
FunctionGraph

User Guide

Date 2024-08-07

Contents

1 Service Overview... 1
1.1 What Is FunctionGraph?... 1
1.2 Product Features.. 3
1.3 Product Advantages..5
1.4 Application Scenarios... 6
1.5 Function Types..7
1.5.1 Event Functions.. 7
1.5.2 HTTP Functions...8
1.6 Notes and Constraints... 9
1.7 Permissions Management..12
1.8 Concepts... 16
1.9 Relationships Between FunctionGraph and Other Services... 18

2 Getting Started.. 19
2.1 Introduction.. 19
2.2 Creating a Function from Scratch... 20
2.3 Creating a Function Using a Template.. 23
2.4 Deploying a Function Using a Container Image.. 25
2.4.1 Developing an HTTP Function.. 25

3 Before You Start...31
3.1 Use of FunctionGraph... 31
3.2 Permissions Management..33
3.2.1 Creating a User and Granting Permissions...33
3.2.2 Creating a Custom Policy..35
3.3 Supported Programming Languages... 36
3.3.1 Node.js...36
3.3.2 Python... 37
3.3.3 Java... 37
3.3.4 Go..37
3.3.5 Custom Runtime.. 37

4 Building Functions.. 45
4.1 Creating a Deployment Package... 45
4.2 Creating a Function from Scratch... 50

FunctionGraph
User Guide Contents

2024-08-07 ii

4.2.1 Creating an Event Function..50
4.2.2 Creating an HTTP Function.. 53
4.3 Creating a Function Using a Template.. 57
4.4 Deploying a Function Using a Container Image.. 58

5 Configuring Functions.. 64
5.1 Configuring Initialization..64
5.2 Configuring Basic Settings... 65
5.3 Configuring Agency Permissions... 67
5.4 Configuring the Network... 71
5.5 Configuring Disk Mounting... 73
5.6 Configuring Environment Variables..78
5.7 Configuring Asynchronous Execution Notification.. 82
5.8 Configuring Single-Instance Multi-Concurrency.. 85
5.9 Managing Versions... 87
5.10 Managing Aliases... 89
5.11 Configuring Dynamic Memory.. 91

6 Online Debugging... 93

7 Creating Triggers... 98
7.1 Managing Triggers..98
7.2 Using a Timer Trigger.. 98
7.3 Using an APIG (Dedicated) Trigger.. 100
7.4 Using an OBS Trigger.. 102
7.5 Using a Kafka Trigger..104
7.6 Using an LTS Trigger..106
7.7 Using a CTS Trigger... 107
7.8 Cron Expressions for a Function Timer Trigger.. 110

8 Invoking the Function.. 114
8.1 Synchronous Invocation... 114
8.2 Asynchronous Invocation... 114
8.3 Retry Mechanism.. 116

9 Monitoring.. 117
9.1 Metrics.. 117
9.1.1 Function Monitoring.. 117
9.1.2 Function Metrics.. 118
9.1.3 Creating an Alarm Rule.. 121
9.2 Logs... 123
9.2.1 Querying Function Logs..123
9.2.2 Managing Function Logs.. 123

10 Function Management.. 126

11 Dependency Management..128

FunctionGraph
User Guide Contents

2024-08-07 iii

11.1 Configuring Dependency Packages..128
11.2 Dependent Libraries.. 130

12 Reserved Instance Management... 134

13 Audit.. 138
13.1 Operations Logged by CTS... 138
13.2 Querying Real-Time Traces...139

14 FAQs... 142
14.1 General FAQs... 142
14.1.1 What Is FunctionGraph?...142
14.1.2 Do I Need to Apply for Any Compute, Storage, or Network Services When Using FunctionGraph?
... 142
14.1.3 Do I Need to Deploy My Code After Programming?... 142
14.1.4 What Runtimes Does FunctionGraph Support?... 142
14.1.5 How Much Disk Space Is Allocated to Each FunctionGraph Function?...143
14.1.6 Does FunctionGraph Support Function Versioning?...143
14.1.7 How Does a Function Read or Write Files?... 143
14.1.8 Does FunctionGraph Support Function Extension?.. 144
14.1.9 Which Permissions Are Required for an IAM User to Use FunctionGraph?... 144
14.1.10 How Can I Create an ODBC Drive-based Python Dependency Package for Database Query?...... 144
14.1.11 What Is the Quota of FunctionGraph?... 144
14.1.12 How Does a Container Image–based Function Resolve a Private DNS Domain Name?..................145
14.1.13 How Do I Use a Domain Name to Access an API Registered with API Gateway (Dedicated)?..... 145
14.1.14 What Are the Common Application Scenarios of FunctionGraph?...146
14.1.15 Why Can't the API Gateway Domain Name Bound to a Service Be Resolved During Function
Invocation?... 146
14.1.16 Does FunctionGraph Support Synchronous Transmission at the Maximum Intranet Bandwidth?146
14.1.17 What If the VPC Quota Is Used Up?..146
14.1.18 How Can I Print Info, Error, or Warn Logs?... 146
14.1.19 Can I Set the Domain Name of an API to My Own Domain Name?.. 146
14.1.20 Can I Change the Runtime?..146
14.1.21 Can I Change a Function's Name?... 146
14.1.22 Why Is Message "failed to mount exist system path" Displayed?..147
14.1.23 How Do I Obtain Uploaded Files?..147
14.1.24 Why Can't I Receive Responses for Synchronous Invocation?.. 147
14.1.25 What Should I Do If the os.system("command &") Execution Logs Are Not Collected?...............147
14.1.26 Which Directories Can Be Accessed When a Custom Runtime Is Used?.. 147
14.1.27 Which Minor Versions of Python 3.6 and 3.9 Are Supported?... 148
14.1.28 Which Actions Can Be Used Instead of a VPC Administrator Agency for VPC Access?.....................148
14.1.29 What Are the Possible Causes for Function Timeout?.. 148
14.1.30 How Do I Obtain the Code of a Function?..148
14.1.31 Do You Have Sample Code for Initializers?...148
14.1.32 How Do I Enable Structured Log Query?...149

FunctionGraph
User Guide Contents

2024-08-07 iv

14.1.33 Can I Enable a Listening Port in a Function to Receive External TCP Requests via EIP?.................. 152
14.2 Function Creation FAQs... 152
14.2.1 Can I Add Threads and Processes in Function Code?...152
14.2.2 What Are the Rules for Packaging a Function Project?.. 152
14.2.3 How Does FunctionGraph Isolate Code?..158
14.2.4 How Do I Create the Bootstrap File for an HTTP Function?... 158
14.3 Trigger Management FAQs...159
14.3.1 What If Error Code 500 Is Reported When Functions that Use APIG Triggers Return Strings?........ 159
14.3.2 What Do LATEST and TRIM_HORIZON Mean in DIS Trigger Configuration?... 160
14.3.3 Why Can't I Enable or Disable OBS Triggers by Calling APIs?.. 160
14.3.4 How Do I Use an APIG Trigger to Invoke a Function?.. 160
14.3.5 How Does a Function Obtain the Request Path or Parameters When Using an APIG Trigger?.......160
14.3.6 Can I Create an OBS Trigger with an Existing Bucket?... 161
14.4 Dependency Management FAQs.. 161
14.4.1 What Is a Dependency?..161
14.4.2 When Do I Need a Dependency?.. 161
14.4.3 What Are the Precautions for Using a Dependency?...161
14.4.4 What Dependencies Does FunctionGraph Support?.. 161
14.4.5 Does FunctionGraph Support Class Libraries?.. 163
14.4.6 How Do I Use Third-Party Dependencies on FunctionGraph?..163
14.4.7 How Do I Create Function Dependencies?.. 163
14.4.8 How Do I Create a Dependency on the FunctionGraph Console?...165
14.4.9 How Do I Add a Dependency to a Function?... 165
14.5 Function Execution FAQs... 165
14.5.1 How Long Does It Take to Execute a FunctionGraph Function?..165
14.5.2 Which Steps Are Included in Function Execution?.. 166
14.5.3 How Does FunctionGraph Process Concurrent Requests?..166
14.5.4 What If Function Instances Have Not Been Executed for a Long Time?.. 166
14.5.5 How Can I Speed Up Initial Access to a Function?... 166
14.5.6 How Do I Know the Actual Memory Used for Function Execution?...166
14.5.7 Why Is My First Request Slow?.. 166
14.5.8 What Do I Do If an Error Occurs When Calling an API?...167
14.5.9 How Do I Read the Request Header of a Function?.. 167
14.5.10 Why Does a Function Use More Memory Than Estimated and Even Trigger the Out of Memory
Alarm?... 167
14.5.11 How Do I Check the Memory Usage When Seeing "runtime memory limit exceeded"?................. 167
14.5.12 How Do I Troubleshoot "CrashLoopBackOff"?.. 168
14.5.13 After I Updated an Image with the Same Name, Reserved Instances Still Use the Old Image.
What Can I Do?.. 168
14.6 Function Configuration FAQs... 168
14.6.1 Can I Set Environment Variables When Creating Functions?..168
14.6.2 Can I Enter Sensitive Information in Environment Variables?.. 168
14.7 External Resource Access FAQs... 168

FunctionGraph
User Guide Contents

2024-08-07 v

14.7.1 How Does a Function Access the MySQL Database?.. 168
14.7.2 How Does a Function Access Redis?.. 169
14.7.3 How Do I Configure External Network Access?... 170
14.8 Other FAQs... 170
14.8.1 How Do I View the Alarm Rules Configured for a Function?... 170
14.8.2 Does FunctionGraph Support ZIP Decompiling During Video Transcoding?... 170

15 Change History.. 171

FunctionGraph
User Guide Contents

2024-08-07 vi

1 Service Overview

1.1 What Is FunctionGraph?
FunctionGraph hosts and computes event-driven functions in a serverless context
while ensuring high availability, high scalability, and zero maintenance. All you
need to do is write your code and set conditions.

Figure 1-1 shows the process of using FunctionGraph.

FunctionGraph
User Guide 1 Service Overview

2024-08-07 1

Figure 1-1 Usage process

1. Write code.

Write code in Node.js, Python, Java, or Go.

2. Upload code.

Currently, you can edit code inline, upload a ZIP or JAR file, or obtain a ZIP file
from OBS. For details, see Table 1-2.

3. Trigger functions by API calls or cloud service events.

Call RESTful APIs or use cloud service event sources to trigger function execution
and generate instances to implement service functions.

4. Auto scaling is implemented.

During function execution, FunctionGraph scales automatically based on the
number of requests without the need for configurations. For details about the
maximum number of function instances that can be run concurrently, see Notes
and Constraints.

5. View logs.

FunctionGraph
User Guide 1 Service Overview

2024-08-07 2

View run logs of functions as FunctionGraph is interconnected with Log Tank
Service (LTS).

6. View monitoring information.

View graphical monitoring information as FunctionGraph is interconnected with
Application Operations Management (AOM).

1.2 Product Features

Function Management
FunctionGraph provides console-based function management.

● The Node.js, Java, Python, Go, and custom runtimes are supported. Table 1-1
provides the details.

NO TE

You are advised to use the latest runtime version.

Table 1-1 Runtimes

Runtime Supported Version

Node.js 6.10, 8.10, 10.16, 12.13, 14.18, 16.17

Python 2.7, 3.6, 3.9, 3.10

Java 8.0 and 11

Go 1.x

C# .NET Core 2.1 and .NET Core 3.1

PHP 7.3

Custom -

● Multiple code entry modes

FunctionGraph allows you to edit code inline, upload a ZIP file from Object
Storage Service (OBS), or directly upload a ZIP or JAR file. Table 1-2 lists the
code entry modes supported for each runtime.

Table 1-2 Code entry modes

Runtime Editing Code
Inline

Uploading a
ZIP File

Uploading a
JAR File

Uploading a
ZIP File
from OBS

Node.js Supported Supported Not
supported

Supported

Python Supported Supported Not
supported

Supported

FunctionGraph
User Guide 1 Service Overview

2024-08-07 3

Runtime Editing Code
Inline

Uploading a
ZIP File

Uploading a
JAR File

Uploading a
ZIP File
from OBS

Java Not
supported

Supported Supported Supported

Go Not
supported

Supported Not
supported

Supported

C# Not
supported

Supported Not
supported

Supported

PHP Supported Supported Not
supported

Supported

Custom Supported Supported Not
supported

Supported

Trigger

Table 1-3 lists the invocation modes for different trigger types.

Table 1-3 Function invocation modes

Trigger Function Invocation Mode

APIG trigger Synchronous invocation

OBS trigger Asynchronous invocation

Timer trigger Asynchronous invocation

Log Tank Service (LTS) trigger Asynchronous invocation

Cloud Trace Service (CTS) trigger Asynchronous invocation

Kafka trigger Asynchronous invocation

Logs and Metrics

FunctionGraph graphically displays function monitoring metrics and collects
function running logs, enabling you to view function statuses, and locate problems
by querying logs.

To query logs, see Managing Function Logs.

For details about monitoring metric, see Function Monitoring.

For details about tenant-level function monitoring metrics, see Introduction to
Dashboard.

FunctionGraph
User Guide 1 Service Overview

2024-08-07 4

Function Initialization
The initializer interface is introduced to:

● Isolate function initialization and request processing to enable clearer
program logic and better structured and higher-performance code.

● Ensure smooth function upgrade to prevent performance loss during the
application layer's cold start initialization. Enable new function instances to
automatically execute initialization logic before processing requests.

● Identify the overhead of application layer initialization, and accurately
determine the time for resource scaling and the quantity of required
resources. This feature makes request latency more stable when the
application load increases and more function instances are required.

HTTP Functions
You can set Function Type to HTTP Function on the function creation page. HTTP
functions are designed to optimize web services. You can send HTTP requests to
URLs to trigger function execution. HTTP functions support APIG and API Connect
(APIC) triggers only.

Custom Images
You can directly package and upload container images. The images are loaded and
started by the platform and can be called in a similar way as HTTP functions.
Unlike the previous code upload mode, you can use a custom code package, which
is flexible and reduces migration costs.

1.3 Product Advantages

No Servers to Manage
FunctionGraph automatically runs your code and frees you from provisioning and
managing servers, allowing you to focus on business innovation.

Auto Scaling
FunctionGraph automatically scales to suit fluctuations in resource demands and
ensures that the service remains accessible even during peaks and spikes.

It automatically scales in/out resources based on the number of service requests,
and distributes requests to function instances through automatic load balancing.

In addition, the system intelligently preheats instances for the traffic loads to
reduce the impact of cold start on your services.

Event-based Triggering
FunctionGraph integrates with multiple cloud services using an event-based
triggering mechanism to meet service requirements.

It is interconnected with the LTS and Cloud Eye services, allowing you to view
function logs and metrics without the need for any configurations.

FunctionGraph
User Guide 1 Service Overview

2024-08-07 5

High Availability

If an instance becomes faulty, FunctionGraph starts another instance to process
new requests and releases resources from the unhealthy instance.

Dynamic Resource Adjustment

Resource specifications can be dynamically adjusted to minimize resource usage
and reduce costs.

1.4 Application Scenarios
FunctionGraph is suitable for various scenarios, such as real-time file processing,
real-time data stream processing, web & mobile application backends, and AI
application.

Scenario 1: Event-Driven Applications

Services are executed in event-driven mode and resources are provisioned based
on demands. Developers do not need to be concerned about service peaks or
troughs. Idle resources are not billed, reducing O&M costs. Event-driven
applications include file processing, image processing, live streaming/transcoding,
real-time data stream processing, and IoT rule/event processing.

● Real-time file processing

When files are uploaded from a client to OBS, functions can be triggered to
create image thumbnails in real time, convert video formats, aggregate and
filter data files, or implement other file operations.

Advantages:

– FunctionGraph automatically allocates resources to run more function
instances as the number of received requests increases.

– Files are uploaded to OBS to trigger file processing functions.

– You will be billed only for resources used to process files as needed (you
are not billed for idle resources during lows in demand).

● Real-time data stream processing

FunctionGraph works with DIS to process data streams in real time.
FunctionGraph supports application activity tracking, sequential transaction
processing, data stream analysis, data sorting, metric generation, log filtering,
indexing, social media analysis, and IoT device data telemetry and metering.

Advantages:

– Data is collected by means of DIS streams to trigger data processing
functions.

– FunctionGraph automatically allocates resources to run more function
instances as the number of received requests increases.

– You will be billed only for resources used to process files as needed (you
are not billed for idle resources during lows in demand).

FunctionGraph
User Guide 1 Service Overview

2024-08-07 6

Scenario 2: Web Applications

Interconnect FunctionGraph with other cloud services or your VMs to quickly build
highly available and scalable web & mobile backends. Web applications include
mini programs, web pages/apps, chatbots, and Backends for Frontends (BFF).

Advantages:

● FunctionGraph ensures high reliability of website data using OBS and
CloudTable, and high-availability of website logic using API Gateway.

● FunctionGraph automatically allocates resources to run more function
instances as the number of received requests increases.

● You will be billed only for resources used to process files as needed (you are
not billed for idle resources during lows in demand).

Scenario 3: AI Applications

Intelligence evolution requires various services to be integrated for quick rollout.
These services include third-party service integration, AI inference, and license
plate recognition.

Advantages:

● FunctionGraph works with EI services for text recognition and content
moderation to suit a wide range of scenarios – make adjustments whenever
you need as demands change.

● You only need to apply for related services and write service code without
having to provision or manage servers.

● You will be billed only for function execution and used EI services without
having to pay for idle resources when service demands are low.

1.5 Function Types

1.5.1 Event Functions

Overview

FunctionGraph supports event functions. An event can trigger function execution.
Generally, it is in JSON format. You can create an event to trigger your function
through the cloud service platform or CodeArts IDE Online. All types of triggers
supported by FunctionGraph can trigger event functions.

NO TE

1. On the function creation page, Function Type is set to Event Function by default.

2. During testing, a function can be triggered by simply entering the specified event in
JSON format.

3. You can also use triggers to trigger event functions.

FunctionGraph
User Guide 1 Service Overview

2024-08-07 7

Advantages
● Easy single-node programming

You can edit event functions on FunctionGraph or CodeArts IDE Online or
upload code packages there and deploy them with just a few clicks. There is
no need for you to care about function concurrency or fault rectification.

● High-performance, high-speed runtimes
Event functions can be started, scaled, and called within milliseconds. Faults
can be detected and rectified within seconds.

● Complete tool chain
FunctionGraph provides comprehensive logging, tracing, debugging, and
monitoring, allowing developers to roll out functions in just three steps.

Restrictions
Event functions face event source restrictions. You need to comply with the
function development rules of the function platform.

1.5.2 HTTP Functions

Overview
FunctionGraph supports event functions and HTTP functions. HTTP functions are
designed to optimize web services. You can send HTTP requests to URLs to trigger
function execution. HTTP functions support APIG and APIC triggers only.

NO TE

1. HTTP functions support the HTTP/1.1 protocol.
2. On the function creation page, HTTP Function is newly added.
3. The HTTP function must be set to bootstrap. You can directly write the startup

command and allow access over port 8000.

Advantages
● Support for multiple frameworks

You can use common web frameworks, such as Node.js Express and Koa, to
write web functions, and migrate your local web framework services to the
cloud with least modifications.

● Fewer request processing steps
Functions can directly receive and process HTTP requests, eliminating the
need for API Gateway to convert the JSON format. This accelerates request
processing and improves web service performance.

● Premium writing experience
Writing HTTP functions is similar to writing native web services. You can also
use native Node.js APIs to enjoy local development-like experience.

Restrictions
● HTTP functions support APIG (dedicated), APIG (shared), and APIC triggers

only.

FunctionGraph
User Guide 1 Service Overview

2024-08-07 8

● Multiple API triggers can be bound to the same function, but all the APIs
must belong to the same APIG service.

● For HTTP functions, the size of the HTTP response body cannot exceed 6 MB.
● HTTP functions cannot be executed for a long time, invoked asynchronously,

or retried.

1.6 Notes and Constraints

Account Resource Constraints

Table 1-4 Account resource constraints

Resource Limit Adjustable

Maximum number of functions that
can be created under an account

400 No. To
adjust the
quota,
contact
customer
service.

Maximum number of versions
allowed for a function

20 No. To
adjust the
quota,
contact
customer
service.

Maximum number of aliases allowed
for a function

10 No. To
adjust the
quota,
contact
customer
service.

Size of a code deployment package
(in ZIP or JAR format) that can be
uploaded to the FunctionGraph
console

40 MB No. To
adjust the
quota,
contact
customer
service.

Size of a code deployment package
(in ZIP or JAR format) that can be
edited inline during function API
invocation

50 MB No. To
adjust the
quota,
contact
customer
service.

FunctionGraph
User Guide 1 Service Overview

2024-08-07 9

Resource Limit Adjustable

Size of an original code deployment
package allowed during function API
invocation

● ZIP: 1500 MB (after
decompression)

● OBS bucket: 300 MB
(after compression)

No. To
adjust the
quota,
contact
customer
service.

Maximum size of deployment
packages allowed for an account

10 GB No. To
adjust the
quota,
contact
customer
service.

Number of concurrent executions per
account

100 Yes

Maximum number of reserved
instances that an account can create

90 (Number of
concurrent executions per
account x 90%)

Yes

Size of all environment variables of a
function

4096 characters No. To
adjust the
quota,
contact
customer
service.

Maximum size of code that can be
displayed on the console

20 MB No. To
adjust the
quota,
contact
customer
service.

Function Running Resource Constraints

Table 1-5 Function running resource constraints

Resource Default Adjustable

Ephemeral disk space (/tmp
space)

512 MB No. To adjust the
quota, contact
customer service.

Number of file descriptors 1024 No. To adjust the
quota, contact
customer service.

FunctionGraph
User Guide 1 Service Overview

2024-08-07 10

Resource Default Adjustable

Total number of processes and
threads

1024 No. To adjust the
quota, contact
customer service.

Maximum execution duration
per request

259,200s Yes

Valid payload size of
invocation request body
(synchronous invocation)

6 MB No. To adjust the
quota, contact
customer service.

Valid payload size of
invocation response body
(synchronous invocation)

6 MB No. To adjust the
quota, contact
customer service.

Valid payload size of
invocation request body
(asynchronous invocation)

256 KB No. To adjust the
quota, contact
customer service.

Size of imported resources ≤ 50 MB ZIP file No. To adjust the
quota, contact
customer service.

Image size per function 10 GB No. To adjust the
quota, contact
customer service.

Size of exported resources ≤ 50 MB No. To adjust the
quota, contact
customer service.

Instances per tenant 1000 Yes

Max. memory per function 10 GB No. To adjust the
quota, contact
customer service.

Bandwidth Unlimited -

Single log size Unlimited -

Maximum execution duration
of initializer

259,200s Yes

NO TE

● Valid payload size of invocation response body (synchronous invocation): The returned
character string or the JSON character string of the serialized response body is less than
or equal to 6 MB by default. The actual data size varies depending on the backend
settings of FunctionGraph. The backend determines the size of the serialized data with a
byte-level deviation. The actual valid payload size is 6 MB ± 100 bytes.

● You are not advised to invoke a function whose execution time exceeds 90s on the
FunctionGraph console. To invoke such a function, use asynchronous invocation.

FunctionGraph
User Guide 1 Service Overview

2024-08-07 11

1.7 Permissions Management
If you need to assign different permissions to employees in your enterprise to
access your FunctionGraph resources, IAM is a good choice for fine-grained
permissions management. IAM provides identity authentication, permissions
management, and access control, helping you secure access to your cloud
resources.

With IAM, you can use your account to create IAM users for your employees, and
assign permissions to the users to control their access to specific resource types.
For example, some software developers in your enterprise need to use
FunctionGraph resources but must not delete them or perform any high-risk
operations. To achieve this result, you can create IAM users for the software
developers and grant them only the permissions required for using FunctionGraph
resources.

If your account does not need individual IAM users for permissions management,
you may skip over this chapter.

FunctionGraph Permissions
By default, new IAM users do not have any permissions assigned. You need to add
a user to one or more groups, and assign permissions policies to these groups. The
user then inherits permissions from the groups it is a member of. This process is
called authorization. After authorization, the user can perform specified operations
on FunctionGraph based on the permissions.

FunctionGraph is a project-level service deployed and accessed in specific physical
regions. To assign FunctionGraph permissions to a user group, specify the scope as
region-specific projects and select projects in relevant regions for the permissions
to take effect. If All projects is selected, the permissions will take effect for the
user group in all region-specific projects. When accessing FunctionGraph, the users
need to switch to a region where they have been authorized to use the
FunctionGraph service.

You can grant users permissions by using roles and policies.

● Roles: A type of coarse-grained authorization mechanism that defines
permissions related to user responsibilities. This mechanism provides only a
limited number of service-level roles for authorization. When using roles to
grant permissions, you may also need to assign other roles on which the
permissions depend. However, roles are not an ideal choice for fine-grained
authorization and secure access control.

● Policies: A type of fine-grained authorization mechanism that defines
permissions required to perform operations on specific cloud resources under
certain conditions. This mechanism allows for more flexible policy-based
authorization, meeting requirements for secure access control.

Table 1-6 lists all the system policies supported by FunctionGraph.

FunctionGraph
User Guide 1 Service Overview

2024-08-07 12

Table 1-6 Permissions description

Role/Policy
Name

Description Category Dependency

FunctionGraph
FullAccess

This policy grants all
permissions for
FunctionGraph.

System-defined
policy

N/A

FunctionGraph
ReadOnlyAccess

This policy grants
read-only permissions
for FunctionGraph.

System-defined
policy

N/A

FunctionGraph
CommonOperati
ons

This policy grants
permissions to query
functions and triggers,
and invoke functions.

System-defined
policy

N/A

NO TE

If an IAM user granted the FunctionGraph FullAccess permission has no permission to
create a certain type of trigger or use a certain function, the relevant service or function
does not support fine-grained authentication. In this case, grant the admin permission for
this service or function to the user. These services and functions include:
● CTS, APIG, and DIS: These do not support fine-grained authentication. Add the admin

permission for them.
● SMN: This supports fine-grained authentication in some regions. If needed, add the

admin permission for this service.
● IoTDA: This is a new trigger type and is not covered in FullAccess. When you create an

IoTDA trigger, you will be prompted to create an agency and add the iam:agencies:list
and iam:agencies:createAgency permissions.

● TMS, DNS, BSS, Cloud Eye, EG, and DMS: These are new functions and are not covered
in FullAccess. Add the permissions for them as required.

For more information about the permissions required to use these triggers and relevant
functions, see Table 1-7.

FunctionGraph
User Guide 1 Service Overview

2024-08-07 13

Table 1-7 Permissions required to use triggers and relevant functions

Trigger/Function Permission

APIG apig:groups:get
apig:groups:list
apig:apis:create
apig:apis:delete
apig:apis:update
apig:apis:publish
apig:apis:list
apig:apis:get
apig:apis:offline
apig:apps:list
apig:envs:list

APIG (dedicated) apig:instances:get
apig:instances:create
apig:instances:update
apig:instances:list
apig:sharedInstance:operate

CTS cts:notification:create
cts:notification:delete
cts:notification:update
cts:operation:list
cts:tracker:list
cts:trace:list

DDS dds:instance:get
dds:instance:list

DIS dis:streams:list

IoTDA iotda:routingrules:create
iotda:routingrules:delete
iotda:routingrules:queryList
iotda:routingrules:query
iotda:routingactions:create
iotda:routingactions:delete
iotda:routingactions:query
iotda:routingactions:queryList
iotda:subscriptions:queryList
iotda:rules:modifyStatus
iotda:apps:queryList

FunctionGraph
User Guide 1 Service Overview

2024-08-07 14

Trigger/Function Permission

LTS lts:groups:create
lts:groups:get
lts:groups:list
lts:groups:put
lts:logstreams:delete
lts:logstreams:list
lts:topics:get
lts:subscriptions:create
lts:subscriptions:delete
lts:subscriptions:put
lts:structConfig:create
lts:structConfig:get

OBS obs:bucket:GetBucketLocation
obs:bucket:GetBucketNotification
obs:bucket:PutBucketNotification
obs:bucket:ListBucket

SMN smn:topic:list
smn:topic:update

TMS tms:predefineTags:list
tms:tagValues:list

DNS dns:recordset:create,
dns:recordset:list,
dns:recordset:update,
dns:zone:create,
dns:zone:delete,
dns:zone:get,
dns:zone:list

BSS bss:bill:view
bss:renewal:view

CES ces:alarms:get
ces:alarms:list
ces:alarms:create

DMS dms:instance:get

FunctionGraph
User Guide 1 Service Overview

2024-08-07 15

Trigger/Function Permission

EG eg:subscriptions:get
eg:subscriptions:list
eg:sources:list
eg:sources:get
eg:agency:create
eg:subscriptions:create
eg:subscriptions:delete
eg:subscriptions:operate

Table 1-8 lists the common operations supported by each system-defined policy
of FunctionGraph. Please choose proper system-defined policies according to this
table.

