Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Situation Awareness
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
Software Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive
Help Center/ Cloud Container Engine/ User Guide (Kuala Lumpur Region)/ FAQs/ Node/ Node Running/ How Do I Fix an Abnormal Container or Node Due to No Thin Pool Disk Space?

How Do I Fix an Abnormal Container or Node Due to No Thin Pool Disk Space?

Updated on 2024-10-14 GMT+08:00

Problem Description

When the disk space of a thin pool on a node is about to be used up, the following exceptions occasionally occur:

Files or directories fail to be created in the container, the file system in the container is read-only, the node is tainted disk-pressure, or the node is unavailable.

You can run the docker info command on the node to view the used and remaining thin pool space to locate the fault. The following figure is an example.

Possible Cause

When Docker device mapper is used, although you can configure the basesize parameter to limit the size of the /home directory of a single container (to 10 GB by default), all containers on the node still share the thin pool of the node for storage. They are not completely isolated. When the sum of the thin pool space used by certain containers reaches the upper limit, other containers cannot run properly.

In addition, after a file is deleted in the /home directory of the container, the thin pool space occupied by the file is not released immediately. Therefore, even if basesize is set to 10 GB, the thin pool space occupied by files keeps increasing until 10 GB when files are created in the container. The space released after file deletion will be reused only after a while. If the number of service containers on the node multiplied by basesize is greater than the thin pool space size of the node, there is a possibility that the thin pool space has been used up.

Solution

When the thin pool space of a node is used up, some services can be migrated to other nodes to quickly recover services. But you are advised to use the following solutions to resolve the root cause:

Solution 1:

Properly plan the service distribution and data plane disk space to avoid the scenario where the number of service containers multiplied by basesize is greater than the thin pool size of the node. To expand the thin pool size, perform the following steps:

  1. Expand the capacity of a data disk on the EVS console.

    Only the storage capacity of the EVS disk is expanded. You also need to perform the following steps to expand the capacity of the logical volume and file system.

  2. Log in to the CCE console and click the cluster. In the navigation pane, choose Nodes. Click More > Sync Server Data in the row containing the target node.
  3. Log in to the target node.
  4. Run the lsblk command to check the block device information of the node.

    A data disk is divided depending on the container storage Rootfs:

    Overlayfs: No independent thin pool is allocated. Image data is stored in dockersys.

    1. Check the disk and partition sizes of the device.
      # lsblk
      NAME                MAJ:MIN RM  SIZE RO TYPE MOUNTPOINT
      vda                   8:0    0   50G  0 disk 
      └─vda1                8:1    0   50G  0 part /
      vdb                   8:16   0  200G  0 disk      # Data disk has been expanded but not allocated
      ├─vgpaas-dockersys  253:0    0   90G  0 lvm  /var/lib/containerd          # Space used by the container engine
      └─vgpaas-kubernetes 253:1    0   10G  0 lvm  /mnt/paas/kubernetes/kubelet  # Space used by Kubernetes
    2. Expand the disk capacity.

      Add the new disk capacity to the dockersys logical volume used by the container engine.

      1. Expand the PV capacity so that LVM can identify the new EVS capacity. /dev/vdb specifies the physical volume where dockersys is located.
        pvresize /dev/vdb

        Information similar to the following is displayed:

        Physical volume "/dev/vdb" changed
        1 physical volume(s) resized or updated / 0 physical volume(s) not resized
      2. Expand 100% of the free capacity to the logical volume. vgpaas/dockersys specifies the logical volume used by the container engine.
        lvextend -l+100%FREE -n vgpaas/dockersys

        Information similar to the following is displayed:

        Size of logical volume vgpaas/dockersys changed from <90.00 GiB (23039 extents) to <190.00 GiB (48639 extents).
        Logical volume vgpaas/dockersys successfully resized.
      3. Adjust the size of the file system. /dev/vgpaas/dockersys specifies the file system path of the container engine.
        resize2fs /dev/vgpaas/dockersys

        Information similar to the following is displayed:

        Filesystem at /dev/vgpaas/dockersys is mounted on /var/lib/containerd; on-line resizing required
        old_desc_blocks = 12, new_desc_blocks = 24
        The filesystem on /dev/vgpaas/dockersys is now 49807360 (4k) blocks long.

Solution 2:

Create and delete files in service containers in the local storage (such as emptyDir and hostPath) or cloud storage directory mounted to the container. Such files do not occupy the thin pool space.

Solution 3:

If the OS uses OverlayFS, services can be deployed on such nodes to prevent the problem that the disk space occupied by files created or deleted in the container is not released immediately.

We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out more

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback