
FunctionGraph

Developer Guide

Date 2023-09-30

Contents

1 Overview..1
1.1 Function Development.. 1
1.2 Supported Event Sources.. 3
1.3 Function Project Packaging Rules... 12
1.4 Referencing DLLs in Functions... 17

2 Initializer... 19

3 Node.js... 21
3.1 Developing an Event Function... 21
3.2 Creating a Dependency...25

4 Python.. 26
4.1 Developing an Event Function... 26
4.2 Creating a Dependency...29

5 Java... 31
5.1 Developing an Event Function... 31
5.1.1 Developing Functions in Java (Using Eclipse)... 31
5.2 Creating a Dependency...35

6 Go.. 36
6.1 Developing an Event Function... 36

7 C#.. 40
7.1 Developing an Event Function... 40
7.1.1 C# Function Development... 40

8 PHP... 45
8.1 Developing an Event Function... 45

9 Development Tools... 49
9.1 Eclipse Plug-in.. 49
9.2 PyCharm Plug-in... 52

FunctionGraph
Developer Guide Contents

2023-09-30 ii

1 Overview

1.1 Function Development

Supported Runtimes

The Node.js, Java, Python, Go, C#, PHP, and custom runtimes are supported. Table
1-1 lists the supported runtimes.

NO TE

You are advised to use the latest runtime version.

Table 1-1 Runtime description

Runtime Supported Version SDK Download Link

Node.js 6.10, 8.10, 10.16, 12.13,
16.17, 18.15

-

Python 2.7, 3.6, 3.9, 3.10 -

Java 8, 11 Java SDK
NOTE

The Java runtime has
integrated with Object
Storage Service (OBS)
SDKs.

Go 1.8, 1.x Go1.8.3 SDK

C# .NET Core 2.0, .NET Core
2.1, .NET Core 3.1

C# SDK

PHP 7.3 -

Custom - -

FunctionGraph
Developer Guide 1 Overview

2023-09-30 1

https://function-community.obs.cn-north-1.myhuaweicloud.com/sdk/java/fss-java-sdk-2.0.5.zip
https://functionstage-sdk.obs.myhuaweicloud.com/go-sdk/fss-go-sdk.zip
https://functionstage-sdk.obs.myhuaweicloud.com/csharp-sdk/fssCsharp2.0-1.0.1.zip

Third-Party Components Integrated with the Node.js Runtime

Table 1-2 Third-party components integrated with the Node.js runtime

Name Usage Version

q Asynchronous method
encapsulation

1.5.1

co Asynchronous process
control

4.6.0

lodash Common tool and
method library

4.17.10

esdk-obs-nodejs OBS SDK 2.1.5

express Simplified web-based
application development
framework

4.16.4

fgs-express Uses the Node.js
application framework to
run serverless
applications and REST
APIs in FunctionGraph
and API Gateway. This
component provides an
example of using the
Express framework to
build serverless web
applications or services
and RESTful APIs.

1.0.1

request Simplifies HTTP
invocation and supports
HTTPS and redirection.

2.88.0

Non-standard Libraries Integrated with the Python Runtime

Table 1-3 Non-standard libraries integrated with the Python Runtime

Library Usage Version

dateutil Date and time
processing

2.6.0

requests HTTP library 2.7.0

httplib2 HTTP client 0.10.3

numpy Mathematical
computation

1.13.1

FunctionGraph
Developer Guide 1 Overview

2023-09-30 2

Library Usage Version

redis Redis client 2.10.5

obsclient OBS client -

smnsdk Simple Message
Notification (SMN)
access

1.0.1

Sample Project Packages
Table 1-4 provides the links for downloading the sample project packages
mentioned in this document. You can download the project packages to a local
path and upload them when creating functions.