Table 1-8 Common operations supported by each system-defined policy

Operation FunctionGraph
ReadOnlyAccess

FunctionGraph
CommonOperation
s

FunctionGraph
FullAccess

Creating
functions

× × √

Querying
functions

√ √ √

Modifying
functions

× × √

Deleting
functions

× × √

Invoking
functions

× √ √

Querying
function logs

√ √ √

Viewing function
metrics

√ √ √

1.8 Concepts

Function

Functions are code defined to handle events.

FunctionGraph
User Guide 1 Service Overview

2024-08-07 16

Event Source
An event source is a public cloud service or custom application that publishes
events.

Synchronous Invocation
Clients wait for explicit responses to their requests from a function. Responses are
returned only after the function is invoked.

Asynchronous Invocation
Clients do not care about the function invocation results of their requests. After
receiving a request, FunctionGraph puts it in a queue, returns a response, and
processes other requests when there are idle resources.

Trigger
A trigger is an event that triggers function execution.

Single-Instance Multi-Concurrency
The number of requests that can be concurrently processed by an instance.

Custom Images
You can directly package and upload container images. The platform then loads
and starts these images to create functions.

Custom Function Execution
You can customize scripts and files to execute functions.

Function Logs
Logs generated during function invocation.

Function Monitoring
Monitoring information generated during function execution.

Function Version
FunctionGraph allows you to publish one or more versions throughout the
development, testing, and production processes to manage your function code.
The code and environment variables of each version are saved as a snapshot. After
the function code is published, modify settings when necessary.

Function Alias
You can create an alias for a specific function version. To roll back to a previous
version, use the corresponding alias to represent the version instead of modifying
the function code.

FunctionGraph
User Guide 1 Service Overview

2024-08-07 17

Each function alias can be bound to a major version and an additional version for
traffic shifting.

Dependency Package
FunctionGraph enables you to manage dependencies in a unified manner. You can
upload dependencies from a local path, or through OBS if they are too large, and
specify names for them.

Bootstrap File
The bootstrap file is the startup file of an HTTP function. The HTTP function can
only read bootstrap as the startup file name. If the file name is not bootstrap, the
service cannot be started.

1.9 Relationships Between FunctionGraph and Other
Services

Table 1-9 describes the cloud services that have been interconnected with
FunctionGraph.

Table 1-9 Interconnected services

Service Function

SMN FunctionGraph functions are constructed to process SMN
notifications.

OBS FunctionGraph functions are created to process OBS bucket
events, such as object creation or deletion events. For
example, when an image is uploaded to the specified bucket,
OBS invokes the function to read the image and create a
thumbnail.

Cloud Eye FunctionGraph is interconnected with Cloud Eye to report
monitoring metrics, allowing you to view function metrics
and alarm messages through Cloud Eye.

VPC Functions can be configured to access resources in Virtual
Private Clouds (VPCs) or to access the Internet through
source network address translation (SNAT) by binding elastic
IP addresses.

FunctionGraph
User Guide 1 Service Overview

2024-08-07 18

2 Getting Started

2.1 Introduction

General Procedure

FunctionGraph allows you to run your code without provisioning or managing
servers, while ensuring high availability and scalability. All you need to do is
upload your code and set execution conditions, and FunctionGraph will take care
of the rest.

To quickly create a function using FunctionGraph, do as follows:

FunctionGraph
User Guide 2 Getting Started

2024-08-07 19

1. Set permissions: Ensure that you have the FunctionGraph FullAccess
permissions.

2. Create a function: Create a function from scratch or using the sample code or
a container image.

3. Configure the function: Configure the code source or modify other
parameters.

4. Test the function: Create a test event to debug the function.
5. View the execution result: On the function details page, view the execution

result based on the configured test event.
6. View metrics: On the Monitoring tab page of the function details page, view

function metrics.

2.2 Creating a Function from Scratch

Introduction
This section describes how to quickly create and test a HelloWorld function on the
FunctionGraph console.

Step 1: Prepare the Environment
To perform the operations described in this section, ensure that you have the
FunctionGraph FullAccess permissions, that is, all permissions for FunctionGraph.
For more information, see Permissions Management.

Step 2: Create a Function
1. Log in to the FunctionGraph console. In the navigation pane, choose

Functions > Function List.
2. Click Create Function in the upper right corner and choose Create from

scratch.
3. On the displayed page, set Function Name to HelloWorld, retain the default

values for other parameters, and click Create Function. For details, see Figure
2-1.

FunctionGraph
User Guide 2 Getting Started

2024-08-07 20

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0160_0.html

Figure 2-1 Configuring basic information

4. Configure the code source, copy the following code to the code window, and
click Deploy.
The sample code enables you to obtain test events and print test event
information.
exports.handler = function (event, context, callback) {
 const error = null;
 const output = `Hello message: ${JSON.stringify(event)}`;
 callback(error, output);
}

Step 3: Test the Function
1. On the function details page, click Test. In the displayed dialog box, create a

test event.
2. Select blank-template, set Event Name to test, modify the test event as

follows, and click Create.
{
 "hello": "function"
}

FunctionGraph
User Guide 2 Getting Started

2024-08-07 21

Figure 2-2 Configuring a test event

Step 4: View the Execution Result
Click Test and view the execution result on the right.

● Function Output: displays the return result of the function.
● Log Output: displays the execution logs of the function.
● Summary: displays key information of the logs.

Figure 2-3 Viewing the execution result

NO TE

A maximum of 2 KB logs can be displayed. For more log information, see Querying
Function Logs.

Step 5: View Monitoring Metrics
On the function details page, click the Monitoring tab.

● On the Monitoring tab page, choose Metrics, and select a time range (such
as 5 minutes, 15 minutes, or 1 hour) to query the function.

● The following metrics are displayed: invocations, errors, duration (maximum,
average, and minimum durations), throttles, and instance statistics (reserved
instances).

Step 6: Delete a Function
1. On the function details page, choose Operation > Delete Function in the

upper right corner.

FunctionGraph
User Guide 2 Getting Started

2024-08-07 22

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0170.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0170.html

2. In the confirmation dialog box, enter DELETE and click OK to release
resources in a timely manner.

2.3 Creating a Function Using a Template

Introduction

FunctionGraph provides templates to automatically complete code and running
environment configurations when you create a function, helping you quickly build
applications.

Step 1: Prepare the Environment

To perform the operations described in this section, ensure that you have the
FunctionGraph FullAccess permissions, that is, all permissions for FunctionGraph.
For more information, see Permissions Management.

Step 2: Create a Function
1. Log in to the FunctionGraph console. In the navigation pane, choose

Functions > Function List.

2. Click Create Function in the upper right corner and choose Select template.

3. Select the template shown in Figure 2-4 and click Configure.

Figure 2-4 Selecting a template

4. Set Function Name to context, select any agency from the Agency drop-
down list, retain default values for other parameters, and click Create
Function.

NO TE

● If no agency is configured, the following message will be displayed when the
function is triggered:
Failed to access other services because no temporary AK, SK, or token has been obtained.
Please set an agency.

FunctionGraph
User Guide 2 Getting Started

2024-08-07 23

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0160_0.html

Figure 2-5 Setting basic information

Step 3: Test the Function
1. On the function details page, click Test. In the displayed dialog box, create a

test event.
2. Select blank-template, set Event Name to test, and click Create.

Figure 2-6 Configuring a test event

Step 4: View the Execution Result
Click Test and view the execution result on the right.

● Function Output: displays the return result of the function.
● Log Output: displays the execution logs of the function.
● Summary: displays key information of the logs.

FunctionGraph
User Guide 2 Getting Started

2024-08-07 24

NO TE

A maximum of 2 KB logs can be displayed. For more log information, see Querying
Function Logs.

Step 5: View Monitoring Metrics
On the function details page, click the Monitoring tab.

● On the Monitoring tab page, choose Metrics, and select a time range (such
as 5 minutes, 15 minutes, or 1 hour) to query the function.

● The following metrics are displayed: invocations, errors, duration (maximum,
average, and minimum durations), throttles, and instance statistics (reserved
instances).

Step 6: Delete a Function
1. On the function details page, choose Operation > Delete Function in the

upper right corner.
2. In the confirmation dialog box, enter DELETE and click OK to release

resources in a timely manner.

2.4 Deploying a Function Using a Container Image

2.4.1 Developing an HTTP Function

Introduction
When developing an HTTP function using a custom image, implement an HTTP
server in the image and listen on port 8000 for requests. (Do not change port
8000 in the examples provided in this section.) HTTP functions support only
APIG triggers.

Step 1: Prepare the Environment
To perform the operations described in this section, ensure that you have the
FunctionGraph FullAccess permissions, that is, all permissions for FunctionGraph.
For more information, see Permissions Management.

Step 2: Create an Image
Take the Linux x86 64-bit OS as an example. (No system configuration is
required.)

1. Create a folder.
mkdir custom_container_http_example && cd custom_container_http_example

2. Implement an HTTP server. Node.js is used as an example. For details about
other languages, see Creating an HTTP Function.
Create the main.js file to introduce the Express framework, receive POST
requests, print the request body as standard output, and return "Hello
FunctionGraph, method POST" to the client.

FunctionGraph
User Guide 2 Getting Started

2024-08-07 25

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0170.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0170.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0160_0.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_1442.html

const express = require('express');

const PORT = 8000;

const app = express();
app.use(express.json());

app.post('/*', (req, res) => {
 console.log('receive', req.body);
 res.send('Hello FunctionGraph, method POST');
});

app.listen(PORT, () => {
 console.log(`Listening on http://localhost:${PORT}`);
});

3. Create the package.json file for npm so that it can identify the project and
process project dependencies.
{
 "name": "custom-container-http-example",
 "version": "1.0.0",
 "description": "An example of a custom container http function",
 "main": "main.js",
 "scripts": {},
 "keywords": [],
 "author": "",
 "license": "ISC",
 "dependencies": {
 "express": "^4.17.1"
 }
}

– name: project name

– version: project version

– main: application entry file

– dependencies: all available dependencies of the project in npm

4. Create a Dockerfile.
FROM node:12.10.0

ENV HOME=/home/custom_container
ENV GROUP_ID=1003
ENV GROUP_NAME=custom_container
ENV USER_ID=1003
ENV USER_NAME=custom_container

RUN mkdir -m 550 ${HOME} && groupadd -g ${GROUP_ID} ${GROUP_NAME} && useradd -u $
{USER_ID} -g ${GROUP_ID} ${USER_NAME}

COPY --chown=${USER_ID}:${GROUP_ID} main.js ${HOME}
COPY --chown=${USER_ID}:${GROUP_ID} package.json ${HOME}

RUN cd ${HOME} && npm install

RUN chown -R ${USER_ID}:${GROUP_ID} ${HOME}

RUN find ${HOME} -type d | xargs chmod 500
RUN find ${HOME} -type f | xargs chmod 500

USER ${USER_NAME}
WORKDIR /

EXPOSE 8000
ENTRYPOINT ["node", "main.js"]

– FROM: Specify base image node:12.10.0. The base image is mandatory
and its value can be changed.

FunctionGraph
User Guide 2 Getting Started

2024-08-07 26

– ENV: Set environment variables HOME (/home/custom_container),
GROUP_NAME and USER_NAME (custom_container), USER_ID and
GROUP_ID (1003). These environment variables are mandatory and their
values can be changed.

– RUN: Use the format RUN <Command>. For example, RUN mkdir -m
550 ${HOME}, which means to create the home directory for user $
{USER_NAME} during container building.

– USER: Switch to user ${USER_NAME}.
– WORKDIR: Switch the working directory to the / directory of user $

{USER_NAME}.
– COPY: Copy main.js and package.json to the home directory of user $

{USER_NAME} in the container.
– EXPOSE: Expose port 8000 of the container. Do not change this

parameter.
– ENTRYPOINT: Run the node main.js command to start the container. Do

not change this parameter.

NO TE

1. You can use any base image.

2. In the cloud environment, UID 1003 and GID 1003 are used to start the container
by default. The two IDs can be modified by choosing Configuration > Basic
Settings > Container Image Override on the function details page. They cannot
be root or a reserved ID.

3. Do not change port 8000 in the example HTTP function.

5. Build an image.
In the following example, the image name is
custom_container_http_example, the tag is latest, and the period (.)
indicates the directory where the Dockerfile is located. Run the image build
command to pack all files in the directory and send the package to a
container engine to build an image.
docker build -t custom_container_http_example:latest .

Step 3: Perform Local Verification
1. Start the Docker container.

docker run -u 1003:1003 -p 8000:8000 custom_container_http_example:latest

2. Open a new Command Prompt, and send a message through port 8000. You
can access all paths in the root directory in the template code. The following
uses helloworld as an example.
curl -XPOST -H 'Content-Type: application/json' -d '{"message":"HelloWorld"}' localhost:8000/
helloworld

The following information is returned based on the module code:
Hello FunctionGraph, method POST

3. Check whether the following information is displayed:
receive {"message":"HelloWorld"}

Alternatively, run the docker logs command to obtain container logs.

FunctionGraph
User Guide 2 Getting Started

2024-08-07 27

Step 4: Upload the Image
1. Log in to the SoftWare Repository for Container (SWR) console. In the

navigation pane, choose My Images.
2. Click Upload Through Client or Upload Through SWR in the upper right

corner.
3. Upload the image as prompted.

4. View the image on the My Images page.

Step 5: Create a Function
1. In the left navigation pane of the management console, choose Compute >

FunctionGraph. On the FunctionGraph console, choose Functions > Function
List from the navigation pane.

2. Click Create Function in the upper right corner and choose Container Image.
3. Set the basic information.

– Function Type: Select HTTP Function.
– Function Name: Enter custom_container_http.
– Container Image: Select the image uploaded to SWR.
– Agency: Select an agency with the SWR Admin permission. If no agency

is available, create one by referring to Creating an Agency.
4. After the configuration is complete, click Create Function.

Step 6: Test the Function
1. On the function details page, click Test. In the displayed dialog box, create a

test event.
2. Select apig-event-template, set Event Name to helloworld, modify the test

event as follows, and click Create.
{
 "body": "{\"message\": \"helloworld\"}",
 "requestContext": {
 "requestId": "11cdcdcf33949dc6d722640a13091c77",
 "stage": "RELEASE"
 },
 "queryStringParameters": {
 "responseType": "html"
 },
 "httpMethod": "POST",
 "pathParameters": {},
 "headers": {
 "Content-Type": "application/json"
 },
 "path": "/helloworld",
 "isBase64Encoded": false
}

FunctionGraph
User Guide 2 Getting Started

2024-08-07 28

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0920.html

Step 7: View the Execution Result

Click Test and view the execution result on the right.

Figure 2-7 Execution result

● Function Output: displays the return result of the function.

● Log Output: displays the execution logs of the function.

● Summary: displays key information of the logs.

NO TE

A maximum of 2 KB logs can be displayed. For more log information, see Querying
Function Logs.

Step 8: View Monitoring Metrics

On the function details page, click the Monitoring tab.

● On the Monitoring tab page, choose Metrics, and select a time range (such
as 5 minutes, 15 minutes, or 1 hour) to query the function.

● The following metrics are displayed: invocations, errors, duration (maximum,
average, and minimum durations), throttles, and instance statistics (reserved
instances).

FunctionGraph
User Guide 2 Getting Started

2024-08-07 29

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0170.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0170.html

Step 9: Delete the Function
1. On the function details page, choose Operation > Delete Function in the

upper right corner.
2. In the confirmation dialog box, enter DELETE and click OK to release

resources in a timely manner.

FunctionGraph
User Guide 2 Getting Started

2024-08-07 30

3 Before You Start

3.1 Use of FunctionGraph
FunctionGraph allows you to run your code without provisioning or managing
servers, while ensuring high availability and scalability. All you need to do is
upload your code and set execution conditions, and FunctionGraph will take care
of the rest.

Process
Figure 3-1 shows the process of using functions.

1. Write code, package and upload it to FunctionGraph, and add event sources
such as Simple Message Notification (SMN), Object Storage Service (OBS),
and API Gateway (APIG) event sources to build applications.

2. Functions are triggered by RESTful API calls or event sources to achieve
expected service purposes. During this process, FunctionGraph automatically
schedules resources.

3. View logs and metrics. Note that you will be billed based on code execution
duration.

FunctionGraph
User Guide 3 Before You Start

2024-08-07 31

Figure 3-1 Flowchart

The following shows the details:

1. Write code.

Write code in Node.js, Python, Java, or Go.

2. Upload code.

Edit code inline, upload a local ZIP or JAR file, or upload a ZIP file from OBS.
For details, see Creating a Deployment Package.

3. Trigger functions by API calls or cloud service events.

Functions are triggered by API calls or cloud service events. For details, see
Creating Triggers.

4. Implement auto scaling.

FunctionGraph implements auto scaling based on the number of requests. For
details, see Notes and Constraints.

5. View logs.

View run logs of function. FunctionGraph is interconnected with Log Tank
Service (LTS). For details, see Logs.

6. View monitoring information.

View graphical monitoring information. FunctionGraph is interconnected with
Cloud Eye. For details, see Metrics.

FunctionGraph
User Guide 3 Before You Start

2024-08-07 32

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0150.html

Introduction to Dashboard
Log in to the FunctionGraph console and choose Dashboard in the navigation
pane on the left.
● View your created functions/function quota, used storage/storage quota, and

monthly invocations and resource usage.

Figure 3-2 Monthly statistics

● View tenant-level metrics, including invocations, errors, duration, and
throttles.
Table 3-1 describes the function metrics.

Table 3-1 Function metrics

Metric Unit Description

Invocati
ons

Coun
t

Total number of invocation requests, including invocation
errors and throttled invocations. In case of asynchronous
invocation, the count starts only when a function is
executed in response to a request.

Duratio
n

ms Maximum duration: the maximum duration all functions
are executed at a time within a period.
Minimum duration: the minimum duration all functions
are executed at a time within a period.
Average duration: the average duration all functions are
executed at a time within a period.

Errors Coun
t

Number of times that your functions failed with error
code 200 being returned. Errors caused by function
syntax or execution are also included.

Throttle
s

Coun
t

Number of times that FunctionGraph throttles your
functions due to the resource limit.

3.2 Permissions Management

3.2.1 Creating a User and Granting Permissions

This section describes how to use Identity and Access Management (IAM) to
implement fine-grained permissions control for your FunctionGraph resources.
With IAM, you can:

FunctionGraph
User Guide 3 Before You Start

2024-08-07 33

● Create IAM users for employees based on the organizational structure of your
enterprise. Each IAM user has their own security credentials for accessing
FunctionGraph resources.

● Grant only the permissions required for users to perform a task.
● Entrust other accounts or cloud services to perform professional and efficient

O&M on your FunctionGraph resources.

If your account does not need individual IAM users, then you may skip over this
chapter.

This section describes the procedure for granting permissions. For details, see
Figure 3-3.

Prerequisites
Before assigning permissions to user groups, you should learn about the system
permissions listed in "Permissions Management" in the FunctionGraph Service
Overview. For the system policies of other services, see section "Permissions".

Process

Figure 3-3 Process for granting FunctionGraph permissions

1. .
Create a user group on the IAM console, and assign the FunctionGraph
Invoker role to the group.

2. .
Create a user on the IAM console and add the user to the group created in 1.

3. and Verifying Permissions
Log in to the management console as the created user and check whether
this user only has read permissions for FunctionGraph:

FunctionGraph
User Guide 3 Before You Start

2024-08-07 34

– Choose Service List > FunctionGraph to access the FunctionGraph
console. In the navigation pane, choose Functions > Function List. Then
click Create Function. If a message appears indicating insufficient
permissions to perform the operation, the FunctionGraph Invoker role
has already taken effect.

– Choose any other service in the Service List. If a message appears
indicating insufficient permissions to access the service, the
FunctionGraph Invoker role has already taken effect.

3.2.2 Creating a Custom Policy
Custom policies can be created as a supplement to the system policies of
FunctionGraph.

You can create custom policies in either of the following ways:

● Visual editor: Select cloud services, actions, resources, and request conditions.
This does not require knowledge of policy syntax.

● JSON: Edit JSON policies from scratch or based on an existing policy.

For details, see Creating a Custom Policy. This section introduces examples of
common FunctionGraph custom policies.

Example Custom Policies
● Example 1: Authorizing a user to query function code and configuration

{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "functiongraph:function:list",
 "functiongraph:function:getConfig",
 "funcitongraph:function:getCode"
]
 }
]
}

● Example 2: Denying function deletion
A policy with only "Deny" permissions must be used in conjunction with other
policies to take effect. If both "Allow" and "Deny" permissions are assigned to
a user, the "Deny" permissions take precedence over the "Allow" permissions.
If you need to assign permissions of the FunctionGraph FullAccess policy to
a user but prevent the user from deleting functions, create a custom policy for
denying function deletion, and attach both policies to the group to which the
user belongs. In this way, the user can perform all operations on
FunctionGraph except deleting functions. The following is an example of a
deny policy:
{
 "Version": "1.1",
 "Statement": [
 "Effect": "Deny",
 "Action": [
 "functiongraph:function:delete"
]
]
}

FunctionGraph
User Guide 3 Before You Start

2024-08-07 35

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-iam/iam_01_0605.html

● Example 3: Configuring permissions for specific resources

You can grant an IAM user permissions for specific resources. For example, to
grant a user permissions for the functionname function in the Default
application, set functionname to a specified resource path, that is,
FUNCTIONGRAPH:*:*:function:Default/functionname.

NO TE

Specify function resources:

Format: FUNCTIONGRAPH:*:*:function: application or function name

For function resources, IAM automatically generates the resource path prefix
FUNCTIONGRAPH:*:*:function:. You can specify a resource path by adding the
application or function name next to the path prefix. Wildcards (*) are supported. For
example, FUNCTIONGRAPH:*:*:function:Default/* indicates any function in the
Default application.

{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "functiongraph:function:list"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "functiongraph:function:listAlias",
 "functiongraph:function:listVersion",
 "functiongraph:function:getConfig",
 "functiongraph:function:getCode",
 "functiongraph:function:updateCode",
 "functiongraph:function:invoke",
 "functiongraph:function:updateConfig",
 "functiongraph:function:createVersion",
 "functiongraph:function:updateAlias",
 "functiongraph:function:createAlias"
],
 "Resource": [
 "FUNCTIONGRAPH:*:*:function:Default/*"
]
 }
]
}

3.3 Supported Programming Languages

3.3.1 Node.js
√: Supported. ×: Not supported.

Runtime Supported

Node.js 6.10 √

Node.js 8.10 √

Node.js 10.16 √

FunctionGraph
User Guide 3 Before You Start

2024-08-07 36

Runtime Supported

Node.js 12.13 √

Node.js 14.18 √

Node.js 16.17 √

Node.js 18.15 √

3.3.2 Python
√: Supported. ×: Not supported.

Runtime Supported

Python 2.7 √

Python 3.6 √

Python 3.9 √

Python 3.10 √

3.3.3 Java
√: Supported. ×: Not supported.

Runtime Supported

Java 8 √

Java 11 √

3.3.4 Go
√: Supported. ×: Not supported.

Runtime Supported

Go 1.x √

3.3.5 Custom Runtime

Scenarios
A runtime runs the code of a function, reads the handler name from an
environment variable, and reads invocation events from the runtime APIs of

FunctionGraph
User Guide 3 Before You Start

2024-08-07 37

FunctionGraph. The runtime passes event data to the function handler and returns
the response from the handler to FunctionGraph.

FunctionGraph supports custom runtimes. You can use an executable file named
bootstrap to include a runtime in your function deployment package. The runtime
runs the function's handler method when the function is invoked.

Your runtime runs in the FunctionGraph execution environment. It can be a shell
script or a binary executable file that is compiled in Linux.

NO TE

After programming, simply package your code into a ZIP file (Java, Node.js, Python, and
Go) or JAR file (Java), and upload the file to FunctionGraph for execution. When creating a
ZIP file, place the handler file under the root directory to ensure that your code can run
normally after being decompressed.
If you edit code in Go, zip the compiled file, and ensure that the name of the dynamic
library file is consistent with the plug-in name of the handler. For example, if the name of
the dynamic library file is testplugin.so, set the handler name to testplugin.Handler.

Compiling Description
If you compile files on Windows and execute them on Linux, you need to
configure the following parameters:
CGO_ENABLED=0 GOOS=linux GOARCH=amd64 go build main.go

Runtime File bootstrap
If there is a file named bootstrap in your function deployment package,
FunctionGraph executes that file. If the bootstrap file is not found or not
executable, your function will return an error when invoked.

The runtime code is responsible for completing initialization tasks. It processes
invocation events in a loop until it is terminated.

The initialization tasks run once for each instance of the function to prepare the
environment for handling invocations.

Runtime APIs
FunctionGraph provides HTTP runtime APIs to receive function invocation events
and returns response data in the execution environment.

● Obtaining Invocation Event
Method – Get
Path – http://$RUNTIME_API_ADDR/v1/runtime/invocation/request
This API is used to retrieve an invocation event. The response body contains
the event data. The following table describes additional data about the
invocation contained in the response header.

Table 3-2 Response header information

Parameter Description

X-Cff-Request-Id Request ID.

FunctionGraph
User Guide 3 Before You Start

2024-08-07 38

Parameter Description

X-CFF-Access-Key AK of the account. An agency must
be configured for the function if this
variable is used.

X-CFF-Auth-Token Token of the account. An agency
must be configured for the function
if this variable is used.

X-CFF-Invoke-Type Invocation type of the function.

X-CFF-Secret-Key SK of the account. An agency must
be configured for the function if this
variable is used.

X-CFF-Security-Token Security token of the account. An
agency must be configured for the
function if this variable is used.

● Invocation Response

Method – POST
Path – http://$RUNTIME_API_ADDR/v1/runtime/invocation/response/
$REQUEST_ID
This API is used to send a successful invocation response to FunctionGraph.
After the runtime invokes the function handler, it publishes the response from
the function to the invocation response path.

● Invocation Error
Method – POST
Path – http://$RUNTIME_API_ADDR/v1/runtime/invocation/error/
$REQUEST_ID
$REQUEST_ID is the value of variable X-Cff-Request-Id in the header of an
event retrieval response. For more information, see Table 3-2.
$RUNTIME_API_ADDR is a system environment variable. For more
information, see Table 3-3.
This API is used to send an error invocation response to FunctionGraph. After
the runtime invokes the function handler, it publishes the response from the
function to the invocation response path.

Runtime Environment Variables

You can use both custom and runtime environment variables in function code. The
following table lists the runtime environment variables that are used in the
FunctionGraph execution environment.

Table 3-3 Environment variables

Key Description

RUNTIME_PROJECT_ID Project ID

FunctionGraph
User Guide 3 Before You Start

2024-08-07 39

Key Description

RUNTIME_FUNC_NAME Function name

RUNTIME_FUNC_VERSION Function version

RUNTIME_PACKAGE App to which the function belongs

RUNTIME_HANDLER Function handler

RUNTIME_TIMEOUT Function timeout duration

RUNTIME_USERDATA Value passed through an environment
variable

RUNTIME_CPU Number of allocated CPU cores

RUNTIME_MEMORY Allocated memory

RUNTIME_CODE_ROOT Directory that stores the function code

RUNTIME_API_ADDR Host IP address and port of a custom
runtime API

The value of a custom environment variable can be retrieved in the same way as
the value of a FunctionGraph environment variable.

Example

This example contains one file called bootstrap. The file is implemented in Bash.

The runtime loads the function script from the deployment package by using two
variables.

