
CodeArts Artifact

Getting Started

Issue 01

Date 2024-10-18

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. i

Security Declaration

Vulnerability

Huawei's regulations on product vulnerability management are subject to the Vul. Response Process. For
details about this process, visit the following web page:
https://www.huawei.com/en/psirt/vul-response-process
For vulnerability information, enterprise customers can visit the following web page:
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. ii

https://www.huawei.com/en/psirt/vul-response-process
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Contents

1 Uploading Software Packages to Release Repos... 1

2 Uploading Components to Maven Repository..4

3 Releasing/Obtaining a Maven Component via a Build Task...7

4 Releasing/Obtaining an npm Component via a Build Task.. 12

5 Releasing/Obtaining a Go Component via a Build Task..19

6 Releasing/Obtaining a PyPI Component via a Build Task... 25

7 Uploading/Obtaining an RPM Component Using Linux Commands........................ 29

8 Uploading/Obtaining a Debian Component Using Linux Commands...................... 31

CodeArts Artifact
Getting Started Contents

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. iii

1 Uploading Software Packages to Release
Repos

Software packages are intermediate products generated during compilation and
build in software development. They are an indispensable part of continuous
integration and continuous delivery. By uploading software packages to Release
Repos for storage and management, you can secure file storage, facilitate
software development activities, and provide reliable software package for
deployment. Additionally, it provides dependencies for build tasks.

This document describes how to upload software packages to Release Repos,
helping you quickly get started. Figure 1-1 shows the main operation process.

Figure 1-1 Uploading software packages to Release Repos

Preparations
● You have registered a HUAWEI ID and enabled Huawei Cloud services.

CodeArts Artifact
Getting Started 1 Uploading Software Packages to Release Repos

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 1

https://support.huaweicloud.com/intl/en-us/usermanual-account/account_id_001.html

● You have subscribed to CodeArts Artifact.

Logging In to CodeArts Artifact Homepage

Step 1 Log in to the Huawei Cloud console.

Step 2 Click in the upper left corner of the page and choose Developer Services >
CodeArts Artifact from the service list.

Step 3 Click Access Service. The homepage of CodeArts Artifact is displayed.

----End

Creating a Project and Accessing its Release Repos

Step 1 Click Homepage in the navigation pane.

Step 2 Click Create Project.

Step 3 Hover over the Scrum card. Click Select to use this template to create a project.

Step 4 Set Project Name to Scrum01 and retain the default values for other parameters.

Step 5 Click OK. The Scrum01 project is displayed.

Step 6 Click Artifact in the navigation pane to access Release Repos of the project.

NO TE

You do not need to manually create Release Repos. After you create a project, Release
Repos with the same name is automatically generated under the project.

----End

Manually Uploading Software Packages on the Release Repos Page

Step 1 Go to the Release Repos named after the project and click Upload in the upper
right corner.

Step 2 In the displayed dialog box, configure the following information and click Upload.

● Target Repository: current Release Repos. Retain the default setting.

● Version: Set the version number for software packages.

● Upload Mode: Select Single file or Multiple files. Single file is selected by
default here.

● Path: After you set the path name, a folder with that name is created in the
Repository View. Uploaded software packages are stored in this folder.

● File: Select software packages from your local PC to upload.

Step 3 In the Repository View, click the name of the uploaded software package to view
its details.

----End

CodeArts Artifact
Getting Started 1 Uploading Software Packages to Release Repos

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 2

https://support.huaweicloud.com/intl/en-us/usermanual-devcloud/devcloud_01_0002.html#section1
https://console-intl.huaweicloud.com/&locale=en-us

CodeArts Artifact allows you to upload software packages either from the page or
through CodeArts Build to Release Repos. For details, see Uploading Software
Packages to Release Repos.

CodeArts Artifact
Getting Started 1 Uploading Software Packages to Release Repos

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 3

https://support.huaweicloud.com/intl/en-us/usermanual-codeci/codeci_ug_0038.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeci/codeci_ug_0038.html

2 Uploading Components to Maven
Repository

Developers often need to share some components with other team members
during routine development. Self-hosted repos serve as a shared site where
components can be stored and uploaded for sharing. This makes it easy for other
team members to obtain components from repositories.

This document describes how to upload components to Maven repository, helping
you quickly get started. Figure 2-1 shows the main operation process.

Figure 2-1 Uploading components to Maven repository

CodeArts Artifact
Getting Started 2 Uploading Components to Maven Repository

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 4

Prerequisites
● You have registered a HUAWEI ID and enabled Huawei Cloud services.
● You have subscribed to CodeArts Artifact.

