
Cloud Service Engine

Getting Started

Issue 01

Date 2024-02-29

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2024-02-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Exclusive ServiceComb Engine..1
1.1 Creating a ServiceComb Engine... 1
1.2 Connecting to ServiceComb Engines.. 3
1.2.1 Connecting Spring Cloud Applications to ServiceComb Engines Using SpringCloudHuawei SDK.......... 3

2 Registry/Configuration Center... 6
2.1 Creating a Nacos Engine...6
2.2 Connecting to Nacos Engines... 7
2.2.1 Connecting Spring Cloud Applications to Nacos Engines.. 7
2.2.2 Connecting Spring Cloud Eureka Applications to Nacos Engines...10

Cloud Service Engine
Getting Started Contents

Issue 01 (2024-02-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 Exclusive ServiceComb Engine

1.1 Creating a ServiceComb Engine
This section describes how to create a ServiceComb engine.

Prerequisites
● A ServiceComb engine runs on a VPC. Before creating a ServiceComb engine,

ensure that VPCs and subnets are available.
You have created a VPC. For details, see Creating a VPC.

● The login account has the permission to create a ServiceComb engine. For
details about how to authorize and bind account permissions, see Creating a
User and Granting Permissions.

Procedure

Step 1 Go to the Buy Exclusive ServiceComb Engine page.

Step 2 Set parameters according to the following table. Parameters marked with an
asterisk (*) are mandatory.

Parameter Description

* Billing
Mode

Billing mode. Currently, pay-per-use is supported.

*Enterprise
Project

Project where the microservice engine locates. You can search for
and select an enterprise project in the drop-down list.

*Instances Specifications of the microservice engine.

*Engine
Type

Microservice engine type.
If the engine type is cluster, the engine is deployed in cluster
mode and supports host-level DR.

*Name Enter a ServiceComb engine name, for example, cse-lhy-nodelete.

*AZ Select an available zone (AZ).

Cloud Service Engine
Getting Started 1 Exclusive ServiceComb Engine

Issue 01 (2024-02-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0013935842.html
https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_0003.html
https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_0003.html
https://console-intl.huaweicloud.com/cse2/?locale=en-us#/csm/engine/buy

Parameter Description

*Network Select the created VPC and subnet. You can search for and select
a VPC and subnet from the drop-down list.

Description Click and enter the engine description, for example, create a
microservice engine.

Tags Tags are used to identify cloud resources. When you have multiple
cloud resources of the same type, you can use tags to classify
them based on usage, owner, or environment.

Click Add Tag. In the Add Tag dialog box, enter a tag key and
value. For details about tag naming rules, see Managing Tags. In
the Add Tag dialog box, you can click Add Tag to add multiple
tags at a time, or click next to a tag to delete the tag.

*Security
Authenticat
ion

The exclusive ServiceComb engine with security authentication
enabled provides the system management function using the
role-based access control (RBAC) through the microservice engine
console.
● Select Enable security authentication:

1. Determine whether to enable Authenticate Programming
Interface.
After it is enabled, you need to add the corresponding
account and password to the microservice configuration file.
Otherwise, the service cannot be registered with the engine.
After it is disabled, you can register the service with the
engine without configuring the account and password in
the microservice configuration file, which improves the
efficiency. You are advised to disable this function when
accessing the service in a VPC.

2. Enter and confirm the password of user root.
Keep the password secure.

● Select Disable security authentication:
Disable security authentication. You can enable it after the
instance is created.

Step 3 Click Buy. The page for confirming the engine information is displayed.

Step 4 Click Submit and wait until the engine is created.

Cloud Service Engine
Getting Started 1 Exclusive ServiceComb Engine

Issue 01 (2024-02-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_03_0125.html

NO TE

● It takes about 31 minutes to create an engine.
● After the microservice engine is created, its status is Available. For details about how to

view the microservice engine status, see Viewing ServiceComb Engine Information.
● If the microservice engine fails to be created, view the failure cause on the Operation

page and rectify the fault. Then, you can perform the following operations:
– In the Microservice Engine Information area, click Retry to create a microservice

engine again.
– If the retry fails, delete the microservice engine that fails to be created. For details,

see Deleting an Exclusive ServiceComb Engine.

----End

1.2 Connecting to ServiceComb Engines

1.2.1 Connecting Spring Cloud Applications to ServiceComb
Engines Using SpringCloudHuawei SDK

This section uses a demo to demonstrate how to use ServiceComb engines.

NO TE

This section describes how to connect a provider service and a consumer service to a
ServiceComb engine.

