
GaussDB
24.4.0

Getting Started

Issue 01

Date 2024-04-30

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Operation Guide.. 1

2 Buying a DB Instance..3

3 Connecting to a DB Instance Using a Database Client.. 14
3.1 Connecting to a DB Instance.. 14
3.2 Connecting to an Instance Through DAS (Recommended)... 16
3.3 Using gsql to Connect to an Instance from a Linux Server..18
3.4 Using DBeaver to Connect to an Instance from a Windows Server..24
3.5 Using Navicat to Connect to an Instance from a Windows Server... 28

4 Connecting to a DB Instance Using a Driver.. 32
4.1 Distributed Instances... 32
4.1.1 Development Specifications...32
4.1.2 Using JDBC to Connect to a Database... 33
4.1.3 Using ODBC to Connect to a Database... 41
4.1.4 Using libpq to Connect to a Database... 51
4.1.5 Using Psycopg to Connect to a Database... 58
4.1.6 Using Hibernate to Connect to a Database... 61
4.1.7 Using MyBatis to Connect to a Database... 68
4.1.8 Using JayDeBeApi to Connect to a Database.. 70
4.2 Primary/Standby Instances.. 72
4.2.1 Development Specifications...72
4.2.2 Using JDBC to Connect to a Database... 73
4.2.3 Using ODBC to Connect to a Database... 82
4.2.4 Using libpq to Connect to a Database... 91
4.2.5 Using Psycopg to Connect to a Database... 99
4.2.6 Using Hibernate to Connect to a Database...102
4.2.7 Using MyBatis to Connect to a Database...109
4.2.8 Using JayDeBeApi to Connect to a Database... 111

5 Example: Using DAS to Connect to an Instance and Execute SQL Statements....114

GaussDB
Getting Started Contents

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 Operation Guide

Flowchart

Figure 1-1 Flowchart

Procedure

Table 1-1 Related operations and reference

Related Operation Reference

Creating a DB
instance

Buying a DB Instance

GaussDB
Getting Started 1 Operation Guide

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

Related Operation Reference

Connecting to a DB
instance

Select a connection method as needed:
Connecting to a DB Instance Using a Database Client
Connecting to a DB Instance Using a Driver

GaussDB
Getting Started 1 Operation Guide

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

2 Buying a DB Instance

Scenarios
You can buy a DB instance on the management console.

GaussDB supports pay-per-use and yearly/monthly billing. GaussDB allows you to
tailor your computing resources and storage space to your business needs.

Prerequisites
You have registered a HUAWEI ID and enabled Huawei Cloud services.

Procedure

Step 1 Log in to the management console.

Step 2 Click in the upper left corner and select a region and project.

Step 3 Click in the upper left corner of the page and choose Databases > GaussDB.

GaussDB
Getting Started 2 Buying a DB Instance

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

https://console-intl.huaweicloud.com/?locale=en-us

Step 4 On the Instances page, click Buy DB Instance.

Step 5 On the displayed page, select a billing mode, configure parameters about the
instance, and click Next.

Figure 2-1 Billing mode and basic information

GaussDB
Getting Started 2 Buying a DB Instance

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

Table 2-1 Basic information

Parameter Description

Billing Mode GaussDB provides two billing modes, yearly/monthly billing
and pay-per-use billing.
● Yearly/Monthly: You pay upfront for the amount of time

you expect to use the DB instance for. You will need to
make sure you have a top-up account with a sufficient
balance or have a valid payment method configured first.

● Pay-per-use: You can start using the DB instance first
and then pay as you go. Pricing is listed on a per-hour
basis, but bills are calculated based on the actual usage
duration.

Region A region where the tenant is located. You can change the
region on the instance creation page, or go back to the
Instances page and change it in the upper left corner.
NOTE

Products in different regions cannot communicate with each other
over a private network. After the DB instance is created, you cannot
change its region.

DB Instance
Name

The instance name must start with a letter and can contain
4 to 64 characters. Only letters (case-sensitive), digits,
hyphens (-), and underscores (_) are allowed.

Edition Type GaussDB provides Basic edition and Enterprise edition.

DB Engine
Version

GaussDB 3.223 and 8.102 are supported.

DB Instance Type ● Distributed: You can add nodes for distributed instances
as needed to handle large volumes of concurrent
requests.

● Primary/Standby: Primary/Standby instances are suitable
for scenarios with small and stable volumes of data,
where data reliability and service availability are
extremely important.

GaussDB
Getting Started 2 Buying a DB Instance

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

Parameter Description

Deployment
Model

● Distributed instances
– Independent: Database components are deployed on

different nodes. This model is suitable for where high
reliability and stability are required and the instance
scale is large. This option is available only when
Edition Type is Enterprise edition.

– Combined: 3-node deployment where there are three
shards and each shard contains one primary DN and
two standby DNs. This option is available only when
Edition Type is Basic edition.

● Primary/Standby instances
– HA (1 primary + 2 standby): 3-node deployment

where there is a shard. The shard contains one
primary DN and two standby DNs.

– Single replica: single-node deployment where there is
only one CMS component and one DN. To create a
single-replica instance, ensure that the instance
version is 2.2 or later.

– 1 primary + 1 standby + 1 log: 3-node deployment
where there is one shard with three replicas. The shard
contains one primary DN, one standby DN, and one
log-dedicated DN.

CAUTION
Single replica: The availability (or SLA) cannot be guaranteed
because the instance is deployed on a single server.

NOTE
● The combined deployment model has the following restrictions:

– This model is available only for instances of version 3.223 or
later.

– Instance specifications cannot be changed.
– Storage autoscaling is not supported.
– Yearly/Monthly billing is not supported.

Log Nodes
Supported

This parameter is available only for distributed instances.
If this option is selected, the distributed instance supports
the 1 primary + 1 standby + 1 log deployment model.

GaussDB
Getting Started 2 Buying a DB Instance

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

Parameter Description

Transaction
Consistency

This parameter is available only to distributed instances.
● Strong consistency: When an application updates data,

every user can query all data that has been successfully
committed, but performance is affected.

● Eventual consistency: When an application updates
data, the data users queried may be different, and some
users may not obtain the most current value. The most
current data may take a bit of time to become available
for query by all users. However, DB instances with
eventual consistency generally have higher performance.
Eventual consistency cannot ensure strong read
consistency of distributed transactions and consistency of
transactions that depend on query results, such as
INSERT INTO and SELECT * FROM. Write operations that
are split into multiple statements or involve in multiple
nodes are not supported.

Failover Priority This function is available only to distributed instances.
To use this parameter, contact customer service to apply for
the required permissions. The default value is Reliability.
For details about how to change the failover priority for an
existing instance, see Changing Failover Priority.
● Reliability: Data consistency is given priority during a

failover. This is recommended for applications with
highest priority for data consistency.

● Availability: Database availability is given priority during
a failover. This is recommended for applications that
require their databases to provide uninterrupted online
services.
NOTE

If Availability is selected, exercise caution when modifying the
following database parameters. For details about how to modify
parameters, see Modifying Instance Parameters.
– recovery_time_target: If this parameter is changed, the DB

instance will undergo frequent forced failovers. To change
this parameter, contact technical support first.

– audit_system_object: If this parameter is changed, DDL
audit logs will be lost. To change this parameter, contact
technical support first.

Replicas This parameter is available only to distributed instances.
Total number of DNs each shard, primary and standby DNs
combined. There are three replicas in a shard, indicating
that there are one primary and two standby DNs in a shard.

GaussDB
Getting Started 2 Buying a DB Instance

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_170.html
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_166.html

Parameter Description

Shards This parameter is available only to distributed instances. It
indicates the number of shards in an instance. A shard
contains multiple DNs. The number of DNs in a shard
depends on the value of Replicas, for example, if Replicas is
set to 3, there are three DNs (one primary and two standby
DNs) in a shard.

Coordinator
Nodes

This parameter is available only to distributed instances. It
indicates the number of CNs in an instance.
A CN provides the following functions:
● It receives access requests from applications and returns

execution results to clients.
● It breaks down tasks and distributes task fragments to

different DNs for parallel processing.
NOTICE

It is recommended that the number of CNs be less than or equal to
twice the number of shards.

AZ An AZ is a physical region where resources have their own
independent power supply and networks. AZs are physically
isolated but interconnected through an internal network.
A DB instance can be deployed in one AZ or three AZs.

Time Zone Select a time zone according to the region hosting your DB
instance when you buy the instance.

Figure 2-2 Specifications and storage

GaussDB
Getting Started 2 Buying a DB Instance

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

Table 2-2 Specifications and storage

Parameter Description

Instance
Specifications

Indicates the CPU and memory specifications of a DB instance.
Different instance specifications have different numbers of
database connections.
For details, see Instance Specifications.

Dedicated
Cloud

M6.
NOTE

This option is available only when you have purchased Dedicated
Computing Cluster (DCC).

Resource Type EVS.
NOTE

This option is available only when you have purchased Dedicated
Computing Cluster (DCC).

Storage Type Determines the instance read/write speed. The higher the
maximum throughput is, the higher the instance read/write
speed can be.
GaussDB supports ultra-high I/O storage with a maximum
throughput of 350 MB/s.

Storage Space
(GB)

The storage space contains the system overhead required for
inodes, reserved blocks, and database operation. After buying
an instance, you can scale up its storage space. For details, see
Scaling Up Storage Space.

NOTE
When you create a DB instance, the storage space for a single shard
starts from 40 GB and can be increased at a step of 4 GB.

Free Backup
Space

GaussDB provides free backup storage equal to the amount of
your purchased storage space. After the free backup space is
used up, you will be billed for the additional space used.

Disk
Encryption

● Disable: Encryption is disabled.
● Enable: Encryption is enabled, which improves data security

but affects system performance.
Key Name: If disk encryption is enabled, you need to select
or create a key, which is used by tenants.

GaussDB
Getting Started 2 Buying a DB Instance

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

https://support.huaweicloud.com/intl/en-us/productdesc-gaussdb/gaussdb_01_010.html
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_165.html

Figure 2-3 Network and database configuration

Table 2-3 Network

Parameter Description

VPC A virtual network where your GaussDB instances are located. A
VPC isolates networks for different workloads. You need to
create or select the required VPC. For details about how to
create a VPC, see Creating a VPC.
If no VPC is available, GaussDB allocates a default VPC for you.
NOTICE

After the GaussDB instance is created, the VPC cannot be changed.

Subnet A subnet provides dedicated network resources that are
logically isolated from other networks for network security.
Subnets take effect only within a specific AZ. Dynamic Host
Configuration Protocol (DHCP) is enabled by default for
subnets in which you plan to create GaussDB instances and
cannot be disabled. A private IP address is automatically
assigned when you create a GaussDB instance.
NOTE

● By default, a subnet supports up to 256 IP addresses. A distributed
instance can require up to 1,286 IP addresses. You are advised to
use a subnet that can provide 2,048 IP addresses.

GaussDB
Getting Started 2 Buying a DB Instance

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

https://support.huaweicloud.com/intl/en-us/ae-ad-1-usermanual-vpc/vpc_qs_0005.html

Parameter Description

Security Group A security group controls the access that traffic has in and out
of a GaussDB instance. By default, the security group
associated with the instance is authorized.
● If you need to change the security group when buying a

distributed instance, ensure that the TCP ports in the
inbound rule include the following: 40000-60480, 20050,
5000-5001, 2379-2380, 6000, 6500, and <database port>-
(<database port> + 100). (For example, if the database port
is 8000, the TCP ports for the security group must include
8000-8100.)

● If you need to change the security group when buying a
primary/standby instance, ensure that the TCP ports in the
inbound rule include the following: 20050, 5000-5001,
2379-2380, 6000, 6500, and <database port>-(<database
port> + 100). (For example, if the database port is 8000,
the TCP ports for the security group must include
8000-8100.)

The security group enhances security by controlling access to
GaussDB from other services. When you select a security
group, you must ensure that it allows the client to access your
DB instances. If you do not need to specify a security group
when creating a DB instance, you can submit a service ticket
to request it at Service Tickets > Create Service Ticket in the
upper right corner of the management console.
If no security group is available, GaussDB allocates a default
security group for you.

Database Port The port used by applications to access the database. Value
range: 1024 to 39998. Default value: 8000. The following ports
are used by the system and cannot be used: 2378, 2379, 2380,
4999, 5000, 5999, 6000, 6001, 8097, 8098, 12016, 12017,
20049, 20050, 21731, 21732, 32122, 32123, and 32124.

Single Floating
IP Address

Specifies whether to enable the single floating IP address
policy. If this policy is enabled, only one floating IP address is
assigned to an instance and is bound to the primary node. The
floating IP address does not change after a primary/standby
switchover. If this policy is disabled, each node is bound to a
floating IP address. The floating IP address changes after a
primary/standby switchover.
The constraints on the single floating IP address policy are as
follows:
● This policy is only available to primary/standby instances of

version 3.206 or later.
● The single floating IP address policy is configurable only

during instance creation and cannot be modified
afterwards.

GaussDB
Getting Started 2 Buying a DB Instance

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

https://console-intl.huaweicloud.com/ticket/?region=ap-southeast-1&locale=en-us#/ticketindex/createIndex

Table 2-4 Database configuration

Parameter Description

Administrat
or

DB administrator. The default username is root.

Administrat
or Password

Enter a strong password and periodically change it to improve
security, preventing security risks such as brute force cracking.
NOTICE

The password must contain:
● 8 to 32 characters.
● At least three types of the following: uppercase letters, lowercase

letters, digits, and special characters (~!@#%^*-_=+?,).

Keep your password secure because you cannot retrieve it from
the system.
After a DB instance is created, you can reset this password. For
details, see Resetting the Administrator Password.

Confirm
Password

Enter the administrator password again.

Table 2-5 Parameter templates

Parameter Description

Parameter
Template

A template of parameters for creating an instance. The template
contains engine configuration values that are applied to one or
more instances. You can modify the instance parameters as
required after the DB instance is created.
For details, see Modifying Parameters in a Parameter
Template.

Enterprise
Project

If the DB instance has been associated with an enterprise
project, select the target project from the Enterprise Project
drop-down list.
You can also go to the enterprise project management console
to create a project. For details, see Enterprise Management
User Guide.

GaussDB
Getting Started 2 Buying a DB Instance

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_159.html
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_199.html
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_199.html
https://support.huaweicloud.com/intl/en-us/usermanual-em/en-us_topic_0108763975.html
https://support.huaweicloud.com/intl/en-us/usermanual-em/en-us_topic_0108763975.html

Table 2-6 Tags

Parameter Description

Tag This parameter is optional. Adding tags helps you better identify
and manage your DB instances. Each instance can have up to 20
tags.
If your organization has configured tag policies for GaussDB, add
tags to instances based on the policies. If a tag does not comply
with the policies, instance creation may fail. Contact your
organization administrator to learn more about tag policies.

If you have any questions about the price, click Pricing details at the bottom of
the page.

NO TE

The performance of your GaussDB instance depends on its settings. Hardware items include
the instance specifications, storage type, and storage space.

Step 6 Confirm the displayed details.

Confirm your specifications for pay-per-use instances.

● If you need to modify your settings, click Previous.
● If you do not need to modify your settings, click Submit.

Confirm your order for yearly/monthly DB instances.

● If you need to modify your settings, click Previous.
● If you do not need to modify your settings, click Pay Now to go to the

payment page. On the displayed page, select a payment method and click
Pay.

Step 7 To view and manage the GaussDB instance after the creation task is submitted, go
to the Instances page.
● When a GaussDB instance is being created, the instance status is Creating.

● To refresh the instance list, click in the upper right corner of the list.
When the creation process is complete, the instance status will be Available.

● An automated full backup is immediately triggered after once your instance is
created.

● The default database port is 8000. You can change it during instance creation
or after an instance is created.

----End

Related Operations
● Creating a DB Instance Using an API
● Modifying Instance Parameters

GaussDB
Getting Started 2 Buying a DB Instance

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

https://support.huaweicloud.com/intl/en-us/api-gaussdb/gaussdb_api_017.html
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_166.html

3 Connecting to a DB Instance Using a
Database Client

3.1 Connecting to a DB Instance
GaussDB instances can be connected using gsql, DBeaver, Navicat, or Data Admin
Service (DAS).

Table 3-1 GaussDB instance connection modes

Connec
t
Throug
h

IP
Addres
s

Description Comments

DAS Not
require
d

DAS enables you to manage databases
on a web-based console. It supports
SQL execution, advanced database
management, and intelligent O&M,
simplifying database management and
improving both efficiency and data
security. The permissions required for
connecting to a GaussDB instance
through DAS are enabled by default.

Easy to use,
secure, advanced,
and intelligent

GaussDB
Getting Started

3 Connecting to a DB Instance Using a Database
Client

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

Connec
t
Throug
h

IP
Addres
s

Description Comments

gsql Private
IP
addres
s/EIP

gsql is a client tool provided by
GaussDB. You can use gsql to connect
to the database and then enter, edit,
and execute SQL statements in an
interactive manner.

To achieve a
higher data
transmission rate
and security level,
migrate your
applications to a
server that is in
the same subnet
as your GaussDB
instance and use a
private IP address
to access the
instance.

DBeav
er

EIP DBeaver is a GUI-based database
management tool. You can use this
tool to view database schemas, execute
SQL queries and scripts, browse and
export data, process BLOB/CLOB data,
and modify database schemas.

Open-source and
easy-to-use

Navica
t

EIP Navicat is a database management
tool. You can easily view and edit data
on its graphical interface. For example,
you can insert, delete, update, and
query data, process SQL statements or
scripts, use functions, and generate
data.

Stable and easy to
use

Figure 3-1 shows how a gsql connection works.

GaussDB
Getting Started

3 Connecting to a DB Instance Using a Database
Client

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

Figure 3-1 Connecting to a DB instance using gsql

3.2 Connecting to an Instance Through DAS
(Recommended)

Scenarios

DAS enables you to manage your databases from a web-based console. It
supports SQL execution, advanced database management, and intelligent O&M,
simplifying database management and improving both efficiency and data
security.

Procedure

Step 1 Log in to the management console.

Step 2 Click in the upper left corner and select a region and project.

GaussDB
Getting Started

3 Connecting to a DB Instance Using a Database
Client

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

https://console-intl.huaweicloud.com/?locale=en-us

Step 3 Click in the upper left corner of the page and choose Databases > GaussDB.

Step 4 On the Instances page, locate the DB instance you want to log in to and click Log
In in the Operation column.

Figure 3-2 Logging in to an instance

Alternatively, click the DB instance name on the Instances page. On the displayed
Basic Information page, click Log In in the upper right corner of the page.

Figure 3-3 Logging in to an instance

Step 5 On the displayed login page, enter the username and password and click Log In.

Table 3-2 Parameter description

Parameter Description

Login Username Username of the GaussDB database account. The default
administrator is root.

Database Name Name of the database (postgres by default).

Password Password of the database user.

Collect Metadata
Periodically

You are advised to enable Collect Metadata Periodically. If
it is disabled, DAS obtains only the structured data from
databases in real time, and the performance of databases is
affected.
The collection time cannot be customized. Once Collect
Metadata Periodically is enabled, DAS collects metadata at
20:00 every day (UTC time). If you are not using a UTC time,
convert the time according to your local time zone. You can
also click Collect Now to collect metadata at any time you
want.

Show Executed
SQL Statements

You are advised to enable Show Executed SQL Statements.
With it enabled, you can view the executed SQL statements
under SQL Operations > SQL History and execute them
again without entering the SQL statements.

For details about how to use DAS to manage databases, see GaussDB
Management.

----End

GaussDB
Getting Started

3 Connecting to a DB Instance Using a Database
Client

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

https://support.huaweicloud.com/intl/en-us/usermanual-das/das_18_0001.html
https://support.huaweicloud.com/intl/en-us/usermanual-das/das_18_0001.html

Follow-up Operations
After logging in to the DB instance, you can create or migrate your databases.

● Creating a Database
● Migrating the Database

3.3 Using gsql to Connect to an Instance from a Linux
Server

This section describes how to use the gsql client to connect to a GaussDB instance
you have bought on the GaussDB management console.

● Step 1: Buy an ECS
● Step 2: Query the IP Address and Port Number of the Instance to Be

Connected
● Step 3: Test the Connectivity
● Step 4: Obtain the Driver Package
● Step 5: Connect to the Database

– Non-SSL connection
– SSL connection

Buying an ECS
If you want to connect to a database using the command-line interface (CLI), like
gsql, you need to create an ECS and install gsql on it.

1. Log in to the management console and check whether there is an available
ECS.
– If there is, go to 3.
– If there is not, go to 2.

Figure 3-4 ECS instances

2. Buy an ECS that runs EulerOS.
For details about how to buy a Linux ECS, see Purchasing an ECS in Elastic
Cloud Server Getting Started.

3. On the ECS Information page of the target ECS, view the region and VPC of
the ECS.

GaussDB
Getting Started

3 Connecting to a DB Instance Using a Database
Client

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

https://support.huaweicloud.com/intl/en-us/api-gaussdb/gaussdb_api_097.html
https://support.huaweicloud.com/intl/en-us/bestpractice-gaussdb/gaussdb_practice_0008.html
https://console-intl.huaweicloud.com/ecm/?locale=en-us#/ecs/manager/vmList
https://support.huaweicloud.com/intl/en-us/qs-ecs/en-us_topic_0021831611.html

Figure 3-5 ECS basic information

NO TICE

The ECS must run EulerOS. gsql supports the following versions:
For x86 servers: EulerOS V2.0SP5 and Kylin V10 SP2
For Kunpeng servers: EulerOS V2.0SP8 and Kylin V10 SP1

4. On the Basic Information page of your GaussDB instance, view the region
and VPC of the instance.

Figure 3-6 Basic information about a GaussDB instance

5. Check whether the ECS and GaussDB instance are in the same region and
VPC.

GaussDB
Getting Started

3 Connecting to a DB Instance Using a Database
Client

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

– If the ECS and GaussDB instance are in the same region and VPC, the DB
instance can be connected through a private network. For details about
how to obtain the private IP address, see Querying the IP Address of the
Instance to Be Connected.