The bootstrap file is as follows:

#!/bin/sh
set -o pipefail
#Processing requests loop
while true
do
HEADERS="$(mktemp)"
 # Get an event
 EVENT_DATA=$(curl -sS -LD "$HEADERS" -X GET "http://$RUNTIME_API_ADDR/v1/runtime/invocation/
request")
 # Get request id from response header
 REQUEST_ID=$(grep -Fi x-cff-request-id "$HEADERS" | tr -d '[:space:]' | cut -d: -f2)
 if [-z "$REQUEST_ID"]; then
 continue
 fi
 # Process request data
 RESPONSE="Echoing request: hello world!"
 # Put response
 curl -X POST "http://$RUNTIME_API_ADDR/v1/runtime/invocation/response/$REQUEST_ID" -d
"$RESPONSE"
done

After loading the script, the runtime processes invocation events in a loop until it
is terminated. It uses the API to retrieve invocation events from FunctionGraph,

FunctionGraph
User Guide 3 Before You Start

2024-08-07 40

passes the events to the handler, and then sends responses back to
FunctionGraph.

To obtain the request ID, the runtime saves the API response header in a
temporary file, and then reads the request ID from the x-cff-request-id header
field. The runtime processes the retrieved event data and sends a response back to
FunctionGraph.

The following is an example of source code in Go. It can be executed only after
compilation.

package main

import (
 "bytes"
 "encoding/json"
 "fmt"
 "io"
 "io/ioutil"
 "log"
 "net"
 "net/http"
 "os"
 "strings"
 "time"
)

var (
 getRequestUrl = os.ExpandEnv("http://${RUNTIME_API_ADDR}/v1/runtime/invocation/
request")
 putResponseUrl = os.ExpandEnv("http://${RUNTIME_API_ADDR}/v1/runtime/invocation/
response/{REQUEST_ID}")
 putErrorResponseUrl = os.ExpandEnv("http://${RUNTIME_API_ADDR}/v1/runtime/
invocation/error/{REQUEST_ID}")
 requestIdInvalidError = fmt.Errorf("request id invalid")
 noRequestAvailableError = fmt.Errorf("no request available")
 putResponseFailedError = fmt.Errorf("put response failed")
 functionPackage = os.Getenv("RUNTIME_PACKAGE")
 functionName = os.Getenv("RUNTIME_FUNC_NAME")
 functionVersion = os.Getenv("RUNTIME_FUNC_VERSION")

 client = http.Client{
 Transport: &http.Transport{
 DialContext: (&net.Dialer{
 Timeout: 3 * time.Second,
 }).DialContext,
 },
 }
)

func main() {
 // main loop for processing requests.
 for {
 requestId, header, payload, err := getRequest()
 if err != nil {
 time.Sleep(50 * time.Millisecond)
 continue
 }

 result, err := processRequestEvent(requestId, header, payload)
 err = putResponse(requestId, result, err)
 if err != nil {

FunctionGraph
User Guide 3 Before You Start

2024-08-07 41

 log.Printf("put response failed, err: %s.", err.Error())
 }
 }
}

// event processing function
func processRequestEvent(requestId string, header http.Header, evtBytes []byte) ([]byte, error) {
 log.Printf("processing request '%s'.", requestId)
 result := fmt.Sprintf("function: %s:%s:%s, request id: %s, headers: %+v, payload: %s",
functionPackage, functionName,
 functionVersion, requestId, header, string(evtBytes))

 var event FunctionEvent
 err := json.Unmarshal(evtBytes, &event)
 if err != nil {
 return (&ErrorMessage{ErrorType: "invalid event", ErrorMessage: "invalid json formated
event"}).toJsonBytes(), err
 }

 return (&APIGFormatResult{StatusCode: 200, Body: result}).toJsonBytes(), nil
}

func getRequest() (string, http.Header, []byte, error) {
 resp, err := client.Get(getRequestUrl)
 if err != nil {
 log.Printf("get request error, err: %s.", err.Error())
 return "", nil, nil, err
 }
 defer resp.Body.Close()

 // get request id from response header
 requestId := resp.Header.Get("X-CFF-Request-Id")
 if requestId == "" {
 log.Printf("request id not found.")
 return "", nil, nil, requestIdInvalidError
 }

 payload, err := ioutil.ReadAll(resp.Body)
 if err != nil {
 log.Printf("read request body error, err: %s.", err.Error())
 return "", nil, nil, err
 }

 if resp.StatusCode != 200 {
 log.Printf("get request failed, status: %d, message: %s.", resp.StatusCode, string(payload))
 return "", nil, nil, noRequestAvailableError
 }

 log.Printf("get request ok.")
 return requestId, resp.Header, payload, nil
}

func putResponse(requestId string, payload []byte, err error) error {
 var body io.Reader
 if payload != nil && len(payload) > 0 {
 body = bytes.NewBuffer(payload)
 }

 url := ""
 if err == nil {
 url = strings.Replace(putResponseUrl, "{REQUEST_ID}", requestId, -1)
 } else {

FunctionGraph
User Guide 3 Before You Start

2024-08-07 42

 url = strings.Replace(putErrorResponseUrl, "{REQUEST_ID}", requestId, -1)
 }

 resp, err := client.Post(strings.Replace(url, "{REQUEST_ID}", requestId, -1), "", body)
 if err != nil {
 log.Printf("put response error, err: %s.", err.Error())
 return err
 }
 defer resp.Body.Close()

 responsePayload, err := ioutil.ReadAll(resp.Body)
 if err != nil {
 log.Printf("read request body error, err: %s.", err.Error())
 return err
 }

 if resp.StatusCode != 200 {
 log.Printf("put response failed, status: %d, message: %s.", resp.StatusCode,
string(responsePayload))
 return putResponseFailedError
 }

 return nil
}

type FunctionEvent struct {
 Type string `json:"type"`
 Name string `json:"name"`
}

type APIGFormatResult struct {
 StatusCode int `json:"statusCode"`
 IsBase64Encoded bool `json:"isBase64Encoded"`
 Headers map[string]string `json:"headers,omitempty"`
 Body string `json:"body,omitempty"`
}

func (result *APIGFormatResult) toJsonBytes() []byte {
 data, err := json.MarshalIndent(result, "", " ")
 if err != nil {
 return nil
 }

 return data
}

type ErrorMessage struct {
 ErrorType string `json:"errorType"`
 ErrorMessage string `json:"errorMessage"`
}

func (errMsg *ErrorMessage) toJsonBytes() []byte {
 data, err := json.MarshalIndent(errMsg, "", " ")
 if err != nil {
 return nil
 }

 return data
}

Table 3-4 describes the environment variables used in the preceding code.

FunctionGraph
User Guide 3 Before You Start

2024-08-07 43

Table 3-4 Environment variables

Environment Variable Description

RUNTIME_FUNC_NAME Function name

RUNTIME_FUNC_VERSION Function version

RUNTIME_PACKAGE App to which the function belongs

FunctionGraph
User Guide 3 Before You Start

2024-08-07 44

4 Building Functions

4.1 Creating a Deployment Package
To create a function, you must create a deployment package which includes your
code and all dependencies. You can create a deployment package locally or edit
code on the FunctionGraph console. If you edit code inline, FunctionGraph
automatically creates and uploads a deployment package for your function.
FunctionGraph allows you to edit function code in the same way as managing a
project. You can create and edit files and folders. After you upload a ZIP code
package, you can view and edit the code on the console.

NO TE

● After programming, simply package your code into a ZIP file (Java, Node.js, Python, and
Go) or JAR file (Java), and upload the file to FunctionGraph for execution.

● When creating a ZIP file, place the handler file under the root directory to ensure that
your code can run normally after being decompressed.

● If you edit code in Go, zip the compiled file, and ensure that the name of the dynamic
library file is consistent with the plug-in name of the handler. For example, if the name
of the dynamic library file is testplugin.so, set the handler name to testplugin.Handler.

● Java is a compiled language, which does not support editing code inline. If your function
does not use any third-party dependencies, you can upload a function JAR file. If your
function uses third-party dependencies, compress the dependencies and the function
JAR file into a ZIP file, and then upload the ZIP file.

Table 4-1 lists the code entry modes supported by FunctionGraph for each
runtime.

Table 4-1 Code entry modes

Runtime Editing Code
Inline

Uploading a
ZIP File

Uploading a
JAR File

Uploading a
ZIP File from
OBS

Node.js Supported Supported Not
supported

Supported

FunctionGraph
User Guide 4 Building Functions

2024-08-07 45

Runtime Editing Code
Inline

Uploading a
ZIP File

Uploading a
JAR File

Uploading a
ZIP File from
OBS

Python Supported Supported Not
supported

Supported

Java Not
supported

Supported Supported Supported

Go Not
supported

Supported Not
supported

Supported

Custom
runtime

Supported Supported Not
supported

Supported

NO TICE

If the code to be uploaded contains sensitive information (such as account
passwords), encrypt the sensitive information to prevent leakage.

Table 4-2 Code entry modes

Code Entry
Mode

Description

Edit code
inline

FunctionGraph allows you to edit function code in the same
way as managing a project. You can create and edit files and
folders. After you upload a ZIP code package, you can edit the
code on the Code tab of the function details page.
● File: Create files and folders, save changes, and close all files.
● Edit: Undo/redo typing; cut, copy, and paste code; find and

replace content.
● Settings: Set the font size, auto formatting, and theme color.

Upload ZIP
file

1. On the Code tab of the function details page, choose
Upload > Local ZIP.

2. Click Select File and upload a local code package to
FunctionGraph. The size of the ZIP file cannot exceed 40 MB.
For a larger file, upload it through OBS.

Upload file
from OBS

1. On the Code tab of the function details page, choose
Upload > OBS ZIP.

2. Click Select File and upload a local code package to
FunctionGraph.

Node.js
Editing Code Inline

FunctionGraph
User Guide 4 Building Functions

2024-08-07 46

FunctionGraph provides an SDK for editing code in Node.js. If your custom code
uses only the SDK library, you can edit code using the inline editor on the
FunctionGraph console. After you edit code inline and upload it to FunctionGraph,
the console compresses your code and the related configurations into a
deployment package that FunctionGraph can run.

Uploading a Deployment Package

If your code uses other resources, such as a graphic library for image processing,
first create a deployment package, and then upload the package to the
FunctionGraph console. You can upload a Node.js deployment package in two
ways.

NO TICE

● When creating a ZIP file, place the handler file under the root directory to
ensure that your code can run normally after being decompressed.

● The size of the decompressed source code cannot exceed 1.5 GB. If the code is
too large, contact the customer service.

● Directly uploading a local deployment package
After creating a ZIP deployment package, upload it to the FunctionGraph
console. If the package size exceeds 40 MB, upload the package from OBS.
For details about function resource restrictions, see Notes and Constraints.

● Uploading a deployment package using an OBS bucket
After creating a ZIP deployment package, upload it to an OBS bucket in the
same region as your FunctionGraph, and then paste the link URL of the OBS
bucket into the function. The maximum size of the ZIP file that can be
uploaded to OBS is 300 MB.
For details about function resource restrictions, see Notes and Constraints.

Python
Editing Code Inline

FunctionGraph provides an SDK for editing code in Python. If your custom code
uses only the SDK library, you can edit code using the inline editor on the
FunctionGraph console. After you edit code inline and upload it to FunctionGraph,
the console compresses your code and the related configurations into a
deployment package that FunctionGraph can run.

Uploading a Deployment Package

If your code uses other resources, such as a graphic library for image processing,
first create a deployment package, and then upload the package to the
FunctionGraph console. You can upload a Python deployment package in two
ways.

FunctionGraph
User Guide 4 Building Functions

2024-08-07 47

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0150.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0150.html

NO TICE

● When creating a ZIP file, place the handler file under the root directory to
ensure that your code can run normally after being decompressed.

● The size of the decompressed source code cannot exceed 1.5 GB. If the code is
too large, contact the customer service.

● When you write code in Python, do not name your package with the same
suffix as a standard Python library, such as json, lib, and os. Otherwise, an error
indicating a module loading failure will be reported.

● Directly uploading a local deployment package
After creating a ZIP deployment package, upload it to the FunctionGraph
console. If the package size exceeds 40 MB, upload the package from OBS.
For details about function resource restrictions, see Notes and Constraints.

● Uploading a deployment package using an OBS bucket
After creating a ZIP deployment package, upload it to an OBS bucket in the
same region as your FunctionGraph, and then paste the link URL of the OBS
bucket into the function. The maximum size of the ZIP file that can be
uploaded to OBS is 300 MB.
For details about function resource restrictions, see Notes and Constraints.

Java
Java is a compiled language, which does not support editing code inline. You can
only upload a local deployment package, which can be a ZIP or JAR file.

Uploading a JAR File

● If your function does not use any dependencies, directly upload a JAR file.
● If your function uses dependencies, upload them to an OBS bucket, set them

during function creation, and upload the JAR file.

Uploading a ZIP File

If your function uses third-party dependencies, compress the dependencies and
the function JAR file into a ZIP file, and then upload the ZIP file.

You can upload a Java deployment package in two ways.

NO TICE

● When creating a ZIP file, place the handler file under the root directory to
ensure that your code can run normally after being decompressed.

● The size of the decompressed source code cannot exceed 1.5 GB. If the code is
too large, contact the customer service.

● Directly uploading a local deployment package
After creating a ZIP deployment package, upload it to the FunctionGraph
console. If the package size exceeds 40 MB, upload the package from OBS.
For details about function resource restrictions, see Notes and Constraints.

FunctionGraph
User Guide 4 Building Functions

2024-08-07 48

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0150.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0150.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0150.html

● Uploading a deployment package using an OBS bucket

After creating a ZIP deployment package, upload it to an OBS bucket in the
same region as your FunctionGraph, and then paste the link URL of the OBS
bucket into the function. The maximum size of the ZIP file that can be
uploaded to OBS is 300 MB.

For details about function resource restrictions, see Notes and Constraints.

Go

Uploading a Deployment Package

You can only upload a Go deployment package in ZIP format. There are two ways
to upload it.

NO TICE

● When creating a ZIP file, place the handler file under the root directory to
ensure that your code can run normally after being decompressed.

● The size of the decompressed source code cannot exceed 1.5 GB. If the code is
too large, contact the customer service.

● Directly uploading a local deployment package

After creating a ZIP deployment package, upload it to the FunctionGraph
console. If the package size exceeds 40 MB, upload the package from OBS.

For details about function resource restrictions, see Notes and Constraints.

● Uploading a deployment package using an OBS bucket

After creating a ZIP deployment package, upload it to an OBS bucket in the
same region as your FunctionGraph, and then paste the link URL of the OBS
bucket into the function. The maximum size of the ZIP file that can be
uploaded to OBS is 300 MB.

For details about function resource restrictions, see Notes and Constraints.

Custom Runtime

Editing Code Inline

After you edit code inline and upload it to FunctionGraph, the console compresses
your code and the related configurations into a deployment package that
FunctionGraph can run.

Uploading a Deployment Package

If your code uses other resources, such as a graphic library for image processing,
first create a deployment package, and then upload the package to the
FunctionGraph console. You can upload a deployment package for a custom
runtime in two ways.

FunctionGraph
User Guide 4 Building Functions

2024-08-07 49

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0150.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0150.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0150.html

NO TICE

● When creating a ZIP file, place the handler file under the root directory to
ensure that your code can run normally after being decompressed.

● The size of the decompressed source code cannot exceed 1.5 GB. If the code is
too large, contact the customer service.

● Directly uploading a local deployment package
After creating a ZIP deployment package, upload it to the FunctionGraph
console. If the package size exceeds 40 MB, upload the package from OBS.
For details about function resource restrictions, see Notes and Constraints.

● Uploading a deployment package using an OBS bucket
After creating a ZIP deployment package, upload it to an OBS bucket in the
same region as your FunctionGraph, and then paste the link URL of the OBS
bucket into the function. The maximum size of the ZIP file that can be
uploaded to OBS is 300 MB.
For details about function resource restrictions, see Notes and Constraints.

4.2 Creating a Function from Scratch

4.2.1 Creating an Event Function

Overview
A function is customized code for processing events. You can create a function
from scratch and configure the function based on site requirements.

FunctionGraph manages the compute resources required for function execution.
After editing code for your function, configure compute resources on the
FunctionGraph console.

You can create a function from scratch or by using a template or container
image.

NO TE

When creating a function from scratch, configure the basic and code information based on
Table 4-3. The parameters marked with an asterisk (*) are mandatory.
Each FunctionGraph function runs in its own environment and has its own resources and
file system.

Prerequisites
1. You must be familiar with the programming languages supported by

FunctionGraph. For details, see Supported Programming Languages.
2. You have created a deployment package. For details, see Creating a

Deployment Package.
3. (Optional) You have created an agency. For details, see Configuring Agency

Permissions.

FunctionGraph
User Guide 4 Building Functions

2024-08-07 50

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0150.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0150.html

Procedure
1. Log in to the FunctionGraph console. In the navigation pane, choose

Functions > Function List.
2. On the Function List page, click Create Function in the upper right corner.
3. Click Create from scratch and configure the function information by referring

to Table 4-3. The parameters marked with an asterisk (*) are mandatory.

Table 4-3 Basic information

Parameter Description

* Function
Type

● Event functions: triggered by triggers.
● HTTP functions: triggered once HTTP requests are sent

to specific URLs.
NOTE

● HTTP functions do not distinguish between programming
languages. The handler must be set in the bootstrap file.
You can directly write the startup command, and allow
access over port 8000.

● HTTP functions support APIG and APIC triggers only.
● For details about how to use HTTP functions, see Creating

an HTTP Function.

*Region Select a region where you will deploy your code.

*Function
Name

Name of the function, which must meet the following
requirements:
● Consists of 1 to 60 characters, and can contain letters,

digits, hyphens (-), and underscores (_).
● Starts with a letter and ends with a letter or digit.

Agency An agency is required if FunctionGraph accesses other
cloud services. For details on how to create an agency, see
Configuring Agency Permissions.
No agency is required if FunctionGraph does not access
any cloud services.

*Enterprise
Project

Select a created enterprise project and add the function to
it. By default, default is selected.

Runtime Select a runtime to compile the function.
NOTICE

CloudIDE supports Node.js and Python only.

4. Click Create Function. On the displayed Code tab page, continue to configure

the code.

Configuring Code
1. You can deploy the code based on the runtime you select. For details, see

Creating a Deployment Package. After the deployment is complete, click
Deploy.

FunctionGraph
User Guide 4 Building Functions

2024-08-07 51

As shown in the following example, to deploy code in Node.js 10.16, you can
edit code inline, upload a local ZIP file, or upload a ZIP file from OBS.

Figure 4-1 Deploying code

2. You can modify the code and click Deploy to deploy the code again.

Viewing Code Information
1. View code attributes.

Code attributes show the code size and the time the code was modified.

Figure 4-2 Viewing code attributes

2. View basic information.

Configuring Basic Settings shows the default memory and execution timeout
in each runtime. You can click Edit to switch to the Basic Settings page and
modify Handler, Memory (MB), and Execution Timeout (s) as required. For
details, see Figure 4-3.

Figure 4-3 Editing basic information

NO TICE

Once a function is created, the runtime cannot be changed.

Table 4-4 Default basic information of each runtime

Runtime Default Basic Information

Java Memory (MB): 512
Handler: com.demo.TriggerTests.apigTest
Execution Timeout (s): 15

Node.js Memory (MB): 128
Handler: index.handler
Execution Timeout (s): 3

FunctionGraph
User Guide 4 Building Functions

2024-08-07 52

Runtime Default Basic Information

Custom Memory (MB): 128
Handler: bootstrap
Execution Timeout (s): 3

Python Memory (MB): 128
Handler: index.handler
Execution Timeout (s): 3

Go 1.x Memory (MB): 128
Handler: handler
Execution Timeout (s): 3

4.2.2 Creating an HTTP Function

Overview

HTTP functions are designed to optimize web services. You can send HTTP
requests to URLs to trigger function execution. HTTP functions support APIG
triggers only.

NO TE

● HTTP functions do not distinguish between programming languages. The handler must
be set in the bootstrap file. You can directly write the startup command, and allow
access over port 8000. The bound IP address is 127.0.0.1.

● The bootstrap file is the startup file of the HTTP function. The HTTP function can only
read bootstrap as the startup file name. If the file name is not bootstrap, the service
cannot be started. For more information, see the bootstrap file example.

● HTTP functions support multiple programming languages.

● Functions must return a valid HTTP response.

● This section uses Node.js as an example. To use another runtime, simply change the
runtime path. The code package path does not need to be changed. For the paths of
other runtimes, see Table 4-5.

● When a function initiates an HTTP request, the request IP address is dynamic for private
network access and fixed for public network access. For more information, contact
technical support.

Prerequisites
1. Prepare a Node.js script. A code example is as follows:

const http = require('http'); // Import Node.js core module

var server = http.createServer(function (req, res) { //create web server
 res.writeHead(200, { 'Content-Type': 'text/html' });
 res.write('<html><body><h2>This is http function.</h2></body></html>');
 res.end();
});

server.listen(8000, '127.0.0.1'); //6 - listen for any incoming requests

console.log('Node.js web server at port 8000 is running..')

FunctionGraph
User Guide 4 Building Functions

2024-08-07 53

2. You have prepared a bootstrap file as the startup file of the HTTP function.
Example
The content of the bootstrap file is as follows:
/opt/function/runtime/nodejs12.13/rtsp/nodejs/bin/node $RUNTIME_CODE_ROOT/index.js

3. Compress the preceding two files into a ZIP package.

Figure 4-4 Compressing files into a ZIP package

NO TE

For HTTP functions in Python, add the -u parameter in the bootstrap file to ensure
that logs can be flushed to the disk. Example:
/opt/function/runtime/python3.6/rtsp/python/bin/python3 -u $RUNTIME_CODE_ROOT/index.py

To use another runtime, change the runtime path by referring to Table 4-5.
The code package path does not need to be changed.

Table 4-5 Paths for different runtimes

Runtime Path

Java 8 /opt/function/runtime/java8/rtsp/jre/bin/java

Java 11 /opt/function/runtime/java11/rtsp/jre/bin/java

Node.js 6 /opt/function/runtime/nodejs6.10/rtsp/nodejs/bin/
node

Node.js 8 /opt/function/runtime/nodejs8.10/rtsp/nodejs/bin/
node

Node.js 10 /opt/function/runtime/nodejs10.16/rtsp/nodejs/bin/
node

Node.js 12 /opt/function/runtime/nodejs12.13/rtsp/nodejs/bin/
node

Node.js 14 /opt/function/runtime/nodejs14.18/rtsp/nodejs/bin/
node

Node.js 16 /opt/function/runtime/nodejs16.17/rtsp/nodejs/bin/
node

Node.js 18 /opt/function/runtime/nodejs18.15/rtsp/nodejs/bin/
node

FunctionGraph
User Guide 4 Building Functions

2024-08-07 54

Runtime Path

Python 2.7 /opt/function/runtime/python2.7/rtsp/python/bin/
python

Python 3.6 /opt/function/runtime/python3.6/rtsp/python/bin/
python3

Python 3.9 /opt/function/runtime/python3.9/rtsp/python/bin/
python3

Procedure
1. Create a function.

a. Create an HTTP function. For details, see Creating an Event Function.
Pay special attention to the following parameters:

▪ Function Type: HTTP function

▪ Region: Select a region where you will deploy your code.

b. Choose Upload > Local ZIP, upload the ZIP package, and click Deploy.

Figure 4-5 Uploading a ZIP file

2. Create a trigger.

NO TE

HTTP functions support APIG triggers only.

a. On the function details page, choose Configuration > Triggers and click
Create Trigger.

b. Set the trigger information. This step uses an APIG (dedicated) trigger as
an example. For more information, see Using an APIG (Dedicated)
Trigger.

NO TE

In this example, Security Authentication is set to None. You need to select an
authentication mode based on site requirements.
● App: AppKey and AppSecret authentication. This mode is of high security and

is recommended.
● IAM: IAM authentication. This mode grants access permissions to IAM users

only and is of medium security.
● None: No authentication. This mode grants access permissions to all users.

c. When the configuration is complete, click OK. After the trigger is created,
API_test_http will be generated on the APIG console.

3. Publish the API.

a. On the Triggers tab page, click an API name to go to the API overview
page.

FunctionGraph
User Guide 4 Building Functions

2024-08-07 55

b. Click Edit in the upper right corner. The Basic Information page is
displayed.

Figure 4-6 Editing an API

c. Click Next. On the Define API Request page that is displayed, change
Path to /user/get and click Finish.

Figure 4-7 Defining an API request

d. Click Publish API. On the displayed page, click Publish.
4. Trigger a function.

a. Go to the FunctionGraph console, choose Functions > Function List in
the navigation pane, and click the created HTTP function to go to its
details page.

b. Choose Configuration > Triggers, copy the URL, and access it using a
browser.

Figure 4-8 Copying the URL

c. View the request result.

Figure 4-9 Viewing the request result

FunctionGraph
User Guide 4 Building Functions

2024-08-07 56

Common Function Request Headers
The following table lists the default request header fields of an HTTP function.

Table 4-6 Default request header fields

Field Description

X-CFF-Request-Id ID of the current request

X-CFF-Memory Allocated memory

X-CFF-Timeout Function timeout duration

X-CFF-Func-Version Function version

X-CFF-Func-Name Function name

X-CFF-Project-Id Project ID

X-CFF-Package App to which the function belongs

X-CFF-Region Current region

4.3 Creating a Function Using a Template

Overview
FunctionGraph provides templates to automatically complete code, and running
environment configurations when you create a function, helping you quickly build
applications.

Creating a Function
1. Log in to the FunctionGraph console. In the navigation pane, choose

Templates.
2. On the page that is displayed, select the FunctionGraph service, select the

context-class-introduction template for Python 2.7, and click Configure.

NO TE

The context-class-introduction template for Python 2.7 is used as an example. You
can also select other templates.

3. After you select a function template, the built-in code and configurations of
the template are automatically loaded. The Create Function page is
displayed.

4. Set Function Name to context, select a created agency, retain default values
for other parameters, and click Create Function.

FunctionGraph
User Guide 4 Building Functions

2024-08-07 57

NO TE

If no agency is configured, the following message will be displayed when the function
is triggered:
Failed to access other services because no temporary AK, SK, or token has been obtained. Please
set an agency.

5. Set the parameters based for your service requirements.

Triggering a Function
1. On the Code tab page of the context function, click Test in the upper right

corner.
2. In the Configure Test Event dialog box, select Blank Template and click

Create.
3. Click Test. After the test is complete, view the test result.

Figure 4-10 Successful execution result

4.4 Deploying a Function Using a Container Image

Introduction
Package your container images complying with the Open Container Initiative
(OCI) standard, and upload them to FunctionGraph. The images will be loaded
and run by FunctionGraph. Unlike the code upload mode, you can use a custom
code package, which is flexible and reduces migration costs. You can create HTTP
functions by using a custom image.

For details about how to develop and deploy an HTTP function using a container
image, see Developing an HTTP Function.

The following features are supported:
● Downloading images

Images are stored in SoftWare Repository for Container (SWR) and can only
be downloaded by users with the SWR Admin permission. FunctionGraph will
call the SWR API to generate and set temporary login commands before
creating instances.

● Setting environment variables
Encryption settings and environment variables are supported. For details, see
Configuring Environment Variables.

● Attaching external data disks
External data disks can be attached. For details, see Configuring Disk
Mounting.

FunctionGraph
User Guide 4 Building Functions

2024-08-07 58

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_04_0103.html

● Reserved instances
For details, see the description about reserved instances.

NO TE

User containers will be started using UID 1003 and GID 1003, which are the same as other
types of functions.

Prerequisites
You have created an agency with the SWR Admin permission by referring to
Configuring Agency Permissions. Images are stored in SWR, and only users with
this permission can invoke and pull images.

Procedure
1. Log in to the FunctionGraph console. In the navigation pane, choose

Functions > Function List.
2. On the Function List page, click Create Function in the upper right corner.
3. Select Container Image. For details, see Table 4-7.

FunctionGraph
User Guide 4 Building Functions

2024-08-07 59

Figure 4-11 Creating a function using a container image

FunctionGraph
User Guide 4 Building Functions

2024-08-07 60

Table 4-7 Parameter description

Paramete
r

Description

*Function
Type

Select a function type.

