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1 Before You Start

1.1 Overview

1.2 Intended Audience

1.1 Overview
Ascend 310 provides a deep-learning framework that converts models under
open-source frameworks such as Caffe and TensorFlow into models supported by
Ascend 310. During model conversion, if operators in the models are not
implemented in the built-in operator library, an error is reported during the
conversion. In this case, the operators that are not implemented need to be
customized. The custom operators can be added to the custom operator library to
allow successful model conversion. You can also optimize existing operators in the
current model, add the optimized operators to the custom operator library, and
load the optimized operators for model conversion.

Ascend 310 provides the Tensor Engine (TE) operator development framework for
developing custom operators. TE is a custom operator development framework
based on the Tensor Virtual Machine (TVM). It provides the DSL language based
on the Python syntax for developing custom operators. Custom TE operators can
run on the AI CPU and AI Core.

This document describes the development process of a custom Tensor Engine (TE)
operator in command line interface (CLI) mode by using the custom
caffe_reduction_layer operator (which is an extended built-in reduction operator in
the Caffe network model LeNet-5) as an example. The process includes how to
develop a custom TE operator, verify the operator, register the operator, and load
the custom operator for model conversion.

Table 1-1 describes the custom TE operator development modes supported by
Ascend 310. This document describes only the development in command line
interface (CLI) mode.
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Table 1-1 Custom TE operator development modes supported by Ascend 310

Develop
ment
Mode

Tool Dependency Descript
ion

Compi
lation
Mode

Reference
Document

CLI This mode does not depend on
Mind Studio. It only requires the
device development kit (DDK)
installation.
NOTE

The DDK provides the NPU-based
digital development kit that
contains project code samples and
integrates related dependent
libraries and header files. You can
compile project files by using
Makefile.

There is
no UI or
automat
ically
generate
d
framew
ork
code.
The
impleme
ntation
code of
all
operator
s and
operator
plug-in
code
need to
be
develop
ed by
users or
modified
based
on code
samples
in the
DDK.

The
Makef
ile file
is
compil
ed
based
on the
DDK
code
sample
.

TE Custom
Operator
Developmen
t Guide
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Develop
ment
Mode

Tool Dependency Descript
ion

Compi
lation
Mode

Reference
Document

Mind
Studio

This mode depends on Mind
Studio. The following figure
shows the operation entry.

The
framew
ork code
is
automat
ically
generate
d based
on the
model
file
importe
d during
project
creation
and
selected
operator
s. You
only
need to
pay
attentio
n to the
operator
impleme
ntation
code.

The
Makef
ile file
does
not
need
to be
compil
ed
becaus
e it is
genera
ted
based
on the
config
uration
s on
Mind
Studio.

Ascend 310
TE Custom
Operator
Developmen
t Guide
(Mind
Studio)
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Figure 1-1 Tensor engine project creation

1.2 Intended Audience
This document is intended for developers who program operators using Ascend
310. It aims to help you:

● Understand the end-to-end (E2E) development process of a custom TE
operator, including developing a custom operator and integrating it into the
network to run on E2E applications.

● Learn the operator development and operator plug-in development principles
by referring to the reduction operator sample in this document, and be able
to develop other custom operators.

To better understand this document, you should have:
● Capability of developing Python/C++/C language programs
● Good understanding of mathematical expressions
● Good understanding of machine learning and deep learning
● Good understanding of the Ascend 310 architecture
● Good understanding of TVM and open source framework Caffe
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2 Precautions for Operator Development

Precautions for Developing Custom Operators for an SSD Network with the
Post-Processing Node

The PriorBox operator and detection output operator of the SSD network are
automatically integrated during model conversion. If the implementation of the
PriorBox operator of the SSD network has been customized, model conversion will
fail due to the integration failure. In this situation, you need to delete the
detection output operator from the network model file, and customize a post-
processing node in engine orchestration to implement the function of the
detection output operator.

Others
● Do not modify the implementation of the built-in operators of the framework

(all files are saved in ddk/include/inc/custom). Otherwise, exceptions may
occur. For example, the system fails to be started or the model cannot be
converted.

● When developing an operator plug-in, customers shall be responsible for the
source code to avoid backdoor implantation.
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3 Environment Preparation

The DDK has been deployed. It provides developers with an Ascend 310-based
digital development kit that contains project code samples and integrates related
dependent libraries and header files. You can compile project files by using
Makefile.
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4 Overall Development Process

Figure 4-1 shows the development process of a custom TE operator.

Figure 4-1 Developing a custom TE operator

The operating procedure is as follows:

1. Create a custom operator development project.
2. Customize unimplemented operators, including developing operator code, and

compiling, running, and verifying a single operator.
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3. Develop the custom operator plug-in and register the custom operator with
the Framework. After the operator plug-in is compiled, the *.so plug-in file of
the custom operator is generated.

4. Load the *.so plug-in file to identify the custom operator and convert the
model.
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5 Setting Environment Variables

Step 1 Log in to the DDK server as the DDK installation user ascend.

Step 2 Set the environment variables.
● In the Atlas 200 DK environment, run the following commands in the CLI to

set environment variables:
export DDK_HOME=$HOME/tools/che/ddk/ddk
export LD_LIBRARY_PATH=$DDK_HOME/uihost/lib/
export PYTHONPATH=$DDK_HOME/site-packages/te-0.4.0.egg:$DDK_HOME/site-
packages/topi-0.4.0.egg
export PATH=$PATH:$DDK_HOME/toolchains/ccec-linux/bin
export TVM_AICPU_LIBRARY_PATH=$DDK_HOME/uihost/lib/:$DDK_HOME/uihost/
toolchains/ccec-linux/aicpu_lib
export TVM_AICPU_INCLUDE_PATH=$DDK_HOME/include/inc/tensor_engine
export TVM_AICPU_OS_SYSROOT=/usr/lib/aarch64-linux-gnu

● In the ASIC environment, run the following commands in the CLI to set
environment variables:
export DDK_HOME=$HOME/tools/che/ddk/ddk
export LD_LIBRARY_PATH=$DDK_HOME/uihost/lib/
export PYTHONPATH=$DDK_HOME/site-packages/te-0.4.0.egg:$DDK_HOME/site-
packages/topi-0.4.0.egg
export PATH=$PATH:$DDK_HOME/toolchains/ccec-linux/bin
export TVM_AICPU_LIBRARY_PATH=$DDK_HOME/uihost/lib/:$DDK_HOME/uihost/
toolchains/ccec-linux/aicpu_lib
export TVM_AICPU_INCLUDE_PATH=$DDK_HOME/include/inc/tensor_engine
export TVM_AICPU_OS_SYSROOT=$DDK_HOME/uihost/toolchains/aarch64-linux-
gcc6.3/sysroot

Change the path of DDK_HOME to the actual installation path of the DDK.
You can write the commands for setting environment variables to the operator
customization script for future use.

----End
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6 Creating a Custom Operator
Development Project

Step 1 Log in to the DDK server as the DDK installation user ascend.

Step 2 Create a workspace directory.

mkdir $HOME/tools/projects

Step 3 Create a directory for custom projects.

$ mkdir $HOME/tools/projects/customop_te

Create an operator code directory.

mkdir $HOME/tools/projects/customop_te/operator

Create a directory for storing operator plug-in code.

mkdir $HOME/tools/projects/customop_te/plugin

Step 4 Copy the sample code in the DDK to the directory where the operator
development project is stored.

● This example describes how to develop a custom operator by using the code of the
built-in reduction operator in the DDK and its plug-in. You can create related files for
editing.

● In the example, the installation path of the DDK is $HOME/tools/che. If the actual
installation path is different from the example path, replace the path in the example
command with the actual installation path.

● Copy the sample code file reduction.py of the reduction operator and the
sample data generation script data_gen.py used for operator verification in
the DDK to the directory where the operator code of the custom project is
stored.

cp -rf $HOME/tools/che/ddk/ddk/sample/customop/python/reduction.py
$HOME/tools/projects/customop_te/operator/

cp -rf $HOME/tools/che/ddk/ddk/sample/customop/python/data_gen.py
$HOME/tools/projects/customop_te/operator/
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● Copy the sample code file of the reduction operator plug-in and the Makefile
file in the DDK to the directory where the operator plug-in code of the
custom project is stored.
cp -rf $HOME/tools/che/ddk/ddk/sample/customop/
customop_caffe_demo/caffe_reduction_layer.cpp $HOME/tools/projects/
customop_te/plugin/
cp -rf $HOME/tools/che/ddk/ddk/sample/customop/
customop_caffe_demo/Makefile $HOME/tools/projects/customop_te/
plugin/

● Copy the Caffe network model file in the DDK used in this example to the
custom project directory.
cp -rf $HOME/tools/che/ddk/ddk/sample/customop/
customop_caffe_demo/model/ $HOME/tools/projects/customop_te/

Table 6-1 shows the directory structure of the custom operator development
project.

Table 6-1 Directory structure

Sample Directory File Description

customop_te/
operator

reduction.py Sample code of the
reduction operator

data_gen.py File generated based on
reduction operator sample
data

customop_te/
plugin

caffe_reduction_layer.cpp Sample code of the
reduction operator plug-in
(needs to be modified)

Makefile Compilation rule file of
the reduction operator
plug-in (needs to be
modified)

customop_te/
model

deploy_mylenet-1.prototxt Original model file of the
MyLeNet network

mylenet-1.caffemodel Pre-trained model file of
the MyLeNet network

----End

TE Custom Operator Development Guide (Using CLI) 6 Creating a Custom Operator Development Project

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 11



7 Developing a Custom Operator

7.1 Operator Basics

7.2 Implementing an Operator

7.3 Code Examples

7.4 Operator Running Verification
This section describes how to independently run a custom operator to verify its
correctness.

7.1 Operator Basics
A deep learning algorithm consists of multiple compute units, that is, operators
(Ops). In Caffe, an operator describes the computation logic of the layer, for
example, the convolution that performs convolution and the Fully-Connected (FC)
layer that multiplies the input by a weight matrix.

The following introduces some basic terms about operators.

Operator Type
Type of an operator. For example, the type of a convolution operator is
convolution. A network can have different operators of the same type.

Operator Name
The name of an operator identifies the operator on a network. An operator name
must be unique on a network. As shown in the following figure, conv1, pool1, and
conv2 are the names of operators on the network. They are of the same type,
convolution. Each indicates a convolution operation.
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Figure 7-1 Network topology

Tensor

As data in a TE operator, the tensor includes the input data and output data.
TensorDesc (the tensor descriptor) describes the input data and output data.
Table 7-1 describes the attributes of the TensorDesc struct.