– If the ECS and DB instance are in different VPCs, the DB instance must be
connected over a public network. For details about how to obtain the
public IP address, see Querying the IP Address of the Instance to Be
Connected. Ensure that both the ECS and GaussDB instance have EIPs.

▪ For details about how to bind an EIP to an ECS, see Binding an EIP.

▪ For details about how to bind an EIP to a GaussDB instance, see
Binding an EIP.

Querying the IP Address and Port Number of the Instance to Be Connected
1. Log in to the management console.

2. Click in the upper left corner and select a region and project.

3. Click in the upper left corner of the page and choose Databases >
GaussDB.

4. On the Instances page, click the name of the target instance to go to the
Basic Information page.

5. In the Connection Information area, view the IP address and port number.
– If the ECS and GaussDB instance are in the same VPC, obtain the private

IP address and database port number.
– If the ECS and GaussDB instance are in different VPCs, obtain the EIP and

database port number.

Testing Connectivity
1. Log in to the ECS. For details, see Login Using VNC in Elastic Cloud Server

User Guide.
2. On the ECS, check whether it can connect to the target GaussDB instance

using the IP address and port number obtained in Querying the IP Address
and Port Number of the Instance to Be Connected.
telnet IP address Port number
Example:
telnet 192.168.0.16 8000

NO TE

If the message "command not found" is displayed, install a Telnet client that matches
the OS of the ECS.

– If the ECS can connect to the DB instance, no further action is required.
– If the communication fails, check the security group rules.

▪ If Destination is not 0.0.0.0/0 and Protocol & Port is not All on the
Outbound Rules page of the ECS, add the IP address and port of the
GaussDB instance to the outbound rules.

GaussDB
Getting Started

3 Connecting to a DB Instance Using a Database
Client

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

https://support.huaweicloud.com/intl/en-us/usermanual-ecs/en-us_topic_0174917535.html
https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_160.html
https://console-intl.huaweicloud.com/?locale=en-us
https://support.huaweicloud.com/intl/en-us/usermanual-ecs/ecs_03_0136.html

○ If the ECS and GaussDB instance are in the same VPC, add the
private IP address and port of the GaussDB instance to the
outbound rules.

○ If the ECS and GaussDB instance are in different VPCs, add the
EIP address and port of the GaussDB instance to the outbound
rules.

Figure 3-7 ECS security group

▪ If Source is not 0.0.0.0/0 and Protocol & Port is not All on the
Inbound Rules page of the GaussDB instance, add the IP address
and port of the ECS to the inbound rules.

○ If the ECS and GaussDB instance are in the same VPC, add the
private IP address and port of the ECS to the inbound rules.

○ If the ECS and GaussDB instance are in different VPCs, add the
EIP address and port of the ECS to the inbound rules.

For details, see Configuring Security Group Rules.

Figure 3-8 GaussDB security group

Obtaining the Driver Package

Download particular packages listed in Table 3-3 based on the version of your
instance.

Table 3-3 Driver package download list

Version Download Address

3.x Driver package
Verification package for the driver package

2.x Driver package
Verification package for the driver package

GaussDB
Getting Started

3 Connecting to a DB Instance Using a Database
Client

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_171.html
https://dbs-download1.obs.ap-southeast-3.myhuaweicloud.com/GaussDB/1711367469020/GaussDB_driver.zip
https://dbs-download1.obs.ap-southeast-3.myhuaweicloud.com/GaussDB/1711367469020/GaussDB_driver.zip.sha256
https://dbs-download1.obs.ap-southeast-3.myhuaweicloud.com/GaussDB/1711365687472/GaussDB_driver.zip
https://dbs-download1.obs.ap-southeast-3.myhuaweicloud.com/GaussDB/1711365687472/GaussDB_driver.zip.sha256

To prevent a software package from being tampered with during transmission or
storage, download the corresponding verification package and perform the
following steps to verify the software package:

1. Upload the software package and verification package to the same directory
on a Linux VM.

2. Run the following command to verify the integrity of the software package:
cat GaussDB_driver.zip.sha256 | sha256sum --check
If OK is displayed in the command output, the verification is successful.
GaussDB_driver.zip: OK

Connecting to a Database
● Non-SSL connection

a. Log in as user root to the ECS you have created.
b. Upload the client tool package and configure gsql environment variables.

i. Run the following command to create the /tmp/tools directory for
storing the client tool package:
mkdir /tmp/tools

ii. Download the GaussDB_driver.zip driver package of the required
version by referring to Obtaining the Driver Package, and upload it
to the /tmp/tools directory of the created ECS.

iii. Run the following commands to decompress the GaussDB_driver.zip
driver package:
cd /tmp/tools
unzip GaussDB_driver.zip

iv. Run the following commands to copy the decompressed GaussDB-
Kernel_V***R***C**_EULER_64bit-Gsql.tar.gz client tool package to
the /tmp/tools directory:

NO TE

This section uses the gsql tool package suitable for the primary/standby
instances running on Euler2.5_x86_64 as an example. The relative path of
the tool package varies depending on where you decompressed it.

cd /tmp/tools/GaussDB_driver/Centralized/Euler2.5_X86_64/
cp GaussDB-Kernel_V***R***C**_EULER_64bit-Gsql.tar.g /tmp/tools

v. Run the following commands to decompress the package:
cd /tmp/tools
tar -zxvf GaussDB-Kernel_V***R***C**_EULER_64bit-Gsql.tar.g

vi. Configure environment variables.
Run the following command to open the ~/.bashrc file:
vim ~/.bashrc

Press G to move the cursor to the last line and press i to enter Insert
mode, and type the following information. Then, press Esc to exit
Insert mode, and run :wq to save the settings and exit.
export PATH=/tmp/tools/bin:$PATH
export LD_LIBRARY_PATH=/tmp/tools/lib:$LD_LIBRARY_PATH

Run the following command to make the environment variables take
effect permanently:

GaussDB
Getting Started

3 Connecting to a DB Instance Using a Database
Client

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

source ~/.bashrc

c. Enter the password when prompted to connect to the database.

After the database is installed, a database is generated. Database
postgres is used an example.
gsql -d postgres -h 10.0.0.0 -U root -p 8000
Password for user root:

postgres is the name of the database you want to connect. 10.0.0.0 is
the IP address of the instance obtained in Querying the IP Address of
the Instance to Be Connected. root is the username for logging in to
the database. 8000 is the database port obtained in Querying the Port
Number of the Instance to Be Connected.

● SSL connection

a. Log in to the management console.

b. Click in the upper left corner and select a region and project.

c. Click in the upper left corner of the page and choose Databases >
GaussDB.

d. On the Instances page, click the name of the target instance. In the DB
Information area on the Basic Information page, click next to the
SSL field to download the root certificate or certificate bundle.

e. Upload the root certificate to the ECS or save it to the device to be
connected to the GaussDB instance.

Import the root certificate to the Linux ECS. For details, see How Can I
Import the Root Certificate to a Windows or Linux OS?

f. Connect to a GaussDB instance.

A Linux ECS is used in this example. Run the following command to set
environment variables on the ECS:
export PGSSLMODE=<sslmode>
export PGSSLROOTCERT=<ca-file-directory>

gsql -h <host> -p <port> -d <database> -U <user>

Table 3-4 Parameters

Parameter Description

<host> IP address of the DB instance. To obtain this parameter,
go to the Basic Information page of the DB instance. If
the DB instance is accessed through an ECS, the IP
address can be found in the Private IP Address field of
the Connection Information area.

GaussDB
Getting Started

3 Connecting to a DB Instance Using a Database
Client

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

https://console-intl.huaweicloud.com/?locale=en-us
https://support.huaweicloud.com/intl/en-us/gaussdb_faq/gaussdb_01_437.html
https://support.huaweicloud.com/intl/en-us/gaussdb_faq/gaussdb_01_437.html

Parameter Description

<port> Database port in use. The default value is 8000. To
obtain this parameter, go to the Basic Information
page of the DB instance. The port number can be found
in the Database Port field in the Connection
Information area.

<database> Name of the database (postgres by default).

<user> Username of the GaussDB database account. The
default administrator is root.

<ca-file-
directory>

Path of the CA certificate for SSL connection.

<sslmode> SSL connection mode. Set it to verify-ca to use a CA to
check whether the service is trusted.

For example, to connect to a postgres database through an SSL
connection as user root, run the following commands on the ECS:
export PGSSLMODE="verify-ca"
export PGSSLROOTCERT="/home/Ruby/ca.pem"

gsql -d postgres -h 10.0.0.0 -U root -p 8000
Password for user root:

g. Check the command output after you log in to the database. If
information similar to the following is displayed, the SSL connection has
been established.
SSL connection (cipher: DHE-RSA-AES256-GCM-SHA384, bits: 256)

Helpful Links
For more information about gsql commands, see Tool Reference.

3.4 Using DBeaver to Connect to an Instance from a
Windows Server

DBeaver is a multi-platform database client for you to connect to different
databases using particular drivers. This section describes how to use DBeaver to
connect to a GaussDB instance.

Step 1: Obtain the Driver Package
1. Obtain the driver package and its verification package.

Download the driver package and its verification package of the relevant
version to any local directory. Table 3-5 lists the download list.

GaussDB
Getting Started

3 Connecting to a DB Instance Using a Database
Client

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

https://support.huaweicloud.com/intl/en-us/tg-gaussdb-dist/gaussdb-08-0004.html

Table 3-5 Driver package download list

Version Download Address

3.x Driver package
Verification package for the driver package

2.x Driver package
Verification package for the driver package

2. Verify the driver package.
To prevent the driver package from being maliciously tampered during
transfer or storage, perform the following steps to verify the driver package:

a. Press Win+R to open the Run text box. Type cmd in the Open field and
press Enter to open the Command Prompt window.

b. Run the following command to obtain the hash value of the driver
package:
certutil -hashfile {Local directory of the driver package}\{Driver package
name} sha256

▪ Replace {Local directory of the driver package} with the actual
download path, for example, C:\Users.

▪ Replace {Driver package name} with the name of the downloaded
driver package, for example, GaussDB_driver.zip.

Example: certutil -hashfile C:\Users\GaussDB_driver.zip sha256
c. Compare the hash value obtained in 2.b with the hash value of the

verification package obtained in 1.

▪ If they are consistent, the verification is successful.

▪ If they are inconsistent, download the driver package again and
repeat 2.a to 2.c to verify the driver package.

3. Decompress the driver package.
Decompress the driver package obtained in 1 to the local PC, and place the
gsjdbc4.jar package included in it to any local directory.

Step 2: Obtain the DBeaver Client Installation Package

The DBeaver official website provides client installation packages for different OSs.
Download the required DBeaver client installation package, and install it on the
local PC.

Step 3: Create a Driver
1. Start the DBeaver client.
2. Choose Database > Driver Manager.
3. In the displayed window, click New.

GaussDB
Getting Started

3 Connecting to a DB Instance Using a Database
Client

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

https://dbs-download1.obs.ap-southeast-3.myhuaweicloud.com/GaussDB/1711367469020/GaussDB_driver.zip
https://dbs-download1.obs.ap-southeast-3.myhuaweicloud.com/GaussDB/1711367469020/GaussDB_driver.zip.sha256
https://dbs-download1.obs.ap-southeast-3.myhuaweicloud.com/GaussDB/1711365687472/GaussDB_driver.zip
https://dbs-download1.obs.ap-southeast-3.myhuaweicloud.com/GaussDB/1711365687472/GaussDB_driver.zip.sha256
https://dbeaver.io/files/

4. On the Settings tab, set Driver Name, Class Name, URL Template, Default
Port, Default Database, and Default User, select a driver type, and click OK.

Table 3-6 Parameters

Parameter Description

Driver Name Use a name that is easy to identify, for example,
GaussDB Driver.

Driver Type Set it to Generic.

Class Name Set it to org.postgresql.Driver.

URL Template Set it to jdbc:postgresql://{host}[:{port}]/
[{database}].

Default Port Set it to the port of your DB instance specified
during instance creation. The default port of a
GaussDB instance is 8000.

Default Database Set it to the name of the database to be connected.
After a DB instance is created, a database named
postgres is generated by default.

Default User Set it to the name of the user who will access the
GaussDB instance. The default user is root.

5. On the Libraries tab, click Add File to add gsjdbc4.jar obtained in 3.
6. After the file is added, the driver class is empty. Click Find Class to set the

driver class. The identified driver class must be the same as the class name
specified on the Settings tab.

7. Click OK to complete the driver settings.

Step 4: Connect to the Database

1. On the DBeaver client, choose to create a connection.
2. Search for the driver created in Step 3, select the driver, and click Next.

GaussDB
Getting Started

3 Connecting to a DB Instance Using a Database
Client

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

Figure 3-9 Selecting a driver

3. Enter the host IP address, port number, database name, username, and
password.

Table 3-7 Parameters

Parameter Description

Host Private IP address of the DB instance to be
connected. To view the private IP address and port
of the DB instance, perform the following steps:
1. Log in to the GaussDB management console.
2. Select the region in which the target instance is

located.
3. Click the name of the target instance to enter the

Basic Information page.
4. In the Connection Information area, view the

EIP of the instance.
If no EIP is bound to the instance, bind one to the
instance first. For details, see Binding an EIP.

Port Port of your DB instance specified during instance
creation. The default port of a GaussDB instance is
8000.

Database/Schema Name of the database to be connected. After a DB
instance is created, a database named postgres is
generated by default.

Username Name of the user who will access the GaussDB
instance. The default user is root.

Password Password of the user who will access the GaussDB
instance.

4. Click Test Connection. If Connected is displayed in the dialog box, the
connection is successful. Click OK.

GaussDB
Getting Started

3 Connecting to a DB Instance Using a Database
Client

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_160.html

5. Click Finish to connect to the database. You can view information about the
connected database in the Database Navigator area.

3.5 Using Navicat to Connect to an Instance from a
Windows Server

Navicat Premium 16.2.8 for Windows PC now supports GaussDB management and
development. This section describes how to use Navicat to connect to a GaussDB
instance.

Prerequisites
You have downloaded or bought Navicat Premium and installed it on the local
PC.

Procedure

Step 1 Start the Navicat Premium client and choose File > New Connection > Huawei
Cloud > Huawei Cloud GaussDB Centralized or Huawei Cloud GaussDB
Distributed.

Figure 3-10 Creating a connection

Step 2 In the New Connection window, enter the correct connection name, host, port,
initial database, user name, and password.

GaussDB
Getting Started

3 Connecting to a DB Instance Using a Database
Client

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

https://www.navicat.com/en/download/navicat-premium

Figure 3-11 Setting information for connecting to a primary/standby instance

GaussDB
Getting Started

3 Connecting to a DB Instance Using a Database
Client

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

Figure 3-12 Setting information for connecting to a distributed instance

Table 3-8 Parameters

Parameter Description

Connection Name Use a name that is easy to identify.

GaussDB
Getting Started

3 Connecting to a DB Instance Using a Database
Client

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

Parameter Description

Host Private IP address of the DB instance to be connected.
To view the private IP address and port of the DB
instance, perform the following steps:
1. Log in to the GaussDB management console.
2. Select the region in which the target instance is

located.
3. Click the name of the target instance to enter the

Basic Information page.
4. In the Connection Information area, view the EIP of

the instance.
If no EIP is bound to the instance, bind one to the
instance first. For details, see Binding an EIP.

Port Port of your DB instance specified during instance
creation. The default port of a GaussDB instance is
8000.

Initial Database Name of the database to be connected. After a DB
instance is created, a database named postgres is
generated by default.

User Name Name of the user who will access the GaussDB
instance. The default user is root.

Password Password of the user who will access the GaussDB
instance.

Step 3 Click Test Connection. If Connection Successful is displayed in the dialog box,
the connection is normal. Click OK to close the dialog box.

Step 4 Click OK. The connection is disabled by default after being created.

Step 5 Right-click the connection name and choose Open Connection from the shortcut
menu.

Step 6 Right-click the database name and choose Open Database from the shortcut
menu.

----End

GaussDB
Getting Started

3 Connecting to a DB Instance Using a Database
Client

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

https://support.huaweicloud.com/intl/en-us/usermanual-gaussdb/gaussdb_01_160.html

4 Connecting to a DB Instance Using a
Driver

You can connect to DB instances using drivers, such as JDBC and ODBC.

4.1 Distributed Instances

4.1.1 Development Specifications
If the connection pool mechanism is used during application development, comply
with the following specifications:

● If GUC parameters are set in the connection, run SET SESSION
AUTHORIZATION DEFAULT;RESET ALL; to clear the connection status before
you return the connection to the connection pool.

● If a temporary table is used, delete the temporary table before you return the
connection to the connection pool.

If you do not do so, the connection state in the connection pool will remain, which
affects subsequent operations using the connection pool.

Table 4-1 describes the compatibility of application development drivers.

Table 4-1 Compatibility Description

Driver Compatibility Description

JDBC, Go,
ODBC, libpq,
Psycopg, and
ecpg

The new drivers are forward compatible with the database. To
use the new features added to the driver and database, you
must upgrade the database.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

NO TICE

● In principle, you need to set the compatibility parameter after the database
creation, instead of switching the parameters when using the database.

● The JDBC driver must be upgraded to that maps to GaussDB Kernel 503.1.0 or
later if the following features are used:
● The s2 compatibility parameter is enabled and the validity check of

sessiontimezone is set.

If the driver is used in a multi-thread environment:

The JDBC driver is not thread-safe and does not guarantee that the connection
methods are synchronized. The caller synchronizes the calls to the driver.

4.1.2 Using JDBC to Connect to a Database
Java Database Connectivity (JDBC) is a Java API for running SQL statements. It
provides unified access APIs for different relational databases, based on which
applications process data. The GaussDB library supports JDBC 4.2 and requires JDK
1.8 for code compiling. It does not support JDBC-ODBC bridge.

Prerequisites
Java JDK 8 has been installed on the local PC.

JDBC Package
The package name is GaussDB-Kernel_Database version number_OS version
number_64bit_Jdbc.tar.gz.

After the decompression, you will obtain the following JDBC packages in JAR
format:

● gaussdbjdbc.jar: The main class name is com.huawei.gaussdb.jdbc.Driver.
The URL prefix of the database connection is jdbc:gaussdb. This driver
package is recommended. The Java code examples in this section use the
gaussdbjdbc.jar package by default.

● gscejdbc.jar: The main class name is com.huawei.gaussdb.jdbc.Driver. The
URL prefix of the database connection is jdbc:gaussdb. This driver package
contains the dependent libraries related to encryption and decryption that
need to be loaded to the encrypted database. You are advised to use this
driver package in encrypted scenarios. Currently, only EulerOS is supported.

● gaussdbjdbc-JRE7.jar: The main class name is
com.huawei.gaussdb.jdbc.Driver. The URL prefix of the database connection
is jdbc:gaussdb. The gaussdbjdbc-JRE7.jar package is used in the JDK 1.7
environment.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

CA UTION

● Before using the gscejdbc.jar driver package, you need to set the environment
variable LD_LIBRARY_PATH. For details, see section "Setting Encrypted Equality
Queries > Using JDBC to Operate an Encrypted Database" in Feature Guide.

● In JDK 1.8, you are advised to use gaussdbjdbc.jar instead of gaussdbjdbc-
JRE7.jar.

● For details about other JDBC JAR packages, see "Application Development
Guide" > "JDBC Compatibility Package" in Developer Guide.

Driver Class

Before establishing a database connection, load the
com.huawei.gaussdb.jdbc.Driver database driver class.

NO TE

1. GaussDB is compatible with PostgreSQL in the use of JDBC. Therefore, when two JDBC
drivers are used in the same process, class names may conflict.

2. JDBC of this version does not support identity & access management suite (IAM) for
authentication.

3. The GaussDB JDBC driver has the following enhanced features:

1. The SHA256 encryption mode is supported for login.

2. The third-party log framework that implements the sf4j API can be connected.

3. Distributed load balancing at the connection level is supported.

4. DR failover is supported.

Environment Class

The JDK1.8 must be configured on the client. JDK supports multiple platforms such
as Windows and Linux. The following uses Windows as an example to describe
how to configure JDK:

Step 1 Enter java -version in the MS-DOS window (command prompt in Windows) to
check the JDK version. Ensure that the JDK version is JDK1.8. If the JDK is not
installed, download the installation package and install it.

Step 2 On the Windows desktop, right-click This PC and choose Properties from the
shortcut menu.

Step 3 In the displayed System window, click Advanced system settings in the
navigation tree on the left.

Step 4 In the System Properties dialog box, click Environment Variables in the lower
right corner.

Step 5 In the System variables area of the Environment Variables dialog box, click New
or Edit to configure system variables. For details about the variables, see Table
4-2.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

Table 4-2 Variables

Variable Operation Variable Value

JAVA_HOME ● If the variable exists,
click Edit.

● If the variable does
not exist, click New.

Specifies the Java
installation directory.
Example: C:\Program
Files\Java\jdk1.8.0_131.

