
Data Lake Insight

SDK Reference

Issue 01

Date 2025-06-26

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. i

Security Declaration

Vulnerability

Huawei's regulations on product vulnerability management are subject to the Vul. Response Process. For
details about this process, visit the following web page:
https://www.huawei.com/en/psirt/vul-response-process
For vulnerability information, enterprise customers can visit the following web page:
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. ii

https://www.huawei.com/en/psirt/vul-response-process
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Contents

1 Overview..1

2 Configuring the Java SDK Environment... 4
2.1 Preparing a Java Development Environment.. 4
2.2 Obtaining and Installing the Java SDK.. 5
2.3 Initializing the DLI Client.. 6

3 Configuring the Python SDK Environment..8
3.1 Preparing a Python Development Environment... 9
3.2 Obtaining and Installing Python SDKs.. 10
3.3 Initializing the DLI Client..11

4 General SDK V3..13

5 DLI SDK V2.. 14
5.1 Java SDK (DLI SDK V2)... 14
5.1.1 Submitting a SQL Job Using an SDK.. 14
5.1.2 Submitting a Flink SQL Job Using an SDK..23
5.1.3 Submitting a Flink Jar Job Using an SDK.. 25
5.1.4 Submitting a Spark Job Using an SDK... 28
5.2 Python SDK (DLI SDK V2)..31
5.2.1 Submitting a SQL Job Using an SDK.. 31
5.2.2 Submitting a Flink SQL Job Using an SDK..38
5.2.3 Submitting a Flink Jar Job Using an SDK.. 41
5.2.4 Submitting a Spark Job Using an SDK... 43

6 DLI SDK V1 (Not Recommended)..47
6.1 DLI SDK V1 Function Matrix... 47
6.2 Mapping Between DLI SDK V1 and APIs.. 48
6.3 Java SDK (DLI SDK V1)... 54
6.3.1 Overview...54
6.3.2 Queue-Related SDKs.. 55
6.3.3 Resource-Related SDKs..56
6.3.4 SDKs Related to SQL Jobs...57
6.3.4.1 Database-Related SDKs... 58
6.3.4.2 Table-Related SDKs... 59

Data Lake Insight
SDK Reference Contents

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. iii

6.3.4.3 Job-related SDKs.. 61
6.3.5 SDKs Related to Flink Jobs... 66
6.3.6 SDKs Related to Spark Jobs... 69
6.3.7 SDKs Related to Flink Job Templates... 71
6.4 Python SDK (DLI SDK V1)..72
6.4.1 Overview...72
6.4.2 Queue-Related SDKs.. 73
6.4.3 Resource-Related SDKs..74
6.4.4 SDKs Related to SQL Jobs...75
6.4.4.1 Database-Related SDKs... 75
6.4.4.2 Table-Related SDKs... 76
6.4.4.3 Job-related SDKs.. 78
6.4.5 SDKs Related to Spark Jobs... 80

A Change History.. 82

Data Lake Insight
SDK Reference Contents

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. iv

1 Overview

Data Lake Insight (DLI) software development kits (SDKs) encapsulate the RESTful
APIs provided by DLI to simplify development.

DLI offers support for two types of SDKs: one is the general SDK V3, and the other
is the SDK developed by DLI (including DLI SDK V1 and DLI SDK V2).

This document describes how to use the SDK developed by DLI.

Table 1-1 DLI SDK types

SDK Version Description How to Use

General SDK V3 The SDK V3 APIs are
automatically generated from
the YAML files defining the
APIs, ensuring parameter
consistency with the service's
own APIs. You can directly call
the API functions offered by
SDK V3 to submit both DLI
SQL and DLI Spark jobs,
streamlining the development
process.
The SDK you download on
the API Explorer page is the
universal version SDK V3.

General SDK V3

SDK developed
by DLI

DLI SDK
V1

SDKs developed by DLI,
corresponding to the dli-sdk-
x-1.x.x version in the DLI SDK
installation package.

This version will
be deprecated
and is not
recommended.

Data Lake Insight
SDK Reference 1 Overview

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 1

SDK Version Description How to Use

DLI SDK
V2

SDKs developed by DLI based
on the general SDK V3,
corresponding to the dli-sdk-
x-2.x.x version in the DLI SDK
installation package.
You can directly call DLI SDK
V2 to submit both DLI SQL
and DLI Spark jobs,
streamlining the development
process.
Download the DLI SDK V2
installation package on the
DLI management console.
NOTE

Starting May 2024, new users
can directly use DLI's SDK V2
without needing to have their
accounts whitelisted.
For users who started using DLI
before May 2024, to use this
function, they must submit a
service ticket to have their
accounts whitelisted.

Submitting a
SQL Job Using an
SDK
Submitting a
Spark Job Using
an SDK
Submitting a
Flink SQL Job
Using an SDK
Submitting a
Flink Jar Job
Using an SDK

NO TE

The DLI SDK calls APIs using HTTPS, with certificates utilized by the server.

DLI SDK Introduction

DLI SDKs encapsulate the RESTful APIs provided by DLI to simplify development.
You can directly call the API functions offered by DLI SDKs to submit both DLI SQL
and DLI Spark jobs.

DLI SDKs consist of both the SDK V3 and other SDKs developed by DLI.
● (Recommended)DLI SDK V3: automatically generates APIs from the YAML

files defining the APIs, ensuring parameter consistency with the service's own
APIs.
For details, see SDK V3.

● DLI SDK (self-developed): SDKs developed by the DLI team. This manual
introduces the usage of DLI's self-developed SDKs.
– Operation guidance of DLI SDK V2:

▪ For details about how to use the Java SDK, see Java SDK (DLI SDK
V2).

▪ For details about how to use the Python SDK, see Python SDK (DLI
SDK V2).

Data Lake Insight
SDK Reference 1 Overview

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 2

https://support.huaweicloud.com/intl/en-us/devg-sdk/en-us_topic_0070637169.html

– Operation guidance of DLI SDK V1 (not recommended):

▪ For details about how to use the Java SDK, see Java SDK (DLI SDK
V1).

▪ For details about how to use the Python SDK, see Python SDK (DLI
SDK V1).

NO TE

The DLI SDK calls APIs using HTTPS, with certificates utilized by the server.

Data Lake Insight
SDK Reference 1 Overview

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 3

2 Configuring the Java SDK Environment

2.1 Preparing a Java Development Environment

Scenario
Before installing and using Java SDKs, make sure you have completed the basic
configuration of your development environment.

Java SDKs require JDK 1.8 or later. To ensure compatibility with future versions,
you are advised to use version 1.8.

Once the Java runtime environment is configured, you can open the Windows
command line and execute the command Java -version to check the version
information.

Procedure
1. Install the JDK. Download the JDK 1.8 installation package from Oracle

official website and install it.
2. Set environment variables. Specifically, choose Start > Control Panel. Click

System > Advanced system settings. In the displayed System Properties
dialog box, click Advanced and then click Environment Variables to switch
to the Environment Variables dialog box.

3. Create the system variable JAVA_HOME with Value set to the JDK installation
path, for example, D:\Java\jdk1.8.0_45.

4. Edit the Path variable and add %JAVA_HOME%\bin to Variable value.
5. Create the CLASSPATH variable with Variable value set to .;%JAVA_HOME%

\lib;%JAVA_HOME%\lib\tools.jar.
6. Check whether the configurations succeed. Specifically, at the Start menu,

enter cmd and press Enter to bring up the command prompt window. Enter
java -version and press Enter. If the version information is displayed, as
shown in Figure 2-1, Python is successfully installed and configured.

Data Lake Insight
SDK Reference 2 Configuring the Java SDK Environment

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 4

https://www.oracle.com/technetwork/java/archive-139210.html
https://www.oracle.com/technetwork/java/archive-139210.html

Figure 2-1 Checking the configuration

2.2 Obtaining and Installing the Java SDK

Obtaining DLI SDKs
On the DLI management console, download the SDK installation package dli-sdk-
java-x.x.x.zip and extract it. The directory structure after extraction is shown in the
table below.

Table 2-1 Directory structure

Parameter Description

jars SDK and its dependent JAR packages.

maven-install Script and JAR package that are installed in the local
Maven repository.

dli-sdk-java.version Java SDK version description.

Installing the SDK
● Method 1: Adding the SDK using the Maven central repository

The Maven central repository is part of the Apache Maven project that
provides Java libraries and frameworks.
When the SDK retrieval method is not specified, the default approach is to
add the SDK driver using the Maven central repository.
Use Maven to add the Maven configuration items on which huaweicloud-dli-
sdk depends. (This is the default operation and does not need to be
separately configured.)
 <dependency>
 <groupId>com.huawei.dli</groupId>
 <artifactId>huaweicloud-dli-sdk-java</artifactId>
 <version>x.x.x</version>
 </dependency>

● Method 2: Obtaining the SDK using Maven to configure the Huawei
image source
When using Maven to manage project dependencies, you can modify the
settings.xml file to configure the Huawei image source to obtain the SDK.
<mirror>
 <id>huaweicloud</id>
 <mirrorOf>*</mirrorOf>
 <url>https://mirrors.huaweicloud.com/repository/maven/</url>
</mirror>

● Method 3: Downloading the JDBC driver file from the DLI management
console

Data Lake Insight
SDK Reference 2 Configuring the Java SDK Environment

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 5

https://mvnrepository.com/artifact/com.huawei.dli/huaweicloud-dli-jdbc

a. Log in to the DLI management console.
b. Click SDK Download in the Common Links area on the right of the

Overview page.
c. On the DLI SDK DOWNLOAD page, select a driver and download it.

Click huaweicloud-dli-sdk-java-x.x.x to download a JDBC driver package.

NO TE

The JDBC driver package is named huaweicloud-dli-sdk-java-<version>.zip. It
can be used in all versions of all platforms (such as Linux and Windows) and
depends on JDK 1.7 or later.

d. The downloaded JDBC driver package contains .bat (Windows) or .sh
(Linux/Mac) scripts, which are used to automatically install the SDK
driver to the local Maven repository.
You can choose a script based on your OS to install the JDBC driver.

▪ Windows: Double-click the .bat file or run the file in the CLI.

▪ Linux/Mac: Run the .sh script.

2.3 Initializing the DLI Client
To use DLI SDK to access DLI, you need to initialize the DLI client. You can use
either AK/SK or token-based authentication to initialize the client. Note that
token-based authentication is only supported in DLI SDK V1, and it is advisable to
use AK/SK-based authentication.

Prerequisites
● You have configured the Java SDK environment by referring to Overview.
● You have initialized the DLI client by referring to Initializing the DLI Client.

Example Code for AK/SK Authentication
● Sample code

 String ak = System.getenv("xxx_SDK_AK");//Access key ID
 String sk = System.getenv("xxx_SDK_SK");//Key used together with the access key ID
 String regionName = "regionname";
 String projectId = "project_id";
 DLIInfo dliInfo = new DLIInfo(regionName, ak, sk, projectId);
 DLIClient client = new DLIClient(AuthenticationMode.AKSK, dliInfo);

● Parameter description and acquisition method
– Parameter description

▪ ak: Account access key

▪ sk: Account secret access key

Data Lake Insight
SDK Reference 2 Configuring the Java SDK Environment

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 6

https://dli-hk-sdk.obs-website.ap-southeast-1.myhuaweicloud.com/

NO TE

Hard coding AKs and SKs or storing them in code in plaintext poses
significant security risks. You are advised to store them in encrypted form in
configuration files or environment variables and decrypt them when needed
to ensure security.

In this example, the AK and SK stored in the environment variables are used.
Specify the environment variables xxx_SDK_AK and xxx_SDK_SK in the local
environment first.

▪ regionName: Region name

▪ projectId: Project ID

– You can perform the following operations to obtain the Access Keys,
project ID, and Region:

i. Log in to the management console.

ii. Hover over the username in the upper right corner and choose My
Credentials from the drop-down list.

iii. In the navigation pane on the left, choose Access Keys. On the
displayed page, click Create Access Key. Confirm that you want to
proceed with the operation and click OK.

iv. On the displayed page, click Download. Open the file to obtain the
AK/SK information.

v. In the navigation pane on the left, choose API Credentials. In the
Projects pane, locate project_id and obtain the region information.

Sample code for token-based authentication
● Sample code

 String domainName = "domainname";
 String userName = "username";
 String password = "password";
 String regionName = "regionname";
 String projectId = "project_id";
 DLIInfo dliInfo = new DLIInfo(regionName, domainName, userName, password, projectId);
 DLIClient client = new DLIClient(AuthenticationMode.TOKEN, dliInfo);

● Parameter description

– domainname: Account name

– username: Username

– password: User password

– regionname: Region name

– project_id: Project ID

NO TE

● Hard coding passwords or storing them in code in plaintext poses significant
security risks. You are advised to store them in encrypted form in configuration
files or environment variables and decrypt them when needed to ensure security.

● You can change the endpoint in set mode. Run the following statement:
dliInfo.setServerEndpoint(endpoint).

Data Lake Insight
SDK Reference 2 Configuring the Java SDK Environment

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 7

3 Configuring the Python SDK
Environment

Scenario
If you are preparing for secondary development, you need to deploy the
environment as required in Table 3-1.

Table 3-1 Development environment

Item Description

Operating system (OS) Windows OS. Windows 7 or later is
recommended.

Python Python 2.7.10, 3.4.0, or later versions
are required. The Visual C++
compilation environment is required,
and Visual C++ build tools or Visual
Studio must be installed.

Python dependencies The DLI Python SDK dependencies
include urllib3 1.15 or later, six 1.10 or
later, certifi, and python-dateutil.

Procedure
Step 1 Download Python from Python's official website and install it.

1. Install Python according to the Python official guidelines.
2. Check whether the configurations succeed. Specifically, at the Start menu,

enter cmd and press Enter to bring up the command prompt window. Enter
python and press Enter. If the version information is displayed, as shown in
Figure 3-1, Python is successfully installed and configured.

Figure 3-1 Checking the configuration

Data Lake Insight
SDK Reference 3 Configuring the Python SDK Environment

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 8

https://www.python.org/downloads/

NO TE

If an error similar to "error: Microsoft Visual C++ xx.x is required. Get it with Build Tools for
Visual Studio" is reported when you install the Python application package, the C++
compiler may not been installed. Install the Visual Studio compiler of the required version.
For some OSs, restart the system after Visual Studio is installed.

Step 2 Install the DLI Python SDK.

1. Select the installation package obtained in Obtaining and Installing Python
SDKs and decompress it.

Decompress dli-sdk-python-<version>.zip to a local directory that can be
adjusted.

2. Install the SDK.

a. On a PC running the Windows OS, choose Start > Run, enter cmd, and
press Enter.

b. In the command-line interface (CLI) window, access the windows
directory in the directory where dli-sdk-python-<version>.zip is
decompressed. For example, D:\tmp\dli-sdk-python-1.0.8.

c. Run the following command to install DLI Python SDK (During the
installation, the third-party dependencies are automatically downloaded):

python setup.py install

Figure 3-2 shows the installation result.

Figure 3-2 Installing Python SDK

----End

3.1 Preparing a Python Development Environment

Scenario

Before installing and using Python SDKs, make sure you have completed the basic
configuration of your development environment.

Python 2.7.10, 3.4.0, or later versions are required. The Visual C++ compilation
environment is required, and Visual C++ build tools or Visual Studio must be
installed.

Data Lake Insight
SDK Reference 3 Configuring the Python SDK Environment

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 9

Procedure
1. Download Python from Python's official website and install it.

2. Install Python according to the Python official guidelines.
3. Check whether the configurations succeed. Specifically, at the Start menu,

enter cmd and press Enter to bring up the command prompt window. Enter
python and press Enter. If the version information is displayed, as shown in
Figure 3-3, Python is successfully installed and configured.

Figure 3-3 Checking the configuration

NO TE

If an error similar to "error: Microsoft Visual C++ xx.x is required. Get it with Build Tools for
Visual Studio" is reported when you install the Python application package, the C++
compiler may not been installed. Install the Visual Studio compiler of the required version.
For some OSs, restart the system after Visual Studio is installed.

3.2 Obtaining and Installing Python SDKs

Installing Python SDKs
This section provides instructions on how to install Python SDKs.

Obtaining DLI SDKs
On the displayed DLI SDK DOWNLOAD page, click the target link to obtain the
desired SDK installation package.

Obtain the dli-sdk-python-x.x.x.zip package and decompress it. The following
table shows the directory structure of the package.

Table 3-2 Directory structure

Parameter Description

dli DLI SDK basic module in the Python environment

examples Python sample code

pyDLI Implementation interface of PyHive

setup.py Python SDK installation script

Installing DLI Python SDKs
1. Download and decompress the SDK installation package.

Decompress dli-sdk-python-<version>.zip to a local directory that can be
adjusted.

Data Lake Insight
SDK Reference 3 Configuring the Python SDK Environment

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 10

https://www.python.org/downloads/

2. Install the SDK.

a. On a PC running Windows, choose Start > Run, enter cmd, and press
Enter.

b. In the command-line interface (CLI) window, access the windows
directory in the directory where dli-sdk-python-<version>.zip is
decompressed. For example, D:\tmp\dli-sdk-python-1.0.8.

c. Run the following command to install DLI Python SDK (During the
installation, the third-party dependencies are automatically downloaded):
python setup.py install
Figure 3-4 shows the installation result.

Figure 3-4 Installing Python SDK

3.3 Initializing the DLI Client
To use DLI Python SDK to access DLI, you need to initialize the DLI client. You can
use either AK/SK or token-based authentication to initialize the client. Note that
token-based authentication is only supported in DLI SDK V1, and it is advisable to
use AK/SK-based authentication.

For details about the dependencies and complete sample code, see Overview.

Example Code for AK/SK Authentication
● Sample code

def init_aksk_dli_client():
 auth_mode = 'aksk'
 region = 'xxx'
 project_id = 'xxxx'
 ak = System.getenv("xxx_SDK_AK")//Access key ID
 sk = System.getenv("xxx_SDK_SK")//Key used together with the access key ID
 dli_client = DliClient(auth_mode=auth_mode, region=region, project_id=project_id,ak=ak, sk=sk)
 return dli_client

● Parameter description and acquisition method
– Parameter description

▪ ak: Account access key

▪ sk: Account secret access key

Data Lake Insight
SDK Reference 3 Configuring the Python SDK Environment

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 11

NO TE

Hard coding AKs and SKs or storing them in code in plaintext poses
significant security risks. You are advised to store them in encrypted form in
configuration files or environment variables and decrypt them when needed
to ensure security.

In this example, the AK and SK stored in the environment variables are used.
Specify the environment variables xxx_SDK_AK and xxx_SDK_SK in the local
environment first.

▪ regionName: Region name

▪ projectId: Project ID

– You can perform the following operations to obtain the Access Keys,
project ID, and Region:

i. Log in to the management console.
ii. Hover over the username in the upper right corner and choose My

Credentials from the drop-down list.
iii. In the navigation pane on the left, choose Access Keys. On the

displayed page, click Create Access Key. Confirm that you want to
proceed with the operation and click OK.

iv. On the displayed page, click Download. Open the file to obtain the
AK/SK information.

v. In the navigation pane on the left, choose API Credentials. In the
Projects pane, locate project_id and obtain the region information.

Example Code for Token-based Authentication
● Sample code

def init_token_dli_client():
 auth_mode = 'token'
 region = 'xxx'
 project_id = 'xxxx'
 account = 'xxx account'
 user = 'xxxx'
 password = 'xxxx'
 dli_client = DliClient(auth_mode=auth_mode, region=region, project_id=project_id,account=account,
user=user, password=password)
 return dli_client

● Parameter description
– domainname: Account name
– username: Username
– password: User password
– regionName: Region name
– project_id: Project ID

NO TE

● Hard coding passwords or storing them in code in plaintext poses significant
security risks. You are advised to store them in encrypted form in configuration
files or environment variables and decrypt them when needed to ensure security.

● You can change the endpoint in set mode. Run the following statement:
dliInfo.setServerEndpoint(endpoint).

Data Lake Insight
SDK Reference 3 Configuring the Python SDK Environment

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 12

4 General SDK V3

DLI SDKs encapsulate the RESTful APIs provided by DLI to simplify development.

This section describes how to use the general SDK V3 and lists the addresses for
obtaining the latest SDKs.

SDK V3 Developer Guide

Generating SDK Code Online
[Example]

Use API Explorer to dynamically generate SDK code.

You can view the SDK code of a range of programming languages in the Sample
Code tab of an API.

Data Lake Insight
SDK Reference 4 General SDK V3

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 13

https://support.huaweicloud.com/intl/en-us/devg-sdk/en-us_topic_0070637169.html

5 DLI SDK V2

5.1 Java SDK (DLI SDK V2)

5.1.1 Submitting a SQL Job Using an SDK
This section describes how to submit a SQL job using DLI SDK V2.

NO TE

Starting May 2024, new users can directly use DLI's SDK V2 without needing to have their
accounts whitelisted.

For users who started using DLI before May 2024, to use this function, they must submit a
service ticket to have their accounts whitelisted.