Logging In to CodeArts Artifact Homepage

Step 1 Log in to the Huawei Cloud console.

Step 2 Click in the upper left corner of the page and choose Developer Services >
CodeArts Artifact from the service list.

Step 3 Click Access Service. The homepage of CodeArts Artifact is displayed.

----End

Creating a Project and Accessing its Self-Hosted Repos

Step 1 Click Homepage in the navigation pane.

Step 2 Click Create Project.

Step 3 Hover over the Scrum card. Click Select to use this template to create a project.

Step 4 Set Project Name to Scrum01 and retain the default values for other parameters.

Step 5 Click OK. The Scrum01 project is displayed.

Step 6 Click Artifact in the navigation pane to access the Self-hosted Repos of the
project.

----End

Creating a Self-Hosted Repo

Step 1 On the Artifact homepage, click the Repositories tab.

Step 2 Click Create Repository.

Step 3 Configure the basic information and click Submit.
● Repository Type: Local Repository and Virtual Repository. Local Repository

is selected by default.
● Repository Name: Enter a repository name.
● Package Type: Select Maven.
● Project: The default value is the current project. You can select another target

project from the drop-down list box.
● Include Patterns: (Optional) Configure a path whitelist for the repository.
● Version Policy: If both of them are selected, the Maven repository generates

two types of repositories: Release and Snapshot. Retain the default values.
● Description: (Optional) Enter up to 200 characters.

Step 4 The created Maven repository is displayed in the Repository View.

----End

CodeArts Artifact
Getting Started 2 Uploading Components to Maven Repository

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 5

https://support.huaweicloud.com/intl/en-us/usermanual-account/account_id_001.html
https://support.huaweicloud.com/intl/en-us/usermanual-devcloud/devcloud_01_0002.html#section1
https://console-intl.huaweicloud.com/&locale=en-us

Uploading Maven Components on the Self-Hosted Repo Page

Step 1 Go to the Self-hosted Repos in the left pane, and click the target repository.

Step 2 Click Upload.

Step 3 In the displayed dialog box, set Upload Mode to POM.

Step 4 In POM, click Select File and upload components whose name ends with
pom.xml or .pom from the local host.

Step 5 Click Upload.

Step 6 In the Repository View, click the name of the uploaded software package to view
its details.

----End

CodeArts Artifact allows you to upload components either from the page or
through CodeArts Build to self-hosted repos. For details, see Using Maven for
Build.

CodeArts Artifact
Getting Started 2 Uploading Components to Maven Repository

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 6

https://support.huaweicloud.com/intl/en-us/usermanual-codeci/codeci_ug_00051.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeci/codeci_ug_00051.html

3 Releasing/Obtaining a Maven
Component via a Build Task

This section describes how to release a Maven component to a self-hosted repo
via a build task and obtain the component from the repository for deployment.

Prerequisites
● You already have a project. If no project is available, create one.
● You have permissions for the current repository. For details, see Managing

Repository Permissions
● You have created a Maven repository and associated it with the project

Releasing a Maven Component to a Self-Hosted Repo

Step 1 Configure a repository.

1. Log in to CodeArts and go to a created project. Choose Services > Repo on
the top navigation bar.

2. Create a Maven repository. For details, see Creating a Repository Using a
Template. This procedure uses the Java Maven Demo template.

3. Go to the code repository and view the component configuration in the
pom.xml file.

CodeArts Artifact
Getting Started

3 Releasing/Obtaining a Maven Component via a
Build Task

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 7

https://support.huaweicloud.com/intl/en-us/qs-projectman/projectman_06_1000.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_1300.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0020.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0020.html

Step 2 Configure and run a build task.

1. On the Repo page, select a repository and click Create Build Task in the
upper right.
Select Blank Template and click OK.

2. Add the Build with Maven action.

3. Edit the Build with Maven action.
– Select the desired tool version. In this example, maven3.5.3-jdk8-open is

used.
– Find the following command and delete # in front of this command:

#mvn deploy -Dmaven.test.skip=true -U -e -X -B

Find the following command and add # in front of this command:
mvn package -Dmaven.test.skip=true -U -e -X -B

– Select Configure all POMs under Release to Self-hosted Repos, and
select the Maven repository associated with the project.

NO TE

If no option is available in the drop-down list, associate the Maven repository
with the project of the build task by referring to Associating Maven Repository
with Projects.

CodeArts Artifact
Getting Started

3 Releasing/Obtaining a Maven Component via a
Build Task

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 8

https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_1300.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_1300.html

Step 3 Click Save and Run on the right of the page to start the build task.

