
Data Warehouse Service

Query Performance Optimization

Issue 10

Date 2023-06-25

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2023. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

Contents

1 Overview of Query Performance Optimization... 1

2 Query Execution Process.. 2

3 SQL Execution Plan... 5

4 SQL Optimization Guide..18
4.1 Optimization Process... 18
4.2 Updating Statistics..19
4.3 Reviewing and Modifying a Table Definition.. 20
4.4 SQL Statement Rewriting Rules...21
4.5 Typical SQL Optimization Methods.. 23
4.5.1 SQL Self-Diagnosis.. 23
4.5.2 Optimizing Statement Pushdown.. 26
4.5.3 Optimizing Subqueries.. 33
4.5.4 Optimizing Statistics...41
4.5.5 Optimizing Operators.. 46
4.5.6 Optimizing Data Skew... 48
4.6 Hint-based Tuning.. 54
4.6.1 Plan Hint Optimization... 54
4.6.2 Join Order Hints... 56
4.6.3 Join Operation Hints...57
4.6.4 Rows Hints... 58
4.6.5 Stream Operation Hints.. 60
4.6.6 Scan Operation Hints... 63
4.6.7 Sublink Name Hints..64
4.6.8 Skew Hints... 65
4.6.9 Hint That Disables Subquery Pull-up... 70
4.6.10 Configuration Parameter Hints.. 71
4.6.11 Hint Errors, Conflicts, and Other Warnings... 73
4.6.12 Plan Hint Cases.. 76
4.7 Routinely Maintaining Tables... 80
4.8 Routinely Recreating an Index... 82
4.9 Adjusting Key Parameters During SQL Tuning... 83
4.10 Configuration SMP... 85

Data Warehouse Service
Query Performance Optimization Contents

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

4.10.1 Application Scenarios and Restrictions..85
4.10.2 Resource Impact on SMP Performance... 87
4.10.3 Other Factors Affecting SMP Performance.. 88
4.10.4 Suggestions for SMP Parameter Settings... 88
4.10.5 SMP Manual Optimization Suggestions... 89
4.11 Querying SQL Statements That Affect Performance Most.. 89

5 Optimization Cases... 91
5.1 Case: Selecting an Appropriate Distribution Column... 91
5.2 Case: Creating an Appropriate Index... 92
5.3 Case: Adding NOT NULL for JOIN Columns.. 93
5.4 Case: Pushing Down Sort Operations to DNs... 95
5.5 Case: Configuring cost_param for Better Query Performance.. 96
5.6 Case: Adjusting the Partial Clustering Key...100
5.7 Case: Adjusting the Table Storage Mode in a Medium Table... 102
5.8 Case: Reconstructing Partition Tables... 103
5.9 Case: Adjusting the GUC Parameter best_agg_plan...104
5.10 Case: Rewriting SQL Statements and Eliminating Prune Interference.. 106
5.11 Case: Rewriting SQL Statements and Deleting in-clause...108
5.12 Case: Setting Partial Cluster Keys... 109
5.13 Case: Converting from NOT IN to NOT EXISTS... 112

6 SQL Execution Troubleshooting...114
6.1 Low Query Efficiency... 114
6.2 Different Data Is Displayed for the Same Table Queried By Multiple Users...115
6.3 An Error Occurs During the Integer Conversion.. 115
6.4 Automatic Retry upon SQL Statement Execution Errors.. 116

7 query_band Load Identification...120

8 Common Performance Parameter Optimization Design...125

Data Warehouse Service
Query Performance Optimization Contents

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

1 Overview of Query Performance
Optimization

Performance optimization is a key step in database application development and
migration and is a large part in the entire project implementation process.
Performance optimization improves database resource utilization, reduces service
costs, reduces application system running risks, improves system stability, and
brings more values to customers.

The aim of SQL optimization is to maximize the utilization of resources, including
CPU, memory, disk I/O, and network I/O. To maximize resource utilization is to run
SQL statements as efficiently as possible to achieve the highest performance at a
lower cost. For example, when performing a typical point query, you can use the
seqscan and filter (that is, read every tuple and query conditions for match). You
can also use an index scan, which can be implemented at a lower cost but achieve
the same effect.

This chapter describes the basic database commands analyze and explain for
performance optimization, and describes the explained database execution plans.
This helps you understand the database execution process, identify performance
bottlenecks, and optimize the database through execution plans. In addition, this
document describes performance parameters, typical application scenarios, SQL
diagnosis, SQL performance optimization, and SQL rewriting cases, which provide
you comprehensive reference for database performance optimization.

Data Warehouse Service
Query Performance Optimization 1 Overview of Query Performance Optimization

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

2 Query Execution Process

The process from receiving SQL statements to the statement execution by the SQL
engine is shown in Figure 2-1 and Table 2-1. The texts in red are steps where
database administrators can optimize queries.

Figure 2-1 Execution process of query-related SQL statements by the SQL engine

Table 2-1 Execution process of query-related SQL statements by the SQL engine

Procedure Description

1. Perform syntax
and lexical parsing.

Converts the input SQL statements from the string data
type to the formatted structure stmt based on the
specified SQL statement rules.

Data Warehouse Service
Query Performance Optimization 2 Query Execution Process

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

Procedure Description

2. Perform semantic
parsing.

Converts the formatted structure obtained from the
previous step into objects that can be recognized by the
database.

3. Rewrite the query
statements.

Converts the output of the last step into the structure
that optimizes the query execution.

4. Optimize the
query.

Determines the execution mode of SQL statements (the
execution plan) based on the result obtained from the
last step and the internal database statistics. For details
about the impact of statistics and GUC parameters on
query optimization (execution plan), see Optimizing
Queries Using Statistics and Optimizing Queries Using
GUC parameters.

5. Perform the
query.

Executes the SQL statements based on the execution
path specified in the last step. Selecting a proper
underlying storage mode improves the query execution
efficiency. For details, see Optimizing Queries Using the
Underlying Storage.

Optimizing Queries Using Statistics
The GaussDB(DWS) optimizer is a typical Cost-based Optimization (CBO). By
using CBO, the database calculates the number of tuples and the execution cost
for each execution step under each execution plan based on the number of table
tuples, column width, NULL record ratio, and characteristic values, such as distinct,
MCV, and HB values, and certain cost calculation methods. The database then
selects the execution plan that takes the lowest cost for the overall execution or
for the return of the first tuple. These characteristic values are the statistics, which
is the core for optimizing a query. Accurate statistics helps the planner select the
most appropriate query plan. Generally, you can collect statistics of a table or that
of some columns in a table using ANALYZE. You are advised to periodically
execute ANALYZE or execute it immediately after you modified most contents in a
table.

Optimizing Queries Using GUC parameters
Optimizing queries aims to select an efficient execution mode.

Take the following statement as an example:
select count(1)
from customer inner join store_sales on (ss_customer_sk = c_customer_sk);

During execution of customer inner join store_sales, GaussDB(DWS) supports
nested loop, merge join, and hash join. The optimizer estimates the result set
value and the execution cost under each join mode based on the statistics of the
customer and store_sales tables and selects the execution plan that takes the
lowest execution cost.

As described in the preceding content, the execution cost is calculated based on
certain methods and statistics. If the actual execution cost cannot be accurately

Data Warehouse Service
Query Performance Optimization 2 Query Execution Process

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

estimated, you need to optimize the execution plan by setting the GUC
parameters.

Optimizing Queries Using the Underlying Storage
GaussDB(DWS) supports row- and column-based tables. The selection of an
underlying storage mode strongly depends on specific customer business
scenarios. You are advised to use column-store tables for computing service
scenarios (mainly involving association and aggregation operations) and row-store
tables for service scenarios, such as point queries and massive UPDATE or DELETE
executions.

Optimization methods of each storage mode will be described in details in the
performance optimization chapter.

Optimizing Queries by Rewriting SQL Statements
Besides the preceding methods that improve the performance of the execution
plan generated by the SQL engine, database administrators can also enhance SQL
statement performance by rewriting SQL statements while retaining the original
service logic based on the execution mechanism of the database and abundant
practical experience.

This requires that the system administrators know the customer business well and
have professional knowledge of SQL statements.

Data Warehouse Service
Query Performance Optimization 2 Query Execution Process

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

3 SQL Execution Plan

An SQL execution plan is a node tree that displays the detailed steps performed
when the GaussDB(DWS) executes an SQL statement. Each step indicates a
database operator, also called an execution operator.

You can run the EXPLAIN command to view the execution plan generated for
each query by an optimizer. EXPLAIN outputs a row of information for each
execution node, showing the basic node type and the expense estimate that the
optimizer makes for executing the node.

Execution Plan Information

In addition to setting different display formats for an execution plan, you can use
different EXPLAIN syntax to display execution plan information in detail. The
common usages are as follows. For more usages, see EXPLAIN Syntax.

● EXPLAIN statement: only generates an execution plan and does not execute.
The statement indicates SQL statements.

● EXPLAIN ANALYZE statement: generates and executes an execution plan, and
displays the execution summary. Then actual execution time statistics are
added to the display, including the total elapsed time expended within each
plan node (in milliseconds) and the total number of rows it actually returned.

● EXPLAIN PERFORMANCE statement: generates and executes the execution
plan, and displays all execution information.

To measure the run time cost of each node in the execution plan, the current
execution of EXPLAIN ANALYZE or EXPLAIN PERFORMANCE adds profiling
overhead to query execution. Running EXPLAIN ANALYZE or PERFORMANCE on a
query sometimes takes longer time than executing the query normally. The
amount of overhead depends on the nature of the query, as well as the platform
being used.

Therefore, if an SQL statement is not finished after being running for a long time,
run the EXPLAIN statement to view the execution plan and then locate the fault.
If the SQL statement has been properly executed, run the EXPLAIN ANALYZE or
EXPLAIN PERFORMANCE statement to check the execution plan and information
to locate the fault.

Description of common execution plan keywords:

Data Warehouse Service
Query Performance Optimization 3 SQL Execution Plan

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

https://support.huaweicloud.com/intl/en-us/sqlreference-dws/dws_06_0232.html

1. Table access modes
– Seq Scan/CStore Scan

Scans all rows of the table in sequence. These are basic scan operators,
which are used to scan row-store and column-store tables in sequence.

– Index Scan/CStore Index Scan
Scans indexes of row-store and column-store tables. There are indexes in
row-store or column-store tables, and the condition column is the index
column.
The optimizer uses a two-step plan: the child plan node visits an index to
find the locations of rows matching the index condition, and then the
upper plan node actually fetches those rows from the table itself.
Fetching rows separately is much more expensive than reading them
sequentially, but because not all pages of the table have to be visited,
this is still cheaper than a sequential scan. The upper-layer planning node
first sort the location of index identifier rows based on physical locations
before reading them. This minimizes the independent capturing overhead.
If there are separate indexes on multiple columns referenced in WHERE,
the optimizer might choose to use an AND or OR combination of the
indexes. However, this requires the visiting of both indexes, so it is not
necessarily a win compared to using just one index and treating the other
condition as a filter.
The following Index scans featured with different sorting mechanisms are
involved:

▪ Bitmap Index Scan
To use a bitmap index to capture a data page, you need to scan the
index to obtain the bitmap and then scan the base table.

▪ Index Scan using index_name
Fetches table rows in index order, which makes them even more
expensive to read. However, there are so few rows that the extra cost
of sorting the row locations is unnecessary. This plan type is used
mainly for queries fetching just a single row and queries having an
ORDER BY condition that matches the index order, because no extra
sorting step is needed to satisfy ORDER BY.

2. Table connection modes
– Nested Loop

Nested-loop is used for queries that have a smaller data set connected. In
a Nested-loop join, the foreign table drives the internal table and each
row returned from the foreign table should have a matching row in the
internal table. The returned result set of all queries should not exceed
10,000. The table that returns a smaller subset will work as a foreign
table, and indexes are recommended for connection fields of the internal
table.

– (Sonic) Hash Join
A Hash join is used for large tables. The optimizer uses a hash join, in
which rows of one table are entered into an in-memory hash table, after
which the other table is scanned and the hash table is probed for
matches to each row. Sonic and non-Sonic hash joins differ in their hash
table structures, which do not affect the execution result set.

Data Warehouse Service
Query Performance Optimization 3 SQL Execution Plan

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

– Merge Join
In a merge join, data in the two joined tables is sorted by join columns.
Then, data is extracted from the two tables to a sorted table for
matching.
Merge join requires more resources for sorting and its performance is
lower than that of hash join. If the source data has been sorted, it does
not need to be sorted again when merge join is performed. In this case,
the performance of merge join is better than that of hash join.

3. Operators
– sort

Sorts the result set.
– filter

The EXPLAIN output shows the WHERE clause being applied as a Filter
condition attached to the Seq Scan plan node. This means that the plan
node checks the condition for each row it scans, and returns only the
ones that meet the condition. The estimated number of output rows has
been reduced because of the WHERE clause. However, the scan will still
have to visit all 10000 rows. As a result, the cost is not decreased. It
increases a bit (by 10000 x cpu_operator_cost) to reflect the extra CPU
time spent on checking the WHERE condition.

– LIMIT
LIMIT limits the number of output execution results. If a LIMIT condition
is added, not all rows are retrieved.

Execution Plan Display Format
GaussDB(DWS) provides four display formats: normal, pretty, summary, and run.
You can change the display format of execution plans by setting
explain_perf_mode.

● normal indicates that the default printing format is used. Figure 3-1 shows
the display format.

Figure 3-1 Example of an execution plan in normal format

● pretty indicates that the optimized display mode of GaussDB(DWS) is used. A
new format contains a plan node ID, directly and effectively analyzing
performance. Figure 3-2 is an example.

Data Warehouse Service
Query Performance Optimization 3 SQL Execution Plan

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

Figure 3-2 Example of an execution plan using the pretty format

● summary indicates that the analysis result based on such information is
printed in addition to the printed information in the format specified by
pretty.

● run indicates that in addition to the printed information specified by
summary, the database exports the information as a CSV file.

Common Types of Plans

GaussDB(DWS) has three types of distributed plans:

● Fast Query Shipping (FQS) plan
The CN directly delivers statements to DNs. Each DN executes the statements
independently and summarizes the execution results on the CN.

● Stream plan
The CN generates a plan for the statements to be executed and delivers the
plan to DNs for execution. During the execution, DNs use the Stream operator
to exchange data.

● Remote-Query plan
After generating a plan, the CN delivers some statements to DNs. Each DN
executes the statements independently and sends the execution result to the
CN. The CN executes the remaining statements in the plan.

The existing tables tt01 and tt02 are defined as follows:

CREATE TABLE tt01(c1 int, c2 int) DISTRIBUTE BY hash(c1);
CREATE TABLE tt02(c1 int, c2 int) DISTRIBUTE BY hash(c2);

Type 1: FQS plan, all statements pushed down

Two tables are joined, and the join condition is the distribution column of each
table. If the stream operator is disabled, the CN directly sends statements to each
DN for execution. The result is summarized on the CN.

SET enable_stream_operator=off;
SET explain_perf_mode=normal;

EXPLAIN (VERBOSE on,COSTS off) SELECT * FROM tt01,tt02 WHERE tt01.c1=tt02.c2;
 QUERY PLAN

 Data Node Scan on "__REMOTE_FQS_QUERY__"
 Output: tt01.c1, tt01.c2, tt02.c1, tt02.c2
 Node/s: All datanodes
 Remote query: SELECT tt01.c1, tt01.c2, tt02.c1, tt02.c2 FROM dbadmin.tt01, dbadmin.tt02 WHERE tt01.c1
= tt02.c2
(4 rows)

Type 2: Non-FQS plan, some statements pushed down

Data Warehouse Service
Query Performance Optimization 3 SQL Execution Plan

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

Two tables are joined and the join condition contains non-distribution columns. If
the stream operator is disabled, the CN delivers the base table scanning
statements to each DN. Then, the JOIN operation is performed on the CN.

SET enable_stream_operator=off;
SET explain_perf_mode=normal;

EXPLAIN (VERBOSE on,COSTS off) SELECT * FROM tt01,tt02 WHERE tt01.c1=tt02.c1;
 QUERY PLAN

 Hash Join
 Output: tt01.c1, tt01.c2, tt02.c1, tt02.c2
 Hash Cond: (tt01.c1 = tt02.c1)
 -> Data Node Scan on tt01 "_REMOTE_TABLE_QUERY_"
 Output: tt01.c1, tt01.c2
 Node/s: All datanodes
 Remote query: SELECT c1, c2 FROM ONLY dbadmin.tt01 WHERE true
 -> Hash
 Output: tt02.c1, tt02.c2
 -> Data Node Scan on tt02 "_REMOTE_TABLE_QUERY_"
 Output: tt02.c1, tt02.c2
 Node/s: All datanodes
 Remote query: SELECT c1, c2 FROM ONLY dbadmin.tt02 WHERE true
(13 rows)

Type 3: Stream plan, no data exchange between DNs

Two tables are joined, and the join condition is the distribution column of each
table. DNs do not need to exchange data. After generating a stream plan, the CN
delivers the plan except the Gather Stream part to DNs for execution. The CN
scans the base table on each DN, performs hash join, and sends the result to the
CN.

SET enable_fast_query_shipping=off;
SET enable_stream_operator=on;

EXPLAIN (VERBOSE on,COSTS off) SELECT * FROM tt01,tt02 WHERE tt01.c1=tt02.c2;
 QUERY PLAN
--
 Streaming (type: GATHER)
 Output: tt01.c1, tt01.c2, tt02.c1, tt02.c2
 Node/s: All datanodes
 -> Hash Join
 Output: tt01.c1, tt01.c2, tt02.c1, tt02.c2
 Hash Cond: (tt01.c1 = tt02.c2)
 -> Seq Scan on dbadmin.tt01
 Output: tt01.c1, tt01.c2
 Distribute Key: tt01.c1
 -> Hash
 Output: tt02.c1, tt02.c2
 -> Seq Scan on dbadmin.tt02
 Output: tt02.c1, tt02.c2
 Distribute Key: tt02.c2
(14 rows)

Type 4: Stream plan, with data exchange between DNs

When two tables are joined and the join condition contains non-distribution
columns, and the stream operator is enabled (SET enable_stream_operator=on), a
stream plan is generated, which allows data exchange between DNs. For table
tt02, the base table is scanned on each DN. After the scanning, the Redistribute
Stream operator performs hash calculation based on tt02.c1 in the JOIN
condition, sends the hash calculation result to each DN, and then performs JOIN
on each DN, finally, the data is summarized to the CN.

Data Warehouse Service
Query Performance Optimization 3 SQL Execution Plan

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

Type 5: Remote-Query plan

unship_func cannot be pushed down and does not meet partial pushdown
requirements (subquery pushdown). Therefore, you can only send base table
scanning statements to DNs and collect base table data to the CN for calculation.

Data Warehouse Service
Query Performance Optimization 3 SQL Execution Plan

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

EXPLAIN PERFORMANCE Description
You can use EXPLAIN ANALYZE or EXPLAIN PERFORMANCE to check the SQL
statement execution information and compare the actual execution and the
optimizer's estimation to find what to optimize. EXPLAIN PERFORMANCE
provides the execution information on each DN, whereas EXPLAIN ANALYZE does
not.

Tables are defined as follows:

CREATE TABLE tt01(c1 int, c2 int) DISTRIBUTE BY hash(c1);
CREATE TABLE tt02(c1 int, c2 int) DISTRIBUTE BY hash(c2);

The following SQL query statement is used as an example:

SELECT * FROM tt01,tt02 WHERE tt01.c1=tt02.c2;

The output of EXPLAIN PERFORMANCE consists of the following parts:

1. Execution Plan

The plan is displayed as a table, which contains 11 columns: id, operation, A-
time, A-rows, E-rows, E-distinct, Peak Memory, E-memory, A-width, E-
width, and E-costs. Table 3-1 describes the meanings of the columns.

Data Warehouse Service
Query Performance Optimization 3 SQL Execution Plan

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

Table 3-1 Execution column description

Column Description

id ID of an execution operator.

operation Name of an execution operator.
The operator of the Vector prefix refers to a vectorized
execution engine operator, which exists in a query
containing a column-store table.
Streaming is a special operator. It implements the core data
shuffle function of the distributed architecture. Streaming
has three types, which correspond to different data shuffle
functions in the distributed architecture:
● Streaming (type: GATHER): The CN collects data from

DNs.
● Streaming(type: REDISTRIBUTE): Data is redistributed to

all the DNs based on selected columns.
● Streaming(type: BROADCAST): Data on the current DN is

broadcast to all other DNs.

A-time Execution time of an operator on each DN. Generally, A-
time of an operator is two values enclosed by square
brackets ([]), indicating the shortest and longest time for
completing the operator on all DNs, including the execution
time of the lower-layer operators.
Note: In the entire plan, the execution time of a leaf node is
the execution time of the operator, while the execution time
of other operators includes the execution time of its
subnodes.

A-rows Actual rows output by an operator.

E-rows Estimated rows output by each operator.

E-distinct Estimated distinct value of the hashjoin operator.

Peak
Memory

Peak memory used when the operator is executed on each
DN. The left value in [] is the minimum value, and the right
value in [] is the maximum value.

E-memory Estimated memory used by each operator on a DN. Only
operators executed on DNs are displayed. In certain
scenarios, the memory upper limit enclosed in parentheses
will be displayed following the estimated memory usage.

A-width The actual width of each line of tuple of the current
operator. This parameter is valid only for the heavy memory
operator is displayed, including: (Vec)HashJoin,
(Vec)HashAgg, (Vec) HashSetOp, (Vec)Sort, and
(Vec)Materialize operator. The (Vec)HashJoin calculation of
width is the width of the right subtree operator, it will be
displayed in the right subtree.

Data Warehouse Service
Query Performance Optimization 3 SQL Execution Plan

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

Column Description

E-width Estimated width of the output tuple of each operator.

E-costs Estimated execution cost of each operator.
● E-costs are defined by the optimizer based on cost

parameters, habitually grasping disk page as a unit.
Other overhead parameters are set by referring to E-
costs.

● The cost of each node (the E-costs value) includes the
cost of all of its child nodes.

● Overhead reflects only what the optimizer is concerned
about, but does not consider the time that the result row
passed to the client. Although the time may play a very
important role in the actual total time, it is ignored by
the optimizer, because it cannot be changed by
modifying the plan.

2. SQL Diagnostic Information

SQL self-diagnosis information. Performance optimization points identified
during optimization and execution are displayed. When EXPLAIN with the
VERBOSE attribute (built-in VERBOSE of EXPLAIN PERFORMANCE) is
executed on DML statements, SQL self-diagnosis information is also
generated to help locate performance issues.

3. Predicate Information (identified by plan id)

This part displays the filtering conditions of the corresponding execution
operator node, that is, the information that does not change during the entire
plan execution, mainly the join conditions and filter information.

4. Memory Information (identified by plan id)

Data Warehouse Service
Query Performance Optimization 3 SQL Execution Plan

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

Memory Usage displays the memory usage of operators in the entire plan,
mainly Hash and Sort operators, including the peak memory of operators
(Peak Memory), memory estimated by the optimizer (Estimate Memory), and
control memory (Control Memory), estimated memory usage (operator
memory), actual width during execution (Width), number of automatic
memory expansion times (Auto Spread Num), whether to spill data to disks in
advance (Early Spilled), and spill information which includes the number of
repeated data spills (Spill Time(s)), number of internal and foreign table
partitions spilled to disks (inner/outer partition spill num), number of files
spilled to disks (temp file num), amount of data spilled to disks, and amount
of data flushed to the minimum and maximum partitions (written disk IO
[min, max]). The Sort operator does not display the number of files written to
disks, and displays disks only when displaying sorting methods.

5. Targetlist Information (identified by plan id)

This part displays the output target column information of each operator.
6. DataNode Information (identified by plan id)

Data Warehouse Service
Query Performance Optimization 3 SQL Execution Plan

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

This part displays the execution time of each operator (including the
execution time of filtering and projection, if any), CPU usage, and buffer
usage.
– Operator execution information

The execution information of each operator consists of three parts:

▪ dn_6001_6002/dn_6003_6004 indicates the information about the
execution node. The information in the brackets is the actual
execution information.

▪ actual time indicates the actual execution time. The first number
indicates the duration from the time when the operator is executed
to the time when the first data record is output. The second number
indicates the total execution time of all data records.

▪ rows indicates the number of output data rows of the operator.

▪ loops indicates the number of execution times of the operator. Note
that for a partitioned table, scan on each partition is counted as a
scan. Scan on a new partition is counted as a new scan.

– CPU information

Each operator execution process has CPU information. cyc indicates the
number of CPU cycles, and ex cyc indicates the number of cycles of the
current operator, excluding its subnodes. inc cyc indicates the number of
cycles, including subnodes, ex row indicates the number of data rows
output by the current operator, and ex c/r indicates the mean of ex cyc
and ex row.

– Buffer information

Data Warehouse Service
Query Performance Optimization 3 SQL Execution Plan

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

Buffers indicates the buffer information, including the read and write
operations on shared blocks and temporary blocks.

Shared blocks contain tables and indexes, and temporary blocks are disk
blocks used in sorting and materialization. The number of blocks
displayed on the upper-layer node contains the number of blocks used by
all its subnodes.

7. User Define Profiling

User-defined information, including the time when CNs and DNs are
connected, the time when DNs are connected, and some execution
information at the storage layer.

8. Query Summary

The total execution time and network traffic, including the maximum and
minimum execution time in the initialization and end phases on each DN,
initialization, execution, and time in the end phase on each CN, and the
system available memory during the current statement execution, and
statement estimation memory information.

– Start time of the DN executor: [min_node_name, max_node_name]:
[min_time, max_time]

– End time of the DN executor: [min_node_name, max_node_name]:
[min_time, max_time]

– Remote query poll time: poll waiting time for receiving results

– Start time, running time, and end time of the CN executor

– Network traffic, or, the amount of data sent by the stream operator

– Optimizer execution time

– Query ID

Data Warehouse Service
Query Performance Optimization 3 SQL Execution Plan

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

– Total execution time

NO TICE

● The difference between A-rows and E-rows shows the deviation between the
optimizer estimation and actual execution. Generally, if the deviation is large,
the plan generated by the optimizer cannot be trusted, and you need to modify
the deviation value.

● If the difference of the A-time values is large, it indicates that the operator
computing skew (difference between execution time on DNs) is large and that
manual performance tuning is required. Generally, for two adjacent operators,
the execution time of the upper-layer operator includes that of the lower-layer
operator. However, if the upper-layer operator is a stream operator, its
execution time may be less than that of the lower-layer operator, as there is no
driving relationship between threads.

● Max Query Peak Memory is often used to estimate the consumed memory of
SQL statements, and is also used as an important basis for setting a memory
parameter during SQL statement optimization. Generally, the output from
EXPLAIN ANALYZE or EXPLAIN PERFORMANCE is provided for the input for
further optimization.

Data Warehouse Service
Query Performance Optimization 3 SQL Execution Plan

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

4 SQL Optimization Guide

4.1 Optimization Process
You can analyze slow SQL statements to optimize them.

Procedure

Step 1 Collect all table statistics associated with the SQL statements. In a database,
statistics indicate the source data of a plan generated by a planner. If statistics are
unavailable or out of date, the execution plan may seriously deteriorate, leading
to low performance. According to past experience, about 10% performance
problem occurred because no statistics are collected. For details, see Updating
Statistics.

Step 2 Review and modify the table definition.

Step 3 Generally, some SQL statements can be converted to its equivalent statements in
all or certain scenarios by rewriting queries. SQL statements are simpler after they
are rewritten. Some execution steps can be simplified to improve the performance.
The query rewriting method is universal in all databases. SQL Statement
Rewriting Rules describes several optimization methods by rewriting SQL
statements.

Step 4 View the execution plan to find out the cause. If the SQL statements have been
running for a long period of time and not ended, run the EXPLAIN command to
view the execution plan and then locate the fault. If the SQL statement has been
executed, run the EXPLAIN ANALYZE or EXPLAIN PERFORMANCE command to
check the execution plan and actual running situation and then accurately locate
the fault. For details about the execution plan, see SQL Execution Plan.