Prerequisites
● You have configured the Java SDK environment by referring to Overview.

● You have initialized the DLI client by referring to Initializing the DLI Client.

Preparations

Obtain an AK/SK, project ID, and region information.

1. Log in to the management console.

2. In the upper right corner, hover over the username and choose My
Credentials from the drop-down list.

3. In the navigation pane on the left, choose Access Keys. On the displayed
page, click Create Access Key. Confirm that you want to proceed with the
operation and click OK.

4. On the displayed page, click Download. Open the file to obtain the AK/SK
information.

5. In the navigation pane on the left, choose API Credentials. In the Projects
pane, locate project_id and obtain the region information.

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 14

Example Code
 private static final Logger logger = LoggerFactory.getLogger(SqlJobExample.class);
 private static final ThreadLocal<DateFormat> DATE_FORMAT = ThreadLocal.withInitial(
 () -> new SimpleDateFormat("yyyy-MM-dd"));

 private static final ThreadLocal<DateFormat> TIMESTAMP_FORMAT = ThreadLocal.withInitial(
 () -> new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSSZZ"));

 public static void main(String[] args) {
 String yourAccessKey = System.getenv("HUAWEICLOUD_SDK_AK");
 String yourSecretKey = System.getenv("HUAWEICLOUD_SDK_SK");
 DLIInfo dliInfo = new DLIInfo("RegionName", yourAccessKey, yourSecretKey, "YouProjectId");
 dliInfo.setQueueName("YourQueueName");

 try {
 // Step 1: Create a database and a table.
 prepare(dliInfo);

 /*
 * Step 2: Import data to the table.
 * The overall implementation process/ principle can be divided into the following three steps:
 * 1. Use the OBS API to upload data to YourOBSPathToWriteTmpData. You can configure a
lifecycle policy in OBS to periodically delete these temporary data.
 * 2. Submit the LoadData statement to DLI to import data to DLI. For details, see Importing Data.
 * 3. Cyclically check the job status every second until the job is complete.
 */
 String yourOBSPathToWriteTmpData = String.format("obs://your_obs_bucket_name/your/path/
%s", UUID.randomUUID());
 loadData(dliInfo, yourOBSPathToWriteTmpData);

 // Step 3: Submit the SQL statement, execute the query, and read the result.
 String selectSql = "SELECT * FROM demo_db.demo_tbl";
 String jobId = queryData(dliInfo, selectSql);

 // Step 4: If needed, you can also obtain the results by job ID.
 queryDataByJobId(dliInfo, jobId);

 // Query all jobs by page. You can use this API to query information of all SQL jobs within the
current project.
 // Key SDK API: com.huaweicloud.sdk.dli.v1.DliClient#listSqlJobs(ListSqlJobsRequest).
 listSqlJobs(dliInfo).

 /*
 * Other scenarios:
 * 1. To cancel a submitted SQL job, use the following API.
 * Key SDK API: com.huaweicloud.sdk.dli.v1.DliClient#cancelSqlJob(CancelSqlJobRequest).
 * Note: If a job has been completed or failed, it cannot be canceled.
 * 2. To verify the syntax of an SQL statement, use the following API.
 * Key SDK API: com.huaweicloud.sdk.dli.v1.DliClient#checkSql(CheckSqlRequest).
 * Note: This API can only be used to verify the syntax, not the semantics. Use the Explain
statement and submit it to DLI for execution to perform semantic verification.
 * 3. To obtain a submitted SQL job based on the job ID and view job details, use the following API.
 * Key SDK API:
com.huaweicloud.sdk.dli.v1.DliClient#showSqlJobDetail(ShowSqlJobDetailRequest).
 * 4. Obtain the job execution progress. If the job is being executed, you can obtain the sub-job
information. If the job has just started or has been completed, you cannot obtain the sub-job information.
 * Key SDK API:
com.huaweicloud.sdk.dli.v1.DliClient#showSqlJobProgress(ShowSqlJobProgressRequest).
 */
 } catch (DLIException e) {
 // Handle the exception based on service requirements. The following is just an example.
 }
 }

Creating a Database and Table

Reference link:

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 15

https://support.huaweicloud.com/intl/en-us/sqlref-spark-dli/dli_08_0100.html

● Creating a Database
● Creating a Table
● Key SDK API: com.huawei.dli.sdk.Job#submit()

Sample code:

 private static String prepare(DLIInfo dliInfo) throws DLIException {
 // 1. Create a database.
 // default is the database built in DLI. You cannot create a database named default.
 String createDbSql = "CREATE DATABASE IF NOT EXISTS demo_db";
 new SQLJob(dliInfo, createDbSql).submit();
 // 2. Create a table. Note: Adjust the table structure, table data directory, and OBS storage path based
on site requirements.
 String createTblSql = "CREATE TABLE IF NOT EXISTS `demo_tbl` (\n"
 + " `bool_c` BOOLEAN,\n"
 + " `byte_c` TINYINT,\n"
 + " `short_c` SMALLINT,\n"
 + " `int_c` INT,\n"
 + " `long_c` BIGINT,\n"
 + " `float_c` FLOAT,\n"
 + " `double_c` DOUBLE,\n"
 + " `dec_c` DECIMAL(10,2),\n"
 + " `str_c` STRING,\n"
 + " `date_c` DATE,\n"
 + " `ts_c` TIMESTAMP,\n"
 + " `binary_c` BINARY,\n"
 + " `arr_c` ARRAY<INT>,\n"
 + " `map_c` MAP<STRING, INT>,\n"
 + " `struct_c` STRUCT<`s_str_c`: STRING, `s_bool_c`: BOOLEAN>)\n"
 + "USING parquet OPTIONS(path 'obs://demo_bucket/demo_db/demo_tbl')";
 new SQLJob(dliInfo, "demo_db", createTblSql).submit();
 }

Importing Data
● To import data using a DLI SDK, follow these 3 steps:

a. Use the OBS API to upload data to a temporary OBS directory, that is,
YourOBSPathToWriteTmpData.

b. Submit the LoadData statement to DLI to import data from the
temporary OBS directory to DLI. Importing Data

c. Cyclically check the job status every 1 second until the job is complete.
● Data import description:

– Before submitting a data import job, you can configure the partition for
importing data and specify whether to overwrite existing data (data is
appended by default).

▪ To insert data into a specific partition, use the following constructor:
new SqlJobBase.TableInfo("demo_db", "demo_tbl", new LinkedHashMap<String,String>()
{{put("YourPartitionColumnName","value");}});

▪ By default, an import job appends data to the existing data. To
overwrite the existing data with the written data, use the following
constructor:
new SqlJobBase.TableInfo("demo_db", "demo_tbl", true);

▪ To overwrite the partition data, use the following constructor:
new SqlJobBase.TableInfo("demo_db", "demo_tbl", new LinkedHashMap<String,String>()
{{put("YourPartitionColumnName","value");}}, true);

– If a folder and a file with the same name exist in an OBS bucket
directory, data is preferentially loaded to the file rather than the folder at

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 16

https://support.huaweicloud.com/intl/en-us/sqlref-spark-dli/dli_08_0071.html
https://support.huaweicloud.com/intl/en-us/sqlref-spark-dli/dli_08_0076.html
https://support.huaweicloud.com/intl/en-us/sqlref-spark-dli/dli_08_0100.html

that path. You are advised not to have files and folders with the same
name at the same level when creating an OBS object.

● Reference links:
– Importing Data
– Native Data Types
– Complex Data Types

● Key SDK APIs:
– com.huawei.dli.sdk.write.Writer
– com.huawei.dli.sdk.Job#asyncSubmit()
– com.huaweicloud.sdk.dli.v1.DliClient#showSqlJobStatus

● Sample code:
– (Recommended) Solution 1: Use the LoadData statement to import data.

 private static void loadData(DLIInfo dliInfo, String uploadDataPath) throws DLIException {
 UploadJob uploadJob = new UploadJob(
 dliInfo, uploadDataPath, new SqlJobBase.TableInfo("demo_db", "demo_tbl"));

 // 1. Write data to the OBS temporary directory. Modify the following information based
on site requirements. The following is just an example.
 // Note: This step involves directly calling the OBS data writing API. DLI only provides a
default implementation for writing data in JSON format, meaning that files are stored on OBS
in JSON format.
 // The writer here can be implemented based on service requirements. For example, you
use a custom CSV writer, resulting in files being stored in CSV format on OBS.
 writeTmpData(uploadJob.createWriter(), genSchema(), 123, 50);

 // 2. Import data to DLI.
 // Submit the LoadData statement.
 // Note: The data_type here needs to be determined based on the writer implementation
in step 1. By default, DLI provides JSON. If a custom writer is used, it should be modified to
match the corresponding data_type.
 String loadSql =
 "LOAD DATA INPATH '" + uploadDataPath + "' INTO TABLE demo_db.demo_tbl
OPTIONS(data_type 'json')";
 SQLJob sqlJob = new SQLJob(dliInfo, loadSql);
 sqlJob.asyncSubmit();

 // 3. Cyclically check the job status.
 checkRunning(V3ClientUtils.getDliClient(dliInfo), sqlJob.getJobId());
 }

– Solution 2: Use the DLI encapsulated SDK to submit data for import.
 private static void loadData(DLIInfo dliInfo, String uploadDataPath) throws DLIException {
 UploadJob uploadJob = new UploadJob(
 dliInfo, uploadDataPath, new SqlJobBase.TableInfo("demo_db", "demo_tbl"));

 // 1. Write data to the OBS temporary directory. Modify the following information based
on site requirements. The following is just an example.
 // Note: This step involves directly calling the OBS data writing API. DLI only provides a
default implementation for writing data in JSON format, meaning that files are stored on OBS
in JSON format.
 // The writer here can be implemented based on service requirements. For example, you
use a custom CSV writer, resulting in files being stored in CSV format on OBS.
 writeTmpData(uploadJob.createWriter(), genSchema(), 123, 50);

 // 2. Import data to DLI.
 // Submit data using DLI encapsulation. Note: Since the import job may take a long time
to run, use asyncSubmit to submit data and proactively check the status.
 uploadJob.asyncSubmit();

 // 3. Cyclically check the job status.
 checkRunning(V3ClientUtils.getDliClient(dliInfo), uploadJob.getJobId());
 }

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 17

https://support.huaweicloud.com/intl/en-us/sqlref-spark-dli/dli_08_0100.html
https://support.huaweicloud.com/intl/en-us/sqlref-spark-dli/dli_08_0058.html
https://support.huaweicloud.com/intl/en-us/sqlref-spark-dli/dli_08_0059.html

Querying Job Results
● Reference link:

SELECT Query Statement
● Key SDK API:

com.huawei.dli.sdk.read.ResultSet: API calls related to reading data from
OBS. DLI provides a default OBS CSV reader implementation, which can be
customized based on service requirements.
com.huawei.dli.sdk.SQLJob#submitQuery(): The feature of writing results
to the job bucket must be enabled; otherwise, only the first 1,000 data records
are previewed by default.
You can determine if the feature is enabled by checking the result_path
parameter in the response body of the API for querying job status.
After the job is completed, if result_path starts with obs://, the feature of
writing job results to the job bucket is enabled; otherwise, it is not enabled.
 private static String queryData(DLIInfo dliInfo, String selectSql)
 throws DLIException {
 SQLJob sqlJob = new SQLJob(dliInfo, selectSql);
 // If needed, you can set job parameters here, such as sqlJob.setConf().
 // 1. Submit a query job to DLI, implement submission using DLI encapsulation, and await the
result.
 // Note 1: Set the timeout duration here based on the SQL execution duration, with a default of
5 minutes.
 // Note 2: The feature of writing job results to the job bucket needs to be enabled here.
Otherwise, only the first 1,000 data records are previewed by default.
 sqlJob.setJobTimeout(30 * 60);
 ResultSet resultSet1 = null;
 try {
 resultSet1 = sqlJob.submitQuery();
 handleResult(resultSet1);
 } finally {
 if (resultSet1 != null) {
 resultSet1.close();
 }
 }
 return sqlJob.getJobId();
 }

Querying the Result of a Specified Job
● Instructions

com.huawei.dli.sdk.SQLJob#getResultSet(): API calls related to reading
data from OBS. DLI provides an OBS CSV reader implementation, which can
be customized based on service requirements.
To use this method, you need to enable the feature of writing job results to
the job bucket. You can determine if the feature is enabled by checking the
result_path parameter in the response body of the API for querying job
status. After the job is completed, if result_path starts with obs://, the feature
of writing job results to the job bucket is enabled; otherwise, it is not enabled.

● Reference links:
SQL Syntax Reference - Basic Statements
OBS Documentation

● Sample code
 private static void queryDataByJobId(DLIInfo dliInfo, String jobId)
 throws DLIException {

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 18

https://support.huaweicloud.com/intl/en-us/sqlref-spark-dli/dli_08_0150.html
https://support.huaweicloud.com/intl/en-us/sqlref-spark-dli/dli_08_0150.html
https://support.huaweicloud.com/intl/en-us/obs/index.html

 // Check whether the job corresponding to the job ID has completed. If not, wait until the job
completes.
 SQLJob sqlJob = new SQLJob(dliInfo, null);
 sqlJob.setJobId(jobId);
 checkRunning(V3ClientUtils.getDliClient(dliInfo), jobId);

 // Retrieve the schema of the result data and the storage path of the result data in the user's
job bucket based on the job ID.
 ShowSqlJobStatusResponse resp = V3ClientUtils.getDliClient(dliInfo)
 .showSqlJobStatus(new ShowSqlJobStatusRequest().withJobId(jobId));
 sqlJob.setJobStatus(resp.getStatus().getValue());
 sqlJob.setResultSchema(SchemaUtils.getSchemaFromJson(resp.getDetail()));
 sqlJob.setResultPath(resp.getResultPath());
 sqlJob.setResultCount(resp.getResultCount() != null ? resp.getResultCount() : 0);

 ResultSet resultSet = null;
 try {
 // Obtain the query result corresponding to the job ID and return the result iterator.
 resultSet = sqlJob.getResultSet();
 handleResult(resultSet);
 } finally {
 if (resultSet != null) {
 resultSet.close();
 }
 }
 }

Querying the Job List
● Instructions

com.huaweicloud.sdk.dli.v1.DliClient#listSqlJobs(ListSqlJobsRequest).
If there are a large number of jobs, you must use the following pagination
query method to query jobs in batches. Otherwise, only the jobs on the first
page are returned.
You can use req.setStart() and req.setEnd() to query jobs within a specified
time period, with the unit being milliseconds.

● Sample code
 private static void listSqlJobs(DLIInfo dliInfo) {
 DliClient dliClient = V3ClientUtils.getDliClient(dliInfo);
 ListSqlJobsRequest req = new ListSqlJobsRequest();
 int currentPage = 1;
 req.setCurrentPage(currentPage); // The default value is 1.
 req.setPageSize(100); // The default value is 10.
 Integer jobCount = dliClient.listSqlJobs(req).getJobCount();
 Integer cur = 0;

 // Query jobs by page.
 while (cur < jobCount) {
 ListSqlJobsResponse listSqlJobsResponse = dliClient.listSqlJobs(req);
 List<SqlJob> jobs = listSqlJobsResponse.getJobs();
 for (SqlJob job : jobs) {

 // Add the service logic here to process each job.

 cur++;
 if (cur.equals(jobCount)) {
 break;
 }
 }
 req.setCurrentPage(currentPage++);
 }
 }

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 19

Writing Data to OBS by Running writeTmpData
● Instructions

You can implement the writer interface and customize the file writing logic
based on your service requirements.
This example writes data to OBS by calling the OBS SDK. Currently, UploadJob
offers an implementation where data is written in JSON format by default.

● Sample code
 private static void writeTmpData(Writer writer, List<Column> schema, Integer totalRecords, Integer
flushThreshold)
 throws DLIException {
 // Define a writer for writing data to OBS. You can define multiple writers based on the
concurrency needs.
 // Define the column information to be written based on the target table. For details, see the
genSchema() and genSchema2() methods in this document.
 // Define the loop size based on the actual service.
 for (int i = 0; i < totalRecords; i++) {
 // Retrieve data for each row based on the service.
 List<Object> record = genRecord();
 // Write data.
 Row row = new Row(schema);
 row.setRecord(record);
 writer.write(row);
 if (i % flushThreshold == 0) {
 // Refresh the data promptly after writing a certain amount of data.
 writer.flush();
 }
 }
 writer.close();
 }

Creating a Schema for a Table
● Instructions

Construct the schema based on the actual service. The following is just an
example.

● Sample code
 private static List<Column> genSchema() {
 return Arrays.asList(
 new Column("bool_c", new PrimitiveType(DataType.TypeName.BOOLEAN), "boolean col"),
 new Column("byte_c", new PrimitiveType(DataType.TypeName.TINYINT), "tinyint col"),
 new Column("short_c", new PrimitiveType(DataType.TypeName.SMALLINT), "smallint col"),
 new Column("int_c", new PrimitiveType(DataType.TypeName.INT), "int col"),
 new Column("long_c", new PrimitiveType(DataType.TypeName.BIGINT), "bigint col"),
 new Column("float_c", new PrimitiveType(DataType.TypeName.FLOAT), "float col"),
 new Column("double_c", new PrimitiveType(DataType.TypeName.DOUBLE), "double col"),
 new Column(
 "dec_c",
 new PrimitiveType(DataType.TypeName.DECIMAL, Arrays.asList("10", "2")),
 "decimal col"),
 new Column("str_c", new PrimitiveType(DataType.TypeName.STRING), "string col"),
 new Column("date_c", new PrimitiveType(DataType.TypeName.DATE), "date col"),
 new Column("ts_c", new PrimitiveType(DataType.TypeName.TIMESTAMP), "timestamp col"),
 new Column("binary_c", new PrimitiveType(DataType.TypeName.BINARY), "binary col"),
 new Column(
 "arr_c",
 new ArrayType(new PrimitiveType(DataType.TypeName.INT)),
 "array col"),
 new Column(
 "map_c",
 new MapType(
 new PrimitiveType(DataType.TypeName.STRING),
 new PrimitiveType(DataType.TypeName.INT)),
 "map col"),

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 20

 new Column(
 "struct_c",
 new StructType(Arrays.asList(
 new Column("s_str_c", new PrimitiveType(DataType.TypeName.STRING), "struct string
col"),
 new Column("s_bool_c", new PrimitiveType(DataType.TypeName.BOOLEAN), "struct
boolean col"))),
 "struct col"));
 }

Automatically Obtaining the Schema of the Target Table
● Instructions

Automatically obtain the schema of the target table.
● Sample code

 private static List<Column> genSchema2(DLIInfo dliInfo, String yourDbName, String
yourTableName)
 throws DLIException {
 String tempSql = String.format("select * from %s.%s limit 1", yourDbName, yourTableName);
 SQLJob sqlJob = new SQLJob(dliInfo, tempSql);
 sqlJob.submit();

 ShowSqlJobStatusResponse resp = V3ClientUtils.getDliClient(dliInfo)
 .showSqlJobStatus(new ShowSqlJobStatusRequest().withJobId(sqlJob.getJobId()));
 if (!resp.getIsSuccess()) {
 throw new DLIException("Get sql job status failed, details: " + resp.getMessage());
 }
 return SchemaUtils.getSchemaFromJson(resp.getDetail());
 }

Generating Test Data List<Object> genRecord on Demand
● Instructions

Construct each row of data based on service requirements. The following is
just an example.

● Sample code
 private static List<Object> genRecord() {
 Map<String, Object> structData = new HashMap<>();
 structData.put("s_str_c", "Abc");
 structData.put("s_bool_c", true);
 return Arrays.asList(
 true,
 (byte) 1,
 (short) 123,
 65535,
 123456789012L,
 101.235f,
 256.012358,
 new BigDecimal("33.05"),
 "abc_123&",
 new Date(1683475200000L),
 new Timestamp(1683543480000L),
 "Hello".getBytes(StandardCharsets.UTF_8),
 Arrays.asList(1, 2, 3),
 Collections.singletonMap("k", 123),
 structData);
 }

Querying the Job Status
● Sample code

 private static void checkRunning(DliClient dliClient, String jobId) throws DLIException {
 while (true) {
 ShowSqlJobStatusResponse resp;

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 21

 try {
 resp = dliClient.showSqlJobStatus(new ShowSqlJobStatusRequest().withJobId(jobId));
 } catch (Exception e) {
 throw new DLIException("Failed to get job status by id: " + jobId, e);
 }
 String status = resp.getStatus().getValue();
 logger.info(String.format("SparkSQL Job id %s status: %s", jobId, status));

 if ("FINISHED".equals(status)) {
 return;
 }
 if ("FAILED".equals(status) || "CANCELLED".equals(status)) {
 throw new DLIException("Run job failed or cancelled, details: " + resp.getMessage());
 }

 try {
 Thread.sleep(1000L);
 } catch (InterruptedException e) {
 throw new DLIException("Check job running interrupted.");
 }
 }
 }

Processing Job Results
● Instructions

Construct each row of data based on service requirements. The following is
just an example.