Table 7-1 Description of the TensorDesc attributes

Attribute Definition

name Indexes a tensor. The name of each tensor must be
unique.

shape Specifies the shape of a tensor, for example, (10),
(1024,1024), or (2,3,4). For details, see Shape.
Default value: N/A
Format: (i1, i2, ... in), where, i1 to in are positive
integers.

dtype Specifies the data type of a tensor object.
Default value: N/A
Value range: float16, int8, int16, int32, uint8, uint16,
bool
NOTE

● The supported data types vary with the operation. For
details, see the TE API Reference.

● TE APIs support both the float16 and float32 types. However,
OMG converts the float32 type to the float16 type during
model conversion. Therefore, the current version does not
support the float32 type for custom operator development.

format Specifies the data layout format. For details, see Format.
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● Shape
The shape of a tensor is described in the format of (D0, D1, ..., Dn – 1),
where, D0 to Dn are positive integers.
For example, the shape (3, 4) indicates a 3 x 4 matrix, where the first
dimension has three elements, the second dimension has four elements.
The number count in the bracket equals to the dimension count of the tensor.
The first element of shape depends on the element count in the outer bracket
of the tensor, and the second element of shape depends on the element
count in the second bracket of the tensor starting from the left, and so on.

Table 7-2 Tensor shape examples

Tensor Shape

1 (0,)

[1,2,3] (3,)

[[1,2],[3,4]] (2,2)

[[[1,2],[3,4]], [[5,6],[7,8]]] (2,2,2)

 
● Format

In the deep learning framework, n-dimensional data is stored by using an n-
dimensional array. For example, a feature graph of a convolutional neural
network is stored by using a four-dimensional array. The four dimensions are
N, H, W and C, which stand for batch, height, width, and channels,
respectively.
Data can be stored only in linear mode because the dimensions have a fixed
order. Different deep learning frameworks store feature graph data in
different sequences. For example, data in Caffe is stored in the order of
[Batch, Channels, Height, Width], that is, NCHW. Data in TensorFlow is stored
in the order of [Batch, Height, Width, Channels], that is, NHWC.
As shown in Figure 7-2, an RGB picture is used as an example. In the NCHW
order, the pixel values of each channel are clustered in sequence as
RRRGGGBBB. In the NHWC order, the pixel values are interleaved as
RGBRGBRGB.

Figure 7-2 NCHW and NHWC

To improve data access efficiency, the tensor data is in the Ascend AI software
stack is stored in the 5D format NC1HWC0. C0 is closely related to the micro
architecture and is equal to the size of the matrix computing unit in AI Core.
For the FP16 type, C0 is 16; for the INT8 type, C0 is 32. The C0 data needs to
be stored consecutively. That is, C1=(C+C0-1)/C0. If the division result is not
an integer, the last data record is padded with zeros to be aligned with C0.
The NHWC-to-NC1HWC0 conversion process is as follows:
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a. Split the NHWC data along dimension C into C1 pieces of NHWC0.
b. Arrange the C1 pieces of NHWC0 in the memory consecutively into

NC1HWC0.

Operator Attributes

Different operators have different attribute values. The following describes some
common operator attributes.

● Axis
The axis represents the subscript of a dimension of a tensor. For a two-
dimensional tensor with five rows and six columns, that is, with shape (5, 6),
axis 0 represents the first dimension in the tensor, that is, the row; axis 1
represents the second dimension of tensor, that is, the column.
For example, for tensor [[[1,2],[3,4]], [[5,6],[7,8]]] with shape (2, 2, 2), axis 0
represents data in the first dimension, that is, matrices [[1,2],[3,4]] and [[5,6],
[7,8]], axis 1 represents data in the second dimension, that is, arrays [1,2],
[3,4], [5,6], and [7,8], and axis 2 indicates the data in the third dimension,
that is, numbers 1, 2, 3, 4, 5, 6, 7, and 8.
Negative axis is interpreted as a dimension counted from the end.

● Bias
The bias, along with the weight, is a linear component to be applied to the
input data. It is applied to the result of multiplying the weight by the input
data.
As shown in Figure 7-3, assume that the input data is X1, the associated
weight is W1, and the bias is B1. After the data passes the compute unit, the
data changes to (X1 * W1 + B1).

Figure 7-3 Bias computation example

● Weight
The input data is multiplied by a weight value in the compute unit. For
example, if an operator has two inputs, an associated weight value is
allocated to each input. Generally, it is considered that relatively important
data is assigned a relatively greater weight value, and a weight value of zero
indicates a specific feature can be ignored.
As shown in Figure 7-4, assume that the input data is X1 and the associated
weight is W1. After the data passes the compute unit, the data changes to
(X1 * W1).
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Figure 7-4 Weight computation example

Sample Operator: Reduction

Reduction is a Caffe operator that reduces the specified axis and its subsequent
axes of a multi-dimensional array.

● Attributes of the reduction operator

– ReductionOp: operation type. Four operation types are supported.

Table 7-3 Operation types supported by the reduction operator

Operator Type Description

SUM Sums the values of all reduced axes.

ASUM Sums the absolute values of all reduced axes.

SUMSQ Squares the values of all reduced axes and then
sums them.

MEAN Averages the values of all reduced axes.

 

– axis: first axis to reduce. The value range is [–N, N – 1].

For example, for an input tensor with shape (5, 6, 7, 8):

▪ If axis = 3, the shape of the output tensor is (5, 6, 7).

▪ If axis = 2, the shape of the output tensor is (5, 6).

▪ If axis = 1, the shape of the output tensor is (5).

▪ If axis = 0, the shape of the output tensor is (1).

– coeff: scalar, scaling coefficient for output. The value 1 indicates that the
output is not scaled.

● Data of the reduction operator

– Input data

The input contains the tensor data and tensor description.

Input data: tensor x

The description of tensor x contains the following attributes:
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Table 7-4 Input of the reduction operator

Input
Parameter

Description

x Name of the input tensor, whose shape is
determined by the shape parameter

shape Shape of the input data, N-dimensional

dtype Type of the input data, either
Indicates the data type. The value is float16 or
float32.

 
– Output data

y: tensor of the identical data type as input x, whose shape is determined
by the input tensor shape and the specified axis

7.2 Implementing an Operator

7.2.1 Procedure
The code of a TE operator is developed in Python. Figure 7-5 shows the
implementation procedure.

Figure 7-5 Implementation process of a TE custom operator

● The supported input data types for custom operators are as follows: float16, int8, int16,
int32, uint8, uint16, and bool.
● The supported data types vary with the operation. For details, see the TE API

Reference.
● TE APIs support both the float16 and float32 types. However, OMG converts the

float32 type to the float16 type during model conversion. Therefore, the current
version does not support the float32 type for custom operator development.

● TE provides sample code of some custom operators for user reference or direct use in
ddk/site-packages/topi-0.4.0.egg/topi/cce in the DDK installation directory.
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7.2.2 Importing Python Modules
Import the Python modules provided by the Ascend AI software stack. The sample
code is provided as follows.

import te.lang.cce
from te import tvm
from topi import generic

In the preceding information:

● te.lang.cce: introduces the SDL APIs supported by TE, including common ones
such as vmuls, vadds, and matmul.
For details about the interface definition, see the Python functions in the /
site-packages/te-0.4.0.egg/te/lang/cce/ directory in the DDK installation
path. For details about how to use the Python functions, see the TE API
Reference.

● te.tvm: introduces the code generation mechanism of the TVM.
For details about the interface definition, see the Python functions in the /
site-packages/te-0.4.0.egg/te/tvm directory in the DDK installation path. For
details about how to use the Python functions, visit https://docs.tvm.ai/.

● topi.generic: provides the API for automatic operator scheduling.
For details about the interface definition, see the Python functions in the /
site-packages/topi-0.4.0.egg/topi/generic directory in the DDK installation
path. For details about how to use the Python functions, see the TE API
Reference.

7.2.3 Implementing an Operator

Function Definition for Operator Implementation
As described below, the implementation function of an operator contains the input
tensor shape, data type, operator attributes, kernel name, and build and print
configurations. This function is called by plug-in code and is executed when OMG
converts the model.

def operationname(shape, dtype, attribute1, attribute2, ... , kernel_name="KernelName", need_build=True, 
need_print=False)

In the preceding information:

● shape: input tensor shape. If an operator has multiple input tensors and each
tensor has a unique shape, multiple shapes need to be defined as
placeholders for the tensors. If multiple input tensors have a same shape,
define one shape.

● dtype: data type of the input tensor.
● attribute1, attribute2, ...: operator attributes. Edit the code based on the

operator definition.
● kernel_name: name of the operator in the kernel, that is, the name of the

generated binary file. The value is user-defined and unique. The value can
contain only uppercase letters, lowercase letters, digits, and underscores (_).
Enter a maximum of 200 characters starting with a letter or underscore (_).

● need_build: build enable, either True or False
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● need_print: intermediate representation (IR) print enable, either True or
False

Examples:

Reduction operator:

def reduction(shape, dtype, axis, operation, coeff, kernel_name="Reduction", need_build=True, 
need_print=False)

Matmul operator:

def matmul(shape_a, shape_b, dtype, kernel_name="matmul", trans_a=False, 
trans_b=False,need_build=False, need_print=False):

Operator Implementation Logic

The TE operator implementation logic is summarized as follows:

Define placeholders for input tensors, and then call the SDL interfaces in
te.lang.cce to describe the computation process. The following is a code example:

data = tvm.placeholder(shape, name="data_input", dtype=inp_dtype)
with tvm.target.cce():
    cof = coeff
   data_tmp_input = te.lang.cce.vmuls(data, cof)    // Process the scaling parameter and multiply the input 
tensor by a scalar.
    tmp = data_tmp_input
    res_tmp = te.lang.cce.sum(tmp, axis=axis)    // Perform the summation operation on the axis.
    res = te.lang.cce.cast_to(res_tmp, inp_dtype, f1628IntegerFlag=True)   // Convert the data type.

In the preceding information:

● data indicates the input tensor, which is defined by using the placeholder
interface of the TVM. A Tensor object is returned, indicating a group of input
data.
If the operator has multiple input tensors, multiple tensor objects need to be
defined. For example:
tensor_a = tvm.placeholder(shape_a, name='tensor_a', dtype=dtype)
tensor_b = tvm.placeholder(shape_b, name='tensor_b', dtype=dtype)

● vmuls (vector multiplication) and sum (summation) constitute the
intermediate computation logic.