HTTP function: triggered once HTTP requests are sent to
specific URLs.
NOTE

● The custom container image must contain an HTTP server with
listening port 8000.

● HTTP functions support APIG and APIC triggers only.
● When calling a function using APIG, isBase64Encoded is valued

true by default, indicating that the request body transferred to
FunctionGraph is encoded using Base64 and must be decoded for
processing.

● The function must return characters strings by using the following
structure.
{
 "isBase64Encoded": true|false,
 "statusCode": httpStatusCode,
 "headers": {"headerName":"headerValue",...},
 "body": "..."
}

*Region Select a region where you will deploy your code.

*Function
Name

Name of the function, which must meet the following
requirements:
● Consists of 1 to 60 characters, and can contain letters, digits,

hyphens (-), and underscores (_).
● Starts with a letter and ends with a letter or digit.

*Enterpris
e Project

Select a created enterprise project and add the function to it.
By default, default is selected.

Container
Image

Enter an image URL, that is, the location of the container
image. You can click View Image to view private and shared
images.

FunctionGraph
User Guide 4 Building Functions

2024-08-07 61

Paramete
r

Description

Container
Image
Override

● CMD: container startup command. Example: /bin/sh. If no
command is specified, the entrypoint or CMD in the image
configuration will be used. Enter one or more commands
separated with commas (,).

● Args: container startup parameter. Example: -args,value1. If
no argument is specified, CMD in the image configuration
will be used. Enter one or more arguments separated with
commas (,).

● Working Dir: working directory of the container. The folder
path can only be / and cannot be created or modified. The
path will be / by default if not specified.

● User ID: user ID for running the image. If no user ID is
specified, the default value 1003 will be used.

● Group ID: user group ID. If no user group ID is specified, the
default value 1003 will be used.

Agency Select an agency with the SWR Admin permission. To create
an agency, see Creating an Agency.

NO TE

● Command, Args, and Working dir can contain up to 5120 characters.

● When a function is executed at the first time, the image is pulled from SWR, and
the container is started during cold start of the function, which takes a certain
period of time. If there is no image on a node during subsequent cold starts, an
image will be pulled from SWR.

● Public and private images are supported. For details, see Setting Image
Attributes.

● The port of a custom container image must be 8000.

● The image package cannot exceed 10 GB. For a larger package, reduce the
capacity. For example, mount the data of a question library to a container where
the data was previously loaded through an external file system.

● FunctionGraph uses LTS to collect all logs that the container outputs to the
console. These logs can be redirected to and printed on the console through
standard output or an open-source log framework. The logs should include the
system time, component name, code line, and key data, to facilitate fault locating.

● When an out of memory (OOM) error occurs, view the memory usage in the
function execution result.

● Functions must return a valid HTTP response.

Sample Code

The following uses Node.js Express as an example. During function initialization,
FunctionGraph uses the POST method to access the /init path (optional). Each
time when a function is called, FunctionGraph uses the POST method to access
the /invoke path. The function obtains context from req.headers, obtains event
from req.body, and returns an HTTP response struct.

FunctionGraph
User Guide 4 Building Functions

2024-08-07 62

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-swr/swr_01_0016.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-swr/swr_01_0016.html

const express = require('express');
const app = express();
const PORT = 8000;

app.post('/init', (req, res) => {
 res.send('Hello init\n');
});

app.post('/invoke', (req, res) => {
 res.send('Hello invoke\n');
});

app.listen(PORT, () => {
 console.log(`Listening on http://localhost:${PORT}`);
});

FunctionGraph
User Guide 4 Building Functions

2024-08-07 63

5 Configuring Functions

5.1 Configuring Initialization

Overview
The initializer of a function is executed after an instance is started. The instance
starts to process requests only after the initializer is executed. The initializer is
executed only once during the lifecycle of a function instance.

Scenario
The service logic shared by multiple requests can be implemented in the initializer
to reduce the latency. For example, the logic of loading a deep learning model
with large specifications or building a connection pool for databases.

Prerequisites
You have created a function.

Initializing a Function

Step 1 Log in to the FunctionGraph console. In the navigation pane, choose Functions >
Function List.

Step 2 Click the function to be configured to go to the function details page.

Step 3 Click the Configuration tab and choose Advanced Settings.

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 64

Figure 5-1 Enabling initialization

Table 5-1 Parameter configuration

Parameter Description

Initialization Enable initialization if needed.

Initialization
Timeout (s)

Maximum duration the function can be initialized. Set this
parameter if you enable function initialization.
The value ranges from 1s to 300s.

Initializer You can enable function initialization on the Configuration
tab page. The initializer must be named in the same way as
the handler. For example, for a Node.js or Python function,
set an initializer name in the format of [file name].
[initialization function name].
NOTE

● This parameter is not required if function initialization is disabled.
● Ensure that the function initializer and handler are in the same

file.

NO TE

● Set the initializer in the same way as the handler. For example, for a Node.js or Python
function, set an initializer name in the format of [file name].[initialization function
name].

● For details about the function code configuration, see Creating a Deployment Package.

----End

5.2 Configuring Basic Settings

Introduction

After a function is created, Memory (MB), Handler, and Execution Timeout (s)
are automatically set based on your runtime. If needed, modify them based on
this section.

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 65

Prerequisites

You have created a function.

Procedure
1. Log in to the FunctionGraph console. In the navigation pane, choose

Functions > Function List.
2. Click the function to be configured to go to the function details page.
3. Choose Configuration > Basic Settings and configure parameters based on

Table 5-2. Parameters marked with an asterisk (*) are mandatory.

Table 5-2 Basic settings

Parameter Description

App After a function is created, it is automatically
categorized into the default app and cannot be
switched to other apps.
NOTICE

An app acts like a folder. In the future, functions will be
managed by label for better experience.

*Handler ● For a Node.js, Python, or PHP function, the
handler must be named in the format of [file
name].[function name], which must contain a
period (.).
Example: myfunction.handler

● For a Java function, the handler must be named
in the format of [package name].[class name].
[execution function name].
Example: com.xxxxx.exp.Myfunction.myHandler

● For a Go function, the handler name must be the
same as the executable file name in the uploaded
code package.
Example: If the executable file is handler, set this
parameter to handler.

*Enterprise Project Select a created enterprise project and add the
function to it. By default, default is selected.

*Execution Timeout
(s)

Maximum duration the function can be executed.
You can set this parameter on the Configuration tab
page. If the execution takes longer than 90s, use
asynchronous invocation.
The value ranges from 3s to 259,200s.

Memory (MB) Memory of a function instance. Options: 128, 256,
512, 768, 1024, 1280, 1536, 1792, 2048, 2560, 3072,
3584, 4096, 8192, 10,240.

Description Description of the function, which cannot exceed 512
characters.

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 66

4. Click Save.

5.3 Configuring Agency Permissions

Overview
FunctionGraph works with other cloud services in most scenarios. Create a cloud
service agency so that FunctionGraph can perform resource O&M in other cloud
services on your behalf.

Scenario
Before using FunctionGraph in the following scenarios, create an agency. Adjust
the permissions granted to the agency to meet your service requirements. For
example, grant the Admin permission in the development phase, and change it to
the fine-grained minimum permission in the product environment. This
ensures the required permissions while eliminating risks. Select the required action
by referring to Table 5-3.

Table 5-3 Common actions

Scenario Admin
Permissi
on

Fine-Grained
Minimum
Permission

Description

Using a
custom
image

SWR
Admin

Unavailable SWR Admin: administrator who
has all permissions for the
SoftWare Repository for
Container (SWR) service.
For details about how to create
a custom image, see Deploying
a Function Using a Container
Image.

Mounting
an SFS
Turbo file
system

SFS
Administ
rator

sfsturbo:shares:getS
hare (Query details
about a file
system)

SFS Administrator:
administrator who has all
permissions for the Scalable File
Service (SFS) service.
sfsturbo:shares:getShare:
permission for querying a file
system in SFS.
For details about how to mount
an SFS Turbo file system, see
Mounting an SFS Turbo File
System.

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 67

Scenario Admin
Permissi
on

Fine-Grained
Minimum
Permission

Description

Mounting
an ECS
shared
directory

Tenant
Guest
and VPC
Administ
rator

ecs:cloudServers:get
(Query details
about an ECS)

Tenant Guest: user with read-
only permissions for all cloud
services (except IAM)
VPC Administrator: network
administrator
ecs:cloudServers:get: permission
for querying an ECS.
For details about how to mount
an ECS shared directory, see
Mounting an ECS Shared
Directory.

Configuring
cross-
domain
VPC access

VPC
Administ
rator

vpc:ports:delete
(Delete a port)
vpc:ports:get
(Query a port)
vpc:ports:create
(Create a port)
vpc:vpcs:get (Query
a VPC)
vpc:subnets:get
(Query a subnet)

Users with the VPC
Administrator permissions can
perform any operations on all
cloud resources of the VPC. To
configure cross-VPC access,
specify an agency with VPC
management permissions.
Fine-grained minimum
permission for VPC: permission
for deleting, querying, or
creating a port, or querying a
VPC or subnet.
For details about how to
configure cross-domain VPC
access, see Configuring the
Network.

Creating an
OBS bucket
and trigger

OBS
Administ
rator

obs:bucket:GetBuck
etLocation (Query
a bucket location)
obs:bucket:ListAllM
yBuckets (Query
buckets)
obs:bucket:GetBuck
etNotification
(Obtain the event
notification
configuration of a
bucket)
obs:bucket:PutBuck
etNotification
(Configure event
notifications for a
bucket)

OBS Administrator: OBS
administrator.
Fine-grained minimum
permission for OBS: permission
for querying a bucket location,
buckets, or the event
notification configuration of a
bucket, or configuring event
notifications for a bucket.
For details about how to create
an OBS trigger, see Using an
OBS Trigger.

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 68

Creating an Agency
NO TE

In the following example, the Tenant Administrator permission is assigned to
FunctionGraph and this setting takes effect only in the authorized regions.

Create an agency by referring to Creating an Agency and set parameters as
follows:

1. Log in to the IAM console.
2. On the IAM console, choose Agencies from the navigation pane, and click

Create Agency in the upper right corner.

Figure 5-2 Creating an agency

3. Configure the agency.

Figure 5-3 Setting basic information

– For Agency Name, enter serverless-trust.
– For Agency Type, select Cloud service.
– For Cloud Service, select FunctionGraph.

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 69

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-iam/iam_06_0000.html

– For Validity Period, select Unlimited.
– Description: Enter the description.

4. Click Next. On the displayed page, search for the permissions to be added in
the search box on the right and select the permissions. The Tenant
Administrator permission is used as an example.

Figure 5-4 Selecting policies

Table 5-4 Example of agency permissions

Policy Name Scenario

Tenant Administrator Administrator for all cloud services except IAM.
This user can perform any operations on all
cloud resources of the enterprise.

5. Click Next and select the scope.

Configuring an Agency
1. In the left navigation pane of the management console, choose Compute >

FunctionGraph. On the FunctionGraph console, choose Functions > Function
List from the navigation pane.

2. Click the function to be configured to go to the function details page.
3. Choose Configuration > Permissions, click Create Agency, and set an agency

based on site requirements by referring to 2–5.

Table 5-5 Agency configuration parameters

Parameter Description

Configuration
Agency

Select a function that you have created.

Execution Agency Mandatory if you select Specify an exclusive agency
for function execution.

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 70

NO TE

● To ensure optimal performance, select Specify an exclusive agency for function
execution and set different agencies for function configuration and execution. You
can also use no agency or specify the same agency for both purposes. Figure 5-5
shows the agency options.

Figure 5-5 Setting agencies

● Configuration Agency: For example, to create Data Ingestion Service (DIS)
triggers, first specify an agency with DIS permissions. If such an agency is not
specified or the specified agency does not exist, no DIS triggers can be created.

● Execution Agency: This type of agency enables you to obtain a token and AK/SK
from the context in the function handler for accessing other cloud services.

4. Click Save.

Modifying an Agency
Modifying an agency: You can modify the permissions, validity period, and
description of an agency on the IAM console.

CA UTION

● After an agency is modified, it takes about 10 minutes for the modification (for
example, context.getToken) to take effect.

● The agency information obtained using the context method is valid for 24
hours. Refresh it before it expires.

5.4 Configuring the Network

Public Access
By default, functions can access services on public networks. If the target public
network service requires whitelist verification using a fixed IP address, enable VPC
access, configure a NAT gateway for the VPC, and bind an Elastic IP (EIP) to the
gateway. For details, see Configuring a Fixed Public IP Address

Configuring VPC Access
Functions can access resources in a VPC bound to it. If a function needs both VPC
and public access, configure a NAT gateway for the VPC and bind an EIP to the
gateway. For details, see Configuring a Fixed Public IP Address.

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 71

Required Permissions

Configure an agency by referring to Configuring Agency Permissions.

● Permissions for VPC access: an agency with the VPC Administrator
permission or with the least permissions listed in Table 5-6

Table 5-6 Least permissions required

Permission Action

Deleting a
port

vpc:ports:delete

Querying a
port

vpc:ports:get

Creating a
port

vpc:ports:create

Querying a
VPC

vpc:vpcs:get

Querying a
subnet

vpc:subnets:get

● Permissions for private domain name resolution: an agency with the DNS

ReadOnlyAccess permission

Procedure

1. Log in to the FunctionGraph console. In the navigation pane, choose
Functions > Function List.

2. Click the function to be configured to go to the function details page.
3. Choose Configuration > Network, enable VPC Access, and specify a VPC and

subnet.

NO TE

1. For details on how to create a VPC and a subnet, see Creating a VPC.
2. Specify an agency with VPC administrator permissions for the function. For details,

see Configuring Agency Permissions.
3. You can bind all functions in a project to up to four different subnets in any VPCs.

(Each project has a unique 32-digit project ID, which is allocated when your
account is created. The project IDs of your account and IAM user are the same.)

4. Enter one or more private domain names of the VPC so that the function can
use them to access resources in this VPC.

NO TE

1. For details about how to create a private domain name, see Creating a Private
Zone.

2. Functions can resolve only domain names of the A record set type. For details
about how to add a record set, see Record Set Types and Configuration Rules.

5. Click Save.

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 72

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-vpc/en-us_topic_0013935842.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-dns/en-us_topic_0057773658.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-dns/en-us_topic_0057773658.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-dns/dns_usermanual_0601.html

Configuring a Fixed Public IP Address
If a function needs to access public network resources in a VPC or requires a fixed
public IP address, configure a NAT gateway for the VPC and bind an EIP to the
gateway.

Prerequisites

1. You have created a VPC and a subnet according to Creating a VPC.
2. You have obtained an EIP according to Assigning an EIP.

Procedure

1. In the left navigation pane of the management console, choose Network >
NAT Gateway to go to the NAT Gateway console. Then click Create NAT
Gateway.

2. On the displayed page, enter gateway information, select a VPC (for example,
vpc-01) and subnet, and confirm and submit the settings. For details, see
Creating a Public NAT Gateway.

3. Click the NAT gateway name. On the details page that is displayed, click Add
SNAT Rule, set the rule, and click OK.

5.5 Configuring Disk Mounting

Introduction
FunctionGraph allows you to mount file systems to your functions. Multiple
functions can share the same file system. This greatly expands the function
execution and storage space compared with the temporary disk space allocated to
a function.

Scenarios

NO TICE

Before mounting file systems, enable access over the following ports:
1. 111, 445, 2049, 2051, 2052, and 20048
2. Another three ports for Ubuntu. To obtain the port numbers, run the following

command:
rpcinfo -p|grep mountd|grep tcp

For details, see What Resources Does SFS Occupy?

FunctionGraph supports the following types of file systems:

● SFS Turbo
SFS Turbo supports the following storage classes: Standard (500 GB–32 TB),
Standard-Enhanced (10 TB–320 TB), Performance (500 GB–32 TB), and
Performance-Enhanced (10 TB–320 TB). SFS Turbo is expandable to 320 TB,
and provides fully hosted shared file storage. It features high availability and
durability, and supports massive quantities of small files and applications

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 73

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-vpc/en-us_topic_0013935842.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-eip/eip_0002.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-natgateway/en-us_topic_0150270259.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-sfs/sfs_01_0094.html

requiring low latency and high input/output operations per second (IOPS).
SFS Turbo is suitable for high-performance websites, log storage, compression
and decompression, DevOps, enterprise offices, and containerized
applications. For details, see SFS Service Overview.

● ECS
A directory on an ECS is specified as a shared file system (see Mounting an
ECS Shared Directory) by using the network file system (NFS) service. The
directory can then be mounted to a function in the same VPC as the ECS so
that the function can read and write data in the directory. ECS file systems
make it possible for dynamic expansion of compute resources. This type of file
system is suitable for low service demand scenarios.

Benefits from using these file systems:

● The function execution space can be greatly expanded comparing with /tmp.
● A file system can be shared by multiple functions.
● ECS compute resources can be dynamically expanded and existing ECS storage

capability can be used to achieve stronger computing performance.

NO TE

You can write temporary files in the /tmp directory. The total size of these files cannot
exceed 10,240 MB.

Creating an Agency
Before adding file systems to a function, specify an agency with permissions for
accessing the file system services for the function.

There is a limit on the maximum number of agencies you can create, and cloud
service agencies cannot be modified. Therefore, you are advised to create an
agency with high-level permissions, for example, Tenant Administrator, to allow
a function to access all resources in the selected region. For more information, see
Configuring Agency Permissions.

Mounting an SFS Turbo File System
Setting an Agency

Before mounting an SFS Turbo file system to a function, specify an agency that
has been granted SFS Administrator and VPC Administrator permissions for the
function. If no agencies are available, create one in IAM.

Configuring VPC Access

An SFS Turbo file system is accessible only in the VPC where it has been created.
Before mounting such a file system to a function, enable VPC access for the
function.

1. On the SFS console, obtain the information about the VPC and subnet where
a file system is to be mounted to your function. For details, see File System
Management.

2. Enable VPC access by referring to Configuring the Network and enter the
VPC and subnet obtained in 1.

Mounting an SFS Turbo File System

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 74

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-sfs/sfs_01_0005.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-sfs/sfs_01_0034.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-sfs/sfs_01_0034.html

SFS Turbo file systems can be mounted in the same way as SFS file systems. Select
a file system and set the access path.

Mounting an ECS Shared Directory
Specifying an Agency

Before mounting an ECS shared directory to a function, specify an agency that has
been granted Tenant Guest and VPC Administrator permissions for the function.
If no agencies are available, create one in IAM. For details, see Creating an
Agency.

Configuring VPC Access

Before adding an ECS shared directory, specify the VPC where the ECS is deployed.
View the VPC information on the details page of the ECS. Click the VPC name to
go to the VPC details page, and view the subnet.

Set the acquired VPC and subnet for the function.

Mounting an ECS Directory

Enter a shared directory and function access path.

Figure 5-6 Setting the path

Follow-up Operations
A function can read and write data in an access path in the same way as in the
mounted file system.

Function logs can be persisted by configuring the log path as a subdirectory in the
access path.

Creating an NFS Shared Directory on ECS
1. Linux

– CentOS, SUSE, EulerOS, Fedora, or openSUSE

i. Configure a YUM repository.
1. Create a file named euleros.repo in the /etc/yum.repos.d
directory. Ensure that the file name must end with .repo.
2. Run the following command to enter euleros.repo and edit the
configuration:
vi /etc/yum.repos.d/euleros.repo

The EulerOS 2.0 SP3 YUM configuration is as follows:
[base]
name=EulerOS-2.0SP3 base
baseurl=http://repo.cloud.com/euler/2.3/os/x86_64/
enabled=1

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 75

gpgcheck=1
gpgkey=http://repo.cloud.com/euler/2.3/os/RPM-GPG-KEY-EulerOS

The EulerOS 2.0 SP5 YUM configuration is as follows:
[base]
name=EulerOS-2.0SP5 base
baseurl=http://repo.cloud.com/euler/2.5/os/x86_64/
enabled=1
gpgcheck=1
gpgkey=http://repo.cloud.com/euler/2.5/os/RPM-GPG-KEY-EulerOS

NO TE

Parameter description:
name: repository name
baseurl: URL of the repository
● HTTP-based network address: http://path/to/repo
● Local repository address: file:///path/to/local/repo
gpgcheck: indicates whether to enable the GNU privacy guard (GPG) to
check the validity and security of RPM package resources. 0: The GPG check
is disabled. 1: The GPG check is enabled. If this option is not specified, the
GPG check is enabled by default.

3. Save the configurations.
4. Run the following command to clear the cache:
yum clean all

ii. Run the following command to install nfs-utils:
yum install nfs-utils

iii. Create a shared directory.
When you open /etc/exports and need to create shared directory /
sharedata, add the following configuration:
/sharedata 192.168.0.0/24(rw,sync,no_root_squash)

NO TE

The preceding configuration is used to share the /sharedata directory with
other servers in the 192.168.0.0/24 subnet.
After the preceding command is run, run the exportfs -v command to view
the shared directory and check whether the setting is successful.

iv. Run the following commands to start the NFS service:
systemctl start rpcbind
service nfs start

v. Create another shared directory.
For example, to create the /home/myself/download directory, add
the following configuration to /etc/exports:
/home/myself/download 192.168.0.0/24(rw,sync,no_root_squash)
Restart the NFS service.
service nfs restart

Alternatively, run the following command without restarting the NFS
service:
exportfs -rv

vi. (Optional) Enable automatic startup of the rpcbind service.
Run the following command:
systemctl enable rpcbind

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 76

– Ubuntu

i. Run the following commands to install nfs-kernel-server:
sudo apt-get update
sudo apt install nfs-kernel-server

ii. Create a shared directory.
vim /etc/exports

When you open /etc/exports and need to create shared directory /
sharedata, add the following configuration:
/sharedata 192.168.0.0/24(rw,sync,no_root_squash)

NO TE

The preceding configuration is used to share the /sharedata directory with
other servers in the 192.168.0.0/24 subnet.

iii. Start the NFS service.
service nfs-kernel-server restart

NO TE

After the preceding command is run, run the exportfs -v command to view
the shared directory and check whether the setting is successful.

iv. Create another shared directory.
For example, to create the /home/myself/download directory, add
the following configuration to /etc/exports:
/home/myself/download 192.168.0.0/24(rw,sync,no_root_squash)
Restart the NFS service.
service nfs restart

Alternatively, run the following command without restarting the NFS
service:
exportfs -rv

2. Windows

1. Install the NFS server.
Paid software: haneWIN. Download the software at the haneWIN official
website.
Free software: FreeNFS and WinNFSd. Download the software at the
SourceForge website.

2. Enable the NFS function.
– In the case of WinNFSd, see WinNFSd configuration.

i. Download and decompress WinNFSd, and create the nfs folder in the
decompressed directory.

ii. Set the sharing and read/write permissions on the nfs file.

1) Right-click the nfs file and choose Properties.
2) Click the Sharing tab, and then click Share....
3) Add Everyone and click Share.

Figure 5-7 Adding Everyone

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 77

https://www.hanewin.net/nfs-e.htm
https://www.hanewin.net/nfs-e.htm
https://sourceforge.net/projects/winnfsd/
https://github.com/winnfsd/winnfsd

4) Click the Security tab, select Everyone in the Group or user
names list, and click Edit.

5) In the displayed Security dialog box, select Everyone from the
Group or user name list, select Read and Write from the Allow
check boxes in the Permissions for Everyone list, and click OK.

iii. Disable all firewalls, including the Domain network, Private
network, and Public network. Enable them after the entire
configuration is complete.

iv. Log in to the virtual server of the router and enable ports 111, 2049,
and 1058 of the external network. (Note: An external IP address is
required.)

v. Run the following command. For details, see https://github.com/
winnfsd/winnfsd.
WinNFSd.exe -addr {Your own local IP address 192.168.xxx.xxx} F:\nfs /nfs

– In the case of haneWIN, perform the following steps:

i. Run the downloaded .exe file as the Windows system administrator.

ii. After the installation is complete, open the NFS Server file and
choose Edit > Preferences.

iii. Retain the default settings on the NFS, Server, and PortMapper tab
pages. Click the Exports tab, click Edit exports file to configure the
shared directory, and click Save.

NO TE

The shared directory format can be referenced as D:\share -public -
name:nfs, which means to set the permission on the share folder to public
and define an alias nfs.

iv. Click OK.

v. Disable all firewalls, including the Domain network, Private
network, and Public network. Enable them after the entire
configuration is complete.

NO TE

Run the following command in Linux to mount the directory and check
whether the file sharing is successful:
mount -t nfs -o nolock 192.168.xxx.xxx:/nfs /mnt

● 192.168.xxx.xxx is the IP address of the Windows operating system.

● nfs is the alias created when the shared directory is configured.

● /mnt is the local directory where the remote directory is mounted.

5.6 Configuring Environment Variables

Overview

Environment variables allow you to pass dynamic parameters to a function
without modifying code.

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 78

https://github.com/winnfsd/winnfsd
https://github.com/winnfsd/winnfsd

Scenario
● Environment distinguishing: Configure different environment variables for the

same function logic. For example, use environment variables to configure
testing and development databases.

● Configuration encryption: Configure encrypted environment variables to
dynamically obtain authentication information (account, password, AK/SK)
required to access other services.

● Dynamic configuration: Configure environment variables for parameters that
need to be dynamically adjusted, including query period and timeout, in
function logic.

Procedure
You can configure encryption settings and environment variables to dynamically
pass settings to your function code and libraries without changing your code.

Figure 5-8 Adding environment variables

For example, for Node.js, encryption settings and environment variable values can
be obtained from getUserData(string key) in Context.

WARNING

● Environment variables and encryption settings are user-defined key-value pairs
that store function settings. Keys can contain letters, digits, and underscores
(_), and must start with a letter.

● The total length of the key and value cannot exceed 4096 characters.
● When you define environment variables, FunctionGraph displays all your input

information in plain text. For security purposes, do not include sensitive
information.

● After encryption is enabled, key-value pairs are encrypted on the console and
will remain encrypted during transmission.

Preset Parameters
The following lists preset parameters. Do not configure environment variables with
the same names as any of these parameters.

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 79

Table 5-7 Preset parameters and description

Environment Variable Description Obtaining Method and
Default Value

RUNTIME_PROJECT_ID Project ID Obtain the value from a
Context interface or a
system environment
variable.

RUNTIME_FUNC_NAME Function name Obtain the value from a
Context interface or a
system environment
variable.

RUNTIME_FUNC_VERSIO
N

Function version Obtain the value from a
Context interface or a
system environment
variable.

RUNTIME_HANDLER Handler Obtain the value from a
system environment
variable.

RUNTIME_TIMEOUT Execution timeout
allowed for a function.

Obtain the value from a
system environment
variable.

RUNTIME_USERDATA Value passed through an
environment variable

Obtain the value from a
Context interface or a
system environment
variable.

RUNTIME_CPU CPU usage of a function.
The value is in
proportion to
MemorySize.

Obtain the value from a
Context interface or a
system environment
variable.

RUNTIME_MEMORY Memory size configured
for a function

Obtain the value from a
Context interface or a
system environment
variable.
Unit: MB

RUNTIME_MAX_RESP_B
ODY_SIZE

Maximum size of a
response body

Obtain the value from a
system environment
variable.
Default value: 6,291,456
bytes

RUNTIME_INITIALIZER_H
ANDLER

Initializer Obtain the value from a
system environment
variable.

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 80

Environment Variable Description Obtaining Method and
Default Value

RUNTIME_INITIALIZER_TI
MEOUT

Initialization timeout of
a function

Obtain the value from a
system environment
variable.

RUNTIME_ROOT Runtime package path Obtain the value from a
system environment
variable.
Default value: /home/
snuser/runtime

RUNTIME_CODE_ROOT Path for storing code in
a container

Obtain the value from a
system environment
variable.
Default value: /opt/
function/code

RUNTIME_LOG_DIR Path for storing system
logs in a container

Obtain the value from a
system environment
variable.
Default value: /home/
snuser/log

Example

You can use environment variables to configure which directory to install files in,
where to store outputs, and how to store connection and logging settings. These
settings are decoupled from the application logic, so you do not need to update
your function code when you change the settings.