● Sample code
 private static void handleResult(ResultSet resultSet) throws DLIException {
 while (resultSet.hasNext()) {
 Row row = resultSet.read();
 List<Column> schema = row.getSchema();
 List<Object> record = row.getRecord();
 // Process each row and each column.
 // Method 1: Call record.get(index) to get the Object, then perform type conversion
according to the type of each column.
 // Method 2: Based on the type of each column, call row.getXXX(index) to obtain data of
the corresponding type.
 for (int i = 0; i < schema.size(); i++) {
 DataType.TypeName typeName =
DataType.TypeName.fromName(schema.get(i).getType().getName());
 switch (typeName) {
 case STRING:
 String strV = (String) record.get(i);
 System.out.println(
 "\t" + (strV == null ? null : strV.replaceAll("\r", "\\\\r").replaceAll("\n", "\\\\n")));
 break;
 case DATE:
 Date dtV = (Date) record.get(i);
 System.out.println("\t" + (dtV == null ? null : DATE_FORMAT.get().format(dtV)));
 break;
 case TIMESTAMP:
 Timestamp tsV = (Timestamp) record.get(i);
 System.out.println("\t" + (tsV == null ? null :
TIMESTAMP_FORMAT.get().format(tsV)));
 break;
 case BINARY:
 byte[] bytes = (byte[]) record.get(i);
 System.out.println("\t" + (bytes == null ? null :
Base64.getEncoder().encodeToString(bytes)));
 break;
 case ARRAY:
 case MAP:
 case STRUCT:
 Object data = record.get(i);
 System.out.println("\t" + (data == null ? null : JsonUtils.toJSON(data)));

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 22

 break;
 default:
 System.out.println("\t" + record.get(i));
 }
 }
 System.out.println();
 }
 }

5.1.2 Submitting a Flink SQL Job Using an SDK
This section describes how to submit a Flink SQL job using DLI SDK V2.

NO TE

Starting May 2024, new users can directly use DLI's SDK V2 without needing to have their
accounts whitelisted.
For users who started using DLI before May 2024, to use this function, they must submit a
service ticket to have their accounts whitelisted.

Prerequisites
● You have configured the Java SDK environment by referring to Overview.
● You have initialized the DLI client by referring to Initializing the DLI Client.

Preparations
Obtain an AK/SK, project ID, and region information.

1. Log in to the management console.
2. In the upper right corner, hover over the username and choose My

Credentials from the drop-down list.
3. In the navigation pane on the left, choose Access Keys. On the displayed

page, click Create Access Key. Confirm that you want to proceed with the
operation and click OK.

4. On the displayed page, click Download. Open the file to obtain the AK/SK
information.

5. In the navigation pane on the left, choose API Credentials. In the Projects
pane, locate project_id and obtain the region information.

Example Code
 private static final Logger logger = LoggerFactory.getLogger(FlinkSqlJobExample.class);
 public static void main(String[] args) {
 String yourAccessKey = System.getenv("HUAWEICLOUD_SDK_AK");
 String yourSecretKey = System.getenv("HUAWEICLOUD_SDK_SK");
 DliClient dliClient = DliClient.newBuilder()
 .withRegion(DliRegion.valueOf("RegionName"))
 .withCredential(new BasicCredentials()
 .withAk(yourAccessKey)
 .withSk(yourSecretKey)
 .withProjectId("YouProjectId"))
 .build();

 try {
 // Step 1: Create a Flink job. The job status changes to Draft.
 Long jobId = createFlinkSqlJob(dliClient, "YourQueueName");
 logger.info("jobId: " + jobId);

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 23

 // Step 2: Run the job. The job status changes from Draft to Submitting.
 List<FlinkSuccessResponse> resps = batchRunFlinkJobs(dliClient, Arrays.asList(jobId));
 logger.info("Response: " + ArrayUtils.toString(resps));

 // Step 3: Query the job status. If you wish to wait for the job to reach the Running state within the
current thread, you can cyclically check the job status until it becomes Running.
 checkRunning(dliClient, jobId);

 } catch (DLIException e) {
 // Handle the exception based on service requirements. The following is just an example.
 }

 }

Creating a Flink SQL Job
● Function:

Create a Flink SQL job.
● Reference link:

Key SDK API:
com.huaweicloud.sdk.dli.v1.DliClient#createFlinkSqlJob(com.huaweicloud
.sdk.dli.v1.model.CreateFlinkSqlJobRequest)
Create a Flink SQL job. The job status changes to Draft.

● Sample code:
private static Long createFlinkSqlJob(DliClient client, String queueName) {
 // Set the parameters according to the actual situation. The following is just an example.
 CreateFlinkSqlJobResponse resp = client.createFlinkSqlJob(new CreateFlinkSqlJobRequest()
 .withBody(new CreateFlinkSqlJobRequestBody()
 .withName("demo_flink_sql") // Custom job name. The name can contain up to 57
characters.
 .withDesc("YourJobDescription") // Custom job description. The description can contain up
to 512 characters.
 .withSqlBody("create table orders(\n"
 + " name string,\n"
 + " num INT\n"
 + ") with (\n"
 + " 'connector' = 'datagen',\n"
 + " 'rows-per-second' = '1', \n"
 + " 'fields.name.kind' = 'random', \n"
 + " 'fields.name.length' = '5' \n"
 + ");\n"
 + "\n"
 + "CREATE TABLE sink_table (\n"
 + " name string,\n"
 + " num INT\n"
 + ") WITH (\n"
 + " 'connector' = 'print'\n"
 + ");\n"
 + "\n"
 + "INSERT into sink_table SELECT * from orders;")
 // Customize a stream SQL statement, which contains at least the following three parts:
source, query, and sink. Length limit: 1024 x 1024 characters.
 // In this SQL statement, random source data is automatically generated and printed to
the console.
 .withQueueName(queueName) // Queue name. The name can contain up to 128
characters.
 .withRunMode("exclusive_cluster") // Job running mode. Only the exclusive_cluster mode
is supported.
 .withLogEnabled(true) // Enable the function of uploading job logs to OBS buckets.
 .withObsBucket("YourObsBucketName") // OBS bucket name, which is used to store logs
and checkpoint data.
 .withJobType("flink_opensource_sql_job") // Job type. You are advised to select
flink_opensource_sql_job.
 .withFlinkVersion("1.12") // Specify the Flink version.
));

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 24

 return resp.getJob().getJobId();
 }

Running Flink Jobs in Batches
● Function:

Run Flink SQL jobs in batches.
● Reference link:

Key SDK API:
com.huaweicloud.sdk.dli.v1.DliClient#batchRunFlinkJobs(com.huaweiclou
d.sdk.dli.v1.model.BatchRunFlinkJobsRequest)
Run Flink jobs in batches. The job status changes from Draft to Submitting.

● Sample code:
private static List<FlinkSuccessResponse> batchRunFlinkJobs(DliClient client, List<Long> jobIds) {
 BatchRunFlinkJobsResponse batchRunFlinkJobsResponse = client.batchRunFlinkJobs(
 new BatchRunFlinkJobsRequest()
 .withBody(new BatchRunFlinkJobsRequestBody().withJobIds(jobIds)));
 return batchRunFlinkJobsResponse.getBody();
 }

Querying the Job Status
● Function:

Query the status of a Flink SQL job.
● Reference link:

Key SDK API:
com.huaweicloud.sdk.dli.v1.DliClient#showFlinkJob(com.huaweicloud.sdk.
dli.v1.model.ShowFlinkJobRequest)}
If you wish to wait for the job's transition into the Running state within the
current thread, you can cyclically check the job status until it becomes
Running.

● Sample code:
private static void checkRunning(DliClient client, Long jobId) throws DLIException {
 while (true) {
 ShowFlinkJobResponse resp;
 try {
 resp = client.showFlinkJob(new ShowFlinkJobRequest().withJobId(jobId));
 } catch (Exception e) {
 throw new DLIException("Failed to get Flink sql job status by id: " + jobId, e);
 }
 String status = resp.getJobDetail().getStatus();
 logger.info(String.format("FlinkSqlJob id %s status: %s", jobId, status));
 if ("job_running".equals(status)) {
 return;
 }
 if ("job_submit_fail".equals(status) || "job_running_exception".equals(status)) {
 throw new DLIException("Run Flink sql job failed: " + resp);
 }
 try {
 Thread.sleep(1000L);
 } catch (InterruptedException e) {
 throw new DLIException("Check job running interrupted.");
 }
 }
 }

5.1.3 Submitting a Flink Jar Job Using an SDK
This section describes how to submit a Flink Jar job using DLI SDK V2.

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 25

NO TE

Starting May 2024, new users can directly use DLI's SDK V2 without needing to have their
accounts whitelisted.
For users who started using DLI before May 2024, to use this function, they must submit a
service ticket to have their accounts whitelisted.

Prerequisites
● You have configured the Java SDK environment by referring to Overview.
● You have initialized the DLI client by referring to Initializing the DLI Client.

Preparations
Obtain an AK/SK, project ID, and region information.

1. Log in to the management console.
2. In the upper right corner, hover over the username and choose My

Credentials from the drop-down list.
3. In the navigation pane on the left, choose Access Keys. On the displayed

page, click Create Access Key. Confirm that you want to proceed with the
operation and click OK.

4. On the displayed page, click Download. Open the file to obtain the AK/SK
information.

5. In the navigation pane on the left, choose API Credentials. In the Projects
pane, locate project_id and obtain the region information.

Example Code
private static final Logger logger = LoggerFactory.getLogger(FlinkJarJobExample.class);
public static void main(String[] args) {
 String yourAccessKey = System.getenv("HUAWEICLOUD_SDK_AK");
 String yourSecretKey = System.getenv("HUAWEICLOUD_SDK_SK");
 DliClient dliClient = DliClient.newBuilder()
 .withRegion(DliRegion.valueOf("RegionName")) //
 .withCredential(new BasicCredentials()
 .withAk(yourAccessKey)
 .withSk(yourSecretKey)
 .withProjectId("YouProjectId"))
 .build();
 try {
 // Step 1: Create a Flink job. The job status changes to Draft.
 Long jobId = createFlinkJarJob(dliClient, "YourQueueName");
 logger.info("jobId: " + jobId);
 // Step 2: Run the job. The job status changes from Draft to Submitting.
 List<FlinkSuccessResponse> resps = batchRunFlinkJobs(dliClient, Arrays.asList(jobId));
 logger.info("Response: " + ArrayUtils.toString(resps));
 // Step 3: Query the job status. If you wish to wait for the job to reach the Running state within the
current thread, you can cyclically check the job status until it becomes Running.
 checkRunning(dliClient, jobId);
 } catch (DLIException e) {
 // Handle the exception based on service requirements. The following is just an example.
 }
 }

Creating a Flink Jar Job
● Function:

Create a Flink Jar job.

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 26

● Reference link:
Key SDK API:
com.huaweicloud.sdk.dli.v1.DliClient#createFlinkJarJob(com.huaweicloud.
sdk.dli.v1.model.CreateFlinkJarJobRequest)
Create a Flink Jar job. The job status changes to Draft.

● Sample code:
private static Long createFlinkJarJob(DliClient client, String queueName) {
 // Set the parameters according to the actual situation. The following is just an example.
 CreateFlinkJarJobResponse resp = client.createFlinkJarJob(new CreateFlinkJarJobRequest()
 .withBody(new CreateFlinkJarJobRequestBody()
 .withName("demo_flink_jar") // Custom job name. The name can contain up to 57
characters.
 .withDesc("YourJobDescription") // Custom job description. The description can contain up
to 512 characters.
 .withQueueName(queueName) // Queue name. The name can contain up to 128
characters.
 .withFeature("basic") // Job feature. Type of the Flink image used by a job. basic: the base
Flink image provided by DLI is used.
 .withFlinkVersion("1.12") // Flink version. This parameter is valid only when feature is set
to basic.
 .withObsBucket("YourObsBucketName") // OBS bucket name, which is used to store logs
and checkpoint data.
 .withLogEnabled(true) // Enable the function of uploading job logs to OBS buckets.
 .withEntrypoint("obs://YourObsBucketName/your/flink/job.jar") // JAR file uploaded to
OBS that includes the user-defined job main class.
 .withMainClass("YourClassFullName") // Job entry class, for example,
org.apache.flink.examples.JavaQueueStream.
 .withEntrypointArgs("YourAppArg1 YourAppAgr2") // Job entry parameter. Multiple
parameters are separated by spaces. Delete this line if it is not required.
 .withDependencyJars(Arrays.asList("obs://YourObsBucketName/your/dependency1.jar",
 "obs://YourObsBucketName/your/dependency2.jar")) // JAR file uploaded to OBS that
includes the dependencies of the user-defined job. Delete this line if it is not required.
 .withDependencyJars(Arrays.asList("obs://YourObsBucketName/your/dependency1.csv",
 "obs://YourObsBucketName/your/dependency2.json")) // File uploaded to OBS that
stores the dependencies of the user-defined job. Delete this line if it is not required.
));
 return resp.getJob().getJobId();
 }

Running Flink Jobs in Batches
● Function:

Run Flink SQL jobs in batches.
● Reference link:

Key SDK API:
com.huaweicloud.sdk.dli.v1.DliClient#batchRunFlinkJobs(com.huaweiclou
d.sdk.dli.v1.model.BatchRunFlinkJobsRequest)
Run Flink jobs in batches. The job status changes from Draft to Submitting.

● Sample code:
private static List<FlinkSuccessResponse> batchRunFlinkJobs(DliClient client, List<Long> jobIds) {
 BatchRunFlinkJobsResponse batchRunFlinkJobsResponse = client.batchRunFlinkJobs(
 new BatchRunFlinkJobsRequest()
 .withBody(new BatchRunFlinkJobsRequestBody().withJobIds(jobIds)));
 return batchRunFlinkJobsResponse.getBody();
 }

Querying the Job Status
● Function:

Query the status of a Flink SQL job.

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 27

● Reference link:
Key SDK API:
com.huaweicloud.sdk.dli.v1.DliClient#showFlinkJob(com.huaweicloud.sdk.
dli.v1.model.ShowFlinkJobRequest)
If you wish to wait for the job's transition into the Running state within the
current thread, you can cyclically check the job status until it becomes
Running.

● Sample code:
private static void checkRunning(DliClient client, Long jobId) throws DLIException {
 while (true) {
 ShowFlinkJobResponse resp;
 try {
 resp = client.showFlinkJob(new ShowFlinkJobRequest().withJobId(jobId));
 } catch (Exception e) {
 throw new DLIException("Failed to get Flink jar job status by id: " + jobId, e);
 }
 String status = resp.getJobDetail().getStatus();
 logger.info(String.format("FlinkJarJob id %s status: %s", jobId, status));
 if ("job_running".equals(status)) {
 return;
 }
 if ("job_submit_fail".equals(status) || "job_running_exception".equals(status)) {
 throw new DLIException("Run Flink jar job failed: " + resp);
 }
 try {
 Thread.sleep(1000L);
 } catch (InterruptedException e) {
 throw new DLIException("Check job running interrupted.");
 }
 }
 }

5.1.4 Submitting a Spark Job Using an SDK
This section describes how to submit a Spark job using DLI SDK V2.

NO TE

Starting May 2024, new users can directly use DLI's SDK V2 without needing to have their
accounts whitelisted.
For users who started using DLI before May 2024, to use this function, they must submit a
service ticket to have their accounts whitelisted.

Prerequisites
● You have configured the Java SDK environment by referring to Overview.
● You have initialized the DLI client by referring to Initializing the DLI Client.

Preparations
Obtain an AK/SK, project ID, and region information.

1. Log in to the management console.
2. In the upper right corner, hover over the username and choose My

Credentials from the drop-down list.
3. In the navigation pane on the left, choose Access Keys. On the displayed

page, click Create Access Key. Confirm that you want to proceed with the
operation and click OK.

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 28

4. On the displayed page, click Download. Open the file to obtain the AK/SK
information.

5. In the navigation pane on the left, choose API Credentials. In the Projects
pane, locate project_id and obtain the region information.

Example Code
 private static final Logger logger = LoggerFactory.getLogger(SparkJobExample.class);

 public static void main(String[] args) {
 String yourAccessKey = System.getenv("HUAWEICLOUD_SDK_AK");
 String yourSecretKey = System.getenv("HUAWEICLOUD_SDK_SK");
 DliClient dliClient = DliClient.newBuilder()
 .withRegion(DliRegion.valueOf("RegionName"))
 .withCredential(new BasicCredentials()
 .withAk(yourAccessKey)
 .withSk(yourSecretKey)
 .withProjectId("YouProjectId"))
 .build();

 try {
 // Step 1: Submit a Spark job to DLI for execution.
 String jobId = runSparkJob(dliClient, "YourQueueName");
 // Step 2: If you wish to wait for the job execution to finish within the current thread, cycle through
checking the status until the job completes.
 checkRunning(dliClient, jobId);
 // Step 3: To query one or more specific jobs based on conditions, use the following method:
 // This is just an example. In addition to jobId, you can also specify other filter criteria. For details,
see Table 2 in https://console.huaweicloud.com/apiexplorer/#/openapi/DLI/doc?api=ListSparkJobs.
 listSparkJob(dliClient, jobId);

 /*
 * Other scenarios:
 * 1. During job execution, if you wish to cancel the job, you can call the API to cancel the batch
processing job.
 * Key SDK API: com.huaweicloud.sdk.dli.v1.DliClient#cancelSparkJob(CancelSparkJobRequest),
 * Note: Batch processing jobs in the Successful or Failed state cannot be canceled.
 * 2. To query details about a specific job based on the job ID, perform the following operations:
 * Key SDK API: com.huaweicloud.sdk.dli.v1.DliClient#showSparkJob(ShowSparkJobRequest),
 */
 } catch (DLIException e) {
 // Handle the exception based on service requirements. The following is just an example.
 }
 }

Creating a Spark Job
● Function:

Execute Spark jobs.
● Reference link:

Key SDK API:
com.huaweicloud.sdk.dli.v1.DliClient#createSparkJob(CreateSparkJobReq
uest)

● Sample code:
 private static String runSparkJob(DliClient client, String queueName) {
 // Set the parameters according to the actual situation. The following is just an example.
 Map<String, Object> confMap = new HashMap<>();
 confMap.put("SparkConfKey", "SparkConfValue");
 CreateSparkJobResponse resp = client.createSparkJob(new CreateSparkJobRequest()
 .withBody(new CreateSparkJobRequestBody()
 .withQueue(queueName)
 .withSparkVersion("2.4.5")
 .withName("demo_spark_app")

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 29

 .withFile("obs://your_bucket/your_spark_app.jar") // Mandatory
 .withClassName("YourClassFullName") // Mandatory
 .withArgs(Arrays.asList("YourAppArg1", "YourAppAgr2", "..."))
 .withConf(confMap)
 .withJars(Arrays.asList("YourDepJar1", "YourDepJar2", "..."))
 .withDriverCores(2)
 .withDriverMemory("8GB")
 .withNumExecutors(3)
 .withExecutorCores(4)
 .withExecutorMemory("16GB")));
 return resp.getId();
 }

Querying the Status of a Batch Processing Job
● Function:

Execute Spark jobs.
● Reference link:

Key SDK API:
com.huaweicloud.sdk.dli.v1.DliClient#showSparkJobStatus(ShowSparkJob
StatusRequest)

● Sample code:
 private static void checkRunning(DliClient client, String jobId) throws DLIException {
 while (true) {
 ShowSparkJobStatusResponse resp;
 try {
 resp = client.showSparkJobStatus(new ShowSparkJobStatusRequest().withBatchId(jobId));
 } catch (Exception e) {
 throw new DLIException("Failed to get job status by id: " + jobId, e);
 }
 String status = resp.getState();
 logger.info(String.format("SparkJob id %s status: %s", jobId, status));

 if ("success".equals(status)) {
 return;
 }
 if ("dead".equals(status)) {
 throw new DLIException("Run job failed");
 }

 try {
 Thread.sleep(1000L);
 } catch (InterruptedException e) {
 throw new DLIException("Check job running interrupted.");
 }
 }
 }

Querying the Batch Processing Job List
● Function:

Query the batch processing job list.
● Reference link:

Key SDK API:
com.huaweicloud.sdk.dli.v1.DliClient#listSparkJobs(ListSparkJobsRequest)

● Sample code:
 private static void listSparkJob(DliClient client, String jobId) throws DLIException {
 ListSparkJobsResponse resp;
 try {
 resp = client.listSparkJobs(new ListSparkJobsRequest()
 // You can also use the .withXxx() method to specify other criteria to return Spark jobs

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 30

that meet the criteria. This is just an example.
 // See Table 2 in https://console.huaweicloud.com/apiexplorer/#/openapi/DLI/doc?
api=ListSparkJobs.
 .withJobId(jobId)
 .withQueueName("YourQueueName")
 .withStart(1234567L) // You can specify the job start time.
 .withEnd(2345678L)); // You can specify the job end time.
 } catch (Exception e) {
 throw new DLIException("Failed to list Spark jobs: ", e);
 }
 logger.info(String.format("List SparkJobs : %s", resp.toString()));
 // For details about the response parameters in resp, see Table 3 and Table 4 in https://
console.huaweicloud.com/apiexplorer/#/openapi/DLI/doc?api=ListSparkJobs.
 }

5.2 Python SDK (DLI SDK V2)

5.2.1 Submitting a SQL Job Using an SDK
This section describes how to submit a SQL job using DLI SDK V2.

NO TE

Starting May 2024, new users can directly use DLI's SDK V2 without needing to have their
accounts whitelisted.
For users who started using DLI before May 2024, to use this function, they must submit a
service ticket to have their accounts whitelisted.

