
ModelArts

Getting Started

Issue 01

Date 2023-07-06

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2023. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.
Address: Huawei Industrial Base

Bantian, Longgang
Shenzhen 518129
People's Republic of China

Website: https://www.huawei.com

Email: support@huawei.com

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. i

https://www.huawei.com
mailto:support@huawei.com

Contents

1 How to Use ModelArts... 1

2 Service Developers: Building Models Using ExeML... 2

3 Using a Custom Algorithm to Build a Handwritten Digit Recognition Model......... 9

4 Practices for Beginners...28

ModelArts
Getting Started Contents

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. ii

1 How to Use ModelArts

ModelArts is a one-stop development platform for AI developers. It provides
lifecycle management of AI development, helping you quickly build models and
deploy the models on devices, edge devices, and the cloud.

ModelArts supports automated machine learning, namely, ExeML, and provides
multiple pre-trained models. In addition, it integrates JupyterLab Notebook to
provide online code development environments.

This document provides tutorials to help you quickly understand ModelArts
functions. You can select tutorials based on your AI experience.

Selecting a Use Mode Based on Your Experience
● If you are a service developer and have no AI development experience, you

can use ExeML of ModelArts to build AI models. For details, see Service
Developers: Building Models Using ExeML.

ModelArts
Getting Started 1 How to Use ModelArts

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 1

2 Service Developers: Building Models
Using ExeML

ModelArts provides ExeML for service developers, freeing you from model
development and parameter tuning. With ExeML, you can finish an AI
development project in just three steps, including data labeling, auto training, and
service deployment.

As an example of object detection, this section describes how to detect Yunbao,
the mascot of HUAWEI CLOUD, to help you quickly get started with ModelArts. By
using the built-in Yunbao image dataset, the system automatically trains and
generates a detection model, and deploys the generated model as a real-time
service. After the deployment is completed, you can use the real-time service to
identify whether an input image contains Yunbao.

Before you start, carefully complete the preparations described in Preparations. To
use ExeML to build a model, perform the following steps:

● Step 1: Prepare Data
● Step 2: Create an Object Detection Project
● Step 3: Label Data
● Step 4: Generate a Model with ExeML
● Step 5: Deploy the Model as a Real-Time Service
● Step 6: Test the Service

Preparations
● Your HUAWEI CLOUD account is not in arrears or frozen.
● Access authorization has been configured for your account. For details, see

Configuring Agency Authorization. If you have been authorized using access
keys, clear the authorization and configure agency authorization.

● OBS buckets and folders are ready for model data storage. For details about
how to create OBS buckets and folders, see Creating a Bucket and Creating
a Folder. For normal data access, ensure that the created OBS bucket and
ModelArts are in the same region.

● Data management is required for creating ExeML projects. Therefore, obtain
the permission to access OBS from the Data Management module before
using ExeML.

ModelArts
Getting Started 2 Service Developers: Building Models Using ExeML

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 2

https://support.huaweicloud.com/intl/en-us/prepare-modelarts/modelarts_08_0007.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0306.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0316.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0316.html

On the ModelArts management console, choose Data Management >
Datasets in the left navigation pane. On the page that is displayed, click
Service Authorization to apply for permission authorization. If you log in
using an account, a dialog box is displayed, asking you to accept the
authorization. If you log in as an IAM user (member account), your master
account or a user with admin permissions grants authorization to you.

Step 1: Prepare Data
ModelArts provides a sample dataset of Yunbao named Yunbao-Data-Custom.
This example uses this dataset to build a model. Perform the following operations
to upload the dataset to the OBS directory test-modelarts/dataset-yunbao
created in preparation. The OBS bucket name test-modelarts is for reference only.
You need to customize an OBS bucket name.

If you want to use your own dataset, skip this step, upload the dataset to the OBS
folder, and select this directory in Step 2: Create an Object Detection Project.

1. Download the Yunbao-Data-Custom dataset to the local PC.
2. Decompress the Yunbao-Data-Custom.zip file to the Yunbao-Data-Custom

directory on the local PC.
3. Batch upload all files from the Yunbao-Data-Custom folder to the test-

modelarts/dataset-yunbao directory on OBS. For details, see Uploading a
File.
The obtained dataset has two directories: eval and train. The data stored in
train is used for model training, and the data stored in eval is used for model
prediction.

Step 2: Create an Object Detection Project
1. On the ModelArts management console, click ExeML in the left navigation

pane.
2. In the Object Detection box, click Create Project. On the Create Object

Detection Project page that is displayed, enter a project name and a dataset
name, and select an input dataset path. The OBS path of the Yunbao dataset
is /test-modelarts/dataset-yunbao/train/. Select an empty directory in
Output Dataset Path.

NO TE

The Yunbao dataset has two directories: eval and train. Select the data in the train
directory for training. If the upper-layer directory of train is selected, an error message
is displayed, indicating that OBS has invalid data. As a result, the project will fail to be
created.