In the following code snippet, obs_output_bucket is the bucket used for storing
processed images.

def handler(event, context):
 srcBucket, srcObjName = getObsObjInfo4OBSTrigger(event)
 obs_address = context.getUserData('obs_address')
 outputBucket = context.getUserData('obs_output_bucket')
 if obs_address is None:
 obs_address = '{obs_address_ip}'
 if outputBucket is None:
 outputBucket = 'casebucket-out'

 ak = context.getAccessKey()
 sk = context.getSecretKey()

 # download file uploaded by user from obs
 GetObject(obs_address, srcBucket, srcObjName, ak, sk)

 outFile = watermark_image(srcObjName)

 # Upload converted files to a new OBS bucket.
 PostObject (obs_address, outputBucket, outFile, ak, sk)

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 81

 return 'OK'

Using environment variable obs_output_bucket, you can flexibly set the OBS
bucket used for storing output images.

Figure 5-9 Environment variables

5.7 Configuring Asynchronous Execution Notification

Overview
Functions can be invoked synchronously or asynchronously. In asynchronous mode,
FunctionGraph sends a response immediately after persisting a request. The
request result cannot be known in real time. To retry when an asynchronous
request fails or obtain asynchronous processing results, configure asynchronous
settings.

Scenario
● Retry: By default, FunctionGraph does not retry if a function fails due to a

code error. If your function needs retry, for example, if third-party services
often fail to be invoked, configure retry to improve the success rate.

● Result notifications: FunctionGraph automatically notifies downstream
services of the asynchronous execution result of a function for further
processing. For example, storing execution failure information in OBS for
cause analysis, or pushing execution success information to DIS or triggering
the function again.

Procedure

Step 1 Log in to the FunctionGraph console. In the navigation pane, choose Functions >
Function List.

Step 2 Click the function to be configured to go to the function details page.

Step 3 Choose Configuration > Configure Async Notification. On the displayed page,
click Edit next to Asynchronous Notification Policy.

Figure 5-10 Configuring an asynchronous notification policy

Step 4 Set parameters by referring to Table 5-8. For example, specify FunctionGraph for
Target Service.

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 82

Figure 5-11 Setting parameters

Table 5-8 Parameter description

Parameter Description

Asynchronous
Execution
Notification Policy

● Max. Retries: maximum number of retries when
asynchronous invocation fails. Value range: 0–3.
Default value: 1.

● Max. Validity Period (s): maximum lifetime of a
message in seconds. Value range: 1–86,400.

Success Notification Target Service: to which a notification will be sent if a
function is executed successfully.
1. FunctionGraph
2. OBS

Failure Notification Target Service: to which a notification will be sent if a
function fails to be executed.
1. FunctionGraph
2. OBS

Step 5 Click OK.

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 83

NO TE

1. Set an agency that allows FunctionGraph to access the target service.

2. To avoid cyclic invocation, do not set two functions as asynchronous execution targets of
each other.

----End

Configuration Description

For details about how to set the target for asynchronous invocation, see Table
5-9. The following shows an example:

{
 "timestamp": "2020-08-20T12:00:00.000Z+08:00",
 "request_context": {
 "request_id": "1167bf8c-87b0-43ab-8f5f-26b16c64f252",
 "function_urn": "urn:fss:xx-xxxx-x:xxxxxxx:function:xxxx:xxxx:latest",
 "condition": "",
 "approximate_invoke_count": 0
 },
 "request_payload": "",
 "response_context": {
 "status_code": 200,
 "function_error": ""
 },
 "response_payload": "hello world!"
}

Table 5-9 Parameter description

Parameter Description

timestamp Time when the invocation starts.

request_context Request context.

request_context.request_id ID of an asynchronous invocation
request.

request_context. function_urn URN of the function that is to be
executed asynchronously.

request_context.condition Invocation error type.

request_context.
approximate_invoke_count

Number of asynchronous invocation
times. If the value is greater than 1,
function execution has been retried.

request_payload Original request payload.

response_context Response context.

response_context.statusCode Code returned after function
invocation. If the code is not 200, a
system error occurred.

response_context.function_error Invocation error information.

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 84

Parameter Description

response_payload Payload returned after function
execution.

5.8 Configuring Single-Instance Multi-Concurrency
NO TE

This feature is supported only by FunctionGraph v2.

Overview
By default, each function instance processes only one request at a specific time.
For example, to process three concurrent requests, FunctionGraph triggers three
function instances. To address this issue, FunctionGraph has launched the single-
instance multi-concurrency feature, allowing multiple requests to be processed
concurrently on one instance.

Scenario
This feature is suitable for functions which spend a long time to initialize or wait
for a response from downstream services. The feature has the following
advantages:

● Fewer cold starts and lower latency: Usually, FunctionGraph starts three
instances to process three requests, involving three cold starts. If you
configure the concurrency of three requests per instance, only one instance is
required, involving only one cold start.

● Shorter processing duration and lower cost: Normally, the total duration of
multiple requests is the sum of each request's processing time.

Comparison
If a function takes 5s to execute each time and you set the number of requests
that can be concurrently processed by an instance to 1, three requests need to be
processed in three instances, respectively. Therefore, the total execution duration is
15s.

When you set Max. Requests per Instance to 5, if three requests are sent, they
will be concurrently processed by one instance. The total execution time is 5s.

NO TE

If the maximum number of requests per instance is greater than 1, new instances will be
automatically added when this number is reached. The maximum number of instances will
not exceed Max. Instances per Function you set.

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 85

Table 5-10 Comparison

Com
paris
on
Item

Single-Instance Single-
Concurrency

Single-Instance Multi-Concurrency

Log
printi
ng

- To print logs, Node.js Runtime uses the
console.info() function, Python Runtime
uses the print() function, and Java
Runtime uses the System.out.println()
function. In this mode, current request
IDs are included in the log content.
However, when multiple requests are
concurrently processed by an instance,
the request IDs are incorrect if you
continue to use the preceding functions
to print logs. In this case, use
context.getLogger() to obtain a log
output object, for example, Python
Runtime.
log = context.getLogger()
log.info("test")

Shar
ed
varia
bles

Not involved. Modifying shared variables will cause
errors. Mutual exclusion protection is
required when you modify non-thread-
safe variables during function writing.

Moni
torin
g
metri
cs

Perform monitoring based
on the actual situation.

Under the same load, the number of
function instances decreases significantly.

Flow
contr
ol
error

Not involved. When there are too many requests, the
error code in the body is FSS.0429, the
status in the response header is 429, and
the error message is Your request has
been controlled by overload sdk,
please retry later.

Configuring Single-Instance Multi-Concurrency
1. Log in to the FunctionGraph console. In the navigation pane, choose

Functions > Function List.
2. Click the function to be configured to go to the function details page.
3. Choose Configuration > Concurrency.

Set parameters by referring to Table 5-11 and click Save.

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 86

Figure 5-12 Concurrency configuration

Table 5-11 Description

Paramete
r

Description

Max.
Requests
per
Instance

Number of concurrent requests supported by a single instance.
Value range: 1–1000.

Max.
Instances
per
Function

Maximum number of instances in which a function can run.
Default: 400. Maximum: 1000. –1: The function can run in any
number of instances. 0: The function is disabled.
NOTE

Requests that exceed the processing capability of instances will be
discarded.
Errors caused by excessive requests will not be displayed in function
logs. You can obtain error details by referring to Configuring
Asynchronous Execution Notification.

Configuration Constraints
● For Python functions, threads on an instance are bound to one core due to

the Python Global Interpreter Lock (GIL) lock. As a result, concurrent requests
can only be processed using the single core, not multiple cores. The function
processing performance cannot be improved even if larger resource
specifications are configured.

● For Node.js functions, the single-process single-thread processing of the V8
engine results in processing of concurrent requests only using a single core,
not multiple cores. The function processing performance cannot be improved
even if larger resource specifications are configured.

5.9 Managing Versions

Overview

FunctionGraph allows you to publish one or more versions throughout the
development, test, and production processes to manage your function code. The
code and environment variables of each version are saved as a snapshot. After the
function code is published, you can modify settings as required.

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 87

After a function is created, the default version is latest. Each function has the
latest version. After the function code is published, you can modify the version
configuration as required.

NO TE

A version is a snapshot of a function and corresponds to a tag in code. Each version
contains the configuration and code of the function. By default, no trigger is bound to a
new version. After a version is published, the configuration (such as environment variables)
and code of the version cannot be updated, to ensure stability and traceability.

Publishing a Version
1. Log in to the FunctionGraph console. In the navigation pane, choose

Functions > Function List.
2. Click the function to be configured to go to the function details page.
3. On the Version tab page, click Publish new version.

Figure 5-13 Parameters for publishing a new version

– Version: Enter a version number. If no version number is specified, the
system automatically generates a version number based on the current
date, for example, v20220510-190658.

– Description: Enter a description for the version. This parameter is
optional.

4. Click OK. The system automatically publishes a version. Then you will be
redirected to the new version.

NO TE

● You can publish up to 20 versions for a function.
● For a function whose latest version has been configured with reserved instances,

the function configuration can be modified. By default, non-latest versions do not
have reserved instances.

● No disk is attached to a new version created based on latest. Environment
variables cannot be set if no trigger has been bound to the version.

Deleting a Version
1. Return to the FunctionGraph console. In the navigation pane, choose

Functions > Function List.
2. Click the function to be configured to go to the function details page.

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 88

3. On the Version tab page of the latest version, select the version to delete.

Figure 5-14 Deleting a version

NO TE

● The latest version of a function cannot be deleted.
● If a function version associated with aliases is deleted, the aliases will also be

deleted.

4. Click OK to delete the version.

WARNING

Deleting a version will permanently delete the associated code, configuration,
alias, and event source mapping, but will not delete logs. Deleted versions
cannot be recovered. Exercise caution when performing this operation.

5.10 Managing Aliases

Overview
An alias points to a specific function version. Create an alias and expose it to
clients, for example, bind a trigger to the alias instead of the corresponding
version. Then your modification to the version for update or rollback will be
imperceptible to the clients. An alias can point to up to two versions with different
weights for dark launch.

Creating an Alias
1. Log in to the FunctionGraph console. In the navigation pane, choose

Functions > Function List.
2. Click the function to be configured to go to the function details page.
3. On the Aliases tab page, click Create Alias.

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 89

Figure 5-15 Creating an alias

– Alias: Enter an alias.
– Version: Select a version to be associated with the alias.
– Traffic Shifting: Choose whether to enable traffic shifting. If this function

is enabled, you can distribute a specific percentage of traffic to the
additional version.

– Additional Version: Select an additional version to be associated. The
latest version cannot be used as an additional version.

– Weight: Enter an integer from 0 to 100.
– Description: Enter a description for the alias.

4. Click OK.

NO TE

You can create up to 10 aliases for a function.

Modifying an Alias
1. Return to the FunctionGraph console. In the navigation pane, choose

Functions > Function List.
2. Click the function to be configured to go to the function details page.
3. On the Aliases tab page of the latest version, select the alias to modify.

Figure 5-16 Modifying an alias

4. Modify the alias information, and click OK.

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 90

Deleting an Alias
1. Return to the FunctionGraph console. In the navigation pane, choose

Functions > Function List.
2. Click the function to be configured to go to the function details page.
3. On the Aliases tab page of the latest version, select the alias to delete.

Figure 5-17 Deleting an alias

4. Click OK to delete the version.

5.11 Configuring Dynamic Memory

Overview

By default, a function is bound with only one resource specification. After enabling
dynamic memory, you can configure a specification for request processing. If no
specification is configured, the default one is used.

Scenario

Take video transcoding as an example. The size of a video file ranges from MB to
GB. Different encoding formats and resolutions require different computing
resources. To ensure performance, you usually need to configure a large resource
specification, which however will result in a waste during low-resolution video
(such as short video) processing. To solve this problem, implement the transcoding
service with two functions: metadata obtaining and transcoding. Configure a
specification for the transcoding function according to the metadata information
to minimize the resources and cost.

Prerequisites

You have created a function according to Creating a Function from Scratch.

Procedure

Step 1 Log in to the FunctionGraph console, choose Functions > Function List in the
navigation pane, and click the name of the created function.

Figure 5-18 Selecting a created function

Step 2 On the function details page, choose Configuration > Advanced Settings and
enable Dynamic Memory.

Step 3 Call the synchronous or asynchronous function execution API, add X-Cff-Instance-
Memory to the request header, and set the value to 128, 256, 512, 768, 1024,
1280, 1536, 1792, 2048, 2560, 3072, 3584, 4096, 8192, or 10240.

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 91

The following describes how to call an API using Postman. Add X-Cff-Instance-
Memory to Headers and set the value to 512. If the API is called successfully,
error code 200 will be returned.

Figure 5-19 Adding a request header and calling the function

NO TE

● If Dynamic Memory is not enabled, the memory size set when the function is created
will be used by default.

● If Dynamic Memory is enabled but the memory value has not been set, the memory
size set when the function is created will be used by default. If the API is called
successfully, error code 200 will be returned.

● If Dynamic Memory is enabled but the memory value is not 128, 256, 512, 768, 1024,
1280, 1536, 1792, 2048, 2560, 3072, 3584, 4096, 8192, or 10240, error code FSS.0406
will be returned when the API is called. You only need to reset the memory value.

Figure 5-20 Invocation failure

----End

FunctionGraph
User Guide 5 Configuring Functions

2024-08-07 92

6 Online Debugging

Precautions
Event data is passed to the handler of your function as an input. After
configuration, event data is persisted for later use. Each function can have a
maximum of 10 test events.

Creating a Test Event

Step 1 Log in to the FunctionGraph console, and choose Functions > Function List in the
navigation pane.

Step 2 Click the name of the desired function.

Step 3 On the function details page, select a version, and click Test.

Step 4 In the Configure Test Event dialog box, configure the test event information
according to Table 6-1. The parameter marked with an asterisk (*) is mandatory.

Table 6-1 Test event information

Parameter Description

Configure Test Event You can choose to create a test event or edit an existing
one.
Use the default option Create new test event.

Event Template If you select blank-template, you can create a test event
from scratch.
If you select a template, the corresponding test event in
the template is automatically loaded. For details about
event templates, see Table 6-2.

*Event Name The event name can contain 1 to 25 characters and must
start with a letter and end with a letter or digit. Only
letters, digits, underscores (_), and hyphens (-) are
allowed. For example, even-123test.

Event data Enter a test event.

FunctionGraph
User Guide 6 Online Debugging

2024-08-07 93

Table 6-2 Event template description

Template Name Description

API Gateway (APIG) Simulates an APIG event to trigger
your function.

API Gateway (Dedicated Gateway) Simulates a dedicated APIG event to
trigger your function.

Cloud Trace Service (CTS) Simulates a CTS event to trigger your
function.

Document Database Service (DDS) Simulates a DDS event to trigger your
function.

GaussDB(for Mongo) Simulates a GaussDB(for Mongo)
event to trigger your function.

Data Ingestion Service (DIS) Simulates a DIS event to trigger your
function.

Log Tank Service (LTS) Simulates an LTS event to trigger your
function.

Object Storage Service (OBS) Simulates an OBS event to trigger your
function.

Simple Message Notification (SMN) Simulates an SMN event to trigger
your function.

Timer Simulates a timer event to trigger your
function.

DMS (for Kafka) Simulates a Kafka event to trigger
your function.

Kafka (OPENSOURCEKAFKA) Simulates an open-source Kafka event
to trigger your function.

DMS (for RabbitMQ) Simulates a RabbitMQ event to trigger
your function.

Blank Template The event is {"key": "value"}, which
can be changed based on
requirements.

Login Security Analysis Serves as an input for the
loginSecurity-realtime-analysis-
python function template.

Image Classification Serves as an input for the image-tag
function template.

Pornographic Image Analysis Serves as an input for the porn-
image-analysis function template.

FunctionGraph
User Guide 6 Online Debugging

2024-08-07 94

Template Name Description

Speech Recognition Serves as an input for the voice-
analysis function template.

Step 5 Click Create.

----End

Testing a Function

After creating a function, you can test it online to check whether it can run
properly as expected.

Step 1 Return to the FunctionGraph console. In the navigation pane, choose Functions >
Function List.

Step 2 Click the name of the desired function.

Step 3 On the displayed function details page, select a version and test event, and click
Test.

Figure 6-1 Selecting a test event

Step 4 Click Test. The function test result is displayed.

NO TE

The Log Output area displays a maximum of 2 KB logs. To view more logs, see Managing
Function Logs.

----End

Modifying a Test Event

Step 1 Return to the FunctionGraph console. In the navigation pane, choose Functions >
Function List.

FunctionGraph
User Guide 6 Online Debugging

2024-08-07 95

Step 2 Click the name of the desired function.

Step 3 On the displayed function details page, select a version and click Configure Test
Event. The Configure Test Event dialog box is displayed.

Step 4 In the Configure Test Event dialog box, modify the test event information
according to Table 6-3.

Table 6-3 Test event information

Parameter Description

Create new test
event

Create a test event.

Edit saved test event Modify an existing test event.

Event data Modify the test event code.

Step 5 Click Save.

----End

Deleting a Test Event

Step 1 Return to the FunctionGraph console. In the navigation pane, choose Functions >
Function List.

Step 2 Click the name of the desired function.

Step 3 On the function details page that is displayed, select a version, as shown in Figure
6-2.

Figure 6-2 Selecting a FunctionGraph version

Step 4 On the Code tab page, click Configure Test Event. The editing page is displayed,
as shown in Figure 6-3.

FunctionGraph
User Guide 6 Online Debugging

2024-08-07 96

Figure 6-3 Selecting Configure Test Event

Step 5 On the Configure Test Event page, select Edit saved test event. In the Saved
Test Events list on the left, select the event to be deleted and click Delete.

Figure 6-4 Deleting a test event

Table 6-4 Configuring test event information

Parameter Description

Create new test
event

Select a test event template.

Edit saved test event Select the test event you want to delete.

----End

FunctionGraph
User Guide 6 Online Debugging

2024-08-07 97

7 Creating Triggers

7.1 Managing Triggers

Enabling or Disabling a Trigger

You can enable or disable triggers as required. Note that OBS and APIG triggers
cannot be disabled and can only be deleted.

Step 1 Log in to the FunctionGraph console. In the navigation pane, choose Functions >
Function List.

Step 2 Click the name of the desired function.

Step 3 Choose Configuration > Triggers. On the displayed page, locate the row that
contains the target trigger, and click Disable or Enable.

----End

Deleting a Trigger

You can delete triggers that will no longer be used.

Step 1 Return to the FunctionGraph console. In the navigation pane, choose Functions >
Function List.

Step 2 Click the name of the desired function.

Step 3 Choose Configuration > Triggers. On the displayed page, locate the row that
contains the target trigger and click Delete.

----End

7.2 Using a Timer Trigger
This section describes how to create a timer trigger to invoke your function based
on a fixed rate or cron expression.

FunctionGraph
User Guide 7 Creating Triggers

2024-08-07 98

Prerequisites

You have created a function. For details, see Creating a Function from Scratch.

Creating a Timer Trigger

Step 1 Log in to the FunctionGraph console. In the navigation pane, choose Functions >
Function List.

Step 2 Click the function to be configured to go to the function details page.

Step 3 Choose Configuration > Triggers and click Create Trigger.

Figure 7-1 Creating a trigger

Step 4 Set the following parameters:

● Trigger Type: Select Timer.

● Timer Name: Enter a timer name, for example, Timer.

● Rule: Set a fixed rate or a cron expression.

– Fixed rate: The function is triggered at a fixed rate of minutes, hours, or
days. You can set a fixed rate from 1 to 60 minutes, 1 to 24 hours, or 1 to
30 days.

– Cron expression: The function is triggered based on a complex rule. For
example, you can set a function to be executed at 08:30:00 from Monday
to Friday. For more information, see Cron Expressions for a Function
Timer Trigger.

● Enable Trigger: Choose whether to enable the timer trigger.

● Additional Information: The additional information you configure will be put
into the user_event field of the timer event source.

Step 5 Click OK.

----End

Viewing the Execution Result

After the timer trigger is created, the function is executed every 1 minute. To view
the function running logs, perform the following steps:

Step 1 Return to the FunctionGraph console. In the navigation pane, choose Functions >
Function List.

Step 2 Click a function to go to the function details page.

Step 3 Choose Monitoring > Logs to query function running logs.

----End

FunctionGraph
User Guide 7 Creating Triggers

2024-08-07 99

7.3 Using an APIG (Dedicated) Trigger
This section describes how to create an APIG trigger and call an API to trigger a
function.

Prerequisites
You have created an API group, for example, APIGroup_test. For details, see
Creating an API Group.

Creating an APIG Trigger

Step 1 Log in to the FunctionGraph console. In the navigation pane, choose Functions >
Function List.

Step 2 On the Function List page, click Create Function in the upper right corner.

Step 3 Set the following parameters:
● Function Name: Enter a function name, for example, apig.
● Agency: Select Use no agency.
● Enterprise Project: Select default.
● Runtime: Select Python 2.7.

Step 4 Click Create.

Step 5 On the Code tab page, copy the following code to the code window and click
Deploy.
-*- coding:utf-8 -*-
import json
def handler (event, context):
 body = "<html><title>Functiongraph Demo</title><body><p>Hello, FunctionGraph!</p></body></html>"
 print(body)
 return {
 "statusCode":200,
 "body":body,
 "headers": {
 "Content-Type": "text/html",
 },
 "isBase64Encoded": False
 }

Step 6 Choose Configuration > Triggers and click Create Trigger.

Figure 7-2 Creating a trigger

Step 7 Configure the trigger information.

Table 7-1 Trigger information

Parameter Description

Trigger Type Select API Gateway (Dedicated Gateway).

FunctionGraph
User Guide 7 Creating Triggers

2024-08-07 100

Parameter Description

API Instance Select an instance. If no instance is available, click Create
Instance.

API Name Enter an API name, for example, API_apig.

API Group An API group is a collection of APIs. You can manage APIs
by API group.
Select APIGroup_test.

Environment An API can be called in different environments, such as
production, test, and development environments. APIG
supports environment management, which allows you to
define different request paths for an API in different
environments.
To ensure that the API can be called, select RELEASE.

Security
Authentication

There are three authentication modes:
● App: AppKey and AppSecret authentication. This mode is

of high security and is recommended.
● IAM: IAM authentication. This mode grants access

permissions to IAM users only and is of medium security.
● None: No authentication. This mode grants access

permissions to all users.
Select None.

Protocol There are two types of protocols:
● HTTP
● HTTPS
Select HTTPS.

Timeout (ms) Enter 5000.

Step 8 Click OK.

Figure 7-3 Creating a trigger

FunctionGraph
User Guide 7 Creating Triggers

2024-08-07 101

NO TE

1. URL indicates the calling address of the APIG trigger.

2. After the APIG trigger is created, an API named API_apig is generated on the APIG
console. You can click the API name in the trigger list to go to the APIG console.

----End

Invoking the Function

Step 1 Enter the URL of the APIG trigger in the address bar of a browser, and press Enter.

Step 2 View the execution result, as shown in Figure 7-4.

Figure 7-4 Returned result

NO TE

1. The input for APIG invocation comes from an event template provided by the function.
For details, see Table 6-2.

2. The function response for APIG invocation is encapsulated and must contain
body(String), statusCode(int), headers(Map), and isBase64Encoded(boolean).

----End

Viewing the Execution Result

Step 1 Return to the FunctionGraph console. In the navigation pane, choose Functions >
Function List.

Step 2 Click a function to go to the function details page.

Step 3 Choose Monitoring > Logs to query function running logs.

----End

7.4 Using an OBS Trigger
This section describes how to create an OBS trigger and upload an image package
to a specified OBS bucket to trigger a function.

Prerequisites

Before creating a trigger, ensure that you have prepared the following:

● You have created a function. For details, see Creating a Function from
Scratch.

● You have created an OBS bucket, for example, obs_cff.

FunctionGraph
User Guide 7 Creating Triggers

2024-08-07 102

Creating an OBS Trigger

Step 1 Log in to the FunctionGraph console. In the navigation pane, choose Functions >
Function List.

Step 2 Click the function to be configured to go to the function details page.

Step 3 Choose Configuration > Triggers and click Create Trigger.

Figure 7-5 Creating a trigger

Step 4 Set the following parameters:
● Trigger Type: Select Object Storage Service (OBS).
● Bucket Name: Specify the OBS bucket to be used as an event source, for

example, obs-cff.
● Events: Select events that will trigger the function. In this example, select Put,

Post, and Delete. When files in the obs_cff bucket are updated, uploaded, or
deleted, the function is triggered.

● Event Notification Name: Specify the name of the event notification to be
sent by SMN when an event occurs.

● Prefix: Enter a keyword for limiting notifications to those about objects whose
names start with the matching characters. This limit can be used to filter the
names of OBS objects.

● Suffix: Enter a keyword for limiting notifications to those about objects whose
names end with the matching characters. This limit can be used to filter the
names of OBS objects.

Step 5 Click OK.

----End

Triggering a Function

On the OBS console, upload an image ZIP package to the obs-cff bucket.

NO TE

After the ZIP package is uploaded to the obs-cff bucket, the HelloWorld function is
triggered.

Viewing the Execution Result

Step 1 Return to the FunctionGraph console. In the navigation pane, choose Functions >
Function List.

Step 2 Click a function to go to the function details page.

Step 3 Choose Monitoring > Logs to query function running logs.

----End

FunctionGraph
User Guide 7 Creating Triggers

2024-08-07 103

7.5 Using a Kafka Trigger
This section describes how to create a Kafka trigger and configure a Kafka event
to trigger a function.

After a Kafka trigger is used, FunctionGraph periodically polls for new messages in
a specific topic in a Kafka instance and passes the messages as input parameters
to invoke functions.

Prerequisites

Before creating a trigger, ensure that you have prepared the following:

● You have created a function. For details, see Creating a Function from
Scratch.

● You have enabled VPC access for the function. For details, see Configuring
the Network.

● You have created a Kafka instance. For details, see "Creating an Instance" in
the Distributed Message Service for Kafka User Guide.

● You have created a topic under a Kafka instance. For details, see section
"Creating a Topic" in the Distributed Message Service for Kafka User Guide.

Creating a Kafka Trigger

Step 1 Log in to the FunctionGraph console. In the navigation pane, choose Functions >
Function List.

Step 2 Click the function to be configured to go to the function details page.

Step 3 Choose Configuration > Triggers and click Create Trigger.

Figure 7-6 Creating a trigger

Step 4 Set the following parameters:

● Trigger Type: Select DMS (for Kafka).

● Instance: Select a Kafka premium instance.

● Topic: Select a topic of the Kafka premium instance.

● Batch Size: Set the number of messages to be retrieved from a topic each
time.

● Username: Enter the username of the instance if SSL has been enabled for it.

● Password: Enter the password of the instance if SSL has been enabled for it.

Step 5 Click OK.

FunctionGraph
User Guide 7 Creating Triggers

2024-08-07 104

NO TE

● After VPC access is enabled, you need to configure corresponding subnet permissions for
the Kafka security group. For details about how to configure VPC access, see
Configuring the Network.

● You can create a Kafka trigger with multiple topics. You do not need to create one such
trigger for each topic in the same instance.

Figure 7-7 Selecting multiple topics

----End

Configuring a Kafka Event to Trigger the Function

Step 1 Return to the FunctionGraph console. In the navigation pane, choose Functions >
Function List.

Step 2 Click the function to be configured to go to the function details page.

Step 3 On the function details page, select a version.

Step 4 On the Code tab page, click Test. The Configure Test Event dialog box is
displayed.

Step 5 Set the parameters described in Table 7-2 and click Save.

Table 7-2 Test event information

Parameter Description

Configure Test Event You can choose to create a test event or edit an existing
one.
Use the default option Create new test event.

Event Template Select DMS (for Kafka) to use the built-in Kafka event
template.

Event Name The event name can contain 1 to 25 characters and must
start with a letter and end with a letter or digit. Only
letters, digits, underscores (_), and hyphens (-) are
allowed. For example, kafka-123test.

FunctionGraph
User Guide 7 Creating Triggers

2024-08-07 105

Parameter Description

Event data The system automatically loads the built-in Kafka event
template, which is used in this example without
modifications.

Step 6 Click Test. The function test result is displayed.

----End

7.6 Using an LTS Trigger
This section describes how to create an LTS trigger for a function, and invoke the
function when log events occur.