Prerequisites
● You have configured the Python SDK environment by referring to Preparing a

Python Development Environment.
● You have initialized the DLI client by referring to Initializing the DLI Client.

Preparations
Obtain an AK/SK, project ID, and region information.

1. Log in to the management console.
2. In the upper right corner, hover over the username and choose My

Credentials from the drop-down list.
3. In the navigation pane on the left, choose Access Keys. On the displayed

page, click Create Access Key. Confirm that you want to proceed with the
operation and click OK.

4. On the displayed page, click Download. Open the file to obtain the AK/SK
information.

5. In the navigation pane on the left, choose API Credentials. In the Projects
pane, locate project_id and obtain the region information.

Example Code
def main():
 your_access_key = os.getenv("HUAWEICLOUD_SDK_AK")
 your_secret_key = os.getenv("HUAWEICLOUD_SDK_SK")
 kwargs = {
 'region': 'region_name',

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 31

 'project_id': 'your_project_id',
 'ak': your_access_key,
 'sk': your_secret_key
 }
 from dli.dli_client import DliClient
 dli_client = DliClient(**kwargs)

 try:
 # Step 1: Create a database and a table.
 queue_name = 'your_sql_queue_name'
 prepare(dli_client, queue_name)

 # Step 2: Import data to the table.
 # The overall implementation process/ principle can be divided into the following three steps:
 # 1. Use the OBS API to upload data to obs_path_to_write_tmp_data. You can configure a lifecycle
policy in OBS to periodically delete these temporary data.
 # 2. Submit the Load Data statement to DLI to import OBS data to DLI.
 # For details about the Load Data syntax, see Importing Data.
 # 3. Cyclically check the job status until the job is complete.
 obs_path_to_write_tmp_data = f"obs://your_obs_bucket_name/your/path/{uuid.uuid4()}"
 load_data(dli_client, obs_path_to_write_tmp_data, queue_name)

 # Step 3: Submit the SQL statement, execute the query, and read the result.
 select_sql = "SELECT * FROM demo_db.demo_tbl"
 job_id = query_data(dli_client, select_sql, queue_name)

 # Step 3: If needed, you can also obtain the results by job ID.
 query_data_by_jobid(dli_client, job_id)

 # Query all jobs by page. You can use this API to query information of all SQL jobs within the current
project.
 # Key SDK API: huaweicloudsdkdli.v1.dli_client.DliClient.list_sql_jobs,
 list_sql_jobs(dli_client)

 # Other scenarios:
 # 1. To cancel a submitted SQL job, use the following API.
 # Key SDK API: huaweicloudsdkdli.v1.dli_client.DliClient.cancel_sql_job
 # Note: If a job has been completed or failed, it cannot be canceled.

 # 2. To verify the syntax of an SQL statement, use the following API.
 # Key SDK API: huaweicloudsdkdli.v1.dli_client.DliClient.check_sql
 # Note: This API can only be used to verify the syntax, not the semantics. Use the Explain statement
and submit it to DLI for execution to perform semantic verification.

 # 3. To obtain a submitted SQL job based on the job ID and view job details, use the following API.
 # Key SDK API: huaweicloudsdkdli.v1.dli_client.DliClient.show_sql_job_detail
 # 4. Obtain the job execution progress. If the job is being executed, you can obtain the sub-job
information. If the job has just started or has been completed, you cannot obtain the sub-job information.
 # Key SDK API: huaweicloudsdkdli.v1.dli_client.DliClient.show_sql_job_progress
 except DliException as e:
 # Handle the exception based on service requirements. The following is just an example.
 logger.error(e)

Creating a Database and Table
Reference links:

● Creating a Database
● Creating a Table
● Key SDK: dli.dli_client.DliClient.execute_sql
● Key API: huaweicloudsdkdli.v1.dli_client.DliClient.create_sql_job.
● Key API: huaweicloudsdkdli.v1.dli_client.DliClient.show_sql_job_status.

Sample code:
def prepare(dli_client, queue_name):
 """

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 32

https://support.huaweicloud.com/intl/en-us/sqlref-spark-dli/dli_08_0100.html
https://support.huaweicloud.com/intl/en-us/sqlref-spark-dli/dli_08_0071.html
https://support.huaweicloud.com/intl/en-us/sqlref-spark-dli/dli_08_0076.html

 Create a database and a table.
 :param dli.dli_client.DliClient dli_client: DLI Client.
 :param str queue_name: Queue name for the SQL execute.
 :return: dli.job.SqlJob
 """
 # 1. Create a database.
 # default is the database built in DLI. You cannot create a database named default.
 createDbSql = "CREATE DATABASE IF NOT EXISTS demo_db"
 dli_client.execute_sql(sql=createDbSql, queue_name=queue_name) # Submit a SQL job and cyclically
check the job status until the job is complete.

 # 2. Create a table. Note: Adjust the table structure, table data directory, and OBS storage path based on
site requirements.
 createTblSql = "CREATE TABLE IF NOT EXISTS `demo_tbl` (" \
 " `bool_c` BOOLEAN," \
 " `byte_c` TINYINT," \
 " `short_c` SMALLINT," \
 " `int_c` INT," \
 " `long_c` BIGINT," \
 " `float_c` FLOAT," \
 " `double_c` DOUBLE," \
 " `decimal_c` DECIMAL(10,2)," \
 " `str_c` STRING," \
 " `date_c` DATE," \
 " `timestamp_c` TIMESTAMP," \
 " `binary_c` BINARY," \
 " `array_c` ARRAY<INT>," \
 " `map_c` MAP<STRING, INT>," \
 " `struct_c` STRUCT<`s_str_c`: STRING, `s_bool_c`: BOOLEAN>)" \
 " LOCATION 'obs://demo_bucket/demo_db/demo_tbl'" \
 " STORED as TEXTFILE"
 dli_client.execute_sql(sql=createTblSql, db_name='demo_db', queue_name=queue_name)

Importing Data
● Reference links:
● Importing Data
● Native Data Types
● Complex Data Types
● Key SDK: dli.dli_client.DliClient.execute_sql
● Key API: huaweicloudsdkdli.v1.dli_client.DliClient.create_sql_job.
● Key API: huaweicloudsdkdli.v1.dli_client.DliClient.show_sql_job_status.
● Sample code:

def load_data(dli_client, upload_data_path, queue_name):
 # 1. Write data to the OBS temporary directory. Modify the following information based on site
requirements. The following is just an example.
 # Note: This step involves directly calling the OBS data writing API, entirely decoupled from DLI.
This example only provides an implementation for writing data in JSON format, meaning that files
are stored in JSON format on OBS.
 # You can customize the implementation based on service requirements. For example, you can
save files as CSV files.
 write_tmp_data(get_schema(), upload_data_path, dli_client.dli_info, 1)

 # 2. Import the data written to OBS in step 1 to DLI.
 # Note: The data_type here needs to be determined based on the file type in step 1; in this
example, it is JSON. If you use other formats, you should modify it to the corresponding data_type.
 loadSql = f"LOAD DATA INPATH '{upload_data_path}' INTO TABLE demo_db.demo_tbl
OPTIONS(data_type 'json')"
 dli_client.execute_sql(sql=loadSql, queue_name=queue_name) # Submit a SQL job and cyclically
check the job status until the job is complete.

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 33

https://support.huaweicloud.com/intl/en-us/sqlref-spark-dli/dli_08_0100.html
https://support.huaweicloud.com/intl/en-us/sqlref-spark-dli/dli_08_0058.html
https://support.huaweicloud.com/intl/en-us/sqlref-spark-dli/dli_08_0059.html

Querying Job Results
● Reference link:

SELECT Query Statement
● Key SDK: dli.dli_client.DliClient.execute_sql
● Key SDK: dli.job.SqlJob.get_result. The feature of writing results to the job

bucket must be enabled; otherwise, an exception is thrown.
You can determine if the feature is enabled by checking the result_path
parameter in the response body of the API for querying job status.
After the job is completed, if result_path starts with obs://, the feature of
writing job results to the job bucket is enabled; otherwise, it is not enabled.

● Key API: huaweicloudsdkdli.v1.dli_client.DliClient.create_sql_job.
● Key API: huaweicloudsdkdli.v1.dli_client.DliClient.show_sql_job_status.

def query_data(dli_client, select_sql, queue_name):
 """
 :param dli.dli_client.DliClient dli_client: DLI Client.
 :param str select_sql: SQL statement
 :param str queue_name: Queue name for the SQL execute
 :return: str
 """
 sql_job = dli_client.execute_sql(sql=select_sql, queue_name=queue_name)
 print_result(sql_job.get_result())
 return sql_job.job_id

Querying the Result of a Specified Job
● Instructions

– Key SDK: dli.job.SqlJob.get_result.
This method can be used only when the function of writing job results to
the job bucket is enabled. Otherwise, an exception is thrown during job
running.
You can determine if the feature is enabled by checking the result_path
parameter in the response body of the API for querying job status. After
the job is completed, if result_path starts with obs://, the feature of
writing job results to the job bucket is enabled; otherwise, it is not
enabled.

● Sample code
def query_data_by_jobid(dli_client, job_id):
 """
 :param dli.dli_client.DliClient dli_client: DLI Client.
 :param str job_id: job ID of a query job
 :return:
 """
 from dli.job import SqlJob
 sql_job = SqlJob(job_id=job_id, job_type="QUERY", client=dli_client)
 dli_client._cycle_check_sql_job(sql_job=sql_job)
 print_result(sql_job.get_result())

Querying the Job List
● Instructions

Query information about SQL jobs in the current project.
If there are a large number of jobs, you must use the following pagination
query method in this example to query jobs in batches. Otherwise, only the
jobs on the first page are returned.

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 34

https://support.huaweicloud.com/intl/en-us/sqlref-spark-dli/dli_08_0150.html

Key SDK: huaweicloudsdkdli.v1.dli_client.DliClient.list_sql_jobs
● Sample code

def list_sql_jobs(client):
 """
Query information about SQL jobs in the current project. If there are a large number of jobs, you
must use the pagination query method in this example to query jobs in batches. Otherwise, only the
jobs on the first page are returned.
 Key SDK: huaweicloudsdkdli.v1.dli_client.DliClient.list_sql_jobs

 :param dli.dli_client.DliClient client: DLI Client.
 """
 req = ListSqlJobsRequest()
 req.current_page = 1 # The default value is 1.
 req.page_size = 100 # The default value is 10.

 # Obtain the total number of jobs.
 job_count = client.inner_client.list_sql_jobs(req).job_count
 cur = 0

 # Query jobs by page.
 while cur < job_count:
 list_sql_jobs_response = client.inner_client.list_sql_jobs(req)
 jobs = list_sql_jobs_response.jobs
 for job in jobs:

 # Add the service logic here to process each job.
 print(job)

 cur += 1
 if cur >= job_count:
 break
 req.current_page += 1

Printing Job Results
● Instructions

Process each row of data based on service requirements. The following is just
an example.

● Sample code
def print_result(obs_reader):
 """
 Process each row of data based on service requirements. The following is just an example.
 """
 count = 0
 for record in obs_reader:
 count += 1
 print(record)
 logger.info("total records: %d", count)

Writing Data to OBS by Running writeTmpData
● Instructions

This method involves directly calling the OBS data writing API, entirely
decoupled from DLI APIs. This example provides an implementation for
writing data in JSON format, meaning that files are stored in JSON format on
OBS.
You can customize the implementation based on service requirements. For
example, you can save files as CSV files.

● Sample code
def write_tmp_data(schema, upload_data_path, dli_info, total_records):
 """
 This method involves directly calling the OBS data writing API, entirely decoupled from DLI APIs.

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 35

This example provides an implementation for writing data in JSON format, meaning that files are
stored in JSON format on OBS.
 You can customize the implementation based on service requirements. For example, you can save
files as CSV files.

 :param list schema: Data structure schema
 :param str upload_data_path: This OBS temporary directory is used to store user service data.
 :param dli.dli_client.DliClient.dli_info dli_info: Authentication information passed during the
initialization of the DLI client.
 :param int total_records: Number of simulated data rows. You can configure the number of data
rows to be inserted using this parameter. This is for display purposes only and you can modify it
based on service requirements.
 :return:
 """
 obs_client = ObsClient(access_key_id=dli_info.ak, secret_access_key=dli_info.sk, is_secure=True,
 server=dli_info.obs)
 bucket_name = get_bucket_name(upload_data_path)
 object_prefix = get_object_prefix(upload_data_path)

 datas = ""
 try:
 for i in range(total_records):
 row = Row(schema=schema, columns=get_record())
 datas += to_json_string(row, schema)
 object_key = object_prefix + "/tmp_data.json"
 obs_client.putObject(bucket_name, object_key, datas)
 logger.info("Uploaded data to OBS bucket '%s' with object key '%s'", bucket_name, object_key)
 finally:
 obs_client.close()

Creating a Schema for a Table
● Instructions

Construct the schema based on the actual service. The following is just an
example.

● Sample code
def get_schema():
 """
 Construct the schema based on the actual service. The following is just an example.
 """
 from dli.column import Column
 return [Column(name="bool_c", data_type="boolean", desc="boolean col"),
 Column(name="byte_c", data_type="tinyint", desc="tinyint col"),
 Column(name="short_c", data_type="smallint", desc="smallint col"),
 Column(name="int_c", data_type="int", desc="int col"),
 Column(name="long_c", data_type="bigint", desc="bigint col"),
 Column(name="float_c", data_type="float", desc="float col"),
 Column(name="double_c", data_type="double", desc="double col"),
 Column(name="decimal_c", data_type="decimal(10,2)", desc="decimal col"),
 Column(name="str_c", data_type="string", desc="string col"),
 Column(name="date_c", data_type="date", desc="date col"),
 Column(name="timestamp_c", data_type="timestamp", desc="timestamp col"),
 Column(name="binary_c", data_type="binary", desc="binary col"),
 Column(name="array_c", data_type="array<int>", desc="array col"),
 Column(name="map_c", data_type="map<string, int>", desc="map col"),
 Column(name="struct_c", data_type="struct<s_str_c:string,s_bool_c:boolean>", desc="struct
col")]

Generating Test Data List<Object> genRecord on Demand
● Instructions

Construct each row of data based on service requirements. The following is
just an example.

● Sample code

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 36

def get_record():
 record = [
 True, # boolean
 1, # byte
 123, # short
 65535, # int
 123456789012, # long
 101.235, # float
 256.012358, # double
 33.05, # decimal
 "abc_123&", # string
 "2023-05-08", # date
 "1716345295000", # Timestamp, in milliseconds
 base64.b64encode("hello".encode('utf-8')), # binary
 [1, 2, 3], # array
 {"k": 123}, # map
 {"s_str_c": "Abc", "s_bool_c": True} # struct
]
 return record

to_json_string
● Instructions

Construct each row of data based on service requirements. The following is
just an example.

● Sample code
def to_json_string(row, schema):
 json_obj = {}
 for i, column in enumerate(schema):
 if column.is_partition_column:
 continue
 if column.type == 'binary':
 json_obj[column.name] = base64.b64encode(row.columns[i]).decode('utf-8')
 elif column.type.startswith('decimal'):
 json_obj[column.name] = float(row.columns[i])
 else:
 json_obj[column.name] = row.columns[i]
 return json.dumps(json_obj) + "\n"

get_bucket_name
● Instructions

Construct each row of data based on service requirements. The following is
just an example.

● Sample code
def get_bucket_name(full_path):
 try:
 url = urlparse(full_path)
 return url.hostname
 except Exception as e:
 logger.error("Failed to get bucket name from full path", e)
 return None

get_object_prefix
● Instructions

Construct each row of data based on service requirements. The following is
just an example.

● Sample code
def get_object_prefix(full_path):
 try:
 url = urlparse(full_path)

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 37

 return url.path.lstrip('/')
 except Exception as e:
 logger.error("Failed to get object key from full path", e)
 return None

5.2.2 Submitting a Flink SQL Job Using an SDK
This section describes how to submit a Flink SQL job using DLI SDK V2.

NO TE

Starting May 2024, new users can directly use DLI's SDK V2 without needing to have their
accounts whitelisted.
For users who started using DLI before May 2024, to use this function, they must submit a
service ticket to have their accounts whitelisted.

Prerequisites
● You have configured the Python SDK environment by referring to Preparing a

Python Development Environment.
● You have initialized the DLI client by referring to Initializing the DLI Client.

Preparations
Obtain an AK/SK, project ID, and region information.

1. Log in to the management console.
2. In the upper right corner, hover over the username and choose My

Credentials from the drop-down list.
3. In the navigation pane on the left, choose Access Keys. On the displayed

page, click Create Access Key. Confirm that you want to proceed with the
operation and click OK.

4. On the displayed page, click Download. Open the file to obtain the AK/SK
information.

5. In the navigation pane on the left, choose API Credentials. In the Projects
pane, locate project_id and obtain the region information.

Example Code
Configure logs.
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def main():
 your_access_key = os.getenv("HUAWEICLOUD_SDK_AK")
 your_secret_key = os.getenv("HUAWEICLOUD_SDK_SK")
 project_id = "your_project_id"
 region_name = "region_name"
 credentials = BasicCredentials(your_access_key, your_secret_key, project_id)
 dli_client = DliClient.new_builder() \
 .with_credentials(credentials) \
 .with_region(DliRegion.value_of(region_name)) \
 .build()

 try:
 # Step 1: Create a Flink job. The job status changes to Draft.
 job_id = create_flink_sql_job(dli_client, "your_queue_name")
 logger.info("job_id: %d", job_id)

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 38

 # Step 2: Run the job. The job status changes from Draft to Submitting.
 resps = batch_run_flink_sql_jobs(dli_client, [job_id])
 logger.info("Response: %s", resps)

 # Step 3: Query the job status. If you wish to wait for the job to reach the Running state within the
current thread, you can cyclically check the job status until it becomes Running.
 check_running(dli_client, job_id)

 except exceptions.ClientRequestException as e:
 # Handle the exception based on service requirements. The following is just an example.
 logger.error("Failed to execute job:", e)

Creating a Flink SQL Job
● Function:

Create a Flink SQL job.
● Reference link:

Key SDK API: huaweicloudsdkdli.v1.dli_client.DliClient.create_flink_sql_job.
Create a Flink SQL job. The job status changes to Draft.

● Sample code:
def create_flink_sql_job(client, queue_name):
 """
 Create a Flink job. The job status changes to Draft.
 Key SDK API: huaweicloudsdkdli.v1.dli_client.DliClient.create_flink_sql_job.

 :param huaweicloudsdkdli.v1.dli_client.DliClient client: DLI Client.
 :param str queue_name: Queue name for the job to execute
 :return: int
 """
 request_body = CreateFlinkSqlJobRequestBody(
 name="your_job_name", # Job name, which must be unique, for example, flink_jar_job_demo.
The name can contain up to 57 characters.
 desc="your flink job's description", # User-defined description. The description can contain up to
512 characters.
 sql_body="""create table orders(
 name string,
 num INT
) with (
 'connector' = 'datagen',
 'rows-per-second' = '1',
 'fields.name.kind' = 'random',
 'fields.name.length' = '5'
);
 CREATE TABLE sink_table (
 name string,
 num INT
) WITH (
 'connector' = 'print'
);
 INSERT into sink_table SELECT * from orders;""",
 # Customize a stream SQL statement, which contains at least the following three parts: source,
query, and sink. Length limit: 1024 x 1024 characters.
 # In this SQL statement, random source data is automatically generated and printed to the
console.
 queue_name=queue_name, # General queue name. The name can contain up to 128
characters.
 run_mode="exclusive_cluster", # Job running mode. Only the exclusive_cluster mode is
supported.
 log_enabled=True, # Enable the function of uploading job logs to OBS buckets.
 obs_bucket="your_obs_bucket_name", # OBS bucket name, which is used to store logs and
checkpoints.
 job_type="flink_opensource_sql_job", # Job type. You are advised to select
flink_opensource_sql_job.
 flink_version="1.12" # Specify the Flink version.
)

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 39

 request = CreateFlinkSqlJobRequest(body=request_body)
 response = client.create_flink_sql_job(request)
 return response.job.job_id

Running Flink Jobs in Batches
● Function:

Run Flink SQL jobs in batches.
● Reference link:

Key SDK API:
huaweicloudsdkdli.v1.dli_client.DliClient.batch_run_flink_jobs.
Run Flink jobs in batches. The job status changes from Draft to Submitting.

