
Cloud Service Engine

Getting Started

Issue 01

Date 2024-09-26

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2024-09-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Connecting Spring Cloud Applications to ServiceComb Engines Using Spring
Cloud Huawei SDK..1

2 Connecting Spring Cloud Applications to Nacos Engines Using Spring Cloud SDK
...6

3 Getting Started with Common Practices... 11

Cloud Service Engine
Getting Started Contents

Issue 01 (2024-09-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 Connecting Spring Cloud Applications to
ServiceComb Engines Using Spring Cloud

Huawei SDK

This section uses a demo to demonstrate how to connect a Spring Cloud
application to a ServiceComb engine Using Spring Cloud Huawei SDK.

1. Preparations
You need to register with Huawei Cloud and complete real-name
authentication, top up your account, grant permissions, create a VPC and
subnet, obtain the demo package, and prepare the local host for compilation,
building, and packaging.

2. Creating a ServiceComb Engine
You can select engine specifications, AZs, and networks when creating an
engine.

3. Connecting Spring Cloud Applications to ServiceComb Engines
This section describes how to connect a provider service and a consumer
service to a ServiceComb engine.

Preparations
1. Sign up for a HUAWEI ID and complete real-name authentication.

Skip this step if you already have a HUAWEI ID, or perform the following
steps to create one.

a. Log in to the Huawei Cloud official website and click Sign Up.
b. Sign up for a HUAWEI ID. For details, see Signing up for a HUAWEI ID

and Enabling Huawei Cloud Services.
After your ID is created, the system redirects you to your personal
information page.

c. Complete real-name authentication. For details, see Individual Real-
Name Authentication.

NO TE

Real-name authentication is required only when you buy or use resources in the
Chinese mainland.

Cloud Service Engine
Getting Started

1 Connecting Spring Cloud Applications to
ServiceComb Engines Using Spring Cloud Huawei

SDK

Issue 01 (2024-09-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

https://www.huaweicloud.com/intl/en-us/
https://support.huaweicloud.com/intl/en-us/usermanual-account/account_id_001.html
https://support.huaweicloud.com/intl/en-us/usermanual-account/account_id_001.html
https://support.huaweicloud.com/intl/en-us/usermanual-account/en-us_topic_0071343161.html
https://support.huaweicloud.com/intl/en-us/usermanual-account/en-us_topic_0071343161.html

2. Top up your account.
Ensure that your account has sufficient balance.
– For details about ServiceComb engine prices, see CSE Pricing Details.
– For details about top-up, see Top-Up and Repayment.

3. Grant permissions.
You must have the required permissions to create dependent resources and
ServiceComb engines. For details, see Creating a User and Granting
Permissions.

4. Create a VPC and subnet.
ServiceComb engines run in a VPC and need to be bound to a subnet. You
must have a VPC and subnet to create ServiceComb engines. For details, see
Creating a VPC. Skip this step if you already have a VPC and subnet.

5. The Java JDK and Maven have been installed on the local host for
compilation, building, and packaging, and the Maven central library can be
accessed.

6. Download the demo source code from GitHub to the local host and
decompress it.

NO TE

Spring Cloud Huawei has been integrated in the configuration file of this demo. For
details, see Connecting Spring Cloud Applications to ServiceComb Engines.

Creating a ServiceComb Engine

Step 1 Go to the Buy Exclusive ServiceComb Engine page.

Step 2 Set parameters according to the following table. Parameters marked with an
asterisk (*) are mandatory. For details, see Creating a ServiceComb Engine.

Table 1-1 Creating a ServiceComb engine

Parameter Description

*Billing
Mode

Billing mode. Currently, Pay-per-use is supported. Pay-per-use is
postpaid. You use ServiceComb engines and then pay as billed for
your usage duration.

*Enterprise
Project

Select the enterprise project where the ServiceComb engine
locates. Enterprise projects let you manage cloud resources and
users by project. default is selected by default.

*Instances Select the engine specifications. In this example, select 100
microservice instances.

*Engine
Type

If the engine type is cluster, the engine is deployed in cluster
mode and supports host-level DR.

*Name Enter a ServiceComb engine name. The name contains 3 to 64
characters, including letters, digits, and hyphens (-), and starts
with a letter but cannot end with a hyphen (-). For example, cse-
test.

