS/LiteOS_Lab
https://github.com/LiteOS/LiteOS_Lab

2 SDKs for the Application Side

2.1 Application Java SDK
IoTDA provides an application SDK in Java for developers. This topic describes how
to install and configure the Java SDK and how to use it to call application-side
APIs.

Obtaining and Installing the SDK

Step 1 Install the Java development environment.

Visit the Java website, and download and install the Java development
environment.

NO TE

The Java SDK can be used in Java JDK 1.8 or later.

Step 2 Install Maven.

Download and install Maven. After Maven is installed, add the dependencies to
the pom.xml file of the Java project.

Step 3 Install the Java SDK.

Add Maven dependencies.

<dependency>
 <groupId>com.huaweicloud.sdk</groupId>
 <artifactId>huaweicloud-sdk-core</artifactId>
 <version>[3.0.40-rc, 3.2.0)</version>
</dependency>
<dependency>
 <groupId>com.huaweicloud.sdk</groupId>
 <artifactId>huaweicloud-sdk-iotda</artifactId>
 <version>[3.0.40-rc, 3.2.0)</version>
</dependency>

----End

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://www.oracle.com/java/technologies/javase-downloads.html
https://maven.apache.org/download.cgi
https://maven.apache.org/install.html

Code Sample

CA UTION

Use a version range for the Maven dependency versions. If you use a specific
version, use 3.0.60 or later.

The following code sample shows how to use the Java SDK to call API Querying
the Device List.

Step 1 Create a credential.

Step 2 Create and initialize an IoTDAClient instance.

Step 3 Instantiate a request object.

Step 4 Call the API for querying the device list.
package com.huaweicloud.sdk.test;

import com.huaweicloud.sdk.core.auth.ICredential;
import com.huaweicloud.sdk.core.exception.ConnectionException;
import com.huaweicloud.sdk.core.exception.RequestTimeoutException;
import com.huaweicloud.sdk.core.exception.ServiceResponseException;
import com.huaweicloud.sdk.core.region.Region;
import com.huaweicloud.sdk.core.auth.BasicCredentials;
import com.huaweicloud.sdk.iotda.v5.*;
import com.huaweicloud.sdk.iotda.v5.model.*;

public class ListDevicesSolution {

 // REGION_ID: If CN East-Shanghai1 is used, enter cn-east-3. If CN North-Beijing4 is used, enter cn-
north-4. If CN South-Guangzhou is used, enter cn-south-1.
 private static final String REGION_ID = "<YOUR REGION ID>";
 //ENDPOINT: On the console, choose Overview and click Access Addresses to view the HTTPS
application access address.
 private static final String ENDPOINT = "<YOUR ENDPOINT>";

 public static void main(String[] args) {
 // There will be security risks if the AK/SK used for authentication is directly written into code. Encrypt
the AK/SK in the configuration file or environment variables for storage;
 // In this example, the AK/SK stored in the environment variables are used. Configure the environment
variables HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local environment first.
 String ak = System.getenv("HUAWEICLOUD_SDK_AK");
 String sk = System.getenv("HUAWEICLOUD_SDK_SK");
 String projectId = "<YOUR PROJECTID>";

 // Create a credential.
 ICredential auth = new BasicCredentials()
 .withAk(ak)
 .withSk(sk)
 // WithDerivedPredicate is used for the standard or enterprise edition. For the basic edition,
delete the line.
 .withDerivedPredicate(BasicCredentials.DEFAULT_DERIVED_PREDICATE)
 .withProjectId(projectId);

 // Create and initialize an IoTDAClient instance.
 IoTDAClient client = IoTDAClient.newBuilder()
 .withCredential(auth)
 // For the standard or enterprise edition, create a region object. For the basic edition, select the
region object in IoTDARegion. For example, withRegion(IoTDARegion.CN_NORTH_4).
 .withRegion(new Region(REGION_ID, ENDPOINT))
 // .withRegion(IoTDARegion.CN_NORTH_4)
 .build();

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html

 // Instantiate a request object.
 ListDevicesRequest request = new ListDevicesRequest();
 try {
 // Call the API for querying the device list.
 ListDevicesResponse response = client.listDevices(request);
 System.out.println(response.toString());
 } catch (ConnectionException e) {
 e.printStackTrace();
 } catch (RequestTimeoutException e) {
 e.printStackTrace();
 } catch (ServiceResponseException e) {
 e.printStackTrace();
 System.out.println(e.getHttpStatusCode());
 System.out.println(e.getErrorCode());
 System.out.println(e.getErrorMsg());
 }
 }
}

----End

Parameter Description

ak Access key ID of your Huawei Cloud account. You can create
and view an AK/SK on the My Credentials > Access Keys
page of the Huawei Cloud management console. For more
information, see Access Keys.

sk Secret access key (SK) of your Huawei Cloud account.

projectId Project ID. For details on how to obtain a project ID, see
Obtaining a Project ID.

IoTDARegion.C
N_NORTH_4

Region where the IoT platform to be accessed is located. The
available regions of the IoT platform have been defined in the
SDK code IoTDARegion.java.
On the console, you can view the region name of the current
service and the mapping between regions and endpoints. For
details, see Platform Connection Information.

REGION_ID If CN East-Shanghai1 is used, enter cn-east-3. If CN North-
Beijing4 is used, enter cn-north-4. If CN South-Guangzhou is
used, enter cn-south-4.

ENDPOINT On the console, choose Overview and click Access Addresses
to view the HTTPS application access address.

NO TE

For details on the project source code and usage guide, see Huawei Cloud Java Software
Development Kit (Java SDK).

2.2 Application Python SDK
IoTDA provides an application SDK in Python for developers. This topic describes
how to install and configure the Python SDK and how to use it to call
application-side APIs.

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1001.html
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/tree/master/services/iotda/src/main/java/com/huaweicloud/sdk/iotda/v5/region/IoTDARegion.java
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-java-v3/blob/master/README.md
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html

Obtaining and Installing the SDK

Step 1 Install the Python development environment.

Visit the Python website, and download and install the Python development
environment.

NO TE

The Python SDK can be used in Python 3 and later versions.

Step 2 Install PiP.

Visit the PiP website, and download and install PiP.

Step 3 Install the Python SDK.

Run the following commands to install the Python SDK core library and related
service libraries.

Install the core library.
pip install huaweicloudsdkcore

Install the IoTDA service library.
pip install huaweicloudsdkiotda

----End

Code Sample
The following code sample shows how to use the Python SDK to call API
Querying the Device List.

Step 1 Create a credential.

Step 2 Create and initialize an IoTDAClient instance.

Step 3 Instantiate a request object.