Step 5 For details about EXPLAIN or EXPLAIN PERFORMANCE, the reason why SQL
statements are slowly located, and how to solve this problem, see Typical SQL
Optimization Methods.

Step 6 Specify a join order; join, stream, or scan operations; number of rows in a result; or
redistribution skew information to optimize an execution plan, improving query
performance. For details, see Hint-based Tuning.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

Step 7 To maintain high database performance, you are advised to perform Routinely
Maintaining Tables and Routinely Recreating an Index.

Step 8 (Optional) Improve performance by using operators if resources are sufficient in
GaussDB(DWS). For details, see SMP Manual Optimization Suggestions.

----End

4.2 Updating Statistics
In a database, statistics indicate the source data of a plan generated by a planner.
If no collection statistics are available or out of date, the execution plan may
seriously deteriorate, leading to low performance.

Context

The ANALYZE statement collects statistic about table contents in databases, which
will be stored in the system table PG_STATISTIC. Then, the query optimizer uses
the statistics to work out the most efficient execution plan.

After executing batch insertion and deletions, you are advised to run the ANALYZE
statement on the table or the entire library to update statistics. By default, 30,000
rows of statistics are sampled. That is, the default value of the GUC parameter
default_statistics_target is 100. If the total number of rows in the table exceeds
1,600,000, you are advised to set default_statistics_target to -2, indicating that
2% of the statistics are collected.

For an intermediate table generated during the execution of a batch script or
stored procedure, you also need to run the ANALYZE statement.

If there are multiple inter-related columns in a table and the conditions or
grouping operations based on these columns are involved in the query, collect
statistics about these columns so that the query optimizer can accurately estimate
the number of rows and generate an effective execution plan.

Generating Statistics

Run the following commands to update the statistics about a table or the entire
database:

ANALYZE tablename; --Update statistics about a table.
ANALYZE; ---Update statistics about the entire database.

Run the following statements to perform statistics-related operations on multiple
columns:

ANALYZE tablename ((column_1, column_2)); --Collect statistics about column_1 and
column_2 of tablename.

ALTER TABLE tablename ADD STATISTICS ((column_1, column_2)); --Declare statistics about column_1
and column_2 of tablename.
ANALYZE tablename; --Collect statistics about one or more columns.

ALTER TABLE tablename DELETE STATISTICS ((column_1, column_2)); --Delete statistics about column_1
and column_2 of tablename or their statistics declaration.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

NO TICE

After the statistics are declared for multiple columns by running the ALTER TABLE
tablename ADD STATISTICS statement, the system collects the statistics about
these columns next time ANALYZE is performed on the table or the entire
database.
To collect the statistics, run the ANALYZE statement.

NO TE

Use EXPLAIN to show the execution plan of each SQL statement. If rows=10 (the default
value, probably indicating the table has not been analyzed) is displayed in the SEQ SCAN
output of a table, run the ANALYZE statement for this table.

Improving the Quality of Statistics

ANALYZE samples data from a table based on the random sampling algorithm
and calculates table data features based on the samples. The number of samples
can be specified by the default_statistics_target parameter. The value of
default_statistics_target ranges from -100 to 10000, and the default value is 100.

If default_statistics_target > 0, the number of samples is 300 x
default_statistics_target. This means a larger value of default_statistics_target
indicates a larger number of samples, larger memory space occupied by samples,
and longer time required for calculating statistics.

If default_statistics_target < 0, the number of samples is
default_statistics_target/100 x Total number of rows in the table. A smaller value
of default_statistics_target indicates a larger number of samples. When
default_statistics_target < 0, the sampled data is written to the disk. In this case,
the samples do not occupy memory. However, the calculation still takes a long
time because the sample size is too large.

When default_statistics_target < 0, the actual number of samples is
default_statistics_target/100 x Total number of rows in the table. Therefore, this
sampling mode is also called percentage sampling.

Automatic Statistics Collection

When the parameter autoanalyze is enabled, if the query statement reaches the
optimizer and finds that there are no statistics, statistics collection will be
automatically triggered to meet the optimizer's requirements.

Note: Automatic statistics collection is triggered only for complex query SQL
statements that are sensitive to statistics (such as multi-table association). Simple
queries (such as single-point query and single-table aggregation) do not trigger
automatic statistics collection.

4.3 Reviewing and Modifying a Table Definition
In a distributed framework, data is distributed on DNs. Data on one or more DNs
is stored on a physical storage device. To properly define a table, you must:

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

1. Evenly distribute data on each DN to avoid the available capacity decrease
of a cluster caused by insufficient storage space of the storage device
associated with a DN. Specifically, select a proper distribution key to avoid
data skew.

2. Evenly assign table scanning tasks on each DN to avoid that a DN is
overloaded by the table scanning tasks. Specifically, do not select columns in
the equivalent filter of a base table as the distribution key.

3. Reduce the data volume scanned by using the partition pruning mechanism.
4. Avoid the use of random I/O by using clustering or partial clustering.
5. Avoid data shuffle to reduce the network pressure by selecting the join-

condition column or group by column as the distribution column.

The distribution column is the core for defining a table. The following figure
shows the procedure of defining a table. The table definition is created during the
database design and is reviewed and modified during the SQL statement
optimization.

Figure 4-1 Procedure of defining a table

4.4 SQL Statement Rewriting Rules
Based on the database SQL execution mechanism and a large number of practices,
summarize finds that: using rules of a certain SQL statement, on the basis of the
so that the correct test result, which can improve the SQL execution efficiency. You
can comply with these rules to greatly improve service query efficiency.
● Replacing UNION with UNION ALL

UNION eliminates duplicate rows while merging two result sets but UNION
ALL merges the two result sets without deduplication. Therefore, replace
UNION with UNION ALL if you are sure that the two result sets do not
contain duplicate rows based on the service logic.

● Adding NOT NULL to the join column
If there are many NULL values in the JOIN columns, you can add the filter
criterion IS NOT NULL to filter data in advance to improve the JOIN
efficiency.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

● Converting NOT IN to NOT EXISTS
nestloop anti join must be used to implement NOT IN, and Hash anti join is
required for NOT EXISTS. If no NULL value exists in the JOIN column, NOT
IN is equivalent to NOT EXISTS. Therefore, if you are sure that no NULL value
exists, you can convert NOT IN to NOT EXISTS to generate hash joins and to
improve the query performance.
As shown in the following figure, the t2.d2 column does not contain null
values (it is set to NOT NULL) and NOT EXISTS is used for the query.
SELECT * FROM t1 WHERE NOT EXISTS (SELECT * FROM t2 WHERE t1.c1=t2.d2);

The generated execution plan is as follows:

Figure 4-2 NOT EXISTS execution plan

● Use hashagg.
If a plan involving groupAgg and SORT operations generated by the GROUP
BY statement is poor in performance, you can set work_mem to a larger
value to generate a hashagg plan, which does not require sorting and
improves the performance.

● Replace functions with CASE statements
The GaussDB(DWS) performance greatly deteriorates if a large number of
functions are called. In this case, you can modify the pushdown functions to
CASE statements.

● Do not use functions or expressions for indexes.
Using functions or expressions for indexes stops indexing. Instead, it enables
scanning on the full table.

● Do not use != or <> operators, NULL, OR, or implicit parameter conversion in
WHERE clauses.

● Split complex SQL statements.
You can split an SQL statement into several ones and save the execution
result to a temporary table if the SQL statement is too complex to be tuned
using the solutions above, including but not limited to the following scenarios:
– The same subquery is involved in multiple SQL statements of a task and

the subquery contains large amounts of data.
– Incorrect Plan cost causes a small hash bucket of subquery. For example,

the actual number of rows is 10 million, but only 1000 rows are in hash
bucket.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

– Functions such as substr and to_number cause incorrect measures for
subqueries containing large amounts of data.

– BROADCAST subqueries are performed on large tables in multi-DN
environment.

4.5 Typical SQL Optimization Methods
SQL optimization involves continuous analysis and adjustment. You need to test-
run a query, locate and fix its performance issues (if any) based on its execution
plan, and run it again, until the execution performance meet your requirements.

4.5.1 SQL Self-Diagnosis
Performance problems may occur when you run the INSERT/UPDATE/DELETE/
SELECT/MERGE INTO or CREATE TABLE AS statement. The product supports
automatic performance diagnosis and saves related diagnosis information to the
Real-time Top SQL. When enable_resource_track is set to on, the diagnosis
information is dumped to the Historical Top SQL. You can query the warning field
in the views GS_WLM_SESSION_STATISTICS, GS_WLM_SESSION_HISTORY,
GS_WLM_SESSION_INFO in Developer Guide to obtain the corresponding
performance diagnosis information for performance optimization.

Alarms that can trigger SQL self-diagnosis depend on the settings of
resource_track_level. When resource_track_level is set to query, you can
diagnose alarms such as uncollected multi-column/single-column statistics,
partitions not pruned, and failure of pushing down SQL statements. When
resource_track_level is set to perf or operator, all alarms can be diagnosed.

Whether a SQL plan will be diagnosed depends on the settings of
resource_track_cost. A SQL plan will be diagnosed only if its execution cost is
greater than resource_track_cost. You can use the EXPLAIN keyword to check the
plan execution cost.

When EXPLAIN PERFORMANCE or EXPLAIN VERBOSE is executed, SQL self-
diagnosis information, except that without multi-column statistics, will be
generated. For details, see SQL Execution Plan.

Alarms
Currently, the following performance alarms will be reported:

● Statistics of a single column or multiple columns are not collected.
If statistics of a single column or multiple columns are not collected, an alarm
is reported. To handle this alarm, you are advised to perform ANALYZE on
related tables. For details, see Updating Statistics and Optimizing Statistics.
If no statistics are collected for the OBS foreign table and HDFS foreign table
in the query statement, an alarm indicating that statistics are not collected
will be reported. Because the ANALYZE performance of the OBS foreign table
and HDFS foreign table is poor, you are not advised to perform ANALYZE on
these tables. Instead, you are advised to use the ALTER FOREIGN TABLE
syntax to modify the totalrows attribute of the foreign table to correct the
estimated number of rows.
Example alarms:

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0397.html
https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0398.html
https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0706.html
https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0705.html
https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0566.html
https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0922.html
https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0922.html

The statistics about a table are not collected.
Statistic Not Collect
 schema_test.t1

The statistics about a single column are not collected.
Statistic Not Collect
 schema_test.t2(c1)

The statistics about multiple columns are not collected.
Statistic Not Collect
 schema_test.t3((c1,c2))

The statistics about a single column and multiple columns are not collected.
Statistic Not Collect
 schema_test.t4(c1)
 schema_test.t5((c1,c2))

● Partitions are not pruned (supported by 8.1.2 and later versions).
When a partitioned table is queried, the partition is pruned based on the
constraints on the partition key to improve the query performance. However,
the partition table may not be pruned due to improper constraints,
deteriorating the query performance. For details, see Case: Rewriting SQL
Statements and Eliminating Prune Interference.

● SQL statements are not pushed down.
The cause details are displayed in the alarms. For details, see Optimizing
Statement Pushdown.
The potential causes for the pushdown failure are as follows:
– Caused by functions

The function name is displayed in the diagnosis information. Function
pushdown is determined by the shippable attribute of the function. For
details, see the CREATE FUNCTION syntax.

– Caused by syntax
The diagnosis information displays the syntax that causes the pushdown
failure. For example, if the statement contains the With Recursive,
Distinct On, or row expression and the return value is of the record type,
an alarm is reported, indicating that the syntax does not support
pushdown.

Example alarms:
SQL is not plan-shipping
 "enable_stream_operator" is off

SQL is not plan-shipping
 "Distinct On" can not be shipped

SQL is not plan-shipping
 "v_test_unshipping_log" is VIEW that will be treated as Record type can't be shipped

● In a hash join, the larger table is used as the inner table.
An alarm will be reported if the number of rows in the inner table reaches or
exceeds 10 times of that in the foreign table, more than 100,000 inner-table
rows are processed on each DN in average, and data has been flushed to
disks. You can view the query_plan column in GS_WLM_SESSION_HISTORY
to check whether hash joins are used. In this scenario, you need to adjust the
sequence of the HashJoin internal and foreign tables. For details, see Join
Order Hints.
Example alarm:

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0705.html

Execute diagnostic information
PlanNode[7] Large Table is INNER in HashJoin "Vector Hash Aggregate"

In the preceding command, 7 indicates the operator whose ID is 7 in the
query_plan column.

● nestloop is used in a large-table equivalent join.

An alarm will be reported if nested loop is used in an equivalent join where
more than 100,000 larger-table rows are processed on each DN in average.
You can view the query_plan column of GS_WLM_SESSION_HISTORY to
check whether nested loop is used. In this scenario, you need to adjust the
table join mode and disable the NestLoop join mode between the current
internal and foreign tables. For details, see Join Operation Hints.

Example alarm:
Execute diagnostic information
 PlanNode[5] Large Table with Equal-Condition use Nestloop"Nested Loop"

● A large table is broadcasted.

An alarm will be reported if more than 100 thousand of rows are broadcasted
on each DN in average. In this scenario, the broadcast operation of the
BroadCast lower-layer operator needs to be disabled. For details, see Stream
Operation Hints.

Example alarm:
Execute diagnostic information
 PlanNode[5] Large Table in Broadcast "Streaming(type: BROADCAST dop: 1/2)"

● Data skew occurs.

An alarm will be reported if the number of rows processed on any DN exceeds
100 thousand, and the number of rows processed on a DN reaches or exceeds
10 times of that processed on another DN. Generally, this alarm is generated
due to storage layer skew or computing layer skew. For details, see
Optimizing Data Skew.

Example alarm:
Execute diagnostic information
 PlanNode[6] DataSkew:"Seq Scan", min_dn_tuples:0, max_dn_tuples:524288

● The index is improper.

During base table scanning, an alarm is reported if the following conditions
are met:

– For row-store tables:

▪ When the index scanning is used, the ratio of the number of output
lines to the number of scanned lines is greater than 1/1000 and the
number of output lines is greater than 10,000.

▪ When sequential scanning is used, the number of output lines to the
number of scanned lines is less than 1/1000, the number of output
lines is less than or equal to 10,000, and the number of scanned lines
is greater than 10,000.

– For column-store tables:

▪ When the index scanning is used, the ratio of the number of output
lines to the number of scanned lines is greater than 1/10000 and the
number of output lines is greater than 100.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0705.html

▪ When sequential scanning is used, the number of output lines to the
number of scanned lines is less than 1/10,000, the number of output
lines is less than or equal to 100, and the number of scanned lines is
greater than 10,000.

For details, see Optimizing Operators. You can also refer to Case: Creating
an Appropriate Index and Case: Setting Partial Cluster Keys.
Example alarms:
Execute diagnostic information
 PlanNode[4] Indexscan is not properly used:"Index Only Scan", output:524288, filtered:0, rate:
1.00000
 PlanNode[5] Indexscan is ought to be used:"Seq Scan", output:1, filtered:524288, rate:0.00000

The diagnosis result is only a suggestion for the current SQL statement. You
are advised to create an index only for frequently used filter criteria.

● Estimation is inaccurate.
An alarm will be reported if the maximum number or the estimated
maximum number of rows processed on a DN is over 100,000, and the larger
number reaches or exceeds 10 times of the smaller one. In this scenario, you
can refer to Rows Hints to correct the estimation on the number of rows, so
that the optimizer can re-design the execution plan based on the correct
number.
Example alarm:
Execute diagnostic information
 PlanNode[5] Inaccurate Estimation-Rows: "Hash Join" A-Rows:0, E-Rows:52488

Restrictions
1. An alarm contains a maximum of 2048 characters. If the length of an alarm

exceeds this value (for example, a large number of long table names and
column names are displayed in the alarm when their statistics are not
collected), a warning instead of an alarm will be reported.
WARNING, "Planner issue report is truncated, the rest of planner issues will be skipped"

2. If a query statement contains the Limit operator, alarms of operators lower
than Limit will not be reported.

3. For alarms about data skew and inaccurate estimation, only alarms on the
lower-layer nodes in a plan tree will be reported. This is because the same
alarms on the upper-level nodes may be triggered by problems on the lower-
layer nodes. For example, if data skew occurs on the Scan node, data skew
may also occur in operators (for example, Hashagg) at the upper layer.

4.5.2 Optimizing Statement Pushdown

Statement Pushdown
Currently, the GaussDB(DWS) optimizer can use three methods to develop
statement execution policies in the distributed framework: generating a statement
pushdown plan, a distributed execution plan, or a distributed execution plan for
sending statements.

● A statement pushdown plan pushes query statements from a CN down to
DNs for execution and returns the execution results to the CN.

● In a distributed execution plan, a CN compiles and optimizes query
statements, generates a plan tree, and then sends the plan tree to DNs for

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

execution. After the statements have been executed, execution results will be
returned to the CN.

● A distributed execution plan for sending statements pushes queries that can
be pushed down (mostly base table scanning statements) to DNs for
execution. Then, the plan obtains the intermediate results and sends them to
the CN, on which the remaining queries are to be executed.

The third policy sends many intermediate results from the DNs to a CN for further
execution. In this case, the CN performance bottleneck (in bandwidth, storage, and
computing) is caused by statements that cannot be pushed down to DNs.
Therefore, you are not advised to use the query statements that only the third
policy is applicable to.

Statements cannot be pushed down to DNs if they have Functions That Do Not
Support Pushdown or Syntax That Does Not Support Pushdown. Generally, you
can rewrite the execution statements to solve the problem.

Viewing Whether the Execution Plan Has Been Pushed Down to DNs
Perform the following procedure to quickly determine whether the execution plan
can be pushed down to DNs:

Step 1 Set the GUC parameter enable_fast_query_shipping to off to use the distributed
framework policy for the query optimizer.
SET enable_fast_query_shipping = off;

Step 2 View the execution plan.

If the execution plan contains Data Node Scan, the SQL statements cannot be
pushed down to DNs. If the execution plan contains Streaming, the SQL
statements can be pushed down to DNs.

For example:

select
count(ss.ss_sold_date_sk order by ss.ss_sold_date_sk)c1
from store_sales ss, store_returns sr
where
sr.sr_customer_sk = ss.ss_customer_sk;

The execution plan is as follows, which indicates that the SQL statement cannot
be pushed down.

 QUERY PLAN
--
Aggregate
-> Hash Join
Hash Cond: (ss.ss_customer_sk = sr.sr_customer_sk)
-> Data Node Scan on store_sales "_REMOTE_TABLE_QUERY_"
Node/s: All datanodes
-> Hash
-> Data Node Scan on store_returns "_REMOTE_TABLE_QUERY_"
Node/s: All datanodes
(8 rows)

----End

Syntax That Does Not Support Pushdown
SQL syntax that does not support pushdown is described using the following table
definition examples:

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0936.html

CREATE TABLE CUSTOMER1
(
 C_CUSTKEY BIGINT NOT NULL
 , C_NAME VARCHAR(25) NOT NULL
 , C_ADDRESS VARCHAR(40) NOT NULL
 , C_NATIONKEY INT NOT NULL
 , C_PHONE CHAR(15) NOT NULL
 , C_ACCTBAL DECIMAL(15,2) NOT NULL
 , C_MKTSEGMENT CHAR(10) NOT NULL
 , C_COMMENT VARCHAR(117) NOT NULL
)
DISTRIBUTE BY hash(C_CUSTKEY);
CREATE TABLE test_stream(a int, b float);--float does not support redistribution.
CREATE TABLE sal_emp (c1 integer[]) DISTRIBUTE BY replication;

● The returning statement cannot be pushed down.
explain update customer1 set C_NAME = 'a' returning c_name;
 QUERY PLAN
--
 Update on customer1 (cost=0.00..0.00 rows=30 width=187)
 Node/s: All datanodes
 Node expr: c_custkey
 -> Data Node Scan on customer1 "_REMOTE_TABLE_QUERY_" (cost=0.00..0.00 rows=30 width=187)
 Node/s: All datanodes
(5 rows)

● If columns in count(distinct expr) do not support redistribution, they do not
support pushdown.
explain verbose select count(distinct b) from test_stream;
 QUERY PLAN
-- Aggregate (cost=2.50..2.51 rows=1 width=8)
 Output: count(DISTINCT test_stream.b)
 -> Data Node Scan on test_stream "_REMOTE_TABLE_QUERY_" (cost=0.00..0.00 rows=30 width=8)
 Output: test_stream.b
 Node/s: All datanodes
 Remote query: SELECT b FROM ONLY public.test_stream WHERE true
(6 rows)

● Statements using distinct on cannot be pushed down.
explain verbose select distinct on (c_custkey) c_custkey from customer1 order by c_custkey;
 QUERY PLAN
-- Unique (cost=49.83..54.83 rows=30 width=8)
 Output: customer1.c_custkey
 -> Sort (cost=49.83..52.33 rows=30 width=8)
 Output: customer1.c_custkey
 Sort Key: customer1.c_custkey
 -> Data Node Scan on customer1 "_REMOTE_TABLE_QUERY_" (cost=0.00..0.00 rows=30
width=8)
 Output: customer1.c_custkey
 Node/s: All datanodes
 Remote query: SELECT c_custkey FROM ONLY public.customer1 WHERE true
(9 rows)

● In a statement using FULL JOIN, if the column specified using JOIN does not
support redistribution, the statement does not support pushdown.
explain select * from test_stream t1 full join test_stream t2 on t1.a=t2.b;
 QUERY PLAN
-- Hash Full Join (cost=0.38..0.82 rows=30
width=24)
 Hash Cond: ((t1.a)::double precision = t2.b)
 -> Data Node Scan on test_stream "_REMOTE_TABLE_QUERY_" (cost=0.00..0.00 rows=30 width=12)
 Node/s: All datanodes
 -> Hash (cost=0.00..0.00 rows=30 width=12)
 -> Data Node Scan on test_stream "_REMOTE_TABLE_QUERY_" (cost=0.00..0.00 rows=30
width=12)
 Node/s: All datanodes
(7 rows)

● Does not support array expression pushdown.
explain verbose select array[c_custkey,1] from customer1 order by c_custkey;

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

 QUERY PLAN
-- Sort (cost=49.83..52.33 rows=30 width=8)
 Output: (ARRAY[customer1.c_custkey, 1::bigint]), customer1.c_custkey
 Sort Key: customer1.c_custkey
 -> Data Node Scan on "__REMOTE_SORT_QUERY__" (cost=0.00..0.00 rows=30 width=8)
 Output: (ARRAY[customer1.c_custkey, 1::bigint]), customer1.c_custkey
 Node/s: All datanodes
 Remote query: SELECT ARRAY[c_custkey, 1::bigint], c_custkey FROM ONLY public.customer1
WHERE true ORDER BY 2
(7 rows)

● The following table describes the scenarios where a statement containing
WITH RECURSIVE cannot be pushed down in the current version, as well as
the causes.

No. Scenario Cause of Not Supporting
Pushdown

1 The query contains foreign
tables or HDFS tables.

LOG: SQL can't be shipped,
reason: RecursiveUnion contains
HDFS Table or ForeignScan is
not shippable (In this table, LOG
describes the cause of not
supporting pushdown.)

In the current version, queries
containing foreign tables or
HDFS tables do not support
pushdown.

2 Multiple Node Groups LOG: SQL can't be shipped,
reason: With-Recursive under
multi-nodegroup scenario is not
shippable

In the current version, pushdown
is supported only when all base
tables are stored and computed
in the same Node Group.

3 WITH recursive t_result AS (
SELECT dm,sj_dm,name,1 as level
FROM test_rec_part
WHERE sj_dm > 10
UNION
SELECT t2.dm,t2.sj_dm,t2.name||' > '||
t1.name,t1.level+1
FROM t_result t1
JOIN test_rec_part t2 ON t2.sj_dm = t1.dm
)
SELECT * FROM t_result t;

LOG: SQL can't be shipped,
reason: With-Recursive does not
contain "ALL" to bind recursive
& none-recursive branches

ALL is not used for UNION. In
this case, the return result is
deduplicated.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

No. Scenario Cause of Not Supporting
Pushdown

4 WITH RECURSIVE x(id) AS
(
select count(1) from pg_class where
oid=1247
UNION ALL
SELECT id+1 FROM x WHERE id < 5
), y(id) AS
(
select count(1) from pg_class where
oid=1247
UNION ALL
SELECT id+1 FROM x WHERE id < 10
)
SELECT y.*, x.* FROM y LEFT JOIN x
USING (id) ORDER BY 1;

LOG: SQL can't be shipped,
reason: With-Recursive contains
system table is not shippable

A base table contains the system
catalog.

5 WITH RECURSIVE t(n) AS (
VALUES (1)
UNION ALL
SELECT n+1 FROM t WHERE n < 100
)
SELECT sum(n) FROM t;

LOG: SQL can't be shipped,
reason: With-Recursive contains
only values rte is not shippable

Only VALUES is used for
scanning base tables. In this
case, the statement can be
executed on the CN, and DNs
are unnecessary.

6 select a.ID,a.Name,
(
with recursive cte as (
select ID, PID, NAME from b where b.ID =
1
union all
select parent.ID,parent.PID,parent.NAME
from cte as child join b as parent on
child.pid=parent.id
where child.ID = a.ID
)
select NAME from cte limit 1
) cName
from
(
select id, name, count(*) as cnt
from a group by id,name
) a order by 1,2;

LOG: SQL can't be shipped,
reason: With-Recursive recursive
term correlated only is not
shippable

The correlation conditions of
correlated subqueries are only in
the recursion part, and the non-
recursion part has no correlation
condition.

7 WITH recursive t_result AS (
select * from(
SELECT dm,sj_dm,name,1 as level
FROM test_rec_part
WHERE sj_dm < 10 order by dm limit 6
offset 2)
UNION all
SELECT t2.dm,t2.sj_dm,t2.name||' > '||
t1.name,t1.level+1
FROM t_result t1
JOIN test_rec_part t2 ON t2.sj_dm = t1.dm
)
SELECT * FROM t_result t;

LOG: SQL can't be shipped,
reason: With-Recursive contains
conflict distribution in none-
recursive(Replicate)
recursive(Hash)

The replicate plan is used for
limit in the non-recursion part
but the hash plan is used in the
recursion part, resulting in
conflicts.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

No. Scenario Cause of Not Supporting
Pushdown

8 with recursive cte as
(
select * from rec_tb4 where id<4
union all
select h.id,h.parentID,h.name from
(
with recursive cte as
(
select * from rec_tb4 where id<4
union all
select h.id,h.parentID,h.name from
rec_tb4 h inner join cte c on
h.id=c.parentID
)
SELECT id ,parentID,name from cte order
by parentID
) h
inner join cte c on h.id=c.parentID
)
SELECT id ,parentID,name from cte order
by parentID,1,2,3;

LOG: SQL can't be shipped,
reason: Recursive CTE references
recursive CTE "cte"

recursive of multiple-layers are
nested. That is, a recursive is
nested in the recursion part of
another recursive.

Functions That Do Not Support Pushdown
This module describes the variability of functions. The function variability in
GaussDB(DWS) is as follows:

● IMMUTABLE
Indicates that the function always returns the same result if the parameter
values are the same.

● STABLE
Indicates that the function cannot modify the database, and that within a
single table scan it will consistently return the same result for the same
parameter values, but that its result varies by SQL statements.

● VOLATILE
Indicates that the function value can change even within a single table scan,
so no optimizations can be made.

The volatility of a function can be obtained by querying its provolatile column in
pg_proc. The value i indicates immutable, s indicates stable, and v indicates
volatile. The valid values of the proshippable column in pg_proc are t, f, and
NULL. This column and the provolatile column together describe whether a
function is pushed down.

● If the provolatile of a function is i, the function can be pushed down
regardless of the value of proshippable.

● If the provolatile of a function is s or v, the function can be pushed only if
the value of proshippable is t.

● CTEs containing random are not pushed down, because pushdown may lead
to incorrect results.

For a UDF, you can specify the values of provolatile and proshippable during its
creation. For details, see CREATE FUNCTION.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

In scenarios where a function does not support pushdown, perform one of the
following as required:

● If it is a system function, replace it with a functionally equivalent one.
● If it is a UDF function, check whether its provolatile and proshippable are

correctly defined.