After the task is successfully executed, go to the self-hosted repo page and find
the uploaded Maven component.

----End

Obtaining a Maven Component from a Self-Hosted Repo
The following procedure uses the Maven component released in Releasing a
Maven Component to a Self-Hosted Repo as an example to describe how to
obtain the component from a self-hosted repo as a dependency.

Step 1 Configure a repository.

1. Go to the Maven repository and find the Maven component. Click the .pom
file with the same name as the component and click Download on the right.

2. Open the downloaded file and locate the <groupId>, <artifactId>, and
<version> lines.

CodeArts Artifact
Getting Started

3 Releasing/Obtaining a Maven Component via a
Build Task

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 9

3. Go to Repo. Create a Maven repository. For details, see Creating a Repository
Using a Template. This procedure uses the Java Maven Demo template.

4. Go to the code repository and edit the pom.xml file. Copy the dependency
code segment to the dependencies code segment and modify the version
number (for example, 2.0).

Step 2 Configure and run a build task.

1. On the Repo page, select a repository and click Create Build Task in the
upper right.
Select Blank Template and click OK.

2. Add the Build with Maven action.

CodeArts Artifact
Getting Started

3 Releasing/Obtaining a Maven Component via a
Build Task

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 10

https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0020.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0020.html

3. Click Save and Run on the right of the page to start the build task.
After the task is successfully executed, view the task details. If information
similar to the following is found in the log, the dependency has been
downloaded from the self-hosted repo.

----End

CodeArts Artifact
Getting Started

3 Releasing/Obtaining a Maven Component via a
Build Task

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 11

4 Releasing/Obtaining an npm
Component via a Build Task

This section describes how to release a component to an npm repository via a
build task and obtain a dependency from the repository for deployment.

Prerequisites
● You already have a project. If no project is available, create one.
● You have created an npm repository.
● You have permissions for the current repository. For details, see Managing

Repository Permissions

Releasing a Component to an npm Repository

Step 1 Download the configuration file.

1. Log in to CodeArts Artifact and access the npm repository. Click Settings in
the upper right corner and record the repository path.

CodeArts Artifact
Getting Started

4 Releasing/Obtaining an npm Component via a
Build Task

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 12

https://support.huaweicloud.com/intl/en-us/qs-projectman/projectman_06_1000.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html

2. Click Cancel to return to the npm repository page. Click Tutorial on the right
of the page.

3. In the displayed dialog box, click Download Configuration File.

4. Save the downloaded npmrc file as an .npmrc file.

Step 2 Configure a repository.

1. Go to Repo and create a Node.js repository. For details, see Creating a
Repository Using a Template. This procedure uses the Nodejs Webpack
Demo template.

2. Go to the repository and upload the .npmrc file to the root directory of the
repository. For details, see .

3. Find the package.json file in the repository and open it. Add the path
recorded on the Basic Information under the Settings tab page to the name
field in the file.

CodeArts Artifact
Getting Started

4 Releasing/Obtaining an npm Component via a
Build Task

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 13

https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0020.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0020.html

NO TE

If the name field cannot be modified, add the path to the Include Patterns field on
the Basic Information under the Settings tab page.

Step 3 Configure and run a build task.

CodeArts Artifact
Getting Started

4 Releasing/Obtaining an npm Component via a
Build Task

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 14

1. On the Repo page, select a repository and click Create Build Task in the
upper right.
Select Blank Template and click OK.

2. Add the Build with npm action.

3. Edit the Build with npm action.
– Select the desired tool version. In this example, nodejs12.7.0 is used.
– Delete the existing commands and run the following instead:

export PATH=$PATH:/root/.npm-global/bin
npm config set strict-ssl false
npm publish

4. Click Save and Run on the right of the page to start the build task.
After the task is successfully executed, go to the self-hosted repo page and
find the uploaded npm component.

----End

Obtaining a Dependency from an npm Repository

The following procedure uses the npm component released in Releasing a
Component to an npm Repository as an example to describe how to obtain a
dependency from an npm repository.

Step 1 Configure a repository.

1. Go to Repo and create a Node.js repository. For details, see Creating a
Repository Using a Template. This procedure uses the Nodejs Webpack
Demo template.

2. Obtain the .npmrc file (see Releasing a Component to an npm Repository)
and upload it to the root directory of the repository where the npm
dependency is to be used.