Path Click Edit. ● If JAVA_HOME is
configured, add
%JAVA_HOME%\bin
before the variable
value.

● If JAVA_HOME is not
configured, add the
full Java installation
path before the
variable value:
C:\Program Files
\Java
\jdk1.8.0_131\bin

CLASSPATH Click New. %JAVA_HOME%
\lib;%JAVA_HOME%\lib
\tools.jar

Step 6 Click OK and close the windows one by one.

----End

Loading the Driver

Load the database driver before creating a database connection.

You can load the driver in the following ways:
● Implicit loading at any position before a connection is created in the code:

Class.forName("com.huawei.gaussdb.jdbc.Driver")
● Parameter transfer during JVM startup: java -

Djdbc.drivers=com.huawei.gaussdb.jdbc.Driver jdbctest

NO TE

jdbctest is the name of a test application.

Function Prototype

JDBC provides three database connection methods.
● DriverManager.getConnection(String url)
● DriverManager.getConnection(String url, Properties info)
● DriverManager.getConnection(String url, String user, String password)

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

Parameters

Table 4-3 Database connection parameters

Param
eter

Description

url gaussdbjdbc.jar database connection descriptor.
If host is set to a server name or an IPv4 address, formats are as
follows:
● jdbc:gaussdb: (If the database name is left empty, the username is

used.)
● jdbc:gaussdb:database
● jdbc:gaussdb://host/database
● jdbc:gaussdb://host:port/database
● jdbc:gaussdb://host:port/database?param1=value1¶m2=value2
● jdbc:gaussdb://host1:port1,host2:port2/database?

param1=value1¶m2=value2
If host is set to an IPv6 address, formats are as follows:
● jdbc:gaussdb: (If the database name is left empty, the username is

used.)
● jdbc:gaussdb:database
● jdbc:gaussdb://host/database or jdbc:gaussdb://[host]/database
● jdbc:gaussdb://[host]:port/database
● jdbc:gaussdb://[host]:port/database?

param1=value1¶m2=value2
● jdbc:gaussdb://[host1]:port1,[host2]:port2/database?

param1=value1¶m2=value2

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

Param
eter

Description

NOTE
● database indicates the name of the database to connect.
● host indicates the name or IP address of the database server. Both IPv4 and

IPv6 addresses are supported.
For security purposes, the database CN forbids access from other nodes in
the cluster without authentication. To access the CN from inside the cluster,
deploy the JDBC program on the host where the CN is located and set host
to 127.0.0.1. Otherwise, the error message "FATAL: Forbid remote
connection with trust method!" may be displayed.
It is recommended that the service system be deployed outside the cluster. If
it is deployed inside, database performance may be affected.
By default, the local host is used to connect to the server.

● port indicates the port number of the database server.
By default, the database on port 5432 of the local host is connected.

● If host is set to an IPv6 address and the port number is specified in the URL,
use square brackets ([]) to enclose the IP address. The format is [IP
address]:Port number.

● param indicates a database connection attribute.
The parameter can be configured in the URL. The URL starts with a question
mark (?), uses an equal sign (=) to assign a value to the parameter, and
uses an ampersand (&) to separate parameters. You can also use the
attributes of the info object for configuration. For details, see Examples.

● value indicates the database connection attribute values.
● The connectTimeout and socketTimeout parameters must be set for

connection. If they are not set, the default value 0 is used, indicating that
the connection will not time out. When the network between the DN and
client is faulty, the client does not receive the ACK packet from the DN. In
this case, the client starts the timeout retransmission mechanism to
continuously retransmit packets. A timeout error is reported only when the
timeout interval reaches the default value 600s. As a result, the RTO is high.

● You are advised to ensure the validity of the URL when using the standard
JDBC API to establish a connection. An invalid URL may cause an exception,
and the exception contains the original URL character string, which may
cause sensitive information leakage.

info For details about common attributes of info, see "Application
Development Guide" > "Development Based on JDBC" > "Connecting
to a Database" in Developer Guide.

user Database user.

passwo
rd

Password of the database user.

NO TE

After the uppercaseAttributeName parameter is enabled, if the database contains
metadata with a mixture of uppercase and lowercase letters, only the metadata in
lowercase letters can be queried and output in uppercase letters. Before using the
metadata, ensure that the metadata is stored in lowercase letters to prevent data errors.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

Examples

Example 1: Connect to a database.

// gaussdbjdbc.jar is used as an example.
// The following code encapsulates database connection operations into an API. The database can then be
connected using an authorized username and a password.
public static Connection getConnect(String username, String passwd)
 {
 // Driver class.
 String driver = "com.huawei.gaussdb.jdbc.Driver";
 // Database connection descriptor.
 String sourceURL = "jdbc:gaussdb://$ip:$port/database";
 Connection conn = null;

 try
 {
 // Load the driver.
 Class.forName(driver);
 }
 catch(Exception e)
 {
 e.printStackTrace();
 return null;
 }

 try
 {
 // Create a connection.
 conn = DriverManager.getConnection(sourceURL, username, passwd);
 System.out.println("Connection succeed!");
 }
 catch(Exception e)
 {
 e.printStackTrace();
 return null;
 }

 return conn;
 }

Example 2: Use the Properties object as a parameter to create a connection.

// The following code uses the Properties object as a parameter to establish a connection:
public static Connection getConnectUseProp(String username, String passwd)
 {
 // Driver class.
 String driver = "com.huawei.gaussdb.jdbc.Driver";
 // Database connection descriptor.
 String sourceURL = "jdbc:gaussdb://$ip:$port/database?autoBalance=true";
 Connection conn = null;
 Properties info = new Properties();

 try
 {
 // Load the driver.
 Class.forName(driver);
 }
 catch(Exception e)
 {
 e.printStackTrace();
 return null;
 }

 try
 {
 info.setProperty("user", username);
 info.setProperty("password", passwd);
 // Create a connection.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

 conn = DriverManager.getConnection(sourceURL, info);
 System.out.println("Connection succeed!");
 }
 catch(Exception e)
 {
 e.printStackTrace();
 return null;
 }

 return conn;
 }

For details about common parameters, see "Application Development Guide" >
"Development Based on JDBC" > "Common JDBC Parameters" in Developer Guide.

Example 3: Use the streaming read function.
// There will be security risks if the username and password used for authentication are directly written into
code. It is recommended that the username and password be stored in the configuration file or
environment variables (the password must be stored in ciphertext and decrypted when being used) to
ensure security.
// In this example, the username and password are stored in environment variables. Before running this
example, set environment variables EXAMPLE_USERNAME_ENV and EXAMPLE_PASSWORD_ENV in the local
environment (set the environment variable names based on the actual situation).
// Establish a connection.
public static Connection getConnection(String username, String passwd) {
 String driver = "com.huawei.gaussdb.jdbc.Driver";
 String sourceURL = "jdbc:gaussdb://$ip:$port/database?enableStreamingQuery=true";
 Connection conn = null;
 try {
 // Load the driver.
 Class.forName(driver);
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }
 try {
 // Create a connection.
 conn = DriverManager.getConnection(sourceURL, username, passwd);
 System.out.println("Connection succeed!");
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }
 return conn;
}

// Execute common SQL statements to create table t_user.
public static void CreateTable(Connection conn) {
 Statement stmt = null;
 try {
 stmt = conn.createStatement();

 // Execute common SQL statements.
 stmt.executeUpdate("DROP TABLE IF EXISTS t_user");
 stmt.executeUpdate("CREATE TABLE t_user(id int, name VARCHAR(20));");
 stmt.close();
 } catch (SQLException e) {
 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException e1) {
 e1.printStackTrace();
 }
 }
 e.printStackTrace();
 }
}

// Execute a prepared statement to insert data in batches.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

public static void BatchInsertData(Connection conn) {
 PreparedStatement pst = null;

 try {
 // Generate a prepared statement.
 pst = conn.prepareStatement("INSERT INTO t_user VALUES (?,?)");
 for (int i = 0; i < 20; i++) {
 // Add parameters.
 pst.setInt(1, i + 1);
 pst.setString(2, "name " + (i + 1));
 pst.addBatch();
 }
 // Perform batch processing.
 pst.executeBatch();
 pst.close();
 } catch (SQLException e) {
 if (pst != null) {
 try {
 pst.close();
 } catch (SQLException e1) {
 e1.printStackTrace();
 }
 }
 e.printStackTrace();
 }
}

// Enable streaming read and query the content in the t_user table.
public static void StreamingQuery(Connection conn) {
 PreparedStatement pst = null;
 ResultSet resultSet = null;

 try {
 // Query all values in the t_user table.
 pst = conn.prepareStatement("SELECT * FROM t_user");
 pst.setFetchSize(Integer.MIN_VALUE);// Functions the same as
((PgStatement)statement).enableStreamingResults();.
 resultSet = pst.executeQuery();
 while (resultSet.next()) {
 System.out.println(resultSet.getInt(1));
 }
 } catch (SQLException e) {
 throw new RuntimeException(e);
 } finally {
 if (resultSet != null) {
 try {
 resultSet.close();
 } catch (SQLException e) {
 throw new RuntimeException(e);
 }
 }

 if (pst != null) {
 try {
 pst.close();
 } catch (SQLException e) {
 throw new RuntimeException(e);
 }
 }
 }
}

public static void main(String[] args) throws Exception {
 String userName = System.getenv("EXAMPLE_USERNAME_ENV");
 String password = System.getenv("EXAMPLE_PASSWORD_ENV");
 Connection conn = getConnection(userName , password);

 CreateTable(conn);

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

 BatchInsertData(conn);

 StreamingQuery(conn);

 // Close the database connection.
 try {
 conn.close();
 } catch (SQLException e) {
 e.printStackTrace();
 }
}

NO TICE

When the streaming read function is used, you need to perform the
resultSet.close() or statement.close() operation after the result set is used.
Otherwise, the current connection is unavailable.

4.1.3 Using ODBC to Connect to a Database
Open Database Connectivity (ODBC) is a Microsoft API for accessing databases
based on the X/OPEN CLI. ODBC APIs alleviate applications from directly operating
in databases, and enhance the database portability, extensibility, and
maintainability.

Figure 4-1 shows the system structure of ODBC.

Figure 4-1 ODBC system structure

GaussDB supports ODBC 3.5 in the following environments.

Table 4-4 OSs Supported by ODBC

OS Platform

EulerOS V2.0SP5 x86_64

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

OS Platform

EulerOS V2.0SP9 Arm64

EulerOS V2.0SP10 x86_64

EulerOS V2.0SP10 Arm64

Windows 7 x86_32

Windows 7 x86_64

Windows Server 2008 x86_32

Windows Server 2008 x86_64

Kylin V10 x86_64

Kylin V10 Arm64

UnionTech V20 x86_64

UnionTech V20 Arm64

Huawei Cloud EulerOS 2.0 x86_64

Huawei Cloud EulerOS 2.0 Arm64

The ODBC Driver Manager running on Unix or Linux can be unixODBC or iODBC.
unixODBC-2.3.7 is used as the component for connecting to the database.

Windows has a native ODBC Driver Manager. You can locate Data Sources
(ODBC) by choosing Control Panel > Administrative Tools.

NO TE

The current database ODBC driver is based on an open-source version and may be
incompatible with Huawei-developed data types such as tinyint, smalldatetime, and
nvarchar2.

ODBC Constraints
● ODBC does not support DR switchover.
● When the proc_outparam_override parameter is enabled for the database,

ODBC cannot properly call the stored procedure that contains the out
parameter.

Prerequisites

You have downloaded the ODBC driver packages for Linux and Windows.
● The package name for Linux is GaussDB-Kernel_Database version

number_OS version number_64bit_Odbc.tar.gz. In the Linux OS, header files
(including sql.h and sqlext.h) and the library (libodbc.so) are required in
application development. These header files and library can be obtained from
the unixODBC-2.3.7 installation package.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

● The package name for Windows is GaussDB-Kernel_Database version
number_Windows_Odbc_X64.tar.gz (64-bit). In the Windows OS, the
required header files and library files are system-resident.

Procedure in a Linux Server

Step 1 Obtain the source code package of unixODBC by clicking the following link:

Download address: https://www.unixodbc.org/unixODBC-2.3.7.tar.gz.

After the download, verify the integrity based on the integrity verification
algorithm provided by the community. Download https://www.unixodbc.org/
unixODBC-2.3.7.tar.gz.md5, view the MD5 value, and check whether the MD5
value is the same as that in the source code package.

Step 2 Install unixODBC. It does not matter if unixODBC of another version has been
installed.

For example, install unixODBC-2.3.7.
tar zxvf unixODBC-2.3.7.tar.gz
cd unixODBC-2.3.7

./configure --enable-gui=no # To perform compilation on an Arm server, add the configure parameter --
build=aarch64-unknown-linux-gnu.
make
The installation may require root permissions.
make install

NO TE

● Currently, unixODBC-2.2.1 is not supported.
● It is installed in the /usr/local directory by default. The data source file is generated in

the /usr/local/etc directory, and the library file is generated in the /usr/local/lib
directory.

● You can compile unixODBC with the --enable-fastvalidate=yes option to achieve higher
performance. However, this option may cause an application that passes an invalid
handle to the ODBC API to fail instead of returning an SQL_INVALID_HANDLE error.

Step 3 Replace the GaussDB client driver.

Decompress GaussDB-Kernel_Database version number_OS version
number_64bit_Odbc.tar.gz. After the decompression, the lib and odbc folders are
generated. The odbc folder contains another lib folder. Copy all dynamic libraries
in the /lib and /odbc/lib folders to the /usr/local/lib directory.

Step 4 Configure the data source.

1. Configure the ODBC driver file.
Add the following content to the /usr/local/etc/odbcinst.ini file:
[GaussMPP]
Driver64=/usr/local/lib/gsqlodbcw.so
setup=/usr/local/lib/gsqlodbcw.so

For descriptions of the parameters in the odbcinst.ini file, see Table 4-5.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

https://www.unixodbc.org/unixODBC-2.3.7.tar.gz
https://www.unixodbc.org/unixODBC-2.3.7.tar.gz.md5
https://www.unixodbc.org/unixODBC-2.3.7.tar.gz.md5

Table 4-5 odbcinst.ini configuration parameters

Parameter Description Example

[DriverName] Driver name, corresponding
to Driver in DSN.

[DRIVER_N]

Driver64 Path of the dynamic driver
library.

Driver64=/usr/local/lib/
gsqlodbcw.so

setup Driver installation path,
which is the same as the
dynamic library path in
Driver64.

setup=/usr/local/lib/
gsqlodbcw.so

2. Configure the data source file.

Add the following content to the /usr/local/etc/odbc.ini file:
[gaussdb]
Driver=GaussMPP
Servername=127.0.0.1 # Database server IP address
Database=db1 # Database name
Username=omm # Database username
Password= # Database user password
Port=8000 # Database listening port
Sslmode = allow

Table 4-6 describes the parameters in the odbc.ini file.

Table 4-6 odbc.ini configuration parameters

Parameter Description Example Value

[DSN] Data source name. [gaussdb]

Driver Driver name,
corresponding to
DriverName in
odbcinst.ini.

Driver = DRIVER_N

Servername Server IP address.
Multiple IP addresses
can be configured. Both
IPv4 and IPv6 are
supported.

Servername=127.0.0.1

Database Name of the database
to connect.

Database=db1

Username Database username. Username=omm

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

Parameter Description Example Value

Password Database user
password.
NOTE

After a user establishes a
connection, the ODBC
driver automatically
clears their password
stored in memory.
However, if this
parameter is configured,
unixODBC will cache
data source files, which
may cause the password
to be stored in the
memory for a long time.
When you connect to an
application, you are
advised to send your
password through an API
instead of writing it in a
data source configuration
file. After the connection
has been established,
immediately clear the
memory segment where
your password is stored.

CAUTION
The password in the
configuration file must
comply with the
following HTTP rules:
1. Characters must

comply with the URL
encoding
specifications. For
example, the
exclamation mark (!)
must be written as
%21, and the percent
sign (%) must be
written as %25.
Therefore, pay
attention to the
characters.

2. A plus sign (+) will be
replaced by a space.

Password=********

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

Parameter Description Example Value

Port Port number of the
server. When load
balancing is enabled,
multiple port numbers
can be configured and
must correspond to
multiple IP addresses. If
multiple IP addresses
are configured and only
one port number is
configured when load
balancing is enabled,
all IP addresses share
the same port number
by default, that is, the
configured port
number.

Port=8000

Sslmode Specifies whether to
enable SSL.

Sslmode = allow

For values of the Sslmode parameter, see Table 4-7.

Table 4-7 sslmode options

sslmode Whether
SSL
Encryption
Is Enabled

Description

disable No SSL connection is not enabled.

allow Possible If the database server requires SSL connection,
SSL connection can be enabled. However,
authenticity of the database server will not be
verified.

prefer Possible If the database supports SSL connection, SSL
connection is preferred. However, authenticity of
the database server will not be verified.

require Yes SSL connection is required and data is encrypted.
However, authenticity of the database server will
not be verified.

verify-ca Yes SSL connection is required and whether the
database has a trusted certificate will be verified.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

sslmode Whether
SSL
Encryption
Is Enabled

Description

verify-
full

Yes SSL connection is required. In addition to the
check scope specified by verify-ca, the system
checks whether the name of the host where the
database resides is the same as that in the
certificate. If they are different, modify the /etc/
hosts file as user root and add the IP address
and host name of the connected database node
to the file.
NOTE

This mode does not support the default certificate of
the product. Contact the administrator to generate a
certificate.

Step 5 Enable the SSL mode. For details, contact the database administrator.

Step 6 Configure the database server. For details, contact the database administrator.

Step 7 Configure the environment variables on the client.
vim ~/.bashrc

Add the following information to the configuration file:

export LD_LIBRARY_PATH=/usr/local/lib/:$LD_LIBRARY_PATH
export ODBCSYSINI=/usr/local/etc
export ODBCINI=/usr/local/etc/odbc.ini

Step 8 Run the following command to validate the addition:
source ~/.bashrc

Step 9 Connect to the database.

isql -v GaussODBC

GaussODBC: data source name.

● If the following information is displayed, the configuration is correct and the
connection succeeds:
+---------------------------------------+
| Connected! |
| |
| sql-statement |
| help [tablename] |
| quit |
| |
+---------------------------------------+

● If error information is displayed, the configuration is incorrect. Check the
configuration.

● In a cluster environment, you need to copy and configure the unixODBC file
on all nodes.

----End

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

Procedure in a Windows Server

Configure an ODBC data source using the ODBC data source manager preinstalled
in the Windows OS.

Step 1 Replace the GaussDB client driver.

Decompress the GaussDB-Kernel_Database version
number_Windows_X64_Odbc.tar.gz (64-bit) driver package or GaussDB-
Kernel_Database version number_Windows_X86_Odbc.tar.gz (32-bit) driver
package, and click gsqlodbc.exe to install the driver.

Step 2 Open the driver manager.

When configuring the data source, use the ODBC driver manager corresponding to
the ODBC version. If the 64-bit ODBC driver is used, the 64-bit ODBC driver
manager must be used. Assume that the OS is installed on drive C (if the OS is
installed on another drive, change the path accordingly):

● If you want to use 32-bit ODBC driver manager in a 64-bit OS, open
C:\Windows\SysWOW64\odbcad32.exe. Do not choose Control Panel >
Administrative Tools > Data Sources (ODBC).

NO TE

WoW64 is short for Windows 32-bit on Windows 64-bit. C:\Windows\SysWOW64\
stores the 32-bit environment on a 64-bit system. C:\Windows\System32\ stores the
environment consistent with the current OS. For technical details, see Windows
technical documents.

● For a 32-bit OS, open C:\Windows\System32\odbcad32.exe or choose
Computer > Control Panel > Administrative Tools > Data Sources (ODBC)
to open Driver Manager.

● For a 64-bit OS, choose Control Panel > Administrative Tools > Data
Sources (ODBC) to enable driver management.

Step 3 Configure the data source.

On the User DSN tab, click Add and choose GaussDB Unicode for setup.

For details about the parameters, see Procedure in a Linux Server.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

You can click Datasource to configure whether to print logs.

NO TICE

The entered username and password will be recorded in the Windows registry and
you do not need to enter them again when connecting to the database next time.
For security purposes, you are advised to delete sensitive information before
clicking Save and enter the required username and password again when using
ODBC APIs to connect to the database.

Step 4 Configure SSL mode.

Change the value of SSL Mode in Step 3 to require.

Table 4-8 sslmode options

sslmode Whether
SSL
Encryption
Is Enabled

Description

disable No SSL connection is not enabled.

allow Possible If the database server requires SSL connection, SSL
connection can be enabled. However, authenticity of
the database server will not be verified.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

sslmode Whether
SSL
Encryption
Is Enabled

Description

prefer Possible If the database supports SSL connection, SSL
connection is preferred. However, authenticity of the
database server will not be verified.

require Yes SSL connection is required and data is encrypted.
However, authenticity of the database server will
not be verified.

verify-ca Yes SSL connection is required and whether the
database has a trusted certificate will be verified.
Currently, Windows ODBC does not support the
certificate-based authentication.

verify-full Yes SSL connection is required. In addition to the check
scope specified by verify-ca, the system checks
whether the name of the host where the database
resides is the same as that on the certificate.
Currently, Windows ODBC does not support the
certificate-based authentication.

Step 5 Configure a GaussDB server. For details, contact the administrator.

Step 6 Restart the cluster.
gs_om -t stop
gs_om -t start

Step 7 Click Test to test the connection.