Step 4 Call the API for querying the device list.
from huaweicloudsdkcore.exceptions import exceptions
from huaweicloudsdkcore.region.region import Region
from huaweicloudsdkiotda.v5 import *
from huaweicloudsdkcore.auth.credentials import BasicCredentials
from huaweicloudsdkcore.auth.credentials import DerivedCredentials

if __name__ == "__main__":
 # There will be security risks if the AK/SK used for authentication is directly written into code. Encrypt
the AK/SK in the configuration file or environment variables for storage;
 # In this example, the AK/SK stored in the environment variables are used. Configure the environment
variables HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local environment first.
 ak = os.environ["HUAWEICLOUD_SDK_AK"]
 sk = os.environ["HUAWEICLOUD_SDK_SK"]
 project_id = "<YOUR PROJECTID>"
 # region_id: If CN East-Shanghai1 is used, enter cn-east-3. If CN North-Beijing4 is used, enter cn-
north-4. If CN South-Guangzhou is used, enter cn-south-1.
 region_id = "<YOUR REGION ID>"
 # endpoint: On the console, choose Overview and click Access Addresses to view the HTTPS
application access address.
 endpoint = "<YOUR ENDPOINT>"

 # For the standard or enterprise edition, create a region object.
 REGION = Region(region_id, endpoint)

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

https://www.python.org/downloads
https://pip.pypa.io/en/stable/installation/
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html

 # Create a credential.
 # Create and initialize a BasicCredentials instance.
 credentials = BasicCredentials(ak, sk, project_id)

 # with_derived_predicate is used for the standard or enterprise edition. For the basic edition, delete the
line.
 credentials.with_derived_predicate(DerivedCredentials.get_default_derived_predicate())

 # For the basic edition, select the region object in IoTDAClient. For
example, .with_region(IoTDARegion.CN_NORTH_4).
 # For the standard or enterprise edition, use the region object created by yourself.
 client = IoTDAClient.new_builder() \
 .with_credentials(credentials) \
 .with_region(REGION) \
 .build()

 try:
 # Instantiate a request object.
 request = ListDevicesRequest()
 # Call the API for querying the device list.
 response = client.list_devices(request)
 print(response)
 except exceptions.ClientRequestException as e:
 print(e.status_code)
 print(e.request_id)
 print(e.error_code)
 print(e.error_msg)

Parameter Description

ak Access key ID of your Huawei Cloud account. You can create
and view an AK/SK on the My Credentials > Access Keys
page of the Huawei Cloud management console. For more
information, see Access Keys.

sk Secret access key (SK) of your Huawei Cloud account.

project_id Project ID. For details on how to obtain a project ID, see
Obtaining a Project ID.

IoTDARegion.C
N_NORTH_4

Region where the IoT platform to be accessed is located. The
available regions of the IoT platform have been defined in the
SDK code iotda_region.py.
On the console, you can view the region name of the current
service and the mapping between regions and endpoints. For
details, see Platform Connection Information.

region_id If CN East-Shanghai1 is used, enter cn-east-3. If CN North-
Beijing4 is used, enter cn-north-4. If CN South-Guangzhou is
used, enter cn-south-4.

endpoint On the console, choose Overview and click Access Addresses
to view the HTTPS application access address.

----End

Additional Information
For details on the project source code and usage guide, see Huawei Cloud Python
Software Development Kit (Python SDK).

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_1001.html
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/tree/master/huaweicloud-sdk-iotda/huaweicloudsdkiotda/v5/region/iotda_region.py
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-python-v3/blob/master/README.md

2.3 Application .NET SDK
IoTDA provides an application SDK in C# for developers. This topic describes how
to install and configure the .NET SDK and how to use it to call application-side
APIs.

Obtaining and Installing the SDK

Step 1 Install the .NET development environment.

Visit the .NET website, and download and install the .NET development
environment.

NO TE

The .NET SDK can be used in the following environments:
● .NET Framework 4.5 and later
● .NET Standard 2.0 and later
● C# 4.0 and later

Step 2 Use the .NET CLI tool to install the SDK.
dotnet add package HuaweiCloud.SDK.Core
dotnet add package HuaweiCloud.SDK.IoTDA

----End

Code Sample
The following code sample shows how to use the .NET SDK to call API Querying
the Device List.

Step 1 Create a credential.

Step 2 Create and initialize a BasicCredentials instance.

Step 3 Instantiate a request object.

Step 4 Call the API for querying the device list.
using System;
using System.Collections.Generic;
using HuaweiCloud.SDK.Core;
using HuaweiCloud.SDK.Core.Auth;
using HuaweiCloud.SDK.IoTDA;
using HuaweiCloud.SDK.IoTDA.V5;
using HuaweiCloud.SDK.IoTDA.V5.Model;

namespace ListDevicesSolution
{
 class Program
 {
 static void Main(string[] args)
 {
 var listDevicesRequest = ListDevices();
 var res = JsonUtils.Serialize(listDevicesRequest.Result);
 Console.WriteLine(res);
 }

 private static async Task<ListDevicesResponse> ListDevices()
 {

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://dotnet.microsoft.com/download
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html

 // There will be security risks if the AK/SK used for authentication is directly written into code.
Encrypt the AK/SK in the configuration file or environment variables for storage;
 // In this example, the AK/SK stored in the environment variables are used. Configure the
environment variables HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local environment
first.
 var ak = Environment.GetEnvironmentVariable("HUAWEICLOUD_SDK_AK",
EnvironmentVariableTarget.Machine);
 var sk = Environment.GetEnvironmentVariable("HUAWEICLOUD_SDK_SK",
EnvironmentVariableTarget.Machine);
 const string projectId = "<YOUR PROJECTID>";
 // region_id: If CN East-Shanghai1 is used, enter cn-east-3. If CN North-Beijing4 is used, enter cn-
north-4. If CN South-Guangzhou is used, enter cn-south-1.
 const string regionId = "<YOUR REGION ID>";
 // endpoint: On the console, choose Overview and click Access Addresses to view the HTTPS
application access address.
 const string endpoint = "<YOUR ENDPOINT>";

 // Create a credential.
 var auth = new BasicCredentials(ak, sk, projectId);

 // WithDerivedPredicate is used for the standard or enterprise edition. For the basic edition, delete
the line.
 auth.WithDerivedPredicate(Credentials.DefaultDerivedPredicate);

 // Create and initialize an IoTDAClient instance.
 var client = IoTDAAsyncClient.NewBuilder()
 .WithCredential(auth)
 // For the standard or enterprise edition, create a region object.
 .WithRegion(new Region(regionId, endpoint))
 // For the basic edition, select the region object in IoTDARegion.
 // .WithRegion(IoTDARegion.CN_NORTH_4)
 // .NET Framework does not support content-type in the get request header.
 // .WithHttpConfig(new HttpConfig().WithIgnoreBodyForGetRequest(true))
 .Build();

 // Instantiate a request object.
 var req = new ListDevicesRequest
 {
 };

 try
 {
 // Call the API for querying the device list.
 var resp =await client.ListDevicesAsync(req);
 Console.WriteLine(resp.GetHttpStatusCode());
 }
 catch (RequestTimeoutException requestTimeoutException)
 {
 Console.WriteLine(requestTimeoutException.ErrorMessage);
 }
 catch (ServiceResponseException clientRequestException)
 {
 Console.WriteLine(clientRequestException.HttpStatusCode);
 Console.WriteLine(clientRequestException.ErrorCode);
 Console.WriteLine(clientRequestException.ErrorMsg);
 }
 catch (ConnectionException connectionException)
 {
 Console.WriteLine(connectionException.ErrorMessage);
 }
 return new ListDevicesResponse();
 }
 }
}

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

Parameter Description

ak Access key ID of your Huawei Cloud account. You can create
and view an AK/SK on the My Credentials > Access Keys
page of the Huawei Cloud management console. For more
information, see Access Keys.

sk Secret access key (SK) of your Huawei Cloud account.

IoTDARegion.C
N_NORTH_4

Region where the IoT platform to be accessed is located. The
available regions of the IoT platform have been defined in the
SDK code IoTDARegion.cs.
On the console, you can view the region name of the current
service and the mapping between regions and endpoints. For
details, see Platform Connection Information.