Prerequisites
● You have created a ServiceComb engine. For details, see Creating a

ServiceComb Engine.
● You have downloaded the demo source code from GitHub to the local host

and decompressed it.
● The Java JDK and Maven have been installed on the local host for

compilation, building, and packaging, and the Maven central library can be
accessed.

Procedure

Step 1 Logging In to the CSE Console

1. Log in to the management console.

2. Click and select a region.

3. Click in the upper left corner and select Cloud Service Engine in the
service list. The CSE console is displayed.

Step 2 Choose Exclusive ServiceComb Engine.

Step 3 Click the ServiceComb engine created in Prerequisites.

Step 4 Obtain the service center address and configuration center address of the
ServiceComb engine.

Cloud Service Engine
Getting Started 1 Exclusive ServiceComb Engine

Issue 01 (2024-02-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_0007.html
https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_0017.html
https://github.com/huaweicloud/spring-cloud-huawei-samples/tree/master/basic
https://console-intl.huaweicloud.com/console/?locale=en-us

In the Service Discovery and Configuration area, you can view the service center
address and configuration center address of the microservice engine.

Step 5 Change the addresses of the registry center and configuration center in the demo.

1. In the directory of the demo source code downloaded to the local host, find
the \basic\consumer\src\main\resources\bootstrap.yml and \basic\provider
\src\main\resources\bootstrap.yml files.

2. Add the service center address and configuration center address of the
ServiceComb engine to the project configuration file (\basic\consumer\src
\main\resources\bootstrap.yml is used as an example).
spring:
 application:
 name: basic-consumer
 cloud:
 servicecomb:
 discovery:
 enabled: true
 watch: false
 # Registry center address
 address: https://192.168.0.210:30100,https://192.168.0.246:30100
 appName: basic-application
 serviceName: ${spring.application.name}
 version: 0.0.1
 healthCheckInterval: 30
 config:
 # Configuration center address
 serverType: kie
 serverAddr: https://192.168.0.210:30110,https://192.168.0.246:30110

NO TE

In the ServiceStage deployment scenario, the service registry center and configuration
center addresses are automatically injected during the deployment. You do not need
to manually add them.

Step 6 Pack the demo source code into a JAR package.

1. In the root directory of the demo source code, open the Command Prompt
and run the mvn clean package command to package and compile the
project.

2. After the compilation is successful, two JAR packages are generated, as shown
in Table 1-1.

Cloud Service Engine
Getting Started 1 Exclusive ServiceComb Engine

Issue 01 (2024-02-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

Table 1-1 Software packages

Directory Where the
Software Package Is
Located

Package Name Description

basic\consumer\target basic-consumer-1.0-
SNAPSHOT.jar

Service
consumer

basic\provider\target basic-provider-1.0-
SNAPSHOT.jar

Service
provider

Step 7 Deploy the application.
● Method 1: Deploy provider and consumer on the ECS node in the VPC where

the ServiceComb engine is located.

a. Create an ECS node in the VPC where the engine instance is located and
log in to the ECS node. For details, see Purchasing and Logging In to a
Linux ECS.

b. Install JRE to provide a running environment for services.
c. Upload the JAR package generated in Step 6 to the ECS node.
d. Run the java -jar {JAR package} command to run the generated JAR

package.
● Method 2: Deploy provider and consumer on ServiceStage.

a. Upload the JAR package generated in Step 6 to OBS.
b. Create a CCE cluster in the same VPC as the ServiceComb engine

instance. For details, see Creating a Kubernetes Cluster.
c. Create a ServiceStage environment in the VPC where the engine instance

is located, and manage the ServiceComb engine and CCE resource. For
details, see Creating an Environment.

d. Deploy provider and consumer. For details, see Creating and Deploying
a Component.

Step 8 Confirm the deployment results.

1. Optional: On the CSE console, choose Exclusive ServiceComb Engine and
click the ServiceComb engine created in Prerequisites.

2. Choose Microservice Catalog > Microservice List to view the number of
basic-consumer and basic-provider microservice instances.
– If Instances is not 0, the demo has been connected to the microservice

engine.
– If Instances is 0 or the basic-consumer and basic-provider services

cannot be found, the demo fails to be connected to the microservice
engine.

----End

Cloud Service Engine
Getting Started 1 Exclusive ServiceComb Engine

Issue 01 (2024-02-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-cce/cce_qs_0008.html
https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0008.html
https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0031.html

2 Registry/Configuration Center

2.1 Creating a Nacos Engine
This section describes how to create a Nacos engine.

NO TE

Nacos engines are supported only in CN-Hong Kong and AP-Singapore.