Prerequisites
● You have created a function. For details, see Creating a Function from

Scratch.

● You have created an agency with the LTS FullAccess permission. For details
about how to create an agency, see Configuring Agency Permissions.

● You have created a log group, for example, LogGroup1. For details, see
Creating a Log Group.

● You have created a log stream, for example, LogTopic1. For details, see
Creating a Log Stream.

Creating an LTS Trigger

Step 1 Log in to the FunctionGraph console. In the navigation pane, choose Functions >
Function List.

Step 2 Click the function to be configured to go to the function details page.

Step 3 Choose Configuration > Triggers and click Create Trigger.

Figure 7-8 Creating a trigger

Step 4 Set the following parameters:

● Trigger Type: Select Log Tank Service (LTS).

● Log Group: Select a log group, for example, LogGroup1.

● Log Stream: Select a log stream, for example, LogStream1.

Step 5 Click OK.

----End

FunctionGraph
User Guide 7 Creating Triggers

2024-08-07 106

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-lts/lts_04_0003.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-lts/lts_04_0004.html

Configuring an LTS Event to Trigger the Function
NO TE

When the size of an LTS event message exceeds 75 KB, it will be split into multiple
messages by 75 KB to trigger the function.

Step 1 Return to the FunctionGraph console. In the navigation pane, choose Functions >
Function List.

Step 2 Click the function to be configured to go to the function details page.

Step 3 On the function details page, select a version.

Step 4 On the Code tab page, click Test. The Configure Test Event dialog box is
displayed.

Step 5 Set the parameters described in Table 7-3 and click Save.

Table 7-3 Test event information

Parameter Description

Configure Test Event You can choose to create a test event or edit an existing
one.
Use the default option Create new test event.

Event Template Select lts-event-template.

Event Name The event name can contain 1 to 25 characters and must
start with a letter and end with a letter or digit. Only
letters, digits, underscores (_), and hyphens (-) are
allowed. For example, lts-123test.

Event data The system automatically loads the built-in LTS event
template, which is used in this example without
modifications.

Step 6 Click Test. The function test result is displayed.

----End

7.7 Using a CTS Trigger
This section describes how to create a CTS trigger for a function, and invoke the
function in response to cloud resource operations recorded by CTS.

Prerequisites

You have created an agency on IAM. For details, see Configuring Agency
Permissions.

FunctionGraph
User Guide 7 Creating Triggers

2024-08-07 107

Creating a CTS Trigger

Step 1 Log in to the FunctionGraph console. In the navigation pane, choose Functions >
Function List.

Step 2 On the Function List page, click Create Function in the upper right corner.

Step 3 Set the following parameters:

● Function Name: Enter a function name, for example, HelloWorld.

● Agency: Select Use no agency.

● Enterprise Project: Select default.

● Runtime: Select Python 2.7.

Step 4 Click Create Function.

Step 5 On the Code tab page, copy the following code to the code window and click
Deploy.
-*- coding:utf-8 -*-
'''
CTS trigger event:
{
 "cts": {
 "time": "",
 "user": {
 "name": "userName",
 "id": "",
 "domain": {
 "name": "domainName",
 "id": ""
 }
 },
 "request": {},
 "response": {},
 "code": 204,
 "service_type": "FunctionGraph",
 "resource_type": "",
 "resource_name": "",
 "resource_id": {},
 "trace_name": "",
 "trace_type": "ConsoleAction",
 "record_time": "",
 "trace_id": "",
 "trace_status": "normal"
 }
}
'''
def handler (event, context):
 trace_name = event["cts"]["resource_name"]
 timeinfo = event["cts"]["time"]
 print(timeinfo+' '+trace_name)

Step 6 Choose Configuration > Triggers and click Create Trigger.

Figure 7-9 Creating a trigger

Step 7 Configure the trigger information.

FunctionGraph
User Guide 7 Creating Triggers

2024-08-07 108

Table 7-4 Trigger information

Parameter Description

Trigger Type Select Cloud Trace Service (CTS).

Event
Notification
Name

Enter a notification name, for example, Test.

Service Type Select FunctionGraph.

Resource Type Resource types supported by the selected service, such as
triggers, instances, and functions.

Trace Name Operations that can be performed on the selected resource
type, such as creating or deleting a trigger.

Step 8 Click OK.

----End

Configuring a CTS Event to Trigger the Function

Step 1 Return to the FunctionGraph console. In the navigation pane, choose Functions >
Function List.

Step 2 Click the function to be configured to go to the function details page.

Step 3 On the function details page, select a version, and click Test. The Configure Test
Event dialog box is displayed.

Step 4 Set the parameters described in Table 7-5 and click Save.

Table 7-5 Test event information

Parameter Description

Configure Test Event You can choose to create a test event or edit an existing
one.
Use the default option Create new test event.

Event Template Select cts-event-template.

Event Name Enter an event name, for example, cts-test.

Event data The system automatically loads the event data in the
CTS event template. You can modify the event data as
required.

Step 5 Click Test. The function test result is displayed.

----End

FunctionGraph
User Guide 7 Creating Triggers

2024-08-07 109

7.8 Cron Expressions for a Function Timer Trigger
You can configure a cron expression in the following formats for a function timer
trigger:
● @every format

The format is "@every N unit". N is a positive integer. unit can be ns, µs, ms,
s, m, or h. An @every expression means to invoke a function every N time
units, as shown in Table 7-6.

Table 7-6 Example expressions

Expression Meaning

@every 30m Triggers a function every 30
minutes.

@every 1.5h Triggers a function every 1.5 hours.

@every 2h30m Triggers a function every 2.5 hours.

● Standard format

The format is "seconds minutes hours day-of-month month day-of-week".
day-of-week is optional. The fields must be separated from each other using a
space. Table 7-7 describes the fields in a standard cron expression.

Table 7-7 Parameter description

Parameter Mandatory Value Range Special
Characters
Allowed

Seconds Yes 0–59 , - * /

Minutes Yes 0–59 , - * /

Hours Yes 0–23 , - * /

Day-of-month Yes 1–31 , - * ? /

Month Yes 1–12 or Jan–Dec.
The value is
case-insensitive,
as shown in
Table 7-8.

, - * /

Day-of-week No 0–6 or Sun–Sat.
The value is
case-insensitive,
as shown in
Table 7-9. 0
means Sunday.

, - * ? /

FunctionGraph
User Guide 7 Creating Triggers

2024-08-07 110

Table 7-8 Value description of the month field

Month Digit Abbreviation

January 1 Jan

February 2 Feb

March 3 Mar

April 4 Apr

May 5 May

June 6 Jun

July 7 Jul

August 8 Aug

September 9 Sep

October 10 Oct

November 11 Nov

December 12 Dec

Table 7-9 Value description of the day-of-week field

Day of Week Digit Abbreviation

Monday 1 Mon

Tuesday 2 Tue

Wednesday 3 Wed

Thursday 4 Thu

Friday 5 Fri

Saturday 6 Sat

Sunday 0 Sun

Table 7-10 describes the special characters that can be used in a cron
expression.

FunctionGraph
User Guide 7 Creating Triggers

2024-08-07 111

Table 7-10 Special character description

Special
Characte
r

Meaning Description

* Used to specify all
values within a
field.

* in the minutes field means every
minute.

, Used to specify
multiple values,
which can be
discontinuous.

For example, "Jan,Apr,Jul,Oct" or
"1,4,7,10" in the month field and
"Sat,Sun" or "6,0" in the day-of-week
field.

- Used to specify a
range.

For example, "0-3" in the minutes field.

? Used to specify
something in one
of the two fields in
which the character
is allowed, but not
the other.

You can specify something only in the
day-of-month or day-of-week field. For
example, if you want your function to be
executed on a particular day (such as the
10th) of the month, but do not care what
day of the week that is, then put "10" in
the day-of-month field and "?" in the
day-of-week field.

/ Used to specify
increments. The
character before
the slash indicates
when to start, and
the one after the
slash represents
the increment.

For example, "1/3" in the minutes field
means to trigger the function every 3
minutes starting from 00:01:00 of the
hour.

Table 7-11 describes several example cron expressions.

Table 7-11 Example cron expressions

Function Scheduling Example Cron Expression (UTC
Time)

12:00 every day 0 0 4 * * *

12:30 every day 0 30 4 * * *

26th, 29th, and 33rd minutes of each hour 0 26,29,33 * * * *

12:30 from Monday to Friday 0 30 4 ? * MON-FRI

Every 5 minutes during 12:00 and 14:00 from
Monday to Friday

0 0/5 4-6 ? * MON-FRI

FunctionGraph
User Guide 7 Creating Triggers

2024-08-07 112

Function Scheduling Example Cron Expression (UTC
Time)

12:00 every day from January to April 0 0 4 ? JAN,FEB,MAR,APR *

FunctionGraph
User Guide 7 Creating Triggers

2024-08-07 113

8 Invoking the Function

8.1 Synchronous Invocation
When triggering a function, clients wait for the result before proceeding. Currently,
functions with APIG (dedicated) triggers are executed synchronously. Alternatively,
you can use the API described insection "Executing a Function Synchronously" to
trigger a function synchronously. In this scenario, a function is executed for up to
15 minutes.

8.2 Asynchronous Invocation
When a client triggers a function, FunctionGraph persists the request and sends a
response immediately to the client. The client proceeds without waiting for the
execution result. You cannot know the result in real time. FunctionGraph queues
the asynchronous requests and processes them when the server is idle. To obtain
asynchronous processing results or to retry when an asynchronous request fails,
configure asynchronous settings.

● The following triggers are invoked asynchronously by default and the
invocation mode cannot be changed.

Table 8-1 Invocation mode

Event Source Invocation Mode

SMN Asynchronous

OBS Asynchronous

DIS Asynchronous

Timer Asynchronous

LTS Asynchronous

CTS Asynchronous

FunctionGraph
User Guide 8 Invoking the Function

2024-08-07 114

Event Source Invocation Mode

DMS for Kafka Asynchronous

● APIG and APIG (dedicated) triggers can be configured for asynchronous

invocation on their console. You can also use the asynchronous execution API
instead. In this scenario, the maximum execution duration of a function is 12
hours (configured in the whitelist).

NO TE

If the E2E function execution latency exceeds 90s, asynchronous invocation is
recommended. If synchronous invocation is used, no responses can be received after
90s due to gateway restrictions.

Example

The following procedure uses the APIG trigger of a function as an example.

1. Go to the function details page, and choose Configuration > Triggers.
2. Click the APIG trigger name to go to the APIG console.

Figure 8-1 Clicking a trigger name

3. Click Edit in the upper right.

Figure 8-2 Clicking Edit

4. Click Next until the Define Backend Request page is displayed. Then change
Invocation Mode to Asynchronous.

FunctionGraph
User Guide 8 Invoking the Function

2024-08-07 115

Figure 8-3 Changing the invocation mode

5. Click Finish to save the settings.

8.3 Retry Mechanism
If synchronous or asynchronous invocation fails, do as follows:

● Synchronous invocation
Try again.

● Asynchronous invocation
You can set the maximum number of retries and the maximum message
validity period (up to 24 hours) by referring to Configuring Asynchronous
Execution Notification. FunctionGraph will retry a function based on these
two parameters.

Idempotency
In programming, idempotency means that an application or component can
identify duplicate events and prevent duplication, inconsistency, and data loss. If
you want to keep a function idempotent, you need to design the function logic to
correctly handle repeated events.

Idempotent function logic helps reduce the following problems:

● Unnecessary API calls
● Code processing time
● Data inconsistency
● Restrictions
● Latency

Ensure that your function code can process the same event multiple times without
causing duplicate transactions or other unnecessary side effects in case of
abnormal calls, retry of client, or retry within dependent functions.

FunctionGraph
User Guide 8 Invoking the Function

2024-08-07 116

9 Monitoring

9.1 Metrics

9.1.1 Function Monitoring
FunctionGraph is interconnected with Cloud Eye, allowing you to view function
metrics without the need for any configurations.

Viewing Function Metrics
FunctionGraph collects function metrics and displays aggregated results. Switch to
your target function version before viewing metrics.

1. Log in to the FunctionGraph console. In the navigation pane, choose
Functions > Function List.

2. Click the function to be configured to go to the function details page.
3. Choose Monitoring > Metrics, select an interval (last day, last 3 days, or

custom), and check the running status of the function.

NO TE

The following metrics are displayed: invocations, errors, duration (maximum, average,
and minimum durations), throttles, and instance statistics.

Metric Description
Table 9-1 describes the function metrics.

FunctionGraph
User Guide 9 Monitoring

2024-08-07 117

Table 9-1 Function metrics

Metric Unit Description

Invocations Count Total number of invocation requests, including
invocation errors and throttled invocations. In
case of asynchronous invocation, the count starts
only when a function is executed in response to
a request.

Duration ms Maximum Duration: the maximum duration a
function is executed within a period.
Minimum Duration: the minimum duration a
function is executed within a period.
Average Duration: the average duration a
function is executed within a period.

Errors Count Number of times that your functions failed with
error code 200 being returned. Errors caused by
function syntax or execution are also included.

Throttles Count Number of times that FunctionGraph throttles
your functions due to the resource limit.

Instance
Statistics

Count Numbers of concurrent requests and reserved
instances.

9.1.2 Function Metrics

Introduction
This section describes the FunctionGraph namespaces, function metrics, and
dimensions reported to Cloud Eye. You can view function metrics and alarms by
using the Cloud Eye console or calling APIs.

Namespaces
SYS.FunctionGraph

FunctionGraph
User Guide 9 Monitoring

2024-08-07 118

Function Metrics

Table 9-2 Function metrics

Metric ID Metric
Name

Description Value
Range

Monit
ored
Object

Monitori
ng Period
of Raw
Data
(Minute)

count Invocation
s

Number of
function
invocations
Unit: Count

≥ 0
counts

Functi
ons

5

failcount Errors Number of
invocation errors
The following
errors are included:
● Function

request error
(causing an
execution
failure and
returning error
code 200)

● Function syntax
or execution
error

Unit: Count

≥ 0
counts

Functi
ons

5

failRate Error rate Percentage of
invocation errors
to the total
invocations
Unit: %

0% ≤X≤
100%

Functi
ons

5

rejectcount Throttles Number of
function throttles
That is, the
number of times
that
FunctionGraph
throttles your
functions due to
the resource limit.
Unit: Count

≥ 0
counts

Functi
ons

5

FunctionGraph
User Guide 9 Monitoring

2024-08-07 119

Metric ID Metric
Name

Description Value
Range

Monit
ored
Object

Monitori
ng Period
of Raw
Data
(Minute)

concurrency Number
of
concurren
t requests

Maximum number
of concurrent
requests during
function
invocation.
Unit: Count

≥ 0
counts

Functi
ons

5

reservedinst
ancenum

Number
of
reserved
instances

Number of
reserved instances
Unit: Count

≥ 0
counts

Functi
ons

5

duration Average
duration

Average duration
of function
invocation
Unit: ms

≥ 0 ms Functi
ons

5

maxDuratio
n

Maximum
duration

Maximum
duration of
function
invocation
Unit: ms

≥ 0 ms Functi
ons

5

minDuration Minimum
duration

Minimum duration
of function
invocation
Unit: ms

≥ 0 ms Functi
ons

5

systemError
Count

System
errors

Number of 200
errors that cause a
failure in executing
function requests.
Unit: Count

≥ 0 Functi
ons

5

functionErro
rCount

Function
errors

Number of syntax
and execution
errors. Unit: Count

≥ 0 Functi
ons

5

payPerUseIn
stance

Number
of elastic
instances.

Number of elastic
instances. Unit:
Count

≥ 0 Functi
ons

5

FunctionGraph
User Guide 9 Monitoring

2024-08-07 120

Dimensions
Key Value

package-functionname App name-Function name
Example: default-myfunction_Python

projectId Project ID of the tenant

9.1.3 Creating an Alarm Rule
After creating a function and trigger, you can monitor the invocation and running
statuses of the function in real time.

Viewing Function Metrics
FunctionGraph differentiates the metrics of a function by version, allowing you to
query the metrics of a specific function version.

Procedure
Create an alarm rule for a function to report metrics to Cloud Eye so that you can
view monitoring graphs and alarm messages on the Cloud Eye console.

Step 1 Log in to the FunctionGraph console. In the navigation pane, choose Functions >
Function List.

Step 2 Click the name of the desired function.

Step 3 On the displayed function details page, select a function version or alias, and
choose Monitoring > Metrics.

Step 4 Click Create Alarm Rule.

Step 5 Set alarm parameters and click Next as shown in Figure 9-1.

Figure 9-1 Creating an alarm rule

FunctionGraph
User Guide 9 Monitoring

2024-08-07 121

Step 6 Enter a rule name and click OK.

----End

CA UTION

After a function is deleted, the alarm rules created for it will not be updated in
real time on the Cloud Eye console and may continue to be displayed there for a
maximum of seven days.

Function Metrics

Table 9-3 lists the function metrics that can be monitored by Cloud Eye.

Table 9-3 Function metrics

Metric Displa
y
Name

Descripti
on

Uni
t

Upp
er
Limi
t

Low
er
Limit

Reco
mmen
ded
Thres
hold

Value
Type

Dimensio
n

count Invocat
ions

Number
of
function
invocatio
ns

Cou
nt

- 0 - int package-
functionn
ame

failcou
nt

Errors Number
of
invocatio
n errors

Cou
nt

- 0 - int package-
functionn
ame

rejectc
ount

Throttl
es

Number
of
function
throttles

Cou
nt

- 0 - int package-
functionn
ame

duratio
n

Averag
e
Duratio
n

Average
duration
of
function
invocatio
n

ms - 0 - int package-
functionn
ame

maxDu
ration

Maxim
um
Duratio
n

Maximu
m
duration
of
function
invocatio
n

ms - 0 - int package-
functionn
ame

FunctionGraph
User Guide 9 Monitoring

2024-08-07 122

Metric Displa
y
Name

Descripti
on

Uni
t

Upp
er
Limi
t

Low
er
Limit

Reco
mmen
ded
Thres
hold

Value
Type

Dimensio
n

minDur
ation

Minim
um
Duratio
n

Minimu
m
duration
of
function
invocatio
n

ms - 0 - int package-
functionn
ame

9.2 Logs

9.2.1 Querying Function Logs
FunctionGraph is interconnected with LTS, allowing you to view function logs
without the need for any configurations.

Viewing Function Logs
On the FunctionGraph console, view function logs in the following ways:

● Viewing logs on the execution result page
After creating a function, test it and view test logs on the execution result
page. For details, see Online Debugging.
The execution result page displays a maximum of 2 KB logs. To view more
logs of the function, go to the Logs tab page.

● Viewing logs on the Logs tab page
On the function details page, choose Monitoring > Logs to query log
information. For details, see Managing Function Logs.

9.2.2 Managing Function Logs

Using LTS to Manage Function Logs
You can enable LTS to better manage function logs. After you enable LTS,
FunctionGraph automatically creates a log group starting with functiongraph.
When you create a function, a log stream starting with the function name is
generated.

FunctionGraph
User Guide 9 Monitoring

2024-08-07 123

NO TE

● By default, 20 log streams are created, which cannot be customized. On the Logs tab
page of the function, press F12 to find out the log stream ID of the query API, and then
locate the corresponding log stream ID in LTS.

● Deleting a function log group by mistake on the LTS console will not be detected by
FunctionGraph, and the historical log data can no longer be retrieved. To use a log
group, modify the function description and save the changes. A new log group will be
created.

Step 1 Enable LTS.

Step 2 Set filter criteria.
● Request List: Filter requests by request ID, result (success or failure), or cause

(initialization failed, load failed, system error, timed out, out of memory, out
of disk space, or code error).

● Request Log: Filter logs by keyword, request ID, or instance ID.

Table 9-4 Invocation result

Result Description

Execution
successful

Log printed when a function is successfully executed.

Execution
failed

Log printed when a function fails to be executed due to invocation
timeout, memory or disk threshold exceeded, or code errors.
To view the logs about invocation timeout, select Invocation
timed out from the drop-down list. The methods for viewing the
other three types of logs are the same.

Table 9-5 Cause analysis

Cause Description

Initializati
on failed

Log printed when the function initialization fails.

Load
failed

Log generated when the runtime fails to load your function file.

System
error

Internal error.

Invocation
timed out

Log printed when the function invocation period is longer than the
preset limit.

FunctionGraph
User Guide 9 Monitoring

2024-08-07 124

Cause Description

Memory
threshold
exceeded

Log printed when the function memory size exceeds the preset
limit.

Disk
threshold
exceeded

Log printed when the disk size exceeds the preset limit.

Code error Log printed when a code error occurs.

NO TE

● You can view logs of the last hour, last day, last 3 days, or a custom time period.
● To manage function logs, go to the LTS console.
● Max. 10 MB logs can be retained for common instances during initialization. When this

limit is reached, the latest logs replace the old ones.

----End

FunctionGraph
User Guide 9 Monitoring

2024-08-07 125

10 Function Management

Overview

Function is a combination of code, runtime, resources, and settings required to
achieve a specific purpose. It is the minimum unit that can run independently. A
function can be triggered by triggers and automatically schedule required
resources and environments to achieve expected results.

Exporting a Function

You can export the functions that you created.

Step 1 Log in to the FunctionGraph console, and choose Functions > Function List in the
navigation pane.

Step 2 Click a function name.

Step 3 On the displayed function details page, choose Operation > Export Function in
the upper right corner.

NO TE

● A user can export only one function at a time.

● The exported function resource package cannot exceed 50 MB.

● The name of the exported function resource package is in the format of function name
+MD5 value of function code.zip.

● The exported function resource package does not include alias information.

● If a function is disabled or enabled, all versions of the function will be disabled or
enabled.

----End

Disabling a Function

Disabled functions can no longer be executed.

Step 1 Return to the FunctionGraph console, and choose Functions > Function List in
the navigation pane.

Step 2 Click the name of the function you want to disable.

FunctionGraph
User Guide 10 Function Management

2024-08-07 126

Step 3 On the displayed function details page, click Disable Function in the upper right
corner.

Step 4 On the displayed page, click Yes. The function is disabled.

NO TE

● Only functions of the latest version can be disabled.
● Versions published based on the disabled latest version of a function are also disabled

and can never be enabled.
● After disabling a function, you can modify its code but cannot execute the function.

----End

Enabling a Function
Disabled functions can be enabled again as required.

Step 1 Return to the FunctionGraph console, and choose Functions > Function List in
the navigation pane.

Step 2 Click the name of the function you want to enable.

Step 3 On the displayed function details page, click Enable Function in the upper right
corner.

----End

Deleting a Function
You can delete unused functions to release resources.

Step 1 Return to the FunctionGraph console, and choose Functions > Function List in
the navigation pane.

Step 2 In the Function List, locate the row that contains the target function and click
Delete in the operation column. In the displayed dialog box, enter DELETE and
click OK.

----End

FunctionGraph
User Guide 10 Function Management

2024-08-07 127

11 Dependency Management

11.1 Configuring Dependency Packages

Overview
Generally, the code of a function consists of public libraries and service logic. The
public libraries can be packaged as a dependency and shared among functions,
reducing the size of the function code package for easy deployment and update.

FunctionGraph also provides some public dependencies, which are cached
internally for quick loading. These dependencies are recommended.

FunctionGraph enables you to manage dependencies in a unified manner. You can
upload dependencies from a local path, or through OBS if they are too large, and
specify names for them. Dependencies can be iterated. Each dependency can have
multiple versions.

For details, see How Do I Create Function Dependencies?

NO TE

● The name of each file in the dependency package cannot end with a tilde (~).
● A dependency package can contain up to 30,000 files.
● If your function uses a large private dependency, increase the execution timeout by

choosing Configuration > Basic Settings on the function details page.

Creating a Dependency

Step 1 Log in to the FunctionGraph console, and choose Functions > Dependencies in
the navigation pane.

Step 2 Click Create Dependency.

Step 3 Set the following parameters:

FunctionGraph
User Guide 11 Dependency Management

2024-08-07 128

Table 11-1 Dependency configuration parameters

Parameter Description

Name Dependency name.

Code Entry
Mode

Upload a ZIP file directly or upload a file from OBS.
● Upload ZIP: Click Select File to upload one.
● Upload from OBS: Specify an OBS link URL.

Runtime Select a runtime.

Description Description of the dependency. This parameter is optional.

Step 4 Click OK. By default, a new dependency is version 1.

Step 5 Click the dependency name, and view all versions and related information on the
displayed page. Each dependency can have multiple versions.
● To create a dependency version, click Create Version in the upper right corner

of the page.
● To view the address of a version, click the version.
● To delete a version, click the delete icon in the same row.

Figure 11-1 Deleting a dependency version

----End

Configuring Dependencies for a Function

Step 1 Return to the FunctionGraph console, and choose Functions > Function List in
the navigation pane.

Step 2 Click the name of the desired function.

Step 3 On the displayed function details page, click the Code tab, click Add in the
Dependencies area.

Step 4 On the displayed Select Dependency dialog box, select dependencies and click
OK.

Table 11-2 Dependency configuration

Parameter Description

Runtime Runtime of this function. It cannot be changed.

Type Add a Public or Private dependency.

Name Select a dependency.

Version Select a version to be added.

FunctionGraph
User Guide 11 Dependency Management

2024-08-07 129

NO TE

● You can add a maximum of 20 dependencies for a function.

● Except your private dependencies, FunctionGraph provides some public dependencies,
which you can choose when creating a function.

----End

Deleting a Dependency

To delete a dependency, just delete all of its versions.

Step 1 Return to the FunctionGraph console, and choose Functions > Dependencies in
the navigation pane.

Step 2 Click the name of the target dependency to go to the Versions page.

Step 3 Click the delete icon in the row of a version. Repeat this operation if the
dependency has multiple versions.

Figure 11-2 Deleting a dependency version

NO TE

Dependencies referenced by functions cannot be deleted.

----End

11.2 Dependent Libraries
Supported Dependent Libraries

FunctionGraph supports both standard and third-party libraries.

● Standard libraries
When using standard libraries, you can import them to your inline code or
package and upload them to FunctionGraph.

● Supported non-standard libraries
FunctionGraph provides built-in third-party components listed in Table 11-3
and Table 11-4. You can import these libraries to your inline code in the same
way as you import standard libraries.

Table 11-3 Third-party components integrated with the Node.js runtime

Name Usage Version

q Asynchronous method
encapsulation

1.5.1

co Asynchronous process
control

4.6.0

FunctionGraph
User Guide 11 Dependency Management

2024-08-07 130

Name Usage Version

lodash Common tool and method
library

4.17.10

esdk-obs-nodejs OBS sdk 2.1.5

express Simplified web-based
application development
framework

4.16.4

fgs-express Provides a Node.js
application framework for
FunctionGraph and APIG to
run serverless applications
and REST APIs. This
component provides an
example of using the
Express framework to build
serverless web applications
or services and RESTful
APIs.

1.0.1

request Simplifies HTTP invocation
and supports HTTPS and
redirection.

2.88.0

Table 11-4 Non-standard libraries supported by the Python runtime

Module Usage Version

dateutil Date and time
processing

2.6.0

requests HTTP library 2.7.0

httplib2 httpclient 0.10.3

numpy Mathematical
computing

For pip 2.7,
numpy==1.16.6.
For pip 3.10,
numpy==1.24.2.
For pip 3.9,
numpy==1.18.5.
For pip 3.6,
numpy==1.18.5.

redis Redis client 2.10.5

obsclient OBS client -

smnsdk SMN access 1.0.1

FunctionGraph
User Guide 11 Dependency Management

2024-08-07 131

● Other third-party libraries (FunctionGraph has no built-in non-standard third-
party libraries except those listed in the preceding table.)
Package the dependency third-party libraries and upload them to an OBS
bucket or on the function details page. These libraries will then be used in
your function code.

Importing Dependent Libraries

Importing a dependency for Python:
from com.obs.client.obs_client import ObsClient

Importing a dependency for Node.js:
const ObsClient = require('esdk-obs-nodejs');

For standard libraries and supported non-standard libraries, you can directly use
them in your function.