● If the following information is displayed, the configuration is correct and the
connection succeeds.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

● If error information is displayed, the configuration is incorrect. Check the
configuration.

----End

4.1.4 Using libpq to Connect to a Database
libpq is a C application programming interface to GaussDB. libpq contains a set of
library functions that allow client programs to send query requests to GaussDB
servers and obtain query results. It is also the underlying engine of other GaussDB
application interfaces, such as ODBC. This chapter provides examples to show how
to write code using libpq.

Prerequisites
A C development environment has been installed on the local PC.

To compile and develop source programs based on libpq, perform the following
steps:
● Decompress the GaussDB-Kernel_Database version number_OS version

number_64bit_Libpq.tar.gz file. The required header file is stored in the
include folder, and the lib folder contains the required libpq library file.

NO TE

In addition to libpq-fe.h, the include folder contains the header files postgres_ext.h,
gs_thread.h, and gs_threadlocal.h by default. These three header files are the
dependency files of libpq-fe.h.

● Develop the source program testlibpq.c. The source code file needs to
reference the header file provided by libpq.
Example: #include <libpq-fe.h>

● To compile the libpq source program by running gcc, use the -I directory
option to provide the installation location of the header file. (Sometimes the
compiler looks for the default directory, so this option can be ignored.)
Example:
gcc -I (Directory where the header file is located) -L (Directory where the libpq library is located)
testlibpq.c -lpq
Example: gcc -I $(GAUSSHOME)/include/libpq -L $(GAUSSHOME)/lib -lpq testlibpq.c -o testlibpq

● If the makefile is used, add the following option to variables CPPFLAGS,
LDFLAGS, and LIBS:
CPPFLAGS += -I (Directory of the header file)
LDFLAGS += -L (Directory of the libpq library)
LIBS += -lpq
Example:
CPPFLAGS += -I$(GAUSSHOME)/include/libpq
LDFLAGS += -L$(GAUSSHOME)/lib

Code for Common Functions
Example 1:

/*
 * testlibpq.c
* Note: testlibpq.c source program provides basic and common application scenarios of libpq.
* The PQconnectdb, PQexec, PQntuples, and PQfinish APIs provided by libpq are used to establish database
connections, execute SQL statements, obtain returned results, and clear resources.
 */

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

#include <stdio.h>
#include <stdlib.h>
#include <libpq-fe.h>
#include <string.h>

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

int
main(int argc, char **argv)
{
 /* The values of variables such as user and passwd must be read from environment variables or
configuration files. Environment variables need to be configured as required. If no environment variable is
used, a character string can be directly assigned. */
 const char conninfo[1024];
 PGconn *conn;
 PGresult *res;
 int nFields;
 int i,j;
 char *passwd = getenv("EXAMPLE_PASSWD_ENV");
 char *port = getenv("EXAMPLE_PORT_ENV");
 char *host = getenv("EXAMPLE_HOST_ENV");
 char *username = getenv("EXAMPLE_USERNAME_ENV");
 char *dbname = getenv("EXAMPLE_DBNAME_ENV");

 /*
 * This value is used when the user provides the value of the conninfo character string in the command
line.
 * Otherwise, the environment variables or the default values
 * are used for all other connection parameters.
 */
 if (argc > 1)
 conninfo = argv[1];
 else
 sprintf(conninfo,
 "dbname=%s port=%s host=%s application_name=test connect_timeout=5 sslmode=allow user=%s
password=%s",
 dbname, port, host, username, passwd);

 /* Connect to the database. */
 conn = PQconnectdb(conninfo);

 /* Check whether the backend connection has been successfully established. */
 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "Connection to database failed: %s",
 PQerrorMessage(conn));
 exit_nicely(conn);
 }

 /*
 * Since a cursor is used in the test case, a transaction block is required.
 * Put all data in one "select * from pg_database"
 * PQexec() is too simple and is not recommended.
 */

 /* Start a transaction block. */
 res = PQexec(conn, "BEGIN");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "BEGIN command failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

 /*
 * PQclear PGresult should be executed when it is no longer needed, to avoid memory leakage.
 */
 PQclear(res);

 /*
 * Fetch data from the pg_database system catalog.
 */
 res = PQexec(conn, "DECLARE myportal CURSOR FOR select * from pg_database");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "DECLARE CURSOR failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);

 res = PQexec(conn, "FETCH ALL in myportal");
 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "FETCH ALL failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 /* First, print out the attribute name. */
 nFields = PQnfields(res);
 for (i = 0; i < nFields; i++)
 printf("%-15s", PQfname(res, i));
 printf("\n\n");

 /* Print lines. */
 for (i = 0; i < PQntuples(res); i++)
 {
 for (j = 0; j < nFields; j++)
 printf("%-15s", PQgetvalue(res, i, j));
 printf("\n");
 }

 PQclear(res);

 /* Close the portal. We do not need to check for errors. */
 res = PQexec(conn, "CLOSE myportal");
 PQclear(res);

 /* End the transaction. */
 res = PQexec(conn, "END");
 PQclear(res);

 /* Close the database connection and clean up the database. */
 PQfinish(conn);

 return 0;
}

Example 2:
/*
 * testlibpq2.c Test PQprepare
 * PQprepare creates a prepared statement with specified parameters for PQexecPrepared to execute the
prepared statement.
 * Before running this example, create a table and insert data.
 * create table t01(a int, b int);
 * insert into t01 values(1, 23);
 */
#include <stdio.h>
#include <stdlib.h>
#include <libpq-fe.h>
#include <string.h>
int main(int argc, char * argv[])
{

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

 /* The values of variables such as user and passwd must be read from environment variables or
configuration files. Environment variables need to be configured as required. If no environment variable is
used, a character string can be directly assigned. */
 PGconn *conn;
 PGresult * res;
 ConnStatusType pgstatus;
 char connstr[1024];
 char cmd_sql[2048];
 int nParams = 0;
 int paramLengths[5];
 int paramFormats[5];
 Oid paramTypes[5];
 char * paramValues[5];
 int i, cnt;
 char cid[32];
 int k;
 char *passwd = getenv("EXAMPLE_PASSWD_ENV");
 char *port = getenv("EXAMPLE_PORT_ENV");
 char *hostaddr = getenv("EXAMPLE_HOST_ENV");
 char *username = getenv("EXAMPLE_USERNAME_ENV");
 char *dbname = getenv("EXAMPLE_DBNAME_ENV");

 /* Use PQconnectdb to connect to the database. The detailed connection information is as follows:
connstr */
 sprintf(connstr,
 "hostaddr=%s dbname=%s port=%s user=%s password=%s",
 hostaddr, dbname, port, username, paswswd);
 conn = PQconnectdb(connstr);
 pgstatus = PQstatus(conn);
 if (pgstatus == CONNECTION_OK)
 {
 printf("Connect database success!\n");
 }
 else
 {
 printf("Connect database fail:%s\n",PQerrorMessage(conn));
 return -1;
 }

 /* Create table t01. */
 res = PQexec(conn, "DROP TABLE IF EXISTS t01;CREATE TABLE t01(a int, b int);INSERT INTO t01
values(1, 23);");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 printf("Command failed: %s.\n", PQerrorMessage(conn));
 PQfinish(conn);
 return -1;
 }

 /* cmd_s
 sprintf(cmd_sql, "SELECT b FROM t01 WHERE a = $1");
 /*Parameter corresponding to $1 in cmd_sql*/
 paramTypes[0] = 23;
 /* PQprepare creates a prepared statement with given parameters. */
 res = PQprepare(conn,
 "pre_name",
 cmd_sql,
 1,
 paramTypes);
 if(PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 printf("Failed to prepare SQL : %s\n: %s\n",cmd_sql, PQerrorMessage(conn));
 PQfinish(conn);
 return -1;
 }
 PQclear(res);
 paramValues[0] = cid;
 for (k=0; k<2; k++)
 {

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

 sprintf(cid, "%d", 1);
 paramLengths[0] = 6;
 paramFormats[0] = 0;
 /*Execute the prepared statement.*/
 res = PQexecPrepared(conn,
 "pre_name",
 1,
 paramValues,
 paramLengths,
 paramFormats,
 0);
 if((PQresultStatus(res) != PGRES_COMMAND_OK) && (PQresultStatus(res) != PGRES_TUPLES_OK))
 {
 printf("%s\n",PQerrorMessage(conn));
 PQclear(res);
 PQfinish(conn);
 return -1;
 }
 cnt = PQntuples(res);
 printf("return %d rows\n", cnt);
 for (i=0; i<cnt; i++)
 {
 printf("row %d: %s\n", i, PQgetvalue(res, i, 0));
 }
 PQclear(res);
 }
 /* The execution is complete. Close the connection. */
 PQfinish(conn);
 return 0;
}

Example 3:

/*
 * testlibpq3.c
 * Test PQexecParams.
 * PQexecParams runs a command to bind parameters and requests the query result in binary format.
 * Before running this example, populate a database.
 *
 *
 * CREATE TABLE test1 (i int4, t text);
 *
 * INSERT INTO test1 values (2, 'ho there');
 *
 * Expected output:
 *
 *
 * tuple 0: got
 * i = (4 bytes) 2
 * t = (8 bytes) 'ho there'
 *
 */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <libpq-fe.h>

/* for ntohl/htonl */
#include <netinet/in.h>
#include <arpa/inet.h>

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

/*

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

 * This function is used to print out the query results. The results are in binary format
* and fetched from the table created in the comment above.
 */
static void
show_binary_results(PGresult *res)
{
 int i;
 int i_fnum,
 t_fnum;

 /* Use PQfnumber to avoid assumptions about field order in the result. */
 i_fnum = PQfnumber(res, "i");
 t_fnum = PQfnumber(res, "t");

 for (i = 0; i < PQntuples(res); i++)
 {
 char *iptr;
 char *tptr;
 int ival;

 /* Obtain the field value. (Ignore the possibility that they may be null.) */
 iptr = PQgetvalue(res, i, i_fnum);
 tptr = PQgetvalue(res, i, t_fnum);

 /*
 * The binary representation of INT4 is the network byte order,
 * which is better to be replaced with the local byte order.
 */
 ival = ntohl(*((uint32_t *) iptr));

 /*
 * The binary representation of TEXT is text. Since libpq can append a zero byte to it,
 * and think of it as a C string.
 *
 */

 printf("tuple %d: got\n", i);
 printf(" i = (%d bytes) %d\n",
 PQgetlength(res, i, i_fnum), ival);
 printf(" t = (%d bytes) '%s'\n",
 PQgetlength(res, i, t_fnum), tptr);
 printf("\n\n");
 }
}

int
main(int argc, char **argv)
{
 /* The values of variables such as user and passwd must be read from environment variables or
configuration files. Environment variables need to be configured as required. If no environment variable is
used, a character string can be directly assigned. */
 const char conninfo[1024];
 PGconn *conn;
 PGresult *res;
 const char *paramValues[1];
 int paramLengths[1];
 int paramFormats[1];
 uint32_t binaryIntVal;
 char *passwd = getenv("EXAMPLE_PASSWD_ENV");
 char *port = getenv("EXAMPLE_PORT_ENV");
 char *hostaddr = getenv("EXAMPLE_HOST_ENV");
 char *username = getenv("EXAMPLE_USERNAME_ENV");
 char *dbname = getenv("EXAMPLE_DBNAME_ENV");

 /*
 * If the user provides a parameter on the command line,
 * The value of this parameter is a conninfo character string. Otherwise,
 * Use environment variables or default values.
 */

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

 if (argc > 1)
 conninfo = argv[1];
 else
 sprintf(conninfo,
 "dbname=%s port=%s host=%s application_name=test connect_timeout=5 sslmode=allow user=%s
password=%s",
 dbname, port, hostaddr, username, passwd);

 /* Connect to the database. */
 conn = PQconnectdb(conninfo);

 /* Check whether the connection to the server was successfully established. */
 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "Connection to database failed: %s",
 PQerrorMessage(conn));
 exit_nicely(conn);
 }

 res = PQexec(conn, "drop table if exists test1;CREATE TABLE test1 (i int4, t text);");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "command failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 PQclear(res);

 res = PQexec(conn, "INSERT INTO test1 values (2, 'ho there');");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "command failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 PQclear(res);

 /* Convert the integer value "2" to the network byte order. */
 binaryIntVal = htonl((uint32_t) 2);

 /* Set the parameter array for PQexecParams. */
 paramValues[0] = (char *) &binaryIntVal;
 paramLengths[0] = sizeof(binaryIntVal);
 paramFormats[0] = 1; /* Binary */
 /* PQexecParams runs a command to bind parameters. */
 res = PQexecParams(conn,
 "SELECT * FROM test1 WHERE i = $1::int4",
 1, /* One parameter */
 NULL, /* Enable the backend to deduce the parameter type. */
 paramValues,
 paramLengths,
 paramFormats,
 1); /* Binary result is required. */

 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "SELECT failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 /* Output the binary result.*/
 show_binary_results(res);

 PQclear(res);

 /* Close the database connection and clean up the database. */
 PQfinish(conn);

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

 return 0;
}

4.1.5 Using Psycopg to Connect to a Database
Psycopg is a Python API used to execute SQL statements and provides a unified
access API for GaussDB. Applications can perform data operations based on
psycopg. Psycopg2 is the encapsulation of libpq and is implemented using the C
language, which is efficient and secure. It provides cursors on both clients and
servers, asynchronous communication and notification, and the COPY TO and
COPY FROM functions. It supports multiple types of Python out-of-the-box and
adapts to GaussDB data types. Through the flexible object adaptation system, you
can extend and customize the adaptation. Psycopg2 is compatible with Unicode.

GaussDB supports the psycopg2 feature and allows psycopg2 to be connected in
SSL mode.

Table 4-9 Platforms supported by psycopg

OS Platform Python
Version

EulerOS V2.0SP5 ● Arm64
● x86_64

3.8.5

EulerOS V2.0SP9 ● Arm64
● x86_64

3.7.4

EulerOS V2.0SP10, Kylin
V10, and UnionTech20

● Arm64
● x86_64

3.7.9

EulerOS V2.0SP11 and SUSE
12.5

● Arm64
● x86_64

3.9.11

Huawei Cloud EulerOS 2.0 ● Arm64
● x86_64

3.9.9

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

NO TICE

During psycopg2 compilation, OpenSSL of GaussDB is linked. OpenSSL of GaussDB
may be incompatible with OpenSSL of the OS. If incompatibility occurs, for
example, "version 'OPENSSL_1_1_1f' not found" is displayed, use the environment
variable LD_LIBRARY_PATH to isolate the OpenSSL provided by the OS and the
OpenSSL on which GaussDB depends.
For example, when the application software client.py that invokes psycopg2 is
executed, the environment variable is explicitly assigned to the application
software.
export LD_LIBRARY_PATH=/path/to/gaussdb/libs:$LD_LIBRARY_PATH python client.py

In the preceding command, /path/to/pyscopg2/lib indicates the directory where
the OpenSSL library on which the GaussDB depends is located. Change it as
required.

Prerequisites
A Python development environment has been installed on the local PC.

Connecting to a Database

Step 1 Prepare related drivers and dependent libraries. Obtain the package GaussDB-
Kernel_Database version number_OS version number_64bit_Python.tar.gz from
the release package.

After the decompression, the following folders are generated:

● psycopg2: psycopg2 library file
● lib: lib library file

Step 2 Load the driver.
● Before using the driver, perform the following operations:

a. Decompress the driver package of the corresponding version.
tar zxvf xxxx-Python.tar.gz

b. Copy psycopg2 to the site-packages folder in the Python installation
directory as the root user.
su root
cp psycopg2 $(python3 -c 'import site; print(site.getsitepackages()[0])') -r

c. Change the psycopg2 directory permission to 755.
chmod 755 $(python3 -c 'import site; print(site.getsitepackages()[0])')/psycopg2 -R

d. Add the psycopg2 directory to the environment variable $PYTHONPATH
and validate it.
export PYTHONPATH=$(python3 -c 'import site; print(site.getsitepackages()[0])'):$PYTHONPATH

e. For non-database users, configure the lib directory in LD_LIBRARY_PATH
after decompression.
export LD_LIBRARY_PATH=path/to/lib:$LD_LIBRARY_PATH

● Load a database driver before creating a database connection.
import psycopg2

Step 3 Connect to a database.

Connect to the database in non-SSL mode.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

1. Use the psycopg2.connect function to obtain the connection object.

2. Use the connection object to create a cursor object.

Connect to the database in SSL mode.

When you use psycopy2 to connect to the GaussDB server, you can enable SSL to
encrypt the communication between the client and server. To enable SSL, you
must have the server certificate, client certificate, and private key files. For details
on how to obtain these files, see related documents and commands of OpenSSL.

1. Use the .ini file (the configparser package of Python can parse this type of
configuration file) to save the configuration information about the database
connection.

2. Add SSL connection parameters sslmode, sslcert, sslkey, and sslrootcert to
the connection options.

a. sslmode: For details about the options, see Table 4-10.

b. sslcert: client certificate path.

c. sslkey: client key path.

d. sslrootcert: root certificate path.

3. Use the psycopg2.connect function to obtain the connection object.

4. Use the connection object to create a cursor object.

CA UTION

To use SSL to connect to the database, ensure that the Python interpreter is
compiled in the mode of generating a dynamic link library (.so) file. You can
perform the following steps to check the connection mode of the Python
interpreter:

1. Run the import ssl command in the Python interpreter to import SSL.

2. Run the ps ux command to query the PID of the Python interpreter.
Assume that the PID is ******.

3. In the shell CLI, run the pmap -p ****** | grep ssl command and check
whether the command output contains the path related to libssl.so. If the
command output contains the path, the Python interpreter is compiled in
dynamic link mode.

Table 4-10 sslmode options

sslmode Enable SSL
Encryption

Description

disable No SSL connection is not enabled.

allow Possible If the database server requires SSL
connection, SSL connection can be
enabled. However, authenticity of the
database server will not be verified.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

sslmode Enable SSL
Encryption

Description

prefer Possible If the database supports SSL connection,
SSL connection is preferred. However,
authenticity of the database server will
not be verified.

require Yes SSL connection is required, but only data
is encrypted. However, authenticity of the
database server will not be verified.

verify-ca Yes SSL connection is required, and the
validity of the server CA must be verified.

verify-full Yes The SSL connection must be enabled,
which is not supported by GaussDB
currently.

----End

4.1.6 Using Hibernate to Connect to a Database
Hibernate is an object-relational mapping (ORM) tool for the Java programming
language. It provides an easy-to-use framework for automatically mapping Java
objects to database tables, so that developers can operate databases in object-
oriented mode. Hibernate frees developers from manually writing a large amount
of SQL and JDBC code, which significantly reduces the development workload of
the data access layer.

This section describes how to use Hibernate to connect to a GaussDB database
and perform operations in it, for example, creating a table, modifying a table, and
inserting, deleting, updating, or querying data in a table.

Configuring the POM Dependency
<dependency>
 <groupId>com.huaweicloud.gaussdb</groupId>
 <artifactId>opengaussjdbc</artifactId>
 <version>503.2.T35</version>
</dependency>
<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
 <version>5.3.7.Final</version>
</dependency>

CA UTION

The Maven environment must have been configured before you configure the
POM dependency.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

Configuring the hibernate.cfg.xml Resource File
<?xml version="1.0" encoding="utf-8"?>
 <!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
 <session-factory>
 <!--GaussDB connection information-->
 <property name="connection.driver_class">com.huawei.opengauss.jdbc.Driver</property>
 <property name="connection.url">jdbc:opengauss://***.***.***.*** (Replace ***.***.***.*** with the database
IP address.):20000 (Replace 20000 with the database port.)/test? currentSchema=test (Replace test with the
target database and schema.)</property>
<property name="connection.username">*** (Replace *** with the correct username.)</property>
<property name="connection.password">****** (Replace ****** with the correct password.)</property>

 <!-- The following configurations are optional. -->

 <!-- Specify whether to support dialects. -->
 <!-- In PostgreSQL compatibility mode, the following configuration must be set. -->
<property name="dialect">org.hibernate.dialect.PostgreSQL82Dialect</property>

 <!-- Specify whether to print SQL statements when CURD commands are executed. -->
 <property name="show_sql">true</property>

 <!--Enable automatic table creation (and update).-->
 <!-- <property name="hbm2ddl.auto">update</property>-->
 <!-- <property name="hbm2ddl.auto">create</property>-->

 <!-- Register resources (entity class mapping file).-->
 <mapping resource="./student.xml"/>
 </session-factory>
</hibernate-configuration>

Preparing an Entity Class and Entity Class Mapping File

In this example, the Student class and student.xml file are used. The file path is
com.howtodoinjava.hibernate.test.dto.