CodeArts Artifact
Getting Started

4 Releasing/Obtaining an npm Component via a
Build Task

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 15

https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0020.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0020.html

3. Find and open the package.json file in the repository, and configure the
dependency to the dependencies field. In this document, the value is as
follows:
"@test/vue-demo": "^1.0.0"

Step 2 Configure and run a build task.

1. On the Repo page, select a repository and click Create Build Task in the
upper right.
Select Blank Template and click OK.

2. Add the Build with npm action.

3. Edit the Build with npm action.
– Select the desired tool version. In this example, nodejs12.7.0 is used.
– Delete the existing commands and run the following instead:

export PATH=$PATH:/root/.npm-global/bin
npm config set strict-ssl false
npm install --verbose

CodeArts Artifact
Getting Started

4 Releasing/Obtaining an npm Component via a
Build Task

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 16

Step 3 Click Save and Run on the right of the page to start the build task.

After the task is successfully executed, view the task details. If information similar
to the following is found in the log, the dependency has been downloaded from
the npm repository.

----End

npm Commands

When configuring build tasks, you can also run the following npm commands as
required:

● Delete an existing component from the npm repository.
npm unpublish @socpe/packageName@version

● Obtain tags.
npm dist-tag list @scope/packageName

● Add a tag.
npm dist-tag add @scope/packageName@version tagName --registry registryUrl --verbose

● Delete a tag.
npm dist-tag rm @scope/packageName@version tagName --registry registryUrl --verbose

Command parameter description:

● scope: path of a self-hosted repo. For details about how to obtain the path,
see Releasing a Component to an npm Repository.

CodeArts Artifact
Getting Started

4 Releasing/Obtaining an npm Component via a
Build Task

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 17

● packageName: the part following scope in the name field of the
package.json file.

● version: value of the version field in the package.json file.
● registryUrl: URL of the self-hosted repo referenced by scope in the

configuration file.
● tagName: tag name.

The following uses the component released in Releasing a Component to an
npm Repository as an example:

● scope: test
● packageName: vue-demo
● version: 1.0.0

The command for deleting this component is as follows:

npm unpublish @test/vue-demo@1.0.0

CodeArts Artifact
Getting Started

4 Releasing/Obtaining an npm Component via a
Build Task

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 18

5 Releasing/Obtaining a Go Component
via a Build Task

This section describes how to release a component to a Go repository via a build
task and obtain a dependency from the repository for deployment.

Prerequisites
● You already have a project. If no project is available, create one.

● You have created a Go repository.

● You have permissions for the current repository. For details, see Managing
Repository Permissions

Releasing a Component to a Go Repository

Step 1 Download the configuration file.

1. Log in to CodeArts Artifact and access the Go repository. Click Tutorial on the
right of the page.

2. In the displayed dialog box, click Download Configuration File.

Step 2 Configure a repository.

1. Go to Repo. Create a Go repository. For details, see Creating a Repository
Using a Template. This procedure uses the Go web Demo template.

2. Prepare the go.mod and upload it to the root directory of the repository. For
details, see . The following figure shows the go.mod file used in this example.

CodeArts Artifact
Getting Started

5 Releasing/Obtaining a Go Component via a Build
Task

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 19

https://support.huaweicloud.com/intl/en-us/qs-projectman/projectman_06_1000.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0020.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0020.html

Step 3 Configure and run a build task.

1. On the Repo page, select a repository and click Create Build Task in the
upper right.
Select Blank Template and click OK.

2. Add the Build with Go action.

3. Edit the Build with Go action.
– Select the desired tool version. In this example, go-1.13.1 is used.
– Delete the existing commands, open the configuration file downloaded in

Step 1, and copy the commands for configuring Go environment
variables in Linux to the command box.

– Copy the Go upload command segment in the configuration file to the
command box, and replace the parameters in the commands by referring
to Go Module Packaging. (In this example, the package version is
v1.0.0.)

4. Click Save and Run on the right of the page to start the build task.
When the message build successful is displayed, go to the self-hosted repo
page and find the uploaded Go component.

----End

Obtaining a Dependency from a Go Repository

The following procedure uses the Go component released in Releasing a
Component to a Go Repository as an example to describe how to obtain a
dependency from a Go repository.

Step 1 Download the configuration file by referring to Releasing a Component to a Go
Repository.

Step 2 Go to Repo and create a Go repository. For details, see Creating a Repository
Using a Template. This procedure uses the Go web Demo template.

Step 3 Configure and run a build task.

1. On the Repo page, select a repository and click Create Build Task in the
upper right.
Select Blank Template and click OK.