● Sample code:
def batch_run_flink_sql_jobs(client, job_ids):
 """
 Run jobs. The job status changes from Draft to Submitting.
 :param huaweicloudsdkdli.v1.dli_client.DliClient client: DLI Client.
 :param list[int] job_ids: The job ids for running.
 :return: The body of this BatchRunFlinkJobsResponse.
 :rtype: list[:class:`huaweicloudsdkdli.v1.FlinkSuccessResponse`]
 """
 request_body = BatchRunFlinkJobsRequestBody(job_ids=job_ids)
 request = BatchRunFlinkJobsRequest(body=request_body)
 response = client.batch_run_flink_jobs(request)
 return response.body

Querying the Job Status
● Function:

Query the status of a Flink SQL job.
● Reference link:

Key SDK API:
huaweicloudsdkdli.v1.dli_client.DliClient.show_flink_job.
If you wish to wait for the job's transition into the Running state within the
current thread, you can cyclically check the job status until it becomes
Running.

● Sample code:
def check_running(client, job_id):
 """
 If you wish to wait for the job's transition into the Running state within the current thread, you
can execute this method to cyclically check the job status until it becomes Running.

 :param huaweicloudsdkdli.v1.dli_client.DliClient client: DLI Client.
 :param int job_id: The job id for getting status.
 :return:
 """
 while True:
 try:
 request = ShowFlinkJobRequest(job_id=job_id)
 response = client.show_flink_job(request)
 except exceptions.ClientRequestException as e:
 raise Exception(f"Failed to get Flink sql job status by id: {job_id}") from e

 status = response.job_detail.status
 logger.info("FlinkSqlJob id %d status: %s", job_id, status)

 if status == "job_running":
 return
 if status in ["job_submit_fail", "job_running_exception"]:

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 40

 raise Exception(f"Run Flink sql job failed: {response}")

 time.sleep(1)

5.2.3 Submitting a Flink Jar Job Using an SDK
This section describes how to submit a Flink Jar job using DLI SDK V2.

NO TE

Starting May 2024, new users can directly use DLI's SDK V2 without needing to have their
accounts whitelisted.
For users who started using DLI before May 2024, to use this function, they must submit a
service ticket to have their accounts whitelisted.

Prerequisites
● You have configured the Python SDK environment by referring to Preparing a

Python Development Environment.
● You have initialized the DLI client by referring to Initializing the DLI Client.

Preparations
Obtain an AK/SK, project ID, and region information.

1. Log in to the management console.
2. In the upper right corner, hover over the username and choose My

Credentials from the drop-down list.
3. In the navigation pane on the left, choose Access Keys. On the displayed

page, click Create Access Key. Confirm that you want to proceed with the
operation and click OK.

4. On the displayed page, click Download. Open the file to obtain the AK/SK
information.

5. In the navigation pane on the left, choose API Credentials. In the Projects
pane, locate project_id and obtain the region information.

Example Code
def main():
 your_access_key = os.getenv("HUAWEICLOUD_SDK_AK")
 your_secret_key = os.getenv("HUAWEICLOUD_SDK_SK")
 project_id = "your_project_id"
 region_name = "region_name"
 credentials = BasicCredentials(your_access_key, your_secret_key, project_id)
 dli_client = DliClient.new_builder() \
 .with_credentials(credentials) \
 .with_region(DliRegion.value_of(region_name)) \
 .build()

 try:
 # Step 1: Create a Flink job. The job status changes to Draft.
 job_id = create_flink_jar_job(dli_client, "your_queue_name")
 logger.info("job_id: %d", job_id)

 # Step 2: Run the job. The job status changes from Draft to Submitting.
 resps = batch_run_flink_jar_jobs(dli_client, [job_id])
 logger.info("Response: %s", resps)

 # Step 3: Query the job status. If you wish to wait for the job to reach the Running state within the

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 41

current thread, you can cyclically check the job status until it becomes Running.
 check_running(dli_client, job_id)

 except exceptions.ClientRequestException as e:
 # Handle the exception based on service requirements. The following is just an example.
 logger.error("Failed to execute job:", e)

Creating a Flink Jar Job
● Function:

Create a Flink Jar job.
● Reference link:

Key SDK API:
huaweicloudsdkdli.v1.dli_client.DliClient.create_flink_jar_job
Create a Flink Jar job. The job status changes to Draft.

● Sample code:
def create_flink_jar_job(client, queue_name):
 """
 Create a Flink Jar job. The job status changes to Draft.

 :param huaweicloudsdkdli.v1.dli_client.DliClient client: DLI Client
 :param str queue_name: Queue name for the job to execute
 :return: int
 """
 request_body = CreateFlinkJarJobRequestBody(
 name="your_job_name", # Job name, which must be unique, for example, flink_jar_job_demo.
The name can contain up to 57 characters.
 desc="your flink job's description", # User-defined description. The description can contain up to
512 characters.
 queue_name=queue_name, # General queue name. The name can contain up to 128
characters.
 feature="basic", # Job feature. Type of the Flink image used by a job. basic: the base Flink
image provided by DLI is used.
 flink_version="1.12", # Flink version. This parameter takes effect when feature is set to basic.
You can use this parameter together with feature to specify the version of the base Flink image used
by the job.
 log_enabled=True, # Whether to enable job logs.
 obs_bucket="your_obs_bucket_name", # Name of the OBS bucket authorized by the user to
store job logs when log_enabled is set to true.
 entrypoint="obs://your_obs_bucket_name/your/flink/job.jar", # Program package uploaded to
OBS that stores the user-defined job main class.
 main_class="your_class_fullname" # Job entry class, for example,
org.apache.flink.examples.WordCount.
)
 request = CreateFlinkJarJobRequest(body=request_body)
 response = client.create_flink_jar_job(request)
 return response.job.job_id

Running Flink Jobs in Batches
● Function:

Run Flink SQL jobs in batches.
● Reference link:

Key SDK API:
huaweicloudsdkdli.v1.dli_client.DliClient.batch_run_flink_jobs
Run Flink jobs in batches. The job status changes from Draft to Submitting.

● Sample code:
def batch_run_flink_jar_jobs(client, job_ids):
 """

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 42

 Run jobs. The job status changes from Draft to Submitting.
 Key SDK API: huaweicloudsdkdli.v1.dli_client.DliClient.batch_run_flink_jobs.

 :param huaweicloudsdkdli.v1.dli_client.DliClient client: DLI Client.
 :param list[int] job_ids: The job ids for running.
 :return: The body of this BatchRunFlinkJobsResponse.
 :rtype: list[:class:`huaweicloudsdkdli.v1.FlinkSuccessResponse`]
 """
 request_body = BatchRunFlinkJobsRequestBody(job_ids=job_ids)
 request = BatchRunFlinkJobsRequest(body=request_body)
 response = client.batch_run_flink_jobs(request)
 return response.body

Querying the Job Status
● Function:

Query the status of a Flink SQL job.
● Reference link:

Key SDK API:
huaweicloudsdkdli.v1.dli_client.DliClient.show_flink_job
If you wish to wait for the job's transition into the Running state within the
current thread, you can cyclically check the job status until it becomes
Running.

● Sample code:
def check_running(client, job_id):
 """
 If you wish to wait for the job's transition into the Running state within the current thread, you
can execute this method to cyclically check the job status until it becomes Running.
 Key SDK API: huaweicloudsdkdli.v1.dli_client.DliClient.show_flink_job.

 :param huaweicloudsdkdli.v1.dli_client.DliClient client: DLI Client.
 :param int job_id: The job id for getting status.
 :return:
 """
 while True:
 try:
 request = ShowFlinkJobRequest(job_id=job_id)
 response = client.show_flink_job(request)
 except exceptions.ClientRequestException as e:
 raise Exception(f"Failed to get Flink jar job status by id: {job_id}") from e

 status = response.job_detail.status
 logger.info("FlinkJarJob id %d status: %s", job_id, status)

 if status == "job_running":
 return
 if status in ["job_submit_fail", "job_running_exception"]:
 raise Exception(f"Run Flink jar job failed: {response}")

 time.sleep(1)

5.2.4 Submitting a Spark Job Using an SDK
This section describes how to submit a Spark job using DLI SDK V2.

NO TE

Starting May 2024, new users can directly use DLI's SDK V2 without needing to have their
accounts whitelisted.

For users who started using DLI before May 2024, to use this function, they must submit a
service ticket to have their accounts whitelisted.

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 43

Prerequisites
● You have configured the Python SDK environment by referring to Preparing a

Python Development Environment.
● You have initialized the DLI client by referring to Initializing the DLI Client.

Preparations

Obtain an AK/SK, project ID, and region information.

1. Log in to the management console.
2. In the upper right corner, hover over the username and choose My

Credentials from the drop-down list.
3. In the navigation pane on the left, choose Access Keys. On the displayed

page, click Create Access Key. Confirm that you want to proceed with the
operation and click OK.

4. On the displayed page, click Download. Open the file to obtain the AK/SK
information.

5. In the navigation pane on the left, choose API Credentials. In the Projects
pane, locate project_id and obtain the region information.

Example Code
Configure logs.
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def main():
 your_access_key = os.getenv("HUAWEICLOUD_SDK_AK")
 your_secret_key = os.getenv("HUAWEICLOUD_SDK_SK")
 project_id = "your_project_id"
 region_name = "region_name"
 credentials = BasicCredentials(your_access_key, your_secret_key, project_id)
 dli_client = DliClient.new_builder() \
 .with_credentials(credentials) \
 .with_region(DliRegion.value_of(region_name)) \
 .build()
 try:
 # Step 1: Submit a Spark job to DLI for execution.
 job_id = run_spark_job(dli_client, "your_queue_name")
 # Step 2: If you wish to wait for the job execution to finish within the current thread, cycle through
checking the status until the job completes.
 check_running(dli_client, job_id)
 # Step 3: To query one or more specific jobs based on conditions, use the following method:
 # This is just an example. In addition to jobId, you can also specify other filter criteria.
 list_spark_job(dli_client, job_id)
 # Other scenarios:
 # 1. If you want to cancel a running job, call the API below.
 # Key SDK API: huaweicloudsdkdli.v1.dli_client.DliClient.cancel_spark_job
 # Note: Batch processing jobs in the Successful or Failed state cannot be canceled.
 # 2. To query details about a specific job based on the job ID, perform the following operations:
 # Key SDK API: huaweicloudsdkdli.v1.dli_client.DliClient.show_spark_job
 except exceptions.ClientRequestException as e:
 # Handle the exception based on service requirements. The following is just an example.
 logger.error("Failed to execute job: ", e)

Creating a Spark Job
● Function:

Execute Spark jobs.

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 44

● Reference link:
Key SDK API: huaweicloudsdkdli.v1.dli_client.DliClient.create_spark_job

● Sample code:
def run_spark_job(client, queue_name):
 """
 Submit a Spark job to DLI for execution.
 Key SDK API: huaweicloudsdkdli.v1.dli_client.DliClient.create_spark_job.
 :param huaweicloudsdkdli.v1.dli_client.DliClient client: DLI Client.
 :param str queue_name: Queue name for the job to execute
 :return: str
 """
 conf_map = {
 "spark.dli.metaAccess.enable": "true" # For example, "spark.dli.metaAccess.enable": "true"
 }
 request_body = CreateSparkJobRequestBody(
 # Set the parameters according to the actual situation. The following is just an example.
 queue=queue_name, # Name of a general queue
 spark_version="2.4.5", # Version of the Spark component used by the job.
 name="demo_spark_app", # User-defined job name, which is the batch processing job name
specified by the user during job creation. The name can contain up to 128 characters.
 file="obs://your_bucket/your_spark_app.jar", # (Mandatory) Location of the JAR file on OBS.
 class_name="your_class_fullname", # (Mandatory) Class path of the main class (--class), for
example, org.example.DliCatalogTest.
 args=["YourAppArg1", "YourAppAgr2", "..."], # Input parameters of the application. Delete this
line if it is not required.
 conf=conf_map, # Spark parameter (--conf)
 catalog_name="dli", # When accessing metadata, set this parameter to dli and ensure
conf_map["spark.dli.metaAccess.enable"] = "true".
 jars=["YourDepJar1", "YourDepJar2", "..."], # Dependency JAR file (--jars). Delete this line if it is
not required.
 feature="basic", # Job feature, which indicates the Spark image type used by the user job. It is
typically set to basic.
 driver_cores=1, # Number of CPU cores for the driver in a Spark application
 driver_memory="1GB", # Memory for the driver in a Spark application. It can be set to values
like 2G or 2048M. The value must include a unit; otherwise, the startup will fail.
 num_executors=1, # Number of executors in a Spark application
 executor_cores=1, # Number of CPU cores for each executor in a Spark application
 executor_memory="1GB" # Memory for executors in a Spark application. It can be set to values
like 2G or 2048M. The value must include a unit; otherwise, the startup will fail.
)
 request = CreateSparkJobRequest(body=request_body)
 response = client.create_spark_job(request)
 return response.id

Querying the Status of a Batch Processing Job
● Function:

Execute Spark jobs.
● Reference link:

Key SDK API:
huaweicloudsdkdli.v1.dli_client.DliClient.show_spark_job_status

● Sample code:
def check_running(client, job_id):
 """
 If you wish to wait for the job execution to finish within the current thread, cycle through checking
the status until the job completes.

 :param huaweicloudsdkdli.v1.dli_client.DliClient client: DLI Client.
 :param str job_id: The job id for getting status.
 :return:
 """
 while True:
 try:
 request = ShowSparkJobStatusRequest(batch_id=job_id)

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 45

 response = client.show_spark_job_status(request)
 except exceptions.ClientRequestException as e:
 raise Exception(f"Failed to get job status by id: {job_id}") from e
 status = response.state
 logger.info("SparkJob id %s status: %s", job_id, status)
 if status == "success":
 return
 if status == "dead":
 raise Exception("Run job failed")
 time.sleep(1)

Querying the Batch Processing Job List
● Function:

Query the batch processing job list.
● Reference link:

Key SDK API:
huaweicloudsdkdli.v1.dli_client.DliClient.list_spark_jobs

● Sample code:
def list_spark_job(client, job_id):
 """
 :param huaweicloudsdkdli.v1.dli_client.DliClient client: DLI Client.
 :param str job_id: The job id for getting details.
 :return:
 """
 try:
 request = ListSparkJobsRequest(
 # This is just an example. In addition to jobId, you can also specify other filter criteria.
 job_id=job_id,
 queue_name="your_queue_name", # Change the value to a DLI queue name. You can then
query batch processing jobs running on the queue (recommended).
 start=1716195600000, # Change the value to the start time of a user-defined job. Jobs
whose start time is later than this specified time are queried. The time is in UNIX timestamp format,
in milliseconds.
 end=1716199200000 # Change the value to the end time of a user-defined job. Jobs whose
start time is earlier than this specified time are queried. The time is in UNIX timestamp format, in
milliseconds.
)
 response = client.list_spark_jobs(request)
 except exceptions.ClientRequestException as e:
 raise Exception("Failed to list Spark jobs") from e
 logger.info("List SparkJobs: %s", response)

Data Lake Insight
SDK Reference 5 DLI SDK V2

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 46

6 DLI SDK V1 (Not Recommended)

6.1 DLI SDK V1 Function Matrix
This development guide describes how to install and configure an environment
and call functions provided by DLI SDK for secondary development.

Table 1 lists the function matrix of DLI's Java and Python SDKs.

Table 6-1 SDK function matrix

Languag
e

Function Content

Java Submitting a SQL
Job Using an SDK

This section provides instructions on how to
authorize DLI's Java SDKs to access and
operate on OBS buckets.

Queue-Related
SDKs

This section provides instructions on how to
use DLI's Java SDKs to create queues, retrieve
the default queue, query all queues, and
delete queues.

Resource-Related
SDKs

This section provides instructions on how to
use DLI's Java SDKs to upload resource
packages, query all resource packages, query
specific resource packages, and delete resource
packages.

SDKs Related to
SQL Jobs

This section provides instructions on how to
use DLI's Java SDKs for database-related
operations, table-related operations, and job-
related operations.

SDKs Related to
Flink Jobs

This section provides instructions on how to
use DLI's Java SDKs to create new Flink jobs,
retrieve job details, and list jobs.

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 47

Languag
e

Function Content

SDKs Related to
Spark Jobs

This section provides instructions on how to
use DLI's Java SDKs to submit Spark jobs,
query all Spark jobs, and delete Spark jobs.

SDKs Related to
Flink Job
Templates

This section provides instructions on how to
use DLI's Java SDKs to create new Flink job
templates, update existing Flink job templates,
and delete Flink job templates.

Python Queue-Related
SDKs

This section provides instructions on how to
use DLI's Python SDKs to retrieve a list of all
queues.

Resource-Related
SDKs

This section provides instructions on how to
use DLI's Python SDKs to upload resource
packages, query all resource packages, query
specific resource packages, and delete resource
packages.

SDKs Related to
SQL Jobs

This section provides instructions on how to
use DLI's Python SDKs for database-related
operations, table-related operations, and job-
related operations.

SDKs Related to
Spark Jobs

This section provides instructions on how to
use DLI's Python SDKs to submit Spark jobs,
cancel Spark jobs, and delete Spark jobs.

6.2 Mapping Between DLI SDK V1 and APIs

OBS Authorization

Table 6-2 Mapping between OBS authorization APIs and SDKs

Class Metho
d

Java Method Python
Method

API

Autho
rize

OBS
authori
zation

authorizeBuck
et

- POST /v1.0/{project_id}/dli/obs-
authorize

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 48

Queue-related SDKs

Table 6-3 Mapping between queue-related APIs and SDKs

Class Method Java Method Python
Method

API

Queue Creating a
Queue

createQueue - POST /v1.0/{project_id}/
queues

Deleting a
Queue

deleteQueu
e

- DELETE /v1.0/{project_id}/
queues/{queue_name}

Obtaining
the Default
Queue

getDefaultQ
ueue

- -

Querying
All Queues

listAllQueue
s

list_queue
s

GET/v1.0/{project_id}/
queues

Resource-related SDKs

Table 6-4 Mapping between resource-related APIs and SDKs

Class Method Java
Method

Python
Method

API

package
Resourc
es

Uploading a
Resource
Package

uploadReso
urces

upload_resour
ce

POST /v2.0/
{project_id}/resources

Deleting a
Resource
Package

deleteReso
urce

delete_resour
ce

DELETE /v2.0/
{project_id}/resources/
{resource_name}

Querying All
Resource
Packages

listAllResou
rces

list_resources GET /v2.0/{project_id}/
resources

Querying a
Specified
Resource
Package

getResourc
e

get_package_r
esource

GET /v2.0/{project_id}/
resources/
{resource_name}

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 49

SDKs Related to SQL Jobs

Table 6-5 Mapping between SQL job APIs and SDKs

Class Method Java Method Python
Method

API

Datab
ase

Creating a
Database

createDatab
ase

create_dat
abase

POST /v1.0/{project_id}/
databases

Deleting a
Database

deleteDatab
ase

delete_dat
abase

DELETE /v1.0/{project_id}/
databases/{database_name}

Querying
All
Databases

listAllDatab
ases

list_datab
ases

GET /v1.0/{project_id}/
databases

Modifying
a Database
User

- - PUT /v1.0/{project_id}/
databases/
{database_name}/owner

Table Creating a
DLI Table

createDLITa
ble

create_dli_
table

POST /v1.0/{project_id}/
databases/
{database_name}/tables

Creating
an OBS
Table

createObsTa
ble

create_obs
_table

POST /v1.0/{project_id}/
databases/
{database_name}/tables

Deleting a
Table

deleteTable delete_tab
le

DELETE /v1.0/{project_id}/
databases/
{database_name}/tables/
{table_name}

Querying
All Tables

listAllTables list_tables GET /v1.0/{project_id}/
databases/
{database_name}/tables?
keyword=tb&with-
detail=true

Describing
Table
Informatio
n

getTableDet
ail

get_table_
schema

GET /v1.0/{project_id}/
databases/
{database_name}/tables/
{table_name}

Previewing
a Table

- - GET /v1.0/{project_id}/
databases/
{database_name}/tables/
{table_name}/preview

Modifying
a Table
User

- - PUT /v1.0/{project_id}/
databases/
{database_name}/tables/
{table_name}/owner

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 50

Class Method Java Method Python
Method

API

Job Importing
Data

submit import_ta
ble

POST /v1.0/{project_id}/
jobs/import-table

Exporting
Data

submit export_ta
ble

POST /v1.0/{project_id}/
jobs/export-table

Submitting
a Job

submit execute_s
ql

POST /v1.0/{project_id}/
jobs/submit-job

Canceling
a Job

cancelJob - DELETE /v1.0/{project_id}/
jobs/{job_id}

Querying
All Jobs

listAllJobs - GET /v1.0/{project_id}/jobs?
page-size={size}¤t-
page={page_number}&start
={start_time}&end={end_tim
e}&job-
type={QUERY}&queue_nam
e={test}&order={duration_d
esc}