1. Create an entity class.
public class Student implements Serializable {
 int id;
 String name;
// String age;
 // The constructor, get, and set methods are omitted here.
}

2. Prepare the student.xml file.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping PUBLIC
 '-//Hibernate/Hibernate Mapping DTD 3.0//EN'
 'http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd'>
<hibernate-mapping>
 <!-- The mapping between classes and tables is made on the class element. -->
 <!-- name: fully-qualified class name -->
 <!-- table: table name -->
 <class name="com.howtodoinjava.hibernate.test.dto.Student" table="student">
 <!-- The mapping of the primary key is made on the id element. -->
 <!-- name: name of the attribute used as the primary key in the object -->
 <!-- column: name of the primary key field in the table -->
 <!-- If the value of name is the same as that of column, column can be omitted. -->
 <id name="id" column="id">
 <!-- Set the class attribute of the generator element to "assigned". The ID must be provided. --
>
 <generator class="assigned" />

 <!--** Pay attention to the Hibernate primary key generation policy. **-->

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

 </id>
 <!-- The mapping between attributes and fields is made on the property element. -->
 <!-- name: attribute name in the class -->
 <!-- column: field name in the table -->
 <!-- If the value of name is the same as that of column, column can be omitted. -->
 <property name="name" />
 <!-- Same as the entity class. -->
 <!--<property name="age"/>-->
 </class>
</hibernate-mapping>

Function Test Example
1. Test the connection function.

a. Test method:
@Test
 public void testConnection() {
 // Load the configuration information.
 Configuration conf = new Configuration().configure();
 // Create the SessionFactory object based on the configuration information.
 SessionFactory sessionFactory = conf.buildSessionFactory();
 // Open a session object related to the database.
 Session session = sessionFactory.openSession();
 System.out.println(session);
 }

b. The breakpoint shows that the connection is successfully established.

2. Enable automatic table creation.

a. Comment out the following line in the configuration file:
<property name="hbm2ddl.auto">create</property>

b. After deleting the student table from the database, perform the
following test method:
@Test
 public void testCreateTableAndInsertData() {
 // Create the object to be tested.
 Student student = new Student();
 student.setId(16);
 student.setName("xiaoming");
 // Start a transaction based on session.
 Configuration conf = new Configuration().configure();
 SessionFactory sessionFactory = conf.buildSessionFactory();
 Session session = sessionFactory.openSession();
 Transaction transaction = session.beginTransaction();
 // Use session to save data.
 session.save(student);
 // Commit the transaction.
 transaction.commit();
 // After the operation is complete, close the session connection object.
 session.close();
 }

c. View the executed SQL statements printed on the console and the result
in the GaussDB database.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

The student table is successfully created, and the id = 16, name =
"xiaoming" record is inserted into the table.

3. Modify the table (by adding data records).
a. Modify the configuration file and configure the path of the schema where

the table to be modified is located in the URL.
In this test example, the student table is in schema test under database
test. That is, the table path is test.test.student.
<property name="connection.url">jdbc:opengauss://xxx.xxx.xxx.xxx (Replace xxx.xxx.xxx.xxx with
the database IP address.):20000 (Replace 20000 with the database port.)/test?
currentSchema=test (Replace test with the target database and schema.)</property>
<!-- Uncomment update. -->
<property name="hbm2ddl.auto">update</property>

b. Uncomment the age attribute in the entity class and XML file and
execute the following method:
 @Test
 public void testAlterTable() {
 // Create the object to be tested.
 Student student = new Student();
 student.setId(15);
 student.setName("xiaohong");
 student.setAge("20");
 // Start a transaction based on session.
 Configuration conf = new Configuration().configure();
 SessionFactory sessionFactory = conf.buildSessionFactory();
 Session session = sessionFactory.openSession();
 Transaction transaction = session.beginTransaction();
 // Use session to save data.
 session.save(student);
 // Commit the transaction.
 transaction.commit();
 // After the operation is complete, close the session connection object.
 session.close();
 }

c. View the executed SQL statements printed on the console and the result
in the GaussDB database.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

The framework automatically adds data records to the table based on the
entity class and XML file.

4. Save data into the database.

a. Test method:
@Test
 public void testInsert() {
 Student s1 = new Student(1,"q");
 Student s2 = new Student(2,"w");
 Student s3 = new Student(3,"e");
 ArrayList<Student> students = new ArrayList<>();
 students.add(s1);
 students.add(s2);
 students.add(s3);
 // Start a transaction based on session.
 Configuration conf = new Configuration().configure();
 SessionFactory sessionFactory = conf.buildSessionFactory();
 Session session = sessionFactory.openSession();
 Transaction transaction = session.beginTransaction();
 // Use session to save data.
 for (Student student : students) {
 session.save(student);
 }
 // Commit the transaction.
 transaction.commit();
 // After the operation is complete, close the session connection object.
 session.close();
 }

b. The result is as follows.

Three rows of data are successfully inserted.
5. Query data in HQL mode.

a. Test method:
@Test
 public void testHQL() {

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

 // HQL mode
 Configuration conf = new Configuration().configure();
 SessionFactory sessionFactory = conf.buildSessionFactory();
 // Create a session.
 Session session = sessionFactory.openSession();
 // Start a transaction.
 Transaction tx = session.beginTransaction();

 // Create an HQL query.
 String hql = "FROM Student S WHERE S.id = 15";
 Query query = session.createQuery(hql);

 // Execute the query and obtain the result.
 List results = query.list();

 // Commit the transaction.
 tx.commit();

 // End the session.
 session.close();
 }

b. The result is as follows.

6. Query data in SQL mode.

a. Test method:
 @Test
 public void testQuery() {
 // Start a transaction based on session.
 Configuration conf = new Configuration().configure();
 SessionFactory sessionFactory = conf.buildSessionFactory();
 Session session = sessionFactory.openSession();
 Transaction transaction = session.beginTransaction();
 // SQL mode
 List<Student> students = session.createSQLQuery("select * from test.student where id =
1").addEntity(Student.class).list();
 for (int i = 0; i < students.size(); i++) {
 System.out.println(students.get(i));
 }
 students.get(0).setAge("20");
 // Commit the transaction.
 transaction.commit();
 // After the operation is complete, close the session connection object.
 session.close();
 }

b. The result is as follows.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

The data record of the student whose ID is 1 is found and the value of
age is changed to 20.

7. Modify data.
– Test method:

@Test
 public void testUpdate() {
 // Start a transaction based on session.
 Configuration conf = new Configuration().configure();
 SessionFactory sessionFactory = conf.buildSessionFactory();
 Session session = sessionFactory.openSession();
 Transaction transaction = session.beginTransaction();
 // SQL mode
 session.createSQLQuery("update test.student set age = 19 where id =
16").executeUpdate();
 // Commit the transaction.
 transaction.commit();
 // After the operation is complete, close the session connection object.
 session.close();
 }

– The result is as follows.

The age field of the student whose ID is 16 is successfully changed to 19.
8. Delete data.

a. Test method:
 @Test
 public void testDelete() {
 // Start a transaction based on session.
 Configuration conf = new Configuration().configure();
 SessionFactory sessionFactory = conf.buildSessionFactory();
 Session session = sessionFactory.openSession();
 Transaction transaction = session.beginTransaction();
 // SQL mode
 List<Student> students = session.createSQLQuery("select * from

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

test.student").addEntity(Student.class).list();
 System.out.println(students);
 session.createSQLQuery("delete from test.student where id = " +
students.get(0).getId()).executeUpdate();
 // Commit the transaction.
 transaction.commit();
 // After the operation is complete, close the session connection object.
 session.close();
 }

b. The result is as follows.

The record whose ID is 15 has been deleted from the student table.

4.1.7 Using MyBatis to Connect to a Database
MyBatis is a first class persistence framework with support for custom SQL, stored
procedures, and advanced mappings. MyBatis eliminates almost all of the JDBC
code and manual setting of parameters and retrieval of results. MyBatis can use
simple XML or annotations for configuration and map primitive. It can map
interfaces and Java Plain Old Java Objects (POJOs) to database records.

This section describes how to use MyBatis to connect to a GaussDB database.

Configuring the POM Dependency
<dependency>
 <groupId>com.huaweicloud.gaussdb</groupId>
 <artifactId>opengaussjdbc</artifactId>
 <version>503.2.T35</version>
</dependency>
<dependency>
 <groupId>org.mybatis</groupId>
 <artifactId>mybatis</artifactId>
 <version>3.5.6</version>
</dependency>

CA UTION

The Maven environment must have been configured before you configure the
POM dependency.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

Configuring the Required File

Configuring the mybatis-config.xml file.
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE configuration
 PUBLIC "-//mybatis.org//DTD Config 3.0//EN"
 "http://mybatis.org/dtd/mybatis-3-config.dtd">
<!-- Root element of the configuration file -->
<configuration>
 <!--Configure the global attributes.-->
 <settings>
 <!--Use getGeneratedKeys of JDBC to obtain the auto-increment primary key value of the database.-->
 <setting name="useGeneratedKeys" value="true"/>
 <!--Replace the column alias with the column label. The default value is true.-->
 <setting name="useColumnLabel" value="true" />
 <!--Enable camel-case naming conversion: Table{create_time} -> Entity{createTime}-->
 <setting name="mapUnderscoreToCamelCase" value="true" />
 <setting name="logImpl" value="STDOUT_LOGGING" />
 </settings>

 <environments default="development">
 <environment id="development">
 <transactionManager type="JDBC"/>
 <dataSource type="POOLED">
 <property name="driver" value="com.huawei.opengauss.jdbc.Driver"/>
 <property name="url" value="jdbc:opengauss://***.***.***.*** (Replace ***.***.***.*** with the
database IP address):20000 (Replace 20000 with the database port)/test? (Replace test with the
corresponding database name.)connectionTimeout=10"/>
 <property name="username" value="*** (Replace *** with the correct username.)"/>
 <property name="password" value="******* (Replace ******* with the correct password.)"/>
 </dataSource>
 </environment>
 </environments>
 <!--Register mapper (address of mapper.xml).-->
 <mappers>
 <mapper resource="mapper/StudentDaoMapper.xml"></mapper>
 </mappers>
</configuration>

Examples
1. Test the entity class StudentEntity.java (in com.huawei.entity).

public class StudentEntity {
 Integer id;
 String name;
}

2. Configure the StudentDaoMapper.xml file corresponding to the entity class
(in resources.mapper).
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-
mapper.dtd" >
<mapper namespace="StudentMapper">
 <!-- Query by primary key -->
 <select id="getList" resultType="com.huawei.entity.StudentEntity" >
 select * from student;
 </select>
</mapper>

3. Test table query.
@Test
public void mainTest() throws IOException {
 // 1. Read the core configuration file of MyBatis (mybatis-config.xml).
 InputStream in = Resources.getResourceAsStream("mybatis-config.xml");
 // 2. Obtain a SqlSessionFactory factory object based on the configuration information.
 SqlSessionFactory fac = new SqlSessionFactoryBuilder().build(in);
 // 3. Obtain a SqlSession object through the factory.
 SqlSession session = fac.openSession();

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

 // 4. Find the SQL statement to be executed based on the namespace and ID and execute the SQL
statement.
 List<StudentEntity> list = session.selectList("StudentMapper.getList");
 // 5. Output the result.
 list.forEach(i -> {
 System.out.println(i.toString());
 });
}

4. Query result logs.

CA UTION

Currently, PaginationInnerInterceptor in the MybatisPlus plug-in does not adapt
to the GaussDB driver. To resolve this problem, set DbType to POSTGRE_SQL
when creating the PaginationInnerInterceptor object. Example:
PaginationInnerInterceptor innerInterceptor = new
PaginationInnerInterceptor(DbType.POSTGRE_SQL)

4.1.8 Using JayDeBeApi to Connect to a Database
JayDeBeApi is a Python module that provides a convenient, efficient way for
Python developers to use the Java JDBC driver to connect to and perform
operations on databases.

This section describes how to use JayDeBeApi to connect to the GaussDB
database.

Environment Configuration
1. Configure the GaussDB development environment.

Prepare the basic development environment of GaussDB and obtain the
database connection parameters. For example:
gsql -h ***.***.***.*** -p 20000 -U *** -W ****** -d test

Parameter description:
-h: IP address of the server hosting the GaussDB instance
-p: connection port of the GaussDB instance
-U: username for the connection
-W: user password
-d: name of the database you want to connect.

2. Install the JayDeBeApi driver.

a. Install Java JDK 8 and Python 3 on the local PC. To check the software
versions, run the following commands:
java -version
python --version
pip --version

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

b. If the server can connect to the Python Package Index (PyPI), run the pip
command to install JayDeBeApi:
pip install jaydebeapi

If the server cannot connect to PyPI, download an offline installation
package of JayDeBeApi and install it on the local PC.

3. Obtain the GaussDB driver package.
Download particular packages listed in Table 4-11 based on the version of
your instance.

Table 4-11 Driver package download list

Version Download Address

3.x Driver package
Verification package for the driver package

2.x Driver package
Verification package for the driver package

To prevent a software package from being tampered with during transmission
or storage, download the corresponding verification package and perform the
following steps to verify the software package:

a. Upload the software package and verification package to the same
directory on a Linux VM.

b. Run the following command to verify the integrity of the software
package:
cat GaussDB_driver.zip.sha256 | sha256sum --check
If OK is displayed in the command output, the verification is successful.
GaussDB_driver.zip: OK

Example
1. Create a script file.

– Create a test_jaydebeapi.py file and write the following code into the file:
#!/usr/bin/env python3.x
-*- coding: UTF-8 -*-
encoding = "utf8"
import jaydebeapi

def test_jaydebeapi():
 #Set required parameters.
 url = 'jdbc:opengauss://***.***.***.***:20000/test'
 user = '***'
 password = '******'
 driver = 'com.huawei.opengauss.jdbc.Driver'
 jarFile = './opengaussjdbc.jar'

 conn = jaydebeapi.connect(driver, url, [user, password], jarFile)
 cur = conn.cursor()

 #Create a table named students.
 sql = 'create table students (id int, name varchar(20))'
 cur.execute(sql)

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

https://dbs-download.obs.cn-north-1.myhuaweicloud.com/GaussDB/1692787239570/GaussDB_driver.zip
https://dbs-download.obs.cn-north-1.myhuaweicloud.com/GaussDB/1692787239637/GaussDB_driver.zip.sha256
https://dbs-download.obs.cn-north-1.myhuaweicloud.com/GaussDB/1684998497424/GaussDB_driver.zip
https://dbs-download.obs.cn-north-1.myhuaweicloud.com/GaussDB/1684998497481/GaussDB_driver.zip.sha256

 #Insert three groups of data into the students table.
 sql = "insert into students values(1,'xiaoming'),(2,'xiaohong'),(3,'xiaolan')"
 cur.execute(sql)

 #Query all data in the students table.
 sql = 'select * from students'
 cur.execute(sql)
 ans = cur.fetchall()
 print(ans)

 #Update data in the students table.
 sql = 'update students set name = \'xiaolv\' where id = 1'
 cur.execute(sql)

 #Query all data in the students table again.
 sql = 'select * from students'
 cur.execute(sql)
 ans = cur.fetchall()
 print(ans)

 #Delete the students table.
 sql = 'drop table students'
 cur.execute(sql)

 cur.close()
 conn.close()

test_jaydebeapi()

– Configure required parameters in the code.
#Set the connection URL, which requires the IP address, port number, and database name of the
database server you want to connect.
url = 'jdbc:opengauss://***.***.***.***:20000/test'
#Enter the username.
user = '***'
#Enter the password.
password = '******'
#Specify the path to the JDBC driver class.
driver = 'com.huawei.opengauss.jdbc.Driver'
#Specify the path to the JAR package of the JDBC driver. By default, it is stored in the same
directory as the test_jaydebeapi.py file.
jarFile = './opengaussjdbc.jar'

2. Execute the program.
Run the following command to execute the test_jaydebeapi.py file:
python ./test_jaydebeapi.py

3. Check the result.
The GaussDB database is successfully connected, and two query results are
returned, as shown in the following figure.

4.2 Primary/Standby Instances

4.2.1 Development Specifications
If the connection pool mechanism is used during application development, comply
with the following specifications:

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

● If GUC parameters are set in the connection, run SET SESSION
AUTHORIZATION DEFAULT;RESET ALL; to clear the connection status before
you return the connection to the connection pool.

● If a temporary table is used, delete the temporary table before you return the
connection to the connection pool.

If you do not do so, the connection state in the connection pool will remain, which
affects subsequent operations using the connection pool.

Table 4-12 describes the compatibility of application development drivers.

Table 4-12 Compatibility Description

Driver Compatibility Description

JDBC, Go, ODBC,
libpq, Psycopg,
and ecpg

The new drivers are forward compatible with the database.
To use the new features added to the driver and database,
you must upgrade the database.

NO TICE

● Setting behavior_compat_options to 'proc_outparam_override' is applicable
only in A-compatible mode.

● In principle, you need to set the compatibility parameter after the database
creation, instead of switching the parameters when using the database.

● The JDBC driver must be upgraded to that maps to GaussDB Kernel 503.1.0 or
later if the following features are used:
1. The fully-encrypted memory decryption emergency channel is required.
2. JDBC is required to use user-defined nested types such as record, array, and

tableof.
3. The s2 compatibility parameter is enabled and the validity check of

sessiontimezone is set.

If the driver is used in a multi-thread environment:

The JDBC driver is not thread-safe and does not guarantee that the connection
methods are synchronized. The caller synchronizes the calls to the driver.

4.2.2 Using JDBC to Connect to a Database
Java Database Connectivity (JDBC) is a Java API for running SQL statements. It
provides unified access APIs for different relational databases, based on which
applications process data. The GaussDB library supports JDBC 4.2 and requires JDK
1.8 for code compiling. It does not support JDBC-ODBC bridge.

Prerequisites

Java JDK 8 has been installed on the local PC.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

JDBC Package

The package name is GaussDB-Kernel_Database version number_OS version
number_64bit_Jdbc.tar.gz. After the decompression, you will obtain the following
JDBC packages in JAR format:
● gaussdbjdbc.jar: The main class name is com.huawei.gaussdb.jdbc.Driver.

The URL prefix of the database connection is jdbc:gaussdb. This driver
package is recommended. The Java code examples in this section use the
gaussdbjdbc.jar package by default.

● gscejdbc.jar: The main class name is com.huawei.gaussdb.jdbc.Driver. The
URL prefix of the database connection is jdbc:gaussdb. This driver package
contains the dependent libraries related to encryption and decryption that
need to be loaded to the encrypted database. You are advised to use this
driver package in encrypted scenarios. Currently, only EulerOS is supported.

● gaussdbjdbc-JRE7.jar: The main class name is
com.huawei.gaussdb.jdbc.Driver. The URL prefix of the database connection
is jdbc:gaussdb. The gaussdbjdbc-JRE7.jar package is used in the JDK 1.7
environment.

CA UTION

● Before using the gscejdbc.jar driver package, you need to set the environment
variable LD_LIBRARY_PATH. For details, see section "Setting Encrypted Equality
Queries > Using JDBC to Operate an Encrypted Database" in Feature Guide.

● In JDK 1.8, you are advised to use gaussdbjdbc.jar instead of gaussdbjdbc-
JRE7.jar.

● For details about other JDBC JAR packages, see "Application Development
Guide" > "JDBC Compatibility Package" in Developer Guide.

Driver Class

Before establishing a database connection, load the
com.huawei.gaussdb.jdbc.Driver database driver class.

NO TE

1. GaussDB is compatible with PostgreSQL in the use of JDBC. Therefore, when two JDBC
drivers are used in the same process, class names may conflict.

2. GaussDB JDBC driver has the following enhanced features:

1. The SHA256 encryption mode is supported for login.

2. The third-party log framework that implements the sf4j API can be connected.

3. DR failover is supported.

Environment Class

JDK1.8 must be configured on the client. JDK supports multiple platforms such as
Windows and Linux. The following uses Windows as an example to describe how
to configure JDK 1.8:

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

Step 1 Enter java -version in the MS-DOS window (command prompt in Windows) to
check the JDK version. Ensure that the JDK version is JDK1.8. If JDK is not installed,
download the installation package from the official website and install it.

Step 2 Configure system environment variables.

1. Right-click My computer and choose Properties.

2. In the navigation pane, choose Advanced system settings.

3. In the System Properties dialog box, click Environment Variables on the
Advanced tab page.

4. In the System variables area of the Environment Variables dialog box, click
New or Edit to configure system variables. For details about the variables, see
Table 4-13.

Table 4-13 Variables

Variable Operation Variable Value

JAVA_HO
ME

– If the variable
exists, click Edit.

– If the variable does
not exist, click New.

Specifies the Java installation
directory.
Example: C:\Program Files\Java
\jdk1.8.0_131.

Path Click Edit. – If JAVA_HOME is configured, add
%JAVA_HOME%\bin before the
variable value.

– If JAVA_HOME is not configured,
add the following full Java
installation path before the
variable value:
C:\Program Files\Java
\jdk1.8.0_131\bin

CLASSPAT
H

Click New. %JAVA_HOME%\lib;%JAVA_HOME
%\lib\tools.jar

----End

Loading the Driver

Load the database driver before creating a database connection.

You can load the driver in the following ways:

● Implicit loading at any position before a connection is created in the code:
Class.forName("com.huawei.gaussdb.jdbc.Driver");

● Parameter transfer during JVM startup: java -
Djdbc.drivers=com.huawei.gaussdb.jdbc.Driver jdbctest

NO TE

jdbctest is the name of a test application.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

Function Prototype
JDBC provides the following three database connection methods:
● DriverManager.getConnection(String url)
● DriverManager.getConnection(String url, Properties info)
● DriverManager.getConnection(String url, String user, String password)

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

Parameters

Table 4-14 Database connection parameters

Param
eter

Description

url gaussdbjdbc.jar database connection descriptor.
If host is set to a server name or an IPv4 address, formats are as
follows:
● jdbc:gaussdb: (If the database name is left empty, the username is

used.)
● jdbc:gaussdb:database
● jdbc:gaussdb://host/database
● jdbc:gaussdb://host:port/database
● jdbc:gaussdb://host:port/database?param1=value1¶m2=value2
● jdbc:gaussdb://host1:port1,host2:port2/database?

param1=value1¶m2=value2
If host is set to an IPv6 address, formats are as follows:
● jdbc:gaussdb: (If the database name is left empty, the username is

used.)
● jdbc:gaussdb:database
● jdbc:gaussdb://host/database or jdbc:gaussdb://[host]/database
● jdbc:gaussdb://[host]:port/database
● jdbc:gaussdb://[host]:port/database?

param1=value1¶m2=value2
● jdbc:gaussdb://[host1]:port1,[host2]:port2/database?

param1=value1¶m2=value2

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

Param
eter

Description

NOTE
● database indicates the name of the database to connect.
● host indicates the name or IP address of the database server. Both IPv4 and

IPv6 addresses are supported.
For security purposes, the primary database node forbids access from other
nodes in the database without authentication. To access the primary
database node from inside the database, deploy the JDBC program on the
host where the primary database node is located and set host to 127.0.0.1.
Otherwise, the error message "FATAL: Forbid remote connection with trust
method!" may be displayed.
It is recommended that the service system be deployed outside the
database. Otherwise, the database performance may be affected.
By default, the local host is used to connect to the server.