Cloud Service Engine
Getting Started

1 Connecting Spring Cloud Applications to
ServiceComb Engines Using Spring Cloud Huawei

SDK

Issue 01 (2024-09-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

https://www.huaweicloud.com/intl/en-us/pricing/calculator.html#/cse
https://support.huaweicloud.com/intl/en-us/usermanual-billing/en-us_topic_0081343161.html
https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_0003.html
https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_0003.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0013935842.html
https://github.com/huaweicloud/spring-cloud-huawei-samples/tree/master/basic
https://support.huaweicloud.com/intl/en-us/devg-cse/cse_04_0009.html
https://console-intl.huaweicloud.com/cse2/?locale=en-us#/csm/engine/buy
https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_0005.html

Parameter Description

*AZ Select one or three AZs. In this example, select one AZ to provide
host-level DR.

*Network Select the created VPC and subnet. You can search for and select
a VPC and subnet from the drop-down list.

Description Click and enter the engine description, for example, create a
ServiceComb engine.

*Security
Authenticat
ion

The exclusive ServiceComb engine with security authentication
enabled provides the system management function using the
role-based access control (RBAC) through the microservice engine
console. In this example, disable security authentication. You can
enable it after the instance is created.

Step 3 Click Buy. The page for confirming the engine information is displayed.

Step 4 Click Submit and wait until the engine is created.

NO TE

● It takes about 31 minutes to create a microservice engine.
● After the microservice engine is created, its status is Available. For details about how to

view the microservice engine status, see Viewing ServiceComb Engine Information.
● If the microservice engine fails to be created, view the failure cause on the Operation

page and rectify the fault. Then, you can perform the following operations:
– In the Microservice Engine Information area, click Retry to create a microservice

engine again.
– If the retry fails, delete the microservice engine that fails to be created. For details,

see Deleting an Exclusive ServiceComb Engine.

----End

Connecting Spring Cloud Applications to ServiceComb Engines
Step 1 Log in to CSE.

Step 2 Choose Exclusive ServiceComb Engine.

Step 3 Click the ServiceComb engine created in Creating a ServiceComb Engine.

Step 4 Obtain the service center address and configuration center address of the
ServiceComb engine.

In the Service Discovery and Configuration area, you can view the service center
address and configuration center address of the microservice engine.

Cloud Service Engine
Getting Started

1 Connecting Spring Cloud Applications to
ServiceComb Engines Using Spring Cloud Huawei

SDK

Issue 01 (2024-09-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_0007.html
https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_0017.html
https://console-intl.huaweicloud.com/cse2/

Step 5 Change the addresses of the registry center and configuration center in the demo.

1. In the directory of the demo source code downloaded to the local host, find
the \basic\consumer\src\main\resources\bootstrap.yml and \basic\provider
\src\main\resources\bootstrap.yml files.

2. Add the service center address and configuration center address of the
ServiceComb engine to the project configuration file (\basic\consumer\src
\main\resources\bootstrap.yml is used as an example).
spring:
 application:
 name: basic-consumer
 cloud:
 servicecomb:
 discovery:
 enabled: true
 watch: false
 # Registry center address
 address: https://192.168.0.210:30100,https://192.168.0.246:30100
 appName: basic-application
 serviceName: ${spring.application.name}
 version: 0.0.1
 healthCheckInterval: 30
 config:
 # Configuration center address
 serverType: kie
 serverAddr: https://192.168.0.210:30110,https://192.168.0.246:30110

NO TE

In the ServiceStage deployment scenario, the service registry center and configuration
center addresses are automatically injected during the deployment. You do not need
to manually add them.

Step 6 Pack the demo source code into a JAR package.

1. In the root directory of the demo source code, open the Command Prompt
and run the mvn clean package command to package and compile the
project.

2. After the compilation is successful, two JAR packages are generated, as shown
in Table 1-2.

Table 1-2 Software packages

Directory Where the
Software Package Is
Located

Package Name Description

basic\consumer\target basic-consumer-1.0-
SNAPSHOT.jar

Service
consumer

basic\provider\target basic-provider-1.0-
SNAPSHOT.jar

Service
provider

Step 7 Deploy the application.

Deploy provider and consumer on ServiceStage.

1. Upload the JAR package generated in Step 6 to OBS.
2. Create a CCE cluster in the same VPC as the ServiceComb engine instance. For

details, see Creating a Kubernetes Cluster.

Cloud Service Engine
Getting Started

1 Connecting Spring Cloud Applications to
ServiceComb Engines Using Spring Cloud Huawei

SDK

Issue 01 (2024-09-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

https://support.huaweicloud.com/intl/en-us/qs-cce/cce_qs_0008.html

3. Create a ServiceStage environment in the VPC where the engine instance is
located, and manage the ServiceComb engine and CCE resource. For details,
see Creating an Environment.