● cast_to is used to convert the data type. The output tensor must be of the
identical data type as the input tensor. If the data type is changed during
computation, you need to use the cast_to interface to convert the data type
of the output tensor to that of the input tensor.
For example: If the data type of the input tensor is int8, it is converted to
float16 for the vmuls operation. In this case, the cast_to interface must be
called to convert the data type of the output tensor from float16 to int8 after
the computation logic is complete. vmuls converts int8 values to float16,
padding the decimal part with zeros. Therefore, f1628IntegerFlag is set to
True. The sample code is as follows:
res = te.lang.cce.cast_to(res_tmp, inp_dtype, f1628IntegerFlag=True) 

For details about how to use the te.lang.cce.cast_to API, see Compute APIs
in TE API Reference.

● res indicates the output tensor, of the identical data type as the input tensor.
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Before implementing the operator logic, you can customize the code for pre-
processing the input data. The sample code is as follows:
    # basic check
    check_list = ["float16", "float32"]
    if not (dtype.lower() in check_list):
        raise RuntimeError("Reduction only support %s while dtype is %s" % (
            ",".join(check_list), dtype))
    reduction_op = ("SUM", "ASUM", "SUMSQ", "MEAN")

    # axis parameter check
    if type(axis) != int:
        raise RuntimeError("type of axis value should be int")
    if axis >= len(shape) or axis < -len(shape):
        raise RuntimeError(
            "input axis is out of range, axis value can be from %d to %d" % (
                -len(shape), len(shape) - 1))
    # operation parameter check
    if operation not in reduction_op:
        raise RuntimeError("operation can only be one of SUM, ASUM, SUMSQ , MEAN")
    # coeff parameter check
    if type(coeff) != int and type(coeff) != float:
        raise RuntimeError("coeff must be a value")
    # Preprocess
    if axis < 0:
        axis = len(shape) + axis
    shape = list(shape)
    shape1 = shape[:axis] + [reduce(lambda x, y: x * y, shape[axis:])]
    inp_dtype = dtype.lower()

7.2.4 Scheduling and Building an Operator
As shown in the following code, after the computation logic is defined, the Auto
schedule mechanism performs auto scheduling. You can check the computation IR
through the print mechanism provided by the TVM. The configuration information
includes the print switch status, build switch status, operator name in the kernel,
and input and output tensors.
sch = generic.auto_schedule(res)
config = {
    "print_ir": need_print,
    "need_build": need_build,
    "name": kernel_name,
    "tensor_list": [data, res]
}
te.lang.cce.cce_build_code(sch, config)

● Use the auto_schedule interface of generic to perform auto scheduling
(defining schedule). The argument of the auto_schedule interface is the
output tensor of the operator.
The schedule object defines how to efficiently execute the described
computation process on hardware. That is, the related computations are
mapped to the corresponding instructions on a hardware device. A schedule
object contains an IR, which uses code similar to pseudo code to describe a
computation process. You can print the object by using the parameter
need_print.

● The input and output tensors are stored in tensor_list. The input and output
tensors must be arranged in the input and output sequences of the operator.
For example: "tensor_list": [tensor_a, tensor_b, res], where, tensor_a and
tensor_b are the input tensors, and res is the output tensor.

● The cce_build_code interface provided by te.lang.cce is used to build the
operator based on scheduling and configuration. During operator building

TE Custom Operator Development Guide (Using CLI) 7 Developing a Custom Operator

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 20



when OMG converts the model, a dedicated kernel is built based on the input
data shape, type, and operator parameters.
– sch: schedule object to be calculated by the generated operator.
– config: map configured by compilation parameters.
After building, an operator target file *.o (the running target of the operator is
AI Core) or *.so (the running target of the operator is AI CPU) and an
operator description file *.json are generated.

7.2.5 Running an Operator
After the custom operator code is written, you can append the operator calling
statement to the *.py code of the operator as follows. Construct the input data by
referring to 7.4 Operator Running Verification and use it to check the operator
execution result.

For example:

if __name__ == "__main__":
    reduction((2, 3, 4), "float16", 1, "SUM", coeff = 2,kernel_name = "Reduction")

7.3 Code Examples
Open the copied operator sample file reduction.py.

For details about the code description, see the following comments:

#coding=utf-8

import te.lang.cce
from te import tvm
from topi import generic
from topi.cce import util
def reduction(shape, dtype, axis, operation, coeff, kernel_name="Reduction", 
                              need_build=True, need_print=False):
    """
    Reduce a tensor on a certain axis, and scale output with coeff
    Parameters
    ----------
    shape : shape of data
    dtype : source data type, only support float16, float32
    axis : the first axis to reduce, may be negative to index from the end (e.g., -1 for the last axis).
           If axis == 0, the output Blob always has the empty shape (count 1), performing reduction across the 
entire input.
    op : can only be one of "SUM, ASUM (sum of abs), SUMSQ (sum of sqr), MEAN"
    coeff : scale for output
    kernel_name : cce kernel name, default value is "cce_reductionLayer"
    need_buid : if need to build CCEC kernel, default value is False
    need_print : if need to print the ir, default value is False
    Returns
    -------
    None
    """
    # Basic parameter verification
    #shape parameter verification. The check_shape_rule() function definition is stored in ddk/ddk/site-
packages/topi-0.4.0.egg/topi/cce/util.py.
    util.check_shape_rule(shape)
    check_list = ["float16", "float32"]
    if not (dtype.lower() in check_list):
        raise RuntimeError("Reduction only support %s while dtype is %s" % (",".join(check_list), dtype))

    reduction_op = ("SUM", "ASUM", "SUMSQ", "MEAN")
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    # Axis parameter verification
    if type(axis) != int:
        raise RuntimeError("type of axis value should be int")
    if axis >= len(shape) or axis < -len(shape):
        raise RuntimeError(
            "input axis is out of range, axis value can be from %d to %d" % (-len(shape), len(shape) - 1))
   # op parameter verification
    if operation not in reduction_op:
        raise RuntimeError("op can only be one of SUM, ASUM, SUMSQ , MEAN")
   # coeff parameter verification
    if type(coeff) != int and type(coeff) != float:
        raise RuntimeError("coeff must be a value")
   # Parameter pre-processing
    if axis < 0:
        axis = len(shape) + axis
    shape = list(shape)
    shape1 = shape[:axis] + [reduce(lambda x, y: x * y, shape[axis:])]
    inp_dtype = dtype.lower()
   # Define the tensor object of the input data. The data is only used as a placeholder and no actual 
memory is allocated.
    data = tvm.placeholder(shape1, name="data_input", dtype=inp_dtype)
   # Define the operator calculation process.  
    with tvm.target.cce():
        if operation == "ASUM":
            data_tmp_input = te.lang.cce.vabs(data)
            cof = coeff
            tmp = te.lang.cce.vmuls(data_tmp_input, cof)
        elif operation == "SUMSQ":
            data_tmp_input = te.lang.cce.vmul(data, data)
            cof = coeff
            tmp = te.lang.cce.vmuls(data_tmp_input, cof)
        elif operation == "MEAN":
            size = shape1[-1]
            cof = float(coeff) * (size ** (-0.5))
            tmp = te.lang.cce.vmuls(data, cof)
        elif operation == "SUM":
            cof = coeff
            data_tmp_input = te.lang.cce.vmuls(data, cof)
            tmp = data_tmp_input
        
        #Sum up data by axis to reduce dimensions.
        res_tmp = te.lang.cce.sum(tmp, axis=axis)
        #Convert the data type.
        res = te.lang.cce.cast_to(res_tmp, inp_dtype, f1628IntegerFlag = True)
        if operation == "MEAN":
            size = shape1[-1]
            sqrt_size = size ** (-0.5)
            res = te.lang.cce.vmuls(res_tmp, sqrt_size)
        #Generate the schedule object to be calculated by the operator.
        sch = generic.auto_schedule(res)
    #Define compilation parameters.
    config = {"print_ir": need_print,
              "need_build": need_build,
              "name": kernel_name,
              "tensor_list": [data, res]}
    #Compile the operator and generate the target file.
    te.lang.cce.cce_build_code(sch, config)

#Call the reduction operator by using the parameters: shape (2, 3, 4), datatype (float16), axis (1), op 
(SUM), coeff (2), and operator name (Reduction).
if __name__ == "__main__":
    reduction((2, 3, 4), "float16", 1, "SUM", coeff = 2,kernel_name = "Reduction")

7.4 Operator Running Verification
This section describes how to independently run a custom operator to verify its
correctness.
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7.4.1 Compiling an Operator
Compile the operator code to generate the operator binary file and operator
description file as follows:

Step 1 Obtain the DDK version number, which is required for compiling the operator.

Check the DDK version number in $HOME/tools/che/ddk/ddk/ddk_info.

As shown in Figure 7-6, the VERSION field indicates the current DDK version.

Figure 7-6 Checking the DDK version number

Step 2 Set the version number and compile the operator.

1. Run the following command in the customop_te/operator directory to enter
the python interaction mode:
python

2. In python interaction mode, run the following commands in sequence to set
the DDK version number:
from topi.cce import te_set_version
import subprocess
te_set_version("1.3.T18.B850")
Figure 7-7 shows an example.

Figure 7-7 Example of setting the DDK version number

3. Run the following commands to compile the reduction.py file to generate the
binary file and description file of the operator:
subprocess.call("python reduction.py",shell=True)

Figure 7-8 Compiling operator files

4. Exit the python interaction mode.
quit(0)

Step 3 After the operator compilation is completed, the kernel_meta folder is generated
in the current operator directory. This folder contains the operator binary file *.o
(with operators to run on AI Core) or *.so (with operators to run on AI CPU) and
operator description file *.json.
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● The *.o or *.so file is the binary file of the operator.

● The .json file is the operator description file, which is used to define operator
properties and resources required for running.

The .json file is parsed as follows:
{
"binFileName":"Reduction",            // Binary file name of the generated operator
"binFileSuffix":".o",             // Extension of the generated operator binary file. For the operators to be 
running on AI CPU, the generated binary file name is suffixed by .so.
"blockDim":1,                         // Number of AI Cores used for calculation
"kernelName":"Reduction__kernel0",    // Name of the kernel function of the operator
"magic":"RT_DEV_BINARY_MAGIC_ELF",    // The operation target is AI Core. If the value of magic is 
RT_DEV_BINARY_MAGIC_ELF_AICPU, the operation target is AI CPU.
"sha256":"d5158df2ff2e64743eec7f527ddd9078b99c1d670f5adbd8b789224657ab0f91"  // Value 
obtained after the .o file is encrypted
}

----End

7.4.2 Building an Input Data File
To run a single operator, you need to build input data and save it in binary format
to the operator project.