For non-standard third-party libraries that are not provided by FunctionGraph, you
can use them by performing the following steps:

1. Package the dependent libraries into a ZIP file, upload the ZIP file to an OBS
bucket, and obtain the OBS link URL.

2. Log in to the FunctionGraph console, and choose Functions > Dependencies
in the navigation pane.

3. Click Create Dependency.
4. Set the dependency name and runtime, specify the OBS link URL, and click

OK.

Figure 11-3 Setting the dependency

FunctionGraph
User Guide 11 Dependency Management

2024-08-07 132

5. On the function details page, click the Code tab, click Add in the
Dependencies area, select the dependency created in 4, and click OK.

Figure 11-4 Selecting a dependency

WARNING

Each dependency package cannot contain a file with the same name as a
code file. Otherwise, the two files may be incorrectly merged or overwritten.
For example, if dependency package depends.zip contains a file named
index.py, the handler of a function cannot be set to index.handler.
Otherwise, a code file also named index.py will be generated.

FunctionGraph
User Guide 11 Dependency Management

2024-08-07 133

12 Reserved Instance Management

Introduction

FunctionGraph provides on-demand and reserved instances.

● On-demand instances are created and released by FunctionGraph based on
actual function usage. When receiving requests to call functions,
FunctionGraph automatically allocates execution resources to the requests.

● Reserved instances can be created and released by you as required. After you
create reserved instances for a function, FunctionGraph preferentially forwards
requests to the reserved instances. If the number of requests exceeds the
processing capability of the reserved instances, FunctionGraph will forward
the excessive requests to on-demand instances and automatically allocates
execution resources to these requests.
After reserved instances are created for a function, the code, dependencies,
and initializer of the function are automatically loaded. Reserved instances
are always alive in the execution environment, eliminating the influence of
cold starts on your services. (Do not execute one-time services using the
initializer of reserved instances.)
You can configure a fixed number of reserved instances or scheduled
scaling policies.

Configuring a Fixed Number of Reserved Instances

Ensure that the function for which you want to create reserved instances already
exists on the FunctionGraph console.

1. Log in to the FunctionGraph console. In the navigation pane, choose
Functions > Function List.

2. Click the target function to go to the details page.
3. Choose Configuration > Concurrency, and click Add.

Figure 12-1 Clicking Add

4. Set parameters by referring to Table 12-1.

FunctionGraph
User Guide 12 Reserved Instance Management

2024-08-07 134

You can create a specified number of reserved instances for a function version
or alias. This number cannot exceed the maximum number of requests per
instance or the maximum number of instances per function.

Figure 12-2 Basic settings

Table 12-1 Basic settings

Parame
ter

Description

Functio
n Name

Name of the current function.

Type Select Version or Aliases.

Version Set this parameter when you select Version for Type.

Alias Set this parameter when you select Aliases for Type.

Min.
Instanc
es

Minimum number of instances. Max.: 1000. FunctionGraph
reserves the specified number of instances for the function. These
instances will always run unless you change Min. Instances to 0.

Idle
Mode

This mode saves costs as CPU resources are not used when
reserved instances are not invoked.

NO TE

● Reserved instances cannot be configured for both a function alias and the
corresponding version. For example, if the alias of the latest version is 1.0 and
reserved instances have been configured for this version, no more instances can be
configured for alias 1.0.

● After the idle mode is enabled, reserved instances are initialized and the mode
change needs some time to take effect. You will still be billed at the price of
reserved instances for non-idle mode in this period.

● If the function concurrency is greater than the number of reserved instances, the
excess requests will be allocated to on-demand instances, which involve a cold
start.

FunctionGraph
User Guide 12 Reserved Instance Management

2024-08-07 135

5. Click OK. The new policy is displayed in the reserved instance policy list.

Figure 12-3 Policy list

Configuring a Scheduled Scaling Policy
Configure the number of reserved instances that will run in a specified period and
a cron expression. During this period, FunctionGraph adjusts the number of
reserved instances based on the cron expression. When the period expires, the
fixed number of instances will be reserved.

1. Configure the basic settings by referring to Table 12-1, and then click Add
Policy.

Figure 12-4 Clicking Add Policy

2. Set parameters by referring to Table 12-2.

Table 12-2 Scheduled scaling policy parameters

Paramet
er

Description

Policy
Name

Policy name.

Cron
Expressio
n (UTC)

Set this parameter by referring to Cron Expressions for a
Function Timer Trigger.

FunctionGraph
User Guide 12 Reserved Instance Management

2024-08-07 136

Paramet
er

Description

Validity Local time when the cron expression is effective.
The scheduled scaling policy is effective only during this validity
period. In other time, the Min. Instances in the basic settings is
used.

Min.
Instances

The number of reserved instances to be created when the
policy is effective.
Set a number that meets your service requirements.
NOTE

The number must be greater than or equal to the Min. Instances in the
basic settings.

3. Click OK. The new policy is displayed in the reserved instance policy list.

Figure 12-5 Policy list

4. To modify the reserved instance policy, click Edit in the Operation column.
Then modify or add scheduled scaling policies.

5. To delete a reserved instance policy under a function version or alias, click
Delete in the Operation column.

6. To view concurrent instances, click a quantifier in the reserved instance policy
list, and click a scheduled scaling policy name.

NO TE

Multiple scheduled policies can be configured. For example, the number of reserved
instances at 08:00 and 21:00 is updated to 100 and 10 respectively.

FunctionGraph
User Guide 12 Reserved Instance Management

2024-08-07 137

13 Audit

13.1 Operations Logged by CTS
Table 13-1 lists the FunctionGraph operations that can be logged by CTS.

Table 13-1 Operations logged by CTS

Operation Resource Type Event Name

Creating a function Function createFunction

Deleting a function Function deleteFunction

Modifying function
information

Function updateFunctionConfig

Publishing a function
version

Function version publishFunctionVersion

Deleting a function
version alias

Function version alias deleteVersionAlias

Deleting a function
trigger

Trigger deleteTrigger

Creating a function
trigger

Trigger createTrigger

Disabling a function
trigger

Trigger disableTrigger

Enabling a function
trigger

Trigger enableTrigger

FunctionGraph
User Guide 13 Audit

2024-08-07 138

13.2 Querying Real-Time Traces

Scenarios

After you enable CTS and the management tracker is created, CTS starts recording
operations on cloud resources. After a data tracker is created, the system starts
recording operations on data in OBS buckets. CTS stores operation records
generated in the last seven days.

This section describes how to query and export operation records of the last seven
days on the CTS console.

● Viewing Real-Time Traces in the Trace List of the New Edition
● Viewing Real-Time Traces in the Trace List of the Old Edition

Viewing Real-Time Traces in the Trace List of the New Edition
1. Log in to the management console.

2. Click in the upper left corner and choose Management & Deployment >
Cloud Trace Service. The CTS console is displayed.

3. Choose Trace List in the navigation pane on the left.
4. On the Trace List page, use advanced search to query traces. You can

combine one or more filters.
– Trace Name: Enter a trace name.
– Trace ID: Enter a trace ID.
– Resource Name: Enter a resource name. If the cloud resource involved in

the trace does not have a resource name or the corresponding API
operation does not involve the resource name parameter, leave this field
empty.

– Resource ID: Enter a resource ID. Leave this field empty if the resource
has no resource ID or if resource creation failed.

– Trace Source: Select a cloud service name from the drop-down list.
– Resource Type: Select a resource type from the drop-down list.
– Operator: Select one or more operators from the drop-down list.
– Trace Status: Select normal, warning, or incident.

▪ normal: The operation succeeded.

▪ warning: The operation failed.

▪ incident: The operation caused a fault that is more serious than the
operation failure, for example, causing other faults.

– Time range: Select Last 1 hour, Last 1 day, or Last 1 week, or specify a
custom time range.

5. On the Trace List page, you can also export and refresh the trace list, and
customize the list display settings.

FunctionGraph
User Guide 13 Audit

2024-08-07 139

– Enter any keyword in the search box and press Enter to filter desired
traces.

– Click Export to export all traces in the query result as an .xlsx file. The file
can contain up to 5000 records.

– Click to view the latest information about traces.

– Click to customize the information to be displayed in the trace list. If

Auto wrapping is enabled (), excess text will move down to the
next line; otherwise, the text will be truncated. By default, this function is
disabled.

6. For details about key fields in the trace structure, see section "Trace
References" > "Trace Structure" and section "Trace References" > "Example
Traces".

7. (Optional) On the Trace List page of the new edition, click Go to Old Edition
in the upper right corner to switch to the Trace List page of the old edition.

Viewing Real-Time Traces in the Trace List of the Old Edition
1. Log in to the management console.

2. Click in the upper left corner and choose Management & Deployment
> Cloud Trace Service. The CTS console is displayed.

3. Choose Trace List in the navigation pane on the left.
4. Each time you log in to the CTS console, the new edition is displayed by

default. Click Go to Old Edition in the upper right corner to switch to the
trace list of the old edition.

5. Set filters to search for your desired traces. The following filters are available:
– Trace Type, Trace Source, Resource Type, and Search By: Select a filter

from the drop-down list.

▪ If you select Resource ID for Search By, specify a resource ID.

▪ If you select Trace name for Search By, specify a trace name.

▪ If you select Resource name for Search By, specify a resource name.

– Operator: Select a user.
– Trace Status: Select All trace statuses, Normal, Warning, or Incident.
– Time range: You can query traces generated during any time range in the

last seven days.
– Click Export to export all traces in the query result as a CSV file. The file

can contain up to 5000 records.
6. Click Query.
7. On the Trace List page, you can also export and refresh the trace list.

– Click Export to export all traces in the query result as a CSV file. The file
can contain up to 5000 records.

– Click to view the latest information about traces.

8. Click on the left of a trace to expand its details.

FunctionGraph
User Guide 13 Audit

2024-08-07 140

9. Click View Trace in the Operation column. The trace details are displayed.

10. For details about key fields in the trace structure, see section "Trace
References" > "Trace Structure" and section "Trace References" > "Example
Traces" in the CTS User Guide.

11. (Optional) On the Trace List page of the old edition, click New Edition in the
upper right corner to switch to the Trace List page of the new edition.

FunctionGraph
User Guide 13 Audit

2024-08-07 141

14 FAQs

14.1 General FAQs

14.1.1 What Is FunctionGraph?
FunctionGraph allows you to run you code without provisioning or managing
servers, while ensuring high availability and scalability. All you need to do is
upload your code and set execution conditions, and FunctionGraph will take care
of the rest.

14.1.2 Do I Need to Apply for Any Compute, Storage, or
Network Services When Using FunctionGraph?

When using FunctionGraph, you do not need to apply for or pre-configure any
computing, storage, or network services, but need to upload and run code in
supported runtimes. FunctionGraph provides and manages underlying compute
resources, including server CPUs, memory, and networks. It performs configuration
and resource maintenance, code deployment, automatic scaling, load balancing,
secure upgrade, and resource monitoring.

14.1.3 Do I Need to Deploy My Code After Programming?
After programming, you only need to package your code into a ZIP file (Java,
Node.js, Python, and Go) or JAR file (Java), and upload the file to FunctionGraph
for execution.

When creating a ZIP file, place the handler file under the root directory to ensure
that your code can be run normally after being decompressed.

If you edit code in Go, zip the compiled file, and ensure that the name of the
dynamic library file is consistent with the plugin name of the handler. For
example, if the name of the dynamic library file is testplugin.so, set the handler
to testplugin.Handler.

14.1.4 What Runtimes Does FunctionGraph Support?
Table 14-1 lists the runtimes supported by FunctionGraph.

FunctionGraph
User Guide 14 FAQs

2024-08-07 142

Table 14-1 Supported runtimes and versions

Runtime Version

Python 2.7, 3.6, 3.9, 3.10

Node.js 6.10, 8.10, 10.16, 12.13, 14.18, 16.17,
18.15

Java 8, 11

Go 1.x

C#.NET Core 2.1, 3.1

PHP 7.3

14.1.5 How Much Disk Space Is Allocated to Each
FunctionGraph Function?

Each FunctionGraph function is allocated 512 MB ephemeral disk space. You can
upload deployment packages up to 10 GB in size. For more information, see Notes
and Constraints.

14.1.6 Does FunctionGraph Support Function Versioning?
Yes. For details, see Managing Versions.

14.1.7 How Does a Function Read or Write Files?

Background

A function can read files in the code directory. The working directory of a function
is the upper-level directory of the handler file. Assume that you have uploaded a
folder named backend. To read its test.conf file in the same level of directory as
the handler file, use relative path code/backend/test.conf or use a full path (that
is, the value of the RUNTIME_CODE_ROOT environment variable). To write a file
(for example, to create or download a file), go to the /tmp directory or use the
file system mounting feature provided by FunctionGraph.

NO TE

● If containers are reclaimed, file read/written content will become invalid.

● Currently, FunctionGraph does not support instance persistence.

Typical Scenarios
● Download files stored in Object Storage Service (OBS) to the /tmp directory

for processing.
● To store function execution data in OBS, create a file in the /tmp directory,

write the data into the file, and then upload the file to OBS.

FunctionGraph
User Guide 14 FAQs

2024-08-07 143

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0150.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0150.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0180.html

14.1.8 Does FunctionGraph Support Function Extension?
FunctionGraph has integrated non-standard libraries such as redis, http, and
obs_client. You can directly use these libraries when developing functions.

Alternatively, use your own dependencies. For more information, see Dependency
Management.

14.1.9 Which Permissions Are Required for an IAM User to Use
FunctionGraph?

If you are prompted insufficient permissions when creating, deleting, modifying, or
querying functions and triggers in FunctionGraph as an IAM user, contact the
administrator to grant permissions to your user group. If you want to invoke other
cloud services, such as OBS, configure an agency with the required permissions.
For security purpose, do this by following the principle of least privilege.

14.1.10 How Can I Create an ODBC Drive-based Python
Dependency Package for Database Query?

For OS-dependent packages (for example, unixODBC), download the source code
to compile dependency packages.

1. Log in to your ECS on the ECS console (ensure that the GCC and Make tools
have been installed), and run the following command to download the source
code package:
wget source code path

If you downloaded a .zip file, run the following command to decompress it:
unzip xxx/xx.zip

If you downloaded a tar.gz file, run the following command to decompress it:
tar -zxvf xxx/xx.tar.gz

2. Run the following command to create the /opt/function/code directory:
mkdir /opt/function/code

3. Go to the destination directory and run the following command:
./configure --prefix=/opt/function/code --sysconfdir=/opt/function/code;make;make install

4. Go to /opt/function/code/lib/pkgconfig and check whether the prefix
directory is /opt/function/code.
cd /opt/function/code/lib/pkgconfig

5. Copy all files in /opt/function/code/lib to /opt/function/code.
cp -r /opt/function/code/lib/* /opt/function/code

6. Switch to /opt/function/code and compress all files in it to a .zip package.
cd /opt/function/code
zip -r xxx.zip *

14.1.11 What Is the Quota of FunctionGraph?
For details about the resource quota of FunctionGraph, see Notes and
Constraints.

FunctionGraph
User Guide 14 FAQs

2024-08-07 144

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0391.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0391.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0150.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0150.html

14.1.12 How Does a Container Image–based Function Resolve
a Private DNS Domain Name?

FunctionGraph functions created with a container image cannot directly parse
private Domain Name Service (DNS) domain names. However, you can call DNS
APIs to achieve this purpose.

Resolving a Private DNS Domain Name
1. Obtain a private domain name and zone ID.

This procedure uses a domain name with a record set as an example.

a. Log in to the DNS console.

b. Obtain a zone ID.

Click , and select Domain Name in the search box to obtain a zone
ID.

c. Obtain the private domain name corresponding to a recording set.

Click the domain name to go to the record set list, and select a record
set.

2. Compile the resolution logic.

Debug the API used to query record sets in a zone.

– Set zone_id to the zone ID obtained in the preceding step, and click
Debug. The IP address of the private domain name is displayed in the
response body.

– Switch to the Sample Code tab to obtain the complete code. For details
about the dependencies, click View SDK Details.

14.1.13 How Do I Use a Domain Name to Access an API
Registered with API Gateway (Dedicated)?

The domain name www.test.com is used as an example. The procedure is as
follows:

Step 1 Log in to the API Gateway console, choose Dedicated Gateways in the navigation
pane, and click the target gateway name. On the Gateway Information page,
view EIP in the Inbound Access area to obtain the IP address of the API gateway.

Step 2 On the DNS console, configure an IPv4 rule for mapping www.test.com to an API
gateway address.

Step 3 Configure domain name resolution. In this way, you can access the API registered
with the API gateway by using domain name www.test.com.

----End

FunctionGraph
User Guide 14 FAQs

2024-08-07 145

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-api-dns/dns_api_64004.html

14.1.14 What Are the Common Application Scenarios of
FunctionGraph?

1. Web applications: mini programs, web pages/apps, chatbots, and Backends for
Frontends (BFF).

2. Event-driven applications: file processing, image processing, live video
streaming/transcoding, real-time data stream processing, and IoT rule/event
processing.

3. AI applications: third-party service integration, AI inference, and license plate
recognition.

14.1.15 Why Can't the API Gateway Domain Name Bound to a
Service Be Resolved During Function Invocation?

Currently, FunctionGraph resolves only DNS domain names and POD domain
names.

14.1.16 Does FunctionGraph Support Synchronous
Transmission at the Maximum Intranet Bandwidth?

Not currently.

14.1.17 What If the VPC Quota Is Used Up?
A tenant can create up to 4 VPCs. To create more VPCs, submit a service ticket.

14.1.18 How Can I Print Info, Error, or Warn Logs?
Take Java as an example. You can use this demo to print logs.

14.1.19 Can I Set the Domain Name of an API to My Own
Domain Name?

Yes. The procedure is as follows:

Step 1 Log in to the APIG console and bind a domain name by referring to section
"Binding a Domain Name" in the API Gateway User Guide.

Step 2 On the Domain Names tab page of the created API group, click Bind
Independent Domain Name. For example, set xxxx.apig.x to test.com/user/get.

----End

14.1.20 Can I Change the Runtime?
No. Once a function is created, its runtime cannot be changed.

14.1.21 Can I Change a Function's Name?
No. A function's name cannot be changed once the function is created.

FunctionGraph
User Guide 14 FAQs

2024-08-07 146

14.1.22 Why Is Message "failed to mount exist system path"
Displayed?

When you see this message, mount the file to a new path.

User ID/user group ID: Can be any number except 1000. The value –1 will be
automatically converted to 1003. The two IDs control the directory permissions for
accessing a remote file system.

File system/ECS name: Name of the file system or ECS to create. Ensure that you
have specified a VPC and agency that you have been authorized to access.

Shared directory: To configure a remote shared directory for the mounted ECS, see
Creating an NFS Shared Directory on an ECS.

Access path: Location where the file system is to be mounted in the function. Set a
new two-level directory that starts with /mnt. For example, /mnt/test.

14.1.23 How Do I Obtain Uploaded Files?
Take Python as an example. If you use os.getcwd() to query the current directory,
the directory will be /opt/function. However, code has actually been uploaded
to /opt/function/code.

You can use either of the following methods to obtain uploaded files:

1. Run the cd command to switch to /opt/function/code.
2. Access the full path (value of the RUNTIME_CODE_ROOT environment

variable).

NO TE

You can obtain uploaded files by referring to the preceding methods when other
languages are used.

14.1.24 Why Can't I Receive Responses for Synchronous
Invocation?

If the E2E function execution latency exceeds 90s, asynchronous invocation is
recommended. If synchronous invocation is used, no responses can be received
after 90s due to gateway restrictions.

14.1.25 What Should I Do If the os.system("command &")
Execution Logs Are Not Collected?

Do not use os.system("command &"). The background command output will not
be collected. To obtain the command output, use subprocess.Popen instead.

14.1.26 Which Directories Can Be Accessed When a Custom
Runtime Is Used?

By default, only the /tmp directory can be accessed, for example, for creating or
downloading files.

FunctionGraph
User Guide 14 FAQs

2024-08-07 147

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0402.html

14.1.27 Which Minor Versions of Python 3.6 and 3.9 Are
Supported?

3.6.8 and 3.9.2.

14.1.28 Which Actions Can Be Used Instead of a VPC
Administrator Agency for VPC Access?

The actions listed in Table 14-2 can be used.

Table 14-2 Actions

Permission Action

Deleting a
port

vpc:ports:delete

Querying a
port

vpc:ports:get

Creating a
port

vpc:ports:create

Querying a
VPC

vpc:vpcs:get

Querying a
subnet

vpc:subnets:get

14.1.29 What Are the Possible Causes for Function Timeout?
● The code logic timed out. In this case, optimize the code or increase the

timeout.
● The network timed out. To fix this issue, increase the timeout.
● It took a long time to load Java classes during cold start. In this case, increase

the timeout or memory.

14.1.30 How Do I Obtain the Code of a Function?
1. Log in to the FunctionGraph console, and click the name of the target

function to go to the details page. Choose Operation > Export function in
the upper right, and click Export Code.

2. Alternatively, call the function export API.

14.1.31 Do You Have Sample Code for Initializers?
Yes. See the following examples:

● Node.js
exports.initializer = function(context, callback) {
 callback(null, '');
 };

FunctionGraph
User Guide 14 FAQs

2024-08-07 148

● Python
def my_initializer(context):
 print("hello world!")

● Java
public void my_initializer(Context context)
{
RuntimeLogger log = context.getLogger();
log.log(String.format("ak:%s", context.getAccessKey()));
}

● PHP
<?php
Function my_initializer($context) {
 echo 'hello world' . PHP_EOL;
 }
?>

14.1.32 How Do I Enable Structured Log Query?

Scenario
To check the status of asynchronous invocation requests, view the records by
choosing Configuration > Configure Async Notification on the function details
page, as shown in Figure 14-1.

Figure 14-1 Asynchronous invocation records

Prerequisites
You have enabled asynchronous invocation status persistence.

Procedure
Step 1 Contact customer service to add your account to the whitelist of this feature.

Step 2 On the Configure Async Notification page, click Enable LTS, as shown in Figure
14-2.

Figure 14-2 Enabling LTS

FunctionGraph
User Guide 14 FAQs

2024-08-07 149

Step 3 Click Edit next to Asynchronous Notification Policy, and enable Asynchronous
Invocation Status Persistence, as shown in Figure 14-3 and Figure 14-4.

Figure 14-3 Configuring asynchronous notification policy

Figure 14-4 Enabling asynchronous invocation status persistence

Step 4 Configure structured query on the LTS console.

1. On the function details page, view the log group and log stream. Press F12,
choose Network, enter filter async-status-log-detail, and obtain the log
group ID and log stream ID, as shown in Figure 14-5.

Figure 14-5 Obtaining log group ID and log stream ID

2. On the LTS console, locate the log group and log stream by their IDs, as
shown in Figure 14-6.

Figure 14-6 Viewing log stream

3. On the log stream details page, click the gear icon in the upper right, as
shown in Figure 14-7.

FunctionGraph
User Guide 14 FAQs

2024-08-07 150

Figure 14-7 Clicking the gear icon

4. Configure log structuring, as shown in Figure 14-8.

Figure 14-8 Configuring log structuring

5. Click Intelligent Extraction, as shown in Figure 14-9.

Figure 14-9 Intelligent Extraction

6. Click to modify the field definition as follows:
a. Change field1 to function_urn and its type to string.
b. Change field2 to request_id and its type to string.
c. Change field3 to seq_status and its type to long.
d. Change field4 to operation_timestamp and its type to long.
e. Change field5 to error_code and its type to long.
f. Change field6 to error_message and its type to string.
Enable Quick Analysis, as shown in Figure 14-10.

Figure 14-10 Enabling quick analysis

FunctionGraph
User Guide 14 FAQs

2024-08-07 151

7. Click Save. Figure 14-11 shows the configuration.

Figure 14-11 Saved configuration

----End

14.1.33 Can I Enable a Listening Port in a Function to Receive
External TCP Requests via EIP?

No. FunctionGraph does not support this feature currently. Functions are about
serverless computing, and compute resources are allocated while functions are
running. Customizing a listening port is not suitable.

14.2 Function Creation FAQs

14.2.1 Can I Add Threads and Processes in Function Code?
You can create additional threads and processes in your function by using runtime
and OS features.

14.2.2 What Are the Rules for Packaging a Function Project?

In addition to inline code editing, you can create a function by uploading a ZIP or
JAR file, or uploading a ZIP file from OBS. For details, see Packaging Rules and
Example ZIP Project Packages.

Packaging Rules
In addition to inline code editing, you can create a function by uploading a local
ZIP file or JAR file, or uploading a ZIP file from Object Storage Service (OBS).
Table 14-3 describes the rules for packaging a function project.

FunctionGraph
User Guide 14 FAQs

2024-08-07 152

Table 14-3 Function project packaging rules

Runtime JAR File ZIP File ZIP File on OBS

Node.js Not supported. ● If the function
project files are
saved under the
~/Code/ directory,
select and
package all files
under this
directory to ensure
that the function
handler is under
the root directory
after the ZIP file is
decompressed.

● If the function
project uses third-
party
dependencies,
package the
dependencies into
a ZIP file, and
import the ZIP file
on the function
code page.
Alternatively,
package the third-
party
dependencies and
the function
project files
together.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

FunctionGraph
User Guide 14 FAQs

2024-08-07 153

Runtime JAR File ZIP File ZIP File on OBS

PHP Not supported. ● If the function
project files are
saved under the
~/Code/ directory,
select and
package all files
under this
directory to ensure
that the function
handler is under
the root directory
after the ZIP file is
decompressed.

● If the function
project uses third-
party
dependencies,
package the
dependencies into
a ZIP file, and
import the ZIP file
on the function
code page.
Alternatively,
package the third-
party
dependencies and
the function
project files
together.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

FunctionGraph
User Guide 14 FAQs

2024-08-07 154

Runtime JAR File ZIP File ZIP File on OBS

Python 2.7 Not supported. ● If the function
project files are
saved under the
~/Code/ directory,
select and
package all files
under this
directory to ensure
that the function
handler is under
the root directory
after the ZIP file is
decompressed.

● If the function
project uses third-
party
dependencies,
package the
dependencies into
a ZIP file, and
import the ZIP file
on the function
code page.
Alternatively,
package the third-
party
dependencies and
the function
project files
together.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

FunctionGraph
User Guide 14 FAQs

2024-08-07 155

Runtime JAR File ZIP File ZIP File on OBS

Python 3.6 Not supported. ● If the function
project files are
saved under the
~/Code/ directory,
select and
package all files
under this
directory to ensure
that the function
handler is under
the root directory
after the ZIP file is
decompressed.

● If the function
project uses third-
party
dependencies,
package the
dependencies into
a ZIP file, and
import the ZIP file
on the function
code page.
Alternatively,
package the third-
party
dependencies and
the function
project files
together.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

Java 8 If the function
does not
reference third-
party
components,
compile only the
function project
files into a JAR
file.