Table 1-4 Download links of the sample project packages

Functi
on

Project Package Software Package Verification File

Node.j
s
functi
on

fss_examples_nodej
s.zip

-

Pytho
n
functi
on

fss_examples_pytho
n2.7.zip

-

Java
functi
on

fss_example_java8.j
ar

-

Go
functi
on

fss_examples_go1.8.
zip

-

C#
functi
on

fss_example_csharp
2.0 and
fss_example_csharp
2.1

-

PHP
functi
on

fss_examples_php7.
3.zip

-

1.2 Supported Event Sources
This section describes the cloud services that can be configured as event sources
for your FunctionGraph functions. After you preconfigure the event source

FunctionGraph
Developer Guide 1 Overview

2023-09-30 3

https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_nodejs.zip
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_nodejs.zip
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_python2.7.zip
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_python2.7.zip
https://functionstage-examples.obs.myhuaweicloud.com/fss_example_java8.jar
https://functionstage-examples.obs.myhuaweicloud.com/fss_example_java8.jar
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_go1.8.zip
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_go1.8.zip
https://functionstage-examples.obs.myhuaweicloud.com/fss_example_csharp2.0.zip
https://functionstage-examples.obs.myhuaweicloud.com/fss_example_csharp2.0.zip
https://functionstage-examples.obs.myhuaweicloud.com/fss_example_csharp2.1.zip
https://functionstage-examples.obs.myhuaweicloud.com/fss_example_csharp2.1.zip
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_php7.3.zip
https://functionstage-examples.obs.cn-north-1.myhuaweicloud.com/fss_examples_php7.3.zip

mapping, these event sources automatically invoke the relevant function when
detecting events.

APIG

API Gateway (APIG) is an API hosting service that helps enterprises to build,
manage, and deploy APIs at any scale. With APIG, your function can be invoked
through HTTPS by using a custom REST API and a specified backend. You can map
each API operation (such as, GET and PUT) to a specific function. APIG invokes the
relevant function when an HTTPS request (APIG example event) is sent to the
API backend. For details, see Using an APIG Trigger.

OBS

Object Storage Service (OBS) is a stable, secure, efficient, and easy-to-use cloud
storage service. You can create a function to process OBS bucket events, for
example, creating and deleting objects. When an image is uploaded to a specified
bucket, OBS invokes the function to read the image and create a thumbnail. For
details, see Using an OBS Trigger.

Table 1-5 Event types supported by OBS

Event Description

ObjectCreated All kinds of object creation operations, including PUT,
POST, and COPY of objects, as well as the merging of
parts.

Put Use the PUT method to upload objects.

Post Use the POST method to upload objects.

Copy Use the COPY method to replicate objects.

CompleteMultipartUp-
load

Merge parts of multi-part tasks.

ObjectRemoved Delete objects.

Delete Delete objects by versions.

DeleteMarkerCreated Delete objects without specifying versions.

NO TE

Multiple event types can be used on the same object. For example, if you have selected Put,
Copy, and Delete in an event notification rule, a notification message will be sent to you
when the specified object is uploaded to, copied to, or deleted from the bucket.
ObjectCreated contains Put, Post, Copy, and CompleteMultipartUpload. If you select
ObjectCreated, the others are automatically selected and cannot be selected again.
Similarly, if you select ObjectRemoved, Delete and DeleteMarkerCreated are
automatically selected and cannot be selected again.

FunctionGraph
Developer Guide 1 Overview

2023-09-30 4

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0204.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0205.html

Timer
You can schedule a timer (timer example event) to invoke your code based on a
fixed rate of minutes, hours, or days or a cron expression. For details, see Using a
Timer Trigger.

LTS
Log Tank Service (LTS) collects and stores logs, allowing you to query them in real
time. If you create a function with an LTS trigger, subscribed logs collected by LTS
will be passed as a parameter (LTS example event) to invoke the function. Then,
the function processes or analyzes the logs, or loads the logs to other systems. For
details, see Using an LTS Trigger.

CTS
Cloud Trace Service (CTS) collects operation records of subscribed cloud resources.
If you create a function with a CTS trigger, collected operation records of specified
cloud services will be passed as a parameter (CTS example event) to invoke the
function. Then, the function analyzes and processes key information in the
operation records, automatically recovers system or network modules, or reports
alarms to service personnel by SMS or email. Using a CTS Trigger.

DMS for Kafka
DMS for Kafka is a message queuing service that provides Kafka premium
instances. If you create a Kafka trigger for a function, when a message is sent to a
Kafka instance topic, FunctionGraph will retrieve the message and trigger the
function to perform other operations. For details, see Using a Kafka Trigger.

Example Events
● OBS example event

{
 "Records": [
 {
 "eventVersion": "2.0",
 "eventTime": "2018-01-09T07:50:50.028Z",
 "requestParameters": {
 "sourceIPAddress": "103.218.216.125"
 },
 "s3": {
 "configurationId": "UK1DGFPYUKUZFHNQ00000160CC0B471D101ED30CE24DF4DB",
 "object": {
 "eTag": "9d377b10ce778c4938b3c7e2c63a229a",
 "sequencer": "00000000160D9E681484D6B4C0000000",
 "key": "job.png",
 "size": 777835
 },
 "bucket": {

 "name": "functionstorage-template",
 "ownerIdentity": {
 "PrincipalId": "0ed1b73473f24134a478962e631651eb"
 }
 }
 },
 "Region": "{region}",
 "eventName": "ObjectCreated:Post",
 "userIdentity": {

FunctionGraph
Developer Guide 1 Overview

2023-09-30 5

https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0207.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0207.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0208.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0209.html
https://support.huaweicloud.com/intl/en-us/my-kualalumpur-1-usermanual-functiongraph/functiongraph_01_0214.html

 "principalId": "9bf43789b1ff4b679040f35cc4f0dc05"
 }
 }
]
}

Table 1-6 Parameter description

Parameter Type Example Value Description

eventVersion String 2.0 Event version

eventTime String 2018-01-09T07:5
0:50.028Z

Time when an
event occurs. The
ISO-8601 time
format is used.

sourceIPAddress String 103.218.216.125 Source IP
address

s3 Map See the example. OBS event
content

object Map See the example. object parameter
description

bucket Map See the example. bucket
parameter
description

ownerIdentity Map See the example. ID of the user
who creates the
bucket

Region String ap-southeast-4 Region where
the bucket is
located

eventName String ObjectCreated:Po
st

Event name

userIdentity Map See the example. ID of the
account that
initiates the
request

● APIG example event

{
 "body": "{\"test\":\"body\"}",
 "requestContext": {
 "apiId": "bc1dcffd-aa35-474d-897c-d53425a4c08e",
 "requestId": "11cdcdcf33949dc6d722640a13091c77",
 "stage": "RELEASE"
 },
 "queryStringParameters": {
 "responseType": "html"
 },
 "httpMethod": "GET",
"pathParameters": {
"path":"value"

FunctionGraph
Developer Guide 1 Overview

2023-09-30 6

},
 "headers": {
 "accept-language": "en-US;q=0.3,en;q=0.2",
 "accept-encoding": "gzip, deflate, br",
 "x-forwarded-port": "443",
 "x-forwarded-for": "103.218.216.98",
 "accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",
 "upgrade-insecure-requests": "1",
 "host": "50eedf92-c9ad-4ac0-827e-d7c11415d4f1.apigw.region.cloud.com",
 "x-forwarded-proto": "https",
 "pragma": "no-cache",
 "cache-control": "no-cache",
 "x-real-ip": "103.218.216.98",
 "user-agent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:57.0) Gecko/20100101 Firefox/57.0"
 },
 "path": "/apig-event-template",
 "isBase64Encoded": true
}

NO TE

● When calling a function using APIG, isBase64Encoded is valued true by default,
indicating that the request body transferred to FunctionGraph is encoded using
Base64 and must be decoded for processing.

● The function must return characters strings by using the following structure.
{
 "isBase64Encoded": true|false,
 "statusCode": httpStatusCode,
 "headers": {"headerName":"headerValue",...},
 "body": "..."
}

Table 1-7 Parameter description

Parameter Type Example Value Description

body String "{\"test\":\"body
\"}"

Actual request in
string format

requestContext Map See the example. Request
information,
including the API
gateway
configuration,
request ID,
authentication
information, and
source

httpMethod String GET HTTP method

queryStringPara-
meters

Map See the example. Query strings
configured in
APIG and their
actual values

pathParameters Map See the example. Path parameters
configured in
APIG and their
actual values

FunctionGraph
Developer Guide 1 Overview

2023-09-30 7

Parameter Type Example Value Description

headers Map See the example. Complete
headers

path String /apig-event-
template

Complete path

isBase64Encoded Boolean True Default value:
true

● Timer example event

{
 "version": "v1.0",
 "time": "2018-06-01T08:30:00+08:00",
 "trigger_type": "TIMER",
 "trigger_name": "Timer_001",
 "user_event": "User Event"
}

Table 1-8 Parameter description

Parameter Type Example Value Description

version String V1.0 Event version

time String 2018-06-01T08:3
0:00+08:00

Time when an
event occurs.