Prerequisites

A Nacos engine runs on a VPC. Before creating a Nacos engine, ensure that VPCs
and subnets are available.

You have created a VPC. For details, see Creating a VPC.

Procedure

Step 1 Go to Buy Registry/Configuration Center Instance.

Step 2 In the left navigation pane, choose Registry/Configuration Center.

Step 3 Click Buy Registry/Configuration Center Instance.

Step 4 Set parameters according to the following table. Parameters marked with an
asterisk (*) are mandatory.

Parameter Description

* Billing
Mode

Billing mode. Currently, pay-per-use is supported.

*Enterprise
Project

Project where the Nacos engine locates. You can search for and
select an enterprise project in the drop-down list.

*Name Enter the name of the Nacos engine.

Cloud Service Engine
Getting Started 2 Registry/Configuration Center

Issue 01 (2024-02-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0013935842.html
https://console-intl.huaweicloud.com/cse2/?locale=en-us#/csm/enginesBuy?engineType=Nacos

Parameter Description

*Registry/
Configuratio
n Center
Instance

Select Nacos.
NOTE

By default, the Nacos engine is deployed in multiple AZs on three nodes
to provide AZ-level DR.

*Instances Select the required capacity specifications.

Version Only the latest version can be created.

*Network Select the created VPC and subnet. You can search for and select
a VPC and subnet from the drop-down list.
A VPC enables you to provision logically isolated, configurable,
and manageable virtual networks for your engine.

Tags Tags are used to identify cloud resources. When you have
multiple cloud resources of the same type, you can use tags to
classify them based on usage, owner, or environment.

Click Add Tag. In the Add Tag dialog box, enter a tag key and
value. For details about tag naming rules, see Managing Tags. In
the Add Tag dialog box, you can click Add Tag to add
multiple tags at a time, or click next to a tag to delete the tag.

Step 5 Click Buy Now. When the status becomes Available, the engine is created.

----End

2.2 Connecting to Nacos Engines

2.2.1 Connecting Spring Cloud Applications to Nacos Engines
This section uses a demo to demonstrate how to connect microservice applications
to Nacos engines.

This section describes how to connect a provider service and a consumer service to
a Nacos engine.

NO TE

Nacos engines are supported only in CN-Hong Kong and AP-Singapore.

Prerequisites
● You have created a Nacos engine. For details, see Creating a Nacos Engine.
● You have downloaded the demo source code from GitHub to the local host

and decompressed it.
● The Java JDK and Maven have been installed on the local host for

compilation, building, and packaging, and the Maven central library can be
accessed.

Cloud Service Engine
Getting Started 2 Registry/Configuration Center

Issue 01 (2024-02-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_03_0126.html
https://github.com/nacos-group/nacos-examples/tree/master/nacos-spring-cloud-example

Procedure

Step 1 Log in to CSE.

1. Log in to the management console.

2. Click and select a region.

3. Click in the upper left corner and select Cloud Service Engine in the
service list. The CSE console is displayed.

Step 2 Obtain the service center address of the exclusive Nacos engine.

1. In the left navigation pane, choose Registry/Configuration Center and click
the Nacos engine instance.

2. In the Connection Information area on the Basic Information page, obtain
the service center address.

Step 3 Change the configuration center address, service center address, and microservice
name in the demo.

1. Configure the Nacos configuration center in bootstrap.properties.
Find the nacos-examples-master\nacos-spring-cloud-example\nacos-
spring-cloud-discovery-example\nacos-spring-cloud-consumer-example
\src\main\resources file in the demo source code directory downloaded to
the local host, add the bootstrap.properties file, and configure the Naocs
configuration center.
spring.cloud.nacos.config.server-addr= XXX.nacos.cse.com:8848 //Address of the Nacos configuration
center
spring.cloud.nacos.config.prefix= example //Prefix of the configuration file name
spring.cloud.nacos.config.file-extension= properties //Extension of the configuration file name
spring.cloud.nacos.config.group= XXX //Group to which the configuration file belongs. If this
parameter is left blank, the default value DEFAULT_GROUP is used.
spring.cloud.nacos.config.namespace= XXX //ID of the namespace to which the configuration file
belongs. If this parameter is left blank, the default value public is used.