Example: UDF
Define a user-defined function that generates fixed output for a certain input as
the immutable type.

Use the TPCDS sales information as an example. You need to define a function to
obtain the discount information.

CREATE FUNCTION func_percent_2 (NUMERIC, NUMERIC) RETURNS NUMERIC
AS 'SELECT $1 / $2 WHERE $2 > 0.01'
LANGUAGE SQL
VOLATILE;

Run the following statement:

SELECT func_percent_2(ss_sales_price, ss_list_price)
FROM store_sales;

The execution plan is as follows:

func_percent_2 is not pushed down, and ss_sales_price and ss_list_price are
executed on a CN. In this case, a large amount of resources on the CN is
consumed, and the performance deteriorates as a result.

In this example, the function returns certain output when certain input is entered.
Therefore, we can modify the function to the following one:

CREATE FUNCTION func_percent_1 (NUMERIC, NUMERIC) RETURNS NUMERIC
AS 'SELECT $1 / $2 WHERE $2 > 0.01'
LANGUAGE SQL
IMMUTABLE;

Run the following statement:

SELECT func_percent_1(ss_sales_price, ss_list_price)
FROM store_sales;

The execution plan is as follows:

func_percent_1 is pushed down to DNs for quicker execution. (In TPCDS 1000X,
where three CNs and 18 DNs are used, the query efficiency is improved by over
100 times).

Example 2: Pushing Down the Sorting Operation
For details, see Case: Pushing Down Sort Operations to DNs.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

4.5.3 Optimizing Subqueries

What Is a Subquery
When an application runs a SQL statement to operate the database, a large
number of subqueries are used because they are more clear than table join.
Especially in complicated query statements, subqueries have more complete and
independent semantics, which makes SQL statements clearer and easy to
understand. Therefore, subqueries are widely used.

In GaussDB(DWS), subqueries can also be called sublinks based on the location of
subqueries in SQL statements.

● Subquery: corresponds to a scope table (RangeTblEntry) in the query parse
tree. That is, a subquery is a SELECT statement following immediately after
the FROM keyword.

● Sublink: corresponds to an expression in the query parsing tree. That is, a
sublink is a statement in the WHERE or ON clause or in the target list.
In conclusion, a subquery is a scope table and a sublink is an expression in the
query parsing tree. A sublink can be found in constraint conditions and
expressions. In GaussDB(DWS), sublinks can be classified into the following
types:
– exist_sublink: corresponding to the EXIST and NOT EXIST statements.
– any_sublink: corresponding to the OP ANY(SELECT...) statement. OP can

be the IN, <, >, or = operator.
– all_sublink: corresponding to the OP ALL(SELECT...) statement. OP can

be the IN, <, >, or = operator.
– rowcompare_sublink: corresponding to the RECORD OP (SELECT...)

statement.
– expr_sublink: corresponding to the (SELECT with a single target list item)

statement.
– array_sublink: corresponding to the ARRAY(SELECT...) statement.
– cte_sublink: corresponding to the WITH(...) statement.
The sublinks commonly used in OLAP and HTAP are exist_sublink and
any_sublink. The sublinks are pulled up by the optimization engine of
GaussDB(DWS). Because of the flexible use of subqueries in SQL statements,
complex subqueries may affect query performance. Subqueries are classified
into non-correlated subqueries and correlated subqueries.
– Non-correlated subquery

The execution of a subquery is independent from any attribute of outer
queries. In this way, a subquery can be executed before outer queries.
Example:
select t1.c1,t1.c2
from t1
where t1.c1 in (
 select c2
 from t2
 where t2.c2 IN (2,3,4)
);
 QUERY PLAN

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

Streaming (type: GATHER)
 Node/s: All datanodes
 -> Hash Right Semi Join
 Hash Cond: (t2.c2 = t1.c1)
 -> Streaming(type: REDISTRIBUTE)
 Spawn on: All datanodes
 -> Seq Scan on t2
 Filter: (c2 = ANY ('{2,3,4}'::integer[]))
 -> Hash
 -> Seq Scan on t1
(10 rows)

– Correlated subquery
The execution of a subquery depends on some attributes of outer queries
which are used as AND conditions of the subquery. In the following
example, t1.c1 in the t2.c1 = t1.c1 condition is a dependent attribute.
Such a subquery depends on outer queries and needs to be executed
once for each outer query.
Example:
select t1.c1,t1.c2
from t1
where t1.c1 in (
 select c2
 from t2
 where t2.c1 = t1.c1 AND t2.c2 in (2,3,4)
);
 QUERY PLAN

Streaming (type: GATHER)
 Node/s: All datanodes
 -> Seq Scan on t1
 Filter: (SubPlan 1)
 SubPlan 1
 -> Result
 Filter: (t2.c1 = t1.c1)
 -> Materialize
 -> Streaming(type: BROADCAST)
 Spawn on: All datanodes
 -> Seq Scan on t2
 Filter: (c2 = ANY ('{2,3,4}'::integer[]))
(12 rows)

GaussDB(DWS) SubLink Optimization
A subquery is pulled up to join with tables in outer queries, preventing the
subquery from being converted into the combination of a subplan and broadcast.
You can run the EXPLAIN statement to check whether a subquery is converted
into the combination of a subplan and broadcast.

Example:

● Sublink-release supported by GaussDB(DWS)

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

– Pulling up the IN sublink

▪ The subquery cannot contain columns in the outer query (columns in
more outer queries are allowed).

▪ The subquery cannot contain volatile functions.

– Pulling up the EXISTS sublink
The WHERE clause must contain a column in the outer query. Other
parts of the subquery cannot contain the column. Other restrictions are
as follows:

▪ The subquery must contain the FROM clause.

▪ The subquery cannot contain the WITH clause.

▪ The subquery cannot contain aggregate functions.

▪ The subquery cannot contain a SET, SORT, LIMIT, WindowAgg, or
HAVING operation.

▪ The subquery cannot contain volatile functions.

– Pulling up an equivalent query containing aggregation functions
The WHERE condition of the subquery must contain a column from the
outer query. Equivalence comparison must be performed between this
column and related columns in tables of the subquery. These conditions
must be connected using AND. Other parts of the subquery cannot
contain the column. Other restrictions are as follows:

▪ The expression in the WHERE condition of the subquery must be
table columns.

▪ After the SELECT keyword of the subquery, there must be only one
output column. The output column must be an aggregation function
(for example, MAX), and the parameter (for example, t2.c2) of the
aggregate function cannot be columns of a table (for example, t1) in
outer quires. The aggregate function cannot be COUNT.
For example, the following subquery can be pulled up:

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

select * from t1 where c1 >(
 select max(t2.c1) from t2 where t2.c1=t1.c1
);

The following subquery cannot be pulled up because the subquery
has no aggregation function.
select * from t1 where c1 >(
 select t2.c1 from t2 where t2.c1=t1.c1
);

The following subquery cannot be pulled up because the subquery
has two output columns:
select * from t1 where (c1,c2) >(
 select max(t2.c1),min(t2.c2) from t2 where t2.c1=t1.c1
);

▪ The subquery must be a FROM clause.

▪ The subquery cannot contain a GROUP BY, HAVING, or SET
operation.

▪ The subquery can only be inner join.
For example, the following subquery can be pulled up:
select * from t1 where c1 >(
 select max(t2.c1) from t2 full join t3 on (t2.c2=t3.c2) where t2.c1=t1.c1
);

▪ The target list of the subquery cannot contain the function that
returns a set.

▪ The WHERE condition of the subquery must contain a column from
the outer query. Equivalence comparison must be performed
between this column and related columns in tables of the subquery.
These conditions must be connected using AND. Other parts of the
subquery cannot contain the column. For example, the following
subquery can be pulled up:
select * from t3 where t3.c1=(
 select t1.c1
 from t1 where c1 >(
 select max(t2.c1) from t2 where t2.c1=t1.c1
));

If another condition is added to the subquery in the previous
example, the subquery cannot be pulled up because the subquery
references to the column in the outer query. Example:
select * from t3 where t3.c1=(
 select t1.c1
 from t1 where c1 >(
 select max(t2.c1) from t2 where t2.c1=t1.c1 and t3.c1>t2.c2

));

– Pulling up a sublink in the OR clause
If the WHERE condition contains a EXIST-related sublink connected by
OR,
for example,
select a, c from t1
where t1.a = (select avg(a) from t3 where t1.b = t3.b) or
exists (select * from t4 where t1.c = t4.c);

the process of pulling up such a sublink is as follows:

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

i. Extract opExpr from the OR clause in the WHERE condition. The
value is t1.a = (select avg(a) from t3 where t1.b = t3.b).

ii. The opExpr contains a subquery. If the subquery can be pulled up,
the subquery is rewritten as elect avg(a), t3.b from t3 group by
t3.b, generating the NOT NULL condition t3.b is not null. The
opExpr is replaced with this NOT NULL condition. In this case, the
SQL statement changes to:
select a, c
from t1 left join (select avg(a) avg, t3.b from t3 group by t3.b) as t3 on (t1.a = avg
and t1.b = t3.b)
where t3.b is not null or exists (select * from t4 where t1.c = t4.c);

iii. Extract the EXISTS sublink exists (select * from t4 where t1.c =
t4.c) from the OR clause to check whether the sublink can be pulled
up. If it can be pulled up, it is converted into select t4.c from t4
group by t4.c, generating the NOT NULL condition t4.c is not null.
In this case, the SQL statement changes to:
select a, c
from t1 left join (select avg(a) avg, t3.b from t3 group by t3.b) as t3 on (t1.a = avg and
t1.b = t3.b)
left join (select t4.c from t4 group by t4.c) where t3.b is not null or t4.c is not null;

● Sublink-release not supported by GaussDB(DWS)
Except the sublinks described above, all the other sublinks cannot be pulled
up. In this case, a join subquery is planned as the combination of a subplan
and broadcast. As a result, if tables in the subquery have a large amount of
data, query performance may be poor.
If a correlated subquery joins with two tables in outer queries, the subquery
cannot be pulled up. You need to change the parent query into a WITH clause
and then perform the join.
Example:
select distinct t1.a, t2.a
from t1 left join t2 on t1.a=t2.a and not exists (select a,b from test1 where test1.a=t1.a and
test1.b=t2.a);

The parent query is changed into:
with temp as
(
 select * from (select t1.a as a, t2.a as b from t1 left join t2 on t1.a=t2.a)

)
select distinct a,b
from temp
where not exists (select a,b from test1 where temp.a=test1.a and temp.b=test1.b);

– The subquery (without COUNT) in the target list cannot be pulled up.
Example:
explain (costs off)
select (select c2 from t2 where t1.c1 = t2.c1) ssq, t1.c2

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

from t1
where t1.c2 > 10;

The execution plan is as follows:
explain (costs off)
select (select c2 from t2 where t1.c1 = t2.c1) ssq, t1.c2
from t1
where t1.c2 > 10;
 QUERY PLAN
--
 Streaming (type: GATHER)
 Node/s: All datanodes
 -> Seq Scan on t1
 Filter: (c2 > 10)
 SubPlan 1
 -> Result
 Filter: (t1.c1 = t2.c1)
 -> Materialize
 -> Streaming(type: BROADCAST)
 Spawn on: All datanodes
 -> Seq Scan on t2
(11 rows)

The correlated subquery is displayed in the target list (query return list).
Values need to be returned even if the condition t1.c1=t2.c1 is not met.
Therefore, use left outer join to join T1 and T2 so that SSQ can return
padding values when the condition t1.c1=t2.c1 is not met.

NO TE

ScalarSubQuery (SSQ) and Correlated-ScalarSubQuery (CSSQ) are described as
follows:

● SSQ: a sublink that returns only a single row and column scalar value

● CSSQ: an SSQ containing conditions

The preceding SQL statement can be changed into:
with ssq as
(
 select t2.c2 from t2
)
select ssq.c2, t1.c2
from t1 left join ssq on t1.c1 = ssq.c2
where t1.c2 > 10;

The execution plan after the change is as follows:
 QUERY PLAN

 Streaming (type: GATHER)
 Node/s: All datanodes
 -> Hash Right Join
 Hash Cond: (t2.c2 = t1.c1)
 -> Streaming(type: REDISTRIBUTE)
 Spawn on: All datanodes
 -> Seq Scan on t2
 -> Hash
 -> Seq Scan on t1
 Filter: (c2 > 10)
(10 rows)

In the preceding example, the SSQ is pulled up to right join, preventing
poor performance caused by the combination of a subplan and broadcast
when the table (T2) in the subquery is too large.

– The subquery (with COUNT) in the target list cannot be pulled up.

Example:

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

select (select count(*) from t2 where t2.c1=t1.c1) cnt, t1.c1, t3.c1
from t1,t3
where t1.c1=t3.c1 order by cnt, t1.c1;

The execution plan is as follows:
 QUERY PLAN
--
 Streaming (type: GATHER)
 Node/s: All datanodes
 -> Sort
 Sort Key: ((SubPlan 1)), t1.c1
 -> Hash Join
 Hash Cond: (t1.c1 = t3.c1)
 -> Seq Scan on t1
 -> Hash
 -> Seq Scan on t3
 SubPlan 1
 -> Aggregate
 -> Result
 Filter: (t2.c1 = t1.c1)
 -> Materialize
 -> Streaming(type: BROADCAST)
 Spawn on: All datanodes
 -> Seq Scan on t2
(17 rows)

The correlated subquery is displayed in the target list (query return list).
Values need to be returned even if the condition t1.c1=t2.c1 is not met.
Therefore, use left outer join to join T1 and T2 so that SSQ can return
padding values when the condition t1.c1=t2.c1 is not met. However,
COUNT is used to ensure that 0 is returned when the condition is note
met. Therefore, case-when NULL then 0 else count(*) can be used.
The preceding SQL statement can be changed into:
with ssq as
(
 select count(*) cnt, c1 from t2 group by c1
)
select case when
 ssq.cnt is null then 0
 else ssq.cnt
 end cnt, t1.c1, t3.c1
from t1 left join ssq on ssq.c1 = t1.c1,t3
where t1.c1 = t3.c1
order by ssq.cnt, t1.c1;

The execution plan after the change is as follows:
 QUERY PLAN

 Streaming (type: GATHER)
 Node/s: All datanodes
 -> Sort
 Sort Key: (count(*)), t1.c1
 -> Hash Join
 Hash Cond: (t1.c1 = t3.c1)
 -> Hash Left Join
 Hash Cond: (t1.c1 = t2.c1)
 -> Seq Scan on t1
 -> Hash
 -> HashAggregate
 Group By Key: t2.c1
 -> Seq Scan on t2
 -> Hash
 -> Seq Scan on t3
(15 rows)

– Pulling up nonequivalent subqueries
Example:

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

select t1.c1, t1.c2
from t1
where t1.c1 = (select agg() from t2.c2 > t1.c2);

Nonequivalent subqueries cannot be pulled up. You can perform join
twice (one CorrelationKey and one rownum self-join) to rewrite the
statement.
You can rewrite the statement in either of the following ways:

▪ Subquery rewriting
select t1.c1, t1.c2
from t1, (
 select t1.rowid, agg() aggref
 from t1,t2
 where t1.c2 > t2.c2 group by t1.rowid
) dt /* derived table */
where t1.rowid = dt.rowid AND t1.c1 = dt.aggref;

▪ CTE rewriting
WITH dt as
(
 select t1.rowid, agg() aggref
 from t1,t2
 where t1.c2 > t2.c2 group by t1.rowid
)
select t1.c1, t1.c2
from t1, derived_table
where t1.rowid = derived_table.rowid AND
t1.c1 = derived_table.aggref;

NO TICE

● Currently, GaussDB(DWS) does not have an effective way to provide
globally unique row IDs for tables and intermediate result sets. Therefore,
the rewriting is difficult. It is recommended that this issue is avoided at the
service layer or by using t1.xc_node_id + t1.ctid to associate row IDs.
However, the high repetition rate of xc_node_id leads to low association
efficiency, and xc_node_id+ctid cannot be used as the join condition of
hash join.

● If the AGG type is COUNT(*), 0 is used for data padding if CASE-WHEN is
not matched. If the type is not COUNT(*), NULL is used.

● CTE rewriting works better by using share scan.

More Optimization Examples
1. Change the base table to a replication table and create an index on the filter
column.

create table master_table (a int);
create table sub_table(a int, b int);
select a from master_table group by a having a in (select a from sub_table);

In this example, a correlated subquery is contained. To improve the query
performance, you can change sub_table to a replication table and create an index
on the a column.

2. Modify the SELECT statement, change the subquery to a JOIN relationship
between the primary table and the parent query, or modify the subquery to

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

improve the query performance. Ensure that the subquery to be used is
semantically correct.

explain (costs off)select * from master_table as t1 where t1.a in (select t2.a from sub_table as t2 where t1.a
= t2.b);
 QUERY PLAN
--
Streaming (type: GATHER)
 Node/s: All datanodes
 -> Seq Scan on master_table t1
 Filter: (SubPlan 1)
 SubPlan 1
 -> Result
 Filter: (t1.a = t2.b)
 -> Materialize
 -> Streaming(type: BROADCAST)
 Spawn on: All datanodes
 -> Seq Scan on sub_table t2
(11 rows)

In the preceding example, a subplan is used. To remove the subplan, you can
modify the statement as follows:

explain(costs off) select * from master_table as t1 where exists (select t2.a from sub_table as t2 where t1.a
= t2.b and t1.a = t2.a);
 QUERY PLAN
--
Streaming (type: GATHER)
 Node/s: All datanodes
 -> Hash Semi Join
 Hash Cond: (t1.a = t2.b)
 -> Seq Scan on master_table t1
 -> Hash
 -> Streaming(type: REDISTRIBUTE)
 Spawn on: All datanodes
 -> Seq Scan on sub_table t2
(9 rows)

In this way, the subplan is replaced by the semi-join between the two tables,
greatly improving the execution efficiency.

4.5.4 Optimizing Statistics

What Is Statistic Optimization
GaussDB(DWS) generates optimal execution plans based on the cost estimation.
Optimizers need to estimate the number of data rows and the cost based on
statistics collected using ANALYZE. Therefore, the statistics is vital for the
estimation of the number of rows and cost. Global statistics are collected using
ANALYZE: relpages and reltuples in the pg_class table; stadistinct, stanullfrac,
stanumbersN, stavaluesN, and histogram_bounds in the pg_statistic table.

Example 1: Poor Query Performance Due to the Lack of Statistics
In most cases, the lack of statistics in tables or columns involved in the query
greatly affects the query performance.

The table structure is as follows:

CREATE TABLE LINEITEM
(
L_ORDERKEY BIGINT NOT NULL
, L_PARTKEY BIGINT NOT NULL

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

, L_SUPPKEY BIGINT NOT NULL
, L_LINENUMBER BIGINT NOT NULL
, L_QUANTITY DECIMAL(15,2) NOT NULL
, L_EXTENDEDPRICE DECIMAL(15,2) NOT NULL
, L_DISCOUNT DECIMAL(15,2) NOT NULL
, L_TAX DECIMAL(15,2) NOT NULL
, L_RETURNFLAG CHAR(1) NOT NULL
, L_LINESTATUS CHAR(1) NOT NULL
, L_SHIPDATE DATE NOT NULL
, L_COMMITDATE DATE NOT NULL
, L_RECEIPTDATE DATE NOT NULL
, L_SHIPINSTRUCT CHAR(25) NOT NULL
, L_SHIPMODE CHAR(10) NOT NULL
, L_COMMENT VARCHAR(44) NOT NULL
) with (orientation = column, COMPRESSION = MIDDLE) distribute by hash(L_ORDERKEY);

CREATE TABLE ORDERS
(
O_ORDERKEY BIGINT NOT NULL
, O_CUSTKEY BIGINT NOT NULL
, O_ORDERSTATUS CHAR(1) NOT NULL
, O_TOTALPRICE DECIMAL(15,2) NOT NULL
, O_ORDERDATE DATE NOT NULL
, O_ORDERPRIORITY CHAR(15) NOT NULL
, O_CLERK CHAR(15) NOT NULL
, O_SHIPPRIORITY BIGINT NOT NULL
, O_COMMENT VARCHAR(79) NOT NULL
)with (orientation = column, COMPRESSION = MIDDLE) distribute by hash(O_ORDERKEY);

The query statements are as follows:

explain verbose select
count(*) as numwait
from
lineitem l1,
orders
where
o_orderkey = l1.l_orderkey
and o_orderstatus = 'F'
and l1.l_receiptdate > l1.l_commitdate
and not exists (
select
*
from
lineitem l3
where
l3.l_orderkey = l1.l_orderkey
and l3.l_suppkey <> l1.l_suppkey
and l3.l_receiptdate > l3.l_commitdate
)
order by
numwait desc;

If such an issue occurs, you can use the following methods to check whether
statistics in tables or columns has been collected using ANALYZE.

1. Execute EXPLAIN VERBOSE to analyze the execution plan and check the
warning information:
WARNING:Statistics in some tables or columns(public.lineitem(l_receiptdate,l_commitdate,l_orderkey,
l_suppkey), public.orders(o_orderstatus,o_orderkey)) are not collected.
HINT:Do analyze for them in order to generate optimized plan.

2. Check whether the following information exists in the log file in the pg_log
directory. If it does, the poor query performance was caused by the lack of
statistics in some tables or columns.
2017-06-14 17:28:30.336 CST 140644024579856 20971684 [BACKEND] LOG:Statistics in some tables
or columns(public.lineitem(l_receiptdate, l_commitdate,l_orderkey,
.l_suppkey), public.orders(o_orderstatus,o_orderkey)) are not collected.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

2017-06-14 17:28:30.336 CST 140644024579856 20971684 [BACKEND] HINT:Do analyze for them in
order to generate optimized plan.

By using any of the preceding methods, you can identify tables or columns whose
statistics have not been collected using ANALYZE. You can execute ANALYZE to
warnings or tables and columns recorded in logs to resolve the problem.

Example 2: Setting cost_param to Optimize Query Performance
For details, see Case: Configuring cost_param for Better Query Performance.

Example 3: Optimization is Not Accurate When Intermediate Results Exist in
the Query Where JOIN Is Used for Multiple Tables

Symptom: Query the personnel who have checked in an Internet cafe within 15
minutes before and after the check-in of a specified person.

SELECT
C.WBM,
C.DZQH,
C.DZ,
B.ZJHM,
B.SWKSSJ,
B.XWSJ
FROM
b_zyk_wbswxx A,
b_zyk_wbswxx B,
b_zyk_wbcs C
WHERE
A.ZJHM = '522522******3824'
AND A.WBDM = B.WBDM
AND A.WBDM = C.WBDM
AND abs(to_date(A.SWKSSJ,'yyyymmddHH24MISS') - to_date(B.SWKSSJ,'yyyymmddHH24MISS')) <
INTERVAL '15 MINUTES'
ORDER BY
B.SWKSSJ,
B.ZJHM
limit 10 offset 0
;

Figure 4-3 shows the execution plan. This query takes about 12s.

Figure 4-3 Using an unlogged table (1)

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

Optimization analysis:

1. In the execution plan, index scan is used for node scanning, the Join Filter
calculation in the external NEST LOOP IN statement consumes most of the
query time, and the calculation uses the string addition and subtraction, and
unequal-value comparison.

2. Use an unlogged table to record the Internet access time of the specified
person. The start time and end time are processed during data insertion, and
this reduces subsequent addition and subtraction operations.
//Create a temporary unlogged table.
CREATE UNLOGGED TABLE temp_tsw
(
ZJHM NVARCHAR2(18),
WBDM NVARCHAR2(14),
SWKSSJ_START NVARCHAR2(14),
SWKSSJ_END NVARCHAR2(14),
WBM NVARCHAR2(70),
DZQH NVARCHAR2(6),
DZ NVARCHAR2(70),
IPDZ NVARCHAR2(39)
)
;
//Insert the Internet access record of the specified person, and process the start time and end time.
INSERT INTO
temp_tsw
SELECT
A.ZJHM,
A.WBDM,
to_char((to_date(A.SWKSSJ,'yyyymmddHH24MISS') - INTERVAL '15
MINUTES'),'yyyymmddHH24MISS'),
to_char((to_date(A.SWKSSJ,'yyyymmddHH24MISS') + INTERVAL '15
MINUTES'),'yyyymmddHH24MISS'),
B.WBM,B.DZQH,B.DZ,B.IPDZ
FROM
b_zyk_wbswxx A,
b_zyk_wbcs B
WHERE
A.ZJHM='522522******3824' AND A.WBDM = B.WBDM
;

//Query the personnel who have check in an Internet cafe before and after 15 minutes of the check-in
of the specified person. Convert their ID card number format to int8 in comparison.
SELECT
A.WBM,
A.DZQH,
A.DZ,
A.IPDZ,
B.ZJHM,
B.XM,
to_date(B.SWKSSJ,'yyyymmddHH24MISS') as SWKSSJ,
to_date(B.XWSJ,'yyyymmddHH24MISS') as XWSJ,
B.SWZDH
FROM temp_tsw A,
b_zyk_wbswxx B
WHERE
A.ZJHM <> B.ZJHM
AND A.WBDM = B.WBDM
AND (B.SWKSSJ)::int8 > (A.swkssj_start)::int8
AND (B.SWKSSJ)::int8 < (A.swkssj_end)::int8
order by
B.SWKSSJ,
B.ZJHM
limit 10 offset 0
;

The query takes about 7s. Figure 4-4 shows the execution plan.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

Figure 4-4 Using an unlogged table (2)

3. In the previous plan, Hash Join has been executed, and a Hash table has been
created for the large table b_zyk_wbswxx. The table contains large amounts
of data, so the creation takes long time.
temp_tsw contains only hundreds of records, and an equal-value connection
is created between temp_tsw and b_zyk_wbswxx using wbdm (the Internet
cafe code). Therefore, if JOIN is changed to NEST LOOP JOIN, index scan can
be used for node scanning, and the performance will be boosted.

4. Execute the following statement to change JOIN to NEST LOOP JOIN.
SET enable_hashjoin = off;

Figure 4-5 shows the execution plan. The query takes about 3s.

Figure 4-5 Using an unlogged table (3)

5. Save the query result set in the unlogged table for paging display.
If paging display needs to be achieved on the upper-layer application page,
change the offset value to determine the result set on the target page. In this
way, the previous query statement will be executed every time after a page
turning operation, which causes long response latency.
To resolve this problem, you are advised to use the unlogged table to save the
result set.
//Create an unlogged table to save the result set.
CREATE UNLOGGED TABLE temp_result
(
WBM NVARCHAR2(70),
DZQH NVARCHAR2(6),
DZ NVARCHAR2(70),
IPDZ NVARCHAR2(39),
ZJHM NVARCHAR2(18),
XM NVARCHAR2(30),
SWKSSJ date,
XWSJ date,

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

SWZDH NVARCHAR2(32)
);

//Insert the result set to the unlogged table. The insertion takes about 3s.
INSERT INTO
temp_result
SELECT
A.WBM,
A.DZQH,
A.DZ,
A.IPDZ,
B.ZJHM,
B.XM,
to_date(B.SWKSSJ,'yyyymmddHH24MISS') as SWKSSJ,
to_date(B.XWSJ,'yyyymmddHH24MISS') as XWSJ,
B.SWZDH
FROM temp_tsw A,
b_zyk_wbswxx B
WHERE
A.ZJHM <> B.ZJHM
AND A.WBDM = B.WBDM
AND (B.SWKSSJ)::int8 > (A.swkssj_start)::int8
AND (B.SWKSSJ)::int8 < (A.swkssj_end)::int8
;

//Perform paging query on the result set. The paging query takes about 10 ms.
SELECT
*
FROM
temp_result
ORDER BY
SWKSSJ,
ZJHM
LIMIT 10 OFFSET 0;

CA UTION

Collecting global statistics using ANALYZE improves query performance.
If a performance problem occurs, you can use plan hint to adjust the query
plan to the previous one. For details, see Hint-based Tuning.