ModelArts
Getting Started 2 Service Developers: Building Models Using ExeML

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 3

https://modelarts-apsoutheast1-market-dataset.obs.ap-southeast-1.myhuaweicloud.com/dataset-market/Yunbao-Data-Custom/archiver/Yunbao-Data-Custom.zip
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0307.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0307.html

Figure 2-1 Creating an object detection project

3. Click Create Project. The object detection project is created. After the project
is created, the ExeML > Label Data page is displayed and data source
synchronization is automatically performed.

Step 3: Label Data
For an object detection project, labeling data is to locate an object in an image
and assign a label to the object. The labeled data is used for model training. In the
Yunbao dataset, part of data has been labeled. You can label the unlabeled data
for trial use.

Data source synchronization is automatically performed when you create an
ExeML project. Data source synchronization takes a certain period of time. If the
synchronization fails, you can click Synchronize Data Source to manually execute
the synchronization.

1. On the ExeML > Label Data page, click the Unlabeled tab. All unlabeled
images are displayed. Click an image to go to the labeling page.

2. Left-click and drag the mouse to select the area where Yunbao is located. In
the dialog box that is displayed, enter the label name, for example, yunbao,
and press Enter. After the labeling is completed, the status of the image
changes to Labeled in the left Image Catalog pane.
You can select another image from the image catalog in the lower part of the
page and repeat the preceding steps to label the image. If an image contains
more than one Yunbao, you can label all. You are advised to label all images
in the dataset to train a model with better precision.

ModelArts
Getting Started 2 Service Developers: Building Models Using ExeML

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 4

Figure 2-2 Image labeling for object detection

3. After all images in the image directory are labeled, click the project name in
the upper left corner. In the dialog box that is displayed, click OK to save the
labeling information. On the Labeled tab page, you can view the labeled
images and view the label names and quantity in the right pane.

Step 4: Generate a Model with ExeML
1. After data labeling is completed, click Train in the upper right corner of the

data labeling page. In the Training Configuration dialog box that is
displayed, set related parameters. For details, see Figure 2-3.

ModelArts
Getting Started 2 Service Developers: Building Models Using ExeML

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 5

Figure 2-3 Setting training parameters

2. Click Next. On the configuration page that is displayed, confirm the
specifications and click Submit to start auto model training. The training
takes a certain period of time. If you close or exit the page, the system
continues training until it is completed.
After the training is completed, you can view the training details on the page,
such as the accuracy, evaluation result, training parameters, and classification
statistics.

Figure 2-4 Model training

Step 5: Deploy the Model as a Real-Time Service
1. On the Train Model tab page, wait until the training status changes to

Completed. Click Deploy in the Version Manager pane.

ModelArts
Getting Started 2 Service Developers: Building Models Using ExeML

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 6

Figure 2-5 Deploying a service

2. In the displayed Deploy dialog box, set Specifications and Auto Stop, and
click OK to deploy the object detection model as a real-time service.
If you select free specifications, you do not need to set Auto Stop, because
the node will be stopped one hour later.

Figure 2-6 Deployment settings

3. After the deployment is started, the system automatically switches to the
Deploy Service tab page. This page displays the deployment progress and
status.
The deployment takes a certain period of time. After the deployment is
completed, the status in the Version Manager pane changes to Running.

Figure 2-7 Successful deployment

Step 6: Test the Service
After the model is deployed, you can test the service using an image.

1. On the Deployment Online tab page, select a running service version, and
click Upload to upload a local image.

ModelArts
Getting Started 2 Service Developers: Building Models Using ExeML

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 7

Figure 2-8 Uploading an image

2. Select an image from a local environment. The image must contain Yunbao.
Click Predict to perform the test.
After the prediction is completed, the label name yunbao, location
coordinates, and confidence score are displayed in the prediction result pane
on the right. In the prediction result, detection_boxes indicates the location
of the object, detection_scores indicates the detection score of yunbao.
If the model accuracy does not meet your expectation, add images on the
Label Data tab page, label the images, and train and deploy the model again.

NO TE

A running real-time service keeps consuming the resources. If you do not need to use
the real-time service, click Stop in the Version Manager pane to stop the service and
avoid unnecessary billing. If you want to use the service again, click Start.

Figure 2-9 Test result

ModelArts
Getting Started 2 Service Developers: Building Models Using ExeML

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 8

3 Using a Custom Algorithm to Build a
Handwritten Digit Recognition Model

This section describes how to modify a local custom algorithm to train and deploy
models on ModelArts.

Scenarios
This case describes how to use PyTorch 1.8 to recognize handwritten digit images.
An official MNIST dataset is used in this case.

Through this case, you can learn how to train jobs, deploy an inference model, and
perform prediction on ModelArts.

Process
Before performing the following operations, complete necessary operations. For
details, see Preparations.