----End

Additional Information
For details on the project source code and usage guide, see Huawei Cloud .Net
Software Development Kit (.Net SDK).

2.4 Application Go SDK
IoTDA provides an application SDK in Go for developers. This topic describes how
to install and configure the Go SDK and how to use it to call application-side
APIs.

Obtaining and Installing the SDK

Step 1 Install the Go development environment.

Visit the Go website, and download and install the Go development environment.

NO TE

The Go SDK can be used in Go 1.14 and later versions.

Step 2 Install the Huawei Cloud Go library.
go get github.com/huaweicloud/huaweicloud-sdk-go-v3

Step 3 Install dependencies.
go get github.com/json-iterator/go

----End

Code Sample
The following code sample shows how to use the Go SDK to call API Querying
the Device List.

Step 1 Create a credential.

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/tree/master/Services/IoTDA/V5/Region/IoTDARegion.cs
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-net-v3/blob/master/README.md
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://golang.org/dl/
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html

Step 2 Create and initialize an IoTDAClient instance.

Step 3 Instantiate a request object.

Step 4 Call the API for querying the device list.

package main

import (
 "fmt"
 "github.com/huaweicloud/huaweicloud-sdk-go-v3/core/auth"
 "github.com/huaweicloud/huaweicloud-sdk-go-v3/core/auth/basic"
 // For the standard or enterprise edition, use github.com/huaweicloud/huaweicloud-sdk-go-v3/core/
region.
 // For the basic edition, use github.com/huaweicloud/huaweicloud-sdk-go-v3/services/iotda/v5/
region.
 "github.com/huaweicloud/huaweicloud-sdk-go-v3/core/region"
 //"github.com/huaweicloud/huaweicloud-sdk-go-v3/services/iotda/v5/region"
 iotda "github.com/huaweicloud/huaweicloud-sdk-go-v3/services/iotda/v5"
 "github.com/huaweicloud/huaweicloud-sdk-go-v3/services/iotda/v5/model"
)

func main() {
 // There will be security risks if the AK/SK used for authentication is directly written into code. Encrypt
the AK/SK in the configuration file or environment variables for storage;
 // In this example, the AK/SK stored in the environment variables are used. Configure the environment
variables HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local environment first.
 ak := os.Getenv("HUAWEICLOUD_SDK_AK")
 sk := os.Getenv("HUAWEICLOUD_SDK_SK")
 projectId := "<YOUR PROJECTID>"

 // The regionId and endpoint are used to create regions for the standard edition and enterprise edition.
For the basic edition, delete these two lines.
 // region_id: If CN East-Shanghai1 is used, enter cn-east-3. If CN North-Beijing4 is used, enter cn-
north-4. If CN South-Guangzhou is used, enter cn-south-1.
 regionId := "<YOUR REGION ID>"
 // endpoint: On the console, choose Overview and click Access Addresses to view the HTTPS
application access address.
 endpoint := "<YOUR ENDPOINT>"

 // Create a credential.
 auth := basic.NewCredentialsBuilder().
 WithAk(ak).
 WithSk(sk).
 WithProjectId(projectId).
 // WithDerivedPredicate is used for the standard or enterprise edition. For the basic edition, delete
the line.
 WithDerivedPredicate(auth.GetDefaultDerivedPredicate()).
 Build()

 // Create and initialize an IoTDAClient instance.
 client := iotda.NewIoTDAClient(
 iotda.IoTDAClientBuilder().
 // For the standard or enterprise edition, create a region object. For the basic edition, select the
region object in IoTDARegion.
 WithRegion(region.NewRegion(regionId, endpoint)).
 // WithRegion(region.CN_NORTH_4).
 WithCredential(auth).
 Build())
 // Instantiate a request object.
 request := &model.ListDevicesRequest{}
 // Call the API for querying the device list.
 response, err := client.ListDevices(request)
 if err == nil {
 fmt.Printf("%+v\n", response)
 } else {
 fmt.Println(err)
 }
}

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

Parameter Description

ak Access key ID of your Huawei Cloud account. You can create
and view an AK/SK on the My Credentials > Access Keys
page of the Huawei Cloud management console. For more
information, see Access Keys.

sk Secret access key (SK) of your Huawei Cloud account.

IoTDARegion.C
N_NORTH_4

Region where the IoT platform to be accessed is located. The
available regions of the IoT platform have been defined in the
SDK code region.go.
On the console, you can view the region name of the current
service and the mapping between regions and endpoints. For
details, see Platform Connection Information.

----End

Additional Information

For details on the project source code and usage guide, see Huawei Cloud Go
Software Development Kit (Go SDK).

2.5 Application Node.js SDK
The IoT platform provides an application SDK in Node.js for developers. This topic
describes how to install and configure the Node.js SDK and how to use it to call
application-side APIs.

NO TE

Currently, the SDK AK/SK authentication supports only the basic edition. You are advised to
use token authentication for standard and enterprise editions.

Obtaining and Installing the SDK

Step 1 Install the Node.js development environment.

Visit the Node.js website, and download and install the Node.js development
environment.

NO TE

The Node.js SDK can be used in Node 10.16.1 and later versions.

Step 2 Install dependencies.
npm install @huaweicloud/huaweicloud-sdk-core
npm install @huaweicloud/huaweicloud-sdk-iotda

----End

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://github.com/huaweicloud/huaweicloud-sdk-go-v3/tree/master/services/iotda/v5/region/region.go
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0
https://github.com/huaweicloud/huaweicloud-sdk-go-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-go-v3/blob/master/README.md
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
http://nodejs.cn/download/

Code Sample
The following code sample shows how to use the Node.js SDK to call API
Querying the Device List.

Step 1 Create a credential.

Step 2 Create and initialize an IoTDAClient instance.

Step 3 Instantiate a request object.

Step 4 Call the API for querying the device list.
const core = require('@huaweicloud/huaweicloud-sdk-core');
const iotda = require("@huaweicloud/huaweicloud-sdk-iotda");
// There will be security risks if the AK/SK used for authentication is directly written into code. Encrypt the
AK/SK in the configuration file or environment variables for storage;
// In this example, the AK/SK stored in the environment variables are used. Configure the environment
variables HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local environment first.
const ak = process.env.HUAWEICLOUD_SDK_AK;
const sk = process.env.HUAWEICLOUD_SDK_SK;
// endpoint: On the console, choose Overview and click Access Addresses to view the HTTPS application
access address.
// const endpoint = "https://iotda.cn-north-4.myhuaweicloud.com";
const endpoint = "<YOUR ENDPOINT>";
const project_id = "<YOUR PROJECT_ID>";
// Create a credential.
const credentials = new core.BasicCredentials()
 .withAk(ak)
 .withSk(sk)
 .withProjectId(project_id)
// Create and initialize an IoTDAClient instance.
const client = iotda.IoTDAClient.newBuilder()
 .withCredential(credentials)
 .withEndpoint(endpoint)
 .build();
// Instantiate a request object.
const request = new iotda.ListDevicesRequest();
// Call the API for querying the device list.
const result = client.listDevices(request);
result.then(result => {
 console.log("JSON.stringify(result)::" + JSON.stringify(result));
}).catch(ex => {
 console.log("exception:" + JSON.stringify(ex));
});

Parameter Description

ak Access key ID of your Huawei Cloud account. You can create
and view an AK/SK on the My Credentials > Access Keys
page of the Huawei Cloud management console. For more
information, see Access Keys.

sk Secret access key (SK) of your Huawei Cloud account.

endpoint Endpoint of the region where the Huawei Cloud service to be
accessed is located.
On the console, you can view the region name of the current
service and the mapping between regions and endpoints. For
details, see Platform Connection Information.