2. Add the Build with Go action.

CodeArts Artifact
Getting Started

5 Releasing/Obtaining a Go Component via a Build
Task

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 20

https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0020.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0020.html

3. Edit the Build with Go action.
– Select the desired tool version. In this example, go-1.13.1 is used.
– Delete the existing commands, open the downloaded configuration file,

and copy the commands for configuring Go environment variables in
Linux to the command box.

– Copy the Go download commands in the configuration file to the
command box and replace the <modulename> parameter with the
actual value. (In this example, the parameter is set to example.com/
demo).

Step 4 Click Save and Run on the right of the page to start the build task.

When a message build successful is displayed, view the task details. If
information similar to the following is found in the log, the dependency has been
downloaded from the self-hosted repo.

----End

Go Module Packaging
This section describes how to build and upload Go components through Go
module packaging.

Perform the following steps:

1. Create a source folder in the working directory.
mkdir -p {module}@{version}

2. Copy the code source to the source folder.
cp -rf . {module}@{version}

3. Compress the component into a ZIP package.
zip -D -r [package name] [package root directory]

4. Upload the component ZIP package and the go.mod file to the self-hosted
repo.
curl -u {{username}}:{{password}} -X PUT {{repoUrl}}/{filePath} -T {{localFile}}

The component directory varies according to the package version. The version can
be:

● Versions earlier than v2.0: The directory is the same as the path of the
go.mod file. No special directory structure is required.

● v2.0 or later:
– If the first line in the go.mod file ends with /vX, the directory must

contain /vX. For example, if the version is v2.0.1, the directory must
contain v2.

– If the first line in the go.mod file does not end with /vN, the directory
remains unchanged and the name of the file to be uploaded must
contain +incompatible.

The following are examples of component directories for different versions:

● Versions earlier than v2.0
The go.mod file is used as an example.

CodeArts Artifact
Getting Started

5 Releasing/Obtaining a Go Component via a Build
Task

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 21

a. Create a source folder in the working directory.
The value of module is example.com/demo and that of version is 1.0.0.
The command is as follows:
mkdir -p ~/example.com/demo@v1.0.0

b. Copy the code source to the source folder.
The command is as follows (with the same parameter values as the
previous command):
cp -rf . ~/example.com/demo@v1.0.0/

c. Compress the component into a ZIP package.
Run the following command to go to the upper-level directory of the root
directory where the ZIP package is located:
cd ~

Then, use the zip command to compress the code into a component
package. In this command, the package root directory is example.com
and the package name is v1.0.0.zip. The command is as follows:
zip -D -r v1.0.0.zip example.com/

d. Upload the component ZIP package and the go.mod file to the self-
hosted repo.
Parameters username, password, and repoUrl can be obtained from the
configuration file of the self-hosted repo.

▪ For the ZIP package, the value of filePath is example.com/
demo/@v/v1.0.0.zip and that of localFile is v1.0.0.zip.

▪ For the go.mod file, the value of filePath is example.com/
demo/@v/v1.0.0.mod and that of localFile is example.com/
demo@v1.0.0/go.mod.

The command is as follows (replace username, password, and repoUrl
with the actual values):
curl -u {{username}}:{{password}} -X PUT {{repoUrl}}/example.com/demo/@v/v1.0.0.zip -T
v1.0.0.zip
curl -u {{username}}:{{password}} -X PUT {{repoUrl}}/example.com/demo/@v/v1.0.0.mod -T
example.com/demo@v1.0.0/go.mod

● v2.0 and later, with the first line in go.mod ending with /vX
The go.mod file is used as an example.

a. Create a source folder in the working directory.
The value of module is example.com/demo/v2 and that of version is
2.0.0. The command is as follows:
mkdir -p ~/example.com/demo/v2@v2.0.0

b. Copy the code source to the source folder.
The command is as follows (with the same parameter values as the
previous command):
cp -rf . ~/example.com/demo/v2@v2.0.0/

c. Compress the component into a ZIP package.

CodeArts Artifact
Getting Started

5 Releasing/Obtaining a Go Component via a Build
Task

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 22

Run the following command to go to the upper-level directory of the root
directory where the ZIP package is located:
cd ~

Then, use the zip command to compress the code into a component
package. In this command, the package root directory is example.com
and the package name is v2.0.0.zip. The command is as follows:
zip -D -r v2.0.0.zip example.com/

d. Upload the component ZIP package and the go.mod file to the self-
hosted repo.
Parameters username, password, and repoUrl can be obtained from the
configuration file of the self-hosted repo.