4.5.5 Optimizing Operators

What Is Operator Optimization
A query statement needs to go through multiple operator procedures to generate
the final result. Sometimes, the overall query performance deteriorates due to
long execution time of certain operators, which are regarded as bottleneck
operators. In this case, you need to execute the EXPLAIN ANALYZE/
PERFORMANCE command to view the bottleneck operators, and then perform
optimization.

For example, in the following execution process, the execution time of the
Hashagg operator accounts for about 66% [(51016-13535)/56476 ≈ 66%] of the
total execution time. Therefore, the Hashagg operator is the bottleneck operator
for this query. Optimize this operator first.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

Operator Optimization Example
1. Scan the base table. For queries requiring large volume of data filtering, such as
point queries or queries that need range scanning, a full table scan using SeqScan
will take a long time. To facilitate scanning, you can create indexes on the
condition column and select IndexScan for index scanning.
 explain (analyze on, costs off) select * from store_sales where ss_sold_date_sk = 2450944;
 id | operation | A-time | A-rows | Peak Memory | A-width
----+--------------------------------+---------------------+--------+--------------+---------
 1 | -> Streaming (type: GATHER) | 3666.020 | 3360 | 195KB |
 2 | -> Seq Scan on store_sales | [3594.611,3594.611] | 3360 | [34KB, 34KB] |

 Predicate Information (identified by plan id)

 2 --Seq Scan on store_sales
 Filter: (ss_sold_date_sk = 2450944)
 Rows Removed by Filter: 4968936
 create index idx on store_sales_row(ss_sold_date_sk);
CREATE INDEX
 explain (analyze on, costs off) select * from store_sales_row where ss_sold_date_sk = 2450944;
 id | operation | A-time | A-rows | Peak Memory | A-width
----+--+-----------------+--------+--------------+----------
 1 | -> Streaming (type: GATHER) | 81.524 | 3360 | 195KB |
 2 | -> Index Scan using idx on store_sales_row | [13.352,13.352] | 3360 | [34KB, 34KB] |

In this example, the full table scan filters much data and returns 3360 records.
After an index has been created on the ss_sold_date_sk column, the scanning
efficiency is significantly boosted from 3.6s to 13 ms by using IndexScan.

2: If NestLoop is used for joining tables with a large number of rows, the join may
take a long time. In the following example, NestLoop takes 181s. If
enable_mergejoin=off is set to disable merge join and enable_nestloop=off is
set to disable NestLoop so that the optimizer selects hash join, the join takes more
than 200 ms.

3. Generally, query performance can be improved by selecting HashAgg. If Sort
and GroupAgg are used for a large result set, you need to set enable_sort to off.
HashAgg consumes less time than Sort and GroupAgg.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

4.5.6 Optimizing Data Skew
Data skew breaks the balance among nodes in the distributed MPP architecture. If
the amount of data stored or processed by a node is much greater than that by
other nodes, the following problems may occur:

● Storage skew severely limits the system capacity. The skew on a single node
hinders system storage utilization.

● Computing skew severely affects performance. The data to be processed on
the skew node is much more than that on other nodes, deteriorating overall
system performance.

● Data skew severely affects the scalability of the MPP architecture. During
storage or computing, data with the same values is often placed on the same
node. Therefore, even if we add nodes after a data skew occurs, the skew data
(data with the same values) is still placed on a single node, which become the
capacity and performance bottleneck of the entire system.

GaussDB(DWS) provides a complete solution for data skew, including storage and
computing skew.

Data Skew in the Storage Layer
In the GaussDB(DWS) database, data is distributed and stored on each DN. You
can improve the query efficiency by using distributed execution. However, if data
skew occurs, bottlenecks exist on some DNs during distribution execution,
affecting the query performance. This is because the distribution column is not
properly selected. This can be solved by adjusting the distribution column.

For example:

explain performance select count(*) from inventory;
5 --CStore Scan on lmz.inventory
 dn_6001_6002 (actual time=0.444..83.127 rows=42000000 loops=1)
 dn_6003_6004 (actual time=0.512..63.554 rows=27000000 loops=1)
 dn_6005_6006 (actual time=0.722..99.033 rows=45000000 loops=1)
 dn_6007_6008 (actual time=0.529..100.379 rows=51000000 loops=1)
 dn_6009_6010 (actual time=0.382..71.341 rows=36000000 loops=1)
 dn_6011_6012 (actual time=0.547..100.274 rows=51000000 loops=1)
 dn_6013_6014 (actual time=0.596..118.289 rows=60000000 loops=1)
 dn_6015_6016 (actual time=1.057..132.346 rows=63000000 loops=1)
 dn_6017_6018 (actual time=0.940..110.310 rows=54000000 loops=1)
 dn_6019_6020 (actual time=0.231..41.198 rows=21000000 loops=1)
 dn_6021_6022 (actual time=0.927..114.538 rows=54000000 loops=1)
 dn_6023_6024 (actual time=0.637..118.385 rows=60000000 loops=1)
 dn_6025_6026 (actual time=0.288..32.240 rows=15000000 loops=1)
 dn_6027_6028 (actual time=0.566..118.096 rows=60000000 loops=1)
 dn_6029_6030 (actual time=0.423..82.913 rows=42000000 loops=1)
 dn_6031_6032 (actual time=0.395..78.103 rows=39000000 loops=1)
 dn_6033_6034 (actual time=0.376..51.052 rows=24000000 loops=1)
 dn_6035_6036 (actual time=0.569..79.463 rows=39000000 loops=1)

In the performance information, you can view the number of scan rows of each
DN in the inventory table. The number of rows of each DN differs a lot, the
biggest is 63000000 and the smallest value is 15000000. This value difference on
the performance of data scan is acceptable, but if the join operator exists in the
upper-layer, the impact on the performance cannot be ignored.

Generally, the data table is hash distributed on each DN; therefore, it is important
to choose a proper distribution column. Run table_skewness() to view data skew
of each DN in the inventory table. The query result is as follows:

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

select table_skewness('inventory');
 table_skewness
--
 ("dn_6015_6016 ",63000000,8.046%)
 ("dn_6013_6014 ",60000000,7.663%)
 ("dn_6023_6024 ",60000000,7.663%)
 ("dn_6027_6028 ",60000000,7.663%)
 ("dn_6017_6018 ",54000000,6.897%)
 ("dn_6021_6022 ",54000000,6.897%)
 ("dn_6007_6008 ",51000000,6.513%)
 ("dn_6011_6012 ",51000000,6.513%)
 ("dn_6005_6006 ",45000000,5.747%)
 ("dn_6001_6002 ",42000000,5.364%)
 ("dn_6029_6030 ",42000000,5.364%)
 ("dn_6031_6032 ",39000000,4.981%)
 ("dn_6035_6036 ",39000000,4.981%)
 ("dn_6009_6010 ",36000000,4.598%)
 ("dn_6003_6004 ",27000000,3.448%)
 ("dn_6033_6034 ",24000000,3.065%)
 ("dn_6019_6020 ",21000000,2.682%)
 ("dn_6025_6026 ",15000000,1.916%)
(18 rows)

The table definition indicates that the table uses the inv_date_sk column as the
distribution column, which causes a data skew. Based on the data distribution of
each column, change the distribution column to inv_item_sk. The skew status is
as follows:

select table_skewness('inventory');
 table_skewness
--
 ("dn_6001_6002 ",43934200,5.611%)
 ("dn_6007_6008 ",43829420,5.598%)
 ("dn_6003_6004 ",43781960,5.592%)
 ("dn_6031_6032 ",43773880,5.591%)
 ("dn_6033_6034 ",43763280,5.589%)
 ("dn_6011_6012 ",43683600,5.579%)
 ("dn_6013_6014 ",43551660,5.562%)
 ("dn_6027_6028 ",43546340,5.561%)
 ("dn_6009_6010 ",43508700,5.557%)
 ("dn_6023_6024 ",43484540,5.554%)
 ("dn_6019_6020 ",43466800,5.551%)
 ("dn_6021_6022 ",43458500,5.550%)
 ("dn_6017_6018 ",43448040,5.549%)
 ("dn_6015_6016 ",43247700,5.523%)
 ("dn_6005_6006 ",43200240,5.517%)
 ("dn_6029_6030 ",43181360,5.515%)
 ("dn_6025_6026 ",43179700,5.515%)
 ("dn_6035_6036 ",42960080,5.487%)
(18 rows)

Data skew is solved.

In addition to the table_skewness() view, you can use the table_distribution
function and the PGXC_GET_TABLE_SKEWNESS view to efficiently query the data
skew of each table.

Data Skew in the Computing Layer

Even if data is balanced across nodes after you change the distribution key of a
table, data skew may still occur during a query. If data skew occurs in the result
set of an operator on a DN, skew will also occur during the computing that
involves the operator. Generally, this is caused by data redistribution during the
execution.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0805.html

During a query, JOIN keys and GROUP BY keys are not used as distribution
columns. Data is redistributed among DNs based on the hash values of data on
the keys. The redistribution is implemented using the Redistribute operator in an
execution plan. Data skew in redistribution columns can lead to data skew during
system operation. After the redistribution, some nodes will have much more data,
process more data, and will have much lower performance than others.

In the following example, the s and t tables are joined, and s.x and t.x columns in
the join condition are not their distribution keys. Table data is redistributed using
the REDISTRIBUTE operator. Data skew occurs in the s.x column and not in the t.x
column. The result set of the Streaming operator (id being 6) on datanode2 has
data three times that of other DNs and causes a skew.

select * from skew s,test t where s.x = t.x order by s.a limit 1;
 id | operation | A-time
----+---+-----------------------
 1 | -> Limit | 52622.382
 2 | -> Streaming (type: GATHER) | 52622.374
 3 | -> Limit | [30138.494,52598.994]
 4 | -> Sort | [30138.486,52598.986]
 5 | -> Hash Join (6,8) | [30127.013,41483.275]
 6 | -> Streaming(type: REDISTRIBUTE) | [11365.110,22024.845]
 7 | -> Seq Scan on public.skew s | [2019.168,2175.369]
 8 | -> Hash | [2460.108,2499.850]
 9 | -> Streaming(type: REDISTRIBUTE) | [1056.214,1121.887]
 10 | -> Seq Scan on public.test t | [310.848,325.569]

6 --Streaming(type: REDISTRIBUTE)
 datanode1 (rows=5050368)
 datanode2 (rows=15276032)
 datanode3 (rows=5174272)
 datanode4 (rows=5219328)

It is more difficult to detect skew in computing than in storage. To solve skew in
computing, GaussDB provides the Runtime Load Balance Technology (RLBT)
solution controlled by the skew_option parameter. The RLBT solution addresses
how to detect and solve data skew.

1. Detect data skew.
The solution first checks whether skew data exists in redistribution columns
used for computing. RLBT can detect data skew based on statistics, specified
hints, or rules.
– Detection based on statistics

Run the ANALYZE statement to collect statistics on tables. The optimizer
will automatically identify skew data on redistribution keys based on the
statistics and generate optimization plans for queries having potential
skew. When the redistribution key has multiple columns, statistics
information can be used for identification only when all columns belong
to the same base table.
The statistics information can only provide the skew of the base table. If
a column in the base table is skewed, or other columns have filtering
conditions, or after the join of other tables, we cannot determine whether
the skewed data still exists on the skewed column. If skew_option is set
to normal, it indicates that data skew persists and the base tables will be
optimized to solve the skew. If skew_option is set to lazy, it indicates
that data skew is solved and the optimization will stop.

– Detection based on specified hints

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0909.html
https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0909.html
https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0909.html

The intermediate results of complex queries are difficult to estimate
based on statistics. In this case, you can specify hints to provide the skew
information, based on which the optimizer optimizes queries. For details
about the syntax of hints, see Skew Hints.

– Detection based on rules
In a business intelligence (BI) system, a large number of SQL statements
having outer joins (including left joins, right joins, and full joins) are
generated, and many NULL values will be generated in empty columns
that have no match for outer joins. If JOIN or GROUP BY operations are
performed on the columns, data skew will occur. RLBT can automatically
identify this scenario and generate an optimization plan for NULL value
skew.

2. Solve computing skew.
Join and Aggregate operators are optimized to solve skew.
– Join optimization
Skew and non-skew data is separately processed. Details are as follows:

a. When redistribution is required on both sides of a join:
Use PART_REDISTRIBUTE_PART_ROUNDROBIN on the side with skew.
Specifically, perform round-robin on skew data and redistribution on non-
skew data.
Use PART_REDISTRIBUTE_PART_BROADCAST on the side with no skew.
Specifically, perform broadcast on skew data and redistribution on non-
skew data.

b. When redistribution is required on only one side of a join:
Use PART_REDISTRIBUTE_PART_ROUNDROBIN on the side where
redistribution is required.
Use PART_LOCAL_PART_BROADCAST on the side where redistribution is
not required. Specifically, perform broadcast on skew data and retain
other data locally.

c. When a table has NULL values padded:
Use PART_REDISTRIBUTE_PART_LOCAL on the table. Specifically, retain
the NULL values locally and perform redistribution on other data.

In the example query, the s.x column contains skewed data and its value is 0.
The optimizer identifies the skew data in statistics and generates the
following optimization plan:
 id | operation | A-time
----+---+-----------------------
 1 | -> Limit | 23642.049
 2 | -> Streaming (type: GATHER) | 23642.041
 3 | -> Limit | [23310.768,23618.021]
 4 | -> Sort | [23310.761,23618.012]
 5 | -> Hash Join (6,8) | [20898.341,21115.272]
 6 | -> Streaming(type: PART REDISTRIBUTE PART ROUNDROBIN) |
[7125.834,7472.111]
 7 | -> Seq Scan on public.skew s | [1837.079,1911.025]
 8 | -> Hash | [2612.484,2640.572]
 9 | -> Streaming(type: PART REDISTRIBUTE PART BROADCAST) | [1193.548,1297.894]
 10 | -> Seq Scan on public.test t | [314.343,328.707]

 5 --Vector Hash Join (6,8)
 Hash Cond: s.x = t.x
 Skew Join Optimizated by Statistic

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

 6 --Streaming(type: PART REDISTRIBUTE PART ROUNDROBIN)
 datanode1 (rows=7635968)
 datanode2 (rows=7517184)
 datanode3 (rows=7748608)
 datanode4 (rows=7818240)

In the preceding execution plan, Skew Join Optimized by Statistic indicates
that this is an optimized plan used for handling data skew. The Statistic
keyword indicates that the plan optimization is based on statistics; Hint
indicates that the optimization is based on hints; Rule indicates that the
optimization is based on rules. In this plan, skew and non-skew data is
separately processed. Non-skew data in the s table is redistributed based on
its hash values, and skew data (whose value is 0) is evenly distributed on all
nodes in round-robin mode. In this way, data skew is solved.
To ensure result correctness, the t table also needs to be processed. In the t
table, the data whose value is 0 (skew value in the s.x table) is broadcast and
other data is redistributed based on its hash values.
In this way, data skew in JOIN operations is solved. The above result shows
that the output of the Streaming operator (id being 6) is balanced and the
end-to-end performance of the query is doubled.
If the stream operator type in the execution plan is HYBRID, the stream mode
varies depending on the skew data. The following plan is an example:
EXPLAIN (nodes OFF, costs OFF) SELECT COUNT(*) FROM skew_scol s, skew_scol1 s1 WHERE s.b =
s1.c;
QUERY PLAN

id | operation

+---

1 | -> Aggregate
2 | -> Streaming (type: GATHER)
3 | -> Aggregate
4 | -> Hash Join (5,7)
5 | -> Streaming(type: HYBRID)
6 | -> Seq Scan on skew_scol s
7 | -> Hash
8 | -> Streaming(type: HYBRID)
9 | -> Seq Scan on skew_scol1 s1

Predicate Information (identified by plan id)

4 --Hash Join (5,7)
Hash Cond: (s.b = s1.c)
Skew Join Optimized by Statistic
5 --Streaming(type: HYBRID)
Skew Filter: (b = 1)
Skew Filter: (b = 0)
8 --Streaming(type: HYBRID)
Skew Filter: (c = 0)
Skew Filter: (c = 1)

Data 1 has skew in the skew_scol table. Perform ROUNDROBIN on skew
data and REDISTRIBUTE on non-skew data.
Data 0 is the side with no skew in the skew_scol table. Perform BROADCAST
on skew data and REDISTRIBUTE on non-skew data.
As shown in the preceding figure, the two stream types are PART
REDISTRIBUTE PART ROUNDROBIN and PART REDISTRIBUTE PART
BROADCAST. In this example, the stream type is HYBRID.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

– Aggregate optimization

For aggregation, data on each DN is deduplicated based on the GROUP BY
key and then redistributed. After the deduplication on DNs, the global
occurrences of each value will not be greater than the number of DNs.
Therefore, no serious data skew will occur. Take the following query as an
example:
select c1, c2, c3, c4, c5, c6, c7, c8, c9, count(*) from t group by c1, c2, c3, c4, c5, c6, c7, c8, c9 limit 10;

The command output is as follows:
 id | operation | A-time | A-rows
----+--+------------------------+----------
 1 | -> Streaming (type: GATHER) | 130621.783 | 12
 2 | -> GroupAggregate | [85499.711,130432.341] | 12
 3 | -> Sort | [85499.509,103145.632] | 36679237
 4 | -> Streaming(type: REDISTRIBUTE) | [25668.897,85499.050] | 36679237
 5 | -> Seq Scan on public.t | [9835.069,10416.388] | 36679237

 4 --Streaming(type: REDISTRIBUTE)
 datanode1 (rows=36678837)
 datanode2 (rows=100)
 datanode3 (rows=100)
 datanode4 (rows=200)

A large amount of skew data exists. As a result, after data is redistributed
based on its GROUP BY key, the data volume of datanode1 is hundreds of
thousands of times that of others. After optimization, a GROUP BY operation
is performed on the DN to deduplicate data. After redistribution, no data
skew occurs.
 id | operation | A-time
----+--+-----------------------
 1 | -> Streaming (type: GATHER) | 10961.337
 2 | -> HashAggregate | [10953.014,10953.705]
 3 | -> HashAggregate | [10952.957,10953.632]
 4 | -> Streaming(type: REDISTRIBUTE) | [10952.859,10953.502]
 5 | -> HashAggregate | [10084.280,10947.139]
 6 | -> Seq Scan on public.t | [4757.031,5201.168]

 Predicate Information (identified by plan id)

 3 --HashAggregate
 Skew Agg Optimized by Statistic

 4 --Streaming(type: REDISTRIBUTE)
 datanode1 (rows=17)
 datanode2 (rows=8)
 datanode3 (rows=8)
 datanode4 (rows=14)

Applicable scope

– Join operator

▪ nest loop, merge join, and hash join can be optimized.

▪ If skew data is on the left to the join, inner join, left join, semi join,
and anti join are supported. If skew data is on the right to the join,
inner join, right join, right semi join, and right anti join are
supported.

▪ For an optimization plan generated based on statistics, the optimizer
checks whether it is optimal by estimating its cost. Optimization
plans based on hints or rules are forcibly generated.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

– Aggregate operator

▪ array_agg, string_agg, and subplan in agg qual cannot be
optimized.

▪ A plan generated based on statistics is affected by its cost, the
plan_mode_seed parameter, and the best_agg_plan parameter. A
plan generated based on hints or rules are not affected by them.

4.6 Hint-based Tuning

4.6.1 Plan Hint Optimization
In plan hints, you can specify a join order, join, stream, and scan operations, the
number of rows in a result, and redistribution skew information to tune an
execution plan, improving query performance.

Function
Plan hints can be specified using the keywords such as SELECT, INSERT, UPDATE,
MERGE, and DELETE, in the following format:

/*+ <plan hint> */

You can specify multiple hints for a query plan and separate them by spaces. A
hint specified for a query plan does not apply to its subquery plans. To specify a
hint for a subquery, add the hint following the keyword of this subquery.

For example:

select /*+ <plan_hint1> <plan_hint2> */ * from t1, (select /*+ <plan_hint3> */ from t2) where 1=1;

In the preceding command, <plan_hint1> and <plan_hint2> are the hints of a
query, and <plan_hint3> is the hint of its subquery.

NO TICE

If a hint is specified in the CREATE VIEW statement, the hint will be applied each
time this view is used.
If the random plan function is enabled (plan_mode_seed is set to a value other
than 0), the specified hint will not be used.

Supported Hints
Currently, the following hints are supported:

● Join order hints (leading)
● Join operation hints, excluding the semi join, anti join, and unique plan hints
● Rows hints
● Stream operation hints
● Scan operation hints, supporting only tablescan, indexscan, and

indexonlyscan

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

● Sublink name hints
● Skew hints, supporting only the skew in the redistribution involving Join or

HashAgg
● Hint used for Agg distribution columns Only clusters of 8.1.3.100 and later

versions support this function.
● Hint that disables subquery pull-up. Only clusters of 8.2.0 and later versions

support this function.
● Configuration parameter hints. For details about supported parameters, see

Configuration Parameter Hints.

Precautions
● Sort, Setop, and Subplan hints are not supported.
● Hints do not support SMP or Node Groups.

Examples
The following is the original plan and is used for comparing with the optimized
ones:

explain
select i_product_name product_name
,i_item_sk item_sk
,s_store_name store_name
,s_zip store_zip
,ad2.ca_street_number c_street_number
,ad2.ca_street_name c_street_name
,ad2.ca_city c_city
,ad2.ca_zip c_zip
,count(*) cnt
,sum(ss_wholesale_cost) s1
,sum(ss_list_price) s2
,sum(ss_coupon_amt) s3
FROM store_sales
,store_returns
,store
,customer
,promotion
,customer_address ad2
,item
WHERE ss_store_sk = s_store_sk AND
ss_customer_sk = c_customer_sk AND
ss_item_sk = i_item_sk and
ss_item_sk = sr_item_sk and
ss_ticket_number = sr_ticket_number and
c_current_addr_sk = ad2.ca_address_sk and
ss_promo_sk = p_promo_sk and
i_color in ('maroon','burnished','dim','steel','navajo','chocolate') and
i_current_price between 35 and 35 + 10 and
i_current_price between 35 + 1 and 35 + 15
group by i_product_name
,i_item_sk
,s_store_name
,s_zip
,ad2.ca_street_number
,ad2.ca_street_name
,ad2.ca_city
,ad2.ca_zip
;

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

4.6.2 Join Order Hints

Function
Theses hints specify the join order and outer/inner tables.

Syntax
● Specify only the join order.
leading(join_table_list)

● Specify the join order and outer/inner tables. The outer/inner tables are
specified by the outermost parentheses.

leading((join_table_list))

Parameter Description
join_table_list specifies the tables to be joined. The values can be table names or
table aliases. If a subquery is pulled up, the value can also be the subquery alias.
Separate the values with spaces. You can add parentheses to specify the join
priorities of tables.

NO TICE

A table name or alias can only be a string without a schema name.
An alias (if any) is used to represent a table.

To prevent semantic errors, tables in the list must meet the following
requirements:

● The tables must exist in the query or its subquery to be pulled up.
● The table names must be unique in the query or subquery to be pulled up. If

they are not, their aliases must be unique.
● A table appears only once in the list.
● An alias (if any) is used to represent a table.

For example:

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

leading(t1 t2 t3 t4 t5): t1, t2, t3, t4, and t5 are joined. The join order and outer/
inner tables are not specified.

leading(t1 t2 t3 t4 t5): t1, t2, t3, t4, and t5 are joined in sequence. The table on
the right is used as the inner table in each join.

leading(t1 (t2 t3 t4) t5): First, t2, t3, and t4 are joined and the outer/inner
tables are not specified. Then, the result is joined with t1 and t5, and the outer/
inner tables are not specified.

leading(t1 (t2 t3 t4) t5): First, t2, t3, and t4 are joined and the outer/inner
tables are not specified. Then, the result is joined with t1, and (t2 t3 t4) is used as
the inner table. Finally, the result is joined with t5, and t5 is used as the inner
table.

leading((t1 (t2 t3) t4 t5)) leading((t3 t2)): First, t2 and t3 are joined and t2 is
used as the inner table. Then, the result is joined with t1, and (t2 t3) is used as
the inner table. Finally, the result is joined with t4 and then t5, and the table on
the right in each join is used as the inner table.

Examples

Hint the query plan in Examples as follows:

explain
select /*+ leading((((((store_sales store) promotion) item) customer) ad2) store_returns) leading((store
store_sales))*/ i_product_name product_name ...

First, store_sales and store are joined and store_sales is the inner table. Then,
The result is joined with promotion, item, customer, ad2, and store_returns in
sequence. The optimized plan is as follows:

For details about the warning at the top of the plan, see Hint Errors, Conflicts,
and Other Warnings.

4.6.3 Join Operation Hints

Function

Specifies the join method. It can be nested loop join, hash join, or merge join.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

Syntax
[no] nestloop|hashjoin|mergejoin(table_list)

Parameter Description
● no indicates that the specified hint will not be used for a join.

● table_list specifies the tables to be joined. The values are the same as those of
join_table_list but contain no parentheses.

For example:

no nestloop(t1 t2 t3): nestloop is not used for joining t1, t2, and t3. The three
tables may be joined in either of the two ways: Join t2 and t3, and then t1; join t1
and t2, and then t3. This hint takes effect only for the last join. If necessary, you
can hint other joins. For example, you can add no nestloop(t2 t3) to join t2 and
t3 first and to forbid the use of nestloop.

Examples

Hint the query plan in Examples as follows:

explain
select /*+ nestloop(store_sales store_returns item) */ i_product_name product_name ...

nestloop is used for the last join between store_sales, store_returns, and item.
The optimized plan is as follows:

4.6.4 Rows Hints

Function

These hints specify the number of rows in an intermediate result set. Both
absolute values and relative values are supported.

Syntax
rows(table_list #|+|-|* const)

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

Parameter Description
● #,+,-, and * are operators used for hinting the estimation. # indicates that the

original estimation is used without any calculation. +,-, and * indicate that the
original estimation is calculated using these operators. The minimum
calculation result is 1. table_list specifies the tables to be joined. The values
are the same as those of table_list in Join Operation Hints.

● const can be any non-negative number and supports scientific notation.

For example:

rows(t1 #5): The result set of t1 is five rows.

rows(t1 t2 t3 *1000): Multiply the result set of joined t1, t2, and t3 by 1000.

Suggestion
● The hint using * for two tables is recommended, because this hint will take

effect for a join as long as the two tables appear on both sides of this join.
For example, if the hint is rows(t1 t2 * 3), the join result of (t1 t3 t4) and (t2
t5 t6) will be multiplied by 3 because t1 and t2 appear on both sides of the
join.

● rows hints can be specified for the result sets of a single table, multiple
tables, function tables, and subquery scan tables.

Examples
Hint the query plan in Examples as follows:

explain
select /*+ rows(store_sales store_returns *50) */ i_product_name product_name ...

Multiply the result set of joined store_sales and store_returns by 50. The
optimized plan is as follows:

The estimation value after the hint in row 11 is 360, and the original value is
rounded off to 7.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

4.6.5 Stream Operation Hints

Function

Specifies the stream method, which can be broadcast, redistribute, or specifying
the distribution key for Agg redistribution.

NO TE

Specifies the hint for the distribution column during the Agg process. This parameter is
supported only by clusters of version 8.1.3.100 or later.

Syntax
[no] broadcast | redistribute(table_list) | redistribute ((*) (columns))

Parameter Description
● no indicates that the hinted stream method is not used. When the hint is

specified for the distribution columns in the Agg redistribution, no is invalid.

● table_list specifies the tables to be joined. For details, see Parameter
Description.

● When hints are specified for distribution columns, the asterisk (*) is fixed and
the table name cannot be specified.

● columns specifies one or more columns in the GROUP BY clause. When there
are no GROUP BY clauses, it can specify the columns in the DISTINCT clause.

NO TE

● The specified distribution column must be specified using the column sequence number
or column name in group by or distinct. The columns in count(distinct) can only be
specified using column names.

● For a multi-layer query, you can specify the distribution column hint at each layer. The
hint takes effect only at the corresponding layer.

● The column specified in count(distinct) takes effect only for two-level hashagg plans.
Otherwise, the specified distribution column is invalid.

● If the optimizer finds that redistribution is not required after estimation, the specified
distribution column is invalid.