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html
https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0

Parameter Description

project_id ID of the project where the Huawei Cloud service to be
accessed is located. Select a project ID based on the region to
which the project belongs.

----End

Additional Information
For details on the project source code and usage guide, see Huawei Cloud
Node.js Software Development Kit (Node.js SDK).

2.6 Application PHP SDK
IoTDA provides an application SDK in PHP for developers. This topic describes how
to install and configure the PHP SDK and how to use it to call application-side
APIs.

NO TE

Currently, the SDK AK/SK authentication supports only the basic edition. You are advised to
use token authentication for standard and enterprise editions.

Obtaining and Installing the SDK

Step 1 Install the PHP development environment.

Visit the PHP website, and download and install the PHP development
environment.

NO TE

The PHP SDK can be used in PHP 5.6 and later versions.

Step 2 Install Composer.
curl -sS https://getcomposer.org/installer | php

Step 3 Install the PHP SDK.
composer require huaweicloud/huaweicloud-sdk-php

Step 4 Introduce the autoload.php file of Composer.
require 'path/to/vendor/autoload.php';

----End

Code Sample
The following code sample shows how to use the PHP SDK to call API Querying
the Device List.

Step 1 Create a credential.

Step 2 Create and initialize an IoTDAClient instance.

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-nodejs-v3/blob/master/README.md
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0001.html
https://windows.php.net/download/
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0048.html

Step 3 Instantiate a request object.

Step 4 Call the API for querying the device list.
<?php
namespace HuaweiCloud\SDK\IoTDA\V5\Model;
require_once "vendor/autoload.php";
use HuaweiCloud\SDK\Core\Auth\BasicCredentials;
use HuaweiCloud\SDK\Core\Http\HttpConfig;
use HuaweiCloud\SDK\Core\Exceptions\ConnectionException;
use HuaweiCloud\SDK\Core\Exceptions\RequestTimeoutException;
use HuaweiCloud\SDK\Core\Exceptions\ServiceResponseException;
use HuaweiCloud\SDK\IoTDA\V5\IoTDAClient;
// There will be security risks if the AK/SK used for authentication is directly written into code. Encrypt the
AK/SK in the configuration file or environment variables for storage;
// In this example, the AK/SK stored in the environment variables are used. Configure the environment
variables HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK in the local environment first.
$ak = getenv('HUAWEICLOUD_SDK_AK');
$sk = getenv('HUAWEICLOUD_SDK_SK');
// endpoint: On the console, choose Overview and click Access Addresses to view the HTTPS application
access address.
// $endpoint = "https://iotda.cn-north-4.myhuaweicloud.com";
$endpoint = "<YOUR ENDPOINT>";
$projectId = "<YOUR PROJECT_ID>";
// Create a credential.
$credentials = new BasicCredentials($ak,$sk,$projectId);
// Modify the default configuration and skip the server certificate verification.
$config = HttpConfig::getDefaultConfig();
$config->setIgnoreSslVerification(true);
// Create an IoTDAClient instance and initialize it. (If the default configuration is not modified, you do not
need to add config.)
$client = IoTDAClient::newBuilder(new IoTDAClient)
 ->withHttpConfig($config)
 ->withEndpoint($endpoint)
 ->withCredentials($credentials)
 ->build();
// Instantiate a request object.
$request = new ListDevicesRequest();
try {
// Call the API for querying the device list.
 $response = $client->ListDevices($request);
} catch (ConnectionException $e) {
 $msg = $e->getMessage();
 echo "\n". $msg ."\n";
} catch (RequestTimeoutException $e) {
 $msg = $e->getMessage();
 echo "\n". $msg ."\n";
} catch (ServiceResponseException $e) {
 echo "\n";
 echo $e->getHttpStatusCode(). "\n";
 echo $e->getErrorCode() . "\n";
 echo $e->getErrorMsg() . "\n";
}
echo "\n";
echo $response;

Parameter Description

ak Access key ID of your Huawei Cloud account. You can create
and view an AK/SK on the My Credentials > Access Keys
page of the Huawei Cloud management console. For more
information, see Access Keys.

sk Secret access key (SK) of your Huawei Cloud account.

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

https://support.huaweicloud.com/intl/en-us/usermanual-ca/ca_01_0003.html

Parameter Description

endpoint Endpoint of the region where the Huawei Cloud service to be
accessed is located.
On the console, you can view the region name of the current
service and the mapping between regions and endpoints. For
details, see Platform Connection Information.

projectId ID of the project where the Huawei Cloud service to be
accessed is located. Select a project ID based on the region to
which the project belongs.

----End

Additional Information
For details on the project source code and usage guide, see Huawei Cloud PHP
Software Development Kit (PHP SDK).

IoT Device Access
SDK Reference 2 SDKs for the Application Side

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

https://support.huaweicloud.com/intl/en-us/devg-iothub/iot_02_1004.html#section0
https://github.com/huaweicloud/huaweicloud-sdk-php-v3/blob/master/README.md
https://github.com/huaweicloud/huaweicloud-sdk-php-v3/blob/master/README.md

3 Device SDKs

3.1 Introduction to IoT Device SDKs
You can use Huawei IoT Device SDKs to quickly connect devices to the IoT
platform. After being integrated with an IoT Device SDK, devices that support the
TCP/IP protocol stack can directly communicate with the platform. Devices that do
not support the TCP/IP protocol stack, such as Bluetooth and Zigbee devices, need
to use a gateway integrated with the IoT Device SDK to communicate with the
platform.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

1. Create a product on the IoTDA console or by calling the API Creating a
Product.

2. Register a device on the IoTDA console or by calling the API Creating a
Device.

3. Implement the functions demonstrated in the preceding figure, including
reporting messages/properties, receiving commands/properties/messages,
OTA upgrades, topic customization, and generic-protocol access (see
Developing a Protocol Conversion Gateway for Access of Generic-Protocol
Devices).

The platform provides two types of SDKs. The table below describes their
differences.

SDK Type Pre-integration Solution IoT Protocols
Supported

IoT Device
SDK

Embedded devices with strong computing
and storage capabilities, such as gateways
and collectors

MQTT

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0050.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/api-iothub/iot_06_v5_0046.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0009.html
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0009.html

SDK Type Pre-integration Solution IoT Protocols
Supported

IoT Device
SDK Tiny

Devices that have strict restrictions on
power consumption, storage, and
computing resources, such as single-chip
microcomputer and modules

LwM2M over
CoAP and MQTT

The table below describes hardware requirements for devices.

SDK RAM
Capaci
ty

Flash
Memory

CPU
Frequenc
y

OS Type Programmi
ng
Language

IoT Device
SDK

> 4 MB > 2 MB > 200
MHz

C (Linux), Java
(Linux/
Windows), C#
(Windows),
Android
(Android), Go
Community
Edition (Linux/
Windows/Unix-
like OS), and
OpenHarmony

C, Java, C#,
Android,
and Go

IoT Device
SDK Tiny

> 32
KB

> 128 KB > 100
MHz

No special
requirements

C

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

For details on the SDK usage, visit the following links:

● IoT Device SDK (C)

● IoT Device SDK (Java)

● IoT Device SDK (C#)

● IoT Device SDK (Android)

● IoT Device SDK (Go Community Edition)

● IoT Device SDK Tiny

● IoT Device SDK (OpenHarmony)

The following table shows the main function matrix of the SDK.