▪ For the ZIP package, the value of filePath is example.com/
demo/v2/@v/v2.0.0.zip and that of localFile is v2.0.0.zip.

▪ For the go.mod file, the value of filePath is example.com/
demo/v2/@v/v2.0.0.mod and that of localFile is example.com/
demo/v2@v2.0.0/go.mod.

The command is as follows (replace username, password, and repoUrl
with the actual values):
curl -u {{username}}:{{password}} -X PUT {{repoUrl}}/example.com/demo/v2/@v/v2.0.0.zip -T
v2.0.0.zip
curl -u {{username}}:{{password}} -X PUT {{repoUrl}}/example.com/demo/v2/@v/v2.0.0.mod -T
example.com/demo/v2@v2.0.0/go.mod

● v2.0 and later, with the first line in go.mod not ending with /vX
The go.mod file is used as an example.

a. Create a source folder in the working directory.
The value of module is example.com/demo and that of version is 3.0.0.
The command is as follows:
mkdir -p ~/example.com/demo@v3.0.0+incompatible

b. Copy the code source to the source folder.
The command is as follows (with the same parameter values as the
previous command):
cp -rf . ~/example.com/demo@v3.0.0+incompatible/

c. Compress the component into a ZIP package.
Run the following command to go to the upper-level directory of the root
directory where the ZIP package is located:
cd ~

Then, use the zip command to compress the code into a component
package. In this command, the package root directory is example.com
and the package name is v3.0.0.zip. The command is as follows:
zip -D -r v3.0.0.zip example.com/

d. Upload the component ZIP package and the go.mod file to the self-
hosted repo.

CodeArts Artifact
Getting Started

5 Releasing/Obtaining a Go Component via a Build
Task

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 23

Parameters username, password, and repoUrl can be obtained from the
configuration file of the self-hosted repo.

▪ For the ZIP package, the value of filePath is example.com/
demo/@v/v3.0.0+incompatible.zip and that of localFile is
v3.0.0.zip.

▪ For the go.mod file, the value of filePath is example.com/
demo/@v/v3.0.0+incompatible.mod and that of localFile is
example.com/demo@v3.0.0+incompatible/go.mod.

The command is as follows (replace username, password, and repoUrl
with the actual values):
curl -u {{username}}:{{password}} -X PUT {{repoUrl}}/example.com/demo/@v/
v3.0.0+incompatible.zip -T v3.0.0.zip
curl -u {{username}}:{{password}} -X PUT {{repoUrl}}/example.com/demo/@v/
v3.0.0+incompatible.mod -T example.com/demo@v3.0.0+incompatible/go.mod

CodeArts Artifact
Getting Started

5 Releasing/Obtaining a Go Component via a Build
Task

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 24

6 Releasing/Obtaining a PyPI Component
via a Build Task

This section describes how to release a component to a PyPI repository via a build
task and obtain a dependency from the repository for deployment.

Prerequisites
● You already have a project. If no project is available, create one.
● You have created a PyPI repository.
● You have permissions for the current repository. For details, see Managing

Repository Permissions

Releasing a Component to a PyPI Repository
Step 1 Download the configuration file.

1. Log in to CodeArts Artifact and access the PyPI repository. Click Tutorial on
the right of the page.

2. In the displayed dialog box, find the For Publishing and click Download
Configuration File.

3. Save the downloaded PYPIRC file as a .pypirc file.

Step 2 Configure a repository.
1. Go to Repo and create a Python repository. For details, see Creating a

Repository. This procedure uses the Python3 Demo template.
2. Go to the repository and upload the .pypirc file to the root directory of the

repository. For details, see .

CodeArts Artifact
Getting Started

6 Releasing/Obtaining a PyPI Component via a Build
Task

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 25

https://support.huaweicloud.com/intl/en-us/qs-projectman/projectman_06_1000.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0013.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0013.html

Step 3 Configure and run a build task.

1. On the Repo page, select a repository and click Create Build Task in the
upper right.
Select Blank Template and click OK.

2. Add the Build with Setuptools action.

3. Edit the Build with Setuptools action.
– Select the desired tool version. In this example, python3.6 is used.
– Delete the existing commands and run the following instead:

Ensure that the setup.py file exists in the root directory of the code, and run the following
command to pack the project into a WHL package.
python setup.py bdist_wheel
Set the .pypirc file in the root directory of the current project as the configuration file.
cp -rf .pypirc ~/
Upload the component to the PyPI repository.
twine upload -r pypi dist/*

NO TE

If certificate verification fails during the upload, add the following command to
the first line of the preceding command to skip certificate verification:
export CURL_CA_BUNDLE=""

4. Click Save and Run on the right of the page to start the build task.
After the task is successfully executed, go to the self-hosted repo page and
find the uploaded PyPI component.