Step 1 Go to the operator code directory of the custom operator project as the DDK
installation user.

cd $HOME/tools/projects/customop_te/operator/

Step 2 Run the script compiled based on sample data to generate a sample data file for
the reduction operator.

python data_gen.py reduction

The data files shown in Figure 7-9 are generated in the operator project.

Figure 7-9 Generated sample data

Table 7-5 describes the data files.

Table 7-5 Description of data files

Data File Description

Reduction_input_2_3_4_s
um_axis_1.data

Indicates the input data file in binary format of the
reduction operator.

Reduction_input_2_3_4_s
um_axis_1.txt

Displays the binary file of the reduction operator
in .txt format to facilitate result viewing.
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Data File Description

Reduction_output_2_3_4
_sum_axis_1.data

Indicates the output data verification file in binary
format of the reduction operator, which is used to
verify whether the output of the operator is correct
after the operator runs.

Reduction_output_2_3_4
_sum_axis_1.txt

Displays the binary file of the reduction operator
in .txt format to facilitate result viewing.

 

----End

7.4.3 Running a Single Operator
Step 1 Generate a single-operator compilation binary file in the DDK sample project

customop_runner.

1. Assign the write permission to the customop_runner sample project.
chmod -R +w $HOME/tools/che/ddk/ddk/sample/customop/
customop_runner/

2. Go to the build directory of the DDK sample project customop_runner.
cd $HOME/tools/che/ddk/ddk/sample/customop/customop_runner/build

3. Set the environment variable of DDK_PATH.
export DDK_PATH=$HOME/tools/che/ddk/ddk

4. Generate the Makefile file.
– For the Atlas 200 DK developer board, run the following command:

cmake -Dtarget=OI .
– In the ASIC environment, run the following command:

cmake .
5. Run the make command to generate a binary file.

make
The executable file main and dynamic library libcustom_engine.so are
generated in $HOME/tools/che/ddk/ddk/sample/customop/
customop_runner/out/.

Step 2 Copy the out directory to the directory of the custom TE operator project.

cp -rf $HOME/tools/che/ddk/ddk/sample/customop/customop_runner/out
$HOME/tools/projects/customop_te/

Step 3 Configure the input data, output data, and verification description file.

Go to the out folder in the directory of the custom TE operator project.

cd $HOME/tools/projects/customop_te/out
● In the input.txt file, configure the path and name of the input data file.

For example:
dataPath=../operator/Reduction_input_2_3_4_sum_axis_1.data

If the custom operator has multiple inputs, you need to define multiple .txt
files according to input.txt, for example, input1.txt, input2.txt, and more.
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● Configure the output data in the output.txt file.
For example:
size=4
dataPath=./output/out0.data
dtype=1

– size: expected size of the output data file, in bytes
– dataPath: path and name of the output data file
– dtype: output data type. The value 1 indicates float16, and the value 2

indicates float32.
● In the expect.txt file, configure the path and file name of the data to be

generated.
For example:
dataPath=../operator/Reduction_output_2_3_4_sum_axis_1.data

Step 4 Copy the operator and out folders to the host of the developer board or ASIC
device as the HwHiAiUser user. The operator and out folders must be placed in
the same directory.

For example, copy operator and out folders to the /home/HwHiAiUser/projects
directory.

Step 5 Run the operator.

Log in to the host of the developer board or ASIC device as the HwHiAiUser user
and go to the out directory, for example, /home/HwHiAiUser/projects/out.

1. Create the output folder in the current directory to store the generated data
file. The file path and name are defined in the output.txt file.
mkdir output

2. Run the following command to assign the execution permission to the main
file:
chmod +x main

3. Run the following command to run a single operator and compare the
operators:
./main -i input.txt -o output.txt -e expect.txt -b ../operator/kernel_meta/
Reduction.o -p 0.2 -d 0.2 -k Reduction__kernel0 -t 0
In the preceding command:
– -i: input data configuration file, which specifies the path and file name of

the input data
If the custom operator has multiple inputs, you need to define
multiple .txt files according to input.txt, for example, input1.txt,
input2.txt, and more.

– -o: output data configuration file, which specifies the size, path, file
name, and type of the output data

– -e: expected data configuration file, which specifies the path and file
name of the expected output data for result comparison

– -b: operator binary file *.o (operator to be running on AI Core) or *.so
(operator to be running on AI CPU)

– -p: allowed precision deviation. The value range is [0, 1). A smaller value
indicates higher precision.
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– -d: statistical discrepancy, that is, the percentage of the data whose
precision deviation is above the threshold. The value range is (0, 1). A
smaller value indicates higher precision.

– -k: kernel name. The first letter must be in uppercase. The kernel name of
the TE operator must be the same as kernelName in the.json file. The
kernel name of the C++ operator must be the same as the object name
opetype registered in Framework for the operator.

– -t: The value can be 0 (TE_AI Core operator), 1 (TE_AI CPU operator), or
2 (custom C++ operator or AI CPU operator).
You can check whether the TE operator is running on AI Core or AI CPU
based on the value of magic in the **.json file generated after the
operator is compiled.

After the command is executed successfully, the out0.data result file and the
vertifyResult.txt verification data comparison result file are generated in the
output folder of the current directory.
The following is an example of the vertifyResult.txt file, indicating that the
actual output data is consistent with the expected output data.
Output file ./output/out0.data compare result true

----End
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8 caffe.proto File Operator Definition
(Optional)

If a model under the Caffe open source framework is used, define the caffe.proto
file by referring to the description in this section. If a model under the TensorFlow
open-source framework is used, skip this section.

After the operator is developed, add the definition of the custom operator to the
built-in caffe.proto file of the DDK. If the definition of this operator already exists
in the built-in caffe.proto file, skip this section.

If there are multiple unsupported custom operators in the same model, add
related operator definitions at a time by referring to this section. During the
implementation of operator plug-ins, related operator parameters are read from
the caffe.proto file based on the operator name, and then the data structures of
operators are converted into those supported by the offline model supported by
the Ascend AI processor.

The built-in caffe.proto file of the DDK is stored in $HOME/tools/che/ddk/ddk/
include/inc/custom/proto/caffe/caffe.proto. You can modify the file and add the
definition of the custom operator.

The following describes how to add the definition of the reduction operator (the
definition of the reduction operator has been added to the built-in caffe.proto file
of the DDK):

Step 1 Add the definition of the reduction operator to LayerParameter.

Add the definition of the reduction layer to LayerParameter and set its ID.

message LayerParameter {
...
optional ReductionParameter reduction_param = 136;   // The ID must be unique.
...
}

Step 2 Add the parameter definition of the reduction layer to the caffe.proto file.
message ReductionParameter {
  enum ReductionOp {          // Operation types supported by the operator
    SUM = 1;                           // Sums the values of all the axes on which the reduce operation is 
performed.
    ASUM = 2;                        // Sum the calculated absolute values of all axes on which the reduce 
operation is performed.
    SUMSQ = 3;                      // Sum the squared values of all axes on which the reduce operation is 
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performed.
    MEAN = 4;                        // Average the values of all axes on which the reduce operation is performed.
  }
  optional ReductionOp operation = 1 [default = SUM];   // Defines the operation of the operator.
  optional int32 axis = 2 [default = 0];                                // Defines the axis for which the reduce 
operation is to be performed.
  optional float coeff = 3 [default = 1.0]; // coefficient for output  // Scalar, indicating the scaling multiple of 
the result
}

----End
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9 Developing the Plug-In of a Custom
Operator

9.1 Implementing a Plug-In

9.2 Plug-In Code Example

9.3 Compiling the Operator Plug-In

9.1 Implementing a Plug-In

9.1.1 Implementing the Plug-In
After the custom operator is developed, OMG should be able to adapt the
attribute values of the custom operator to the offline model so that the custom
operator can run on the offline model. Therefore, you need to develop the custom
operator plug-in for parsing operator attributes, inferring the shapes and types,
and registering the custom operator through the registration mechanism provided
by OMG.

TE Custom Operator Development Guide (Using CLI) 9 Developing the Plug-In of a Custom Operator

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 30



Figure 9-1 Implementing a custom operator plug-in

9.1.2 Including Header Files
Use the #include command in the header of the plug-in implementation file to
include the header files related to the plug-in implementation functions in the
plug-in implementation source file.

#include "custom/custom_op.h"
#include "framework/omg/register.h"
#include "framework/omg/omg_types.h"
#include "proto/caffe/caffe.pb.h"
#include "operator.h"
#include "attr_value.h"
#include <memory>
#include <string>
#include <vector>

Table 9-1 Description of header files

Header File Category Function

custom/custom_op.h /include/inc/custom/
custom_op.h in the DDK
installation directory

User-defined functions
for building, operator
debugging, and operator
verification can be called
once this header file is
included.

framework/omg/
register.h

/include/inc/
framework/omg/
register.h in the DDK
installation directory

Class operator
registration can be used
and APIs of class
operator registration can
be called once this
hearer file is included.
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Header File Category Function

framework/omg/
omg_types.h

/include/inc/
framework/omg/
omg_types.h in the DDK
installation directory

TBE custom operator
information structure
TEBinInfo can be used
once this header file is
included.

proto/caffe/caffe.pb.h proto/caffe/caffe.pb.h
generated in the
directory of the operator
project during the
building of an operator
plug-in

When the operator plug-
in is built, the /
include/inc/custom/
proto/caffe/caffe.proto
file in the DDK
installation directory is
automatically built, and
the proto/caffe/
caffe.pb.h file is
generated in the
directory of the operator
project for the plug-in
code to call to parse
operator parameters.

operator.h include/inc/graph/
operator.h in the DDK
installation directory.

APIs for setting/
obtaining operator
attributes and setting
input/output can be
called once this header
file is included.

attr_value.h /include/inc/graph/
attr_value.h in the DDK
installation directory

Data types of class
AttrValue can be used
once this header file is
included.

memory C++ standard library Smart pointers, memory
allocators, temporary
functions for allocating
and releasing dynamic
memory, and functions
for constructing memory
objects in the C++
standard library can be
called once this header
file is included.

string C++ standard library Class string can be used
to construct objects APIs
of class string can be
called once this header
file is included.
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Header File Category Function

vector C++ standard library Vector templates can be
used and APIs of class
vector can be called
once this header file is
included.