1. Step 1 Prepare the Training Data: Download the MNIST dataset.
2. Step 2 Prepare Training Files and Inference Files: Write training and

inference code.
3. Step 3 Create an OBS Bucket and Upload Files to OBS: Create an OBS

bucket and folder, and upload the dataset, training script, inference script, and
inference configuration file to OBS.

4. Step 4 Create a Training Job: Train a model.
5. Step 5 Deploy the Model for Inference: Import the trained model to

ModelArts, create an AI application, and deploy the AI application as a real-
time service.

6. Step 6 Perform Prediction: Upload a handwritten digit image and send an
inference request to obtain the inference result.

7. Step 7 Release Resources: Stop the service and delete the data in OBS to
stop billing.

Preparations
● You have registered a Huawei ID and enabled Huawei Cloud services, and the

account is not in arrears or frozen.

ModelArts
Getting Started

3 Using a Custom Algorithm to Build a Handwritten
Digit Recognition Model

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 9

● You have configured the agency-based authorization.
Certain ModelArts functions require access to OBS, SWR, and IEF. Before using
ModelArts, ensure your account has been authorized to access these services.

a. Log in to the ModelArts console using your Huawei Cloud account. In
the navigation pane on the left, choose Settings. Then, on the Global
Configuration page, click Add Authorization.

b. On the Add Authorization page that is displayed, set required
parameters as follows:
Authorized User: Select All users.
Agency: Select Add agency.
Permissions: Select Common User.
Select "I have read and agree to the ModelArts Service Statement", and
click Create.

Figure 3-1 Configuring the agency-based authorization

c. After the configuration is complete, view the agency configurations of
your account on the Global Configuration page.

Figure 3-2 Viewing agency configurations

Step 1 Prepare the Training Data
An MNIST dataset downloaded from the MNIST official website is used in this
case. Ensure that the four files are all downloaded.

Figure 3-3 MNIST dataset

ModelArts
Getting Started

3 Using a Custom Algorithm to Build a Handwritten
Digit Recognition Model

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 10

https://console-intl.huaweicloud.com/modelarts
http://yann.lecun.com/exdb/mnist/

● train-images-idx3-ubyte.gz: compressed package of the training set, which
contains 60,000 samples

● train-labels-idx1-ubyte.gz: compressed package of the training set labels,
which contain the labels of the 60,000 samples

● t10k-images-idx3-ubyte.gz: compressed package of the validation set, which
contains 10,000 samples

● t10k-labels-idx1-ubyte.gz: compressed package of the validation set labels,
which contain the labels of the 10,000 samples

NO TE

If you are asked to enter the login information after you click the MNIST official website
link, copy and paste this link in the address box of your browser: http://yann.lecun.com/
exdb/mnist/
The login information is required when you open the link in HTTPS mode, which is not
required if you open the link in HTTP mode.

Step 2 Prepare Training Files and Inference Files
In this case, ModelArts provides the training script, inference script, and inference
configuration file.

NO TE

When pasting code from a .py file, create a .py file. Otherwise, the error message
"SyntaxError: 'gbk' codec can't decode byte 0xa4 in position 324: illegal multibyte sequence"
may be displayed.

Create the training script train.py on the local host. The content is as follows:

base on https://github.com/pytorch/examples/blob/main/mnist/main.py

from __future__ import print_function

import os
import gzip
import codecs
import argparse
from typing import IO, Union

import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR

import shutil

Define a network model.
class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(1, 32, 3, 1)
 self.conv2 = nn.Conv2d(32, 64, 3, 1)
 self.dropout1 = nn.Dropout(0.25)
 self.dropout2 = nn.Dropout(0.5)
 self.fc1 = nn.Linear(9216, 128)
 self.fc2 = nn.Linear(128, 10)

ModelArts
Getting Started

3 Using a Custom Algorithm to Build a Handwritten
Digit Recognition Model

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 11

 def forward(self, x):
 x = self.conv1(x)
 x = F.relu(x)
 x = self.conv2(x)
 x = F.relu(x)
 x = F.max_pool2d(x, 2)
 x = self.dropout1(x)
 x = torch.flatten(x, 1)
 x = self.fc1(x)
 x = F.relu(x)
 x = self.dropout2(x)
 x = self.fc2(x)
 output = F.log_softmax(x, dim=1)
 return output

Train the model. Set the model to the training mode, load the training data, calculate the loss function,
and perform gradient descent.
def train(args, model, device, train_loader, optimizer, epoch):
 model.train()
 for batch_idx, (data, target) in enumerate(train_loader):
 data, target = data.to(device), target.to(device)
 optimizer.zero_grad()
 output = model(data)
 loss = F.nll_loss(output, target)
 loss.backward()
 optimizer.step()
 if batch_idx % args.log_interval == 0:
 print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
 epoch, batch_idx * len(data), len(train_loader.dataset),
 100. * batch_idx / len(train_loader), loss.item()))
 if args.dry_run:
 break