----End

Obtaining a Dependency from a PyPI Repository
The following procedure uses the PyPI component released in Releasing a
Component to a PyPI Repository as an example to describe how to obtain a
dependency from a PyPI repository.

Step 1 Download the configuration file.

1. Go to the PyPI repository and click Tutorial on the right of the page.
2. In the displayed dialog box, find the For Download and click Download

Configuration File.

CodeArts Artifact
Getting Started

6 Releasing/Obtaining a PyPI Component via a Build
Task

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 26

3. Save the downloaded pip.ini file as a pip.conf file.

Step 2 Configure a repository.

1. Go to Repo and create a Python repository. For details, see Creating a
Repository. This procedure uses the Python3 Demo template.

2. Go to Repo, and upload the pip.conf file to the root directory of the
repository where the PyPI dependency is to be used.

3. Find the requirements.txt file in the repository and open it. If the file is not
found, create it by referring to Managing Files. Add the dependency
configuration to this file, as shown in the following figure.
demo ==1.0

Step 3 Configure and run a build task.

1. On the Repo page, select a repository and click Create Build Task in the
upper right.

Select Blank Template and click OK.

2. Add the Build with Setuptools action.

3. Edit the Build with Setuptools action.

– Select the desired tool version. In this example, python3.6 is used.

– Delete the existing commands and run the following instead:
Set the pip.conf file in the root directory of the current project as the configuration file.
 export PIP_CONFIG_FILE=./pip.conf
Download the PyPI component.
 pip install -r requirements.txt --no-cache-dir

CodeArts Artifact
Getting Started

6 Releasing/Obtaining a PyPI Component via a Build
Task

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 27

https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0013.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0013.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0202.html

Step 4 Click Save and Run on the right of the page to start the build task.

After the task is successfully executed, view the task details. If information similar
to the following is found in the log, the dependency has been downloaded from
the self-hosted repo.

----End

CodeArts Artifact
Getting Started

6 Releasing/Obtaining a PyPI Component via a Build
Task

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 28

7 Uploading/Obtaining an RPM
Component Using Linux Commands

This section describes how to use Linux commands to upload a component to an
RPM repository and obtain a dependency from the repository.

Prerequisites
● An RPM component is available.
● A Linux host that can connect to the public network is available.
● You have created an RPM repository.
● You have permissions for the current repository. For details, see Managing

Repository Permissions

Releasing a Component to an RPM Repository

Step 1 Log in to CodeArts Artifact and access the RPM repository. Click Tutorial on the
right of the page.

Step 2 In the displayed dialog box, click Download Configuration File.

Step 3 On the Linux host, run the following command to upload an RPM component:
curl -u {{user}}:{{password}} -X PUT https://{{repoUrl}}/{{component}}/{{version}}/ -T {{localFile}}

In this command, user, password, and repoUrl can be obtained from the RPM
upload command in the configuration file downloaded in the previous step.

● user: character string before the colon (:) between curl -u and -X

CodeArts Artifact
Getting Started

7 Uploading/Obtaining an RPM Component Using
Linux Commands

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 29

https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html

● password: character string after the colon (:) between curl -u and -X

● repoUrl: character string between https:// and /{{component}}

component, version, and localFile can be obtained from the RPM component.
The hello-0.17.2-54.x86_64.rpm component is used as an example.

● component: software name, for example, hello.

● version: software version, for example, 0.17.2.

● localFile: RPM component, for example, hello-0.17.2-54.x86_64.rpm.

The following figure shows the complete command.

Step 4 After the commands are successfully executed, go to the self-hosted repo and find
the uploaded RPM component.

----End

Obtaining a Dependency from an RPM Repository

The following procedure uses the RPM component released in Releasing a
Component to an RPM Repository as an example to describe how to obtain a
dependency from an RPM repository.

Step 1 Download the configuration file by referring to Releasing a Component to an
RPM Repository.

Step 2 Open the configuration file, replace all {{component}} in the file with the value of
{{component}} (hello in this file) used for uploading the RPM file, delete the
RPM upload command, and save the file.

Step 3 Save the modified configuration file to the /etc/yum.repos.d/ directory on the
Linux host.

Step 4 Run the following command to download the RPM component: Replace hello
with the actual value of component.
yum install hello

----End

CodeArts Artifact
Getting Started

7 Uploading/Obtaining an RPM Component Using
Linux Commands

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 30

8 Uploading/Obtaining a Debian
Component Using Linux Commands

This section describes how to use Linux commands to upload a component to a
Debian repository and obtain a dependency from the repository.