Querying
Job Results

queryJobRes
ultInfo

- GET/v1.0/{project_id}/jobs/
{job_id}?page-
size={size}¤t-
page={page_number}

Querying
the Job
Status

- - GET/v1.0/{project_id}/jobs/
{job_id}/status

Querying
Job Details

- - GET/v1.0/{project_id}/jobs/
{job_id}/detail

Querying
Jobs of the
SQL Type

listSQLJobs - -

Checking
the SQL
Syntax

- - POST /v1.0/{project_id}/
jobs/check-sql

Exporting
Search
Results

- - POST /v1.0/{project_id}/
jobs/{job_id}/export-result

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 51

SDKs Related to Flink Jobs

Table 6-6 Mapping between Java and Python SDKs and APIs

Cl
ass

Method Java Method Python
Method

API

Job Creating a
Flink SQL
Job

submitFlinkSq
lJob

- POST /v1.0/{project_id}/
streaming/sql-jobs

Creating a
Custom
Flink Job

createFlinkJar
Job

- POST /v1.0/{project_id}/
streaming/flink-jobs

Updating
a Flink
SQL Job

updateFlinkSq
lJob

- PUT /v1.0/{project_id}/
streaming/sql-jobs/{job_id}

Updating
a Custom
Flink Job

updateFlinkJa
rJob

- PUT /v1.0/{project_id}/
streaming/flink-jobs/{job_id}

Querying
the Flink
Job List

getFlinkJobs - GET /v1.0/{project_id}/
streaming/jobs

Querying
Flink Job
Details

getFlinkJobDe
tail

- GET /v1.0/{project_id}/
streaming/jobs/{job_id}

Querying
the Flink
Job
Execution
Plan
Diagram

getFlinkJobEx
ecuteGraph

- GET /v1.0/{project_id}/
streaming/jobs/{job_id}/
execute-graph

Querying
Flink Job
Monitorin
g
Informatio
n

getFlinkJobsM
etrics

- POST /v1.0/{project_id}/
streaming/jobs/metrics

Querying
the APIG
Address of
a Flink Job

getFlinkApigS
inks

- GET /v1.0/{project_id}/
streaming/jobs/{job_id}/apig-
sinks

Running a
Flink Job

runFlinkJob - POST /v1.0/{project_id}/
streaming/jobs/run

Stopping a
Flink Job

stopFlinkJob - POST /v1.0/{project_id}/
streaming/jobs/stop

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 52

Cl
ass

Method Java Method Python
Method

API

Deleting
Flink Jobs
in Batches

deleteFlinkJo
bInBatch

- POST /v1.0/{project_id}/
streaming/jobs/delete

SDKs Related to Spark Jobs

Table 6-7 Mapping between Spark job APIs and SDKs

Class Method Java
Method

Python
Method

API

BatchJo
b

Submitting
Batch Jobs

asyncSubmi
t

submit_spark_
batch_job

POST /v2.0/
{project_id}/batches

Deleting
Batch Jobs

deleteBatc
hJob

del_spark_bat
ch_job

DELETE /v2.0/
{project_id}/batches/
{batch_id}

Querying All
Batch Jobs

listAllBatch
Jobs

- GET /v2.0/{project_id}/
batches

Querying
Batch Job
Details

- - GET /v2.0/{project_id}/
batches/{batch_id}

Querying
the Status
of a Batch
Processing
Job

getStateBa
tchJob

- GET /v2.0/{project_id}/
batches/{batch_id}/
state

Querying
Batch Job
Logs

getBatchJo
bLog

- GET /v2.0/{project_id}/
batches/{batch_id}/log

SDKs Related to Flink Job Templates

Table 6-8 Mapping between Java and Python SDKs and APIs

Class Java Method Python
Method

API

Temp
late

createFlinkJob
Template

- POST /v1.0/{project_id}/streaming/job-
templates

updateFlinkJo
bTemplate

- PUT /v1.0/{project_id}/streaming/job-
templates/{template_id}

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 53

Class Java Method Python
Method

API

deleteFlinkJob
Template

- DELETE /v1.0/{project_id}/streaming/job-
templates/{template_id}

getFlinkJobTe
mplates

- GET /v1.0/{project_id}/streaming/job-
templates

6.3 Java SDK (DLI SDK V1)

6.3.1 Overview

Scenario

With DLI's Java SDKs, you can quickly and easily use DLI without worrying about
the details of the requests. This section describes how to obtain and use Java
SDKs.

Notes
● To use DLI's Java SDKs to access a specific service's API, you need to ensure

that the current service has been enabled and authorized on the DLI
management console.

● The Java SDKs can be used in Java JDK 1.8 or later. For details about how to
configure the Java development environment, see Configuring the Java SDK
Environment.

● For details about how to obtain and install Java SDKs, see Obtaining and
Installing the Java SDK.

● To use SDKs to access DLI, you need to initialize the DLI client. During DLI
client initialization, you can use the AK/SK or token for authentication. For
details, see Initializing the DLI Client.

Java SDKs

Table 6-9 Java SDKs

SDK Description

Submitting
a SQL Job
Using an
SDK

This section provides instructions on how to authorize DLI's Java
SDKs to access and operate on OBS buckets.

Queue-
Related
SDKs

This section provides instructions on how to use DLI's Java SDKs
to create queues, retrieve the default queue, query all queues,
and delete queues.

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 54

SDK Description

Resource-
Related
SDKs

This section provides instructions on how to use DLI's Java SDKs
to upload resource packages, query all resource packages, query
specific resource packages, and delete resource packages.

SDKs
Related to
SQL Jobs

This section provides instructions on how to use DLI's Java SDKs
for database-related operations, table-related operations, and
job-related operations.

SDKs
Related to
Flink Jobs

This section provides instructions on how to use DLI's Java SDKs
to create new Flink jobs, retrieve job details, and list jobs.

SDKs
Related to
Spark Jobs

This section provides instructions on how to use DLI's Java SDK
to submit Spark jobs, query all Spark jobs, and delete Spark jobs.

SDKs
Related to
Flink Job
Templates

This section provides instructions on how to use DLI's Java SDKs
to create new Flink job templates, update existing Flink job
templates, and delete Flink job templates.

6.3.2 Queue-Related SDKs

Prerequisites
● You have configured the Java SDK environment by following the instructions

provided Overview.
● You have initialized the DLI Client by following the instructions provided in

Initializing the DLI Client.

Creating a Queue

You can use the API provided by DLI to create a queue. The example code is as
follows:
 private static void createQueue(DLIClient client) throws DLIException {
 //Call the createQueue method of the DLIClient object to create a queue.
 String qName = "queueName";
 int cu = 16;
 String description = "test for sdk";
 Queue queue = client.createQueue(qName, cu, mode, description);
 System.out.println("---------- createQueue success ---------");
 }

Deleting a Queue

You can use the API provided by DLI to delete the queue. The example code is as
follows:
 private static void deleteQueue(DLIClient client) throws DLIException {
 //Call the getQueue(queueName) method of the DLIClient object to obtain queue queueName.
 String qName = "queueName";
 Queue queue = client.getQueue(qName);
 //Call the deleteQueue() method to delete queue queueName.

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 55

 queue.deleteQueue();
}

Obtaining the Default Queue

DLI provides an API for querying the default queue. You can use the default queue
to submit jobs. The example code is as follows:

private static void getDefaultQueue(DLIClient client) throws DLIException{
 //Call the getDefaultQueue method of the DLIClient object to query the default queue.
 Queue queue = client.getDefaultQueue();
 System.out.println("defaultQueue is:"+ queue.getQueueName());
}

NO TE

All users can use the default queue. However, DLI limits the maximum number of times a
user can use the default queue.

Querying All Queues

You can use the API provided by DLI to query the queue list and select the
corresponding queue to execute the job. The example code is as follows:

 private static void listAllQueues(DLIClient client) throws DLIException {
 System.out.println("list all queues...");

 //Call the listAllQueues method of the DLIClient object to query the queue list.
 List<Queue> queues = client.listAllQueues();
 for (Queue queue : queues) {
 System.out.println("Queue name:" + queue.getQueueName() + " " + "cu:" + queue.getCuCount());
 }
 }

6.3.3 Resource-Related SDKs

Prerequisites
● You have configured the Java SDK environment by following the instructions

provided Overview.

● You have initialized the DLI Client by following the instructions provided in
Initializing the DLI Client.

Uploading a Resource Package

You can use the interface provided by the DLI to upload resource packages. The
code example is as follows:

private static void uploadResources(DLIClient client) throws DLIException {
 String kind = "jar";
 String[] paths = new String[1];
 paths[0] = "https://bucketname.obs.com/jarname.jar";
 String description = "test for sdk";
 //Call the uploadResources method of the DLIClient object to upload resources.
 List<PackageResource> packageResources = client.uploadResources(kind, paths, description);
 System.out.println("---------- uploadResources success ---------");
}

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 56

NO TE

The following describes the request parameters. For details, see Overview.

● kind: resource package type. The options are as follows:

● jar: JAR file

● Pyfile: User Python file

● file: User file

● modelfile: User AI model file

● paths: OBS path of the resource package. The parameter format is {bucketName}.{obs
domain name}/{jarPath}/{jarName}.

● description: description of the resource package

Querying All Resource Packages

You can use the API provided by DLI to query the list of uploaded resources. The
example code is as follows:

private static void listAllResources(DLIClient client) throws DLIException {
 System.out.println("list all resources...");
 //Call the listAllResources method of the DLIClient object to query the queue resource list.
 Resources resources = client.listAllResources();
 for (PackageResource packageResource : resources.getPackageResources()) {
 System.out.println("Package resource name:" + packageResource.getResourceName());
 }
 for (ModuleResource moduleResource : resources.getModuleResources()) {
 System.out.println("Module resource name:" + moduleResource.getModuleName());
 }
}

Querying a Specified Resource Package

You can call an API to query information about the specified resource package.
The sample code is as follows:
private static void getResource(DLIClient client) throws DLIException {
 String resourceName = "xxxxx";
 // group: If the resource package is not in the group, leave this parameter empty.
 String group= "xxxxxx";
 // Call getResource on the DLIClient object to query a specified resource package.
 PackageResource packageResource=client.getResource(resourceName,group);
 System.out.println(packageResource);
}

Deleting a Resource Package

You can call an API to delete an uploaded resource package. Sample code is as
follows:
private static void deleteResource(DLIClient client) throws DLIException {
 String resourceName = "xxxxx";
 // group: If the resource package is not in the group, leave this parameter empty.
 String group= "xxxxxx";
 //Call deleteResource on the DLIClient object to upload resources.
 client.deleteResource(resourceName,group);
 System.out.println("---------- deleteResource success ---------");
}

6.3.4 SDKs Related to SQL Jobs

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 57

6.3.4.1 Database-Related SDKs

Prerequisites
● You have configured the Java SDK environment by following the instructions

provided Overview.
● You have initialized the DLI Client by following the instructions provided in

Initializing the DLI Client and created queues by following the instructions
provided in Queue-Related SDKs.

Creating a Database
DLI provides an API for creating a database. You can use the API to create a
database. The sample code is as follows:

 private static Database createDatabase(DLIClient client) throws DLIException {
 //Call the createDatabase method of the DLIClient object to create a database.
 String dbName = "databasename";
 Database database = client.createDatabase(dbName);
 System.out.println("create database:" + database);
 return database;
 }

NO TE

The default database is a built-in database. You are not allowed to create a database
named default.

Deleting a Database
DLI provides an API for deleting a database. The example code is as follows:

 //Call the deleteDatabase interface of the Database object to delete a database.
 //Call the getDatabase(String databaseName) interface of the DLIClient object to obtain the Database
object.
private static void deletedatabase(Database database) throws DLIException {
 String dbName = "databasename";
 database=client.getDatabase(dbName);
 database.deleteDatabase();
 System.out.println("delete db " + dbName);
}

NO TE

● A database that contains tables cannot be deleted. To delete a database that contains
tables, delete the tables first.

● A deleted database cannot be restored. Therefore, exercise caution when deleting a
database.

Querying All Databases
You can use the API provided by DLI to query the list of created databases. The
example code is as follows:

 private static void listDatabases(DLIClient client) throws DLIException {
 //Call the listAllDatabases method of the DLIClient object to query the database list.
 List<Database> databases = client.listAllDatabases();
 for (Database db : databases) {
 System.out.println("dbName:" + db.getDatabaseName() + " " + "tableCount:" + db.getTableCount());
 }
 }

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 58

6.3.4.2 Table-Related SDKs

Creating a DLI Table
DLI provides an API for creating DLI tables. You can use it to create a table for
storing DLI data. The example code is as follows:

 private static Table createDLITable(Database database) throws DLIException {
 // Construct a table column set and instantiate the Column object to construct columns.
 List<Column> columns = new ArrayList<Column>();
 Column c1 = new Column("c1", DataType.STRING, "desc for c1");
 Column c2 = new Column("c2", DataType.INT, "desc for c2");
 Column c3 = new Column("c3", DataType.DOUBLE, "desc for c3");
 Column c4 = new Column("c4", DataType.BIGINT, "desc for c4");
 Column c5 = new Column("c5", DataType.SHORT, "desc for c5");
 Column c6 = new Column("c6", DataType.LONG, "desc for c6");
 Column c7 = new Column("c7", DataType.SMALLINT, "desc for c7");
 Column c8 = new Column("c8", DataType.BOOLEAN, "desc for c8");
 Column c9 = new Column("c9", DataType.DATE, "desc for c9");
 Column c10 = new Column("c10", DataType.TIMESTAMP, "desc for c10");
 Column c11 = new Column("c11", DataType.DECIMAL, "desc for c11");
 columns.add(c1);
 columns.add(c2);
 columns.add(c3);
 columns.add(c4);
 columns.add(c5);
 columns.add(c6);
 columns.add(c7);
 columns.add(c8);
 columns.add(c9);
 columns.add(c10);
 columns.add(c11);

 List<String> sortColumns = new ArrayList<String>();
 sortColumns.add("c1");
 String DLITblName = "tablename";
 String desc = "desc for table";
 // Call the createDLITable method of the Database object to create a DLI table.
 Table table = database.createDLITable(DLITblName, desc, columns, sortColumns);
 System.out.println(table);
 return table;
 }

NO TE

The default precision of DataType.DECIMAL is (10,0). To set the precision of data of the
decimal type, perform the following operation:
Column c11 = new Column("c11", new DecimalTypeInfo(25,5), "test for c11");

Creating an OBS Table
DLI provides an API for creating OBS tables. You can use it to create a table for
storing OBS data. The example code is as follows:

private static Table createObsTable(Database database) throws DLIException {
 // Construct a table column set and instantiate the Column object to construct columns.
 List < Column > columns = new ArrayList < Column > ();
 Column c1 = new Column("c1", DataType.STRING, "desc for c1");
 Column c2 = new Column("c2", DataType.INT, "desc for c2");
 Column c3 = new Column("c3", DataType.DOUBLE, "desc for c3");
 Column c4 = new Column("c4", DataType.BIGINT, "desc for c4");
 Column c5 = new Column("c5", DataType.SHORT, "desc for c5");
 Column c6 = new Column("c6", DataType.LONG, "desc for c6");
 Column c7 = new Column("c7", DataType.SMALLINT, "desc for c7");
 Column c8 = new Column("c8", DataType.BOOLEAN, "desc for c8");
 Column c9 = new Column("c9", DataType.DATE, "desc for c9");

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 59

 Column c10 = new Column("c10", DataType.TIMESTAMP, "desc for c10");
 Column c11 = new Column("c11", DataType.DECIMAL, "desc for c11");
 columns.add(c1);
 columns.add(c2);
 columns.add(c3);
 columns.add(c4);
 columns.add(c5);
 columns.add(c6);
 columns.add(c7);
 columns.add(c8);
 columns.add(c9);
 columns.add(c10);
 columns.add(c11);
 CsvFormatInfo formatInfo = new CsvFormatInfo();
 formatInfo.setWithColumnHeader(true);
 formatInfo.setDelimiter(",");
 formatInfo.setQuoteChar("\"");
 formatInfo.setEscapeChar("\\");
 formatInfo.setDateFormat("yyyy/MM/dd");
 formatInfo.setTimestampFormat("yyyy-MM-dd HH:mm:ss");
 String obsTblName = "tablename";
 String desc = "desc for table";
 String dataPath = "OBS path";
 // Call the createObsTable method of the Database object to create an OBS table.
 Table table = database.createObsTable(obsTblName, desc, columns,StorageType.CSV , dataPath,
formatInfo);
 System.out.println(table);
 return table;
}

NO TE

The default precision of DataType.DECIMAL is (10,0). To set the precision of data of the
decimal type, perform the following operation:
Column c11 = new Column("c11", new DecimalTypeInfo(25,5), "test for c11");

Deleting a Table
DLI provides an API for deleting tables. You can use it to delete all the tables in a
database. The example code is as follows:
private static void deleteTables(Database database) throws DLIException {
 // Call the listAllTables interface of the Database object to query all tables.
 List<Table> tables = database.listAllTables();
 for (Table table : tables) {
 // Traverse tables and call the deleteTable interface of the Table object to delete tables.
 table.deleteTable();
 System.out.println("delete table " + table.getTableName());
 }
 }

NO TE

A deleted table cannot be restored. Therefore, exercise caution when deleting a table.

Querying All Tables
DLI provides an API for querying tables. You can use it to query all tables in a
database. The example code is as follows:
 private static void listTables(Database database) throws DLIException {
 // Call the listAllTables method of the Database object to query all tables in a database.
 List<Table> tables = database.listAllTables(true);
 for (Table table : tables) {
 System.out.println(table);
 }
 }

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 60

Querying the Partition Information of a Table (Including the Creation and
Modification Time of the Partition).

DLI provides an API for querying table partition information. You can use it to
query the partition information (including the creation time and modification
time) in the database table. The example code is as follows:
private static void showPartitionsInfo(DLIClient client) throws DLIException {
 String databaseName = "databasename";
 String tableName = "tablename";
 // Call the showPartitions method of the DLIClient object to query the partition information (including
the partition creation and modification time) in the database table.
 PartitionResult partitionResult = client.showPartitions(databaseName, tableName);
 PartitionListInfo partitonInfos = partitionResult.getPartitions();
 // Obtain the creation and modification time of the partition.
 Long createTime = partitonInfos.getPartitionInfos().get(0).getCreateTime().longValue();
 Long lastAccessTime = partitonInfos.getPartitionInfos().get(0).getLastAccessTime().longValue();
 System.out.println("createTime:"+createTime+"\nlastAccessTime:"+lastAccessTime);
}

Describing Table Information

You can call an API to obtain the metadata description of a table. The example
code is as follows:
private static void getTableDetail(Table table) throws DLIException {
 // Call getTableDetail on the Table object to obtain table information.
 // TableSchema tableSchema=table.getTableDetail();
 // Output
 System.out.println(List<Column> columns = tableSchema.getColumns());
 System.out.println(List<String> sortColumns = tableSchema.getSortColumns());
 System.out.println(String createTableSql = tableSchema.getCreateTableSql());
 System.out.println(String tableComment = tableSchema.getTableComment());
}

6.3.4.3 Job-related SDKs

Importing Data

DLI provides an API for importing data. You can use it to import data stored in
OBS to a created DLI or OBS table. The example code is as follows:

//Instantiate the importJob object. The input parameters of the constructor include the queue, database
name, table name (obtained by instantiating the Table object), and data path.
private static void importData(Queue queue, Table DLITable) throws DLIException {
 String dataPath = "OBS Path";
 queue = client.getQueue("queueName");
 CsvFormatInfo formatInfo = new CsvFormatInfo();
 formatInfo.setWithColumnHeader(true);
 formatInfo.setDelimiter(",");
 formatInfo.setQuoteChar("\"");
 formatInfo.setEscapeChar("\\");
 formatInfo.setDateFormat("yyyy/MM/dd");
 formatInfo.setTimestampFormat("yyyy-MM-dd HH:mm:ss");
 String dbName = DLITable.getDb().getDatabaseName();
 String tableName = DLITable.getTableName();
 ImportJob importJob = new ImportJob(queue, dbName, tableName, dataPath);
 importJob.setStorageType(StorageType.CSV);
 importJob.setCsvFormatInfo(formatInfo);
 System.out.println("start submit import table: " + DLITable.getTableName());
 //Call the submit interface of the ImportJob object to submit the data importing job.
 importJob.submit(); //Call the getStatus interface of the ImportJob object to query the status of the data
importing job.
 JobStatus status = importJob.getStatus();

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 61

 System.out.println("Job id: " + importJob.getJobId() + ", Status : " + status.getName());
}

NO TE

● Before submitting the data importing job, you can set the format of the data to be
imported. In the sample code, the setStorageType interface of the ImportJob object is
called to set the data storage type to csv. The data format is set by calling the
setCsvFormatInfo interface of the ImportJob object.

● Before submitting the data import job, you can set the partition of the data to be
imported and whether to overwrite the data. You can call the setPartitionSpec API of
the ImportJob object to set the partition information, for example,
importJob.setPartitionSpec(new PartitionSpec("part1=value1,part2=value2")). You
can also create the partition using parameters when creating the ImportJob object. By
default, data is appended to an import job. To overwrite the existing data, call the
setOverWrite API of the ImportJob object, for example,
importJob.setOverWrite(Boolean.TRUE).