● port indicates the port number of the database server.
By default, the database on port 5432 of the local host is connected.

● If host is set to an IPv6 address and the port number is specified in the URL,
use square brackets ([]) to enclose the IP address. The format is [IP
address]:Port number.

● param indicates a database connection attribute.
The parameter can be configured in the URL. The URL starts with a question
mark (?), uses an equal sign (=) to assign a value to the parameter, and
uses an ampersand (&) to separate parameters. You can also use the
attributes of the info object for configuration. For details, see Examples.

● value indicates the database connection attribute values.
● The connectTimeout and socketTimeout parameters must be set for

connection. If they are not set, the default value 0 is used, indicating that
the connection will not time out. When the network between the DN and
client is faulty, the client does not receive the ACK packet from the DN. In
this case, the client starts the timeout retransmission mechanism to
continuously retransmit packets. A timeout error is reported only when the
timeout interval reaches the default value 600s. As a result, the RTO is high.

● You are advised to ensure the validity of the URL when using the standard
JDBC interface to establish a connection. An invalid URL may cause an
exception, and the exception contains the original URL character string,
which may cause sensitive information leakage.

info For details about common attributes of info, see "Application
Development Guide" > "Development Based on JDBC" > "Connecting
to a Database" in Developer Guide.

user Database user.

passwo
rd

Password of the database user.

NO TE

After the uppercaseAttributeName parameter is enabled, if the database contains
metadata with a mixture of uppercase and lowercase letters, only the metadata in
lowercase letters can be queried and output in uppercase letters. Before using the
metadata, ensure that the metadata is stored in lowercase letters to prevent data errors.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

Examples

Example 1: Connect to a database.

// The following code encapsulates database connection operations into an interface. The database can
then be connected using an authorized username and a password.
public static Connection getConnect(String username, String passwd)
 {
 // Driver class.
 String driver = "com.huawei.gaussdb.jdbc.Driver";
 // Database connection descriptor.
 String sourceURL = "jdbc:gaussdb://$ip:$port/database";
 Connection conn = null;

 try
 {
 // Load the driver.
 Class.forName(driver);
 }
 catch(Exception e)
 {
 e.printStackTrace();
 return null;
 }

 try
 {
 // Create a connection.
 conn = DriverManager.getConnection(sourceURL, username, passwd);
 System.out.println("Connection succeed!");
 }
 catch(Exception e)
 {
 e.printStackTrace();
 return null;
 }

 return conn;
 }

Example 2: Use the Properties object as a parameter to create a connection.

// The following code uses the Properties object as a parameter to establish a connection:
public static Connection getConnectUseProp(String username, String passwd)
 {
 // Driver class.
 String driver = "com.huawei.gaussdb.jdbc.Driver";
 // Database connection descriptor.
 String sourceURL = "jdbc:gaussdb://$ip:$port/database?";
 Connection conn = null;
 Properties info = new Properties();

 try
 {
 // Load the driver.
 Class.forName(driver);
 }
 catch(Exception e)
 {
 e.printStackTrace();
 return null;
 }

 try
 {
 info.setProperty("user", username);
 info.setProperty("password", passwd);
 // Create a connection.
 conn = DriverManager.getConnection(sourceURL, info);

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

 System.out.println("Connection succeed!");
 }
 catch(Exception e)
 {
 e.printStackTrace();
 return null;
 }

 return conn;
 }

For details about common parameters, see "Application Development Guide" >
"Development Based on JDBC" > "Common JDBC Parameters" in Developer Guide.

Example 3: Use the streaming read function.
// There will be security risks if the username and password used for authentication are directly written into
code. It is recommended that the username and password be stored in the configuration file or
environment variables (the password must be stored in ciphertext and decrypted when being used) to
ensure security.
// In this example, the username and password are stored in environment variables. Before running this
example, set environment variables EXAMPLE_USERNAME_ENV and EXAMPLE_PASSWORD_ENV in the local
environment (set the environment variable names based on the actual situation).
// Establish a connection.
public static Connection getConnection(String username, String passwd) {
 String driver = "com.huawei.gaussdb.jdbc.Driver";
 String sourceURL = "jdbc:gaussdb://$ip:$port/database?enableStreamingQuery=true";
 Connection conn = null;
 try {
 // Load the driver.
 Class.forName(driver);
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }
 try {
 // Create a connection.
 conn = DriverManager.getConnection(sourceURL, username, passwd);
 System.out.println("Connection succeed!");
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }
 return conn;
}

// Execute common SQL statements to create table t_user.
public static void CreateTable(Connection conn) {
 Statement stmt = null;
 try {
 stmt = conn.createStatement();

 // Execute common SQL statements.
 stmt.executeUpdate("DROP TABLE IF EXISTS t_user");
 stmt.executeUpdate("CREATE TABLE t_user(id int, name VARCHAR(20));");
 stmt.close();
 } catch (SQLException e) {
 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException e1) {
 e1.printStackTrace();
 }
 }
 e.printStackTrace();
 }
}

// Execute a prepared statement to insert data in batches.
public static void BatchInsertData(Connection conn) {

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

 PreparedStatement pst = null;

 try {
 // Generate a prepared statement.
 pst = conn.prepareStatement("INSERT INTO t_user VALUES (?,?)");
 for (int i = 0; i < 20; i++) {
 // Add parameters.
 pst.setInt(1, i + 1);
 pst.setString(2, "name " + (i + 1));
 pst.addBatch();
 }
 // Perform batch processing.
 pst.executeBatch();
 pst.close();
 } catch (SQLException e) {
 if (pst != null) {
 try {
 pst.close();
 } catch (SQLException e1) {
 e1.printStackTrace();
 }
 }
 e.printStackTrace();
 }
}

// Enable streaming read and query the content in the t_user table.
public static void StreamingQuery(Connection conn) {
 PreparedStatement pst = null;
 ResultSet resultSet = null;

 try {
 // Query all values in the t_user table.
 pst = conn.prepareStatement("SELECT * FROM t_user");
 pst.setFetchSize(Integer.MIN_VALUE);// Functions the same as
((PgStatement)statement).enableStreamingResults();.
 resultSet = pst.executeQuery();
 while (resultSet.next()) {
 System.out.println(resultSet.getInt(1));
 }
 } catch (SQLException e) {
 throw new RuntimeException(e);
 } finally {
 if (resultSet != null) {
 try {
 resultSet.close();
 } catch (SQLException e) {
 throw new RuntimeException(e);
 }
 }

 if (pst != null) {
 try {
 pst.close();
 } catch (SQLException e) {
 throw new RuntimeException(e);
 }
 }
 }
}

public static void main(String[] args) throws Exception {
 String userName = System.getenv("EXAMPLE_USERNAME_ENV");
 String password = System.getenv("EXAMPLE_PASSWORD_ENV");

 Connection conn = getConnection(userName, password);

 CreateTable(conn);

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

 BatchInsertData(conn);

 StreamingQuery(conn);

 // Close the connection to the database.
 try {
 conn.close();
 } catch (SQLException e) {
 e.printStackTrace();
 }
}

NO TICE

When the streaming read function is used, you need to perform the
resultSet.close() or statement.close() operation after the result set is used.
Otherwise, the current connection is unavailable.

4.2.3 Using ODBC to Connect to a Database
Open Database Connectivity (ODBC) is a Microsoft API for accessing databases
based on the X/OPEN CLI. Applications interact with the database through the
APIs provided by ODBC, which enhances their portability, scalability, and
maintainability.

Figure 4-2 shows the system structure of ODBC.

Figure 4-2 ODBC system structure

GaussDB supports ODBC in the following environments.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

Table 4-15 OSs Supported by ODBC

OS Platform

EulerOS V2.0SP5 x86_64

EulerOS V2.0SP9 Arm64

EulerOS V2.0SP10 x86_64

EulerOS V2.0SP10 Arm64

Windows 7 x86_32

Windows 7 x86_64

Windows Server 2008 x86_32

Windows Server 2008 x86_64

Kylin V10 x86_64

Kylin V10 Arm64

UnionTech V20 x86_64

UnionTech V20 Arm64

Huawei Cloud EulerOS 2.0 x86_64

Huawei Cloud EulerOS 2.0 Arm64

The ODBC Driver Manager running on Unix or Linux can be unixODBC or iODBC.
unixODBC-2.3.7 is used as the component for connecting to the database.

Windows has a native ODBC Driver Manager. You can locate Data Sources
(ODBC) by choosing Control Panel > Administrative Tools.

NO TE

The current database ODBC driver is based on an open-source version and may be
incompatible with data types tinyint, smalldatetime, nvarchar, and nvarchar2.

ODBC Constraints
● ODBC does not support read on the standby node.
● ODBC does not support user-defined types and does not support user-defined

parameters in stored procedures.
● ODBC does not support DR switchover.
● When the proc_outparam_override parameter is enabled for the database,

ODBC cannot properly call the stored procedure that contains the out
parameter.

Prerequisites
You have downloaded the ODBC driver packages for Linux and Windows.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

● The package name for Linux is GaussDB-Kernel_Database version
number_OS version number_64bit_Odbc.tar.gz. In the Linux OS, header files
(including sql.h and sqlext.h) and the library (libodbc.so) are required in
application development. These header files and library can be obtained from
the unixODBC-2.3.7 installation package.

● The package name for Windows is GaussDB-Kernel_Database version
number_Windows_Odbc_X64.tar.gz (64-bit). In the Windows OS, the
required header files and library files are system-resident.

Procedure in a Linux Server

Step 1 Obtain the source code package of unixODBC by clicking the following link:

Download address: https://www.unixodbc.org/unixODBC-2.3.7.tar.gz.

After the download, verify the integrity based on the integrity verification
algorithm provided by the community. Download https://www.unixodbc.org/
unixODBC-2.3.7.tar.gz.md5, view the MD5 value, and check whether the MD5
value is the same as that in the source code package.

Step 2 Install unixODBC. It does not matter if unixODBC of another version has been
installed.

For example, to install unixODBC-2.3.7, run the commands below.
tar zxvf unixODBC-2.3.7.tar.gz
cd unixODBC-2.3.7

./configure --enable-gui=no # To perform compilation on an Arm server, add the configure parameter --
build=aarch64-unknown-linux-gnu.
make
The installation may require root permissions.
make install

NO TE

● Currently, unixODBC-2.2.1 is not supported.
● By default, it is installed in the /usr/local directory. The data source file is generated in

the /usr/local/etc directory, and the library file is generated in the /usr/local/lib
directory.

● You can compile unixODBC with the --enable-fastvalidate=yes option to achieve higher
performance. However, this option may cause an application that passes an invalid
handle to the ODBC API to fail instead of returning an SQL_INVALID_HANDLE error.

Step 3 Replace the GaussDB client driver.

Decompress GaussDB-Kernel_Database version number_OS version
number_64bit_Odbc.tar.gz. After the decompression, the lib and odbc folders are
generated. The odbc folder contains another lib folder. Copy all dynamic libraries
in the /lib and /odbc/lib folders to the /usr/local/lib directory.

Step 4 Configure the data source.

1. Configure the ODBC driver file.
Add the following content to the /usr/local/etc/odbcinst.ini file:
[GaussMPP]
Driver64=/usr/local/lib/gsqlodbcw.so
setup=/usr/local/lib/gsqlodbcw.so

For descriptions of the parameters in the odbcinst.ini file, see Table 4-16.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

https://www.unixodbc.org/unixODBC-2.3.7.tar.gz
https://www.unixodbc.org/unixODBC-2.3.7.tar.gz.md5
https://www.unixodbc.org/unixODBC-2.3.7.tar.gz.md5

Table 4-16 odbcinst.ini configuration parameters

Parameter Description Example

[DriverName] Driver name, corresponding
to Driver in DSN.

[DRIVER_N]

Driver64 Path of the dynamic driver
library.

Driver64=/usr/local/lib/
gsqlodbcw.so

setup Driver installation path,
which is the same as the
dynamic library path in
Driver64.

setup=/usr/local/lib/
gsqlodbcw.so

2. Configure the data source file.

Add the following content to the /usr/local/etc/odbc.ini file:
[MPPODBC]
Driver=GaussMPP
Servername=127.0.0.1 # Database server IP address
Database=db1 # Database name
Username=omm # Database username
Password= # Database user password
Port=8000 # Database listening port
Sslmode = allow

Table 4-17 describes the parameters in the odbc.ini file.

Table 4-17 odbc.ini configuration parameters

Parameter Description Example Value

[DSN] Data source name. [MPPODBC]

Driver Driver name,
corresponding to
DriverName in
odbcinst.ini.

Driver = DRIVER_N

Servername Server IP address.
Multiple IP addresses
can be configured. Both
IPv4 and IPv6 are
supported.

Servername=127.0.0.1

Database Name of the database
to connect.

Database=db1

Username Database username. Username = omm

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

Parameter Description Example Value

Password Database user
password.
NOTE

After a user establishes a
connection, the ODBC
driver automatically
clears their password
stored in memory.
However, if this
parameter is configured,
unixODBC will cache
data source files, which
may cause the password
to be stored in the
memory for a long time.
When you connect to an
application, you are
advised to send your
password through an API
instead of writing it in a
data source configuration
file. After the connection
has been established,
immediately clear the
memory segment where
your password is stored.

CAUTION
The password in the
configuration file must
comply with the
following HTTP rules:
1. Characters must

comply with the URL
encoding
specifications. For
example, the
exclamation mark (!)
must be written as
%21, and the percent
sign (%) must be
written as %25.
Therefore, pay
attention to the
characters.

2. A plus sign (+) will be
replaced by a space.

Password=********

Port Port number of the
server.

Port = 8000

Sslmode Specifies whether to
enable SSL.

Sslmode = allow

For values of the Sslmode parameter, see Table 4-18.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

Table 4-18 Sslmode options

Sslmode Whether
SSL
Encryption
Is Enabled

Description

disable No SSL connection is not enabled.

allow Possible If the database server requires SSL connection,
SSL connection can be enabled. However,
authenticity of the database server will not be
verified.

prefer Possible If the database supports SSL connection, SSL
connection is preferred. However, authenticity of
the database server will not be verified.

require Yes SSL connection is required and data is encrypted.
However, authenticity of the database server will
not be verified.

verify-ca Yes SSL connection is required and whether the
database has a trusted certificate will be verified.

verify-
full

Yes SSL connection is required. In addition to the
check scope specified by verify-ca, the system
checks whether the name of the host where the
database resides is the same as that in the
certificate. GaussDB does not support this mode.

Step 5 Enable the SSL mode. For details, contact the database administrator.

Step 6 Configure the database server. For details, contact the database administrator.

Step 7 Configure the environment variables on the client.
vim ~/.bashrc

Add the following information to the configuration file:

export LD_LIBRARY_PATH=/usr/local/lib/:$LD_LIBRARY_PATH
export ODBCSYSINI=/usr/local/etc
export ODBCINI=/usr/local/etc/odbc.ini

Step 8 Run the following command to validate the addition:
source ~/.bashrc

Step 9 Connect to the database.

isql -v GaussODBC

GaussODBC: data source name.
● If the following information is displayed, the configuration is correct and the

connection succeeds:
+---------------------------------------+
| Connected! |
| |
| sql-statement |
| help [tablename] |

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

| quit |
| |
+---------------------------------------+

● If error information is displayed, the configuration is incorrect. Check the
configuration.

----End

Procedure in a Windows Server
Configure an ODBC data source using the ODBC data source manager preinstalled
in the Windows OS.

Step 1 Replace the GaussDB client driver.

Decompress the GaussDB-Kernel_Database version
number_Windows_X64_Odbc.tar.gz (64-bit) driver package or GaussDB-
Kernel_Database version number_Windows_X86_Odbc.tar.gz (32-bit) driver
package, and click gsqlodbc.exe to install the driver.

Step 2 Open the driver manager.

When configuring the data source, use the ODBC driver manager corresponding to
the ODBC version. If the 64-bit ODBC driver is used, the 64-bit ODBC driver
manager must be used. Assume that the OS is installed on drive C (if the OS is
installed on another drive, change the path accordingly):

● If you want to use 32-bit ODBC driver manager in a 64-bit OS, open
C:\Windows\SysWOW64\odbcad32.exe. Do not choose Control Panel >
Administrative Tools > Data Sources (ODBC).

NO TE

WoW64 is short for Windows 32-bit on Windows 64-bit. C:\Windows\SysWOW64\
stores the 32-bit environment on a 64-bit system. C:\Windows\System32\ stores the
environment consistent with the current OS. For technical details, see Windows
technical documents.

● For a 32-bit OS, open C:\Windows\System32\odbcad32.exe or choose
Computer > Control Panel > Administrative Tools > Data Sources (ODBC)
to open Driver Manager.

● For a 64-bit OS, choose Control Panel > Administrative Tools > Data
Sources (ODBC) to enable driver management.

Step 3 Configure the data source.

On the User DSN tab page, click Add and choose GaussDB Unicode for setup.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

For details about the parameters, see Procedure in a Linux Server.

You can click Datasource to configure whether to print logs.

NO TICE

The entered username and password will be recorded in the Windows registry and
you do not need to enter them again when connecting to the database next time.
For security purposes, you are advised to delete sensitive information before
clicking Save and enter the required username and password again when using
ODBC APIs to connect to the database.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

Step 4 Configure SSL mode.

Change the value of SSL Mode in Step 3 to require.

Table 4-19 sslmode options

sslmode Whether
SSL
Encryption
Is Enabled

Description

disable No SSL connection is not enabled.

allow Possible If the database server requires SSL connection, SSL
connection can be enabled. However, authenticity of
the database server will not be verified.

prefer Possible If the database supports SSL connection, SSL
connection is preferred. However, authenticity of the
database server will not be verified.

require Yes SSL connection is required and data is encrypted.
However, authenticity of the database server will
not be verified.

verify-ca Yes SSL connection is required and whether the
database has a trusted certificate will be verified.
Currently, Windows ODBC does not support the cert
authentication.

verify-full Yes SSL connection is required. In addition to the check
scope specified by verify-ca, the system checks
whether the name of the host where the database
resides is the same as that in the certificate.
Currently, Windows ODBC does not support the cert
authentication.

Step 5 Configure a GaussDB server. For details, contact the administrator.

Step 6 Restart the database instance.
gs_om -t stop
gs_om -t start

Step 7 Click Test to test the connection.
● If the following information is displayed, the configuration is correct and the

connection succeeds.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

● If error information is displayed, the configuration is incorrect. Check the
configuration.

----End

4.2.4 Using libpq to Connect to a Database
libpq is a C application programming interface to GaussDB. libpq contains a set of
library functions that allow client programs to send query requests to the GaussDB
servers and obtain query results. It is also the underlying engine of other GaussDB
APIs, such as ODBC. This chapter provides examples to show how to write code
using libpq.

Prerequisites
A C development environment has been installed on the local PC.

To compile and develop source programs based on libpq, perform the following
steps:

1. Decompress the GaussDB-Kernel_Database version number_OS version
number_64bit_Libpq.tar.gz file. The required header file is stored in the
include folder, and the lib folder contains the required libpq library file.

NO TE

In addition to libpq-fe.h, the include folder contains the header files postgres_ext.h,
gs_thread.h, and gs_threadlocal.h by default. These three header files are the
dependency files of libpq-fe.h.