Tips
● Generally, the optimizer selects a group of non-skew distribution keys for data

redistribution based on statistics. If the default distribution keys have data
skew, you can manually specify the distribution columns to avoid data skew.

● When selecting a distribution key, select a group of columns with high distinct
values as the distribution key based on data distribution features. In this way,
data can be evenly distributed to each DN after redistribution.

● After writing hints, you can run explain verbose to print the execution plan
and check whether the specified distribution key is valid. If the specified
distribution key is invalid, a warning is displayed.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

Example
● Hint the query plan in Examples as follows:

explain
select /*+ no redistribute(store_sales store_returns item store) leading(((store_sales store_returns item
store) customer)) */ i_product_name product_name ...

In the original plan, the join result of store_sales, store_returns, item, and
store is redistributed before it is joined with customer. After the hinting, the
redistribution is disabled and the join order is retained. The optimized plan is
as follows:

● Specifies the distribution columns for Agg redistribution.
explain (verbose on, costs off, nodes off)
select /*+ redistribute ((*) (2 3)) */ a1, b1, c1, count(c1) from t1 group by a1, b1, c1 having
count(c1) > 10 and sum(d1) > 100

In the following example, the last two columns of the specified GROUP BY
columns are used as distribution keys.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

● If the statement does not contain the GROUP BY clause, specify the distinct
column as the distribution columns.
explain (verbose on, costs off, nodes off)
select /*+ redistribute ((*) (3 1)) */ distinct a1, b1, c1 from t1;

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

4.6.6 Scan Operation Hints

Function

These hints specify a scan operation, which can be tablescan, indexscan, or
indexonlyscan.

Syntax
[no] tablescan|indexscan|indexonlyscan(table [index])

Parameter Description
● no indicates that the specified hint will not be used for a join.

● table specifies the table to be scanned. You can specify only one table. Use a
table alias (if any) instead of a table name.

● index indicates the index for indexscan or indexonlyscan. You can specify
only one index.

NO TE

indexscan and indexonlyscan hints can be used only when the specified index belongs to
the table.

Scan operation hints can be used for row-store tables, column-store tables, HDFS tables,
HDFS foreign tables, OBS tables, and subquery tables. HDFS tables include primary tables
and delta tables. The delta tables are invisible to users. Therefore, scan operation hints are
used only for primary tables.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

Examples

To specify an index-based hint for a scan, create an index named i on the
i_item_sk column of the item table.

create index i on item(i_item_sk);

Hint the query plan in Examples as follows:

explain
select /*+ indexscan(item i) */ i_product_name product_name ...

item is scanned based on an index. The optimized plan is as follows:

4.6.7 Sublink Name Hints

Function

These hints specify the name of a sublink block.

Syntax
blockname (table)

Parameter Description
● table indicates the name you have specified for a sublink block.

NO TE

● This hint is used by an outer query only when a sublink is pulled up. Currently, only the
Agg equivalent join, IN, and EXISTS sublinks can be pulled up. This hint is usually used
together with the hints described in the previous sections.

● The subquery after the FROM keyword is hinted by using the subquery alias. In this
case, blockname becomes invalid.

● If a sublink contains multiple tables, the tables will be joined with the outer-query
tables in a random sequence after the sublink is pulled up. In this case, blockname also
becomes invalid.

Examples
explain select /*+nestloop(store_sales tt) */ * from store_sales where ss_item_sk in (select /*
+blockname(tt)*/ i_item_sk from item group by 1);

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

tt indicates the sublink block name. After being pulled up, the sublink is joined
with the outer-query table store_sales by using nestloop. The optimized plan is as
follows:

4.6.8 Skew Hints

Function
Theses hints specify redistribution keys containing skew data and skew values, and
are used to optimize redistribution involving Join or HashAgg.

Syntax
● Specify single-table skew.

skew(table (column) [(value)])

● Specify intermediate result skew.
skew((join_rel) (column) [(value)])

Parameter Description
● table specifies the table where skew occurs.
● join_rel specifies two or more joined tables. For example, (t1 t2) indicates

that the result of joining t1 and t2 tables contains skew data.
● column specifies one or more columns where skew occurs.
● value specifies one or more skew values.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

NO TE

● Skew hints are used only if redistribution is required and the specified skew information
matches the redistribution information.

● Skew hints are controlled by the GUC parameter skew_option. If the parameter is
disabled, skew hints cannot be used for solving skew.

● Currently, skew hints support only the table relationships of the ordinary table and
subquery types. Hints can be specified for base tables, subqueries, and WITH ... AS
clauses. Unlike other hints, a subquery can be used in skew hints regardless of whether
it is pulled up.

● Use an alias (if any) to specify a table where data skew occurs.

● You can use a name or an alias to specify a skew column as long as it is not ambiguous.
The columns in skew hints cannot be expressions. If data skew occurs in the
redistribution that uses an expression as a redistribution key, set the redistribution key
as a new column and specify the column in skew hints.

● The number of skew values must be an integer multiple of the number of columns.
Skew values must be grouped based on the column sequence, with each group
containing a maximum of 10 values. You can specify duplicate values to group skew
columns having different number of skew values. For example, the c1 and c2 columns
of the t1 table contains skew data. The skew value of the c1 column is a1, and the skew
values of the c2 column are b1 and b2. In this case, the skew hint is skew(t1 (c1 c2)
((a1 b1)(a1 b2))). (a1 b1) is a value group, where NULL is allowed as a skew value.
Each hint can contain a maximum of 10 groups and the number of groups should be an
integer multiple of the number of columns.

● In the redistribution optimization of Join, a skew value must be specified for skew hints.
The skew value can be left empty for HashAgg.

● If multiple tables, columns, or values are specified, separate items of the same type with
spaces.

● The type of skew values cannot be forcibly converted in hints. To specify a string,
enclose it with single quotation marks (' ').

Example:

● Specify single-table skew.
Each skew hint describes the skew information of one table relationship. To
describe the skews of multiple table relationships in a query, specify multiple
skew hints.
Skew hints have the following formats:
– One skew value in one column: skew(t (c1) (v1))

Description: The v1 value in the c1 column of the t table relationship
causes skew in query execution.

– Multiple skew values in one column: skew(t (c1) (v1 v2 v3 ...))
Description: Values including v1, v2, and v3 in the c1 column of the t
table relationship cause skew in query execution.

– Multiple columns, each having one skew value: skew(t (c1 c2) (v1 v2))
Description: The v1 value in the c1 column and the v2 value in the c2
column of the t table relationship cause skew in query execution.

– Multiple columns, each having multiple skew values: skew(t (c1 c2) ((v1
v2) (v3 v4) (v5 v6) ...))
Description: Values including v1, v3, and v5 in the c1 column and values
including v2, v4, and v6 in the c2 column of the t table relationship
cause skew in query execution.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0909.html

NO TICE

In the last format, parentheses for skew value groups can be omitted, for
example, skew(t (c1 c2) (v1 v2 v3 v4 v5 v6 ...)). In a skew hint, either
use parentheses for all skew value groups or for none of them.

Otherwise, a syntax error will be generated. For example, skew(t (c1 c2)
(v1 v2 v3 v4 (v5 v6) ...)) will generate an error.

● Specify intermediate result skew.

If data skew does not occur in base tables but in an intermediate result
during query execution, specify skew hints of the intermediate result to solve
the skew. The format is skew((t1 t2) (c1) (v1)).

Description: Data skew occurs after the table relationships t1 and t2 are
joined. The c1 column of the t1 table contains skew data and its skew value is
v1.

c1 can exist only in a table relationship of join_rel. If there is another column
having the same name, use aliases to avoid ambiguity.

Suggestion
● For a multi-level query, write the hint on the layer where data skew occurs.

● For a listed subquery, you can specify the subquery name in a hint. If you
know data skew occurs on which base table, directly specify the table.

● Aliases are preferred when you specify a table or column in a hint.

Examples

Specify single-table skew.

● Specify hints in the original query.

For example, the original query is as follows:
explain
with customer_total_return as
(select sr_customer_sk as ctr_customer_sk
,sr_store_sk as ctr_store_sk
,sum(SR_FEE) as ctr_total_return
from store_returns
,date_dim
where sr_returned_date_sk = d_date_sk
and d_year =2000
group by sr_customer_sk
,sr_store_sk)
 select c_customer_id
from customer_total_return ctr1
,store
,customer
where ctr1.ctr_total_return > (select avg(ctr_total_return)*1.2
from customer_total_return ctr2
where ctr1.ctr_store_sk = ctr2.ctr_store_sk)
and s_store_sk = ctr1.ctr_store_sk
and s_state = 'NM'
and ctr1.ctr_customer_sk = c_customer_sk
order by c_customer_id
limit 100;

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

Specify the hints of HashAgg in the inner with clause and of the outer Hash
Join. The query containing hints is as follows:
explain
with customer_total_return as
(select /*+ skew(store_returns(sr_store_sk sr_customer_sk)) */sr_customer_sk as ctr_customer_sk
,sr_store_sk as ctr_store_sk
,sum(SR_FEE) as ctr_total_return
from store_returns
,date_dim
where sr_returned_date_sk = d_date_sk
and d_year =2000
group by sr_customer_sk
,sr_store_sk)
 select /*+ skew(ctr1(ctr_customer_sk)(11))*/ c_customer_id
from customer_total_return ctr1
,store
,customer
where ctr1.ctr_total_return > (select avg(ctr_total_return)*1.2
from customer_total_return ctr2
where ctr1.ctr_store_sk = ctr2.ctr_store_sk)
and s_store_sk = ctr1.ctr_store_sk
and s_state = 'NM'
and ctr1.ctr_customer_sk = c_customer_sk
order by c_customer_id
limit 100;

The hints indicate that the group by in the inner with clause contains skew
data during redistribution by HashAgg, corresponding to the original Hash
Agg operators 10 and 21; and that the ctr_customer_sk column in the outer
ctr1 table contains skew data during redistribution by Hash Join,
corresponding to operator 6 in the original plan. The optimized plan is as
follows:

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

To solve data skew in the redistribution, Hash Agg is changed to double-level
Agg operators and the redistribution operators used by Hash Join are changed
in the optimized plan.

● Modify the query and then specify hints.
For example, the original query and its plan are as follows:
explain select count(*) from store_sales_1 group by round(ss_list_price);

Columns in hints do not support expressions. To specify hints, rewrite the
query as several subqueries. The rewritten query and its plan are as follows:
explain
select count(*)
from (select round(ss_list_price),ss_hdemo_sk
from store_sales_1)tmp(a,ss_hdemo_sk)
group by a;

Ensure that the service logic is not changed during the rewriting.
Specify hints in the rewritten query as follows:
explain
select /*+ skew(tmp(a)) */ count(*)
from (select round(ss_list_price),ss_hdemo_sk
from store_sales_1)tmp(a,ss_hdemo_sk)
group by a;

The plan shows that after Hash Agg is changed to double-layer Agg
operators, redistributed data is greatly reduced and redistribution time
shortened.
You can specify hints in columns in a subquery, for example:

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

explain
select /*+ skew(tmp(b)) */ count(*)
from (select round(ss_list_price) b,ss_hdemo_sk
from store_sales_1)tmp(a,ss_hdemo_sk)
group by a;

4.6.9 Hint That Disables Subquery Pull-up

Function
To optimize query logic, the optimizer usually pulls up subqueries for execution.
However, sometimes the pulled up subqueries do not run much faster than others,
and may even be slower due to enlarged search scope. In this case, you can
specify the no merge hint to disable pull-up. This hint is not recommended in
most cases.

Syntax
no merge [(subquery_name)]

Description
subquery_name indicates the name of a subquery. It can also be a view or CTE
name. The specified subquery will not be unnested during logic optimization. If
subquery_name is not specified, the current query will not be unnested.

Example
Create tables t1, t2, and t3.

create table t1(a1 int,b1 int,c1 int,d1 int);
create table t2(a2 int,b2 int,c2 int,d2 int);
create table t3(a3 int,b3 int,c3 int,d3 int);

The original statement is as follows:

explain select * from t3, (select a1,b2,c1,d2 from t1,t2 where t1.a1=t2.a2) s1 where t3.b3=s1.b2;

In this query, you can use the following methods to disable the pull-up of
subquery s1:

● Method 1:
explain select /*+ no merge(s1) */ * from t3, (select a1,b2,c1,d2 from t1,t2 where t1.a1=t2.a2) s1
where t3.b3=s1.b2;

● Method 2:
explain select * from t3, (select /*+ no merge */ a1,b2,c1,d2 from t1,t2 where t1.a1=t2.a2) s1 where
t3.b3=s1.b2;

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

Outcome:

4.6.10 Configuration Parameter Hints

Function
A hint, or a GUC hint, specifies a configuration parameter value when a plan is
generated.

Syntax
set [global](guc_name guc_value)

Parameters
● global indicates that the parameter set by hint takes effect at the statement

level. If global is not specified, the parameter takes effect only in the
subquery where the hint is located.

● guc_name indicates the name of the configuration parameter specified by
hint.

● guc_value indicates the value of a configuration parameter specified by hint.

NO TE

● If a parameter set by hint takes effect at the statement level, the hint must be written
to the top-level query instead of the subquery. For UNION, INTERSECT, EXCEPT, and
MINUS statements, you can write the GUC hint at the statement level to any SELECT
clause that participates in the set operation. The configuration parameters set by the
GUC hint take effect on each SELECT clause that participates in the set operation.

● When a subquery is pulled up, all GUC hints on the subquery are discarded.
● If a parameter is set by both the statement-level GUC hint and the subquery-level GUC

hint, the subquery-level GUC hint takes effect in the corresponding subquery, and the
statement-level GUC hint takes effect in other subqueries of the statement.

Currently, GUC hints support only some configuration parameters. Some
parameters cannot be configured at the subquery level and can only be configured
at the statement level. The following table lists the supported parameters.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

Table 4-1 Configuration parameters supported by GUC hints

Parameter Configured at the Subquery Level
(Yes/No)

agg_max_mem Yes

agg_redistribute_enhancement Yes

best_agg_plan Yes

cost_model_version No

cost_param No

enable_bitmapscan Yes

enable_broadcast Yes

enable_extrapolation_stats Yes

enable_fast_query_shipping No

enable_force_vector_engine No

enable_hashagg Yes

enable_hashjoin Yes

enable_index_nestloop Yes

enable_indexscan Yes

enable_join_pseudoconst Yes

enable_nestloop Yes

enable_nodegroup_debug No

enable_partition_dynamic_pruning Yes

enable_sort Yes

enable_stream_ctescan No

enable_value_redistribute Yes

enable_vector_engine No

expected_computing_nodegroup No

force_bitmapand Yes

from_collapse_limit Yes

join_collapse_limit Yes

join_num_distinct Yes

outer_join_max_rows_multipler Yes

qrw_inlist2join_optmode Yes

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

Parameter Configured at the Subquery Level
(Yes/No)

qual_num_distinct Yes

query_dop No

query_max_mem No

query_mem No

rewrite_rule No

setop_optmode Yes

skew_option Yes

Examples

Hint the query plan in Examples as follows:

explain
select /*+ set global(query_dop 0) */ i_product_name product_name
...

This hint indicates that the query_dop parameter is set to 0 when the plan for a
statement is generated, which means the SMP adaptation function is enabled. The
generated plan is as follows:

4.6.11 Hint Errors, Conflicts, and Other Warnings
Plan hints change an execution plan. You can run EXPLAIN to view the changes.

Hints containing errors are invalid and do not affect statement execution. The
errors will be displayed in different ways based on statement types. Hint errors in
an EXPLAIN statement are displayed as a warning on the interface. Hint errors in
other statements will be recorded in debug1-level logs containing the PLANHINT
keyword.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

Hint Error Types
● Syntax errors.

An error will be reported if the syntax tree fails to be reduced. The No. of the
row generating an error is displayed in the error details.
For example, the hint keyword is incorrect, no table or only one table is
specified in the leading or join hint, or no tables are specified in other hints.
The parsing of a hint is terminated immediately after a syntax error is
detected. Only the hints that have been parsed successfully are valid.
For example:
leading((t1 t2)) nestloop(t1) rows(t1 t2 #10)

The syntax of nestloop(t1) is wrong and its parsing is terminated. Only
leading(t1 t2) that has been successfully parsed before nestloop(t1) is valid.

● Semantic errors.
– An error will be reported if the specified tables do not exist, multiple

tables are found based on the hint setting, or a table is used more than
once in the leading or join hint.

– An error will be reported if the index specified in a scan hint does not
exist.

– If multiple tables with the same name exist after a subquery is pulled up
and some of them need to be hinted, add aliases for them to avoid name
duplication.

● Duplicated or conflicted hints.
If hint duplication or conflicts occur, only the first hint takes effect. A message
will be displayed to describe the situation.
– Hint duplication indicates that a hint is used more than once in the same

query, for example, nestloop(t1 t2) nestloop(t1 t2).
– A hint conflict indicates that the functions of two hints with the same

table list conflict with each other.
For example, if nestloop (t1 t2) hashjoin (t1 t2) is used, hashjoin (t1
t2) becomes invalid. nestloop(t1 t2) does not conflict with no
mergejoin(t1 t2).

NO TICE

The table list in the leading hint is disassembled. For example, leading
(t1 t2 t3) will be disassembled as leading(t1 t2) leading((t1 t2) t3),
which will conflict with leading(t2 t1) (if any). In this case, the latter
leading(t2 t1) becomes invalid. If two hints use duplicated table lists and
only one of them has the specified outer/inner table, the one without a
specified outer/inner table becomes invalid.

● A hint becomes invalid after a sublink is pulled up.
In this case, a message will be displayed. Generally, such invalidation occurs if
a sublink contains multiple tables to be joined, because the table list in the
sublink becomes invalid after the sublink is pulled up.

● Unsupported column types.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

– Skew hints are specified to optimize redistribution. They will be invalid if
their corresponding columns do not support redistribution.

● Specified hints are not used.
– If hashjoin or mergejoin is specified for non-equivalent joins, it will not

be used.
– If indexscan or indexonlyscan is specified for a table that does not have

an index, it will not be used.
– If indexscan hint or indexonlyscan is specified for a full-table scan or for

a scan whose filtering conditions are not set on index columns, it will not
be used.

– The specified indexonlyscan hint is used only when the output column
contains only indexes.

– In equivalent joins, only the joins containing equivalence conditions are
valid. Therefore, the leading, join, and rows hints specified for the joins
without an equivalence condition will not be used. For example, t1, t2,
and t3 are to be joined, and the join between t1 and t3 does not contain
an equivalence condition. In this case, leading(t1 t3) will not be used.

– To generate a streaming plan, if the distribution key of a table is the
same as its join key, redistribute specified for this table will not be used.
If the distribution key and join key are different for this table but the
same for the other table in the join, redistribute specified for this table
will be used but broadcast will not.

– If a hint for an Agg distribution column is not used, the possible causes
are as follows:

▪ The specified distribution key contains data types that do not support
redistribution.

▪ Redistribution is not required in the execution plan.

▪ Wrong distribution key sequence numbers are executed.

▪ For AP functions that use the GROUPING SETS and CUBE clauses,
hints are not supported for distribution keys in window aggregate
functions .

NO TE

Specifies the hint for the distribution column druing the Agg process.. This
parameter is supported only by clusters of version 8.1.3.100 or later.

– If no sublink is pulled up, the specified blockname hint will not be used.
– For unused skew hints, the possible causes are:

▪ The plan does not require redistribution.

▪ The columns specified by hints contain distribution keys.

▪ Skew information specified in hints is incorrect or incomplete, for
example, no value is specified for join optimization.

▪ Skew optimization is disabled by GUC parameters.

– For unused guc hints, the possible causes are:

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

▪ The configuration parameter does not exist.

▪ The configuration parameter is not supported by GUC hints.

▪ The configuration parameter value is invalid.

▪ The statement-level GUC hint is not written in the top-level query.

▪ The configuration parameter set by the GUC hint at the subquery
level cannot be set at the subquery level.

▪ The subquery where the GUC hint is located is pulled up.

4.6.12 Plan Hint Cases
This section takes the statements in TPC-DS (Q24) as an example to describe how
to optimize an execution plan by using hints in 1000X+24DN environments. For
example:

select avg(netpaid) from
(select c_last_name
,c_first_name
,s_store_name
,ca_state
,s_state
,i_color
,i_current_price
,i_manager_id
,i_units
,i_size
,sum(ss_sales_price) netpaid
from store_sales
,store_returns
,store
,item
,customer
,customer_address
where ss_ticket_number = sr_ticket_number
and ss_item_sk = sr_item_sk
and ss_customer_sk = c_customer_sk
and ss_item_sk = i_item_sk
and ss_store_sk = s_store_sk
and c_birth_country = upper(ca_country)
and s_zip = ca_zip
and s_market_id=7
group by c_last_name
,c_first_name
,s_store_name
,ca_state
,s_state
,i_color
,i_current_price
,i_manager_id
,i_units
,i_size);

1. The original plan of this statement is as follows and the statement execution
takes 110s:

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

In this plan, the performance of the layer-10 broadcast is poor because the
estimation result generated at layer 11 is 2140 rows, which is much less than the
actual number of rows. The inaccurate estimation is mainly caused by the
underestimated number of rows in layer-13 hash join. In this layer, store_sales
and store_returns are joined (based on the ss_ticket_number and ss_item_sk
columns in store_sales and the sr_ticket_number and sr_item_sk columns in
store_returns) but the multi-column correlation is not considered.

2. After the rows hint is used for optimization, the plan is as follows and the
statement execution takes 318s:

select avg(netpaid) from
(select /*+rows(store_sales store_returns * 11270)*/ c_last_name ...

The execution takes a longer time because layer-9 redistribute is slow.
Considering that data skew does not occur at layer-9 redistribute, the slow
redistribution is caused by the slow layer-8 hashjoin due to data skew at layer-18
redistribute.

3. Data skew occurs at layer-18 redistribute because customer_address has a few
different values in its two join keys. Therefore, plan customer_address as the last
one to be joined. After the hint is used for optimization, the plan is as follows and
the statement execution takes 116s:

select avg(netpaid) from
(select /*+rows(store_sales store_returns *11270)
leading((store_sales store_returns store item customer) customer_address)*/
c_last_name ...

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

Most of the time is spent on layer-6 redistribute. The plan needs to be further
optimized.

4. Most of the time is spent on layer-6 redistribute because of data skew. To
avoid the data skew, plan the item table as the last one to be joined because the
number of rows is not reduced after item is joined. After the hint is used for
optimization, the plan is as follows and the statement execution takes 120s:

select avg(netpaid) from
(select /*+rows(store_sales store_returns *11270)
leading((customer_address (store_sales store_returns store customer) item))
c_last_name ...

Data skew occurs after the join of item and customer_address because item is
broadcasted at layer-22. As a result, layer-6 redistribute is still slow.

5. Add a hint to disable broadcast for item or add a redistribute hint for the join
result of item and customer_address. After the hint is used for optimization, the
plan is as follows and the statement execution takes 105s:

select avg(netpaid) from
(select /*+rows(store_sales store_returns *11270)
leading((customer_address (store_sales store_returns store customer) item))
no broadcast(item)*/
c_last_name ...

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

6. The last layer uses single-layer Agg and the number of rows is greatly reduced.
Set best_agg_plan to 3 and change the single-layer Agg to a double-layer Agg.
The plan is as follows and the statement execution takes 94s. The optimization
ends.

If the query performance deteriorates due to statistics changes, you can use hints
to optimize the query plan. Take TPCH-Q17 as an example. The query
performance deteriorates after the value of default_statistics_target is changed
from the default one to –2 for statistics collection.

1. If default_statistics_target is set to the default value 100, the plan is as
follows:

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

2. If default_statistics_target is set to –2, the plan is as follows:

3. After the analysis, the cause is that the stream type is changed from BroadCast
to Redistribute during the join of the lineitem and part tables. You can use a hint
to change the stream type back to BroadCast. For example:

4.7 Routinely Maintaining Tables
To ensure proper database running, after INSERT and DELETE operations, you
need to routinely do VACUUM FULL and ANALYZE as appropriate for customer
scenarios and update statistics to obtain better performance.

Related Concepts

You need to routinely run VACUUM, VACUUM FULL, and ANALYZE to maintain
tables, because:

● VACUUM FULL reclaims disk space occupied by updated or deleted data and
combines small-size data files.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

● VACUUM maintains a visualized mapping to track pages that contain arrays
visible to other active transactions. A common index scan uses the mapping to
obtain the corresponding array and check whether pages are visible to the
current transaction. If the array cannot be obtained, the visibility is checked by
fetching stack arrays. Therefore, updating the visible mapping of a table can
accelerate unique index scans.

● VACUUM can avoid old data loss caused by duplicate transaction IDs when
the number of executed transactions exceeds the database threshold.

● ANALYZE collects statistics on tables in databases. The statistics are stored in
the PG_STATISTIC system catalog. Then, the query optimizer uses the statistics
to work out the most efficient execution plan.

Procedure

Step 1 Run the VACUUM or VACUUM FULL command to reclaim disk space.

● VACUUM:

Do VACUUM to the table:
VACUUM customer;
VACUUM

This command can be concurrently executed with database operation
commands, including SELECT, INSERT, UPDATE, and DELETE; excluding
ALTER TABLE.

Do VACUUM to the partitioned table:
VACUUM customer_par PARTITION (P1);
VACUUM

● VACUUM FULL:
VACUUM FULL customer;
VACUUM

VACUUM FULL needs to add exclusive locks on tables it operates on and
requires that all other database operations be suspended.

When reclaiming disk space, you can query for the session corresponding to
the earliest transactions in the cluster, and then end the earliest long
transactions as needed to make full use of the disk space.

a. Run the following command to query for oldestxmin on the GTM:
select * from pgxc_gtm_snapshot_status();

b. Run the following command to query for the PID of the corresponding
session on the CN. xmin is the oldestxmin obtained in the previous step.
select * from pgxc_running_xacts() where xmin=1400202010;

Step 2 Do ANALYZE to update statistical information.
ANALYZE customer;
ANALYZE

Do ANALYZE VERBOSE to update statistics and display table information.

ANALYZE VERBOSE customer;
ANALYZE

You can use VACUUM ANALYZE at the same time to optimize the query.

VACUUM ANALYZE customer;
VACUUM

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

NO TE

VACUUM and ANALYZE cause a substantial increase in I/O traffic, which may cause poor
performance of other active sessions. Therefore, you are advised to set by specifying the
vacuum_cost_delay parameter.

Step 3 Delete a table
DROP TABLE customer;
DROP TABLE customer_par;
DROP TABLE part;

If the following output is displayed, the index has been deleted.

DROP TABLE

----End

Maintenance Suggestion
● Routinely do VACUUM FULL to large tables. If the database performance

deteriorates, do VACUUM FULL to the entire database. If the database
performance is stable, you are advised to monthly do VACUUM FULL.

● Routinely do VACUUM FULL to system catalogs, mainly PG_ATTRIBUTE.
● The automatic vacuum process (AUTOVACUUM) in the system automatically

runs the VACUUM and ANALYZE statements to reclaim the record space
marked as the deleted state and to update statistics related to the table.

4.8 Routinely Recreating an Index

Context
When data deletion is repeatedly performed in the database, index keys will be
deleted from the index page, resulting in index distention. Recreating an index
routinely improves query efficiency.

The database supports B-tree, GIN, and psort indexes.

● Recreating a B-tree index helps improve query efficiency.
– If massive data is deleted, index keys on the index page will be deleted.

As a result, the number of index pages reduces and index bloat occurs.
Recreating an index helps reclaim wasted space.

– In the created index, pages adjacent in its logical structure are adjacent in
its physical structure. Therefore, a created index achieves higher access
speed than an index that has been updated for multiple times.

● You are advised not to recreate a non-B-tree index.

Rebuilding an Index
Use either of the following two methods to recreate an index:

● Run the DROP INDEX statement to delete an index and run the CREATE
INDEX statement to create an index.
When you delete an index, a temporary exclusive lock is added in the parent
table to block related read/write operations. When you create an index, the

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

write operation is locked but the read operation is not. The data is read and
scanned by order.

