Updated on 2024-08-05 GMT+08:00

Prometheus Statements

AOM is interconnected with Prometheus Query Language (PromQL), which provides various built-in functions. These functions can be used to filter and aggregate metric data. You can run Prometheus statements to add metrics.

Prometheus Statement Syntax

For details about the Prometheus statement syntax, go to the Prometheus official website.

Examples of Using Prometheus Statements

  • Example 1: Memory usage of a specified pod in a node (excluding the control node)
    • Define variables:
      • Used memory of the containers in a pod (a pod may contain multiple containers or instances): aom_container_memory_used_megabytes
      • Total memory of the node: aom_node_memory_total_megabytes
    • Query logic:
      • For aom_container_memory_used_megabytes, use the aggregation function sum to calculate the actual used memory of a specified pod under a specified node based on the node IP address and pod ID.
      • For aom_node_memory_total_megabytes, use the aggregation function sum to calculate the total memory of a specified node based on the node IP address.
      • Both of them are filtered by node IP address. Therefore, the obtained metric values have the same metric dimension. (Only the values are different.)
      • The actual memory usage of the pod can be obtained by performing the "/" operation on the values of the preceding two metrics.
    • To query the actual memory usage of the pod, use the following statement:

      sum(aom_container_memory_used_megabytes{podID="****1461-41d8-****-bfeb-fc1213****",nodeIP="***.***.***.***"}) by (nodeIP) / sum(aom_node_memory_total_megabytes{nodeIP="***.***.***.***"}) by (nodeIP)

  • Example 2: CPU usage of a specified pod in a node (excluding the control node)
    • Define variables:
      • Used CPU cores of the containers in a pod: aom_container_cpu_used_core
      • Actual total number of CPU cores of the node: aom_node_cpu_limit_core
    • Query logic:
      • For aom_container_cpu_used_core, use the aggregation function sum to calculate the used CPU cores of a specified pod under a specified node based on the node IP address and pod ID.
      • For aom_node_cpu_limit_core, use the aggregation function sum to calculate the total CPU cores of a specified node based on the node IP address.
      • Both of them are filtered by node IP address. Therefore, the obtained metric values have the same metric dimension. (Only the values are different.)
      • The actual memory usage of the pod can be obtained by performing the "/" operation on the values of the preceding two metrics.
    • To obtain the actual CPU usage of the pod, use the following statement:

      sum(aom_container_cpu_used_core{nodeIP="***.***.***.***",podID="****1461-41d8-****-bfeb-***13******"}) by (nodeIP) / sum(aom_node_cpu_limit_core{nodeIP="***.***.***.***"}) by (nodeIP)

  • Example 3: Requested memory of a pod/Allocable memory of the node where the pod is located
    • Define variables:
      • Memory allocated to the containers in a pod: aom_container_memory_request_megabytes
      • Total memory of the node: aom_node_memory_total_megabytes
    • Query logic:
      • For aom_container_memory_request_megabytes, use the aggregation function sum to calculate the allocated memory of a specified pod under a specified node based on the node IP address and pod ID.
      • For aom_node_memory_total_megabytes, use the aggregation function sum to calculate the total memory of a specified node based on the node IP address.
      • Both of them are filtered by node IP address. Therefore, the obtained metric values have the same metric dimension. (Only the values are different.)
      • The actual memory usage of the pod can be obtained by performing the "/" operation on the values of the preceding two metrics.
    • To obtain the actual memory allocation ratio of the pod, use the following statement:

      sum(aom_container_memory_request_megabytes{podID="****1461-41d8-4403-****-f***35*****",nodeIP="***.***.***.***"}) by (nodeIP) / sum(aom_node_memory_total_megabytes{nodeIP="***.***.***.***"}) by (nodeIP)