Table 3-1

Functio
n

C Java C# Androi
d

GO python C Tiny

Propert
y
reportin
g

√ √ √ √ √ √ √

Messag
e
reportin
g and
delivery

√ √ √ √ √ √ √

Event
reportin
g and
delivery

√ √ √ √ √ √ √

Comma
nd
delivery
and
respons
e

√ √ √ √ √ √ √

Device
shadow

√ √ √ √ √ √ √

OTA
upgrad
e

√ √ √ √ √ √ ×

bootstr
ap

√ √ √ √ √ √ √

Time
synchro
nization

√ √ √ √ √ √ √

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

Functio
n

C Java C# Androi
d

GO python C Tiny

Gatewa
y and
child
device
manage
ment

√ √ √ √ √ √ √

Device-
side
Rules

√ × × × × × √

Remote
SSH

√ × × × × × ×

Anomal
y
detectio
n

√ × × × × × ×

Device-
cloud
secure
commu
nication
(soft
bus)

√ × × × × × ×

M2M
functio
n

√ × × × × × ×

Generic
-
protoco
l access

√ √ √ √ × √ ×

3.2 IoT Device SDK (Java)

Preparations
● Ensure that the JDK (version 1.8 or later) and Maven have been installed.
● Download the SDK. The project contains the following subprojects:

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-java

iot-device-sdk-java: SDK code
iot-device-demo: demo code for common directly connected devices
iot-gateway-demo: demo code for gateways
iot-bridge-demo: demo code for the bridge, which is used to bridge a TCP
device to the platform
iot-device-code-generator: device code generator, which can automatically
generate device code for different product models

● Go to the SDK root directory and run the mvn install command to build and
install the SDK.

Creating a Product
A smokeDetector product model is provided to help you understand the product
model. This smoke detector can report the smoke density, temperature, humidity,
and smoke alarms, and execute the ring alarm command. The following uses the
smoke detector as an example to introduce the procedures of message reporting
and property reporting.

Step 1 Access the IoTDA service page and click Access Console to view the MQTTS
device access domain name, and save the address.

Step 2 Choose Products in the navigation pane and click Create Product in the upper
right corner.

Step 3 Set the parameters as prompted and click OK.

Set Basic Info

Resource
Space

The platform automatically allocates the created product to the
default resource space. If you want to allocate the product to
another resource space, select the resource space from the
drop-down list box. If a resource space does not exist, create it
first.

Product
Name

Customize the product name. The name can contain letters,
numbers, underscores (_), and hyphens (-).

Protocol Select MQTT.

Data Type Select JSON.

Manufacturer Customize the manufacturer name. The name can contain
letters, numbers, underscores (_), and hyphens (-).

Define Product Model

Product
Model

In this example, we import a product model, rather than using a
preset product model. For details, see Uploading a Product
Model.

Industry Select the industry to which the product model belongs.

Device Type Customize the device type.

----End

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

https://www.huaweicloud.com/intl/en-us/product/iotda.html
https://support.huaweicloud.com/intl/en-us/usermanual-iothub/iot_01_0006.html

Uploading a Product Model

Step 1 Download the smokeDetector product model file.

Step 2 Click the name of the product created in 3 to access its details.

Step 3 On the Model Definition tab page, click Import from Local to upload the
product model file obtained in 1.

----End

Registering a Device

Step 1 Choose Devices > All Devices, and click Individual Register in the upper right
corner.

Step 2 Set the parameters as prompted and click OK.

Parameter Description

Resource
Space

Ensure that the device and the product created in 3 belong to
the same resource space.

Product Select the product created in 3.

Node ID This parameter specifies the unique physical identifier of the
device. The value can be customized and consists of letters and
numbers.

Device Name Customize the device name.

Authenticatio
n Type

Select Secret.

Secret Customize the device secret. If this parameter is not set, the
platform automatically generates a secret.

After the device is registered, save the node ID, device ID, and secret.

----End

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

https://iot-developer.obs.cn-north-4.myhuaweicloud.com:443/smokeDetector.zip

Initializing a Device
1. Enter the device ID and secret obtained in Registering a Device and the

device connection information obtained in 1. The format is ssl://Domain
name:Port or ssl://IP address:Port.
 //For example, modify the following parameters in MessageSample.java in the iot-device-demo
file:
 IoTDevice device = new IoTDevice("ssl://Domain name:8883",
 "5e06bfee334dd4f33759f5b3_demo", "mysecret", file);

2. Establish a connection. Call init of the IoT Device SDK. The thread is blocked
until a result is returned. If the connection is established, 0 is returned.
 if (device.init() != 0) {
 return;
 }

If the connection is successful, information similar to the following is
displayed:
2023-07-17 17:22:59 INFO MqttConnection:105 - Mqtt client connected. address :ssl://Domain name:
8883

3. After the device is created and connected, it can be used for communication.
You can call getClient of the IoT Device SDK to obtain the device client. The
client provides communication APIs for processing messages, properties, and
commands.

Reporting a Message

Message reporting is the process in which a device reports messages to the
platform.

1. Call getClient of the IoT Device SDK to obtain the client from the device.

2. Call reportDeviceMessage to enable the client to report a device message. In
the sample below, messages are reported periodically.
 while (true) {
 device.getClient().reportDeviceMessage(new DeviceMessage("hello"), new ActionListener() {
 @Override
 public void onSuccess(Object context) {
 log.info("reportDeviceMessage ok");
 }

 @Override
 public void onFailure(Object context, Throwable var2) {
 log.error("reportDeviceMessage fail: " + var2);
 }
 });

 // Report a message using a custom topic, which must be configured on the platform first.
 String topic = "$oc/devices/" + device.getDeviceId() + "/user/wpy";
 device.getClient().publishRawMessage(new RawMessage(topic, "hello raw message "),
 new ActionListener() {
 @Override
 public void onSuccess(Object context) {
 log.info("publishRawMessage ok: ");
 }

 @Override
 public void onFailure(Object context, Throwable var2) {
 log.error("publishRawMessage fail: " + var2);
 }
 });

 Thread.sleep(5000);
 }

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

3. Replace the device parameters with the actual values in the main function of
the MessageSample class, and run this class. Then view the logs about
successful connection and message reporting.
2023-07-17 18:59:20 INFO MqttConnection:105 - Mqtt client connected. address :ssl://Domain name:
8883
2023-07-17 18:59:20 INFO MqttConnection:246 - publish message topic = $oc/devices/
6396f2a998314b7a1c3faa24_java-sdk-test/sys/events/up, msg =
{"object_device_id":"6396f2a998314b7a1c3faa24_java-sdk-test","services": [{"paras":
{"type":"DEVICE_STATUS","content":"connect complete, the url is ssl://Domain name:
8883","timestamp":"1689591560993"},"service_id":"$log","event_type":"log_report","event_time":"2023
0717T105920Z","event_id":null}]}
2023-07-17 18:59:20 INFO MqttConnection:246 - publish message topic = $oc/devices/
6396f2a998314b7a1c3faa24_java-sdk-test/sys/messages/up, msg =
{"name":null,"id":null,"content":"hello","object_device_id":null}
2023-07-17 18:59:20 INFO MqttConnection:246 - publish message topic = $oc/devices/
6396f2a998314b7a1c3faa24_java-sdk-test/user/wpy, msg = hello raw message
2023-07-17 18:59:21 INFO MessageSample:44 - reportDeviceMessage ok
2023-07-17 18:59:21 INFO MessageSample:59 - publishRawMessage ok:

4. On the IoTDA console, choose Devices > All Devices and check whether the
device is online.

5. Select the device, click View, and enable message trace on the device details
page.

6. View the messages received by the platform.

Note: Message trace may be delayed. If no data is displayed, wait for a while and
refresh the page.

Reporting Properties
Open the PropertySample class. In this example, the alarm, temperature,
humidity, and smokeConcentration properties are periodically reported to the
platform.

 // Report properties periodically.
 while (true) {

 Map<String ,Object> json = new HashMap<>();

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

 Random rand = new Random();

 // Set properties based on the product model.
 json.put("alarm", 1);
 json.put("temperature", rand.nextFloat()*100.0f);
 json.put("humidity", rand.nextFloat()*100.0f);
 json.put("smokeConcentration", rand.nextFloat() * 100.0f);

 ServiceProperty serviceProperty = new ServiceProperty();
 serviceProperty.setProperties(json);
 serviceProperty.setServiceId("smokeDetector");// The serviceId must the consistent with that
defined in the product model.

 device.getClient().reportProperties(Arrays.asList(serviceProperty), new ActionListener() {
 @Override
 public void onSuccess(Object context) {
 log.info("pubMessage success");
 }

 @Override
 public void onFailure(Object context, Throwable var2) {
 log.error("reportProperties failed" + var2.toString());
 }
 });

 Thread.sleep(10000);
 }
 }

Modify the main function of the PropertySample class and run this class. Then
view the logs about successful property reporting.

The latest property values are displayed on the device details page of the
platform.

Reading and Writing Properties

Call the setPropertyListener method of the client to set the property callback. In
PropertySample, the property reading/writing API is implemented.

Property reading: Only the alarm property can be written.

Property reading: Assemble the local property value based on the API format.

 device.getClient().setPropertyListener(new PropertyListener() {

 // Process property writing.
 @Override
 public void onPropertiesSet(String requestId, List<ServiceProperty> services) {
 // Traverse services.
 for (ServiceProperty serviceProperty : services) {

 log.info("OnPropertiesSet, serviceId is {}", serviceProperty.getServiceId());

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

 // Traverse properties.
 for (String name : serviceProperty.getProperties().keySet()) {
 log.info("property name is {}", name);
 log.info("set property value is {}", serviceProperty.getProperties().get(name));
 }

 }
 // Change the local property value.
 device.getClient().respondPropsSet(requestId, IotResult.SUCCESS);
 }

 /**
 * Process property reading. In most scenarios, you can directly read the device shadow on the
platform, so this interface does not need to be implemented.
 * To read device properties in real time, implement this method.
 */
 @Override
 public void onPropertiesGet(String requestId, String serviceId) {
 log.info("OnPropertiesGet, the serviceId is {}", serviceId);
 Map<String, Object> json = new HashMap<>();
 Random rand = new SecureRandom();
 json.put("alarm", 1);
 json.put("temperature", rand.nextFloat() * 100.0f);
 json.put("humidity", rand.nextFloat() * 100.0f);
 json.put("smokeConcentration", rand.nextFloat() * 100.0f);

 ServiceProperty serviceProperty = new ServiceProperty();
 serviceProperty.setProperties(json);
 serviceProperty.setServiceId("smokeDetector");

 device.getClient().respondPropsGet(requestId, Arrays.asList(serviceProperty));
 }
 });

Note:

1. The property reading/writing API must call respondPropsGet and
respondPropsSet to report the operation result.

2. If the device does not allow the platform to proactively read data from the
device, onPropertiesGet can be left not implemented.

Run the PropertySample class and check whether the value of the alarm
property is 1 on the Device Shadow tab page.

Change the value of the alarm property to 0.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

In the device logs, the value of alarm is 0.

Delivering a Command

You can set a command listener to receive commands delivered by the platform.
The callback needs to process the commands and report responses.

The CommandSample class prints commands after receiving them and calls
respondCommand to report the responses.

 device.getClient().setCommandListener(new CommandListener() {
 @Override
 public void onCommand(String requestId, String serviceId, String commandName, Map<String,
Object> paras) {
 log.info("onCommand, serviceId = {}", serviceId);
 log.info("onCommand , name = {}", commandName);
 log.info("onCommand, paras = {}", paras.toString());

 // Process the command.

 // Send a command response.
 device.getClient().respondCommand(requestId, new CommandRsp(0));
 }

 });

Run the CommandSample class and deliver a command on the platform. In the
command, set serviceId to smokeDetector, name to ringAlarm, and paras to
duration=20.

The log shows that the device receives the command and reports a response.

Object-oriented Programming

Calling device client APIs to communicate with the platform is flexible but requires
you to properly configure each API.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

The SDK provides a simpler method, object-oriented programming. You can use
the product model capabilities provided by the SDK to define device services and
call the property reading/writing API to access the device services. In this way, the
SDK can automatically communicate with the platform to synchronize properties
and call commands.

Object-oriented programming simplifies the complexity of device code and
enables you to focus only on services rather than the communications with the
platform. This method is much easier than calling client APIs and suitable for most
scenarios.

The following uses smokeDetector to demonstrate the process of object-oriented
programming.

1. Define the service class and properties based on the product model. (If there
are multiple services, define multiple service classes.)
public static class SmokeDetectorService extends AbstractService {

 // Define properties based on the product model. Ensure that the device name and type are the
same as those in the product model. writeable indicates whether the property can be written, and
name indicates the property name.
 @Property(name = "alarm", writeable = true)
 int smokeAlarm = 1;

 @Property(name = "smokeConcentration", writeable = false)
 float concentration = 0.0f;

 @Property(writeable = false)
 int humidity;

 @Property(writeable = false)
 float temperature;

@Property indicates a property. You can use name to specify a property
name. If no property name is specified, the field name is used.
You can add writeable to a property to control permissions on it. If the
property is read-only, add writeable = false. If writeable is not added, the
property can be read and written.

2. Define service commands. The SDK automatically calls the service commands
when the device receives commands from the platform.
The type of input parameters and return values for APIs cannot be changed.
Otherwise, a runtime error occurs.
The following code defines a ring alarm command named ringAlarm.
// Define the command. The type of input parameters and return values for APIs cannot be changed.
Otherwise, a runtime error occurs.
 @DeviceCommand(name = "ringAlarm")
 public CommandRsp alarm(Map<String, Object> paras) {
 int duration = (int) paras.get("duration");
 log.info("ringAlarm duration = " + duration);
 return new CommandRsp(0);
 }

3. Define the getter and setter methods.
– The device automatically calls the getter method after receiving the

commands for querying and reporting properties from the platform. The
getter method reads device properties from the sensor in real time or
from the local cache.

– The device automatically calls the setter method after receiving the
commands for setting properties from the platform. The setter method

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

updates the local values of the device. If a property is not writable, leave
the setter method not implemented.