Validate the model. Set the model to the validation mode, load the validation data, and calculate the loss
function and accuracy.
def test(model, device, test_loader):
 model.eval()
 test_loss = 0
 correct = 0
 with torch.no_grad():
 for data, target in test_loader:
 data, target = data.to(device), target.to(device)
 output = model(data)
 test_loss += F.nll_loss(output, target, reduction='sum').item()
 pred = output.argmax(dim=1, keepdim=True)
 correct += pred.eq(target.view_as(pred)).sum().item()

 test_loss /= len(test_loader.dataset)

 print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
 test_loss, correct, len(test_loader.dataset),
 100. * correct / len(test_loader.dataset)))

The following is PyTorch MNIST.
https://github.com/pytorch/vision/blob/v0.9.0/torchvision/datasets/mnist.py
def get_int(b: bytes) -> int:
 return int(codecs.encode(b, 'hex'), 16)

def open_maybe_compressed_file(path: Union[str, IO]) -> Union[IO, gzip.GzipFile]:
 """Return a file object that possibly decompresses 'path' on the fly.
 Decompression occurs when argument `path` is a string and ends with '.gz' or '.xz'.
 """
 if not isinstance(path, torch._six.string_classes):
 return path

ModelArts
Getting Started

3 Using a Custom Algorithm to Build a Handwritten
Digit Recognition Model

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 12

 if path.endswith('.gz'):
 return gzip.open(path, 'rb')
 if path.endswith('.xz'):
 return lzma.open(path, 'rb')
 return open(path, 'rb')

SN3_PASCALVINCENT_TYPEMAP = {
 8: (torch.uint8, np.uint8, np.uint8),
 9: (torch.int8, np.int8, np.int8),
 11: (torch.int16, np.dtype('>i2'), 'i2'),
 12: (torch.int32, np.dtype('>i4'), 'i4'),
 13: (torch.float32, np.dtype('>f4'), 'f4'),
 14: (torch.float64, np.dtype('>f8'), 'f8')
}

def read_sn3_pascalvincent_tensor(path: Union[str, IO], strict: bool = True) -> torch.Tensor:
 """Read a SN3 file in "Pascal Vincent" format (Lush file 'libidx/idx-io.lsh').
 Argument may be a filename, compressed filename, or file object.
 """
 # read
 with open_maybe_compressed_file(path) as f:
 data = f.read()
 # parse
 magic = get_int(data[0:4])
 nd = magic % 256
 ty = magic // 256
 assert 1 <= nd <= 3
 assert 8 <= ty <= 14
 m = SN3_PASCALVINCENT_TYPEMAP[ty]
 s = [get_int(data[4 * (i + 1): 4 * (i + 2)]) for i in range(nd)]
 parsed = np.frombuffer(data, dtype=m[1], offset=(4 * (nd + 1)))
 assert parsed.shape[0] == np.prod(s) or not strict
 return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s)

def read_label_file(path: str) -> torch.Tensor:
 with open(path, 'rb') as f:
 x = read_sn3_pascalvincent_tensor(f, strict=False)
 assert(x.dtype == torch.uint8)
 assert(x.ndimension() == 1)
 return x.long()

def read_image_file(path: str) -> torch.Tensor:
 with open(path, 'rb') as f:
 x = read_sn3_pascalvincent_tensor(f, strict=False)
 assert(x.dtype == torch.uint8)
 assert(x.ndimension() == 3)
 return x

def extract_archive(from_path, to_path):
 to_path = os.path.join(to_path, os.path.splitext(os.path.basename(from_path))[0])
 with open(to_path, "wb") as out_f, gzip.GzipFile(from_path) as zip_f:
 out_f.write(zip_f.read())
The above is pytorch mnist.
--- end

Raw MNIST dataset processing
def convert_raw_mnist_dataset_to_pytorch_mnist_dataset(data_url):
 """
 raw

 {data_url}/
 train-images-idx3-ubyte.gz
 train-labels-idx1-ubyte.gz

ModelArts
Getting Started

3 Using a Custom Algorithm to Build a Handwritten
Digit Recognition Model

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 13

 t10k-images-idx3-ubyte.gz
 t10k-labels-idx1-ubyte.gz

 processed

 {data_url}/
 train-images-idx3-ubyte.gz
 train-labels-idx1-ubyte.gz
 t10k-images-idx3-ubyte.gz
 t10k-labels-idx1-ubyte.gz
 MNIST/raw
 train-images-idx3-ubyte
 train-labels-idx1-ubyte
 t10k-images-idx3-ubyte
 t10k-labels-idx1-ubyte
 MNIST/processed
 training.pt
 test.pt
 """
 resources = [
 "train-images-idx3-ubyte.gz",
 "train-labels-idx1-ubyte.gz",
 "t10k-images-idx3-ubyte.gz",
 "t10k-labels-idx1-ubyte.gz"
]

 pytorch_mnist_dataset = os.path.join(data_url, 'MNIST')

 raw_folder = os.path.join(pytorch_mnist_dataset, 'raw')
 processed_folder = os.path.join(pytorch_mnist_dataset, 'processed')

 os.makedirs(raw_folder, exist_ok=True)
 os.makedirs(processed_folder, exist_ok=True)

 print('Processing...')