● If a folder and a file under an OBS bucket directory have the same name, data is
preferentially loaded to the file, instead of the folder. It is recommended that the files
and folders of the same level have different names when you create an OBS object.

Importing the Partition Data
DLI provides an API for importing data. You can use it to import data stored in
OBS to a specified partition of the created DLI or OBS table. The example code is
as follows:
//Instantiate the importJob object. The input parameters of the constructor include the queue, database
name, table name (obtained by instantiating the Table object), and data path.
private static void importData(Queue queue, Table DLITable) throws DLIException {
 String dataPath = "OBS Path";
 queue = client.getQueue("queueName");
 CsvFormatInfo formatInfo = new CsvFormatInfo();
 formatInfo.setWithColumnHeader(true);
 formatInfo.setDelimiter(",");
 formatInfo.setQuoteChar("\"");
 formatInfo.setEscapeChar("\\");
 formatInfo.setDateFormat("yyyy/MM/dd");
 formatInfo.setTimestampFormat("yyyy-MM-dd HH:mm:ss");
 String dbName = DLITable.getDb().getDatabaseName();
 String tableName = DLITable.getTableName();
 PartitionSpec partitionSpec = new PartitionSpec("part1=value1,part2=value2");
 Boolean isOverWrite = true;
 ImportJob importJob = new ImportJob(queue, dbName, tableName, dataPath, partitionSpec,
isOverWrite);
 importJob.setStorageType(StorageType.CSV);
 importJob.setCsvFormatInfo(formatInfo);
 System.out.println("start submit import table: " + DLITable.getTableName());
 //Call the submit interface of the ImportJob object to submit the data importing job.
 importJob.submit(); //Call the getStatus interface of the ImportJob object to query the status of the data
importing job.
 JobStatus status = importJob.getStatus();
 System.out.println("Job id: " + importJob.getJobId() + ", Status : " + status.getName());
}

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 62

NO TE

● When the ImportJob object is created, the partition information PartitionSpec can also
be directly transferred as the partition character string.

● If some columns are specified as partition columns during partitionSpec import but the
imported data contains only the specified partition information, the unspecified
partition columns after data import contain abnormal values such as null.

● In the example, isOverWrite indicates whether to overwrite data. The value true
indicates that data is overwritten, and the value false indicates that data is appended.
Currently, overwrite is not supported to overwrite the entire table. Only the specified
partition can be overwritten. To append data to a specified partition, set isOverWrite to
false when creating the import job.

Exporting Data
DLI provides an API for exporting data. You can use it to export data from a DLI
table to OBS. The example code is as follows:

//Instantiate the ExportJob object and transfer the queue, database name, table name (obtained by
instantiating the Table object), and storage path of the exported data. The table type must be MANAGED.
private static void exportData(Queue queue, Table DLITable) throws DLIException {
 String dataPath = "OBS Path";
 queue = client.getQueue("queueName");
 String dbName = DLITable.getDb().getDatabaseName();
 String tableName = DLITable.getTableName();
 ExportJob exportJob = new ExportJob(queue, dbName, tableName, dataPath);
 exportJob.setStorageType(StorageType.CSV);
 exportJob.setCompressType(CompressType.GZIP);
 exportJob.setExportMode(ExportMode.ERRORIFEXISTS);
 System.out.println("start export DLI Table data...");
 // Call the submit interface of the ExportJob object to submit the data exporting job.
 exportJob.submit();
 // Call the getStatus interface of the ExportJob object to query the status of the data exporting job.
 JobStatus status = exportJob.getStatus();
 System.out.println("Job id: " + exportJob.getJobId() + ", Status : " + status.getName());
}

NO TE

● Before submitting the data exporting job, you can optionally set the data format,
compression type, and export mode. In the preceding sample code, the setStorageType,
setCompressType, and setExportMode interfaces of the ExportJob object are called to set
the data format, compression type, and export mode, respectively. The setStorageType
interface supports only the CSV format.

● If a folder and a file under an OBS bucket directory have the same name, data is
preferentially loaded to the file, instead of the folder. It is recommended that the files
and folders of the same level have different names when you create an OBS object.

Submitting a Job
DLI provides APIs for submitting and querying jobs. You can submit a job by
calling the API. You can also call the API to query the job result. The example code
is as follows:

//Instantiate the SQLJob object and construct input parameters for executing SQL, including the queue,
database name, and SQL statements.
private static void runSqlJob(Queue queue, Table obsTable) throws DLIException {
 String sql = "select * from " + obsTable.getTableName();
 String queryResultPath = "OBS Path";
 SQLJob sqlJob = new SQLJob(queue, obsTable.getDb().getDatabaseName(), sql);
 System.out.println("start submit SQL job...");
 // Call the submit interface of the SQLJob object to submit the querying job.

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 63

 sqlJob.submit();
 // Call the getStatus interface of the SQLJob object to query the status of the querying job.
 JobStatus status = sqlJob.getStatus();
 System.out.println(status);
 System.out.println("start export Result...");
 //Call the exportResult interface of the SQLJob object to export the query result. queryResultPath refers
to the path of the data to be exported.
 sqlJob.exportResult(queryResultPath, StorageType.CSV,
 CompressType.GZIP, ExportMode.ERRORIFEXISTS, null);
 System.out.println("Job id: " + sqlJob.getJobId() + ", Status : " + status.getName());
}

Canceling a Job

DLI provides an API for canceling jobs. You can use it to cancel all jobs in the
Launching or Running state. The following sample code is used for canceling jobs
in the Launching state:
private static void cancelSqlJob(DLIClient client) throws DLIException {

 List<JobResultInfo> jobResultInfos = client.listAllJobs(JobType.QUERY);
 for (JobResultInfo jobResultInfo : jobResultInfos) {
 //Cancel jobs in the LAUNCHING state.
 if (JobStatus.LAUNCHING.equals(jobResultInfo.getJobStatus())) {
 //Cancel the job of a specific job ID.
 client.cancelJob(jobResultInfo.getJobId());
 }
 }
}

Querying All Jobs

DLI provides an API for querying jobs. You can use it to query all jobs of the
current project. The example code is as follows:
private static void listAllSqlJobs(DLIClient client) throws DLIException {
 //Return the collection of JobResultInfo lists.
 List < JobResultInfo > jobResultInfos = client.listAllJobs();
 //Traverse the JobResultInfo lists to view job information.
 for (JobResultInfo jobResultInfo: jobResultInfos) {
 //job id
 System.out.println(jobResultInfo.getJobId());
 //Job description
 System.out.println(jobResultInfo.getDetail());
 //job status
 System.out.println(jobResultInfo.getJobStatus());
 //job type
 System.out.println(jobResultInfo.getJobType());
 }
 //Filter the query result by job type.
 List < JobResultInfo > jobResultInfos1 = client.listAllJobs(JobType.DDL);
 //Filter the query result by job type and start time that is in the Unix timestamp format.
 List < JobResultInfo > jobResultInfos2 = client.listAllJobs(1502349803729L, 1502349821460L,
JobType.DDL);
 //Filter the query result by page.
 List < JobResultInfo > jobResultInfos3 = client.listAllJobs(100, 1, JobType.DDL);
 //Filter the query result by page, start time, and job type.
 List < JobResultInfo > jobResultInfos4 = client.listAllJobs(100, 1, 1502349803729L, 1502349821460L,
JobType.DDL);

 // Use Tags to query jobs that meet the conditions.
 JobFilter jobFilter = new JobFilter();
 jobFilter.setTags("workspace=space002,jobName=name002");
 List < JobResultInfo > jobResultInfos1 = client.listAllJobs(jobFilter);
 // Use Tags to query target jobs of a specified page.
 JobFilter jobFilter = new JobFilter();
 jobFilter.setTags("workspace=space002,jobName=name002");
 jobFilter.setPageSize(100);

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 64

 jobFilter.setCurrentPage(0);
 List < JobResultInfo > jobResultInfos1 = client.listJobsByPage(jobFilter);
}

NO TE

● Parameters in the OVERRIDE method can be set to null, indicating that no filter
conditions are specified. Ensure that all parameters are set to valid values. If the page
parameter is set to -1, the query will fail.

● APIs in this SDK do not support SQL patterns. You cannot match SQL patterns for job
query.
To query DLI jobs, use the Querying All Jobs API.

Querying Job Results
DLI provides an API for querying job results. You can use it to query information
about a job of the specific job ID. The example code is as follows:
private static void getJobResultInfo(DLIClient client) throws DLIException {
 String jobId = "4c4f7168-5bc4-45bd-8c8a-43dfc85055d0";
 JobResultInfo jobResultInfo = client.queryJobResultInfo(jobId);
 //View information about a job.
 System.out.println(jobResultInfo.getJobId());
 System.out.println(jobResultInfo.getDetail());
 System.out.println(jobResultInfo.getJobStatus());
 System.out.println(jobResultInfo.getJobType());
}

Querying Jobs of the SQL Type
DLI provides an API for querying SQL jobs. You can use it to query information
about recently executed jobs submitted using SQL statements in the current
project. The example code is as follows:
private static void getJobResultInfos(DLIClient client) throws DLIException {

 //Return the collection of JobResultInfo lists.
 List<JobResultInfo> jobResultInfos = client.listSQLJobs();
 //Traverse the list to view job information.
 for (JobResultInfo jobResultInfo : jobResultInfos) {
 //job id
 System.out.println(jobResultInfo.getJobId());
 //Job description
 System.out.println(jobResultInfo.getDetail());
 //job status
 System.out.println(jobResultInfo.getJobStatus());
 //job type
 System.out.println(jobResultInfo.getJobType());
 }

 // Use Tags to query SQL jobs that meet the conditions.
 JobFilter jobFilter = new JobFilter();
 jobFilter.setTags("workspace=space002,jobName=name002");
 List < JobResultInfo > jobResultInfos1 = client.listAllSQLJobs(jobFilter);
 // Use Tags to query target SQL jobs of a specified page.
 JobFilter jobFilter = new JobFilter();
 jobFilter.setTags("workspace=space002,jobName=name002");
 jobFilter.setPageSize(100);
 jobFilter.setCurrentPage(0);
 List < JobResultInfo > jobResultInfos1 = client.listSQLJobsByPage(jobFilter);
}

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 65

https://support.huaweicloud.com/intl/en-us/api-dli/dli_02_0025.html

Exporting Query Results
DLI provides an API for exporting query results. You can use the API to export the
query job result submitted in the editing box of the current project. The example
code is as follows:
 //Instantiate the SQLJob object and construct input parameters for executing SQL, including the queue,
database name, and SQL statements.
 private static void exportSqlResult(Queue queue, Table obsTable) throws DLIException {
 String sql = "select * from " + obsTable.getTableName();
 String queryResultPath = "OBS Path";
 SQLJob sqlJob = new SQLJob(queue, obsTable.getDb().getDatabaseName(), sql);
 System.out.println("start submit SQL job...");
 //Call the submit interface of the SQLJob object to submit the querying job.
 sqlJob.submit();
 //Call the getStatus interface of the SQLJob object to query the status of the querying job.
 JobStatus status = sqlJob.getStatus();
 System.out.println(status);
 System.out.println("start export Result...");
 //Call the exportResult interface of the SQLJob object to export the query result. exportPath indicates
the path for exporting data. JSON indicates the export format. queueName indicates the queue for
executing the export job. limitNum indicates the number of results of the export job. 0 indicates that all
data is exported.
 sqlJob.exportResult(exportPath + "result", StorageType.JSON, CompressType.NONE,
 ExportMode.ERRORIFEXISTS, queueName, true, 5);
 }

Previewing Job Results
DLI provides an API for previewing job results. You can call this API to obtain the
first 1000 records in the result set.
// Initialize a SQLJob object and pass the queue, database name, and SQL statement to execute the SQL.
private static void getPreviewJobResult(Queue queue, Table obsTable) throws DLIException {
 String sql = "select * from " + obsTable.getTableName();
 SQLJob sqlJob = new SQLJob(queue, obsTable.getDb().getDatabaseName(), sql);
 System.out.println("start submit SQL job...");
 // Call the submit method on the SQLJob object.
 sqlJob.submit();
 // Call the previewJobResult method on the SQLJob object to query the first 1000 records in the result set.
 List<Row> rows = sqlJob.previewJobResult();
 if (rows.size() > 0) {
 Integer value = rows.get(0).getInt(0);
 System.out.println("Obtain the data value in the first column at the first row." + value);
 }
 System.out.println("Job id: " + sqlJob.getJobId() + ", previewJobResultSize : " + rows.size());
}

Deprecated API
The getJobResult method has been discarded. You can call DownloadJob instead
to obtain the job result.

For details about the DownloadJob method, obtain the dli-sdk-java-x.x.x.zip
package by referring to Obtaining and Installing the Java SDK and decompress
the package.

6.3.5 SDKs Related to Flink Jobs

Prerequisites
● You have configured the Java SDK environment by referring to Overview.
● You have initialized the DLI client by referring to Initializing the DLI Client

and created queues by referring to Queue-Related SDKs.

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 66

Creating a SQL Job
DLI provides an API for creating a Flink streaming SQL job. You can use it to create
a Flink streaming SQL job and submit it to DLI. Sample code is as follows:

private static void createSQLJob(DLIClient client) throws DLIException {
 SubmitFlinkSqlJobRequest body = new SubmitFlinkSqlJobRequest();
 body.name("job-name");
 body.runMode(SubmitFlinkSqlJobRequest.RunModeEnum.SHARED_CLUSTER);
 body.checkpointEnabled(false);
 body.checkpointMode(1);
 body.jobType(SubmitFlinkSqlJobRequest.JobTypeEnum.JOB);
 JobStatusResponse result = client.submitFlinkSqlJob(body);
 System.out.println(result);
}

Customizing a Job
DLI provides an API for creating a user-defined Flink job. Currently, the job
supports the JAR format and runs in dedicated queues. The example code is as
follows:

private static void createFlinkJob(DLIClient client) throws DLIException {
 CreateFlinkJarJobRequest body = new CreateFlinkJarJobRequest();
 body.name("jar-job");
 body.cuNumber(2);
 body.managerCuNumber(1);
 body.parallelNumber(1);
 body.entrypoint("dli/WindowJoin.jar");
 JobStatusResponse result = client.createFlinkJarJob(body);
 System.out.println(result);
 }

Updating a SQL Job
DLI provides an API for updating Flink streaming SQL jobs. You can use it to
update a Flink streaming SQL job. Sample code is as follows:

private static void updateSQLJob(DLIClient client) throws DLIException {
 UpdateFlinkSqlJobRequest body = new UpdateFlinkSqlJobRequest();
 body.name("update-job");
 JobUpdateResponse result = client.updateFlinkSqlJob(body,203L);
 System.out.println(result);
 }

Updating a Custom Job
DLI provides an API for updating user-defined Flink jobs. You can use it to update
custom jobs, which currently support the JAR format and run in dedicated queues.
The example code is as follows:

 private static void updateFlinkJob(DLIClient client) throws DLIException {
 UpdateFlinkJarJobRequest body = new UpdateFlinkJarJobRequest();
 body.name("update-job");
 JobUpdateResponse result = client.updateFlinkJarJob(body,202L);
 System.out.println(result);
 }

Querying the List of Jobs
DLI provides an API for querying the Flink job list. The following parameters are
involved in this API: name, status, show_detail, cursor, next, limit, and order. In

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 67

this example, the query results are displayed in descending order and information
about the jobs whose IDs are less than the value of cursor is displayed. The
example code is as follows:

private static void QueryFlinkJobListResponse(DLIClient client) throws DLIException {
 QueryFlinkJobListResponse result = client.getFlinkJobs(null, "job_init", null, true, 0L, 10, null,
null,null,null,null);
 System.out.println(result);
 }

Querying Job Details
DLI provides an API for querying Flink job details. The example code is as follows:

private static void getFlinkJobDetail(DLIClient client) throws DLIException {
Long jobId = 203L; //Job ID
 GetFlinkJobDetailResponse result = client.getFlinkJobDetail(jobId);
 System.out.println(result);
}

Querying the Job Execution Plan Diagram
DLI provides an API for querying the execution plan of a Flink job. The example
code is as follows:

private static void getFlinkJobExecuteGraph(DLIClient client) throws DLIException {
Long jobId = 203L; //Job ID
 FlinkJobExecutePlanResponse result = client.getFlinkJobExecuteGraph(jobId);
 System.out.println(result);
 }

Querying Job Monitoring Information
DLI provides an API for querying Flink job monitoring information. Monitoring
information about multiple jobs can be queried at the same time. The example
code is as follows:

public static void getMetrics(DLIClient client) throws DLIException{
 List < Long > job_ids = new ArrayList < > ();
 Long jobId = 6316L; //Job 1 ID
 Long jobId2 = 6945L; //Job 2 ID
 job_ids.add(jobId);
 job_ids.add(jobId2);
 GetFlinkJobsMetricsBody body = new GetFlinkJobsMetricsBody();
 body.jobIds(job_ids);
 QueryFlinkJobMetricsResponse result = client.getFlinkJobsMetrics(body);
 System.out.println(result);
}

Querying the APIG Address of a Job
DLI provides an API for querying the APIG access address of a Flink job. The
example code is as follows:

 private static void getFlinkApigSinks(DLIClient client) throws DLIException {
 Long jobId = 59L; //Job 1 ID
 FlinkJobApigSinksResponse result = client.getFlinkApigSinks(jobId);
 System.out.println(result);
 }

Running a Job
DLI provides APIs for running Flink jobs. The example code is as follows:

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 68

 public static void runFlinkJob(DLIClient client) throws DLIException{
 RunFlinkJobRequest body = new RunFlinkJobRequest();
 List<Long> jobIds = new ArrayList<>();
 Long jobId = 59L; //Job 1 ID
 Long jobId2 = 192L; //Job 2 ID
 jobIds.add(jobId);
 jobIds.add(jobid2);
 body.resumeSavepoint(false);
 body.jobIds(jobIds);
 List<GlobalBatchResponse> result = client.runFlinkJob(body);
 System.out.println(result);
 }

Stopping a Job
DLI provides an API for stopping Flink jobs. The example code is as follows:

 public static void stopFlinkJob(DLIClient client) throws DLIException{
 StopFlinkJobRequest body = new StopFlinkJobRequest();
 List<Long> jobIds = new ArrayList<>();
 Long jobId = 59L; //Job 1 ID
 Long jobId2 = 192L; //Job 2 ID
 jobIds.add(jobId);
 jobIds.add(jobid2);
 body.triggerSavepoint(false);
 body.jobIds(jobIds);
 List<GlobalBatchResponse> result = client.stopFlinkJob(body);
 System.out.println(result);
 }

Deleting Jobs in Batches
DLI provides an API for deleting Flink jobs in batches. You can use the API to batch
delete Flink jobs in any status. The example code is as follows:

public static void deleteFlinkJob(DLIClient client) throws DLIException{
 DeleteJobInBatchRequest body = new DeleteJobInBatchRequest ();
 List<Long> jobIds = new ArrayList<>();
 Long jobId = 202L; //Job 1 ID
 Long jobid2 = 203L; //Job 2 ID
 jobIds.add(jobId);
 jobIds.add(jobid2);
 body.jobIds(jobIds);
 List<GlobalBatchResponse> result = client. deleteFlinkJobInBatch(body);
 System.out.println(result);
}

6.3.6 SDKs Related to Spark Jobs

Prerequisites
● You have configured the Java SDK environment by following the instructions

provided Overview.
● You have initialized the DLI Client by following the instructions provided in

Initializing the DLI Client and created queues by following the instructions
provided in Queue-Related SDKs.

Submitting Batch Jobs
DLI provides an API to perform batch jobs. The example code is as follows:

private static void runBatchJob(Cluster cluster) throws DLIException {
 SparkJobInfo jobInfo = new SparkJobInfo();

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 69

 jobInfo.setClassName("your.class.name");
 jobInfo.setFile("xxx.jar");
 jobInfo.setCluster_name("queueName");
 // Call the asyncSubmit method on the BatchJob object to submit the batch job.
 BatchJob job = new BatchJob(cluster, jobInfo);
 job.asyncSubmit();
 while (true) {
 SparkJobStatus jobStatus = job.getStatus();
 if (SparkJobStatus.SUCCESS.equals(jobStatus)) {
 System.out.println("Job finished");
 return;
 }
 if (SparkJobStatus.DEAD.equals(jobStatus)) {
 throw new DLIException("The batch has already exited");
 }
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

NO TE

● A cluster is a queue created by a user.

● The input parameter cannot be in JSON format.

● DLI provides the following two APIs related to batch jobs:

● asyncSubmit: This API is asynchronous. After the API is submitted, the job result is
directly returned.

● submit: This API is synchronous. After the API is submitted, the result is returned
only after job execution is complete.