4. Deploy provider and consumer. For details, see Creating and Deploying a
Component.

Step 8 Confirm the deployment results.

1. Optional: On the CSE console, choose Exclusive ServiceComb Engine and
click the ServiceComb engine created in Creating a ServiceComb Engine.

2. Choose Microservice Catalog > Microservice List to view the number of
basic-consumer and basic-provider microservice instances.
– If Instances is not 0, the demo has been connected to the ServiceComb

engine.
– If Instances is 0 or the basic-consumer and basic-provider services

cannot be found, the demo fails to be connected to the microservice
engine.

----End

Cloud Service Engine
Getting Started

1 Connecting Spring Cloud Applications to
ServiceComb Engines Using Spring Cloud Huawei

SDK

Issue 01 (2024-09-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0008.html
https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0031.html
https://support.huaweicloud.com/intl/en-us/usermanual-servicestage/servicestage_03_0031.html

2 Connecting Spring Cloud Applications to
Nacos Engines Using Spring Cloud SDK

This section uses a demo to demonstrate how to connect microservice applications
to Nacos engines.

1. Preparations
You need to register with Huawei Cloud and complete real-name
authentication, top up your account, grant permissions, create a VPC and
subnet, obtain the demo package, and prepare the local host for compilation,
building, and packaging.

2. Creating a Registry/Configuration Center
You can select engine specifications, AZs, and networks when creating an
engine.

3. Connecting Spring Cloud Applications to Nacos Engines
This section describes how to connect a provider service and a consumer
service to a Nacos engine.

Preparations
1. Sign up for a HUAWEI ID and complete real-name authentication.

Skip this step if you already have a HUAWEI ID, or perform the following
steps to create one.

a. Log in to the Huawei Cloud official website and click Sign Up.
b. Sign up for a HUAWEI ID. For details, see Signing up for a HUAWEI ID

and Enabling Huawei Cloud Services.
After your ID is created, the system redirects you to your personal
information page.

c. Complete real-name authentication. For details, see Individual Real-
Name Authentication.

NO TE

Real-name authentication is required only when you buy or use resources in the
Chinese mainland.

2. Top up your account.

Cloud Service Engine
Getting Started

2 Connecting Spring Cloud Applications to Nacos
Engines Using Spring Cloud SDK

Issue 01 (2024-09-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://www.huaweicloud.com/intl/en-us/
https://support.huaweicloud.com/intl/en-us/usermanual-account/account_id_001.html
https://support.huaweicloud.com/intl/en-us/usermanual-account/account_id_001.html
https://support.huaweicloud.com/intl/en-us/usermanual-account/en-us_topic_0071343161.html
https://support.huaweicloud.com/intl/en-us/usermanual-account/en-us_topic_0071343161.html

Ensure that your account has sufficient balance.

– For details about registry/configuration center prices, see CSE Pricing
Details.

– For details about top-up, see Top-Up and Repayment.

3. Grant permissions.

You must have the required permissions to create dependent resources and
Nacos engines. For details, see Creating a User and Granting Permissions.

NO TE

To create a registry/configuration center, you must have the CSE FullAccess and DNS
FullAccess permissions.

4. Create a VPC and subnet.

Nacos engines run in a VPC and need to be bound to a subnet. You must have
a VPC and subnet to create Nacos engines. For details, see Creating a VPC.
Skip this step if you already have a VPC and subnet.

5. The Java JDK and Maven have been installed on the local host for
compilation, building, and packaging, and the Maven central library can be
accessed.

6. Download the demo source code from GitHub to the local host and
decompress it.

Creating a Registry/Configuration Center

Step 1 Go to the Buy Registry/Configuration Center Instance page.

Step 2 In the left navigation pane, choose Registry/Configuration Center.

Step 3 Click Buy Registry/Configuration Center Instance.

Step 4 Set parameters according to the following table. Parameters marked with an
asterisk (*) are mandatory. For details, see Creating a Registry/Configuration
Center.

Table 2-1 Creating a registry/configuration center

Parameter Description

*Billing
Mode

Billing mode. Currently, Pay-per-use is supported. Pay-per-use is
postpaid. You use registry/configuration centers and then pay as
billed for your usage duration.

*Enterprise
Project

Select the enterprise project where the Nacos engine is located.
Enterprise projects let you manage cloud resources and users by
project. default is selected by default.

*Name Enter a Nacos engine name. The name contains 3 to 64
characters, including letters, digits, and hyphens (-), and starts
with a letter but cannot end with a hyphen (-). For example,
nacos-test.