If the function
references third-party
components, compile
the function project
files into a JAR file,
and compress all
third-party
components and the
function JAR file into
a ZIP file.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

FunctionGraph
User Guide 14 FAQs

2024-08-07 156

Runtime JAR File ZIP File ZIP File on OBS

Go 1.8 Not supported. Compress project
files into a ZIP file,
and ensure that the
name of the dynamic
library file is
consistent with the
handler plugin name.
For example, if the
name of the dynamic
library file is
testplugin.so, set the
handler plugin name
to
testplugin.Handler.
Handler indicates
the function handler.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

Go 1.x Not supported. Zip the compiled file
and ensure that the
name of the binary
file is consistent with
that of the handler.
For example, if the
name of the binary
file is Handler, set
the name of the
handler to Handler.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

C# Not supported. Compress project
files into a ZIP file.
The ZIP file must
contain the following
files:
Project_name.deps.js
on, Project_name.dll,
Project_name.runtim
econfig.json,
Project_name.pdb,
and
HC.Serverless.Functi
on.Common.dll.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

Custom Not supported. Compress project
files into a ZIP file.
The ZIP file must
contain a bootstrap
file.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

FunctionGraph
User Guide 14 FAQs

2024-08-07 157

Example ZIP Project Packages
● Example directory of a Nods.js project package

Example.zip Example project package
|--- lib Service file directory
|--- node_modules NPM third-party component directory
|--- index.js .js handler file (mandatory)
|--- package.json NPM project management file

● Example directory of a PHP project package
Example.zip Example project package
|--- ext Extension library directory
|--- pear PHP extension and application repository
|--- index.php PHP handler file

● Example directory of a Python project package
Example.zip Example project package
|--- com Service file directory
|--- PLI Third-party dependency PLI directory
|--- index.py .py handler file (mandatory)
|--- watermark.py .py file for image watermarking
|--- watermark.png Watermarked image

● Example directory of a Java project package
Example.zip Example project package
|--- obstest.jar Service function JAR file
|--- esdk-obs-java-3.20.2.jar Third-party dependency JAR file
|--- jackson-core-2.10.0.jar Third-party dependency JAR file
|--- jackson-databind-2.10.0.jar Third-party dependency JAR file
|--- log4j-api-2.12.0.jar Third-party dependency JAR file
|--- log4j-core-2.12.0.jar Third-party dependency JAR file
|--- okhttp-3.14.2.jar Third-party dependency JAR file
|--- okio-1.17.2.jar Third-party dependency JAR file

● Example directory of a Go project package
Example.zip Example project package
|--- testplugin.so Service function package

● Example directory of a C# project package
Example.zip Example project package
|--- fssExampleCsharp2.0.deps.json File generated after project compilation
|--- fssExampleCsharp2.0.dll File generated after project compilation
|--- fssExampleCsharp2.0.pdb File generated after project compilation
|--- fssExampleCsharp2.0.runtimeconfig.json File generated after project compilation
|--- Handler Help file, which can be directly used
|--- HC.Serverless.Function.Common.dll .dll file provided by FunctionGraph

● Custom
Example.zip Example project package
|--- bootstrap Executable boot file

14.2.3 How Does FunctionGraph Isolate Code?
Each FunctionGraph function runs in its own environment and has its own
resources and file system.

14.2.4 How Do I Create the Bootstrap File for an HTTP
Function?

To create an HTTP function, create a bootstrap file. For details, see Creating a
Bootstrap File.

FunctionGraph
User Guide 14 FAQs

2024-08-07 158

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_1442.html#section1
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_1442.html#section1

14.3 Trigger Management FAQs

14.3.1 What If Error Code 500 Is Reported When Functions
that Use APIG Triggers Return Strings?

Ensure that the function response for an invocation by API Gateway has been
encapsulated and contains body(String), statusCode(int), headers(Map), and
isBase64Encoded(boolean).

The following is an example response returned by a Node.js function that uses an
APIG trigger:

exports.handler = function (event, context, callback) {
 const response = {
 'statusCode': 200,
 'isBase64Encoded': false,
 'headers': {
 "Content-type": "application/json"
 },
 'body': 'Hello, FunctionGraph with APIG',
 }
 callback(null, response);
}

The following is an example response returned by a Java function that uses an
APIG trigger:

import java.util.Map;

public HttpTriggerResponse index(String event, Context context){
 String body = "<html><title>FunctionStage</title>"
 + "<h1>This is a simple APIG trigger test</h1>
"
 + "<h2>This is a simple APIG trigger test</h2>
"
 + "<h3>This is a simple APIG trigger test</h3>"
 + "</html>";
 int code = 200;
 boolean isBase64 = false;
 Map<String, String> headers = new HashMap<String, String>();
 headers.put("Content-Type", "text/html; charset=utf-8");
 return new HttpTriggerResponse(body, headers, code, isBase64);
 }

class HttpTriggerResponse {
 private String body;
 private Map<String, String> headers;
 private int statusCode;
 private boolean isBase64Encoded;
 public HttpTriggerResponse(String body, Map<String,String> headers, int statusCode,
boolean isBase64Encoded){
 this.body = body;
 this.headers = headers;
 this.statusCode = statusCode;
 this.isBase64Encoded = isBase64Encoded;
 }
}

FunctionGraph
User Guide 14 FAQs

2024-08-07 159

14.3.2 What Do LATEST and TRIM_HORIZON Mean in DIS
Trigger Configuration?

Cursors LATEST and TRIM_HORIZON specify the start points for reading data in
Data Ingestion Service (DIS) streams.

● TRIM_HORIZON: Data is read from the earliest valid record stored in the
partition.
For example, a tenant used a DIS stream to upload three pieces of data A1,
A2, and A3. Assuming that A1 expires but A2 and A3 are still valid after a
period of time, if the tenant specifies TRIM_HORIZON for downloading data,
only A2 and A3 can be downloaded.

● LATEST: Data is read from the latest record in the partition. This option
ensures that the most recent data in the partition is read.

14.3.3 Why Can't I Enable or Disable OBS Triggers by Calling
APIs?

OBS does not support pull triggers. Therefore, OBS triggers cannot be enabled or
disabled.

14.3.4 How Do I Use an APIG Trigger to Invoke a Function?
For details, see Using an APIG Trigger.

14.3.5 How Does a Function Obtain the Request Path or
Parameters When Using an APIG Trigger?

By default, the request path or parameters are included in event. A function
invokes APIG using its event template. You can obtain the request path or
parameters from the function execution result.

Example:

● queryStringParameters: parameters following the question mark (?),
separated with ampersands (&). These parameters are added in the URL of a
GET request, and will be transferred in the URL string format when a GET
request is initiated.

● path: API URL.

You can call an API using its request path. Example: https://
464d86ec641d45a683c5919ac57f3823.apig.projectID.com/apig-demo/subpath

FunctionGraph
User Guide 14 FAQs

2024-08-07 160

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0204.html

Alternatively, you can call an API by adding request parameters. Example:

https://464d86ec641d45a683c5919ac57f3823.apig.projectID.com/apig-demo/
subpath?a=1&b=2

14.3.6 Can I Create an OBS Trigger with an Existing Bucket?
Yes. If a message is displayed indicating that the configuration of the current
trigger conflicts with that of another one, the two triggers have the same bucket,
prefix, and suffix. If you still want to use this bucket for the current trigger, modify
the prefix or suffix.

14.4 Dependency Management FAQs

14.4.1 What Is a Dependency?
A dependency is a program package and also an environment required for running
a software package. The software package relies on and can only run in the
environment.

14.4.2 When Do I Need a Dependency?
When you install a program or develop code that relies on an environment to run,
you need to introduce the dependency.

14.4.3 What Are the Precautions for Using a Dependency?
● The name of each file in a dependency cannot end with a tilde (~).
● There should be no more than 30,000 files in a dependency.
● You can upload a ZIP dependency file within 10 MB on the function details

page. For a larger dependency (max. 300 MB), upload it using OBS.
● If your function uses a large private dependency, increase the timeout by

choosing Configuration > Basic Settings on the function details page.

14.4.4 What Dependencies Does FunctionGraph Support?
Supported Dependencies

FunctionGraph supports standard libraries and third-party dependencies.

● Standard libraries
When using standard libraries, you can import them to your inline code, or
package and upload them to FunctionGraph.

● Supported non-standard libraries
FunctionGraph provides built-in third-party components, as described in Table
14-4 and Table 14-5. You can import these components to your inline code in
the same way as you import standard libraries.

FunctionGraph
User Guide 14 FAQs

2024-08-07 161

Table 14-4 Third-party components integrated with the Node.js runtime

Name Description Version

q Asynchronous method
encapsulation

1.5.1

co Asynchronous process
control

4.6.0

lodash Common tool and method
library

4.17.10

esdk-obs-nodejs OBS sdk 2.1.5

express Simplified web-based
application development
framework

4.16.4

fgs-express Provides a Node.js
application framework for
FunctionGraph and APIG to
run serverless applications
and REST APIs. This
component provides an
example of using the
Express framework to build
serverless web applications
or services and RESTful
APIs.

1.0.1

request Simplifies HTTP invocation
and supports HTTPS and
redirection.

2.88.0

Table 14-5 Non-standard libraries supported by the Python runtime

Module Description Version

dateutil Date and time
processing

2.6.0

requests HTTP library 2.7.0

httplib2 httpclient 0.10.3

numpy Mathematical
computation

1.13.1

redis Redis client 2.10.5

obsclient OBS client -

smnsdk SMN access 1.0.1

FunctionGraph
User Guide 14 FAQs

2024-08-07 162

● Other third-party libraries
For other third-party libraries not listed in the preceding tables, package and
upload them to an OBS bucket or on the function details page. For details,
see How Do I Create a Dependency on the FunctionGraph Console? These
libraries will then be used in your function code.

14.4.5 Does FunctionGraph Support Class Libraries?
Yes. FunctionGraph supports both standard libraries and non-standard third-party
libraries. For details, see What Dependencies Does FunctionGraph Support?

14.4.6 How Do I Use Third-Party Dependencies on
FunctionGraph?

1. Package third-party libraries into a ZIP package by referring to How Do I
Create Function Dependencies?

2. Create a dependency on the FunctionGraph console by referring to How Do I
Create a Dependency on the FunctionGraph Console?

3. On the function details page, click the Code tab, and add the dependency by
referring to How Do I Add a Dependency to a Function? Then you can use
the dependency in the function code.

14.4.7 How Do I Create Function Dependencies?
You are advised to create function dependencies in EulerOS. If other OSs are
used, an error may occur due to underlying dependent libraries. For example, the
dynamic link library cannot be found.

NO TE

If the modules to be installed need dependencies such as .dll, .so, and .a, archive them to
a .zip package.

Creating a Dependency for a Python Function

Ensure that the Python version of the packaging environment is the same as that
of the function. For Python 2.7, Python 2.7.12 or later is recommended. For Python
3.6, Python 3.6.3 or later is recommended.

To install the PyMySQL dependency for a Python 2.7 function in the local /tmp/
pymysql directory, run the following command:

pip install PyMySQL --root /tmp/pymysql

After the command is successfully executed, go to the /tmp/pymysql directory:

cd /tmp/pymysql/

Go to the site-packages directory (generally, usr/lib64/python2.7/site-
packages/) and then run the following command:

zip -rq pymysql.zip *

The required dependency is generated.

FunctionGraph
User Guide 14 FAQs

2024-08-07 163

NO TE

To install the local wheel installation package, run the following command:
pip install piexif-1.1.0b0-py2.py3-none-any.whl --root /tmp/piexif
//Replace piexif-1.1.0b0-py2.py3-none-any.whl with the actual installation package name.

Creating a Dependency for a Node.js Function

Ensure that the corresponding Node.js version has been installed in the
environment.

To install the MySQL dependency for a Node.js 8.10 function, run the following
command:

npm install mysql --save

The node_modules folder is generated under the current directory.

● Linux OS

Run the following command to generate a ZIP package.
zip -rq mysql-node8.10.zip node_modules

The required dependency is generated.

● Windows OS

Compress node_modules into a ZIP file.

To install multiple dependencies, create a package.json file first. For example,
enter the following content into the package.json file and then run the following
command:

{
 "name": "test",
 "version": "1.0.0",
 "dependencies": {
 "redis": "~2.8.0",
 "mysql": "~2.17.1"
 }
}
npm install --save

NO TE

Do not run the CNPM command to generate Node.js dependencies.

Compress node_modules into a ZIP package. This generates a dependency that
contains both MySQL and Redis.

For other Node.js versions, you can create dependencies in the way stated above.

Creating a Dependency for a Java Function

When you compile a function using Java, dependencies need to be compiled
locally.

FunctionGraph
User Guide 14 FAQs

2024-08-07 164

14.4.8 How Do I Create a Dependency on the FunctionGraph
Console?

1. Log in to the FunctionGraph console, and choose Functions > Dependencies
in the navigation pane.

2. Click Create Dependency.
3. Set the following parameters.

Table 14-6 Dependency configuration parameters

Parameter Description

Name Dependency name.

Code Entry
Mode

Upload a ZIP file directly or through OBS.
● Upload ZIP file: Click Select File to upload a ZIP file.
● Upload from OBS: Specify an OBS link URL.

Runtime Select a runtime.

Description Description of the dependency. This parameter is optional.

4. Click OK. By default, a new dependency is version 1.
5. Click the dependency name, and view all versions and related information on

the displayed page. Each dependency can have multiple versions.
– To create a dependency version, click Create Version in the upper right

corner of the page.
– To view the address of a version, click the version.
– To delete a version, click the delete icon in the same row.

14.4.9 How Do I Add a Dependency to a Function?
1. On the function details page, click the Code tab, and click Add in the

Dependencies area.
– Public: Public dependencies are provided by FunctionGraph and can be

directly added.
– Private: Private dependencies are those you created and uploaded.

2. Click OK.

14.5 Function Execution FAQs

14.5.1 How Long Does It Take to Execute a FunctionGraph
Function?

Within 900s for synchronous execution and 72 hours for asynchronous execution.

FunctionGraph
User Guide 14 FAQs

2024-08-07 165

The default execution timeout is 3s. You can set the timeout (unit: s) to an integer
from 3 to 259,200. If you set the timeout of a function to 3s, it will be terminated
after 3s.

14.5.2 Which Steps Are Included in Function Execution?
Function execution includes two steps:

1. Select an idle instance with required memory.
2. Run specified code.

14.5.3 How Does FunctionGraph Process Concurrent Requests?
FunctionGraph automatically scales in or out function instances based on the
number of requests. If the number of concurrent requests increases,
FunctionGraph allocates more function instances to process the requests. If that
number decreases, FunctionGraph allocates fewer function instances accordingly.

Number of function instances = Function concurrency/Concurrency per instance

● Function concurrency: the number of requests concurrently executed by a
function at a certain time point.

● Concurrency per instance: the maximum number of concurrent requests
allowed by a single instance. This is equivalent to the Max. Requests per
Instance parameter on the Concurrency page.

14.5.4 What If Function Instances Have Not Been Executed for
a Long Time?

If a function has not been executed for a period of time, all instances related to
the function will be released.

14.5.5 How Can I Speed Up Initial Access to a Function?
C# and Go support a lower startup speed than other languages due to mechanism
issues. You can use the following methods to speed up initial access to a function:

● Allocate more memory to the function.
● Simplify function code, for example, delete unnecessary dependency

packages.
● When using C# in non-concurrent scenarios, you can also:

Create a one-minute timer trigger to ensure that there is at least one active
instance.

14.5.6 How Do I Know the Actual Memory Used for Function
Execution?

The returned information about a function contains the maximum memory
consumed. Alternatively, check the memory usage in the execution result.

14.5.7 Why Is My First Request Slow?
Functions are cold-started. If initialization or a lengthy operation is performed
during the first function execution, the first request will be delayed. However,

FunctionGraph
User Guide 14 FAQs

2024-08-07 166

subsequent requests before container deletion will be faster. If there is no request
within one minute, the container will be deleted.

14.5.8 What Do I Do If an Error Occurs When Calling an API?
Rectify the fault by referring to Error Codes. If the fault persists, contact technical
support.

14.5.9 How Do I Read the Request Header of a Function?
The first parameter in the function handler contains the request header. You can
print the function execution result to obtain required fields.

As shown in the following figure, event is the first parameter in the function
handler, and headers is the request header.

14.5.10 Why Does a Function Use More Memory Than
Estimated and Even Trigger the Out of Memory Alarm?

1. Event parsing and cache consume extra memory during function invocation.

2. After the invocation is complete, reclaimed memory is often put in the
internal pool instead of back to the OS, resulting in high memory usage. This
is more obvious in the case of high concurrency.

14.5.11 How Do I Check the Memory Usage When Seeing
"runtime memory limit exceeded"?

Check the used memory in the response.

Figure 14-12 Checking the used memory

FunctionGraph
User Guide 14 FAQs

2024-08-07 167

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-api-functiongraph/ErrorCode.html

14.5.12 How Do I Troubleshoot "CrashLoopBackOff"?
The message "CrashLoopBackOff: The application inside the container keeps
crashing" is displayed when a custom image execution failure occurs. In this case,
perform the following operations:

1. Analyze the causes.

Figure 14-13 Viewing the execution result

2. Verify the container image by referring to Deploying a Function Using a
Container Image.

3. Check whether the image uses the Linux x86 architecture. Currently, only
Linux x86 images are supported.

14.5.13 After I Updated an Image with the Same Name,
Reserved Instances Still Use the Old Image. What Can I Do?

Use a non-latest tag to manage image updates, and do not use the same image
name.

14.6 Function Configuration FAQs

14.6.1 Can I Set Environment Variables When Creating
Functions?

Yes. Set variables to dynamically pass settings to your function code and libraries
without changing your code. For more information, see section "Configuring
Environment Variables" in the FunctionGraph User Guide.

14.6.2 Can I Enter Sensitive Information in Environment
Variables?

FunctionGraph displays all the information you enter in plain text. Therefore, do
not enter insensitive information such as passwords when you define environment
variables.

14.7 External Resource Access FAQs

14.7.1 How Does a Function Access the MySQL Database?
Perform the following operations:

FunctionGraph
User Guide 14 FAQs

2024-08-07 168

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_04_0103.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_04_0103.html

1. Check whether the MySQL database is deployed in a VPC.
– Yes: Configure the same VPC and subnet as the MySQL database for the

function by referring to Configuring VPC Access.
– No: See How Do I Configure External Network Access?

2. Search for MySQL templates and select the one with the desired runtime, as
shown in Figure 14-14. Set the parameters as required and click Create
Function.

Figure 14-14 Selecting a function template

3. After the MySQL function is created, choose Configuration > Environment
Variables, enable encryption as required (see Figure 14-15), and click Save.

Figure 14-15 Enabling encryption

NO TE

If the function needs to access RDS APIs, create an agency and grant required
permissions.

14.7.2 How Does a Function Access Redis?
Perform the following operations:

1. Check whether the Redis instance is deployed in a VPC.
– If the Redis instance is deployed in a VPC, configure the same VPC and

subnet as the Redis instance for the function by referring to Configuring
VPC Access.

– If the Redis instance is built on a public network, obtain its public IP
address.

2. Compile code for connecting a function to the Redis instance.
FunctionGraph has integrated third-party library redis-py in its Python 2.7
and Python 3.6 runtimes. Therefore, you do not need to download any other
Redis libraries.

FunctionGraph
User Guide 14 FAQs

2024-08-07 169

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0222.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0920.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0222.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0222.html
https://github.com/andymccurdy/redis-py

-*- coding:utf-8 -*-
import redis
def handler (event, context):
 r = redis.StrictRedis(host="host_ip",password="passwd",port=6379)
 print(str(r.get("hostname")))
 return "^_^"

NO TE

● If the function fails to access to the Redis instance on a public network, perform
the following operations:

● Modify the redis.conf file to allow access from any IP addresses.

● Set a password for accessing the Redis instance in the redis.conf file.

● Disable the firewall.

● If the function needs to access DCS APIs, create an agency and grant required
permissions.

14.7.3 How Do I Configure External Network Access?
By default, functions deployed in a VPC are isolated from the Internet. If a
function needs to access both internal and external networks, add a NAT gateway
for the VPC.

Prerequisites

1. You have created a VPC and subnet according to Creating a VPC.
2. You have obtained an elastic IP address according to Assigning an EIP.

Procedure of Creating a NAT Gateway

Step 1 Log in to the NAT Gateway console, and click Create NAT Gateway.

Step 2 On the displayed page, enter gateway information, select a VPC and subnet (for
example, vpc-01), and confirm and submit the settings to create a NAT gateway.
For details, see Creating a NAT Gateway.

Step 3 Click the NAT gateway name. On the details page that is displayed, click Add an
SNAT Rule and click OK.

----End

14.8 Other FAQs

14.8.1 How Do I View the Alarm Rules Configured for a
Function?

Log in to the Cloud Eye console and view alarm rules.

14.8.2 Does FunctionGraph Support ZIP Decompiling During
Video Transcoding?

No. Please decompile your files before uploading them.

FunctionGraph
User Guide 14 FAQs

2024-08-07 170

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0920.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-vpc/en-us_topic_0013935842.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-vpc/en-us_topic_0013748738.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-natgateway/en-us_topic_0150270259.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-natgateway/en-us_topic_0127489529.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-natgateway/en-us_topic_0127489529.html

15 Change History

Table 15-1 Change history

Date Description

2023-5-30 This issue is the first official release.

FunctionGraph
User Guide 15 Change History

2024-08-07 171

	Contents
	1 Service Overview
	1.1 What Is FunctionGraph?
	1.2 Product Features
	1.3 Product Advantages
	1.4 Application Scenarios
	1.5 Function Types
	1.5.1 Event Functions
	1.5.2 HTTP Functions

	1.6 Notes and Constraints
	1.7 Permissions Management
	1.8 Concepts
	1.9 Relationships Between FunctionGraph and Other Services

	2 Getting Started
	2.1 Introduction
	2.2 Creating a Function from Scratch
	2.3 Creating a Function Using a Template
	2.4 Deploying a Function Using a Container Image
	2.4.1 Developing an HTTP Function

	3 Before You Start
	3.1 Use of FunctionGraph
	3.2 Permissions Management
	3.2.1 Creating a User and Granting Permissions
	3.2.2 Creating a Custom Policy

	3.3 Supported Programming Languages
	3.3.1 Node.js
	3.3.2 Python
	3.3.3 Java
	3.3.4 Go
	3.3.5 Custom Runtime

	4 Building Functions
	4.1 Creating a Deployment Package
	4.2 Creating a Function from Scratch
	4.2.1 Creating an Event Function
	4.2.2 Creating an HTTP Function

	4.3 Creating a Function Using a Template
	4.4 Deploying a Function Using a Container Image

	5 Configuring Functions
	5.1 Configuring Initialization
	5.2 Configuring Basic Settings
	5.3 Configuring Agency Permissions
	5.4 Configuring the Network
	5.5 Configuring Disk Mounting
	5.6 Configuring Environment Variables
	5.7 Configuring Asynchronous Execution Notification
	5.8 Configuring Single-Instance Multi-Concurrency
	5.9 Managing Versions
	5.10 Managing Aliases
	5.11 Configuring Dynamic Memory

	6 Online Debugging
	7 Creating Triggers
	7.1 Managing Triggers
	7.2 Using a Timer Trigger
	7.3 Using an APIG (Dedicated) Trigger
	7.4 Using an OBS Trigger
	7.5 Using a Kafka Trigger
	7.6 Using an LTS Trigger
	7.7 Using a CTS Trigger
	7.8 Cron Expressions for a Function Timer Trigger

	8 Invoking the Function
	8.1 Synchronous Invocation
	8.2 Asynchronous Invocation
	8.3 Retry Mechanism

	9 Monitoring
	9.1 Metrics
	9.1.1 Function Monitoring
	9.1.2 Function Metrics
	9.1.3 Creating an Alarm Rule

	9.2 Logs
	9.2.1 Querying Function Logs
	9.2.2 Managing Function Logs

	10 Function Management
	11 Dependency Management
	11.1 Configuring Dependency Packages
	11.2 Dependent Libraries

	12 Reserved Instance Management
	13 Audit
	13.1 Operations Logged by CTS
	13.2 Querying Real-Time Traces

	14 FAQs
	14.1 General FAQs
	14.1.1 What Is FunctionGraph?
	14.1.2 Do I Need to Apply for Any Compute, Storage, or Network Services When Using FunctionGraph?
	14.1.3 Do I Need to Deploy My Code After Programming?
	14.1.4 What Runtimes Does FunctionGraph Support?
	14.1.5 How Much Disk Space Is Allocated to Each FunctionGraph Function?
	14.1.6 Does FunctionGraph Support Function Versioning?
	14.1.7 How Does a Function Read or Write Files?
	14.1.8 Does FunctionGraph Support Function Extension?
	14.1.9 Which Permissions Are Required for an IAM User to Use FunctionGraph?
	14.1.10 How Can I Create an ODBC Drive-based Python Dependency Package for Database Query?
	14.1.11 What Is the Quota of FunctionGraph?
	14.1.12 How Does a Container Image–based Function Resolve a Private DNS Domain Name?
	14.1.13 How Do I Use a Domain Name to Access an API Registered with API Gateway (Dedicated)?
	14.1.14 What Are the Common Application Scenarios of FunctionGraph?
	14.1.15 Why Can't the API Gateway Domain Name Bound to a Service Be Resolved During Function Invocation?
	14.1.16 Does FunctionGraph Support Synchronous Transmission at the Maximum Intranet Bandwidth?
	14.1.17 What If the VPC Quota Is Used Up?
	14.1.18 How Can I Print Info, Error, or Warn Logs?
	14.1.19 Can I Set the Domain Name of an API to My Own Domain Name?
	14.1.20 Can I Change the Runtime?
	14.1.21 Can I Change a Function's Name?
	14.1.22 Why Is Message "failed to mount exist system path" Displayed?
	14.1.23 How Do I Obtain Uploaded Files?
	14.1.24 Why Can't I Receive Responses for Synchronous Invocation?
	14.1.25 What Should I Do If the os.system("command &") Execution Logs Are Not Collected?
	14.1.26 Which Directories Can Be Accessed When a Custom Runtime Is Used?
	14.1.27 Which Minor Versions of Python 3.6 and 3.9 Are Supported?
	14.1.28 Which Actions Can Be Used Instead of a VPC Administrator Agency for VPC Access?
	14.1.29 What Are the Possible Causes for Function Timeout?
	14.1.30 How Do I Obtain the Code of a Function?
	14.1.31 Do You Have Sample Code for Initializers?
	14.1.32 How Do I Enable Structured Log Query?
	14.1.33 Can I Enable a Listening Port in a Function to Receive External TCP Requests via EIP?

	14.2 Function Creation FAQs
	14.2.1 Can I Add Threads and Processes in Function Code?
	14.2.2 What Are the Rules for Packaging a Function Project?
	14.2.3 How Does FunctionGraph Isolate Code?
	14.2.4 How Do I Create the Bootstrap File for an HTTP Function?

	14.3 Trigger Management FAQs
	14.3.1 What If Error Code 500 Is Reported When Functions that Use APIG Triggers Return Strings?
	14.3.2 What Do LATEST and TRIM_HORIZON Mean in DIS Trigger Configuration?
	14.3.3 Why Can't I Enable or Disable OBS Triggers by Calling APIs?
	14.3.4 How Do I Use an APIG Trigger to Invoke a Function?
	14.3.5 How Does a Function Obtain the Request Path or Parameters When Using an APIG Trigger?
	14.3.6 Can I Create an OBS Trigger with an Existing Bucket?

	14.4 Dependency Management FAQs
	14.4.1 What Is a Dependency?
	14.4.2 When Do I Need a Dependency?
	14.4.3 What Are the Precautions for Using a Dependency?
	14.4.4 What Dependencies Does FunctionGraph Support?
	14.4.5 Does FunctionGraph Support Class Libraries?
	14.4.6 How Do I Use Third-Party Dependencies on FunctionGraph?
	14.4.7 How Do I Create Function Dependencies?
	14.4.8 How Do I Create a Dependency on the FunctionGraph Console?
	14.4.9 How Do I Add a Dependency to a Function?

	14.5 Function Execution FAQs
	14.5.1 How Long Does It Take to Execute a FunctionGraph Function?
	14.5.2 Which Steps Are Included in Function Execution?
	14.5.3 How Does FunctionGraph Process Concurrent Requests?
	14.5.4 What If Function Instances Have Not Been Executed for a Long Time?
	14.5.5 How Can I Speed Up Initial Access to a Function?
	14.5.6 How Do I Know the Actual Memory Used for Function Execution?
	14.5.7 Why Is My First Request Slow?
	14.5.8 What Do I Do If an Error Occurs When Calling an API?
	14.5.9 How Do I Read the Request Header of a Function?
	14.5.10 Why Does a Function Use More Memory Than Estimated and Even Trigger the Out of Memory Alarm?
	14.5.11 How Do I Check the Memory Usage When Seeing "runtime memory limit exceeded"?
	14.5.12 How Do I Troubleshoot "CrashLoopBackOff"?
	14.5.13 After I Updated an Image with the Same Name, Reserved Instances Still Use the Old Image. What Can I Do?

	14.6 Function Configuration FAQs
	14.6.1 Can I Set Environment Variables When Creating Functions?
	14.6.2 Can I Enter Sensitive Information in Environment Variables?

	14.7 External Resource Access FAQs
	14.7.1 How Does a Function Access the MySQL Database?
	14.7.2 How Does a Function Access Redis?
	14.7.3 How Do I Configure External Network Access?

	14.8 Other FAQs
	14.8.1 How Do I View the Alarm Rules Configured for a Function?
	14.8.2 Does FunctionGraph Support ZIP Decompiling During Video Transcoding?

	15 Change History