● Run the REINDEX statement to recreate an index:
– When you run the REINDEX TABLE statement to recreate an index, an

exclusive lock is added to block related read/write operations.
– When you run the REINDEX INTERNAL TABLE statement to recreate an

index for a desc table (), an exclusive lock is added to block read/write
operations on the table.

Procedure
Assume the ordinary index areaS_idx exists in the area_id column of the imported
table areaS. Use either of the following two methods to recreate an index:
● Run the DROP INDEX statement to delete the index and run the CREATE

INDEX statement to create an index.

a. Delete an index.
DROP INDEX areaS_idx;
DROP INDEX

b. Create an index.
CREATE INDEX areaS_idx ON areaS (area_id);
CREATE INDEX

● Run the REINDEX statement to recreate an index.
– Run the REINDEX TABLE statement to recreate an index.

REINDEX TABLE areaS;
REINDEX

– Run the REINDEX INTERNAL TABLE statement to recreate an index for a
desc table ().
REINDEX INTERNAL TABLE areaS;
REINDEX

4.9 Adjusting Key Parameters During SQL Tuning
This section describes key CN parameters that affect GaussDB(DWS) SQL
optimization performance. For details about how to configure these parameters,
see section Configuring GUC Parameters in the .

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0885.html

Table 4-2 CN parameters

Parameter/
Reference Value

Description

enable_nestloop=o
n

Specifies how the optimizer uses Nest Loop Join. If this
parameter is set to on, the optimizer preferentially uses
Nest Loop Join. If it is set to off, the optimizer
preferentially uses other methods, if any.
NOTE

To temporarily change the value of this parameter in the current
database connection (that is, the current session), run the
following SQL statement:
SET enable_nestloop to off;

By default, this parameter is set to on. Change the value
as required. Generally, nested loop join has the poorest
performance among the three JOIN methods (nested loop
join, merge join, and hash join). You are advised to set this
parameter to off.

enable_bitmapscan
=on

Specifies whether the optimizer uses bitmap scanning. If
the value is on, bitmap scanning is used. If the value is
off, it is not used.
NOTE

If you only want to temporarily change the value of this
parameter during the current database connection (that is, the
current session), run the following SQL statements:
SET enable_bitmapscan to off;

The bitmap scanning applies only in the query condition
where a > 1 and b > 1 and indexes are created on
columns a and b. During performance tuning, if the query
performance is poor and bitmapscan operators are in the
execution plan, set this parameter to off and check
whether the performance is improved.

enable_fast_query_
shipping=on

Specifies whether the optimizer uses a distribution
framework. If the value is on, the execution plan is
generated on both CNs and DNs. If the value is off, the
distribution framework is used, that is, the execution plan
is generated on the CNs and then sent to DNs for
execution.
NOTE

To temporarily change the value of this parameter in the current
database connection (that is, the current session), run the
following SQL statement:
SET enable_fast_query_shipping to off;

enable_hashagg=o
n

Specifies whether to enable the optimizer's use of Hash-
aggregation plan types.

enable_hashjoin=o
n

Specifies whether to enable the optimizer's use of Hash-
join plan types.

enable_mergejoin=
on

Specifies whether to enable the optimizer's use of Hash-
merge plan types.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

Parameter/
Reference Value

Description

enable_indexscan=
on

Specifies whether to enable the optimizer's use of index-
scan plan types.

enable_indexonlysc
an=on

Specifies whether to enable the optimizer's use of index-
only-scan plan types.

enable_seqscan=on Specifies whether the optimizer uses bitmap scanning. It is
impossible to suppress sequential scans entirely, but
setting this variable to off allows the optimizer to
preferentially choose other methods if available.

enable_sort=on Specifies the optimizer sorts. It is impossible to fully
suppress explicit sorts, but setting this variable to off
allows the optimizer to preferentially choose other
methods if available.

enable_broadcast=
on

Specifies whether enable the optimizer's use of data
broadcast. In data broadcast, a large amount of data is
transferred on the network. When the number of
transmission nodes (stream) is large and the estimation is
inaccurate, set this parameter to off and check whether
the performance is improved.

rewrite_rule Specifies whether the optimizer enables a specific
rewriting rule.

4.10 Configuration SMP
This section describes the usage restrictions, application scenarios, and
configuration guide of symmetric multiprocessing (SMP).

4.10.1 Application Scenarios and Restrictions

Context
The SMP feature improves the performance through operator parallelism and
occupies more system resources, including CPU, memory, network, and I/O.
Actually, SMP is a method consuming resources to save time. It improves system
performance in appropriate scenarios and when resources are sufficient, but may
deteriorate performance otherwise. In addition, compared with the serial
processing, SMP generates more candidate plans, which is more time-consuming
and may deteriorate performance.

Applicable Scenarios
● Operators supporting parallel processing are used.

The execution plan contains the following operators:

a. Scan: Row Storage common table and a line memory partition table
sequential scanning, column-oriented storage ordinary table and column-

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

oriented storage partition table sequential scanning, HDFS internal and
external table sequence scanning. Surface scanning GDS data can be
imported at the same time. All of the above does not support replication
tables.

b. Join: HashJoin, NestLoop
c. Agg: HashAgg, SortAgg, PlainAgg, and WindowAgg, which supports only

partition by, and does not support order by.
d. Stream: Redistribute, Broadcast
e. Other: Result, Subqueryscan, Unique, Material, Setop, Append, VectoRow,

RowToVec
● SMP-unique operators

To execute queries in parallel, Stream operators are added for data exchange
of the SMP feature. These new operators can be considered as the subtypes of
Stream operators.

a. Local Gather aggregates data of parallel threads within a DN
b. Local Redistribute redistributes data based on the distributed key across

threads within a DN
c. Local Broadcast broadcasts data to each thread within a DN.
d. Local RoundRobin distributes data in polling mode across threads within

a DN.
e. Split Redistribute redistributes data across parallel threads on different

DNs.
f. Split Broadcast broadcasts data to all parallel DN threads in the cluster.

Among these operators, Local operators exchange data between parallel
threads within a DN, and non-Local operators exchange data across DNs.

● Example
The TPCH Q1 parallel plan is used as an example.

In this plan, implement the Hdfs Scan and HashAgg operator parallel, and
adds the Local Gather and Split Redistribute data exchange operator.
In this example, the sixth operator is Split Redistribute, and dop: 4/4 next to
the operator indicates that the degree of parallelism of the sender and
receiver is 4. 4 No operator is Local Gather, marked dop: 1/4 above, this
operator sender thread parallel degree is 4, while the receiving end thread
parallelism degree to 1, that is, lower-layer 5 number Hash Aggregate
operators according to the 4 parallel degree, while the working mode of the
port on the upper-layer 1 to 3 number operator according to the executed

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

one by one, 4 number operator is used to achieve intra-DN concurrent
threads data aggregation.
You can view the parallelism situation of each operator in the dop
information.

Non-applicable Scenarios
1. Short query operations are performed, where the plan generation is time-

consuming.
2. Operators are processed on CNs.
3. Statements that cannot be pushed down are executed.
4. The subplan of a query and operators containing a subquery are executed.

4.10.2 Resource Impact on SMP Performance
The SMP architecture uses abundant resources to obtain time. After the plan
parallelism is executed, the resource consumption is added, including the CPU,
memory, I/O, and network bandwidth resources. As the parallelism degree is
expanded, the resource consumption increases. If these resources become a
bottleneck, the SMP cannot improve the performance and the overall cluster
performance may be deteriorated. Adaptive SMP is provided to dynamically select
the optimal parallel degree for each query based on the resource usage and query
requirements. The following information describes the situations that the SMP
affects theses resources:

● CPU resources
In a general customer scenario, the system CPU usage rate is not high. Using
the SMP parallelism architecture will fully use the CPU resource to improve
the system performance. If the number of CPU kernels of the database server
is too small and the CPU usage is already high, enabling the SMP parallelism
may deteriorate the system performance due to resource compete between
multiple threads.

● Memory resources
The query parallel causes memory usage growth, but the memory upper limit
used by each operator is still restricted by work_mem. Assume that
work_mem is 4 GB, and the degree of parallelism is 2, then the memory
upper limit of each concurrent thread is 2 GB. When work_mem is small or
the system memory is sufficient, running SMP parallelism may push data
down to disks. As a result, the query performance deteriorates.

● Network bandwidth resources
To execute a query in parallel, data exchange operators are added. Local
Stream operators exchange data between threads within a DN. Data is
exchanged in memory and network performance is not affected. Non-Local
operators exchange data over the network and increase network load. If the
capacity of a network resource becomes a bottleneck, parallelism may also
increase the network load.

● I/O resources
A parallel scan increases I/O resource consumption. It can improve
performance only when I/O resources are sufficient.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

4.10.3 Other Factors Affecting SMP Performance
Besides resource factors, there are other factors that impact the SMP parallelism
performance, such as unevenly data distributed in a partitioned table and system
parallelism degree.

● Impact of data skew on SMP performance
Serious data skew deteriorates parallel execution performance. For example, if
the data volume of a value in the join column is much more than that of
other values, the data volume of a parallel thread will be much more than
that of others after Hash-based data redistribution, resulting in the long-tail
issue and poor parallelism performance.

● Impact on the SMP performance due to system parallelism degree
The SMP feature uses more resources, and unused resources are decreasing in
a high concurrency scenario. Therefore, enabling the SMP parallelism will
result in serious resource compete among queries. Once resource competes
occur, no matter the CPU, I/O, memory, or network resources, all of them will
result in entire performance deterioration. In the high concurrency scenario,
enabling the SMP will not improve the performance effect and even may
cause performance deterioration.

4.10.4 Suggestions for SMP Parameter Settings
Starting from this version, SMP auto adaptation is enabled. For newly deployed
clusters, the default value of query_dop is 0, and SMP parameters have been
adjusted. To ensure forward compatibility, the value of query_dop should remain
unchanged after an existing cluster is upgraded.

For an upgraded cluster, if you want to set query_dop to 0 and enable SMP
parallel processing, modify the following parameters to obtain better dop options:

● comm_usable_memory
If the system memory is large, the value of max_process_memory is large. In
this case, you are advised to set the value of this parameter to 5% of
max_process_memory, that is, 4 GB by default.

● comm_max_stream
The recommended value for this parameter is calculated as follows:
comm_max_stream = Min(dop_limit x dop_limit x 20 x 2,
max_process_memory (bytes) x 0.025/Number of DNs/260). The value must
be within the value range of comm_max_stream.

● max_connections
The recommended value for this parameter is calculated as follows:
max_connections = dop_limit x 20 x 6 + 24. The value must be within the
value range of max_connections.

CA UTION

In the preceding formulas, dop_limit indicates the number of CPUs
corresponding to each DN in the cluster. It is calculated as follows: dop_limit
= Number of logical CPU cores of a single server/Number of DNs of a single
server.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

4.10.5 SMP Manual Optimization Suggestions
To manually optimize SMP, you need to be familiar with Suggestions for SMP
Parameter Settings. This section describes how to optimize SMP.

Constraints
The CPU, memory, I/O, and network bandwidth resources are sufficient. The SMP
architecture uses abundant resources to save time. After the plan parallelism is
executed, resource consumption increases. When these resources become a
bottleneck, SMP may deteriorate, rather than improve performance. In addition, it
takes a longer time to generate SMP plans than serial plans. Therefore, in TP
services that mainly involve short queries or in case resources are insufficient, you
are advised to disable SMP by setting query_dop to 1.

Procedure
1. Observe the current system load situation. If the resource is sufficient (the

resource usage ratio is smaller than 50%), perform step 2. Otherwise, exit this
system.

2. Set query_dop to 1 (default value). Use explain to generate an execution
plan and check whether the plan can be used in scenarios in Application
Scenarios and Restrictions. If the plan can be used, go to the next step.

3. Set query_dop=–value. The value range of the parallelism degree is [1, value].
4. Set query_dop=value. The parallelism degree is 1 or value.
5. Before the query statement is executed, set query_dop to an appropriate

value. After the statement is executed, set query_dop to off. For example:
SET query_dop = 0;
SELECT COUNT(*) FROM t1 GROUP BY a;
......
SET query_dop = 1;

NO TE

● If resources are enough, the higher the parallelism degree is, the better the
performance improvement effect is.

● The SMP parallelism degree supports a session level setting and you are advised to
enable the SMP before executing the query that meets the requirements. After the
execution is complete, disable the SMP. Otherwise, SMP may affect services in peak
hours.

● SMP adaptation (query_dop ≤ 0) depends on resource management. If resource
management is disabled (use_workload_manager is off), plans with parallelism
degree of only 1 or 2 are generated.

4.11 Querying SQL Statements That Affect
Performance Most

This section describes how to query SQL statements whose execution takes a long
time, leading to poor system performance.

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

Procedure

Step 1 Query the statements that are run for a long time in the database.
SELECT current_timestamp - query_start AS runtime, datname, usename, query FROM pg_stat_activity
where state != 'idle' ORDER BY 1 desc;

After the query, query statements are returned as a list, ranked by execution time
in descending order. The first result is the query statement that has the longest
execution time in the system. The returned result contains the SQL statement
invoked by the system and the SQL statement run by users. Find the statements
that were run by users and took a long time.

Alternatively, you can set current_timestamp - query_start to be greater than a
threshold to identify query statements that are executed for a duration longer
than this threshold.
SELECT query FROM pg_stat_activity WHERE current_timestamp - query_start > interval '1 days';

Step 2 Set the parameter track_activities to on.
SET track_activities = on;

The database collects the running information about active queries only if the
parameter is set to on.

Step 3 View the running query statements.

Viewing pg_stat_activity is used as an example here.

SELECT datname, usename, state FROM pg_stat_activity;
 datname | usename | state |
----------+---------+--------+
 postgres | omm | idle |
 postgres | omm | active |
(2 rows)

If the state column is idle, the connection is idle and requires a user to enter a
command.

To identify only active query statements, run the following command:

SELECT datname, usename, state FROM pg_stat_activity WHERE state != 'idle';

Step 4 Analyze the status of the query statements that were run for a long time.
● If the query statement is normal, wait until the execution is complete.
● If a query statement is blocked, run the following command to view this

query statement:
SELECT datname, usename, state, query FROM pg_stat_activity WHERE waiting = true;

The command output lists a query statement in the block state. The lock
resource requested by this query statement is occupied by another session, so
this query statement is waiting for the session to release the lock resource.

NO TE

Only when the query is blocked by internal lock resources, the waiting field is true. In
most cases, block happens when query statements are waiting for lock resources to be
released. However, query statements may be blocked because they are waiting to
write in files or for timers. Such blocked queries are not displayed in the
pg_stat_activity view.

----End

Data Warehouse Service
Query Performance Optimization 4 SQL Optimization Guide

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

5 Optimization Cases

5.1 Case: Selecting an Appropriate Distribution Column
Distribution columns are used to distribute data to different nodes. A proper
distribution key can avoid data skew.

When performing join query, you are advised to select the join condition in the
query as the distribution key. When a join condition is used as a distribution key,
related data is distributed locally on DNs, reducing the cost of data flow between
DNs and improving the query speed.

Before optimization
Use a as the distribution column of t1 and t2. The table definition is as follows:

CREATE TABLE t1 (a int, b int) DISTRIBUTE BY HASH (a);
CREATE TABLE t2 (a int, b int) DISTRIBUTE BY HASH (a);

The following query is executed:

SELECT * FROM t1, t2 WHERE t1.a = t2.b;

In this case, the execution plan contains Streaming(type: REDISTRIBUTE), that is,
the DN redistributes data to all DNs based on the selected column. This will cause
a large amount of data to be transmitted between DNs, as shown in Figure 5-1.

Figure 5-1 Selecting an appropriate distribution column (1)

After optimization
Use the join condition in the query as the distribution key and run the following
statement to changethe distribution key of t2 as b:

Data Warehouse Service
Query Performance Optimization 5 Optimization Cases

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

ALTER TABLE t2 DISTRIBUTE BY HASH (b);

After the distribution column of table t2 is changed to column b, the execution
plan does not contain Streaming(type: REDISTRIBUTE). This reduces the amount
of communication data between DNs and reduces the execution time from 8.7 ms
to 2.7 ms, improving query performance, as shown in Figure 5-2.

Figure 5-2 Selecting an appropriate distribution column (2)

5.2 Case: Creating an Appropriate Index
Creating a proper index can accelerate the retrieval of data rows in a table.
Indexes occupy disk space and reduce the speed of adding, deleting, and updating
rows. If data needs to be updated very frequently or disk space is limited, you
need to limit the number of indexes. Create indexes for large tables. Because the
more data in the table, the more effective the index is. You are advised to create
indexes on:

● Columns that need to be queried frequently
● Joined columns. For a query on joined columns, you are advised to create a

composite index on the joined columns. For example, if the join condition is
select * from t1 join t2 on t1.a=t2.a and t1.b=t2.b. You can create a
composite index on the a and b columns of table t1.

● Columns having filter criteria (especially scope criteria) of a where clause
● Columns that appear after order by, group by, and distinct

Before optimization
The column-store partitioned table orders is defined as follows:

Run the SQL statement to query the execution plan when no index is created. It is
found that the execution time is 48 milliseconds.

Data Warehouse Service
Query Performance Optimization 5 Optimization Cases

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

EXPLAIN PERFORMANCE SELECT * FROM orders WHERE o_custkey = '1106459';

After optimization
The filtering condition column of the where clause is o_custkey. Add an index to
the o_custkey column.

CREATE INDEX idx_o_custkey ON orders (o_custkey) LOCAL;

Run the SQL statement to query the execution plan after the index is created. It is
found that the execution time is 18 milliseconds.

5.3 Case: Adding NOT NULL for JOIN Columns
If there are many NULL values in the JOIN columns, you can add the filter
criterion IS NOT NULL to filter data in advance to improve the JOIN efficiency.

Before optimization
SELECT
 *
FROM
((SELECT
 STARTTIME STTIME,
 SUM(NVL(PAGE_DELAY_MSEL,0)) PAGE_DELAY_MSEL,
 SUM(NVL(PAGE_SUCCEED_TIMES,0)) PAGE_SUCCEED_TIMES,
 SUM(NVL(FST_PAGE_REQ_NUM,0)) FST_PAGE_REQ_NUM,
 SUM(NVL(PAGE_AVG_SIZE,0)) PAGE_AVG_SIZE,
 SUM(NVL(FST_PAGE_ACK_NUM,0)) FST_PAGE_ACK_NUM,
 SUM(NVL(DATATRANS_DW_DURATION,0)) DATATRANS_DW_DURATION,
 SUM(NVL(PAGE_SR_DELAY_MSEL,0)) PAGE_SR_DELAY_MSEL
 FROM
 PS.SDR_WEB_BSCRNC_1DAY SDR
 INNER JOIN (SELECT
 BSCRNC_ID,
 BSCRNC_NAME,
 ACCESS_TYPE,
 ACCESS_TYPE_ID
 FROM
 nethouse.DIM_LOC_BSCRNC
 GROUP BY
 BSCRNC_ID,
 BSCRNC_NAME,
 ACCESS_TYPE,
 ACCESS_TYPE_ID) DIM
 ON SDR.BSCRNC_ID = DIM.BSCRNC_ID
 AND DIM.ACCESS_TYPE_ID IN (0,1,2)
 INNER JOIN nethouse.DIM_RAT_MAPPING RAT
 ON (RAT.RAT = SDR.RAT)
 WHERE

Data Warehouse Service
Query Performance Optimization 5 Optimization Cases

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

 ((STARTTIME >= 1461340800
 AND STARTTIME < 1461427200))
 AND RAT.ACCESS_TYPE_ID IN (0,1,2)
 GROUP BY STTIME)) ;

Figure 5-3 shows the execution plan.

Figure 5-3 Adding NOT NULL for JOIN columns (1)

After optimization
1. As shown in Figure 5-3, the sequential scan phase is time consuming.
2. The JOIN performance is poor because a large number of null values exist in

the JOIN column BSCRNC_ID of the PS.SDR_WEB_BSCRNC_1DAY table.
Therefore, you are advised to manually add NOT NULL for JOIN columns in
the statement, as shown below:
SELECT
 *
FROM
((SELECT
 STARTTIME STTIME,
 SUM(NVL(PAGE_DELAY_MSEL,0)) PAGE_DELAY_MSEL,
 SUM(NVL(PAGE_SUCCEED_TIMES,0)) PAGE_SUCCEED_TIMES,
 SUM(NVL(FST_PAGE_REQ_NUM,0)) FST_PAGE_REQ_NUM,
 SUM(NVL(PAGE_AVG_SIZE,0)) PAGE_AVG_SIZE,
 SUM(NVL(FST_PAGE_ACK_NUM,0)) FST_PAGE_ACK_NUM,
 SUM(NVL(DATATRANS_DW_DURATION,0)) DATATRANS_DW_DURATION,
 SUM(NVL(PAGE_SR_DELAY_MSEL,0)) PAGE_SR_DELAY_MSEL
 FROM
 PS.SDR_WEB_BSCRNC_1DAY SDR
 INNER JOIN (SELECT
 BSCRNC_ID,
 BSCRNC_NAME,
 ACCESS_TYPE,
 ACCESS_TYPE_ID
 FROM
 nethouse.DIM_LOC_BSCRNC
 GROUP BY
 BSCRNC_ID,
 BSCRNC_NAME,
 ACCESS_TYPE,
 ACCESS_TYPE_ID) DIM
 ON SDR.BSCRNC_ID = DIM.BSCRNC_ID
 AND DIM.ACCESS_TYPE_ID IN (0,1,2)
 INNER JOIN nethouse.DIM_RAT_MAPPING RAT
 ON (RAT.RAT = SDR.RAT)
 WHERE
 ((STARTTIME >= 1461340800
 AND STARTTIME < 1461427200))
 AND RAT.ACCESS_TYPE_ID IN (0,1,2)
 and SDR.BSCRNC_ID is not null
 GROUP BY
 STTIME)) A;

Figure 5-4 shows the execution plan.

Data Warehouse Service
Query Performance Optimization 5 Optimization Cases

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

Figure 5-4 Adding NOT NULL for JOIN columns (2)

5.4 Case: Pushing Down Sort Operations to DNs
In an execution plan, more than 95% of the execution time is spent on window
agg performed on the CN. In this case, sum is performed for the two columns
separately, and then another sum is performed for the separate sum results of the
two columns. After this, trunc and sorting are performed in sequence. You can try
to rewrite the statement into a subquery to push down the sorting operations.

Before optimization

The table structure is as follows:

CREATE TABLE public.test(imsi int,L4_DW_THROUGHPUT int,L4_UL_THROUGHPUT int)
with (orientation = column) DISTRIBUTE BY hash(imsi);

The query statements are as follows:

SELECT COUNT(1) over() AS DATACNT,
IMSI AS IMSI_IMSI,
CAST(TRUNC(((SUM(L4_UL_THROUGHPUT) + SUM(L4_DW_THROUGHPUT))), 0) AS
DECIMAL(20)) AS TOTAL_VOLOME_KPIID
FROM public.test AS test
GROUP BY IMSI
order by TOTAL_VOLOME_KPIID DESC;

The execution plan is as follows:

Row Adapter (cost=10.70..10.70 rows=10 width=12)
 -> Vector Sort (cost=10.68..10.70 rows=10 width=12)
 Sort Key: ((trunc((((sum(l4_ul_throughput)) + (sum(l4_dw_throughput))))::numeric,
0))::numeric(20,0))
 -> Vector WindowAgg (cost=10.09..10.51 rows=10 width=12)
 -> Vector Streaming (type: GATHER) (cost=242.04..246.84 rows=240 width=12)
 Node/s: All datanodes
 -> Vector Hash Aggregate (cost=10.09..10.29 rows=10 width=12)
 Group By Key: imsi
 -> CStore Scan on test (cost=0.00..10.01 rows=10 width=12)

As we can see, both window agg and sort are performed on the CN, which is
time consuming.

After optimization
Modify the statement to a subquery statement, as shown below:

SELECT COUNT(1) over() AS DATACNT, IMSI_IMSI, TOTAL_VOLOME_KPIID
FROM (SELECT IMSI AS IMSI_IMSI,
CAST(TRUNC(((SUM(L4_UL_THROUGHPUT) + SUM(L4_DW_THROUGHPUT))),
0) AS DECIMAL(20)) AS TOTAL_VOLOME_KPIID
FROM public.test AS test
GROUP BY IMSI
ORDER BY TOTAL_VOLOME_KPIID DESC);

Data Warehouse Service
Query Performance Optimization 5 Optimization Cases

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

Perform sum on the trunc results of the two columns, take it as a subquery, and
then perform window agg for the subquery to push down the sorting operation
to DNs, as shown below:

Row Adapter (cost=10.70..10.70 rows=10 width=24)
 -> Vector WindowAgg (cost=10.45..10.70 rows=10 width=24)
 -> Vector Streaming (type: GATHER) (cost=250.83..253.83 rows=240 width=24)
 Node/s: All datanodes
 -> Vector Sort (cost=10.45..10.48 rows=10 width=12)
 Sort Key: ((trunc(((sum(test.l4_ul_throughput) + sum(test.l4_dw_throughput)))::numeric,
0))::numeric(20,0))
 -> Vector Hash Aggregate (cost=10.09..10.29 rows=10 width=12)
 Group By Key: test.imsi
 -> CStore Scan on test (cost=0.00..10.01 rows=10 width=12)

The optimized SQL statement greatly improves the performance by reducing the
execution time from 120s to 7s.

5.5 Case: Configuring cost_param for Better Query
Performance

The cost_param parameter is used to control use of different estimation methods
in specific customer scenarios, allowing estimated values to be close to onsite
values. This parameter can control various methods simultaneously by performing
AND (&) operations on the bit for each method. A method is selected if its value is
not 0.

Scenario 1: Before Optimization
If bit0 of cost_param is set to 1, an improved mechanism is used for estimating
the selection rate of non-equi-joins. This method is more accurate for estimating
the selection rate of joins between two identical tables. The following example
describes the optimization scenario when bit0 of cost_param is set to 1. In
V300R002C00 and later, cost_param & 1=0 is not used. That is, an optimized
formula is selected for calculation.

Note: The selection rate indicates the percentage for which the number of rows
meeting the join conditions account of the JOIN results when the JOIN
relationship is established between two tables.

The table structure is as follows:

CREATE TABLE LINEITEM
(
L_ORDERKEY BIGINT NOT NULL
, L_PARTKEY BIGINT NOT NULL
, L_SUPPKEY BIGINT NOT NULL
, L_LINENUMBER BIGINT NOT NULL
, L_QUANTITY DECIMAL(15,2) NOT NULL
, L_EXTENDEDPRICE DECIMAL(15,2) NOT NULL
, L_DISCOUNT DECIMAL(15,2) NOT NULL
, L_TAX DECIMAL(15,2) NOT NULL
, L_RETURNFLAG CHAR(1) NOT NULL
, L_LINESTATUS CHAR(1) NOT NULL
, L_SHIPDATE DATE NOT NULL
, L_COMMITDATE DATE NOT NULL
, L_RECEIPTDATE DATE NOT NULL
, L_SHIPINSTRUCT CHAR(25) NOT NULL
, L_SHIPMODE CHAR(10) NOT NULL
, L_COMMENT VARCHAR(44) NOT NULL

Data Warehouse Service
Query Performance Optimization 5 Optimization Cases

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

) with (orientation = column, COMPRESSION = MIDDLE) distribute by hash(L_ORDERKEY);

CREATE TABLE ORDERS
(
O_ORDERKEY BIGINT NOT NULL
, O_CUSTKEY BIGINT NOT NULL
, O_ORDERSTATUS CHAR(1) NOT NULL
, O_TOTALPRICE DECIMAL(15,2) NOT NULL
, O_ORDERDATE DATE NOT NULL
, O_ORDERPRIORITY CHAR(15) NOT NULL
, O_CLERK CHAR(15) NOT NULL
, O_SHIPPRIORITY BIGINT NOT NULL
, O_COMMENT VARCHAR(79) NOT NULL
)with (orientation = column, COMPRESSION = MIDDLE) distribute by hash(O_ORDERKEY);

The query statements are as follows:

explain verbose select
count(*) as numwait
from
lineitem l1,
orders
where
o_orderkey = l1.l_orderkey
and o_orderstatus = 'F'
and l1.l_receiptdate > l1.l_commitdate
and not exists (
select
*
from
lineitem l3
where
l3.l_orderkey = l1.l_orderkey
and l3.l_suppkey <> l1.l_suppkey
and l3.l_receiptdate > l3.l_commitdate
)
order by
numwait desc;

The following figure shows the execution plan. (When verbose is used, distinct is
added for column selection which is controlled by cost off/on. The hash join rows
show the estimated number of distinct values and the other rows do not.)