// Ensure that the names of the setter and getter methods comply with the JavaBean specifications so
that the APIs can be automatically called by the SDK.
 public int getHumidity() {

 // Simulate the action of reading data from the sensor.
 humidity = new Random().nextInt(100);
 return humidity;
 }

 public void setHumidity(int humidity) {
 // You do not need to implement this method for read-only fields.
 }

 public float getTemperature() {

 // Simulate the action of reading data from the sensor.
 temperature = new Random().nextInt(100);
 return temperature;
 }

 public void setTemperature(float temperature) {
 // You do not need to implement this method for read-only fields.
 }

 public float getConcentration() {

 // Simulate the action of reading data from the sensor.
 concentration = new Random().nextFloat()*100.0f;
 return concentration;
 }

 public void setConcentration(float concentration) {
 // You do not need to implement this method for read-only fields.
 }

 public int getSmokeAlarm() {
 return smokeAlarm;
 }

 public void setSmokeAlarm(int smokeAlarm) {

 this.smokeAlarm = smokeAlarm;
 if (smokeAlarm == 0){
 log.info("alarm is cleared by app");
 }
 }

4. Create a service instance in the main function and add the service instance to
the device.
 // Create a device.
 IoTDevice device = new IoTDevice(serverUri, deviceId, secret);

 // Create a device service.
 SmokeDetectorService smokeDetectorService = new SmokeDetectorService();
 device.addService("smokeDetector", smokeDetectorService);

 if (device.init() != 0) {
 return;
 }

5. Enable periodic property reporting.
// Enable periodic property reporting.
smokeDetectorService.enableAutoReport(10000);

If you do not want to report properties periodically, you can call
firePropertiesChanged to manually report them.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Run the SmokeDetector class to view the logs about property reporting.

View the device shadow on the platform.

Modify the alarm property on the platform and view the device logs about
property modification.

Deliver the ringAlarm command on the platform.
View the logs about calling the ringAlarm command and reporting a
response.

Using the Code Generator

The SDK provides a code generator, which allows you to automatically generate a
device code framework only using a product model. The code generator parses the
product model, generates a service class for each service defined in the model, and
generates a device main class based on the service classes. In addition, the code
generator creates a device and registers a service instance in the main function.

To use the code generator to generate device code, proceed as follows:

1. Download the huaweicloud-iot-device-sdk-java project, decompress it, go to
the huaweicloud-iot-device-sdk-java directory, and run the mvn install
command.

2. Check whether an executable JAR package is generated in the target folder of
iot-device-code-generator.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

3. Save the product model to a local directory. For example, save the
smokeDetector.zip file to disk D.

4. Access the SDK root directory and run the java -jar .\iot-device-code-
generator\target\iot-device-code-generator-1.2.0-with-deps.jar
D:\smokeDetector.zip command.

5. Check whether the generated-demo package is generated in the
huaweicloud-iot-device-sdk-java directory.

The device code is generated.

To compile the generated code, proceed as follows:

1. Go to the huaweicloud-iot-device-sdk-java\generated-demo directory, and
run the mvn install command to generate a JAR package in the target folder.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

2. Run the java -jar .\target\iot-device-demo-ganerated-1.2.0-with-deps.jar
your-access-address your-deivce-id your-device-secrect command. The
three parameters indicate the device access address, ID, and password,
respectively. Run the generated demo.

To modify the extended code, proceed as follows:

Service definition and registration have already been completed through the
generated code. You only need to make small changes to the code.

1. Command API: Add specific implementation logic.

2. getter method: Change the value return mode of the generated code from
returning a random value to reading from the sensor.

3. setter method: Add specific processing logic, such as delivering instructions to
the sensor, because the generated code only modifies and saves the
properties.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

Developing a Gateway
Gateways are special devices that provide child device management and message
forwarding in addition to the functions of common devices. The SDK provides the
AbstractGateway class to simplify gateway implementation. This class can collect
and save child device information (with a data persistence API), forward message
responses (with a message forwarding API), and report child device list, properties,
statuses, and messages.

● AbstractGateway Class
Inherit this class to provide APIs for persistently storing device information
and forwarding messages to child devices in the constructor.
 public abstract void onSubdevCommand(String requestId, Command command);

 public abstract void onSubdevPropertiesSet(String requestId, PropsSet propsSet);

 public abstract void onSubdevPropertiesGet(String requestId, PropsGet propsGet);

 public abstract void onSubdevMessage(DeviceMessage message);

● iot-gateway-demo Code
The iot-gateway-demo project implements a simple gateway with
AbstractGateway to connect TCP devices. The key classes include:
SimpleGateway: inherited from AbstractGateway to manage child devices
and forward messages to child devices.
StringTcpServer: implements a TCP server based on Netty. In this example,
child devices support the TCP protocol, and the first message is used for
authentication.
SubDevicesFilePersistence: persistently stores child device information in a
JSON file and caches the file in the memory.
Session: stores the mapping between device IDs and TCP channels.

● SimpleGateway Class
Adding or Deleting a Child Device
Adding a child device: onAddSubDevices of AbstractGateway can store child
device information. Additional processing is not required, and
onAddSubDevices does not need to be overridden for SimpleGateway.
Deleting a child device: You need to modify persistently stored information of
the child device and disconnect the device from the platform. Therefore,
onDeleteSubDevices is overridden to add the link release logic, and
onDeleteSubDevices in the parent class is called.

 @Override
 public int onDeleteSubDevices(SubDevicesInfo subDevicesInfo) {

 for (DeviceInfo subdevice : subDevicesInfo.getDevices()) {
 Session session = nodeIdToSesseionMap.get(subdevice.getNodeId());
 if (session != null) {
 if (session.getChannel() != null) {
 session.getChannel().close();
 channelIdToSessionMap.remove(session.getChannel().id().asLongText());
 nodeIdToSesseionMap.remove(session.getNodeId());
 }
 }
 }
 return super.onDeleteSubDevices(subDevicesInfo);

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

 }

● Processing Messages to Child Devices

The gateway needs to forward messages received from the platform to child
devices. The messages from the platform include device messages, property
reading/writing, and commands.

– Device messages: Obtain the nodeId based on the deviceId, and then
obtain the session of the device to get a channel for sending messages.
You can choose whether to convert messages during forwarding.
 @Override
 public void onSubdevMessage(DeviceMessage message) {

 // Each platform API carries a deviceId, which consists of a nodeId and productId.
 //deviceId = productId_nodeId
 String nodeId = IotUtil.getNodeIdFromDeviceId(message.getDeviceId());
 if (nodeId == null) {
 return;
 }

 // Obtain the session based on the nodeId for a channel.
 Session session = nodeIdToSesseionMap.get(nodeId);
 if (session == null) {
 log.error("subdev is not connected " + nodeId);
 return;
 }
 if (session.getChannel() == null){
 log.error("channel is null " + nodeId);
 return;
 }

 // Directly forward messages to the child device.
 session.getChannel().writeAndFlush(message.getContent());
 log.info("writeAndFlush " + message);
 }

– Property Reading and Writing

Property reading and writing include property setting and query.