 for f in resources:
 extract_archive(os.path.join(data_url, f), raw_folder)

 training_set = (
 read_image_file(os.path.join(raw_folder, 'train-images-idx3-ubyte')),
 read_label_file(os.path.join(raw_folder, 'train-labels-idx1-ubyte'))
)
 test_set = (
 read_image_file(os.path.join(raw_folder, 't10k-images-idx3-ubyte')),
 read_label_file(os.path.join(raw_folder, 't10k-labels-idx1-ubyte'))
)
 with open(os.path.join(processed_folder, 'training.pt'), 'wb') as f:
 torch.save(training_set, f)
 with open(os.path.join(processed_folder, 'test.pt'), 'wb') as f:
 torch.save(test_set, f)

 print('Done!')

def main():
 # Define the preset running parameters of the training job.
 parser = argparse.ArgumentParser(description='PyTorch MNIST Example')

 parser.add_argument('--data_url', type=str, default=False,
 help='mnist dataset path')
 parser.add_argument('--train_url', type=str, default=False,
 help='mnist model path')

 parser.add_argument('--batch-size', type=int, default=64, metavar='N',
 help='input batch size for training (default: 64)')
 parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
 help='input batch size for testing (default: 1000)')
 parser.add_argument('--epochs', type=int, default=14, metavar='N',

ModelArts
Getting Started

3 Using a Custom Algorithm to Build a Handwritten
Digit Recognition Model

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 14

 help='number of epochs to train (default: 14)')
 parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
 help='learning rate (default: 1.0)')
 parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
 help='Learning rate step gamma (default: 0.7)')
 parser.add_argument('--no-cuda', action='store_true', default=False,
 help='disables CUDA training')
 parser.add_argument('--dry-run', action='store_true', default=False,
 help='quickly check a single pass')
 parser.add_argument('--seed', type=int, default=1, metavar='S',
 help='random seed (default: 1)')
 parser.add_argument('--log-interval', type=int, default=10, metavar='N',
 help='how many batches to wait before logging training status')
 parser.add_argument('--save-model', action='store_true', default=True,
 help='For Saving the current Model')
 args = parser.parse_args()

 use_cuda = not args.no_cuda and torch.cuda.is_available()

 torch.manual_seed(args.seed)

 # Set whether to use GPU or CPU to run the algorithm.
 device = torch.device("cuda" if use_cuda else "cpu")

 train_kwargs = {'batch_size': args.batch_size}
 test_kwargs = {'batch_size': args.test_batch_size}
 if use_cuda:
 cuda_kwargs = {'num_workers': 1,
 'pin_memory': True,
 'shuffle': True}
 train_kwargs.update(cuda_kwargs)
 test_kwargs.update(cuda_kwargs)

 # Define the data preprocessing method.
 transform=transforms.Compose([
 transforms.ToTensor(),
 transforms.Normalize((0.1307,), (0.3081,))
])

 # Convert the raw MNIST dataset to a PyTorch MNIST dataset.
 convert_raw_mnist_dataset_to_pytorch_mnist_dataset(args.data_url)

 # Create a training dataset and a validation dataset.
 dataset1 = datasets.MNIST(args.data_url, train=True, download=False,
 transform=transform)
 dataset2 = datasets.MNIST(args.data_url, train=False, download=False,
 transform=transform)

 # Create iterators for the training dataset and the validation dataset.
 train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs)
 test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)

 # Initialize the neural network model and copy the model to the compute device.
 model = Net().to(device)
 # Define the training optimizer and learning rate for gradient descent calculation.
 optimizer = optim.Adadelta(model.parameters(), lr=args.lr)
 scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)

 # Train the neural network and perform validation in each epoch.
 for epoch in range(1, args.epochs + 1):
 train(args, model, device, train_loader, optimizer, epoch)
 test(model, device, test_loader)
 scheduler.step()

 # Save the model and make it adapted to the ModelArts inference model package specifications.
 if args.save_model:

 # Create the model directory in the path specified in train_url.
 model_path = os.path.join(args.train_url, 'model')

ModelArts
Getting Started

3 Using a Custom Algorithm to Build a Handwritten
Digit Recognition Model

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 15

 os.makedirs(model_path, exist_ok = True)

 # Save the model to the model directory based on the ModelArts inference model package
specifications.
 torch.save(model.state_dict(), os.path.join(model_path, 'mnist_cnn.pt'))