Scenario 1: After Optimization
These queries are from Anti Join connected in the lineitem table. When
cost_param & bit0 is 0, the estimated number of Anti Join rows greatly differs
from that of the actual number of rows, compromising the query performance.
You can estimate the number of Anti Join rows more accurately by setting
cost_param & bit0 to 1 to improve the query performance. The optimized
execution plan is as follows:

Data Warehouse Service
Query Performance Optimization 5 Optimization Cases

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

Scenario 2: Before Optimization
If bit1 is set to 1 (set cost_param=2), the selection rate is estimated based on
multiple filter criteria. The lowest selection rate among all filter criteria, but not
the product of the selection rates for two tables under a specific filter criterion, is
used as the total selection rate. This method is more accurate when a close
correlation exists between the columns to be filtered. The following example
describes the optimization scenario when bit1 of cost_param is set to 1.

The table structure is as follows:

CREATE TABLE NATION
(
N_NATIONKEYINT NOT NULL
, N_NAMECHAR(25) NOT NULL
, N_REGIONKEYINT NOT NULL
, N_COMMENTVARCHAR(152)
) distribute by replication;
CREATE TABLE SUPPLIER
(
S_SUPPKEYBIGINT NOT NULL
, S_NAMECHAR(25) NOT NULL
, S_ADDRESSVARCHAR(40) NOT NULL
, S_NATIONKEYINT NOT NULL
, S_PHONECHAR(15) NOT NULL
, S_ACCTBALDECIMAL(15,2) NOT NULL
, S_COMMENTVARCHAR(101) NOT NULL
) distribute by hash(S_SUPPKEY);
CREATE TABLE PARTSUPP
(
PS_PARTKEYBIGINT NOT NULL
, PS_SUPPKEYBIGINT NOT NULL
, PS_AVAILQTYBIGINT NOT NULL
, PS_SUPPLYCOSTDECIMAL(15,2)NOT NULL
, PS_COMMENTVARCHAR(199) NOT NULL
)distribute by hash(PS_PARTKEY);

The query statements are as follows:

set cost_param=2;
explain verbose select
nation,
sum(amount) as sum_profit
from
(
select
n_name as nation,
l_extendedprice * (1 - l_discount) - ps_supplycost * l_quantity as amount
from
supplier,
lineitem,

Data Warehouse Service
Query Performance Optimization 5 Optimization Cases

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

partsupp,
nation
where
s_suppkey = l_suppkey
and ps_suppkey = l_suppkey
and ps_partkey = l_partkey
and s_nationkey = n_nationkey
) as profit
group by nation
order by nation;

When bit1 of cost_param is 0, the execution plan is shown as follows:

Scenario 2: After Optimization
In the preceding queries, the hash join criteria of the supplier, lineitem, and
partsupp tables are setting lineitem.l_suppkey to supplier.s_suppkey and
lineitem.l_partkey to partsupp.ps_partkey. Two filter criteria exist in the hash
join conditions. lineitem.l_suppkey in the first filter criteria and
lineitem.l_partkey in the second filter criteria are two columns with strong
relationship of the lineitem table. In this situation, when you estimate the rate of
the hash join conditions, if cost_param & bit1 is 0, the selection rate is estimated
based on multiple filter criteria. The lowest selection rate among all filter criteria,
but not the product of the selection rates for two tables under a specific filter
criterion, is used as the total selection rate. This method is more accurate when a
close correlation exists between the columns to be filtered. The plan after
optimization is shown as follows:

Data Warehouse Service
Query Performance Optimization 5 Optimization Cases

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

5.6 Case: Adjusting the Partial Clustering Key
Partial Cluster Key (PCK) is an index technology that uses min/max indexes to
quickly scan base tables in column storage. Partial cluster key can specify multiple
columns, but you are advised to specify no more than two columns. It can be used
to accelerated queries on large column-store tables.

Before optimization
Create a column-store partitioned table orders_no_pck without partial clustering
(PCK). The table is defined as follows:

Run the following SQL statement to query the execution plan of a point query:

EXPLAIN PERFORMANCE
SELECT * FROM orders_no_pck
WHERE o_orderkey = '13095143'
ORDER BY o_orderdate;

As shown in the following figure, the execution time is 48 ms. Check Datanode
Information. It is found that the filter time is 19 ms and the CUNone ratio is 0.

Data Warehouse Service
Query Performance Optimization 5 Optimization Cases

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

After optimization

Create a column-store partitioned table orders_pck with and set the o_orderkey
column to the PCK. The table is defined as follows:

Run the following SQL statement to query the execution plan of the same point
query SQL statement again:

EXPLAIN PERFORMANCE
SELECT * FROM orders_pck
WHERE o_orderkey = '13095143'
ORDER BY o_orderdate;

As shown in the following figure, the execution time is 5 ms. Check Datanode
Information. It is found that the filter time is 0.5 ms and the CUNone ratio is 82.
The higher the CUNone ratio, the higher performance that the PCK will bring.

Data Warehouse Service
Query Performance Optimization 5 Optimization Cases

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

5.7 Case: Adjusting the Table Storage Mode in a
Medium Table

In GaussDB(DWS), row-store tables use the row execution engine, and column-
store tables use the column execution engine. If both row-store table and column-
store tables exist in a SQL statement, the system will automatically select the row
execution engine. The performance of a column execution engine (except for the
indexscan related operators) is much better than that of a row execution engine.
Therefore, a column-store table is recommended. This is important for some
medium result set dumping tables, and you need to select a proper table storage
type.

Before Optimization
During the test at a site, if the following execution plan is performed, the
customer expects that the performance can be improved and the result can be
returned within 3s.

After Optimization
It is found that the row engine is used after analysis, because both the temporary
plan table input_acct_id_tbl and the medium result dumping table
row_unlogged_table use a row-store table.

After the two tables are changed into column-store tables, the system
performance is improved and the result is returned by 1.6s.

Data Warehouse Service
Query Performance Optimization 5 Optimization Cases

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

5.8 Case: Reconstructing Partition Tables
Partitioning refers to splitting what is logically one large table into smaller
physical pieces based on specific schemes. The table based on the logic is called a
partitioned table, and a physical piece is called a partition. Generally, partitioning
is applied to tables that have obvious ranges. Partitions on such tables allow
scanning on a small part of data, improving the query performance.

During query, partition pruning is used to minimize bottom-layer data scanning to
narrow down the overall scope of scanning in a table. Partition pruning means
that the optimizer can automatically extract partitions to be scanned based on the
partition key specified in the FROM and WHERE statements. This avoids full table
scanning, reduces the number of data blocks to be scanned, and improves
performance.

Before Optimization

Create a non-partition table orders_no_part. The table definition is as follows:

Run the following SQL statement to query the execution plan of the non-partition
table:

EXPLAIN PERFORMANCE
SELECT count(*) FROM orders_no_part WHERE
o_orderdate >= '1996-01-01 00:00:00'::timestamp(0);

As shown in the following figure, the execution time is 73 milliseconds, and the
full table scanning time is 44 to 45 milliseconds.

Data Warehouse Service
Query Performance Optimization 5 Optimization Cases

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

After Optimization

Create a partitioned table orders. The table is defined as follows:

Run the SQL statement again to query the execution plan of the partitioned table.
The execution time is 40 ms, in which the table scanning time is only 13 ms. The
smaller the value of Iterations, the better the partition pruning effect.

EXPLAIN PERFORMANCE
SELECT count(*) FROM orders_no_part WHERE
o_orderdate >= '1996-01-01 00:00:00'::timestamp(0);

As shown in the following figure, the execution time is 40 milliseconds, and the
table scanning time is only 13 milliseconds. A smaller Iterations value indicates a
better partition pruning effect.

5.9 Case: Adjusting the GUC Parameter best_agg_plan

Symptom

The t1 table is defined as follows:

create table t1(a int, b int, c int) distribute by hash(a);

Assume that the distribution column of the result set provided by the agg lower-
layer operator is setA, and the group by column of the agg operation is setB, the
agg operations can be performed in two scenarios in the stream framework.

Scenario 1: setA is a subset of setB.

In this scenario, the aggregation result of the lower-layer result set is the correct
result, which can be directly used by the upper-layer operator. For details, see the
following figure:

Data Warehouse Service
Query Performance Optimization 5 Optimization Cases

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

explain select a, count(1) from t1 group by a;
 id | operation | E-rows | E-width | E-costs
----+------------------------------+--------+---------+---------
 1 | -> Streaming (type: GATHER) | 30 | 4 | 15.56
 2 | -> HashAggregate | 30 | 4 | 14.31
 3 | -> Seq Scan on t1 | 30 | 4 | 14.14
(3 rows)

Scenario 2: setA is not a subset of setB.

In this scenario, the Stream execution framework is classified into the following
three plans:

hashagg+gather(redistribute)+hashagg

redistribute+hashagg(+gather)

hashagg+redistribute+hashagg(+gather)

GaussDB(DWS) provides the guc parameter best_agg_plan to intervene the
execution plan, and forces the plan to generate the corresponding execution plan.
This parameter can be set to 0, 1, 2, and 3.

● When the value is set to 1, the first plan is forcibly generated.
● When the value is set to 2 and if the group by column can be redistributed,

the second plan is forcibly generated. Otherwise, the first plan is generated.
● When the value is set to 3 and if the group by column can be redistributed,

the third plan is generated. Otherwise, the first plan is generated.
● When the value is set to 0, the query optimizer chooses the most optimal

plan by the three preceding plans' evaluation cost.

Possible impacts are as follows:

set best_agg_plan to 1;
SET
explain select b,count(1) from t1 group by b;
 id | operation | E-rows | E-width | E-costs
----+---------------------------------+--------+---------+---------
 1 | -> HashAggregate | 8 | 4 | 15.83
 2 | -> Streaming (type: GATHER) | 25 | 4 | 15.83
 3 | -> HashAggregate | 25 | 4 | 14.33
 4 | -> Seq Scan on t1 | 30 | 4 | 14.14
(4 rows)
set best_agg_plan to 2;
SET
explain select b,count(1) from t1 group by b;
 id | operation | E-rows | E-width | E-costs
----+---+--------+---------+---------
 1 | -> Streaming (type: GATHER) | 30 | 4 | 15.85
 2 | -> HashAggregate | 30 | 4 | 14.60
 3 | -> Streaming(type: REDISTRIBUTE) | 30 | 4 | 14.45
 4 | -> Seq Scan on t1 | 30 | 4 | 14.14
(4 rows)
set best_agg_plan to 3;
SET
explain select b,count(1) from t1 group by b;
 id | operation | E-rows | E-width | E-costs
----+---+--------+---------+---------
 1 | -> Streaming (type: GATHER) | 30 | 4 | 15.84
 2 | -> HashAggregate | 30 | 4 | 14.59
 3 | -> Streaming(type: REDISTRIBUTE) | 25 | 4 | 14.59
 4 | -> HashAggregate | 25 | 4 | 14.33
 5 | -> Seq Scan on t1 | 30 | 4 | 14.14
(5 rows)

Data Warehouse Service
Query Performance Optimization 5 Optimization Cases

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

Summary
Generally, the optimizer chooses an optimal execution plan, but the cost
estimation, especially that of the intermediate result set, has large deviations,
which may result in large deviations in agg calculation. In this case, you need to
use best_agg_plan to adjust the agg calculation model.

When the aggregation convergence ratio is very small, that is, the number of
result sets does not become small obviously after the agg operation (5 times is a
critical point), you can select the redistribute+hashagg or hashagg+redistribute
+hashagg execution mode.

5.10 Case: Rewriting SQL Statements and Eliminating
Prune Interference

A filter criterion that contains the expression of partition key cannot be used for
pruning. As a result, the query statement scans almost all data in the partitioned
table.

Before Optimization
t_ddw_f10_op_cust_asset_mon indicates the partitioned table. year_mth
indicates the partition key. This field is an integer consisting of the year and mth
values.

The following figure shows the tested SQL statements.

SELECT
 count(1)
FROM t_ddw_f10_op_cust_asset_mon b1
WHERE b1.year_mth < substr('20200722',1 ,6)
AND b1.year_mth + 1 >= substr('20200722',1 ,6);

The test result shows that the table scan of the SQL statement takes 10 seconds.
The execution plan of the SQL statement is as follows.

EXPLAIN (ANALYZE ON, VERBOSE ON)
SELECT
 count(1)
FROM t_ddw_f10_op_cust_asset_mon b1
WHERE b1.year_mth < substr('20200722',1 ,6)
AND b1.year_mth + 1 >= cast(substr('20200722',1 ,6) AS int);
 QUERY PLAN
--

 id | operation | A-time | A-rows | E-rows | E-
distinct | Peak Memory | E-memory | A-width | E-width | E-costs
 ----+---+-----------------------+----------
+----------+------------+--------------+----------+---------+---------+-----------
 1 | -> Aggregate | 10662.260 | 1 | 1 |
| 32KB | | | 8 | 593656.42
 2 | -> Streaming (type: GATHER) | 10662.172 | 4 | 4
| | 136KB | | | 8 | 593656.42
 3 | -> Aggregate | [9692.785, 10656.068] | 4 | 4
| | [24KB, 24KB] | 1MB | | 8 | 593646.42
 4 | -> Partition Iterator | [8787.198, 9629.138] | 16384000 |
32752850 | | [16KB, 16KB] | 1MB | | 0 | 573175.88
 5 | -> Partitioned Seq Scan on public.t_ddw_f10_op_cust_asset_mon b1 | [8365.655, 9152.115] |
16384000 | 32752850 | | [32KB, 32KB] | 1MB | | 0 | 573175.88

 SQL Diagnostic Information

Data Warehouse Service
Query Performance Optimization 5 Optimization Cases

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

 Partitioned table unprunable Qual
 table public.t_ddw_f10_op_cust_asset_mon b1:
 left side of expression "((year_mth + 1) > 202008)" invokes function-call/type-conversion

 Predicate Information (identified by plan id)
 --
 4 --Partition Iterator
 Iterations: 6
 5 --Partitioned Seq Scan on public.t_ddw_f10_op_cust_asset_mon b1
 Filter: ((b1.year_mth < 202007::bigint) AND ((b1.year_mth + 1) >= 202007))
 Rows Removed by Filter: 81920000
 Partitions Selected by Static Prune: 1..6

After Optimization
After analyzing the execution plan of the statement and checking the SQL self-
diagnosis information in the execution plan, the following diagnosis information is
found:

 SQL Diagnostic Information
 --
 Partitioned table unprunable Qual
 table public.t_ddw_f10_op_cust_asset_mon b1:
 left side of expression "((year_mth + 1) > 202008)" invokes function-call/type-conversion

The filter criterion contains the expression (year_mth + 1) > 202008. A filter
criterion that contains the expression of partition key cannot be used for pruning.
As a result, the query statement scans almost all data in the partitioned table.

Compared with the original SQL statement, the expression (year_mth + 1) >
202008 is derived from the expression b1.year_mth + 1 > substr('20200822',1 ,
6). Based on the diagnosis information, the SQL statement is modified as follows.

SELECT
 count(1)
FROM t_ddw_f10_op_cust_asset_mon b1
WHERE b1.year_mth <= substr('20200822',1 ,6)
AND b1.year_mth > cast(substr('20200822',1 ,6) AS int) - 1;

After the modification, the SQL statement execution information is as follows. The
alarm indicating that the pruning is not performed is cleared. After the pruning,
the score of the partition to be scanned is 1, and the execution time is shortened
from 10 seconds to 3 seconds.

EXPLAIN (analyze ON, verbose ON)
SELECT
 count(1)
FROM t_ddw_f10_op_cust_asset_mon b1
WHERE b1.year_mth < substr('20200722',1 ,6)
AND b1.year_mth >= cast(substr('20200722',1 ,6) AS int) - 1;
 QUERY PLAN
--
--
 id | operation | A-time | A-rows | E-rows | E-
distinct | Peak Memory | E-memory | A-width | E-width | E-costs
 ----+---+----------------------+----------
+----------+------------+--------------+----------+---------+---------+-----------
 1 | -> Aggregate | 3009.796 | 1 | 1 | |
32KB | | | 8 | 501541.70
 2 | -> Streaming (type: GATHER) | 3009.718 | 4 | 4
| | 136KB | | | 8 | 501541.70
 3 | -> Aggregate | [2675.509, 3003.298] | 4 | 4
| | [24KB, 24KB] | 1MB | | 8 | 501531.70
 4 | -> Partition Iterator | [1820.725, 2053.836] | 16384000 |
16380697 | | [16KB, 16KB] | 1MB | | 0 | 491293.75

Data Warehouse Service
Query Performance Optimization 5 Optimization Cases

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

 5 | -> Partitioned Seq Scan on public.t_ddw_f10_op_cust_asset_mon b1 | [1420.972, 1590.083] |
16384000 | 16380697 | | [16KB, 16KB] | 1MB | | 0 | 491293.75

 Predicate Information (identified by plan id)
 --
 4 --Partition Iterator
 Iterations: 1
 5 --Partitioned Seq Scan on public.t_ddw_f10_op_cust_asset_mon b1
 Filter: ((b1.year_mth < 202007::bigint) AND (b1.year_mth >= 202006))
 Partitions Selected by Static Prune: 6

5.11 Case: Rewriting SQL Statements and Deleting in-
clause
Before Optimization

in-clause/any-clause is a common SQL statement constraint. Sometimes, the
clause following in or any is a constant. For example:
select
count(1)
from calc_empfyc_c1_result_tmp_t1
where ls_pid_cusr1 in ('20120405', '20130405');

or
select
count(1)
from calc_empfyc_c1_result_tmp_t1
where ls_pid_cusr1 in any('20120405', '20130405');

Some special usages are as follows:
SELECT
ls_pid_cusr1,COALESCE(max(round((current_date-bthdate)/365)),0)
FROM calc_empfyc_c1_result_tmp_t1 t1,p10_md_tmp_t2 t2
WHERE t1.ls_pid_cusr1 = any(values(id),(id15))
GROUP BY ls_pid_cusr1;

Where id and id15 are columns of p10_md_tmp_t2. ls_pid_cusr1 = any(values(id),
(id15)) equals t1. ls_pid_cusr1 = id or t1. ls_pid_cusr1 = id15.

Therefore, join-condition is essentially an inequality, and nestloop must be used
for this join operation. The execution plan is as follows:

After Optimization
The test result shows that both result sets are too large. As a result, nestloop is
time-consuming with more than one hour to return results. Therefore, the key to

Data Warehouse Service
Query Performance Optimization 5 Optimization Cases

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

performance optimization is to eliminate nestloop, using more efficient hashjoin.
From the perspective of semantic equivalence, the SQL statements can be written
as follows:

select
ls_pid_cusr1,COALESCE(max(round(ym/365)),0)
from
(
 (
 SELECT
 ls_pid_cusr1,(current_date-bthdate) as ym
 FROM calc_empfyc_c1_result_tmp_t1 t1,p10_md_tmp_t2 t2
 WHERE t1.ls_pid_cusr1 = t2.id and t1.ls_pid_cusr1 != t2.id15
)
 union all
 (
 SELECT
 ls_pid_cusr1,(current_date-bthdate) as ym
 FROM calc_empfyc_c1_result_tmp_t1 t1,p10_md_tmp_t2 t2
 WHERE t1.ls_pid_cusr1 = id15
)
)
GROUP BY ls_pid_cusr1;

Note: Use UNION ALL instead of UNION if possible. UNION eliminates duplicate
rows while merging two result sets but UNION ALL merges the two result sets
without deduplication. Therefore, replace UNION with UNION ALL if you are sure
that the two result sets do not contain duplicate rows based on the service logic.

The optimized SQL queries consist of two equivalent join subqueries, and each
subquery can be used for hashjoin in this scenario. The optimized execution plan is
as follows:

Before the optimization, no result is returned for more than 1 hour. After the
optimization, the result is returned within 7s.

5.12 Case: Setting Partial Cluster Keys
You can add PARTIAL CLUSTER KEY(column_name[,...]) to the definition of a
column-store table to set one or more columns of this table as partial cluster keys.
In this way, each 70 CUs (4.2 million rows) will be sorted based on the cluster keys
by default during data import and the value range is narrowed down for each of
the new 70 CUs. If the where condition in the query statement contains these
columns, the filtering performance will be improved.

Before Optimization
The partial cluster key is not used. The table is defined as follows:
CREATE TABLE lineitem
(
L_ORDERKEY BIGINT NOT NULL

Data Warehouse Service
Query Performance Optimization 5 Optimization Cases

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

, L_PARTKEY BIGINT NOT NULL
, L_SUPPKEY BIGINT NOT NULL
, L_LINENUMBER BIGINT NOT NULL
, L_QUANTITY DECIMAL(15,2) NOT NULL
, L_EXTENDEDPRICE DECIMAL(15,2) NOT NULL
, L_DISCOUNT DECIMAL(15,2) NOT NULL
, L_TAX DECIMAL(15,2) NOT NULL
, L_RETURNFLAG CHAR(1) NOT NULL
, L_LINESTATUS CHAR(1) NOT NULL
, L_SHIPDATE DATE NOT NULL
, L_COMMITDATE DATE NOT NULL
, L_RECEIPTDATE DATE NOT NULL
, L_SHIPINSTRUCT CHAR(25) NOT NULL
, L_SHIPMODE CHAR(10) NOT NULL
, L_COMMENT VARCHAR(44) NOT NULL
)
with (orientation = column)
distribute by hash(L_ORDERKEY);

select
sum(l_extendedprice * l_discount) as revenue
from
lineitem
where
l_shipdate >= '1994-01-01'::date
and l_shipdate < '1994-01-01'::date + interval '1 year'
and l_discount between 0.06 - 0.01 and 0.06 + 0.01
and l_quantity < 24;

After the data is imported, perform the query and check the execution time.

Figure 5-5 Partial cluster keys not used

Figure 5-6 CU loading without partial cluster keys

After Optimization
In the where condition, both the l_shipdate and l_quantity columns have a few
distinct values, and their values can be used for min/max filtering. Therefore,
modify the table definition as follows:

CREATE TABLE lineitem
(
L_ORDERKEY BIGINT NOT NULL
, L_PARTKEY BIGINT NOT NULL
, L_SUPPKEY BIGINT NOT NULL
, L_LINENUMBER BIGINT NOT NULL
, L_QUANTITY DECIMAL(15,2) NOT NULL
, L_EXTENDEDPRICE DECIMAL(15,2) NOT NULL
, L_DISCOUNT DECIMAL(15,2) NOT NULL
, L_TAX DECIMAL(15,2) NOT NULL
, L_RETURNFLAG CHAR(1) NOT NULL
, L_LINESTATUS CHAR(1) NOT NULL
, L_SHIPDATE DATE NOT NULL

Data Warehouse Service
Query Performance Optimization 5 Optimization Cases

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

, L_COMMITDATE DATE NOT NULL
, L_RECEIPTDATE DATE NOT NULL
, L_SHIPINSTRUCT CHAR(25) NOT NULL
, L_SHIPMODE CHAR(10) NOT NULL
, L_COMMENT VARCHAR(44) NOT NULL
, partial cluster key(l_shipdate, l_quantity)
)
with (orientation = column)
distribute by hash(L_ORDERKEY);

Import the data again, perform the query, and check the execution time.

Figure 5-7 Partial cluster keys used

Figure 5-8 CU loading with partial cluster keys

After partial cluster keys are used, the execution time of 5-- CStore Scan on
public.lineitem decreases by 1.2s because 84 CUs are filtered out.

Optimization
● Select partial cluster keys.

– The following data types support cluster keys: character varying(n),
varchar(n), character(n), char(n), text, nvarchar2, timestamp with time
zone, timestamp without time zone, date, time without time zone, and
time with time zone.

– Smaller number of distinct values in a partial cluster key generates higher
filtering performance.

– Columns that can filter out larger amount of data is preferentially
selected as partial cluster keys.

– If multiple columns are selected as partial cluster keys, the columns are
used in sequence to sort data. You are advised to select a maximum of
three columns.

● Modify parameters to reduce the impact of partial cluster keys on the import
performance.
After partial cluster keys are used, data will be sorted when they are
imported, affecting the import performance. If all the data can be sorted in
the memory, the keys have little impact on import. If some data cannot be
sorted in the memory and is written into a temporary file for sorting, the
import performance will be greatly affected.
The memory used for sorting is specified by the psort_work_mem parameter.
You can set it to a larger value so that the sorting has less impact on the
import performance.

Data Warehouse Service
Query Performance Optimization 5 Optimization Cases

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

The volume of data to be sorted is specified by the PARTIAL_CLUSTER_ROWS
parameter of the table. Decreasing the value of this parameter reduces the
amount of data to be sorted at a time. PARTIAL_CLUSTER_ROWS is usually
used along with the MAX_BATCHROW parameter. The value of
PARTIAL_CLUSTER_ROWS must be an integer multiple of the
MAX_BATCHROW value. MAX_BATCHROW specifies the maximum number
of rows in a CU.

5.13 Case: Converting from NOT IN to NOT EXISTS
nestloop anti join must be used to implement NOT IN, while you can use Hash
anti join to implement NOT EXISTS. If no NULL value exists in the JOIN column,
NOT IN is equivalent to NOT EXISTS. Therefore, if you are sure that no NULL
value exists, you can convert NOT IN to NOT EXISTS to generate hash joins and
to improve the query performance.

Before Optimization
Create two base tables t1 and t2.

CREATE TABLE t1(a int, b int, c int not null) WITH(orientation=row);
CREATE TABLE t2(a int, b int, c int not null) WITH(orientation=row);

Run the following SQL statement to query the NOT IN execution plan:

EXPLAIN VERBOSE SELECT * FROM t1 WHERE t1.c NOT IN (SELECT t2.c FROM t2);

The following figure shows the statement output.

According to the returned result, nest loops are used. As the OR operation result
of NULL and any value is NULL,

t1.c NOT IN (SELECT t2.c FROM t2)

the preceding condition expression is equivalent to:

t1.c <> ANY(t2.c) AND t1.c IS NOT NULL AND ANY(t2.c) IS NOT NULL

After Optimization
The query can be modified as follows:

SELECT * FROM t1 WHERE NOT EXISTS (SELECT * FROM t2 WHERE t2.c = t1.c);

Run the following statement to query the execution plan of NOT EXISTS:

Data Warehouse Service
Query Performance Optimization 5 Optimization Cases

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

EXPLAIN VERBOSE SELECT * FROM t1 WHERE NOT EXISTS (SELECT 1 FROM t2 WHERE t2.c = t1.c);

Data Warehouse Service
Query Performance Optimization 5 Optimization Cases

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

6 SQL Execution Troubleshooting

6.1 Low Query Efficiency
A query task that used to take a few milliseconds to complete is now requiring
several seconds, and that used to take several seconds is now requiring even half
an hour. This section describes how to analyze and rectify such low efficiency
issues.

Procedure

Perform the following procedure to locate the cause of this fault.

Step 1 Run the analyze command to analyze the database.

The analyze command updates data statistics information, such as data sizes and
attributes in all tables. This is a lightweight command and can be executed
frequently. If the query efficiency is improved or restored after the command
execution, the autovacuum process does not function well and requires further
analysis.

Step 2 Check whether the query statement returns unnecessary information.

For example, if we only need the first 10 records in a table but the query
statement searches all records in the table, the query efficiency is fine for a table
containing only 50 records but very low for a table containing 50,000 records.

If an application requires only a part of data information but the query statement
returns all information, add a LIMIT clause to the query statement to restrict the
number of returned records. In this way, the database optimizer can optimize
space and improve query efficiency.