Cloud Service Engine
Getting Started

2 Connecting Spring Cloud Applications to Nacos
Engines Using Spring Cloud SDK

Issue 01 (2024-09-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

https://www.huaweicloud.com/intl/en-us/pricing/calculator.html#/cse
https://www.huaweicloud.com/intl/en-us/pricing/calculator.html#/cse
https://support.huaweicloud.com/intl/en-us/usermanual-billing/en-us_topic_0081343161.html
https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_usermanual_0003.html
https://support.huaweicloud.com/intl/en-us/usermanual-vpc/en-us_topic_0013935842.html
https://github.com/nacos-group/nacos-examples/tree/master/nacos-spring-cloud-example
https://console-intl.huaweicloud.com/cse2/?locale=en-us#/csm/enginesBuy?engineType=Nacos
https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_03_0001.html
https://support.huaweicloud.com/intl/en-us/usermanual-cse/cse_03_0001.html

Parameter Description

*Registry/
Configuratio
n Center
Instance

The registry/configuration center supports Nacos engines.
NOTE

Cluster nodes in the registry/configuration center are evenly distributed to
different AZs. A failure of a single node does not affect external services.
The registry/configuration center does not support AZ-level DR but
provides host-level DR.

*Instances Select the required capacity specifications. In this example, the
number of instances is 500, and the number of capacity units is
10.

Version Only the latest version can be created.

*Network Select the created VPC and subnet. You can search for and select
a VPC and subnet from the drop-down list.
A VPC enables you to provision logically isolated, configurable,
and manageable virtual networks for your engine.

Step 5 Click Buy Now. The registry/configuration center starts to be created. When the
status is Available, the registry/configuration center is created.

----End

Connecting Spring Cloud Applications to Nacos Engines

Step 1 Log in to CSE.

Step 2 Obtain the registry and discovery address of a Nacos engine.

1. In the left navigation pane, choose Registry/Configuration Center and click
the Nacos engine instance.

2. In the Connection Information area on the Basic Information page, obtain
the service center address.

Step 3 Change the configuration center address, service center address, and microservice
name in the demo.

1. Configure the Nacos configuration center in bootstrap.properties.
Find the nacos-examples-master\nacos-spring-cloud-example\nacos-
spring-cloud-discovery-example\nacos-spring-cloud-consumer-example
\src\main\resources file in the demo source code directory downloaded to
the local host, add the bootstrap.properties file, and configure the Nacos
configuration center.
spring.cloud.nacos.config.server-addr= XXX.nacos.cse.com:8848 //Address of the Nacos configuration
center
spring.cloud.nacos.config.prefix= example //Prefix of the configuration file name
spring.cloud.nacos.config.file-extension= properties //Extension of the configuration file name
spring.cloud.nacos.config.group= XXX //Group to which the configuration file belongs. If this
parameter is left blank, the default value DEFAULT_GROUP is used.

Cloud Service Engine
Getting Started

2 Connecting Spring Cloud Applications to Nacos
Engines Using Spring Cloud SDK

Issue 01 (2024-09-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

https://console-intl.huaweicloud.com/cse2/

spring.cloud.nacos.config.namespace= XXX //ID of the namespace to which the configuration file
belongs. If this parameter is left blank, the default value public is used.

2. Configure the Nacos service center address and microservice name in the
application.properties file.
– Find the nacos-examples-master\nacos-spring-cloud-example\nacos-

spring-cloud-discovery-example\nacos-spring-cloud-consumer-
example\src\main\resources\application.properties file in the demo
source code directory downloaded to the local host and configure the
consumer service.
server.port=8080
spring.application.name= service-consumer //Microservice name
spring.cloud.nacos.discovery.server-addr= XXX.nacos.cse.com:8848 //Nacos service center
address
spring.cloud.nacos.discovery.group= XXX //Group to which the microservice belongs. If this
parameter is left blank, the default value DEFAULT_GROUP is used.
spring.cloud.nacos.discovery.namespace= XXX //ID of the namespace to which the microservice
belongs. If this parameter is left blank, the default value public is used.
spring.cloud.nacos.discovery.cluster-name= XXX //Name of the cluster to which the
microservice belongs. If this parameter is left blank, the default value DEFAULT is used.