Prerequisites
● A Debian component is available.

● A Linux host that can connect to the public network is available.

● You have created a Debian repository.

● You have permissions for the current repository. For details, see Managing
Repository Permissions

Releasing a Component to a Debian Repository

Step 1 Log in to CodeArts Artifact and access the Debian repository. Click Tutorial on the
right of the page.

Step 2 In the displayed dialog box, click Download Configuration File.

Step 3 On the Linux host, run the following command to upload a Debian component:

CodeArts Artifact
Getting Started

8 Uploading/Obtaining a Debian Component Using
Linux Commands

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 31

https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0047.html

curl -u <USERNAME>:<PASSWORD> -X PUT "https:// <repoUrl>/
<DEBIAN_PACKAGE_NAME>;deb.distribution=<DISTRIBUTION>;deb.component=<COMPONENT>;deb.archite
cture=<ARCHITECTURE>" -T <PATH_TO_FILE>

In this command, USERNAME, PASSWORD, and repoUrl can be obtained from
the Debian upload command in the configuration file downloaded in the
previous step.

● USERNAME: username used for uploading files, which can be obtained from
the Debian configuration file. For details, see the example figure.

● PASSWORD: password used for uploading files, which can be obtained from
the Debian configuration file. For details, see the example figure.

● repoUrl: URL used for uploading files, which can be obtained from the Debian
configuration file. For details, see the example figure.

DEBIAN_PACKAGE_NAME, DISTRIBUTION, COMPONENT, and
ARCHITECTURE can be obtained from the Debian component.
The a2jmidid_8_dfsg0-1_amd64.deb component is used as an example.

● DEBIAN_PACKAGE_NAME: software package name, for example,
a2jmidid_8_dfsg0-1_amd64.deb.

● DISTRIBUTION: release version, for example, trusty.
● COMPONENT: component name, for example, main.
● ARCHITECTURE: system architecture, for example, amd64.
● PATH_TO_FILE: local storage path of the Debian component, for example, /

root/a2jmidid_8_dfsg0-1_amd64.deb.
The following figure shows the complete commands.

Step 4 After the commands are successfully executed, go to the self-hosted repo and find
the uploaded Debian component.

----End

Obtaining a Dependency from a Self-hosted Debian Repo
The following procedure uses the Debian component released in Releasing a
Component to a Debian Repository as an example to describe how to obtain a
dependency from a Debian repository.

Step 1 Download the public key file of the Debian repository by referring to Releasing a
Component to a Debian Repository.

CodeArts Artifact
Getting Started

8 Uploading/Obtaining a Debian Component Using
Linux Commands

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 32

Step 2 Import the gpg public key.
gpg --import <PUBLIC_KEY_PATH>

PUBLIC_KEY_PATH: local path for storing the Debian public key, for example,
artifactory.gpg.public.

Step 3 Add the public key to the list of keys used by apt to authenticate packages.
gpg --export --armor <SIG_ID> | apt-key add -

Step 4 Add the apt repository source.

Open the configuration file (for details about how to obtain the file, see
Releasing a Component to a Debian Repository), replace all DISTRIBUTION
fields with the value of COMPONENT (for example, main) used for uploading the
Debian file, and add the repository source based on the downloaded configuration
file sources.list.

Step 5 After the repository source is added, run the following command to update the
repository source:
apt-get update

Step 6 Run the following command to download the Debian package: Replace a2jmidid
with the actual value of PACKAGE.
apt download a2jmidid

CodeArts Artifact
Getting Started

8 Uploading/Obtaining a Debian Component Using
Linux Commands

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 33

NO TE

Method for obtaining packages:
● Download the Packages source data of the Debian component. The following uses the

a2jmidid package as an example.

----End

CodeArts Artifact
Getting Started

8 Uploading/Obtaining a Debian Component Using
Linux Commands

Issue 01 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 34

	Contents
	1 Uploading Software Packages to Release Repos
	2 Uploading Components to Maven Repository
	3 Releasing/Obtaining a Maven Component via a Build Task
	4 Releasing/Obtaining an npm Component via a Build Task
	5 Releasing/Obtaining a Go Component via a Build Task
	6 Releasing/Obtaining a PyPI Component via a Build Task
	7 Uploading/Obtaining an RPM Component Using Linux Commands
	8 Uploading/Obtaining a Debian Component Using Linux Commands