 # Copy the inference code and configuration file to the model directory.
 the_path_of_current_file = os.path.dirname(__file__)
 shutil.copyfile(os.path.join(the_path_of_current_file, 'infer/customize_service.py'),
os.path.join(model_path, 'customize_service.py'))
 shutil.copyfile(os.path.join(the_path_of_current_file, 'infer/config.json'), os.path.join(model_path,
'config.json'))

if __name__ == '__main__':
 main()

Create the inference script customize_service.py on the local host. The content is
as follows:
import os
import log
import json

import torch.nn.functional as F
import torch.nn as nn
import torch
import torchvision.transforms as transforms

import numpy as np
from PIL import Image

from model_service.pytorch_model_service import PTServingBaseService

logger = log.getLogger(__name__)

Define model preprocessing.
infer_transformation = transforms.Compose([
 transforms.Resize(28),
 transforms.CenterCrop(28),
 transforms.ToTensor(),
 transforms.Normalize((0.1307,), (0.3081,))
])

Model inference service
class PTVisionService(PTServingBaseService):

 def __init__(self, model_name, model_path):
 # Call the constructor of the parent class.
 super(PTVisionService, self).__init__(model_name, model_path)

 # Call the customized function to load the model.
 self.model = Mnist(model_path)

 # Load labels.
 self.label = [0,1,2,3,4,5,6,7,8,9]

 # Receive the request data and convert it to the input format acceptable to the model.
 def _preprocess(self, data):
 preprocessed_data = {}
 for k, v in data.items():
 input_batch = []
 for file_name, file_content in v.items():
 with Image.open(file_content) as image1:
 # Gray processing
 image1 = image1.convert("L")
 if torch.cuda.is_available():
 input_batch.append(infer_transformation(image1).cuda())
 else:
 input_batch.append(infer_transformation(image1))
 input_batch_var = torch.autograd.Variable(torch.stack(input_batch, dim=0), volatile=True)

ModelArts
Getting Started

3 Using a Custom Algorithm to Build a Handwritten
Digit Recognition Model

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 16

 print(input_batch_var.shape)
 preprocessed_data[k] = input_batch_var

 return preprocessed_data

 # Post-process the inference result to obtain the expected output format. The result is the returned value.
 def _postprocess(self, data):
 results = []
 for k, v in data.items():
 result = torch.argmax(v[0])
 result = {k: self.label[result]}
 results.append(result)
 return results

 # Perform forward inference on the input data to obtain the inference result.
 def _inference(self, data):

 result = {}
 for k, v in data.items():
 result[k] = self.model(v)

 return result

Define a network.
class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(1, 32, 3, 1)
 self.conv2 = nn.Conv2d(32, 64, 3, 1)
 self.dropout1 = nn.Dropout(0.25)
 self.dropout2 = nn.Dropout(0.5)
 self.fc1 = nn.Linear(9216, 128)
 self.fc2 = nn.Linear(128, 10)

 def forward(self, x):
 x = self.conv1(x)
 x = F.relu(x)
 x = self.conv2(x)
 x = F.relu(x)
 x = F.max_pool2d(x, 2)
 x = self.dropout1(x)
 x = torch.flatten(x, 1)
 x = self.fc1(x)
 x = F.relu(x)
 x = self.dropout2(x)
 x = self.fc2(x)
 output = F.log_softmax(x, dim=1)
 return output

def Mnist(model_path, **kwargs):
 # Generate a network.
 model = Net()

 # Load the model.
 if torch.cuda.is_available():
 device = torch.device('cuda')
 model.load_state_dict(torch.load(model_path, map_location="cuda:0"))
 else:
 device = torch.device('cpu')
 model.load_state_dict(torch.load(model_path, map_location=device))

 # CPU or GPU mapping
 model.to(device)

 # Turn the model to inference mode.
 model.eval()

 return model

ModelArts
Getting Started

3 Using a Custom Algorithm to Build a Handwritten
Digit Recognition Model

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 17

Infer the configuration file config.json on the local host. The content is as follows:

{
 "model_algorithm": "image_classification",
 "model_type": "PyTorch",
 "runtime": "pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64"
}

Step 3 Create an OBS Bucket and Upload Files to OBS
Upload the data, code file, inference code file, and inference configuration file
obtained from Step 2 to an OBS bucket. When running a training job on
ModelArts, read data and code files from the OBS bucket.

1. Log in to the OBS console and create an OBS bucket and folder. Figure 3-4
shows an example of the created objects. For details, see Creating a Bucket
and Creating a Folder.
{OBS bucket} # OBS bucket name, which is customizable, for example, test-modelarts-
xx
 -{OBS folder} # OBS folder name, which is customizable, for example, pytorch
 - mnist-data # OBS folder, which is used to store the training dataset. The folder name is
customizable, for example, mnist-data.
 - mnist-code # OBS folder, which is used to store training script train.py. The folder name is
customizable, for example, mnist-code.
 - infer # OBS folder, which is used to store inference script customize_service.py and
configuration file config.json
 - mnist-output # OBS folder, which is used to store trained models. The folder name is
customizable, for example, mnist-output.