Step 3 Check whether the query statement still has a low response even when it is solely
executed.

Run the query statement when there are no or only a few other query requests in
the database, and observe the query efficiency. If the efficiency is high, the
previous issue is possibly caused by a heavily loaded host in the database system
or an inefficient execution plan.

Data Warehouse Service
Query Performance Optimization 6 SQL Execution Troubleshooting

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

Step 4 Check the same query statement repeatedly to check the query efficiency.

One major cause that will reduce query efficiency is that the required information
is not cached in the memory or is replaced by other query requests because of
insufficient memory resources.

Run the same query statement repeatedly. If the query efficiency increases
gradually, the previous issue might be caused by this reason.

----End

6.2 Different Data Is Displayed for the Same Table
Queried By Multiple Users

Problem

Two users log in to the same database human_resource and run the select
count(*) from areas statement separately to query the areas table, but obtain
different results.

Possible Causes

Check whether the two users really query the same table. In a relational database,
a table is identified by three elements: database, schema, and table. In this issue,
database is human_resource and table is areas. Then, check schema. Log in as
users dbadmin and user01 separately. It is found that search_path is public for
dbadmin and $user for user01. By default, a schema having the same name as
user dbadmin, the cluster administrator, is not created. That is, all tables will be
created in public if no schema is specified. However, when a common user, such
as user01, is created, the same-name schema (user01) is created by default. That
is, all tables are created in user01 if the schema is not specified. In conclusion,
both the two users are operating the table, causing that the same-name table is
not really the same table.

Troubleshooting Method

Use schema.table to determine a table for query.

6.3 An Error Occurs During the Integer Conversion

Problem

The following error is reported during the integer conversion:

Invalid input syntax for integer: "13."

Possible Causes

Some data types cannot be converted to the target data type.

Data Warehouse Service
Query Performance Optimization 6 SQL Execution Troubleshooting

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

Troubleshooting

Gradually narrow down the range of SQL statements to locate the fault.

6.4 Automatic Retry upon SQL Statement Execution
Errors

With automatic retry (referred to as CN retry), GaussDB(DWS) retries an SQL
statement when the execution of this statement fails. If an SQL statement sent
from the gsql client, JDBC driver, or ODBC driver fails to be executed, the CN can
automatically identify the error reported during execution and re-deliver the task
to retry.

The restrictions of this function are as follows:

● Functionality restrictions:
– CN retry increases execution success rate but does not guarantee success.
– CN retry is enabled by default. In this case, the system records logs about

temporary tables. If it is disabled, the system will not record the logs.
Therefore, do not repeatedly enable and disable CN retry when
temporary tables are used. Otherwise, data inconsistency may occur after
a CN retry following a primary/standby switchover.

– CN retry is enabled by default. In this case, the unlogged keyword is
ignored in the statement for creating unlogged tables and thereby
ordinary tables will be created by using this statement. If CN retry is
disabled, the system records logs about unlogged tables. Therefore, do
not repeatedly enable and disable CN retry when unlogged tables are
used. Otherwise, data inconsistency may occur after a CN retry following
a primary/standby switchover.

– When GDS is used to export data, CN retry is supported. The existing
mechanism checks for duplicate files and deletes duplicate files during
data export. Therefore, you are advised not to repeatedly export data for
the same foreign table unless you are sure that files with the same name
in the data directory need to be deleted.

● Error type restrictions:
Only the error types in Table 6-1 are supported.

● Statement type restrictions:
Support single-statement CN retry, stored procedures, functions, and
anonymous blocks. Statements in transaction blocks are not supported.

● Statement restrictions of a stored procedure:
– If an error occurs during the execution of a stored procedure containing

EXCEPTION (including statement block execution and statement
execution in EXCEPTION), the stored procedure can be retried. If an
internal error occurs, the stored procedure will retry first, but if the error
is captured by EXCEPTION, the stored procedure cannot be retried.

– Packages that use global variables are not supported.
– DBMS_JO is not supported.
– UTL_FILE is not supported.

Data Warehouse Service
Query Performance Optimization 6 SQL Execution Troubleshooting

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

– If the stored procedure has printed information (such as
dbms_output.put_line or raise info), the printed information will be
output repeatedly when retry occurs, and "Notice: Retry triggered, some
message may be duplicated. " will be output before the repeated
information.

● Cluster status restrictions:

– Only DNs or GTMs are faulty.

– The cluster can be recovered before the number of CN retries reaches the
allowed maximum (controlled by max_query_retry_times). Otherwise,
CN retry may fail.

– CN retry is not supported during scale-out.

● Data import restrictions:

– The COPY FROM STDIN statement is not supported.

– The gsql \copy from metacommand is not supported.

– JDBC CopyManager copyIn is not supported.

Table 6-1 lists the error types supported by CN retry and the corresponding error
codes. You can use the GUC parameter retry_ecode_list to set the list of error
types supported by CN retry. You are not advised to modify this parameter. To
modify it, contact the technical support.

Table 6-1 Error types supported by CN retry

Error Type Error
Code

Remarks

CONNECTION_RESET_BY_PEER YY00
1

TCP communication errors:
Connection reset by peer
(communication between the CN
and DNs)

STREAM_CONNECTION_RESET_BY
_PEER

YY00
2

TCP communication errors: Stream
connection reset by peer
(communication between DNs)

LOCK_WAIT_TIMEOUT YY00
3

Lock wait timeout

CONNECTION_TIMED_OUT YY00
4

TCP communication errors:
Connection timed out

SET_QUERY_ERROR YY00
5

Failed to deliver the SET
command: Set query

OUT_OF_LOGICAL_MEMORY YY00
6

Failed to apply for memory: Out of
logical memory

SCTP_MEMORY_ALLOC YY00
7

SCTP communication errors:
Memory allocate error

SCTP_NO_DATA_IN_BUFFER YY00
8

SCTP communication errors: SCTP
no data in buffer

Data Warehouse Service
Query Performance Optimization 6 SQL Execution Troubleshooting

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

Error Type Error
Code

Remarks

SCTP_RELEASE_MEMORY_CLOSE YY00
9

SCTP communication errors:
Release memory close

SCTP_TCP_DISCONNECT YY01
0

SCTP communication errors: TCP
disconnect

SCTP_DISCONNECT YY01
1

SCTP communication errors: SCTP
disconnect

SCTP_REMOTE_CLOSE YY01
2

SCTP communication errors:
Stream closed by remote

SCTP_WAIT_POLL_UNKNOW YY01
3

Waiting for an unknown poll: SCTP
wait poll unknown

SNAPSHOT_INVALID YY01
4

Snapshot invalid

ERRCODE_CONNECTION_RECEIVE
_WRONG

YY01
5

Connection receive wrong

OUT_OF_MEMORY 5320
0

Out of memory

CONNECTION_FAILURE 0800
6

GTM errors: Connection failure

CONNECTION_EXCEPTION 0800
0

Failed to communicate with DNs
due to connection errors:
Connection exception

ADMIN_SHUTDOWN 57P0
1

System shutdown by
administrators: Admin shutdown

STREAM_REMOTE_CLOSE_SOCKET XX00
3

Remote socket disabled: Stream
remote close socket

ERRCODE_STREAM_DUPLICATE_Q
UERY_ID

XX00
9

Duplicate query id

ERRCODE_STREAM_CONCURRENT
_UPDATE

YY01
6

Stream concurrent update

ERRCODE_LLVM_BAD_ALLOC_ERR
OR

CG00
3

Memory allocation error: Allocate
error

ERRCODE_LLVM_FATAL_ERROR CG00
4

Fatal error

HashJoin temporary file reading
error
(ERRCODE_HASHJOIN_TEMP_FILE
_ERROR).

F001
1

File error

Data Warehouse Service
Query Performance Optimization 6 SQL Execution Troubleshooting

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

Error Type Error
Code

Remarks

Partition number error
(ERRCODE_PARTITION_NUM_CHA
NGED).

4500
3

During scanning on a list partition
table, it is found that the number
of partitions is different from that
in the optimization phase. This
problem usually occurs when the
queries and ADD/DROP partitions
are concurrently executed. (This
error is supported only by cluster
8.1.3 and later versions.)

To enable CN retry, set the following GUC parameters:
● Mandatory GUC parameters (required by both CNs and DNs)

max_query_retry_times

CA UTION

If CN retry is enabled, temporary table data is logged. For data consistency, do
not switch the enabled/disabled status for CN retry when the temporary
tables are being used by sessions.

● Optional GUC parameters
cn_send_buffer_size
max_cn_temp_file_size

Data Warehouse Service
Query Performance Optimization 6 SQL Execution Troubleshooting

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

7 query_band Load Identification

Overview

GaussDB(DWS) implements load identification and intra-queue priority control
based on query_band. It provides more flexible load identification methods and
identifies load queues based on job types, application names, and script names.
Users can flexibly configure query_band identification queues based on service
scenarios. In addition, priority control of job delivery in the queue is implemented.
In the future, priority control of resources in the queue will be gradually
implemented.

Administrators can configure the queue associated with query_band and estimate
the memory limit based on service scenarios and job types to implement more
flexible load control and resource management and control. If query_band is not
configured for the service or the user does not associate query_band with an
action, the queue associated with the user and the priority in the queue is used by
default.

Load Behaviors Supported by query_band

query_band is a session-level GUC parameter. It is a job identifier of the character
data type. Its value can be any string. However, for easier differentiation and
configuration, query_band only identifies key-value pairs. For example:

"SET query_band='JobName=abc;AppName=test;UserName=user'".

JobName=abc, AppName=test, and UserName=user are independent key-value
pairs. Specifications of the query_band key-value pairs:

● query_band is set in key-value pair mode, that is, 'key=value'. Multiple
query_band key-value pairs can be set in a session. Multiple key-value pairs
are separated by semicolons (;). The maximum length of both the
query_band key-value pair and parameter value is 1024 characters.

● The query_band key-value pair supports the following valid characters: digits
0 to 9, uppercase letters A to Z, lowercase letters a to z, '.', '-', '_', and '#'.

query_band is configured, and identifies load behaviors, using key-value pairs. The
supported load behaviors are described in Table 7-1.

Data Warehouse Service
Query Performance Optimization 7 query_band Load Identification

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 120

Table 7-1 Load behaviors supported by QUERY_BAND

Type Behavior Behavior Description

Workload
management
(workload)

Resource pool
(respool)

query_band associated with a resource pool

Workload
management
(workload)

Priority Priority in the queue

Order Queue
(respool)
Currently, this
field is invalid
and is used for
future
extension.

query_band query order

The "Type" is used to classify load behaviors. Different load behaviors may belong
to a same type. For example, both "Resource pool" and a "Priority" belong to
"Workload management". The "Behavior" indicates a load behavior associated
with a query_band key-value pair. The "Behavior description" describes a specific
load behavior. The "Order" in the "Type" is used to indicate the priority of the
query_band load behavior identification. When a session has multiple query_band
key-value pairs, the query_band key-value pair with a smaller order value is
preferentially used to identify a load behavior. Each query_band key-value pair can
have multiple associated load behaviors, while one load behavior can only have
one associated key-value pair. The query_band load behavior is described as
follows:

● Resource pool: query_band can be associated with resource pools. During job
execution, if a resource pool is associated with query_band, the resource pool
is used in preference. Otherwise, the resource pool associated with the user is
used.
– When query_band is associated with a resource pool, an error is reported

if the resource pool does not exist, and the association fails.
– When query_band is associated with a resource pool, the dependency

between query_band and the resource pool is recorded.
– When a resource pool associated with query_band is deleted, a message

is displayed indicating that the resource pool fails to be deleted because
of the dependency between query_band and the resource pool.

● Intra-queue priority: query_band can be associated with job priorities,
including high, medium, and low. Rush is provided as a special priority (green
channel). The default priority is medium. In practice, most jobs use the
medium priority, low-priority jobs use the low priority, and privileged jobs use
the high priority. It is not recommended that a large number of jobs use the
high priority. The rush priority is used only in special scenarios and is not
recommended in normal cases.
The intra-queue priority is used to implement the queuing priority.

Data Warehouse Service
Query Performance Optimization 7 query_band Load Identification

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

– In the static load management scenario, when the CN concurrency is
insufficient, CN global queuing is triggered. The CN global queue is a
priority queue.

– In the dynamic load management scenario, if the DN memory is
insufficient, CCN global queuing is triggered. The CCN global queue is a
priority queue.

– When the resource pool concurrency or memory is insufficient, resource
pool queuing is triggered. The resource pool queue is a priority queue.

The preceding priority queues comply with the following scheduling rules:
– Jobs with a higher priority are scheduled first.
– After all jobs with a high priority are scheduled, jobs with a low priority

are scheduled.
– In dynamic load management scenarios, the CN global queue does not

support the query_band priority.
● Order: The identification order of query_bands can be configured. The default

order value is -1. Except the default order value, there are no two
query_bands with the same order value. The query_band order is verified
when being configured. If there are query_bands with the same order value,
the order values are recursively increased by 1 until there are no query_bands
with the same order value.
– If a session has multiple query_band key-value pairs, the query_band key-

value pair with a smaller order value is used for load identification.
– 0 is the smallest order value, and the default order value -1 is the largest

order value.
– If the query_bands are all of the same order value, the anterior

query_band is used for load identification.
– For example, if in set query_band='b=1;a=3;c=1'; b=1, the order value of

b=1 is -1, a=3 is 4, c=1 is 1, c=1 is used as the query_band for load
identification. This design enables load administrators to adjust load
scheduling.

Application and Configuration of query_band
● The pg_workload_action cross-database system catalog is used to store the

query_band action and order. For details, see PG_WORKLOAD_ACTION.
● The default action and order are not stored in the pg_workload_action

system catalog. If a non-default action is set for query_band, the default
action is also displayed when actions are queried. The message <query_band
information not found> is displayed when the action and order to be queried
are the default query_band action.

● The gs_wlm_set_queryband_action function sets the query_band sequence.
The maximum length of the first parameter, that is, the query_band key value
pair, is 63 characters. For the second parameter, it is case insensitive and
multiple actions are separated by semicolons (;). order is the default
parameter and its default value is -1. For details, see the
gs_wlm_set_queryband_action function in section .

● The gs_wlm_set_queryband_order function sets the query_band sequence.
The maximum length of the first parameter, that is, a query_band key value
pair, is 63 characters. The value of query_band must be greater than or equal

Data Warehouse Service
Query Performance Optimization 7 query_band Load Identification

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 122

https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0632.html
https://support.huaweicloud.com/intl/en-us/sqlreference-dws/dws_06_0063.html

to –1. Except the default value –1, the value of query_band order must be
unique. When setting the query_band order, if there are query_bands with the
same order values, the original order value is increased by 1. For details, see
the gs_wlm_set_queryband_order function in section .

● The gs_wlm_get_queryband_action function is used to query the query_band
action. For details, see gs_wlm_set_queryband_action in section .

● pg_queryband_action provides the system view for querying all query_band
actions. For details, see PG_QUERYBAND_ACTION.

● The query_band priority is displayed as an integer in the load management
view (PG_SESSION_WLMSTAT). The mapping between numbers and
priorities is as follows:
– 0: not controlled by load management
– 1: low
– 2: medium
– 4: high
– 8: rush

● Permission control: Except initial users, other users have the permission to set
and query query_band only when they are authorized.

NO TE

● When all running jobs are canceled in batches or the maximum number of concurrent
jobs in a queue is 1 and only one queue is running jobs, the CN may be triggered to
automatically wake up jobs. As a result, jobs are not delivered by priority.

Examples

Step 1 Set the associated resource pool to p1, priority to rush, and order to 1 for
query_band JobName to abc.
SELECT * FROM gs_wlm_set_queryband_action('JobName=abc','respool=p1;priority=rush',1);
gs_wlm_set_queryband_action

 t
(1 row)

Step 2 Change the associated resource pool to p2 for query_band JobName=abc.
SELECT * FROM gs_wlm_set_queryband_action('JobName=abc','respool=p2');
gs_wlm_set_queryband_action

 t
(1 row)

Step 3 Change the priority to high for query_band JobName=abc.
SELECT * FROM gs_wlm_set_queryband_action('JobName=abc','priority=high');
gs_wlm_set_queryband_action

 t
(1 row)

Step 4 Change the order to 3 for query_band JobName=abc.
SELECT * FROM gs_wlm_set_queryband_order('JobName=abc',3);
gs_wlm_set_queryband_order

 t
(1 row)

Data Warehouse Service
Query Performance Optimization 7 query_band Load Identification

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 123

https://support.huaweicloud.com/intl/en-us/sqlreference-dws/dws_06_0063.html
https://support.huaweicloud.com/intl/en-us/sqlreference-dws/dws_06_0063.html
https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0743.html
https://support.huaweicloud.com/intl/en-us/devg-dws/dws_04_0749.html

Step 5 Query the load behaviors associated with query_band.
SELECT * FROM pg_queryband_action;
 qband | respool_id | respool | priority | qborder
--------------+------------+---------+----------+---------
 AppName=test | 16974 | p1 | low | -1
 JobName=abc | 17119 | p2 | high | 1
(2 rows)

----End

Data Warehouse Service
Query Performance Optimization 7 query_band Load Identification

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 124

8 Common Performance Parameter
Optimization Design

To improve the cluster performance, you can use multiple methods to optimize
the database, including hardware configuration, software driver upgrade, and
internal parameter adjustment of the database. This section describes some
common parameters and recommended configurations.

1. query_dop: user-defined query degree of parallelism (DOP)
The SMP architecture uses abundant resources to obtain time. After the plan
parallelism is executed, more resources are consumed, including the CPU,
memory, I/O, and network bandwidth. As the DOP grows, the resource
consumption increases.
– When resources become a bottleneck, the SMP cannot improve the

performance and may even deteriorate the performance. In the case of a
resource bottleneck, you are advised to disable the SMP.

– If resources are sufficient, the higher the DOP, the more the performance
is improved.

The SMP DOP can be configured at a session level and you are advised to
enable the SMP before executing the query that meets the requirements.
After the execution is complete, disable the SMP. Otherwise, SMP may affect
services in peak hours.
The default value of query_dop is 1. You can set query_dop to 10 to enable
the SMP in a session.

2. enable_dynamic_workload: dynamic load management
Dynamic load management refers to the automatic queue control of complex
queries based on user loads in a database. This fine-tunes system parameters
without manual adjustment.
This parameter is enabled by default. Notes:
– A CN in the cluster is used as the Central Coordinator (CCN) for collecting

and scheduling job execution. To query this CN, run gs_om -t status --
detail. Its status will be displayed in Central Coordinator State. If there
is no CCN, jobs will not be controlled by dynamic load management.

– Simple query jobs (which are estimated to require less than 32 MB
memory) and non-DML statements (statements other than INSERT,

Data Warehouse Service
Query Performance Optimization

8 Common Performance Parameter Optimization
Design

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

UPDATE, DELETE, and SELECT) have no adaptive load restrictions.
Control the upper memory limits for them on a single CN using
max_active_statements.

– In adaptive load scenarios, the value cannot be increased. If you increase
it, memory cannot be controlled for certain statements, such as
statements that have not been analyzed.

– Reduce concurrency in the following scenarios, because high concurrency
may lead to uncontrollable memory usage.

▪ A single tuple occupies excessive memory, for example, a base table
contains a column more than 1 MB wide.

▪ A query is fully pushed down.

▪ A statement occupies a large amount of memory on the CN, for
example, a statement that cannot be pushed down or a cursor
withholding statement.

▪ An execution plan creates a hash table based on the hash join
operator, and the table has many duplicate values and occupies a
large amount of memory.

▪ UDFs are used and occupy a large amount of memory.

When configuring this parameter, you can set query_dop to 0 (adaptive). In
this case, the system dynamically selects the optimal DOP between 1 and 8
for each query based on resource usage and plan characteristics. The
enable_dynamic_workload parameter supports the dynamic memory
allocation.

3. max_active_statements
Specifies the maximum number of concurrent jobs. This parameter applies to
all the jobs on one CN.
Set the value of this parameter based on system resources, such as CPU, I/O,
and memory resources, to ensure that the system resources can be fully
utilized and the system will not be crashed due to excessive concurrent jobs.
– If this parameter is set to -1 or 0, the number of global concurrent jobs is

not limited.
– In the point query scenario, you are advised to set this parameter to 100.
– In an analytical query scenario, set this parameter to the number of CPU

cores divided by the number of DNs. Generally, its value ranges from 5 to
8.

4. session_timeout
By default, if a client is in idle state after connecting to a database, the client
automatically disconnects from the database after the duration specified by
the parameter.
Value range: an integer ranging from 0 to 86400. The minimum unit is
second (s). 0 means to disable the timeout. Generally, you are advised not to
set this parameter to 0.

5. The five parameters that affect the database memory are as follows:
max_process_memory, shared_buffers, cstore_buffers, work_mem, and
maintenance_work_mem

Data Warehouse Service
Query Performance Optimization

8 Common Performance Parameter Optimization
Design

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

– max_process_memory
max_process_memory is a logical memory management parameter. It is
used to control the maximum available memory on a single CN or DN.
Formula: max_process_memory = Physical memory x 0.8/ (1 + Number
of primary DNs)

– shared_buffers
Specifies the size of the shared memory used by GaussDB(DWS). If the
value of this parameter is increased, GaussDB(DWS) requires more
System V shared memory than the default system setting.
You are advised to set shared_buffers to a value less than 40% of the
memory. It is used to scan row-store tables. Formula: shared_buffers =
(Memory of a single server/Number of DNs on a single server) x 0.4 x
0.25

– cstore_buffers
Specifies the size of the shared buffer used by column-store tables and
column-store tables (ORC, Parquet, and CarbonData) of OBS and HDFS
foreign tables.
For details about the calculation formula, see the formula in
shared_buffers.

– work_mem
Specifies the size of the memory used by internal sequential operations
and the Hash table before data is written into temporary disk files.
Sort operations are required for ORDER BY, DISTINCT, and merge joins.
Hash tables are used in hash joins, hash-based aggregation, and hash-
based processing of IN subqueries.
In a complex query, several sort or hash operations may run in parallel.
Each operation will be allowed to use as much memory as this parameter
specifies. If the memory is insufficient, data will be written into temporary
files. In addition, several running sessions may be performing such
operations concurrently. Therefore, the total memory used may be many
times the value of work_mem.
The formulas are as follows:
For non-concurrent complex serial queries, each query requires five to ten
associated operations. Configure work_mem using the following formula:
work_mem = 50% of the memory/10.
For non-concurrent simple serial queries, each query requires two to five
associated operations. Configure work_mem using the following formula:
work_mem = 50% of the memory/5.
For concurrent queries, configure work_mem using the following
formula: work_mem = work_mem for serial queries/Number of
concurrent SQL statements.

– maintenance_work_mem
maintenance_work_mem specifies the maximum size of memory used
for maintenance operations, involving VACUUM, CREATE INDEX, and
ALTER TABLE ADD FOREIGN KEY.
Setting suggestions:
If you set this parameter to a value greater than that of work_mem,
database dump files can be cleaned up and restored more efficiently. In a

Data Warehouse Service
Query Performance Optimization

8 Common Performance Parameter Optimization
Design

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 127

database session, only one maintenance operation can be performed at a
time. Maintenance is usually performed when there are not many
sessions.
When the automatic cleanup process is running, up to
autovacuum_max_workers times of the memory will be allocated. In
this case, set maintenance_work_mem to a value greater than or equal
to that of work_mem.

6. bulk_write_ring_size
Specifies the size of a ring buffer used for parallel data import.
This parameter affects the database import performance. You are advised to
increase the value of this parameter on DNs when a large amount of data is
to be imported.

7. Two connection parameters:
max_connections and max_prepared_transactions
– max_connections

Specifies the maximum number of concurrent connections to the
database. This parameter affects the concurrent processing capability of
the cluster.
Setting suggestions:
Retain the default value of this parameter on CNs. Set this parameter on
DNs to a value calculated using this formula: Number of CNs x Value of
this parameter on a CN.
If the value of this parameter is increased, GaussDB(DWS) may require
more System V shared memory or semaphore, which may exceed the
default maximum value of the OS. In this case, modify the value as
needed.

– max_prepared_transactions
Specifies the maximum number of transactions that can stay in the
prepared state simultaneously. If the value of this parameter is increased,
GaussDB(DWS) requires more System V shared memory than the default
system setting.

NO TICE

The value of max_connections is related to max_prepared_transactions.
Before configuring max_connections, ensure that the value of
max_prepared_transactions is greater than or equal to that of
max_connections. In this way, each session has a prepared transaction in the
waiting state.

8. checkpoint_completion_target
Specifies the target for which the checkpoint is completed.
Each checkpoint must be completed within 50% of the checkpoint interval.
The default value is 0.5. To improve the performance, you can change the
value to 0.9.

9. data_replicate_buffer_size

Data Warehouse Service
Query Performance Optimization

8 Common Performance Parameter Optimization
Design

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 128

Specifies the memory used by queues when the sender sends data pages to
the receiver. The value of this parameter affects the buffer size used for the
replication from the primary server to the standby server.
The default value is 128 MB. If the server memory is 256 GB, you can increase
the value to 512 MB.

Data Warehouse Service
Query Performance Optimization

8 Common Performance Parameter Optimization
Design

Issue 10 (2023-06-25) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 129

	Contents
	1 Overview of Query Performance Optimization
	2 Query Execution Process
	3 SQL Execution Plan
	4 SQL Optimization Guide
	4.1 Optimization Process
	4.2 Updating Statistics
	4.3 Reviewing and Modifying a Table Definition
	4.4 SQL Statement Rewriting Rules
	4.5 Typical SQL Optimization Methods
	4.5.1 SQL Self-Diagnosis
	4.5.2 Optimizing Statement Pushdown
	4.5.3 Optimizing Subqueries
	4.5.4 Optimizing Statistics
	4.5.5 Optimizing Operators
	4.5.6 Optimizing Data Skew

	4.6 Hint-based Tuning
	4.6.1 Plan Hint Optimization
	4.6.2 Join Order Hints
	4.6.3 Join Operation Hints
	4.6.4 Rows Hints
	4.6.5 Stream Operation Hints
	4.6.6 Scan Operation Hints
	4.6.7 Sublink Name Hints
	4.6.8 Skew Hints
	4.6.9 Hint That Disables Subquery Pull-up
	4.6.10 Configuration Parameter Hints
	4.6.11 Hint Errors, Conflicts, and Other Warnings
	4.6.12 Plan Hint Cases

	4.7 Routinely Maintaining Tables
	4.8 Routinely Recreating an Index
	4.9 Adjusting Key Parameters During SQL Tuning
	4.10 Configuration SMP
	4.10.1 Application Scenarios and Restrictions
	4.10.2 Resource Impact on SMP Performance
	4.10.3 Other Factors Affecting SMP Performance
	4.10.4 Suggestions for SMP Parameter Settings
	4.10.5 SMP Manual Optimization Suggestions

	4.11 Querying SQL Statements That Affect Performance Most

	5 Optimization Cases
	5.1 Case: Selecting an Appropriate Distribution Column
	5.2 Case: Creating an Appropriate Index
	5.3 Case: Adding NOT NULL for JOIN Columns
	5.4 Case: Pushing Down Sort Operations to DNs
	5.5 Case: Configuring cost_param for Better Query Performance
	5.6 Case: Adjusting the Partial Clustering Key
	5.7 Case: Adjusting the Table Storage Mode in a Medium Table
	5.8 Case: Reconstructing Partition Tables
	5.9 Case: Adjusting the GUC Parameter best_agg_plan
	5.10 Case: Rewriting SQL Statements and Eliminating Prune Interference
	5.11 Case: Rewriting SQL Statements and Deleting in-clause
	5.12 Case: Setting Partial Cluster Keys
	5.13 Case: Converting from NOT IN to NOT EXISTS

	6 SQL Execution Troubleshooting
	6.1 Low Query Efficiency
	6.2 Different Data Is Displayed for the Same Table Queried By Multiple Users
	6.3 An Error Occurs During the Integer Conversion
	6.4 Automatic Retry upon SQL Statement Execution Errors

	7 query_band Load Identification
	8 Common Performance Parameter Optimization Design