trigger_type String TIMER Trigger type

trigger_name String Timer_001 Trigger name

user_event String User Event Additional
information of
the trigger

● LTS example event

{
 "lts": {
 "data":
"ICB7CiAgICAibG9ncyI6W3sKICAgICAgICAgIm1lc3NhZ2UiOiIyMDE4LTA4LTA4LzA4OjA4OjA4IFtXUk5dIF
t0ZXN0LmdvOjA4XVRoaXMgaXMgYSB0ZXN0IG1lc3NhZ2UuIiwKICAgICAgICAgInRpbWUiOjE1MzAwMD
k2NTMwNTksCiAgICAgICAgICJob3N0X25hbWUiOiJlY3MtdGVzdCIsCiAgICAgICAgICJpcCI6IjE5Mi4xNjgu
MS4xIiwKICAgICAgICAgInBhdGgiOiJ2YXIvbG9nL3Rlc3QubG9nIiwKICAgICAgICAgImxvZ191aWQiOiI2Nj
NkNjkzMC03OTJkLTExZTgtOGIwOC0yODZlZDQ4OGNlNzAiLAogICAgICAgICAibGluZV9ubyI6MQogICAgI
H1dLAogICAgIm93bmVyIjogIjYyODBlMTcwYmQ5MzRmNjBhNGQ4NTFjZjVjYTA1MTI5IiwKICAgICJsb2df
Z3JvdXBfaWQiOiAiOTdhOWQyODQtNDQ0OC0xMWU4LThmYTQtMjg2ZWQ0ODhjZTcwIiwKICAgICJsb2
dfdG9waWNfaWQiOiAiMWE5Njc1YTctNzg0ZC0xMWU4LTlmNzAtMjg2ZWQ0ODhjZTcwIgogfQ=="
 }
}

FunctionGraph
Developer Guide 1 Overview

2023-09-30 8

Table 1-9 Event parameter description

Parameter Type Example Value Description

data Sting See the example. Base64-encoded
data

● CTS example event
{
 "cts": {
 "time": "2018/06/26 08:54:07 GMT+08:00",
 "user": {
 "name": "userName",
 "id": "5b726c4fbfd84821ba866bafaaf56aax",
 "domain": {
 "name": "domainName",
 "id": "b2b3853af40448fcb9e40dxj89505ba"
 }
 },
 "request": {},
 "response": {},
 "code": 204,
 "service_type": "vpc",
 "resource_type": "VPC",
 "resource_name": "workflow-2be1",
 "resource_id": "urn:fgs:{region}:2d1d891d93054bbaa69b9e866c0971ac:graph:workflow-2be1",
 "trace_name": "deleteGraph",
 "trace_type": "ConsoleAction",
 "record_time": "2018/06/26 08:54:07 GMT+08:00",
 "trace_id": "69be64a7-0233-11e8-82e4-e5d37911193e",
 "trace_status": "normal"
 }
}

Table 1-10 Parameter description

Parameter Type Example Value Description

User Map See the example. Information
about the user
who initiates the
request

Request Map See the example. Event request

Response Map See the example. Event response

Code Int 204 Response code,
for example, 200
and 400

service_type String vpc Abbreviation of
the sender, for
example, vpc
and ecs

resource_type String VPC Resource type of
the sender, for
example, vm and
vpn

FunctionGraph
Developer Guide 1 Overview

2023-09-30 9

Parameter Type Example Value Description

resource_name String workflow-2be1 Resource name,
for example, the
name of an ECS

trace_name String deleteGraph Event name
(trace name), for
example,
startServer and
shutDown

trace_type String ConsoleAction Event type (trace
type), for
example, ApiCall

record_time string 2018/06/26
08:54:07 GMT
+08:00

Time when the
CTS service
receives the trace

trace_id String 69be64a7-0233-
11e8-82e4-
e5d37911193e

Event ID (trace
ID)

trace_status String normal Event status
(trace status)

● Kafka example event

{
 "event_version": "v1.0",
 "event_time": 1576737962,
 "trigger_type": "KAFKA",
 "region": "{region}",
 "instance_id": "81335d56-b9fe-4679-ba95-7030949cc76b",
 "records": [
 {
 "messages": [
 "kafka message1",
 "kafka message2",
 "kafka message3",
 "kafka message4",
 "kafka message5"
],
 "topic_id": "topic-test"
 }
]
}