 

Before the operator plug-in is built, ignore the following message (the project
does not have the proto/caffe/caffe.pb.h file).

Figure 9-2 Message indicating a caffe.pb.h parsing failure

9.1.3 Parsing an Operator
For a newly developed custom operator, you need to customize a function for
parsing operator attributes and converting the operator attribute definitions in the
source model to the operator attribute definitions in the offline model supported
by the Ascend AI processor. If you are rewriting a built-in operator of the Ascend
AI processor, skip this step. A built-in operator is automatically parsed by its plug-
in.

Function Declaration

The operator parsing function is declared as follows:

Status ParseParamsxx(const Message* op_origin, ge::Operator& op_dest)

● ParseParamsxx: function name, which is user-defined and must be unique
● op_origin: source operator model. It is a data struct in the protobuf format. It

is derived from the .proto file of the Caffe model in the /include/inc/custom/
proto/caffe/caffe.proto directory under the DDK installation directory. If the
custom operator is not defined in the caffe.proto file, add the operator
definition by referring to 8 caffe.proto File Operator Definition (Optional).
The operator plug-in reads operator attributes based on the operator name
from the proto/caffe/caffe.pb.h file and caffe.pb.cc file generated after
caffe.proto building and parses the operator attributes to convert the
operator data structure to a data structure supported by the offline model.
Find the preset caffe.proto file in /include/inc/custom/proto/caffe/
caffe.proto in the DDK installation path. You can modify the file and add the
definition of the custom operator.
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● op_dest: target operator model. As the operator data struct of the offline
model supported by the Ascend AI processor, it stores operator information.
For details about class Operator, see Class Operator in GE API Reference.

Procedure

Implement the ParseParamsxx function as follows:

Step 1 Define the object that points to LayerParameter and obtain the handle to the
current operator layer.
const caffe::LayerParameter* layer =dynamic_cast<const caffe::LayerParameter*>(op_origin);
const caffe::xxxParameter& param = layer->reduction_param();

In the preceding information:

● xxxParameter in caffe::xxxParameter of the param object must be the same
as the type declared in the LayerParameter object.

● The name of the member function xxx_param() of the layer object must be
the same as the object name declared in the LayerParameter object.

The following uses the Reduction and convolution operators in caffe.proto as an
example:

message LayerParameter {
optional ReductionParameter reduction_param = 136;
optional ConvolutionParameter convolution_param = 106;
...
}

The code for obtaining the handles to the Reduction and Convolution operator
layers are as follows:

const caffe::ReductionParameter& param = layer->reduction_param()

const caffe::ConvolutionParameter& param = layer->convolution_param()

Step 2 Parse the operator attributes and assign the attributes to the op_dest object of
the Operator type.

You can call the CreateFrom<AttrValue::T>(DT&& val) API to convert DT
parameters to T parameters of class AttrValue and call the SetAttr(const string&
name, const AttrValue& value) API to assign the converted values of the
AttrValue object to the corresponding attributes of the op_dest object.

Type T is introduced to the Ascend AI software stack to simplify the type
definition. The supported data types are renamed. For the mapping between type
T and the source data type, see Table 9-2. For the prototype definitions, see the
include/inc/graph/attr_value.h file in the DDK installation directory.

Table 9-2 Mapping between type T and source data types

T Type Source Data Type

INT int64_t

FLOAT float

STR std::string
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T Type Source Data Type

TENSOR TensorPtr

TENSOR_DESC TensorDesc

GRAPH ComputeGraphPtr

BYTES Buffer

NAMED_ATTRS NamedAttrs

BOOL bool

LIST_INT vector<INT>

LIST_FLOAT vector<FLOAT>

LIST_BOOL vector<BOOL>

LIST_STR vector<STR>

LIST_TENSOR vector<TENSOR>

LIST_TENSOR_DESC vector<TENSOR_DESC>

LIST_GRAPH vector<GRAPH>

LIST_BYTES vector<BYTES>

LIST_NAMED_ATTRS vector<NAMED_ATTRS>

 

For details about the SetAttr API, see the GE API Reference.

The following are examples of parsing common parameters:
● Parameters of the int or float type

For example, the operator parameters in the caffe.proto file are defined as
follows:
message ReductionParameter {
  ......
  optional int32 axis = 2 [default = 0];                                
  optional float coeff = 3 [default = 1.0]; 
}

Call the SetAttr API to assign the value of param.axis() to the axis attribute
of the op_dest object and convert the type to INT. Assign the value of
param.coeff() to the coeff attribute of the op_dest object and convert the
type to FLOAT, as follows:
op_dest.SetAttr("axis", AttrValue::CreateFrom<AttrValue::INT>(param.axis()));    
op_dest.SetAttr("coeff", AttrValue::CreateFrom<AttrValue::FLOAT>(param.coeff()));  

In the preceding information, CreateFrom<AttrValue::T>(DT&& val) is used
to convert DT parameters to T parameters of the AttrValue class.

● Parameters of the enum type
For example, the operator parameters in the caffe.proto file are defined as
follows:
message ReductionParameter {
  enum ReductionOp {

TE Custom Operator Development Guide (Using CLI) 9 Developing the Plug-In of a Custom Operator

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 35



    SUM = 1;
    ASUM = 2;
    SUMSQ = 3;
    MEAN = 4;
  }
...}

a. Convert parameters of the enum type to parameters of the map type.
std::map<caffe::ReductionParameter_ReductionOp, std::string> operation_map = {
        { caffe::ReductionParameter_ReductionOp_SUM, "SUM" },
    { caffe::ReductionParameter_ReductionOp_ASUM, "ASUM" },
    { caffe::ReductionParameter_ReductionOp_SUMSQ, "SUMSQ" },
    { caffe::ReductionParameter_ReductionOp_MEAN, "MEAN" },
    };

b. Call the SetAttr API to assign the operation_map parameter of the map
type to the operation attribute of the op_dest object.
op_dest.SetAttr("operation", 
AttrValue::CreateFrom<AttrValue::STR>(operation_map[param.operation()]));

For details about the SetAttr API, see the GE API Reference.
● Parameters of the repeated type

For example, the operator parameters in the caffe.proto file are defined as
follows:
message xxxParameter {
...
  repeated float min_size = 1;
  repeated uint32 offset = 2;
....
}

a. Convert parameters of the repeated float type to parameters of the
vector<float> type, convert parameters of the repeated uint32 type to
parameters of the vector<uint32> type, and assign values to the
parameters of the vector type.
vector<float> min_size;      
vector<uint32> offset;
for(int i = 0; i < param.min_size_size(); ++i)
{
   min_size.push_back(param.min_size(i));  // Call the push_back function of the 
vector type to assign a value to the min_size parameter of the repeated object.
}
for(int i = 0; i < param.offset_size(); ++i)
{
   offset.push_back(param.offset(i)); // Call the push_back function in the vector 
object to assign a value to the offset parameter of the repeated object.
}

b. Call the SetAttr API to assign the value of the min_size parameter of the
vector<float> type to the min_size attribute of the op_dest object. Assign
the value of the offset parameter of the vector<uint32> type to the
offset attribute of the LIST_INT type in the op_dest object.
op_dest.SetAttr("min_size", 
ge::AttrValue::CreateFrom<ge::AttrValue::LIST_FLOAT>(min_size)); 
op_dest.SetAttr("offset", ge::AttrValue::CreateFrom<ge::AttrValue::LIST_INT>(offset));

For details about the SetAttr API, see the GE API Reference.

----End
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9.1.4 Inferring the Output Tensor Description of an Operator
Infer the output tensor description of the operator based on the input tensor
description, operator logic, and operator attributes. The output tensor description
includes the tensor shape, data type, and data layout format. In this way, all
tensors can be statically allocated with memory during offline model conversion,
thereby avoiding overhead caused by dynamic memory allocation.

Function Declaration
The function is declared as follows:

Status InferShapeAndTypexx(const ge::Operator& op, vector<ge::TensorDesc>& v_output_desc)

● InferShapeAndTypexx: function name, which is user-defined and must be
unique

● op: compute node definition, which stores the input tensor description and
operator attributes. For details about the ge::Operator type, see Class
Operator in GE API Reference

● v_output_desc: output tensor description of the compute node, including the
shape, data layout format, and data type. For details about the TensorDesc
type, see Class TensorDesc in GE API Reference

The following describes the implementation of the InferShapeAndTypexx
function in different scenarios.

Operator with Same-Shape Output and Input Tensors
For an operator whose output and input tensors have the identical shape, you can
directly insert the description of the input tensor into the vector space in which
the output tensor description is located.

A code sample is provided as follows:

v_output_desc.push_back(op.GetInputDesc(0));

The GetInputDesc API is used to obtain the input tensor description based on the
operator input name or input index in class Operator. For details about the API,
see Class Operator in GE API Reference.

Operator with Reduced Dimensions
For common dimension reduction operations such as Reduction and Reduce,
compute the shape of the output tensor (including the output tensor dimensions
and element count of each dimension) according to information such as the
operator input attribute axis, and then insert the shape of the output tensor into
the v_output_desc vector.

A code sample is provided as follows:

Step 1 Obtain the input tensor description and shape of the input tensor of the operator.
auto tensorDesc = op.GetInputDesc(0); // Obtain the input tensor description, including the 
shape, data layout format, and data type.
auto shape = tensorDesc.GetShape(); // Obtain the shape of the input tensor.

For details about the GetShape API, see Class TensorDesc in GE API Reference.
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Step 2 Obtain the attribute values of the operator according to the computation logic,
and compute the shape of the output tensor of the operator.

For example, for the reduction operator in the MyLeNet network, because the
upper layer of Reduction is Softmax and the output from Softmax is padded to 4-
dimensional from 2-dimensional in the offline model, you need to adjust axis so
that it points to a 2-dimensional position. After the reduce operation, and assign
the adjusted Shape to the output tensor description.