2. Develop the source program testlibpq.c. The source code file needs to
reference the header file provided by libpq.
Example: #include <libpq-fe.h>

3. To compile the libpq source program by running gcc, use the -I directory
option to provide the installation location of the header file. (Sometimes the
compiler looks for the default directory, so this option can be ignored.)
Example:

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

gcc -I (Directory where the header file is located) -L (Directory where the libpq library is located)
testlibpq.c -lpq

4. If the makefile is used, add the following option to variables CPPFLAGS,
LDFLAGS, and LIBS:
CPPFLAGS += -I (Directory of the header file)
LDFLAGS += -L (Directory of the libpq library)
LIBS += -lpq
For example:
CPPFLAGS += -I$(GAUSSHOME)/include/libpq
LDFLAGS += -L$(GAUSSHOME)/lib

Code for Common Functions
Example 1:

/*
 * testlibpq.c
* Note: testlibpq.c source program provides basic and common application scenarios of libpq.
* The PQconnectdb, PQexec, PQntuples, and PQfinish interfaces provided by libpq are used to establish
database connections, execute SQL statements, obtain returned results, and clear resources.
 */
#include <stdio.h>
#include <stdlib.h>
#include <libpq-fe.h>
#include <string.h>

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

int
main(int argc, char **argv)
{
 /* The values of variables such as user and passwd must be read from environment variables or
configuration files. Environment variables need to be configured as required. If no environment variable is
used, a character string can be directly assigned. */
 const char conninfo[1024];
 PGconn *conn;
 PGresult *res;
 int nFields;
 int i,j;
 char *passwd = getenv("EXAMPLE_PASSWD_ENV");
 char *port = getenv("EXAMPLE_PORT_ENV");
 char *host = getenv("EXAMPLE_HOST_ENV");
 char *username = getenv("EXAMPLE_USERNAME_ENV");
 char *dbname = getenv("EXAMPLE_DBNAME_ENV");

 /*
 * This value is used when the user provides the value of the conninfo character string in the command
line.
 * Otherwise, the environment variables or the default values
 * are used for all other connection parameters.
 */
 if (argc > 1)
 conninfo = argv[1];
 else
 sprintf(conninfo,
 "dbname=%s port=%s host=%s application_name=test connect_timeout=5 sslmode=allow user=%s
password=%s",
 dbname, port, host, username, passwd);

 /* Connect to the database. */
 conn = PQconnectdb(conninfo);

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

 /* Check whether the backend connection has been successfully established. */
 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "Connection to database failed: %s",
 PQerrorMessage(conn));
 exit_nicely(conn);
 }

 /*
 * Since a cursor is used in the test case, a transaction block is required.
 * Put all data in one "select * from pg_database"
 * PQexec() is too simple and is not recommended.
 */

 /* Start a transaction block. */
 res = PQexec(conn, "BEGIN");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "BEGIN command failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 /*
 * PQclear PGresult should be executed when it is no longer needed, to avoid memory leakage.
 */
 PQclear(res);

 /*
 * Fetch data from the pg_database system catalog.
 */
 res = PQexec(conn, "DECLARE myportal CURSOR FOR select * from pg_database");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "DECLARE CURSOR failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);

 res = PQexec(conn, "FETCH ALL in myportal");
 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "FETCH ALL failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 /* First, print out the attribute name. */
 nFields = PQnfields(res);
 for (i = 0; i < nFields; i++)
 printf("%-15s", PQfname(res, i));
 printf("\n\n");

 /* Print lines. */
 for (i = 0; i < PQntuples(res); i++)
 {
 for (j = 0; j < nFields; j++)
 printf("%-15s", PQgetvalue(res, i, j));
 printf("\n");
 }

 PQclear(res);

 /* Close the portal. We do not need to check for errors. */
 res = PQexec(conn, "CLOSE myportal");
 PQclear(res);

 /* End the transaction. */

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

 res = PQexec(conn, "END");
 PQclear(res);

 /* Close the database connection and clean up the database. */
 PQfinish(conn);

 return 0;
}

Example 2:

#include <stdio.h>
#include <stdlib.h>
#include <libpq-fe.h>
#include <string.h>
/* Test the automatic primary node selection of the PQconnectStart + loop PQconnectStart APIs when
multiple IP addresses are configured. */

static void exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

int main()
{
 char *conninfo = "postgresql://10.442.13.173:53600,10.442.13.177:54600/postgres?
user=bot&password=Gaussdba@Mpp&target_session_attrs=read-write";
 //PGconn *conn = PQconnectdb(conninfo);
 PGconn *conn = PQconnectStart(conninfo);
 if (conn == NULL) {
 fprintf(stderr, "Connection initialization failed\n");
 return 1;
 }

 ConnStatusType status;
 int sock;

 while (1) {
 PQconnectPoll(conn);
 status = PQstatus(conn);
 fprintf(stderr, "\n--------conn->status: %d\n", PQstatus(conn));
 if (status == CONNECTION_BAD) {
 fprintf(stderr, "Connection failed\n");
 PQfinish(conn);
 return 1;
 }

 if ((int)status == 0) {
 fprintf(stderr, "Connection established\n");
 break;
 }

 /* Obtain the bottom-layer socket descriptor to perform non-blocking I/O operations. */
 sock = PQsocket(conn);

 /* Other non-blocking operations can be performed here, for example, waiting for an event. */

 /* Simulate other operations in the non-blocking process by using sleep. */
 sleep(1);
 }
 fprintf(stderr, "\n--------conn->status: %d\n", PQstatus(conn));

 PGresult *res;
 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "Connection to database failed: %s", PQerrorMessage(conn));
 exit_nicely(conn);
 }

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

 res = PQexec(conn, "show transaction_read_only;");
 printf("\n----------trancaction_read_only is %-15s\n", PQgetvalue(res, 0, 0));
 PQclear(res);

 res = PQexec(conn, "select 1;");
 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "select failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 printf("%-15s\n", PQgetvalue(res, 0, 0));
 PQclear(res);

 PQfinish(conn);
 return 0;
}

Example 3:
/*
* testlibpq3.c Test PQprepare
* PQprepare creates a prepared statement with specified parameters for PQexecPrepared to execute the
prepared statement.
 * Before running this example, run the following command to create a table:
 * create table t01(a int, b int);
 * insert into t01 values(1, 23);
 */
#include <stdio.h>
#include <stdlib.h>
#include <libpq-fe.h>
#include <string.h>
int main(int argc, char * argv[])
{
 /* The values of variables such as user and passwd must be read from environment variables or
configuration files. Environment variables need to be configured as required. If no environment variable is
used, a character string can be directly assigned. */
 PGconn *conn;
 PGresult * res;
 ConnStatusType pgstatus;
 char connstr[1024];
 char cmd_sql[2048];
 int nParams = 0;
 int paramLengths[5];
 int paramFormats[5];
 Oid paramTypes[5];
 char * paramValues[5];
 int i, cnt;
 char cid[32];
 int k;
 char *passwd = getenv("EXAMPLE_PASSWD_ENV");
 char *port = getenv("EXAMPLE_PORT_ENV");
 char *hostaddr = getenv("EXAMPLE_HOST_ENV");
 char *username = getenv("EXAMPLE_USERNAME_ENV");
 char *dbname = getenv("EXAMPLE_DBNAME_ENV");

 /* Use PQconnectdb to connect to the database. The detailed connection information is as follows:
connstr */
 sprintf(connstr,
 "hostaddr=%s dbname=%s port=%s user=%s password=%s",
 hostaddr, dbname, port, username, paswswd);
 conn = PQconnectdb(connstr);
 pgstatus = PQstatus(conn);
 if (pgstatus == CONNECTION_OK)
 {
 printf("Connect database success!\n");
 }
 else
 {
 printf("Connect database fail:%s\n",PQerrorMessage(conn));

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

 return -1;
 }

 /* Create table t01. */
 res = PQexec(conn, "DROP TABLE IF EXISTS t01;CREATE TABLE t01(a int, b int);INSERT INTO t01
values(1, 23);");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 printf("Command failed: %s.\n", PQerrorMessage(conn));
 PQfinish(conn);
 return -1;
 }

 /* cmd_sql query */
 sprintf(cmd_sql, "SELECT b FROM t01 WHERE a = $1");
 /*Parameter corresponding to $1 in cmd_sql*/
 paramTypes[0] = 23;
 /* PQprepare creates a prepared statement with given parameters. */
 res = PQprepare(conn,
 "pre_name",
 cmd_sql,
 1,
 paramTypes);
 if(PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 printf("Failed to prepare SQL : %s\n: %s\n",cmd_sql, PQerrorMessage(conn));
 PQfinish(conn);
 return -1;
 }
 PQclear(res);
 paramValues[0] = cid;
 for (k=0; k<2; k++)
 {
 sprintf(cid, "%d", 1);
 paramLengths[0] = 6;
 paramFormats[0] = 0;
 /*Execute the prepared statement.*/
 res = PQexecPrepared(conn,
 "pre_name",
 1,
 paramValues,
 paramLengths,
 paramFormats,
 0);
 if((PQresultStatus(res) != PGRES_COMMAND_OK) && (PQresultStatus(res) != PGRES_TUPLES_OK))
 {
 printf("%s\n",PQerrorMessage(conn));
 PQclear(res);
 PQfinish(conn);
 return -1;
 }
 cnt = PQntuples(res);
 printf("return %d rows\n", cnt);
 for (i=0; i<cnt; i++)
 {
 printf("row %d: %s\n", i, PQgetvalue(res, i, 0));
 }
 PQclear(res);
 }
 /* The execution is complete. Close the connection. */
 PQfinish(conn);
 return 0;
}

Example 4:

/*
 * testlibpq4.c
 * Test PQexecParams.
 * PQexecParams executes a command with parameters and requests the query result in binary format.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

 * Before running this example, run the following command to populate a database:
 *
 *
 * CREATE TABLE test1 (i int4, t text);
 *
 * INSERT INTO test1 values (2, 'ho there');
 *
 * The expected output is as follows:
 *
 *
 * tuple 0: got
 * i = (4 bytes) 2
 * t = (8 bytes) 'ho there'
 *
 */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <libpq-fe.h>

/* for ntohl/htonl */
#include <netinet/in.h>
#include <arpa/inet.h>

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

/*
 * This function is used to print out the query results. The results are in binary format
* and fetched from the table created in the comment above.
 */
static void
show_binary_results(PGresult *res)
{
 int i;
 int i_fnum,
 t_fnum;

 /* Use PQfnumber to avoid assumptions about field order in the result. */
 i_fnum = PQfnumber(res, "i");
 t_fnum = PQfnumber(res, "t");

 for (i = 0; i < PQntuples(res); i++)
 {
 char *iptr;
 char *tptr;
 int ival;

 /* Obtain the field value. (Ignore the possibility that they may be null.) */
 iptr = PQgetvalue(res, i, i_fnum);
 tptr = PQgetvalue(res, i, t_fnum);

 /*
 * The binary representation of INT4 is the network byte order,
 * which is better to be replaced with the local byte order.
 */
 ival = ntohl(*((uint32_t *) iptr));

 /*
 * The binary representation of TEXT is text. Since libpq can append a zero byte to it,
 * and think of it as a C string.
 *
 */

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

 printf("tuple %d: got\n", i);
 printf(" i = (%d bytes) %d\n",
 PQgetlength(res, i, i_fnum), ival);
 printf(" t = (%d bytes) '%s'\n",
 PQgetlength(res, i, t_fnum), tptr);
 printf("\n\n");
 }
}

int
main(int argc, char **argv)
{
 /* The values of variables such as user and passwd must be read from environment variables or
configuration files. Environment variables need to be configured as required. If no environment variable is
used, a character string can be directly assigned. */
 const char conninfo[1024];
 PGconn *conn;
 PGresult *res;
 const char *paramValues[1];
 int paramLengths[1];
 int paramFormats[1];
 uint32_t binaryIntVal;
 char *passwd = getenv("EXAMPLE_PASSWD_ENV");
 char *port = getenv("EXAMPLE_PORT_ENV");
 char *hostaddr = getenv("EXAMPLE_HOST_ENV");
 char *username = getenv("EXAMPLE_USERNAME_ENV");
 char *dbname = getenv("EXAMPLE_DBNAME_ENV");

 /*
 * If the user provides a parameter on the command line,
 * The value of this parameter is a conninfo character string. Otherwise,
 * Use environment variables or default values.
 */
 if (argc > 1)
 conninfo = argv[1];
 else
 sprintf(conninfo,
 "dbname=%s port=%s host=%s application_name=test connect_timeout=5 sslmode=allow user=%s
password=%s",
 dbname, port, hostaddr, username, passwd);

 /* Connect to the database. */
 conn = PQconnectdb(conninfo);

 /* Check whether the connection to the server was successfully established. */
 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "Connection to database failed: %s",
 PQerrorMessage(conn));
 exit_nicely(conn);
 }

 res = PQexec(conn, "drop table if exists test1;CREATE TABLE test1 (i int4, t text);");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "command failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 PQclear(res);

 res = PQexec(conn, "INSERT INTO test1 values (2, 'ho there');");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "command failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

 PQclear(res);

 /* Convert the integer value "2" to the network byte order. */
 binaryIntVal = htonl((uint32_t) 2);

 /* Set the parameter array for PQexecParams. */
 paramValues[0] = (char *) &binaryIntVal;
 paramLengths[0] = sizeof(binaryIntVal);
 paramFormats[0] = 1; /* Binary */

 /* PQexecParams executes a command with parameters. */
 res = PQexecParams(conn,
 "SELECT * FROM test1 WHERE i = $1::int4",
 1, /* One parameter */
 NULL, /* Enable the backend to deduce the parameter type. */
 paramValues,
 paramLengths,
 paramFormats,
 1); /* Binary result is required. */

 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "SELECT failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 /* Output the binary result.*/
 show_binary_results(res);

 PQclear(res);

 /* Close the database connection and clean up the database. */
 PQfinish(conn);

 return 0;
}

4.2.5 Using Psycopg to Connect to a Database
Psycopg is a Python API used to execute SQL statements and provides a unified
access API for GaussDB. Applications can perform data operations based on
psycopg. Psycopg2 is the encapsulation of libpq and is implemented using the C
language, which is efficient and secure. It provides cursors on both clients and
servers, asynchronous communication and notification, and the COPY TO and
COPY FROM functions. It supports multiple types of Python out-of-the-box and
adapts to GaussDB data types. Through the flexible object adaptation system, you
can extend and customize the adaptation. Psycopg2 is compatible with Unicode.

GaussDB supports the psycopg2 feature and allows psycopg2 to be connected in
SSL mode.

Table 4-20 Platforms supported by psycopg

OS Platform Python Version

EulerOS V2.0SP5 ● Arm64
● x86_64

3.8.5

EulerOS V2.0SP9 ● Arm64
● x86_64

3.7.4

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

OS Platform Python Version

EulerOS V2.0SP10, Kylin V10, and
UnionTech20

● Arm64
● x86_64

3.7.9

EulerOS V2.0SP11 and SUSE 12.5 ● Arm64
● x86_64

3.9.11

Huawei Cloud EulerOS 2.0 ● Arm64
● x86_64

3.9.9

NO TICE

During psycopg2 compilation, OpenSSL of GaussDB is linked. OpenSSL of GaussDB
may be incompatible with OpenSSL of the OS. If incompatibility occurs, for
example, "version 'OPENSSL_1_1_1f' not found" is displayed, use the environment
variable LD_LIBRARY_PATH to isolate the OpenSSL provided by the OS and the
OpenSSL on which GaussDB depends.
For example, when the application software client.py that invokes psycopg2 is
executed, the environment variable is explicitly assigned to the application
software.
export LD_LIBRARY_PATH=/path/to/gaussdb/libs:$LD_LIBRARY_PATH python client.py

In the preceding command, /path/to/pyscopg2/lib indicates the directory where
the OpenSSL library on which the GaussDB depends is located. Change it as
required.

Prerequisites
A Python development environment has been installed on the local PC.

Connecting to a Database

Step 1 Prepare related drivers and dependent libraries. Obtain the package GaussDB-
Kernel_Database version number_OS version number_64bit_Python.tar.gz from
the release package.

After the decompression, the following folders are generated:

● psycopg2: psycopg2 library file
● lib: lib library file

Step 2 Load the driver.
● Before using the driver, perform the following operations:

a. Decompress the driver package of the corresponding version.
tar zxvf xxxx-Python.tar.gz

b. Copy psycopg2 to the site-packages folder in the Python installation
directory as the root user.
su root
cp psycopg2 $(python3 -c 'import site; print(site.getsitepackages()[0])') -r

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

c. Change the psycopg2 directory permission to 755.
chmod 755 $(python3 -c 'import site; print(site.getsitepackages()[0])')/psycopg2 -R

d. Add the psycopg2 directory to the environment variable $PYTHONPATH
and validate it.
export PYTHONPATH=$(python3 -c 'import site; print(site.getsitepackages()[0])'):$PYTHONPATH

e. For non-database users, configure the lib directory in LD_LIBRARY_PATH
after decompression.
export LD_LIBRARY_PATH=path/to/lib:$LD_LIBRARY_PATH

● Load a database driver before creating a database connection.
import psycopg2

Step 3 Connect to a database.

Connect to the database in non-SSL mode.

1. Use the psycopg2.connect function to obtain the connection object.
2. Use the connection object to create a cursor object.

Connect to the database in SSL mode.

When you use psycopy2 to connect to the GaussDB server, you can enable SSL to
encrypt the communication between the client and server. To enable SSL, you
must have the server certificate, client certificate, and private key files. For details
on how to obtain these files, see related documents and commands of OpenSSL.

1. Use the .ini file (the configparser package of Python can parse this type of
configuration file) to save the configuration information about the database
connection.

2. Add SSL connection parameters sslmode, sslcert, sslkey, and sslrootcert to
the connection options.

a. sslmode: For details about the options, see Table 4-21.
b. sslcert: client certificate path.
c. sslkey: client key path.
d. sslrootcert: root certificate path.

3. Use the psycopg2.connect function to obtain the connection object.
4. Use the connection object to create a cursor object.

CA UTION

To use SSL to connect to the database, ensure that the Python interpreter is
compiled in the mode of generating a dynamic link library (.so) file. You can
perform the following steps to check the connection mode of the Python
interpreter:
1. Run the import ssl command in the Python interpreter to import SSL.
2. Run the ps ux command to query the PID of the Python interpreter.

Assume that the PID is ******.
3. In the shell CLI, run the pmap -p ****** | grep ssl command and check

whether the command output contains the path related to libssl.so. If yes,
the Python interpreter is compiled in dynamic link mode.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

Table 4-21 sslmode options

sslmode Enable SSL
Encryption

Description

disable No SSL connection is not enabled.

allow Possible If the database server requires SSL
connection, SSL connection can be
enabled. However, authenticity of the
database server will not be verified.

prefer Possible If the database supports SSL connection,
SSL connection is preferred. However,
authenticity of the database server will
not be verified.

require Yes SSL connection is required, but only data
is encrypted. However, authenticity of the
database server will not be verified.

verify-ca Yes SSL connection is required, and the
validity of the server CA must be verified.

verify-full Yes The SSL connection must be enabled,
which is not supported by GaussDB
currently.

----End

4.2.6 Using Hibernate to Connect to a Database
Hibernate is an object-relational mapping (ORM) tool for the Java programming
language. It provides an easy-to-use framework for automatically mapping Java
objects to database tables, so that developers can operate databases in object-
oriented mode. Hibernate frees developers from manually writing a large amount
of SQL and JDBC code, which significantly reduces the development workload of
the data access layer.

This section describes how to use Hibernate to connect to a GaussDB database
and perform operations in it, for example, creating a table, modifying a table, and
inserting, deleting, updating, or querying data in a table.

Configuring the POM Dependency
<dependency>
 <groupId>com.huaweicloud.gaussdb</groupId>
 <artifactId>opengaussjdbc</artifactId>
 <version>503.2.T35</version>
</dependency>
<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
 <version>5.3.7.Final</version>
</dependency>

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

CA UTION

The Maven environment must have been configured before you configure the
POM dependency.

Configuring the hibernate.cfg.xml Resource File
<?xml version="1.0" encoding="utf-8"?>
 <!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
 <session-factory>
 <!--GaussDB connection information-->
 <property name="connection.driver_class">com.huawei.opengauss.jdbc.Driver</property>
 <property name="connection.url">jdbc:opengauss://***.***.***.*** (Replace ***.***.***.*** with the database
IP address.):20000 (Replace 20000 with the database port.)/test? currentSchema=test (Replace test with the
target database and schema.)</property>
<property name="connection.username">*** (Replace *** with the correct username.)</property>
<property name="connection.password">****** (Replace ****** with the correct password.)</property>

 <!-- The following configurations are optional. -->

 <!-- Specify whether to support dialects. -->
 <!-- In PostgreSQL compatibility mode, the following configuration must be set. -->
<property name="dialect">org.hibernate.dialect.PostgreSQL82Dialect</property>

 <!-- Specify whether to print SQL statements when CURD commands are executed. -->
 <property name="show_sql">true</property>

 <!--Enable automatic table creation (and update).-->
 <!-- <property name="hbm2ddl.auto">update</property>-->
 <!-- <property name="hbm2ddl.auto">create</property>-->

 <!-- Register resources (entity class mapping file).-->
 <mapping resource="./student.xml"/>
 </session-factory>
</hibernate-configuration>

Preparing an Entity Class and Entity Class Mapping File
In this example, the Student class and student.xml file are used. The file path is
com.howtodoinjava.hibernate.test.dto.

1. Create an entity class.
public class Student implements Serializable {
 int id;
 String name;
// String age;
 // The constructor, get, and set methods are omitted here.
}

2. Prepare the student.xml file.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping PUBLIC
 '-//Hibernate/Hibernate Mapping DTD 3.0//EN'
 'http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd'>
<hibernate-mapping>
 <!-- The mapping between classes and tables is made on the class element. -->
 <!-- name: fully-qualified class name -->
 <!-- table: table name -->
 <class name="com.howtodoinjava.hibernate.test.dto.Student" table="student">
 <!-- The mapping of the primary key is made on the id element. -->
 <!-- name: name of the attribute used as the primary key in the object -->
 <!-- column: name of the primary key field in the table -->

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

 <!-- If the value of name is the same as that of column, column can be omitted. -->
 <id name="id" column="id">
 <!-- Set the class attribute of the generator element to "assigned". The ID must be provided. --
>
 <generator class="assigned" />

 <!--** Pay attention to the Hibernate primary key generation policy. **-->

 </id>
 <!-- The mapping between attributes and fields is made on the property element. -->
 <!-- name: attribute name in the class -->
 <!-- column: field name in the table -->
 <!-- If the value of name is the same as that of column, column can be omitted. -->
 <property name="name" />
 <!-- Same as the entity class. -->
 <!--<property name="age"/>-->
 </class>
</hibernate-mapping>

Function Test Example
1. Test the connection function.

a. Test method:
@Test
 public void testConnection() {
 // Load the configuration information.
 Configuration conf = new Configuration().configure();
 // Create the SessionFactory object based on the configuration information.
 SessionFactory sessionFactory = conf.buildSessionFactory();
 // Open a session object related to the database.
 Session session = sessionFactory.openSession();
 System.out.println(session);
 }

b. The breakpoint shows that the connection is successfully established.