CA UTION

● The region where the created OBS bucket resides must be the same as that
where ModelArts is used. Otherwise, the OBS bucket will be unavailable for
training. For details, see Check whether the OBS bucket and ModelArts
are in the same region.

● When creating an OBS bucket, do not set the archive storage class.
Otherwise, training models will fail.

ModelArts
Getting Started

3 Using a Custom Algorithm to Build a Handwritten
Digit Recognition Model

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 18

https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0306.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0316.html
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0157.html#section2
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0157.html#section2

Figure 3-4 OBS file directory

2. Upload the MNIST dataset package obtained in Step 1 Prepare the Training
Data to OBS. For details, see Uploading a File.

CA UTION

● When uploading data to OBS, do not encrypt the data. Otherwise, the
training will fail.

● Files do not need to be decompressed. Directly upload compressed
packages to OBS.

ModelArts
Getting Started

3 Using a Custom Algorithm to Build a Handwritten
Digit Recognition Model

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 19

https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0307.html

Figure 3-5 Uploading a dataset to the mnist-data folder

3. Upload the training script train.py to the mnist-code folder.

Figure 3-6 Uploading the training script train.py to the mnist-code folder

ModelArts
Getting Started

3 Using a Custom Algorithm to Build a Handwritten
Digit Recognition Model

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 20

4. Upload the inference script customize_service.py and inference configuration
file config.json to the infer folder.

Figure 3-7 Uploading customize_service.py and config.json to the infer
folder

Step 4 Create a Training Job
1. Log in to the ModelArts management console and select the same region as

the OBS bucket.
2. In the navigation pane on the left, choose Settings and check whether access

authorization has been configured for the current account. For details, see
Configuring Access Authorization. If you have been authorized using access
keys, clear the authorization and configure agency authorization.

3. In the navigation pane on the left, choose Training Management > Training
Jobs. On the displayed page, click Create Training Job.

ModelArts
Getting Started

3 Using a Custom Algorithm to Build a Handwritten
Digit Recognition Model

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 21

https://support.huaweicloud.com/intl/en-us/prepare-modelarts/modelarts_08_0007.html

Figure 3-8 Training Jobs

4. Set parameters.
– Algorithm Type: Select Custom algorithm.
– Boot Mode: Select Preset image and then select PyTorch and

pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 from the drop-
down lists.

– Code Directory: Select the created OBS code directory, for example, /
test-modelarts-xx/pytorch/mnist-code/ (replace test-modelarts-xx
with your OBS bucket name).

– Boot File: Select the training script train.py uploaded to the code
directory.

– Input: Add one input and set its name to data_url. Set the data path to
your OBS directory, for example, /test-modelarts-xx/pytorch/mnist-
data/ (replace test-modelarts-xx with your OBS bucket name).

– Output: Add one output and set its name to train_url. Set the data path
to your OBS directory, for example, /test-modelarts-xx/pytorch/mnist-
output/ (replace test-modelarts-xx with your OBS bucket name). Do not
pre-download to a local directory.

– Resource Type: Select GPU and then GPU: 1*NVIDIA-V100(16GB) | CPU:
8 vCPUs 64GB (example). If there are free GPU specifications, you can
select them for training.

– Retain default settings for other parameters.

NO TE

The sample code runs on a single node with a single card. If you select a flavor
with multiple GPUs, the training will fail.

ModelArts
Getting Started

3 Using a Custom Algorithm to Build a Handwritten
Digit Recognition Model

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 22

Figure 3-9 Training job settings

Figure 3-10 Setting training input and output

Figure 3-11 Configuring the resource type

5. Click Submit, confirm parameter settings for the training job, and click Yes.

6. The system automatically switches back to the Training Jobs page. When the
training job status changes to Completed, the model training is completed.

NO TE

In this case, the training job will take more than 10 minutes.

7. Click the training job name. On the job details page that is displayed, check
whether there are error messages in logs. If so, the training failed. Identify the
cause and locate the fault based on the logs.

8. In the lower left corner of the training details page, click the training output
path to go to OBS (as shown in Figure 3-12). Then, check whether the model
folder is available and whether there are any trained models in the folder (as
shown in Figure 3-13). If there is no model folder or trained model, the
training input may be incomplete. In this case, completely upload the training
data and train the model again.

ModelArts
Getting Started

3 Using a Custom Algorithm to Build a Handwritten
Digit Recognition Model

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 23

Figure 3-12 Output path

Figure 3-13 Trained model

Step 5 Deploy the Model for Inference

After the model training is complete, create an AI application and deploy it as a
real-time service.

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose AI Application Management > AI Applications. On the My AI
Applications page, click Create.