Property setting:
 @Override
 public void onSubdevPropertiesSet(String requestId, PropsSet propsSet) {

 if (propsSet.getDeviceId() == null) {
 return;
 }

 String nodeId = IotUtil.getNodeIdFromDeviceId(propsSet.getDeviceId());
 if (nodeId == null) {
 return;
 }

 Session session = nodeIdToSesseionMap.get(nodeId);
 if (session == null) {
 return;
 }

 // Convert the object into a string and send the string to the child device. Encoding/
Decoding may be required in actual situations.
 session.getChannel().writeAndFlush(JsonUtil.convertObject2String(propsSet));

 // Directly send a response. A more reasonable method is to send a response after the
child device processes the request.
 getClient().respondPropsSet(requestId, IotResult.SUCCESS);

 log.info("writeAndFlush " + propsSet);

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

 }

Property query:
 @Override
 public void onSubdevPropertiesGet(String requestId, PropsGet propsGet) {

 // Send a failure response. It is not recommended that the platform directly reads the
properties of the child device.
 log.error("not supporte onSubdevPropertiesGet");
 deviceClient.respondPropsSet(requestId, IotResult.FAIL);
 }

– Commands: The procedure is similar to that of message processing.
Different types of encoding/decoding may be required in actual
situations.
@Override
 public void onSubdevCommand(String requestId, Command command) {

 if (command.getDeviceId() == null) {
 return;
 }

 String nodeId = IotUtil.getNodeIdFromDeviceId(command.getDeviceId());
 if (nodeId == null) {
 return;
 }

 Session session = nodeIdToSesseionMap.get(nodeId);
 if (session == null) {
 return;
 }

 // Convert the command object into a string and send the string to the child device.
Encoding/Decoding may be required in actual situations.
 session.getChannel().writeAndFlush(JsonUtil.convertObject2String(command));

 // Directly send a response. A more reasonable method is to send a response after the
child device processes the request.
 getClient().respondCommand(requestId, new CommandRsp(0));
 log.info("writeAndFlush " + command);
 }

● Upstream Message Processing
Upstream message processing is implemented by channelRead0 of
StringTcpServer. If no session exists, create a session.
If the child device information does not exist, the session cannot be created
and the connection is rejected.
 @Override
 protected void channelRead0(ChannelHandlerContext ctx, String s) throws Exception {
 Channel incoming = ctx.channel();
 log.info("channelRead0" + incoming.remoteAddress() + " msg :" + s);

 // Create a session for the first message.
// Create a session for the first message.
 Session session = simpleGateway.getSessionByChannel(incoming.id().asLongText());
 if (session == null) {
 String nodeId = s;
 session = simpleGateway.createSession(nodeId, incoming);

 // The session fails to create and the connection is rejected.
 if (session == null) {
 log.info("close channel");
 ctx.close();
 }
 }

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

If the session exists, the message is forwarded.
else {
 // Call reportSubDeviceProperties to report properties of the child device.
 DeviceMessage deviceMessage = new DeviceMessage(s);
 deviceMessage.setDeviceId(session.getDeviceId());
 simpleGateway.reportSubDeviceMessage(deviceMessage, null);

 }

For more information about the gateway, view the source code. The demo is
open-source and can be extended as required. For example, you can modify
the persistence mode, add message format conversion during forwarding, and
support other device access protocols.

● Using iot-gateway-demo

a. Register a gateway with the platform.
b. Modify the main function of StringTcpServer by replacing the

constructor parameters, and run this class.
 simpleGateway = new SimpleGateway(new SubDevicesFilePersistence(),
 "ssl://iot-acc.cn-north-4.myhuaweicloud.com:8883",
 "5e06bfee334dd4f33759f5b3_demo", "mysecret");

c. After the gateway is displayed as Online on the platform, add a child
device.

A log similar to the following is displayed on the gateway:
2023-01-05 19:14:32 INFO SubDevicesFilePersistence:83 - add subdev:
456gefw3fh

d. Run the TcpDevice class. After the connection is established, enter the
nodeId of the child device.

A log similar to the following is displayed on the gateway:
2023-01-05 19:15:13 INFO StringTcpServer:118 -
channelRead0/127.0.0.1:60535 msg :subdev2
2023-01-05 19:15:13 INFO SimpleGateway:68 - create new session
okSession{nodeId='456gefw3fh', channel=[id: 0x42c9dc24, L:/
127.0.0.1:8080 - R:/127.0.0.1:60535],
deviceId='5e06bfee334dd4f337589c1de_subdev2'}

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

e. Check whether the child device is online on the platform.

f. Enable the child device to report messages.

Logs similar to the following show that the message is reported.

g. View the messages traced.
Click Message Trace on the gateway details page. Send data from the
child device to the platform, and view the messages after a while.

3.3 IoT Device SDK (C)
The IoT Device SDK (C) provides abundant demo code for devices to communicate
with the platform and implement device, gateway, and Over-The-Air (OTA)
services. For details on the integration guide, see IoT Device SDK (C)
Development Guide.

3.4 IoT Device SDK (C#)
The IoT Device SDK (C#) provides abundant demo code for devices to
communicate with the platform and implement advanced services such as device,
gateway, and Over-The-Air (OTA) services. For details about the integration guide,
see IoT Device SDK (C#) Development Guide.

3.5 IoT Device SDK (Android)
The IoT Device SDK (Android) provides abundant demo code for devices to
communicate with the platform and implement advanced services such as device,
gateway, and Over-The-Air (OTA) services. For details on the integration guide, see
IoT Device SDK (Android) Development Guide.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-c
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-csharp
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-Android

3.6 IoT Device SDK (Go Community Edition)
The Go SDK provides the basic capability for communication with the platform. It
is provided by the open-source community github. If you have any problem when
using the SDK, submit an issue on github.

3.7 IoT Device SDK Tiny (C)
The IoT Device SDK Tiny is lightweight interconnection middleware deployed on
devices that have WAN capabilities and limited power consumption, storage, and
computing resources. After the IoT Device SDK Tiny is deployed on such devices,
you only need to call APIs to enable the devices to connect to the IoT platform,
report data, and receive commands.

NO TE

The IoT Device SDK Tiny can run on devices that do not run Linux OS, and can also be
integrated into modules. However, it does not provide gateway services.

3.8 IoT Device SDK (OpenHarmony)
The IoT Device SDK (OpenHarmony) provides abundant demo code for devices to
communicate with the platform and implement advanced services such as device,
gateway, and Over-The-Air (OTA) services. For details on the integration guide, see
IoT Device SDK (OpenHarmony) Development Guide.

3.9 IoT Device SDK (Python)
The IoT Device SDK (Python) provides abundant demo code for devices to
communicate with the platform and implement device, gateway, and Over-The-Air
(OTA) services. For details, see IoT Device SDK (Python) Development Guide.

IoT Device Access
SDK Reference 3 Device SDKs

Issue 1.0 (2022-08-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

https://github.com/ctlove0523/huaweicloud-iot-device-sdk-go
https://support.huaweicloud.com/intl/en-us/bestpractice-iothub/iot_bp_0079.html
https://github.com/huaweicloud/huaweicloud-iot-device-sdk-python

	Contents
	1 Overview
	2 SDKs for the Application Side
	2.1 Application Java SDK
	2.2 Application Python SDK
	2.3 Application .NET SDK
	2.4 Application Go SDK
	2.5 Application Node.js SDK
	2.6 Application PHP SDK

	3 Device SDKs
	3.1 Introduction to IoT Device SDKs
	3.2 IoT Device SDK (Java)
	3.3 IoT Device SDK (C)
	3.4 IoT Device SDK (C#)
	3.5 IoT Device SDK (Android)
	3.6 IoT Device SDK (Go Community Edition)
	3.7 IoT Device SDK Tiny (C)
	3.8 IoT Device SDK (OpenHarmony)
	3.9 IoT Device SDK (Python)