● Obtain the key-value pair of the axis attribute from the operator object,
obtain the axis attribute value from the key-value pair, convert the attribute
from the INT type to the int64_t type, assign the attribute value to the
variable axis, verify and adjust the value of axis, and point the value to axis 1,
as follows:
int64_t axis = -1;
ge::AttrValue axisAttrValue;
    if ((ge::GRAPH_SUCCESS != op.GetAttr("axis", axisAttrValue)) || (ge::GRAPH_SUCCESS != 
axisAttrValue.GetValue<AttrValue::INT>(axis)))
    {
        printf("Get axis failed!\n");
    }
    // In the OM model, all shape are supplemented to 4d. In this case, axis needs to be repaired to 
point to the original 2d.
    if (axis < 0) axis -= 2;

    if (axis < 0) axis += shape.GetDimNum();

    if (axis < 0 || axis >= shape.GetDimNum())
    {
        printf("invalid axis:%d, dim_size:%d\n", (int32_t)axis, (int32_t)shape.GetDimNum());
        return PARAM_INVALID;
    }

● Adjust Shape and set the dimensions from axis 1 to 1. For example, if the
input tensor is with shape (2, 3, 4, 5), adjust the shape to (2, 1, 1, 1).
 int32_t dimsize = (int32_t)shape.GetDimNum();
 int32_t idx = 0;
 for(idx=axis; idx<dimsize; idx++)
 {
     shape.SetDim(idx, 1);
 } 

● Set the adjusted shape to the tensorDesc object.
 tensorDesc.SetShape(shape); 

For details about APIs GetDimNum and SetDim, see Class Shape in GE API
Reference.

Step 3 Set the output tensor description of the operator.
v_output_desc.push_back(tensorDesc)

Assign tensorDesc to the description object v_output_desc of the output tensor.

----End

Network with Multiple Operators of the Identical Type

A network can have multiple operator layers of the same type, such as the
convolution operator. Sometimes, you need to customize the shape of an operator
layer (redefine an existing operator). In this case, the output tensor description
inference needs to be performed according to different situations of the network,
determine the operator layers to be customized based on the attributes such as
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num_output, kernel, stride, and pad, and obtain the tensor information of the
operators.

A code sample is provided as follows:

Step 1 Assign the input tensor description to the output tensor description, and obtain
the input tensor description and the shape of the input tensor of the operator.
v_output_desc.push_back(op.GetInputDesc(0)); // Assign the input tensor description to the 
output tensor description object. Alternatively, assign the shape obtained after inference to the 
tensorDesc object, and then assign the tensorDesc object to the output tensor description 
object.
auto tensorDesc = op.GetInputDesc(0); // Obtain the input tensor description, including the 
shape, data layout format, and data type.
auto shape = tensorDesc.GetShape(); // Obtain the shape of the input tensor.

For details about the GetShape API, see Class TensorDesc in GE API Reference.

Step 2 Obtain the attribute values of the operator according to the computation logic,
match the operator according to the attribute values of the operator and shape,
and compute the shape of the output tensor of the operator.

For example, for operators of type convolution in a network, match the
convolution operator whose num_outputs is 128, shape.GetDim(0) is 1,
shape.GetDim(1) is 128, shape.GetDim(2) is 28, and shape.GetDim(3) is 28,
and reassign the shape in the output tensor description of the operator.

● Obtains the value of num_outputs.
ge::AttrValue num_outputsAttrValue;
    if ((ge::GRAPH_SUCCESS != op.GetAttr("num_output", num_outputsAttrValue)) || 
        (ge::GRAPH_SUCCESS != num_outputsAttrValue.GetValue<AttrValue::INT>(num_outputs)))
    {
        printf("GetOpAttr num_outputs failed!\n");
    }

● Match the convolution operator whose num_outputs is 128,
shape.GetDim(0) is 1, shape.GetDim(1) is 128, shape.GetDim(2) is 28, and
shape.GetDim(3) is 28 , and reassign the shape in the output tensor
description of the operator.
 if(shape.GetDim(0) == 1 && shape.GetDim(1) == 128 &&
        shape.GetDim(2) == 28 && shape.GetDim(3) == 28 && num_outputs == 128)
    {
        shape.SetDim(0, 1);
        shape.SetDim(1, 128);
        shape.SetDim(2, 28);
        shape.SetDim(3, 28);
        v_output_desc[0].SetShape(shape);
        return SUCCESS;
        return FAILED;
    }

For details about APIs GetDimNum and SetDim, see Class Shape in GE API
Reference.

To use op_name for operator matching, obtain op_name as follows:

auto op_name = op.GetName();

The method for obtaining other attributes kernel_w, kernel_h, stride_w, stride_h, pad_w,
and pad_h are similar. You only need to change the value of key in op.GetAttr.

----End
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9.1.5 Building an Operator

Function Declaration
The operator building function is declared as follows:

Status BuildTeBinxx(const ge::Operator& op, TEBinInfo& te_bin_info)

In the preceding information:

● BuildTeBinxx: function name, which is user-defined and must be unique
● op: target operator model. As the operator data struct of the offline model

supported by the Ascend AI processor, it stores operator information. For
details about class Operator, see Class Operator in GE API Reference.

● te_bin_info: path of the operator binary file, operator description file path,
and DDK version information For details about the TEBinInfo struct, see
TEBinBuildFn in Framework API Reference.

Implementation Procedure
The operator building function is called during model conversion by OMG as
follows:

● Obtain the operator tensor description and operator attributes. During model
conversion, the information must be fixed values for operator matching.
For example, in model conversion, match the reduction operator whose axis is
1 and Dim of the input tensor Shape is 4.
// Parse the operator attribute operation.
    ge::AttrValue operationAttrValue;
    if ((ge::GRAPH_SUCCESS != op.GetAttr("operation", operationAttrValue)) || (ge::GRAPH_SUCCESS != 
operationAttrValue.GetValue<AttrValue::STR>(operation)))
    {
           printf("GetOpAttr operation failed!\n");
    }

// Parse the operator attribute axis, and adjust axis to point to the actual output dimension of the 
Softmax operator at the upper layer of the reduction operator in the MyLeNet network, that is, axis 1.
    ge::AttrValue axisAttrValue;
    if ((ge::GRAPH_SUCCESS != op.GetAttr("axis", axisAttrValue)) || (ge::GRAPH_SUCCESS != 
axisAttrValue.GetValue<AttrValue::INT>(axis)))
    {
        printf("GetOpAttr axis failed!\n");
    }
    // In the OM model, all shape are supplemented to 4d. In this case, axis needs to be repaired to 
point to the original 2d.
    if(axis < 0)
        axis -= 2;

// Parse the operator attribute coeff.
    ge::AttrValue coeffAttrValue;
    if ((ge::GRAPH_SUCCESS != op.GetAttr("coeff", coeffAttrValue)) || (ge::GRAPH_SUCCESS != 
coeffAttrValue.GetValue<AttrValue::FLOAT>(coeff)))
    {
        printf("GetOpAttr coeff failed!\n");
    }
// Obtain the input tensor description of the operator.
    TensorDesc input_desc      = op.GetInputDesc(0);

    // Parse the input shape and check whether Dim of the operator is 4.
    if(input_desc.GetShape().GetDimNum() != 4)
    {
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        printf("The shape size is %d, which is not 4!", (int32_t)input_desc.GetShape().GetDimNum());
        return FAILED;
    }

● Specify the operator implementation file, operator implementation function,
and operator name in the kernel.
    FilePath = "project_path/operator/reduction"; // Absolute path of the operator implementation file 
+ name of the .py operator file 
    FuncName = "Reduction"; // Name of the operator implementation function in the operator 
implementation file
    KernelName = "Reduction"; // kernel_name defined in the operator implementation function of 
the operator implementation file, that is, the name of the generated binary file

● Specify the path of the operator description file (*.json) generated during
operator compilation. Use the following fixed configuration.
  te_bin_info.json_file_path = "./kernel_meta/" + KernelName + ".json";

During model conversion, operator information will be obtained from the
operator description file in this path.
When the omg model conversion command is executed, the kernel_meta
folder generated after operator building is copied to the path where the omg
command is executed based on the operator implementation path configured
in the FilePath file. Therefore, the path of the *.json file relative to the path
where the omg command is executed is fixed to ./kernel_meta.

● Call the te::BuildCustomop function to call the Python function in the
operator implementation file to build the operator.
Call the BuildCustomop function as follows:
te::BuildTeCustomOp(te_bin_info.ddk_version, op.GetName(), FilePath, FuncName,"(i,i,i,i), s, i, s, f, s", 
input_desc.GetShape().GetDim(0),input_desc.GetShape().GetDim(1),input_desc.GetShape().GetDim(2),
input_desc.GetShape().GetDim(3), "float16", axis, operation.c_str(), coeff,KernelName.c_str());

In the preceding information:
– te_bin_info.ddk_version: DDK version information (unconfigurable),

which will be automatically filled during model conversion
– op.GetName(): obtaining operator name (unconfigurable),
– FilePath: relative path of the operator file
– FuncName: name of the operator implementation function in the

operator implementation file
– (i, i, i, i), s, i, s, f, s: parameter placeholders of the implementation

functions in the operator implementation file, where, i indicates the
integer type, s indicates the string type, f indicates the single-precision
floating point number type, and o indicates the PyObject* type. The
placeholders must be consistent with the sequence and types of the
succeeding parameters, and must be consistent with the definition of the
operator implementation function in the operator implementation file.
BuildCustomop calls the operator implementation function based on
these parameters and generates the kernel using the TVM mechanism.

9.1.6 Registering an Operator
As the framework manager, Framework provides the REGISTER_CUSTOM_OP
macro to register an operator based on the specified operator name.

The code of custom operator registration is as follows:

REGISTER_CUSTOM_OP("test_layer")
    .FrameworkType(CAFFE) 
    .OriginOpType("Test")
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    .ParseParamsFn(ParseParamsxx)    
    .InferShapeAndTypeFn(InferShapeAndTypexx)
    .TEBinBuildFn(BuildTeBinxx)
    .ImplyType(ImplyType::TVM)
    .Formats({DOMI_TENSOR_NC1HWC0}, {DOMI_TENSOR_NC1HWC0})
    .WeightFormats({DOMI_TENSOR_FRACTAL_Z, DOMI_TENSOR_NC1HWC0});         

In the preceding information:

● REGISTER_CUSTOM_OP: Registers a custom operator. Replace test_layer with
the operator name in the offline model file. The operator name can be
random but must not conflict with existing operator names.

● FrameworkType: The operator parameter parsing logic varies depending on
the framework. Therefore, models under different frameworks require
different plug-ins. The plug-in registration code must specify the model
framework. Set this parameter to CAFFE.

● OriginOpType: operator type, which must be the same as the operator type
defined in Caffe Prototxt. Otherwise, parsing fails. Find the preset caffe.proto
file in /include/inc/custom/proto/caffe/caffe.proto in the DDK installation
path.