2. Enable automatic table creation.

a. Comment out the following line in the configuration file:
<property name="hbm2ddl.auto">create</property>

b. After deleting the student table from the database, perform the
following test method:
@Test
 public void testCreateTableAndInsertData() {
 // Create the object to be tested.
 Student student = new Student();
 student.setId(16);
 student.setName("xiaoming");
 // Start a transaction based on session.
 Configuration conf = new Configuration().configure();
 SessionFactory sessionFactory = conf.buildSessionFactory();
 Session session = sessionFactory.openSession();
 Transaction transaction = session.beginTransaction();
 // Use session to save data.
 session.save(student);

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

 // Commit the transaction.
 transaction.commit();
 // After the operation is complete, close the session connection object.
 session.close();
 }

c. View the executed SQL statements printed on the console and the result
in the GaussDB database.

The student table is successfully created, and the id = 16, name =
"xiaoming" record is inserted into the table.

3. Modify the table (by adding data records).

a. Modify the configuration file and configure the path of the schema where
the table to be modified is located in the URL.

In this test example, the student table is in schema test under database
test. That is, the table path is test.test.student.
<property name="connection.url">jdbc:opengauss://xxx.xxx.xxx.xxx (Replace xxx.xxx.xxx.xxx with
the database IP address.):20000 (Replace 20000 with the database port.)/test?
currentSchema=test (Replace test with the target database and schema.)</property>
<!-- Uncomment update. -->
<property name="hbm2ddl.auto">update</property>

b. Uncomment the age attribute in the entity class and XML file and
execute the following method:
 @Test
 public void testAlterTable() {
 // Create the object to be tested.
 Student student = new Student();
 student.setId(15);
 student.setName("xiaohong");
 student.setAge("20");
 // Start a transaction based on session.
 Configuration conf = new Configuration().configure();
 SessionFactory sessionFactory = conf.buildSessionFactory();
 Session session = sessionFactory.openSession();
 Transaction transaction = session.beginTransaction();
 // Use session to save data.
 session.save(student);
 // Commit the transaction.
 transaction.commit();
 // After the operation is complete, close the session connection object.
 session.close();
 }

c. View the executed SQL statements printed on the console and the result
in the GaussDB database.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

The framework automatically adds data records to the table based on the
entity class and XML file.

4. Save data into the database.

a. Test method:
@Test
 public void testInsert() {
 Student s1 = new Student(1,"q");
 Student s2 = new Student(2,"w");
 Student s3 = new Student(3,"e");
 ArrayList<Student> students = new ArrayList<>();
 students.add(s1);
 students.add(s2);
 students.add(s3);
 // Start a transaction based on session.
 Configuration conf = new Configuration().configure();
 SessionFactory sessionFactory = conf.buildSessionFactory();
 Session session = sessionFactory.openSession();
 Transaction transaction = session.beginTransaction();
 // Use session to save data.
 for (Student student : students) {
 session.save(student);
 }
 // Commit the transaction.
 transaction.commit();
 // After the operation is complete, close the session connection object.
 session.close();
 }

b. The result is as follows.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

Three rows of data are successfully inserted.
5. Query data in HQL mode.

a. Test method:
@Test
 public void testHQL() {
 // HQL mode
 Configuration conf = new Configuration().configure();
 SessionFactory sessionFactory = conf.buildSessionFactory();
 // Create a session.
 Session session = sessionFactory.openSession();
 // Start a transaction.
 Transaction tx = session.beginTransaction();

 // Create an HQL query.
 String hql = "FROM Student S WHERE S.id = 15";
 Query query = session.createQuery(hql);

 // Execute the query and obtain the result.
 List results = query.list();

 // Commit the transaction.
 tx.commit();

 // End the session.
 session.close();
 }

b. The result is as follows.

6. Query data in SQL mode.

a. Test method:
 @Test
 public void testQuery() {
 // Start a transaction based on session.
 Configuration conf = new Configuration().configure();
 SessionFactory sessionFactory = conf.buildSessionFactory();
 Session session = sessionFactory.openSession();
 Transaction transaction = session.beginTransaction();
 // SQL mode
 List<Student> students = session.createSQLQuery("select * from test.student where id =
1").addEntity(Student.class).list();
 for (int i = 0; i < students.size(); i++) {
 System.out.println(students.get(i));
 }
 students.get(0).setAge("20");
 // Commit the transaction.
 transaction.commit();

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

 // After the operation is complete, close the session connection object.
 session.close();
 }

b. The result is as follows.

The data record of the student whose ID is 1 is found and the value of
age is changed to 20.

7. Modify data.
– Test method:

@Test
 public void testUpdate() {
 // Start a transaction based on session.
 Configuration conf = new Configuration().configure();
 SessionFactory sessionFactory = conf.buildSessionFactory();
 Session session = sessionFactory.openSession();
 Transaction transaction = session.beginTransaction();
 // SQL mode
 session.createSQLQuery("update test.student set age = 19 where id =
16").executeUpdate();
 // Commit the transaction.
 transaction.commit();
 // After the operation is complete, close the session connection object.
 session.close();
 }

– The result is as follows.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

The age field of the student whose ID is 16 is successfully changed to 19.
8. Delete data.

a. Test method:
 @Test
 public void testDelete() {
 // Start a transaction based on session.
 Configuration conf = new Configuration().configure();
 SessionFactory sessionFactory = conf.buildSessionFactory();
 Session session = sessionFactory.openSession();
 Transaction transaction = session.beginTransaction();
 // SQL mode
 List<Student> students = session.createSQLQuery("select * from
test.student").addEntity(Student.class).list();
 System.out.println(students);
 session.createSQLQuery("delete from test.student where id = " +
students.get(0).getId()).executeUpdate();
 // Commit the transaction.
 transaction.commit();
 // After the operation is complete, close the session connection object.
 session.close();
 }

b. The result is as follows.

The record whose ID is 15 has been deleted from the student table.

4.2.7 Using MyBatis to Connect to a Database
MyBatis is a first class persistence framework with support for custom SQL, stored
procedures, and advanced mappings. MyBatis eliminates almost all of the JDBC
code and manual setting of parameters and retrieval of results. MyBatis can use
simple XML or annotations for configuration and map primitive. It can map
interfaces and Java Plain Old Java Objects (POJOs) to database records.

This section describes how to use MyBatis to connect to a GaussDB database.

Configuring the POM Dependency
<dependency>
 <groupId>com.huaweicloud.gaussdb</groupId>
 <artifactId>opengaussjdbc</artifactId>
 <version>503.2.T35</version>
</dependency>
<dependency>
 <groupId>org.mybatis</groupId>
 <artifactId>mybatis</artifactId>

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

 <version>3.5.6</version>
</dependency>

CA UTION

The Maven environment must have been configured before you configure the
POM dependency.

Configuring the Required File
Configuring the mybatis-config.xml file.
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE configuration
 PUBLIC "-//mybatis.org//DTD Config 3.0//EN"
 "http://mybatis.org/dtd/mybatis-3-config.dtd">
<!-- Root element of the configuration file -->
<configuration>
 <!--Configure the global attributes.-->
 <settings>
 <!--Use getGeneratedKeys of JDBC to obtain the auto-increment primary key value of the database.-->
 <setting name="useGeneratedKeys" value="true"/>
 <!--Replace the column alias with the column label. The default value is true.-->
 <setting name="useColumnLabel" value="true" />
 <!--Enable camel-case naming conversion: Table{create_time} -> Entity{createTime}-->
 <setting name="mapUnderscoreToCamelCase" value="true" />
 <setting name="logImpl" value="STDOUT_LOGGING" />
 </settings>

 <environments default="development">
 <environment id="development">
 <transactionManager type="JDBC"/>
 <dataSource type="POOLED">
 <property name="driver" value="com.huawei.opengauss.jdbc.Driver"/>
 <property name="url" value="jdbc:opengauss://***.***.***.*** (Replace ***.***.***.*** with the
database IP address):20000 (Replace 20000 with the database port)/test? (Replace test with the
corresponding database name.)connectionTimeout=10"/>
 <property name="username" value="*** (Replace *** with the correct username.)"/>
 <property name="password" value="******* (Replace ******* with the correct password.)"/>
 </dataSource>
 </environment>
 </environments>
 <!--Register mapper (address of mapper.xml).-->
 <mappers>
 <mapper resource="mapper/StudentDaoMapper.xml"></mapper>
 </mappers>
</configuration>

Examples
1. Test the entity class StudentEntity.java (in com.huawei.entity).

public class StudentEntity {
 Integer id;
 String name;
}

2. Configure the StudentDaoMapper.xml file corresponding to the entity class
(in resources.mapper).
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-
mapper.dtd" >
<mapper namespace="StudentMapper">
 <!-- Query by primary key -->
 <select id="getList" resultType="com.huawei.entity.StudentEntity" >
 select * from student;

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

 </select>
</mapper>

3. Test table query.
@Test
public void mainTest() throws IOException {
 // 1. Read the core configuration file of MyBatis (mybatis-config.xml).
 InputStream in = Resources.getResourceAsStream("mybatis-config.xml");
 // 2. Obtain a SqlSessionFactory factory object based on the configuration information.
 SqlSessionFactory fac = new SqlSessionFactoryBuilder().build(in);
 // 3. Obtain a SqlSession object through the factory.
 SqlSession session = fac.openSession();
 // 4. Find the SQL statement to be executed based on the namespace and ID and execute the SQL
statement.
 List<StudentEntity> list = session.selectList("StudentMapper.getList");
 // 5. Output the result.
 list.forEach(i -> {
 System.out.println(i.toString());
 });
}

4. Query result logs.

CA UTION

Currently, PaginationInnerInterceptor in the MybatisPlus plug-in does not adapt
to the GaussDB driver. To resolve this problem, set DbType to POSTGRE_SQL
when creating the PaginationInnerInterceptor object. Example:
PaginationInnerInterceptor innerInterceptor = new
PaginationInnerInterceptor(DbType.POSTGRE_SQL)

4.2.8 Using JayDeBeApi to Connect to a Database
JayDeBeApi is a Python module that provides a convenient, efficient way for
Python developers to use the Java JDBC driver to connect to and perform
operations on databases.

This section describes how to use JayDeBeApi to connect to the GaussDB
database.

Environment Configuration
1. Configure the GaussDB development environment.

Prepare the basic development environment of GaussDB and obtain the
database connection parameters. For example:
gsql -h ***.***.***.*** -p 20000 -U *** -W ****** -d test

Parameter description:
-h: IP address of the server hosting the GaussDB instance
-p: connection port of the GaussDB instance
-U: username for the connection

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

-W: user password
-d: name of the database you want to connect.

2. Install the JayDeBeApi driver.

a. Install Java JDK 8 and Python 3 on the local PC. To check the software
versions, run the following commands:
java -version
python --version
pip --version

b. If the server can connect to the Python Package Index (PyPI), run the pip
command to install JayDeBeApi:
pip install jaydebeapi

If the server cannot connect to PyPI, download an offline installation
package of JayDeBeApi and install it on the local PC.

3. Obtain the GaussDB driver package.
Download particular packages listed in Table 4-22 based on the version of
your instance.

Table 4-22 Driver package download list

Version Download Address

3.x Driver package
Verification package for the driver package

2.x Driver package
Verification package for the driver package

To prevent a software package from being tampered with during transmission
or storage, download the corresponding verification package and perform the
following steps to verify the software package:

a. Upload the software package and verification package to the same
directory on a Linux VM.

b. Run the following command to verify the integrity of the software
package:
cat GaussDB_driver.zip.sha256 | sha256sum --check
If OK is displayed in the command output, the verification is successful.
GaussDB_driver.zip: OK

Example
1. Create a script file.

– Create a test_jaydebeapi.py file and write the following code into the file:
#!/usr/bin/env python3.x
-*- coding: UTF-8 -*-
encoding = "utf8"
import jaydebeapi

def test_jaydebeapi():
 #Set required parameters.
 url = 'jdbc:opengauss://***.***.***.***:20000/test'

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

https://dbs-download.obs.cn-north-1.myhuaweicloud.com/GaussDB/1692787239570/GaussDB_driver.zip
https://dbs-download.obs.cn-north-1.myhuaweicloud.com/GaussDB/1692787239637/GaussDB_driver.zip.sha256
https://dbs-download.obs.cn-north-1.myhuaweicloud.com/GaussDB/1684998497424/GaussDB_driver.zip
https://dbs-download.obs.cn-north-1.myhuaweicloud.com/GaussDB/1684998497481/GaussDB_driver.zip.sha256

 user = '***'
 password = '******'
 driver = 'com.huawei.opengauss.jdbc.Driver'
 jarFile = './opengaussjdbc.jar'

 conn = jaydebeapi.connect(driver, url, [user, password], jarFile)
 cur = conn.cursor()

 #Create a table named students.
 sql = 'create table students (id int, name varchar(20))'
 cur.execute(sql)

 #Insert three groups of data into the students table.
 sql = "insert into students values(1,'xiaoming'),(2,'xiaohong'),(3,'xiaolan')"
 cur.execute(sql)

 #Query all data in the students table.
 sql = 'select * from students'
 cur.execute(sql)
 ans = cur.fetchall()
 print(ans)

 #Update data in the students table.
 sql = 'update students set name = \'xiaolv\' where id = 1'
 cur.execute(sql)

 #Query all data in the students table again.
 sql = 'select * from students'
 cur.execute(sql)
 ans = cur.fetchall()
 print(ans)

 #Delete the students table.
 sql = 'drop table students'
 cur.execute(sql)

 cur.close()
 conn.close()

test_jaydebeapi()

– Configure required parameters in the code.
#Set the connection URL, which requires the IP address, port number, and database name of the
database server you want to connect.
url = 'jdbc:opengauss://***.***.***.***:20000/test'
#Enter the username.
user = '***'
#Enter the password.
password = '******'
#Specify the path to the JDBC driver class.
driver = 'com.huawei.opengauss.jdbc.Driver'
#Specify the path to the JAR package of the JDBC driver. By default, it is stored in the same
directory as the test_jaydebeapi.py file.
jarFile = './opengaussjdbc.jar'

2. Execute the program.
Run the following command to execute the test_jaydebeapi.py file:
python ./test_jaydebeapi.py

3. Check the result.
The GaussDB database is successfully connected, and two query results are
returned, as shown in the following figure.

GaussDB
Getting Started 4 Connecting to a DB Instance Using a Driver

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

5 Example: Using DAS to Connect to an
Instance and Execute SQL Statements

This section describes how to create a pay-per-use GaussDB instance with the
minimum specifications and execute basic SQL syntax.

● Buying an Instance
● Connecting to an Instance Through DAS
● Getting Started with SQL

Buying an Instance

Step 1 Log in to the management console.

Step 2 Click in the upper left corner and select a region.

Step 3 Click on the left and choose Databases > GaussDB.

Step 4 In the navigation pane on the left, choose GaussDB > Instances.

Step 5 Click Buy DB Instance.

Step 6 Configure the basic information, such as the billing mode and instance name.

GaussDB
Getting Started

5 Example: Using DAS to Connect to an Instance
and Execute SQL Statements

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

https://console-intl.huaweicloud.com/?locale=en-us

Figure 5-1 Billing mode and basic information

Step 7 Configure instance specifications.

GaussDB
Getting Started

5 Example: Using DAS to Connect to an Instance
and Execute SQL Statements

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

Step 8 Select a VPC and security group for the instance and configure the database port.

The VPC you selected must contain sufficient subnets.

Step 9 Configure the administrator password, enterprise project, and parameter template.

Step 10 Click Next, confirm the instance information, and click Submit.

Step 11 Go to the instance list.

If status of the instance becomes available, the instance has been created.

----End

Connecting to an Instance Through DAS

Step 1 Log in to the management console.

Step 2 Click in the upper left corner and select a region.

Step 3 Click on the left and choose Databases > Data Admin Service.

Step 4 In the navigation pane on the left, choose Development Tool to go to the login
list page.

Step 5 Click Add Login.

GaussDB
Getting Started

5 Example: Using DAS to Connect to an Instance
and Execute SQL Statements

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

https://console-intl.huaweicloud.com/?locale=en-us

NO TICE

After the database is created, the root user is added by default. You do not need
to create a root user.

Step 6 Set DB Engine to GaussDB, retain the default value of Source Database, and
configure required parameters.

You are advised to enable Collect Metadata Periodically and Show Executed
SQL Statements.

If a message is displayed indicating that a connection has been established, go to
Step 9.

Step 7 Click Test Connection.

If a message is displayed indicating connection successful, continue with the
operation. If a message is displayed indicating connection failed and the failure
cause is provided, make modifications according to the error message.

Step 8 Click OK.

Step 9 Locate the added instance, click Log In in the Operation column.

Step 10 Go to the SQL Query page.

----End

Getting Started with SQL
Step 1 Create a database user.

Only administrators that are created during the instance installation can access
the initial database by default. You can also create other database users.

CREATE USER joe WITH PASSWORD "xxxxxxxxx";

If information similar to the following is displayed, the creation is successful.

GaussDB
Getting Started

5 Example: Using DAS to Connect to an Instance
and Execute SQL Statements

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

In this case, you have created a user named joe, and the user password is xxxxxxx.

For more information about database users, see Users and Permissions.

Step 2 Create a database.

CREATE DATABASE db_tpcds;

If information similar to the following is displayed, the creation is successful.

Switch to the newly created database in the upper left corner.

Step 3 Create a table.
● Run the following command to create a schema:

CREATE SCHEMA myschema;
● Create a table named mytable that has only one column. The column name

is firstcol and the column type is integer.
CREATE TABLE myschema.mytable (firstcol int);

GaussDB
Getting Started

5 Example: Using DAS to Connect to an Instance
and Execute SQL Statements

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

https://support.huaweicloud.com/intl/en-us/distributed-devg-v3-gaussdb/gaussdb-12-0008.html

● Insert data to the table.
INSERT INTO myschema.mytable values (100);

● View data in the table.
SELECT * FROM myschema.mytable;

Note:

● By default, new database objects, such as the mytable table, are created in
the $user schema. For more information about schemas, see Creating and
Managing Schemas.

● For details about how to create a table, see Creating and Managing Tables.
● In addition to the created tables, a database contains many system catalogs.

These system catalogs contain information about instance installation as well
as GaussDB queries and processes. You can collect information about the
database by querying the system catalogs. For details about querying system
catalogs, see Querying a System Catalog.

Step 4 In the db_tpcds database, run the following statement as user root to grant all
permissions of the db_tpcds database to user joe:

GRANT ALL ON DATABASE db_tpcds TO joe;

GRANT USAGE ON schema myschema TO joe;

GRANT ALL ON TABLE myschema.mytable TO joe;

Step 5 Log in to the db_tpcds database as user joe.

Step 6 After login, insert data into the table and verify the data.

INSERT INTO myschema.mytable values (200);

SELECT * FROM myschema.mytable;

----End

GaussDB
Getting Started

5 Example: Using DAS to Connect to an Instance
and Execute SQL Statements

Issue 01 (2024-04-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

https://support.huaweicloud.com/intl/en-us/distributed-devg-v3-gaussdb/gaussdb-12-0035.html
https://support.huaweicloud.com/intl/en-us/distributed-devg-v3-gaussdb/gaussdb-12-0035.html
https://support.huaweicloud.com/intl/en-us/distributed-devg-v3-gaussdb/gaussdb-12-0027.html
https://support.huaweicloud.com/intl/en-us/distributed-devg-v3-gaussdb/gaussdb-12-0033.html

	Contents
	1 Operation Guide
	2 Buying a DB Instance
	3 Connecting to a DB Instance Using a Database Client
	3.1 Connecting to a DB Instance
	3.2 Connecting to an Instance Through DAS (Recommended)
	3.3 Using gsql to Connect to an Instance from a Linux Server
	3.4 Using DBeaver to Connect to an Instance from a Windows Server
	3.5 Using Navicat to Connect to an Instance from a Windows Server

	4 Connecting to a DB Instance Using a Driver
	4.1 Distributed Instances
	4.1.1 Development Specifications
	4.1.2 Using JDBC to Connect to a Database
	4.1.3 Using ODBC to Connect to a Database
	4.1.4 Using libpq to Connect to a Database
	4.1.5 Using Psycopg to Connect to a Database
	4.1.6 Using Hibernate to Connect to a Database
	4.1.7 Using MyBatis to Connect to a Database
	4.1.8 Using JayDeBeApi to Connect to a Database

	4.2 Primary/Standby Instances
	4.2.1 Development Specifications
	4.2.2 Using JDBC to Connect to a Database
	4.2.3 Using ODBC to Connect to a Database
	4.2.4 Using libpq to Connect to a Database
	4.2.5 Using Psycopg to Connect to a Database
	4.2.6 Using Hibernate to Connect to a Database
	4.2.7 Using MyBatis to Connect to a Database
	4.2.8 Using JayDeBeApi to Connect to a Database

	5 Example: Using DAS to Connect to an Instance and Execute SQL Statements