Deleting Batch Jobs
DLI provides an API for deleting batch processing jobs. The example code is as
follows:

private static void deleteBatchJob(DLIClient client) throws DLIException {
 // Submit the ID of the Spark batch processing job.
 String batchId = "0aae0dc5-f009-4b9b-a8c3-28fbee399fa6";
 // Call the delBatch method on the BatchJob object to cancel the batch job.
 MessageInfo messageInfo = client.delBatchJob(batchId);
 System.out.println(messageInfo.getMsg());
}

Querying All Batch Jobs
DLI provides an API for querying batch processing jobs. You can use it to query all
batch jobs of the current project. The example code is as follows:

private static void listAllBatchJobs(DLIClient client) throws DLIException {
 System.out.println("list all batch jobs...");
 // Call the listAllBatchJobs method on the DLIClient object to query the batch jobs.
 String queueName = "queueName";
 int from = 0;
 int size = 1000;
 // Set paging, start page, and size of each page.
 List<SparkJobResultInfo> jobResults = client.listAllBatchJobs(queueName, from, size);
 for (SparkJobResultInfo jobResult : jobResults) {
 // Job ID
 System.out.println(jobResult.getId());
 // Job app ID
 System.out.println(jobResult.getAppId());

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 70

 // Job status
 System.out.println(jobResult.getState());
 }
}

Querying a Batch Job Status
DLI provides an API for querying status of batch processing jobs. The following
sample code calls the API to query the job status:
private static void getStateBatchJob(DLIClient client) throws DLIException {
 BatchJob batchJob = null;
 SparkJobInfo jobInfo = new SparkJobInfo();
 jobInfo.setClusterName("queueName");
 jobInfo.setFile("xxx.jar");
 jobInfo.setClassName("your.class.name");
 batchJob = new BatchJob(client.getCluster("queueName"), jobInfo);
 batchJob.asyncSubmit();
 SparkJobStatus sparkJobStatus=batchJob.getStatus();
 System.out.println(sparkJobStatus);

}

Querying Batch Job Logs
DLI provides an API for querying logs of batch processing jobs. The following
sample code calls the API to query the job logs:
private static void getBatchJobLog(DLIClient client) throws DLIException {
 BatchJob batchJob = null;
 SparkJobInfo jobInfo = new SparkJobInfo();
 jobInfo.setClusterName("queueName");
 jobInfo.setFile("xxx.jar");
 jobInfo.setClassName("your.class.name");
 batchJob = new BatchJob(client.getCluster("queueName"), jobInfo);
 batchJob.submit();
 // Call getLog on the BatchJob object to query the batch processing job.
 int from = 0;
 int size = 1000;
 List<String> jobLogs = batchJob.getLog(from,size);
 System.out.println(jobLogs);

}

6.3.7 SDKs Related to Flink Job Templates

Prerequisites
● You have configured the Java SDK environment by following the instructions

provided Overview.
● You have initialized the DLI Client by following the instructions provided in

Initializing the DLI Client.

Creating a Job Template
DLI provides an API for creating a Flink job template. The example code is as
follows:

public static void createFlinkJobTemplate(DLIClient client) throws DLIException{
 CreateFlinkJobTemplateRequest body = new CreateFlinkJobTemplateRequest();
 body.name("template");
 FlinkJobTemplateCreateResponse result = client.createFlinkJobTemplate(body);
 System.out.println(result);
}

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 71

Updating a Job Template

DLI provides an API for updating a Flink job template. The example code is as
follows:

 public static void updateFlinkJobTemplate(DLIClient client) throws DLIException{
 Long templateId = 277L; //Template ID
 UpdateFlinkJobTemplateRequest body = new UpdateFlinkJobTemplateRequest();
 body.name("template-update");
 GlobalResponse result = client.updateFlinkJobTemplate(body,templateId);
 System.out.println(result);
 }

Deleting a Job Template

DLI provides an API for deleting a Flink job template. A template used by jobs can
also be deleted. The example code is as follows:

public static void deleteFlinkJobTemplate(DLIClient client) throws DLIException{
 Long templateId = 277L; //Template ID
 FlinkJobTemplateDeleteResponse result = client.deleteFlinkJobTemplate(templateId);
 System.out.println(result);
}

Querying the List of Job Templates

DLI provides an API for querying Flink job templates. In this example, the query
results are displayed in descending order and information about the job templates
whose IDs are less than the value of cursor is displayed. The example code is as
follows:

 public static void getFlinkJobTemplates(DLIClient client) throws DLIException{
 Long offset = 789L; // Long | Template offset.
 Integer limit = 56; // Integer | Maximum number of records that can be queried.
 String order = "asc"; // String | Query result display. The query results can be displayed in ascending or
descending order.
 FlinkJobTemplateListResponse result = client.getFlinkJobTemplates(offset,limit,order);
 System.out.println(result);
 }

6.4 Python SDK (DLI SDK V1)

6.4.1 Overview

Scenario

With DLI's SDKs, you can quickly and easily use DLI without worrying about the
details of the requests. This section describes how to obtain and use SDKs in a
Python environment.

Notes
● To use DLI's Python SDKs to access a specific service's API, you need to ensure

that the current service has been enabled and authorized on the DLI
management console.

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 72

● Python 2.7.10, 3.4.0, or later versions are required. The Visual C++ compilation
environment is required, and Visual C++ build tools or Visual Studio must be
installed.
For details about how to configure the Python development environment, see
Configuring the Python SDK Environment.

● The DLI Python SDK dependencies include urllib3 1.15 or later, six 1.10 or
later, certifi, and python-dateutil.

● For details about how to obtain and install Python SDKs, see Obtaining and
Installing Python SDKs.

● To use SDKs to access DLI, you need to initialize the DLI client. During DLI
client initialization, you can use the AK/SK or token for authentication. For
details, see Initializing the DLI Client.

Python SDKs

Table 6-10 Python SDKs

SDK Description

Queue-Related SDKs This section provides instructions on how to use
DLI's Python SDKs to retrieve a list of all queues.

Resource-Related SDKs This section provides instructions on how to use
DLI's Python SDKs to upload resource packages,
query all resource packages, query specific resource
packages, and delete resource packages.

SDKs Related to SQL
Jobs

This section provides instructions on how to use
DLI's Python SDKs for database-related operations,
table-related operations, and job-related
operations.

SDKs Related to Spark
Jobs

This section provides instructions on how to use
DLI's Python SDKs to submit Spark jobs, cancel
Spark jobs, and delete Spark jobs.

6.4.2 Queue-Related SDKs

Constraints
Jobs created using the SDK cannot run on the default queue.

Querying All Queues
You can use the API provided by DLI to query the queue list and select the
corresponding queue to execute the job. Sample code is as follows:

def list_all_queues(dli_client):
 try:
 queues = dli_client.list_queues()
 except DliException as e:
 print(e)

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 73

 return

 for queue in queues:
 print(queue.name)

For details about the dependencies and complete sample code, see Overview.

6.4.3 Resource-Related SDKs

Prerequisites
● You have configured the Java SDK environment by following the instructions

provided Overview.
● You have initialized the DLI Client by following the instructions provided in

Initializing the DLI Client.

Uploading a Resource Package
You can use the APIs provided by DLI to upload resource packages. The following
is an example. For details about the dependencies and complete sample code, see
Overview.

def upload_resource(dli_client, kind, obs_jar_paths, group_name):
 try:
 dli_client.upload_resource(kind, obs_jar_paths, group_name)
 except DliException as e:
 print(e)
 return

NO TE

The following describes the request parameters. For details, see Overview.
● kind: resource package type. The options are as follows:

● jar: JAR file
● Pyfile: User Python file
● file: User file
● modelfile: User AI model file

● obs_jar_paths: OBS path of the resource package. The parameter format is
{bucketName}.{obs domain name}/{jarPath}/{jarName}.
Example: "https://bucketname.obs.com/jarname.jar"

● group_name: Name of the group to which the resource package belongs

Querying All Resource Packages
You can use the API provided by DLI to query the list of uploaded resources. The
example code is as follows:

def list_resources(dli_client):
 try:
 resources = dli_client.list_resources()
 except DliException as e:
 print(e)
 return

 for resources_info in resources.package_resources:
 print('Package resource name:' + resources_info.resource_name)

 for group_resource in resources.group_resources:
 print('Group resource name:' + group_resource.group_name)

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 74

For details about the dependencies and complete sample code, see Overview.

Querying a Specified Resource Package

You can call an API to query information about the specified resource package.
The sample code is as follows:
def get_package_resource(dli_client, resource_name, group_name):
 try:
 pkg_resource = dli_client.get_package_resource(resource_name, group_name)
 print(pkg_resource)
 except DliException as e:
 print(e)
 return

Deleting a Resource Package

You can call an API to delete an uploaded resource package. The sample code is as
follows:
def delete_resource(dli_client, resource_name, group_name):
 try:
 dli_client.delete_resource(resource_name, group_name)
 except DliException as e:
 print(e)
 return

6.4.4 SDKs Related to SQL Jobs

6.4.4.1 Database-Related SDKs

Creating a Database

DLI provides an API for creating a database. You can use the API to create a
database. The sample code is as follows:

def create_db(dli_client):
 try:
 db = dli_client.create_database('db_for_test')
 except DliException as e:
 print(e)
 return

 print(db)

NO TE

● The default database is a built-in database. You are not allowed to create a database
named default.

● For details about the dependencies and complete sample code, see Overview.

Deleting a Database

DLI provides an API for deleting a database. The example code is as follows:

def delete_db(dli_client, db_name):
 try:
 dli_client.delete_database(db_name)
 except DliException as e:
 print(e)
 return

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 75

NO TE

● A database that contains tables cannot be deleted. To delete a database that contains
tables, delete the tables first.

● A deleted database cannot be restored. Therefore, exercise caution when deleting a
database.

● For details about the dependencies and complete sample code, see Overview.

Querying All Databases
DLI provides an API for querying the database list. The example code is as follows:

def list_all_dbs(dli_client):
 try:
 dbs = dli_client.list_databases()
 except DliException as e:
 print(e)
 return

 for db in dbs:
 print(db)

For details about the dependencies and complete sample code, see Overview.

6.4.4.2 Table-Related SDKs

Creating a DLI Table
DLI provides an API for creating DLI tables. Sample code is as follows:

def create_dli_tbl(dli_client, db_name, tbl_name):
 cols = [
 Column('col_1', 'string'),
 Column('col_2', 'string'),
 Column('col_3', 'smallint'),
 Column('col_4', 'int'),
 Column('col_5', 'bigint'),
 Column('col_6', 'double'),
 Column('col_7', 'decimal(10,0)'),
 Column('col_8', 'boolean'),
 Column('col_9', 'date'),
 Column('col_10', 'timestamp')
]
 sort_cols = ['col_1']
 tbl_schema = TableSchema(tbl_name, cols, sort_cols)
 try:
 table = dli_client.create_dli_table(db_name, tbl_schema)
 except DliException as e:
 print(e)
 return

 print(table)

For details about the dependencies and complete sample code, see Overview.

Creating an OBS Table
DLI provides an API for creating OBS tables. The example code is as follows:

def create_obs_tbl(dli_client, db_name, tbl_name):
 cols = [
 Column('col_1', 'string'),
 Column('col_2', 'string'),

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 76

 Column('col_3', 'smallint'),
 Column('col_4', 'int'),
 Column('col_5', 'bigint'),
 Column('col_6', 'double'),
 Column('col_7', 'decimal(10,0)'),
 Column('col_8', 'boolean'),
 Column('col_9', 'date'),
 Column('col_10', 'timestamp')
]
 tbl_schema = TableSchema(tbl_name, cols)
 try:
 table = dli_client.create_obs_table(db_name, tbl_schema,
 'obs://bucket/obj',
 'csv')
 except DliException as e:
 print(e)
 return

 print(table)

NO TE

● You need to create an OBS path in advance and specify it when creating an OBS table.
● For details about the dependencies and complete sample code, see Overview.

Deleting a Table
DLI provides an API for deleting tables. The example code is as follows:

def delete_tbls(dli_client, db_name):
 try:
 tbls = dli_client.list_tables(db_name)
 for tbl in tbls:
 dli_client.delete_table(db_name, tbl.name)
 except DliException as e:
 print(e)
 return

NO TE

● A deleted table cannot be restored. Exercise caution when deleting a table.
● For details about the dependencies and complete sample code, see Overview.

Querying All Tables
DLI provides an API for querying tables. The example code is as follows:

def list_all_tbls(dli_client, db_name):
 try:
 tbls = dli_client.list_tables(db_name, with_detail=True)
 except DliException as e:
 print(e)
 return

 for tbl in tbls:
 print(tbl.name)

For details about the dependencies and complete sample code, see Overview.

Describing Table Information
You can call an API to obtain the metadata description of a table. The sample
code is as follows:
def get_table_schema(dli_client, db_name, tbl_name):
 try:

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 77

 table_info = dli_client.get_table_schema(db_name, tbl_name)
 print(table_info)
 except DliException as e:
 print(e)
 return

6.4.4.3 Job-related SDKs
For details about the dependencies and complete sample code, see Overview.

Importing Data
DLI provides an API for importing data. You can use this API to import OBS to a
DLI table. Sample code is as follows:

def import_data(dli_client, db_name, tbl_name, queue_name):
 options = {
 "with_column_header": True,
 "delimiter": ",",
 "quote_char": "\"",
 "escape_char": "\\",
 "date_format": "yyyy/MM/dd",
 "timestamp_format": "yyyy/MM/dd hh:mm:ss"
 }

 try:
 job_id, status = \
 dli_client.import_table(tbl_name, db_name,
 'obs://bucket/obj/data.csv',
 'csv',
 queue_name=queue_name,
 options=options)
 except DliException as e:
 print(e)
 return

 print(job_id)
 print(status)

NO TE

● Before submitting the importing job, you can specify the data_type parameter to set
the type of the data to be imported. For example, set data_type to csv. Use the options
parameter to set details about the CSV data format, such as the delimiter and escape
character.

● If a folder and a file under an OBS bucket directory have the same name, data is
preferentially loaded to the file, instead of the folder. It is recommended that the files
and folders of the same level have different names when you create an OBS object.

Exporting Data
DLI provides an API for exporting data. You can use this API to export DLI table
data to an OBS bucket. The example code is as follows:

def export_data(dli_client, db_name, tbl_name, queue_name):
 try:
 job_id, status = dli_client.export_table(tbl_name, db_name,
 'obs://bucket/obj',
 queue_name=queue_name)
 except DliException as e:
 print(e)
 return

 print(job_id)
 print(status)

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 78

NO TE

● Before submitting the export job, you can set the data format, compression type, and
export mode. The data can only be exported in the CSV format.

● If a folder and a file under an OBS bucket directory have the same name, data is
preferentially loaded to the file, instead of the folder. It is recommended that the files
and folders of the same level have different names when you create an OBS object.

Submitting a Job
DLI provides an API for querying jobs. The example code is as follows:

def run_sql(dli_client, db_name, queue_name):
 # execute SQL
 try:
 sql_job = dli_client.execute_sql('select * from tbl_dli_for_test', db_name, queue_name=queue_name)
 result_set = sql_job.get_result(queue_name=queue_name)
 except DliException as e:
 print(e)
 return

 if result_set.row_count == 0:
 return

 for row in result_set:
 print(row)

 # export the query result to obs
 try:
 status = sql_job.export_result('obs://bucket/obj',
 queue_name=queue_name)
 except DliException as e:
 print(e)
 return

 print(status)

Canceling a Job
DLI provides an API for canceling jobs. You can use it to cancel a submitted job. A
job that has been completed or failed cannot be canceled. The example code is as
follows:

def cancel_sql(dli_client, job_id):
 try:
 dli_client.cancel_sql(job_id)
 except DliException as e:
 print(e)
 return

Querying All Jobs
DLI provides an API for querying all jobs. You can use the API to query information
about all jobs in the current project and obtain the query result. The example code
is as follows:

def list_all_sql_jobs(dli_client):
 try:
 sql_jobs = dli_client.list_sql_jobs()
 except DliException as e:
 print(e)
 return
 for sql_job in sql_jobs:
 print(sql_job)

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 79

NO TE

APIs in this SDK do not support SQL patterns. You cannot match SQL patterns for job query.
To query DLI jobs, use the Querying All Jobs API.

Querying SQL Jobs
You can call an API to query information about all SQL jobs in the current project
and obtain the query result. The sample code is as follows:
def list_sql_jobs(dli_client):
 try:
 sql_jobs = dli_client.list_sql_jobs()
 except DliException as e:
 print(e)
 return

6.4.5 SDKs Related to Spark Jobs
For details about the dependencies and complete sample code, see Overview.

Submitting Batch Jobs
DLI provides an API to perform batch jobs. The example code is as follows:

def submit_spark_batch_job(dli_client, batch_queue_name, batch_job_info):
 try:
 batch_job = dli_client.submit_spark_batch_job(batch_queue_name, batch_job_info)
 except DliException as e:
 print(e)
 return

 print(batch_job.job_id)
 while True:
 time.sleep(3)
 job_status = batch_job.get_job_status()
 print('Job status: {0}'.format(job_status))
 if job_status == 'dead' or job_status == 'success':
 break

 logs = batch_job.get_driver_log(500)
 for log_line in logs:
 print(log_line)

Canceling a Batch Processing Job
DLI provides an API for canceling batch processing jobs. If the job execution is
complete or fails, you cannot cancel this job. The example code is as follows:

def del_spark_batch(dli_client, batch_id):
 try:
 resp = dli_client.del_spark_batch_job(batch_id)
 print(resp.msg)
 except DliException as e:
 print(e)
 return

Deleting Batch Processing Jobs
DLI provides an API for deleting batch processing jobs. The following sample code
calls the API to delete a batch processing job:
def del_spark_batch(dli_client, batch_id):
 try:

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 80

https://support.huaweicloud.com/intl/en-us/api-dli/dli_02_0025.html

 resp = dli_client.del_spark_batch_job(batch_id)
 print(resp.msg)
 except DliException as e:
 print(e)
 return

Data Lake Insight
SDK Reference 6 DLI SDK V1 (Not Recommended)

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 81

A Change History

Released On Description

2023-12-05 This issue is the sixth official release.
Optimized the structure of Data Lake Insight SDK
Reference and added the description of using V3
SDKs.

2023-09-16 This issue is the fifth official release.
Added the description of downloading
the .sha256 file corresponding to the SDK
installation package to Obtaining and Installing
the Java SDK.

2023-07-18 This issue is the fourth official release.
Modified the default precision of data of the
decimal type in Table-Related SDKs.

2023-01-30 This issue is the third official release.
Added the description about the Visual C++
compilation environment required for installing
Python in Configuring the Python SDK
Environment.

2020-04-28 This issue is the second official release.
Adjusted the document structure.

2020-01-28 This issue is the first official release.

Data Lake Insight
SDK Reference A Change History

Issue 01 (2025-06-26) Copyright © Huawei Technologies Co., Ltd. 82

	Contents
	1 Overview
	2 Configuring the Java SDK Environment
	2.1 Preparing a Java Development Environment
	2.2 Obtaining and Installing the Java SDK
	2.3 Initializing the DLI Client

	3 Configuring the Python SDK Environment
	3.1 Preparing a Python Development Environment
	3.2 Obtaining and Installing Python SDKs
	3.3 Initializing the DLI Client

	4 General SDK V3
	5 DLI SDK V2
	5.1 Java SDK (DLI SDK V2)
	5.1.1 Submitting a SQL Job Using an SDK
	5.1.2 Submitting a Flink SQL Job Using an SDK
	5.1.3 Submitting a Flink Jar Job Using an SDK
	5.1.4 Submitting a Spark Job Using an SDK

	5.2 Python SDK (DLI SDK V2)
	5.2.1 Submitting a SQL Job Using an SDK
	5.2.2 Submitting a Flink SQL Job Using an SDK
	5.2.3 Submitting a Flink Jar Job Using an SDK
	5.2.4 Submitting a Spark Job Using an SDK

	6 DLI SDK V1 (Not Recommended)
	6.1 DLI SDK V1 Function Matrix
	6.2 Mapping Between DLI SDK V1 and APIs
	6.3 Java SDK (DLI SDK V1)
	6.3.1 Overview
	6.3.2 Queue-Related SDKs
	6.3.3 Resource-Related SDKs
	6.3.4 SDKs Related to SQL Jobs
	6.3.4.1 Database-Related SDKs
	6.3.4.2 Table-Related SDKs
	6.3.4.3 Job-related SDKs

	6.3.5 SDKs Related to Flink Jobs
	6.3.6 SDKs Related to Spark Jobs
	6.3.7 SDKs Related to Flink Job Templates

	6.4 Python SDK (DLI SDK V1)
	6.4.1 Overview
	6.4.2 Queue-Related SDKs
	6.4.3 Resource-Related SDKs
	6.4.4 SDKs Related to SQL Jobs
	6.4.4.1 Database-Related SDKs
	6.4.4.2 Table-Related SDKs
	6.4.4.3 Job-related SDKs

	6.4.5 SDKs Related to Spark Jobs

	A Change History