  • Example 4: Requested CPU cores of a pod/Allocable CPU cores of the node where the pod is located
    • Define variables:
      • CPU cores allocated to the containers in the pod: aom_container_cpu_limit_core
      • CPU cores allocated to the node: aom_node_cpu_limit_core
    • Query logic:
      • For aom_container_cpu_limit_core, use the aggregation function sum to calculate the CPU cores allocated to a specified pod under a specified node based on the node IP address and pod ID.
      • For aom_node_cpu_limit_core, use the aggregation function sum to calculate the total CPU cores of a specified node based on the node IP address.
      • Both of them are filtered by node IP address. Therefore, the obtained metric values have the same metric dimension. (Only the values are different.)
      • The actual CPU usage of the pod can be obtained by performing the "/" operation on the values of the preceding two metrics.
    • To obtain the actual CPU allocation ratio of the pod, use the following statement:

      sum(aom_container_cpu_limit_core{podID="*****461-41d8-****-bfeb-****135*****",nodeIP="***.***.***.***"}) by (nodeIP) / sum(aom_node_cpu_limit_core{nodeIP="***.***.***.***"}) by (nodeIP)

Common Prometheus Commands

Table 1 lists the common Prometheus commands for querying metrics. You can modify parameters such as the IP address and ID based on site requirements.

Table 1 Common Prometheus commands

Metric

Tag Definition

PromQL

Host CPU usage

{nodeIP="", hostID=""}

aom_node_cpu_usage{nodeIP="192.168.57.93",hostID="ca76b63f-dbf8-4b60-9c71-7b9f13f5ad61"}

Host application request throughput

{aomApplicationID="",aomApplicationName=""}

http_requests_throughput{aomApplicationID="06dc9f3b0d8cb867453ecd273416ce2a",aomApplicationName="root"}

Success rate of host application requests

{appName="",serviceID="",clusterId=""}

http_requests_success_rate{aomApplicationID="06dc9f3b0d8cb867453ecd273416ce2a",aomApplicationName="root"

Host component CPU usage

{appName="",serviceID="",clusterId=""}

aom_process_cpu_usage{appName="icagent",serviceID="2d29673a69cd82fabe345be5f0f7dc5f",clusterId="00000000-0000-0000-0000-00000000"}

Host process threads

{processCmd=""}{processID=""}{processName=""}

aom_process_thread_count{processCmd="cdbc06c2c05b58d598e9430fa133aff7_b14ee84c-2b78-4f71-9ecc-2d06e053172c_ca4d29a846e9ad46a187ade88048825e",processName="icwatchdog"}

Cluster disk usage

{clusterId="",clusterName=""}

aom_cluster_disk_usage{clusterId="4ba8008c-b93c-11ec-894a-0255ac101afc",clusterName="servicestage-test"}

Cluster virtual memory usage

{clusterId="",clusterName=""}

aom_node_virtual_memory_usage{nodeIP="192.168.10.4",clusterId="af3cc895-bc5b-11ec-a642-0255ac101a0b",nameSpace="default"}

Available cluster virtual memory

{clusterId="",clusterName=""}

aom_cluster_virtual_memory_free_megabytes{clusterId="4ba8008c-b93c-11ec-894a-0255ac101afc",clusterName="servicestage-test"}

Workload file system usage

{appName="",serviceID="",clusterId="",nameSpace=""}

aom_container_filesystem_usage{appName="icagent",serviceID="cfebc2222b1ce1e29ad827628325400e",clusterId="af3cc895-bc5b-11ec-a642-0255ac101a0b",nameSpace="kube-system"}

Pod kernel usage

{podID="",podName=""}

aom_container_cpu_used_core{podID="573663db-4f09-4f30-a432-7f11bdb8fb2e",podName="icagent-bkm6q"}

Container uplink rate (BPS)

{containerID="",containerName=""}

aom_container_network_transmit_bytes{containerID="16bf66e9b62c08493ef58ff2b7056aae5d41496d5a2e4bac908c268518eb2cbc",containerName="coredns"}