2. On the Create page, configure parameters and click Create now.
Choose Training Job for Meta Model Source. Select the training job
completed in Step 4 Create a Training Job from the drop-down list and

ModelArts
Getting Started

3 Using a Custom Algorithm to Build a Handwritten
Digit Recognition Model

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 24

select Dynamic loading. The values of AI Engine will be automatically
configured.

Figure 3-14 Meta Model Source

NO TE

If you have used Training Jobs of an old version, you can see both Training Jobs and
Training Jobs New below Training job. In this case, select Training Jobs New.

3. On the AI Applications page, if the application status changes to Normal, it
has been created. Click the option button on the left of the AI application
name to display the version list at the bottom of the list page, and choose
Deploy > Real-Time Services in the Operation column to deploy the AI
application as a real-time service.

Figure 3-15 Deploying a real-time service

4. On the Deploy page, configure parameters and create a real-time service as
prompted. In this example, use CPU specifications. If there are free CPU
specifications, you can select them for deployment. (Each user can deploy
only one real-time service for free. If you have deployed one, delete it first
before deploying a new one for free.)

ModelArts
Getting Started

3 Using a Custom Algorithm to Build a Handwritten
Digit Recognition Model

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 25

Figure 3-16 Deploying a model

After you submit the service deployment request, the system automatically
switches to the Real-Time Services page. When the service status changes to
Running, the service has been deployed.

Figure 3-17 Deployed service

Step 6 Perform Prediction
1. On the Real-Time Services page, click the name of the real-time service. The

real-time service details page is displayed.
2. Click the Prediction tab, set Request Type to multipart/form-data, Request

Parameter to image, click Upload to upload a sample image, and click
Predict.
After the prediction is complete, the prediction result is displayed in the Test
Result pane. According to the prediction result, the digit on the image is 2.

NO TE

The MNIST used in this case is a simple dataset used for demonstration, and its
algorithms are also simple neural network algorithms used for teaching. The models
generated using such data and algorithms are applicable only to teaching but not to
complex prediction scenarios. The prediction is accurate only if the image used for
prediction is similar to the image in the training dataset (white characters on black
background).

Figure 3-18 Example

ModelArts
Getting Started

3 Using a Custom Algorithm to Build a Handwritten
Digit Recognition Model

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 26

Figure 3-19 Prediction results

Step 7 Release Resources
If you do not need to use this model and real-time service anymore, release the
resources to stop billing.
● On the Real-Time Services page, locate the row containing the target service

and click Stop or Delete in the Operation column.
● On the AI Applications page in AI Application Management, locate the row

containing the target service and click Delete in the Operation column.
● On the Training Jobs page, click Delete in the Operation column to delete

the finished training job.
● Go to OBS and delete the OBS bucket, folders, and files used in this example.

FAQs
● Why Is a Training Job Always Queuing?

If the training job is always queuing, the selected resources are limited in the
resource pool, and the job needs to be queued. In this case, wait for resources.
For details, see Why Is a Training Job Always Queuing.

● Why Can't I Find My Created OBS Bucket After I Select an OBS Path in
ModelArts?
Ensure that the created bucket is in the same region as ModelArts. For details,
see Incorrect OBS Path on ModelArts.

ModelArts
Getting Started

3 Using a Custom Algorithm to Build a Handwritten
Digit Recognition Model

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 27

https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0363.html
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0157.html#section2

4 Practices for Beginners

This section lists some common practices to help you understand and use
ModelArts for AI development.

Table 4-1 Common best practices

Practice Description

Assigning permissions for
using ModelArts

Assigning Basic
Permissions for Using
ModelArts

Assign specific ModelArts
operation permissions to
the IAM users under a
Huawei Cloud account.
This prevents exceptions
from occurring due to
permissions when the
IAM users access
ModelArts.

Training a model Example: Creating a
Custom Image for
Training (Horovod-
PyTorch and GPUs)

This section describes
how to create an image
and use it for training on
ModelArts. The AI engine
used in the image is
PyTorch, and the training
runs on CPUs or GPUs.

ModelArts
Getting Started 4 Practices for Beginners

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 28

https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0062.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0062.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0062.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/develop-modelarts-0143.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/develop-modelarts-0143.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/develop-modelarts-0143.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/develop-modelarts-0143.html

Practice Description

Deploying a service for
inference

Creating a Custom
Image and Using It to
Create an AI
Application

If you want to use an AI
engine that is not
supported by ModelArts,
create a custom image,
import the image to
ModelArts, and use the
image to create AI
applications. This section
describes how to use a
custom image to create
an AI application and
deploy the application as
a real-time service.

ModelArts
Getting Started 4 Practices for Beginners

Issue 01 (2023-07-06) Copyright © Huawei Technologies Co., Ltd. 29

https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0072.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0072.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0072.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0072.html

	Contents
	1 How to Use ModelArts
	2 Service Developers: Building Models Using ExeML
	3 Using a Custom Algorithm to Build a Handwritten Digit Recognition Model
	4 Practices for Beginners