● ParseParamsFn: Registers the function for model parsing. ParseParamsxx has
been implemented in 9.1.3 Parsing an Operator. This step is required for a
plug-in developed for the Caffe framework. If you are rewriting a built-in
operator of the Ascend AI processor, skip this step. If the custom operator is
not supported by the Ascend AI processor, this step is mandatory.

● InferShapeAndTypeFn: Registers the function for shape and class inference.
InferShapeAndTypexx has been implemented in 9.1.4 Inferring the Output
Tensor Description of an Operator.

● TEBinBuildFn: Registers the TBE operator building function. BuildTeBinxx has
been implemented in 9.1.5 Building an Operator.

● ImplyType: Specifies the operator implementation. ImplyType::TVM indicates
that the operator is a TE operator.

● Formats: Specifies the layout formats of the input data and output data of
the operator. The first list is the input data format list, and the second list is
the output data format list. If there are multiple inputs, list the layout format
of each input data in the first list. For example, if there are two pieces of
input data in the NC1HWC0 format, call the Formats function as follows:
.Formats({DOMI_TENSOR_NC1HWC0, DOMI_TENSOR_NC1HWC0}, 
{DOMI_TENSOR_NC1HWC0})

For details, see Formats in Framework API Reference.
● WeightFormats: Sets the layout format of operator weight data. For details

about the supported data formats, see WeightFormats in Framework API
Reference. For example, the data layout format of the filter of convolution is
fractal_Z, and the data layout format of the filter of bias is NC1HWC0.
If quantization during model conversion is enabled, the constant formats for
Framework processing need to be added to this API. Currently, Framework
supports the following quantization operators: Conv, FC, and Depthwise Conv.
If quantization is enabled for these operators during model conversion, you
need to add six DOMI_TENSOR_NC1HWC0 data formats to the end of the
parameter list of the WeightFormats API. (During quantization, Framework
adds six constants whose data layout format is NC1HWC0. The following is a
code sample of the WeightFormats API for the convolution operator with
quantization enabled:
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.WeightFormats({DOMI_TENSOR_FRACTAL_Z, DOMI_TENSOR_NC1HWC0, DOMI_TENSOR_NC1HWC0, 
DOMI_TENSOR_NC1HWC0, DOMI_TENSOR_NC1HWC0,DOMI_TENSOR_NC1HWC0, 
DOMI_TENSOR_NC1HWC0, DOMI_TENSOR_NC1HWC0})

9.2 Plug-In Code Example
Step 1 Modify the code file in customop_te/plugin/caffe_reduction_layer.cpp.

● Change FilePath to the relative path of the current operator file+name of the
operator py file.
FilePath = "../operator/reduction";

● Change FuncName to the name of the operator implementation function in
the reduction.py file.
FuncName ="reduction"

● Change the value of KernelName to the KernelName of the operator
configured in the reduction.py file.
KernelName = "Reduction";

● Change the path of the binary file *.o and description file *.json of the
operator.
te_bin_info.bin_file_path = "./operator/kernel_meta/" + KernelName + ".o";
te_bin_info.json_file_path = "./operator/kernel_meta/" + KernelName + ".json";
The path is relative to the current project directory. For example, the
Reduction.o file is in the operator/kernel_meta directory under the current
project directory.

Step 2 Check the modified code file. The following is a code example of the modified
reduction operator plug-in:
#include <Python.h>
#include "custom/custom_op.h"
#include "framework/omg/register.h"
#include "framework/omg/omg_types.h"
#include "proto/caffe/caffe.pb.h"
#include "operator.h"
#include "attr_value.h"
#include <memory>
#include <string>
#include <vector>
using namespace ge;

namespace domi
{
// Rewrite the ParseParams function to parse operator parameters.
Status CaffeReductionParseParams(const Message* op_origin, ge::Operator& op_dest)
{
    // Convert op_origin into the layer object.
    const caffe::LayerParameter* layer =
        dynamic_cast<const caffe::LayerParameter*>(op_origin);

    // Verify the validity of the input parameters.
    if (nullptr == layer)
    {
        printf("Dynamic cast op_src to LayerParameter failed\n");
        return FAILED;
    }
    // Convert the enumeration type of the operator parameters to the map type.
    std::map<caffe::ReductionParameter_ReductionOp, std::string> operation_map = {
        { caffe::ReductionParameter_ReductionOp_SUM, "SUM" },
    { caffe::ReductionParameter_ReductionOp_ASUM, "ASUM" },
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    { caffe::ReductionParameter_ReductionOp_SUMSQ, "SUMSQ" },
    { caffe::ReductionParameter_ReductionOp_MEAN, "MEAN" },
    };
    // Obtain the handle to the current operator layer.
    const caffe::ReductionParameter& param = layer->reduction_param();
    // Assign all parameter values of the operator to the object of the operator data structure op_dest of the 
Da Vinci model.
    if(param.has_axis())
    {
        op_dest.SetAttr("axis", AttrValue::CreateFrom<AttrValue::INT>(param.axis()));
    }
    if(param.has_coeff())
    {
        op_dest.SetAttr("coeff", AttrValue::CreateFrom<AttrValue::FLOAT>(param.coeff()));
    }
    if(param.has_operation())
    {
        op_dest.SetAttr("operation", 
AttrValue::CreateFrom<AttrValue::STR>(operation_map[param.operation()]));
    }
    return SUCCESS;
}

// Rewrite the InferShapeAndType function to obtain the output description of the operator.
Status CaffeReductionInferShapeAndType(const ge::Operator& op, vector<ge::TensorDesc>& v_output_desc)
{
    // Obtain the TensorDesc object input by the operator.
    auto tensorDesc      = op.GetInputDesc(0);
    // Obtain the input shape.
    auto shape = tensorDesc.GetShape();
    int64_t axis = -1;
    
    ge::AttrValue axisAttrValue;
    if ((ge::GRAPH_SUCCESS != op.GetAttr("axis", axisAttrValue)) || (ge::GRAPH_SUCCESS != 
axisAttrValue.GetValue<AttrValue::INT>(axis)))
    {
        printf("Get axis failed!\n");
    }
    // In the OM model, all shape are supplemented to 4d. In this case, axis needs to be repaired to point to 
the original 2d.
    if (axis < 0) axis -= 2;

    if (axis < 0) axis += shape.GetDimNum();

    if (axis < 0 || axis >= shape.GetDimNum())
    {
        printf("invalid axis:%d, dim_size:%d\n", (int32_t)axis, (int32_t)shape.GetDimNum());
        return PARAM_INVALID;
    }
    int32_t dimsize = (int32_t)shape.GetDimNum();
    int32_t idx = 0;
    for(idx=axis; idx<dimsize; idx++)
    {
        shape.SetDim(idx, 1);
    }
    // Set the adjusted shape information to tensorDesc.
    tensorDesc.SetShape(shape);    
    v_output_desc.push_back(tensorDesc);

    return SUCCESS;

}

// Compile the operator and obtain the binary file and description file of the operator.
Status CaffeReductionBuildTeBin(const ge::Operator& op, TEBinInfo& te_bin_info)
{
    // Declare operator parameters.
    std::string FilePath   = "";
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    std::string FuncName   = "";
    std::string KernelName = "";
   
    std::string operation  = "";
    int64_t     axis       = -1;
    float       coeff      = 1;
    // Obtain operator parameter values.
    ge::AttrValue operationAttrValue;
    if ((ge::GRAPH_SUCCESS != op.GetAttr("operation", operationAttrValue)) || (ge::GRAPH_SUCCESS != 
operationAttrValue.GetValue<AttrValue::STR>(operation)))
    {
        // Add exception handling and maintenance information. 
        printf("GetOpAttr operation failed!\n");
    }

    // Parse the axis parameter. 
    ge::AttrValue axisAttrValue;
    if ((ge::GRAPH_SUCCESS != op.GetAttr("axis", axisAttrValue)) || (ge::GRAPH_SUCCESS != 
axisAttrValue.GetValue<AttrValue::INT>(axis)))
    {
        printf("GetOpAttr axis failed!\n");
    }
    // In the OM model, all shape are supplemented to 4d. In this case, axis needs to be repaired to point to 
the original 2d.
    if(axis < 0)
        axis -= 2;

    // Parse the coeff parameter. 
    ge::AttrValue coeffAttrValue;
    if ((ge::GRAPH_SUCCESS != op.GetAttr("coeff", coeffAttrValue)) || (ge::GRAPH_SUCCESS != 
coeffAttrValue.GetValue<AttrValue::FLOAT>(coeff)))
    {
        printf("GetOpAttr coeff failed!\n");
    }
    // Obtain the operator input description.
    TensorDesc input_desc      = op.GetInputDesc(0);

    // Parse the input shape and check whether Dim of the operator is 4.
    if(input_desc.GetShape().GetDimNum() != 4)
    {
        printf("The shape size is %d, which is not 4!", (int32_t)input_desc.GetShape().GetDimNum());
        return FAILED;
    }
    // Set the operator file path.
    FilePath   = "../operator/reduction";
    // Set the name of the operator implementation function.
    FuncName   = "reduction";
    // Set the operator name defined in the operator implementation file.
    KernelName = "Reduction";

    // i => int; s => string; f => dobule; O => bool, and bool value is Py_True or Py_False. Call the compilation 
interface of Tensor Engine to compile the operator.
    te::BuildTeCustomOp(te_bin_info.ddk_version, op.GetName(), FilePath, FuncName,
                    "(i,i,i,i), s, i, s, f, s", input_desc.GetShape().GetDim(0), input_desc.GetShape().GetDim(1),
                    input_desc.GetShape().GetDim(2), input_desc.GetShape().GetDim(3), "float16", axis, 
operation.c_str(), coeff,
                    KernelName.c_str());    // The parameter sequence must be the same as that in the operator 
implementation function.

    // set te op json to te_bin_info 
    te_bin_info.bin_file_path  = "./kernel_meta/" + KernelName + ".o";
    te_bin_info.json_file_path = "./kernel_meta/" + KernelName + ".json";

    return SUCCESS;
}

REGISTER_CUSTOM_OP("custom_reduction") //####test_reduction is the type name of the operator in the 
OM model. It can be specified randomly and cannot be the same as an existing type name. It is case 
sensitive. 