2. Configure the Nacos service center address and microservice name in the
application.properties file.
– Find the nacos-examples-master\nacos-spring-cloud-example\nacos-

spring-cloud-discovery-example\nacos-spring-cloud-consumer-
example\src\main\resources\application.properties file in the demo
source code directory downloaded to the local host and configure the
consumer service.
server.port=8080
spring.application.name= service-consumer //Microservice name
spring.cloud.nacos.discovery.server-addr= XXX.nacos.cse.com:8848 //Nacos service center
address
spring.cloud.nacos.discovery.group= XXX //Group to which the microservice belongs. If this
parameter is left blank, the default value DEFAULT_GROUP is used.
spring.cloud.nacos.discovery.namespace= XXX //ID of the namespace to which the microservice
belongs. If this parameter is left blank, the default value public is used.
spring.cloud.nacos.discovery.cluster-name= XXX //Name of the cluster to which the
microservice belongs. If this parameter is left blank, the default value DEFAULT is used.

– Find the nacos-examples-master\nacos-spring-cloud-example\nacos-
spring-cloud-discovery-example\nacos-spring-cloud-provider-example

Cloud Service Engine
Getting Started 2 Registry/Configuration Center

Issue 01 (2024-02-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

https://console-intl.huaweicloud.com/console/?locale=en-us

\src\main\resources\application.properties file in the demo source code
directory downloaded to the local host and configure the provider service.
server.port=8070
spring.application.name= service-provider //Microservice name
spring.cloud.nacos.discovery.server-addr= XXX.nacos.cse.com:8848 //Nacos service center
address
spring.cloud.nacos.discovery.group= XXX //Group to which the microservice belongs. If this
parameter is left blank, the default value DEFAULT_GROUP is used.
spring.cloud.nacos.discovery.namespace= XXX //ID of the namespace to which the microservice
belongs. If this parameter is left blank, the default value public is used.
spring.cloud.nacos.discovery.cluster-name= XXX //Name of the cluster to which the
microservice belongs. If this parameter is left blank, the default value DEFAULT is used.

Step 4 Pack the demo source code into a JAR package.

1. In the root directory of the demo source code, open the Command Prompt
and run the mvn clean package command to package and compile the
project.

2. After the compilation is successful, two JAR packages are generated, as shown
in Table 2-1.

Table 2-1 Software packages

Directory Where the
Software Package Is
Located

Package Name Description

\nacos-spring-cloud-
consumer-example\target

nacos-spring-cloud-consumer-
example-0.2.0-SNAPSHOT.jar

Service
consumer

\nacos-spring-cloud-
provider-example\target

nacos-spring-cloud-provider-
example-0.2.0-SNAPSHOT.jar

Service
provider

Step 5 Deploy the Spring Cloud application.

Deploy provider and consumer on the ECS node in the VPC where the Nacos
engine is located.

1. Create an ECS node in the VPC where the engine instance is located and log
in to the ECS node. For details, see Purchasing and Logging In to a Linux
ECS.

2. Install JRE to provide a running environment for services.
3. Upload the JAR package generated in Step 4 to the ECS node.
4. Run the java -jar {JAR package} command to run the generated JAR package.

Step 6 Confirm the deployment results.

1. Optional: On the CSE console, choose Registry/Configuration Center and
click the Nacos engine created in Prerequisites.

2. Choose Service Management and check the number of instances of
microservices service-consumer and service-provider.
– If Instances is not 0, the demo has been connected to the Nacos engine.
– If Instances is 0 or the service-consumer and service-provider services

cannot be found, the demo fails to be connected to the Nacos engine.

----End

Cloud Service Engine
Getting Started 2 Registry/Configuration Center

Issue 01 (2024-02-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html

2.2.2 Connecting Spring Cloud Eureka Applications to Nacos
Engines

This section uses a demo to demonstrate how to connect Spring Cloud Eureka
applications to Nacos engines.

This section describes how to connect a provider service and a consumer service to
a Nacos engine.

NO TE

Nacos engines are supported only in CN-Hong Kong and AP-Singapore.

Prerequisites
● You have created a Nacos engine. For details, see Creating a Nacos Engine.
● You have downloaded the demo source code from GitHub to the local host

and decompressed it.
● The Java JDK and Maven have been installed on the local host for

compilation, building, and packaging, and the Maven central library can be
accessed.

Constraints
● Nacos is compatible with Eureka APIs on the Eureka server side and saves and

updates client instance information registered on the service side. Therefore, if
you use only Eureka as the registry center, many features of Nacos, such as
namespace and configuration management, cannot be used.