– Find the nacos-examples-master\nacos-spring-cloud-example\nacos-
spring-cloud-discovery-example\nacos-spring-cloud-provider-example
\src\main\resources\application.properties file in the demo source code
directory downloaded to the local host and configure the provider service.
server.port=8070
spring.application.name= service-provider //Microservice name
spring.cloud.nacos.discovery.server-addr= XXX.nacos.cse.com:8848 //Nacos service center
address
spring.cloud.nacos.discovery.group= XXX //Group to which the microservice belongs. If this
parameter is left blank, the default value DEFAULT_GROUP is used.
spring.cloud.nacos.discovery.namespace= XXX //ID of the namespace to which the microservice
belongs. If this parameter is left blank, the default value public is used.
spring.cloud.nacos.discovery.cluster-name= XXX //Name of the cluster to which the
microservice belongs. If this parameter is left blank, the default value DEFAULT is used.

Step 4 Pack the demo source code into a JAR package.

1. In the root directory of the demo source code, open the Command Prompt
and run the mvn clean package command to package and compile the
project.

2. After the compilation is successful, two JAR packages are generated, as shown
in Table 2-2.

Table 2-2 Software packages

Directory Where the
Software Package Is
Located

Package Name Description

\nacos-spring-cloud-
consumer-example\target

nacos-spring-cloud-consumer-
example-0.2.0-SNAPSHOT.jar

Service
consumer

\nacos-spring-cloud-
provider-example\target

nacos-spring-cloud-provider-
example-0.2.0-SNAPSHOT.jar

Service
provider

Step 5 Deploy Spring Cloud applications.

Deploy provider and consumer on the ECS node in the VPC where the Nacos
engine is located.

Cloud Service Engine
Getting Started

2 Connecting Spring Cloud Applications to Nacos
Engines Using Spring Cloud SDK

Issue 01 (2024-09-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

1. Create an ECS node in the VPC where the engine instance is located and log
in to the ECS node. For details, see Purchasing and Logging In to a Linux
ECS.

2. Install JRE to provide a running environment for services.
3. Upload the JAR package generated in Step 4 to the ECS node.
4. Run the java -jar {JAR package} command to run the generated JAR package.

Step 6 Confirm the deployment results.

1. Optional: On the CSE console, choose Registry/Configuration Center and
click the Nacos engine created in Creating a Registry/Configuration Center.

2. Choose Service Management and check the number of instances of
microservices service-consumer and service-provider.
– If Instances is not 0, the demo has been connected to the Nacos engine.
– If Instances is 0 or the service-consumer and service-provider services

cannot be found, the demo fails to be connected to the Nacos engine.

----End

Cloud Service Engine
Getting Started

2 Connecting Spring Cloud Applications to Nacos
Engines Using Spring Cloud SDK

Issue 01 (2024-09-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html

3 Getting Started with Common Practices

This section describes common CSE practices.

Practice Description

Hosting a Java Chassis Application Spring Boot and Spring Cloud are
widely used to build microservice
applications. The main purpose of
using ServiceComb engines to host
Spring Cloud applications is to replace
open-source components with highly
reliable commercial middleware to
better manage and maintain the
application system. The reconstruction
process should minimize the impact on
service logic.

Cloud Service Engine
Getting Started 3 Getting Started with Common Practices

Issue 01 (2024-09-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

https://support.huaweicloud.com/intl/en-us/bestpractice-cse/cse_bestpractice_0001.html
https://github.com/spring-projects/spring-boot
https://github.com/spring-cloud

Practice Description

Hosting a Java Chassis Application Java chassis is an open-source
microservice development framework
managed by the Apache Software
Foundation. It was first donated by
CSE. Till now, hundreds of developers
have contributed to the project.
It has the following functions:
● Flexible and high-performance RPC

implementation. Based on open
APIs, Java chassis provides unified
description of different RPC
development modes, standardizing
microservice API management and
retaining flexible usage habits of
developers. Based on Reactive, Java
chassis implements efficient
communication protocols such as
REST and Highway, and is
compatible with traditional
communication protocols such as
Servlet.

● Rich service governance capabilities
and unified governance
responsibility chain. Common
microservice governance
capabilities, such as load balancing,
rate limiting, and fault isolation,
can be used out of the box. In
addition, a unified governance
responsibility chain is provided to
simplify the development of new
governance functions.

Cloud Service Engine
Getting Started 3 Getting Started with Common Practices

Issue 01 (2024-09-26) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

https://support.huaweicloud.com/intl/en-us/bestpractice-cse/cse_05_0019.html
https://servicecomb.apache.org/references/java-chassis/en_US/

	Contents
	1 Connecting Spring Cloud Applications to ServiceComb Engines Using Spring Cloud Huawei SDK
	2 Connecting Spring Cloud Applications to Nacos Engines Using Spring Cloud SDK
	3 Getting Started with Common Practices