TE Custom Operator Development Guide (Using CLI) 9 Developing the Plug-In of a Custom Operator

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 45



    .FrameworkType(CAFFE)  // Enumerated type. The options are as follows: CAFFE, TENSORFLOW
    .OriginOpType("Reduction")  // Reduction indicates the type name of the operator in the caffe 
framework.
    .ParseParamsFn(CaffeReductionParseParams)  // Op parameters parse function
    .InferShapeAndTypeFn(CaffeReductionInferShapeAndType)       // Set output description and datatype 
function
    .TEBinBuildFn(CaffeReductionBuildTeBin)           // Build Te op binary function
    .ImplyType(ImplyType::TVM);        // Implementation type. Enumerated type, The options are as follows: 
TVM, AI_CPU.

}  // namespace domi

----End

9.3 Compiling the Operator Plug-In
Step 1 Log in to the DDK server as the DDK installation user.

Step 2 Modify the Makefile file in projects/customop_te/plugin.

cd $HOME/tools/projects/customop_te/plugin/

vi Makefile

● Change the name of the generated operator plug-in.
ll : libcaffe_reduction_layer.so lib_caffe_parser.so
......bian
libcaffe_reduction_layer.so: $(OBJS_customop)
        $(CC) -c $(CC_FLAGS) -o proto/caffe/caffe.pb.o proto/caffe/caffe.pb.cc
        $(CC) $^ $(LNK_FLAGS) -o $@

lib_caffe_parser.so: $(OBJS_no_customop)
        $(CC) -c $(CC_FLAGS) -o proto/caffe/caffe.pb.o proto/caffe/caffe.pb.cc
        @if [ -f $(LOCAL_DIR)/proto/caffe/caffe.proto ]; then $(CC) $^ proto/caffe/caffe.pb.o $
(LNK_FLAGS) -o $@; fi;

libcaffe_reduction_layer.so is the name of the generated operator plug-in.
You can change the name as required.
lib_caffe_parser.so is the library file generated during the parsing of the
caffe.proto file, and its name cannot be changed. For Caffe operators, ensure
that all unsupported custom ones in the same model have been defined in 8
caffe.proto File Operator Definition (Optional).

● Set TOPDIR to the installation directory of the DDK.
ifeq ($(DDK_PATH),)
TOPDIR      := $(HOME)/tools/che/ddk/ddk
else
TOPDIR := $(DDK_PATH)
endif

● Use the default values for other parameters in Makefile, which serve as the
common template for the operator plug-in compilation.

Step 3 Compile the operator plug-in.

Run the following command in the plug-in directory to compile the operator plug-
in:

make
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After the compilation is complete, the operator plug-in file
libcaffe_reduction_layer.so is generated in the current directory.

----End
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10 Loading the Plug-In for Model
Conversion

Principle Description
Figure 10-1 shows the model conversion process when the custom operator plug-
in is loaded.

Figure 10-1 Loading a plug-in for model conversion

1. The offline model generator (OMG) loads the model file and custom operator
plug-in, parses the operator in the model file, and converts the custom
operator into the intermediate representation (IR) operator.

2. The OMG converts the data of the custom operator based on the running
environment, calculates the running memory, compiles and generates the
binary file (*.o) of the custom operator, and generates the Da Vinci offline
model file (*.om).

3. During application running, the offline model executor (OME) obtains the
input data, loads the offline model file, calls the operator cyclically, and
outputs the result data.
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Operating Procedure

Step 1 Go to the root directory of the custom operator development project as the DDK
installation user.

cd $HOME/tools/projects/customop_te/

Step 2 Run the following command to convert the model:

omg --model=model/deploy_mylenet-1.prototxt --weight=model/
mylenet-1.caffemodel --framework=0 --plugin_path=plugin --output=mylenet
--ddk_version=1.3.T18.B850
● --model: relative path of the original model file of the MyLeNet network
● --weight: relative path of the pre-trained model file of the MyLeNet network
● --framework: original framework type

– 0: Caffe
– 3: TensorFlow

● --plugin: directory where the custom operator plug-in is located
● --output: name of the output model file, which can be customized
● --ddk_version: version number of the matched DDK for running the custom

operator. You can view the version number of the DDK in the $HOME/
tools/che/ddk/ddk/ddk_info file.

For details about other parameters, see Model Conversion Guide.

----End
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11 Function Reference for Operator
Plug-In Development

11.1 ParseParamsFn

11.2 InferShapeAndTypeFn

11.3 TEBinBuildFn

11.4 WeightFormats

11.5 Registration Macro of the Operator Building Function

11.1 ParseParamsFn

Function
Parses parameters.

Syntax
OpRegistrationData& ParseParamsFn(ParseParamFunc parseParamFn);

Parameter Description
Parameter Input/

Output
Description

parseParamFn Input Callback function ParseParamFunc. For
details, see Callback Function
ParseParamFunc.

 

Callback Function ParseParamFunc
You can customize and implement the ParseParamFunc class functions to convert
the parameters and weights of the Caffe model and fill the results in the Operator
class.
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Syntax

Status ParseParamFunc(const Message* op_origin, ge::Operator& op_dest);

Parameter Description

Parameter Input/
Output

Description

op_origin Input Data structure in protobuf format (from
the prototxt file of the Caffe model),
including operator parameter information

op_dest Output Operator data structure of offline model
supported by the Ascend AI processor,
which stores operator information
For details about the operator class, see
Operator Class APIs in GE API Reference.

 

11.2 InferShapeAndTypeFn

Function
Shape inference function

Syntax
OpRegistrationData& InferShapeAndTypeFn(InferShapeFunc inferShapeFn);

Parameter Description

Parameter Input/
Output

Description

inferShapeFn Input Callback function InferShapeFunc. For
details, see Callback Function
InferShapeFunc.

 

Callback Function InferShapeFunc
You can customize and implement the InferShapeFunc class function to obtain the
output description of an operator, including the tensor description such as the
output shape information and data type.

Syntax

Status InferShapeFunc(const ge::Operator& op, vector<ge::TensorDesc>&
v_output_desc);

Parameter Description
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Parameter Input/Output Description

op Input Operator data structure of offline model
supported by the Ascend AI processor
For details about the operator class, see
Operator Class APIs in GE API Reference.

v_output_desc Output Operator output description
For details about the TensorDesc class, see
TensorDesc Class APIs in GE API Reference.

 

11.3 TEBinBuildFn

Function
Build callback function

Syntax
OpRegistrationData& TEBinBuildFn(BuildTeBinFunc buildTeBinFn);

Parameter Description
Parameter Input/

Output
Description

buildTeBinFn Input Callback function BuildTeBinFunc. For
details, see Callback Function
BuildTeBinFunc.

 

Callback Function BuildTeBinFunc
You can customize and implement the BuildTeBinFunc class function to construct
the operator binary file.

Syntax

virtual Status BuildTeBinFunc(const ge::Operator& op, TEBinInfo& teBinInfo);

Parameter Description
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Parameter Input/
Output

Description

op Input Operator data structure of offline model
supported by the Ascend AI processor,
which stores operator information
For details about the operator class, see
Operator Class APIs in GE API Reference.

teBinInfo Output Path of the binary file of a custom operator
and DDK description
struct TEBinInfo
{
std::string bin_file_path; // Automatically
obtained from the binFileName field in the
JSON file. To ensure compatibility with
cases written by users, the field is not
deleted.
std::string json_file_path;
std::string ddk_version;
};

 

11.4 WeightFormats

Function
Sets the data formats supported by the operator weight.

Syntax
OpRegistrationData& WeightFormats(

const std::initializer_list<domi::tagDomiTensorFormat>& weight_formats);
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Parameter Description
Parameter Input/

Output
Description

weight_formats Input Data formats supported by the weight:
typedef enum tagDomiTensorFormat
{
DOMI_TENSOR_NCHW = 0, /**< NCHW */
DOMI_TENSOR_NHWC, /**< NHWC */
DOMI_TENSOR_ND, /**< Nd Tensor */
DOMI_TENSOR_NC1HWC0, /**< NC1HWC0
*/
DOMI_TENSOR_FRACTAL_Z, /**<
FRACTAL_Z */
DOMI_TENSOR_NC1C0HWPAD,
DOMI_TENSOR_NHWC1C0,
DOMI_TENSOR_FSR_NCHW,
DOMI_TENSOR_FRACTAL_DECONV,
DOMI_TENSOR_BN_WEIGHT,
DOMI_TENSOR_CHWN, /*Android NN
Depth CONV*/
DOMI_TENSOR_FILTER_HWCK, /* filter
input tensor format */
DOMI_TENSOR_RESERVED
} domiTensorFormat_t;

 

11.5 Registration Macro of the Operator Building
Function

Function
Registers the operator by calling DOMI_REGISTER_OP.

Prototype
REGISTER_CUSTOM_OP(name)
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Parameter Description
Parameter Input/

Output
Description

name Input Type of an operator in the Da Vinci model, which
can be specified randomly and must be unique. The
value is case sensitive.
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12 Appendix

12.1 Change History

12.1 Change History
Release Date Description

2020-05-30 This issue is the first official release.

TE Custom Operator Development Guide (Using CLI) 12 Appendix

Issue 01 (2020-05-30) Copyright © Huawei Technologies Co., Ltd. 56


	Contents
	1 Before You Start
	1.1 Overview
	1.2 Intended Audience

	2 Precautions for Operator Development
	3 Environment Preparation
	4 Overall Development Process
	5 Setting Environment Variables
	6 Creating a Custom Operator Development Project
	7 Developing a Custom Operator
	7.1 Operator Basics
	7.2 Implementing an Operator
	7.2.1 Procedure
	7.2.2 Importing Python Modules
	7.2.3 Implementing an Operator
	7.2.4 Scheduling and Building an Operator
	7.2.5 Running an Operator

	7.3 Code Examples
	7.4 Operator Running Verification
	7.4.1 Compiling an Operator
	7.4.2 Building an Input Data File
	7.4.3 Running a Single Operator


	8 caffe.proto File Operator Definition (Optional)
	9 Developing the Plug-In of a Custom Operator
	9.1 Implementing a Plug-In
	9.1.1 Implementing the Plug-In
	9.1.2 Including Header Files
	9.1.3 Parsing an Operator
	9.1.4 Inferring the Output Tensor Description of an Operator
	9.1.5 Building an Operator
	9.1.6 Registering an Operator

	9.2 Plug-In Code Example
	9.3 Compiling the Operator Plug-In

	10 Loading the Plug-In for Model Conversion
	11 Function Reference for Operator Plug-In Development
	11.1 ParseParamsFn
	11.2 InferShapeAndTypeFn
	11.3 TEBinBuildFn
	11.4 WeightFormats
	11.5 Registration Macro of the Operator Building Function

	12 Appendix
	12.1 Change History