● Eureka is used as the client and can be viewed only on the Service
Management page of Nacos. Eureka services are displayed using the default
attributes of Nacos.
– Default namespace: public
– Default group: DEFAULT_GROUP

● The value of Protection Threshold for creating a service on the Service
Management page of Nacos is a feature of Nacos and does not apply to the
Eureka service.

Procedure

Step 1 Log in to CSE.

1. Log in to the management console.

2. Click and select a region.

3. Click in the upper left corner and select Cloud Service Engine in the
service list. The CSE console is displayed.

Step 2 Obtain the service center address of the exclusive Nacos engine.

1. In the left navigation pane, choose Registry/Configuration Center and click
the Nacos engine instance.

2. In the Connection Information area on the Basic Information page, obtain
the service center address.

Cloud Service Engine
Getting Started 2 Registry/Configuration Center

Issue 01 (2024-02-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

https://github.com/ZrBac/eureka-demo.git
https://console-intl.huaweicloud.com/console/?locale=en-us

Step 3 Change the registry center address and microservice name in the demo.

1. Configure the Nacos service center address and microservice name in the
application.properties file.
– Find the eureka-demo-master\eureka-consumer\src\main\resources

\application.properties file in the demo source code directory
downloaded to the local host and configure the consumer service.
server.port=9001
spring.application.name= eureka-client-consumer //Microservice name
eureka.client.serviceUrl.defaultZone= XXX.nacos.cse.com:8848/nacos/eureka //Service center
address of Eureka
eureka.instance.lease-renewal-interval-in-seconds=15 //Service heartbeat update interval
eureka.client.registry-fetch-interval-seconds=15 //Interval for pulling the registry center. It is
recommended that the value be the same as the heartbeat interval.

– Find the eureka-demo-master\eureka-provider\src\main\resources
\application.properties file in the demo source code directory
downloaded to the local host and configure the provider service.
server.port=9000
spring.application.name= eureka-client-provider //Microservice name
eureka.client.serviceUrl.defaultZone= XXX.nacos.cse.com:8848/nacos/eureka //Service center
address of Eureka
eureka.instance.lease-renewal-interval-in-seconds=15 //Service heartbeat update interval
eureka.client.registry-fetch-interval-seconds=15 //Interval for pulling the registry center. It is
recommended that the value be the same as the heartbeat interval.

Step 4 Pack the demo source code into a JAR package.

1. In the root directory of the demo source code, open the Command Prompt
and run the mvn clean package command to package and compile the
project.

2. After the compilation is successful, two JAR packages are generated, as shown
in Table 2-2.

Table 2-2 Software packages

Directory Where the
Software Package Is
Located

Package Name Description

\eureka-consumer\target eureka-client-consumer-1.0.0-
SNAPSHOT.jar

Service
consumer

\eureka-provider\target eureka-client-provider-1.0.0-
SNAPSHOT.jar

Service
provider

Step 5 Deploy the Spring Cloud application.

Deploy provider and consumer on the ECS node in the VPC where the Nacos
engine is located.

1. Create an ECS node in the VPC where the engine instance is located and log
in to the ECS node. For details, see Purchasing and Logging In to a Linux
ECS.

Cloud Service Engine
Getting Started 2 Registry/Configuration Center

Issue 01 (2024-02-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html

2. Install JRE to provide a running environment for services.
3. Upload the JAR package generated in Step 4 to the ECS node.
4. Run the java -jar {JAR package} command to run the generated JAR package.

Step 6 Confirm the deployment results.

1. Optional: On the CSE console, choose Registry/Configuration Center and
click the Nacos engine created in Prerequisites.

2. Choose Service Management and check the number of instances of
microservices eureka-client-consumer and eureka-client-provider.
– If Instances is not 0, the demo has been connected to the Nacos engine.
– If Instances is 0 or the eureka-client-consumer and eureka-client-

provider services cannot be found, the demo fails to be connected to the
Nacos engine.

----End

Cloud Service Engine
Getting Started 2 Registry/Configuration Center

Issue 01 (2024-02-29) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

	Contents
	1 Exclusive ServiceComb Engine
	1.1 Creating a ServiceComb Engine
	1.2 Connecting to ServiceComb Engines
	1.2.1 Connecting Spring Cloud Applications to ServiceComb Engines Using SpringCloudHuawei SDK

	2 Registry/Configuration Center
	2.1 Creating a Nacos Engine
	2.2 Connecting to Nacos Engines
	2.2.1 Connecting Spring Cloud Applications to Nacos Engines
	2.2.2 Connecting Spring Cloud Eureka Applications to Nacos Engines