Table 1-11 Parameter description

Parameter Type Example Value Description

event_version String v1.0 Event version

event_time String 2018-01-09T07:5
0:50.028Z

Time when an
event occurs

trigger_type String KAFKA Event type

FunctionGraph
Developer Guide 1 Overview

2023-09-30 10

Parameter Type Example Value Description

region String Region where a
Kafka instance
resides

instance_id String 81335d56-
b9fe-4679-
ba95-7030949cc
76b

Kafka instance
ID

messages String See the example. Message content

topic_id String topic-test Message ID

● RabbitMQ example event

{
 "event_version": "v1.0",
 "event_time": 1576737962,
 "trigger_type": "RABBITMQ",
 "region": "{region}",
 "records": [
 {
 "messages": [
 "rabbitmq message1",
 "rabbitmq message2",
 "rabbitmq message3",
 "rabbitmq message4",
 "rabbitmq message5"
],
 "instance_id": "81335d56-b9fe-4679-ba95-7030949cc76b",
 "exchange": "exchange-test"
 }
]
}

Table 1-12 Parameter description

Parameter Type Example Value Description

event_version String v1.0 Event version

Region String Region where a
RabbitMQ
instance resides

instance_id String 81335d56-
b9fe-4679-
ba95-7030949cc
76b

RabbitMQ
instance ID

FunctionGraph
Developer Guide 1 Overview

2023-09-30 11

1.3 Function Project Packaging Rules

Packaging Rules
In addition to inline code editing, you can create a function by uploading a local
ZIP file or JAR file, or uploading a ZIP file from Object Storage Service (OBS).
Table 1-13 describes the rules for packaging a function project.

Table 1-13 Function project packaging rules

Runtime JAR File ZIP File ZIP File on OBS

Node.js Not supported. ● If the function
project files are
saved under the
~/Code/ directory,
select and
package all files
under this
directory to ensure
that the function
handler is under
the root directory
after the ZIP file is
decompressed.

● If the function
project uses third-
party
dependencies,
package the
dependencies into
a ZIP file, and
import the ZIP file
on the function
code page.
Alternatively,
package the third-
party
dependencies and
the function
project files
together.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

FunctionGraph
Developer Guide 1 Overview

2023-09-30 12

Runtime JAR File ZIP File ZIP File on OBS

PHP Not supported. ● If the function
project files are
saved under the
~/Code/ directory,
select and
package all files
under this
directory to ensure
that the function
handler is under
the root directory
after the ZIP file is
decompressed.

● If the function
project uses third-
party
dependencies,
package the
dependencies into
a ZIP file, and
import the ZIP file
on the function
code page.
Alternatively,
package the third-
party
dependencies and
the function
project files
together.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

FunctionGraph
Developer Guide 1 Overview

2023-09-30 13

Runtime JAR File ZIP File ZIP File on OBS

Python 2.7 Not supported. ● If the function
project files are
saved under the
~/Code/ directory,
select and
package all files
under this
directory to ensure
that the function
handler is under
the root directory
after the ZIP file is
decompressed.

● If the function
project uses third-
party
dependencies,
package the
dependencies into
a ZIP file, and
import the ZIP file
on the function
code page.
Alternatively,
package the third-
party
dependencies and
the function
project files
together.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

FunctionGraph
Developer Guide 1 Overview

2023-09-30 14

Runtime JAR File ZIP File ZIP File on OBS

Python 3.6 Not supported. ● If the function
project files are
saved under the
~/Code/ directory,
select and
package all files
under this
directory to ensure
that the function
handler is under
the root directory
after the ZIP file is
decompressed.

● If the function
project uses third-
party
dependencies,
package the
dependencies into
a ZIP file, and
import the ZIP file
on the function
code page.
Alternatively,
package the third-
party
dependencies and
the function
project files
together.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

Java 8 If the function
does not
reference third-
party
components,
compile only the
function project
files into a JAR
file.

If the function
references third-party
components, compile
the function project
files into a JAR file,
and compress all
third-party
components and the
function JAR file into
a ZIP file.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

FunctionGraph
Developer Guide 1 Overview

2023-09-30 15

Runtime JAR File ZIP File ZIP File on OBS

Go 1.8 Not supported. Compress project
files into a ZIP file,
and ensure that the
name of the dynamic
library file is
consistent with the
handler plugin name.
For example, if the
name of the dynamic
library file is
testplugin.so, set the
handler plugin name
to
testplugin.Handler.
Handler indicates
the function handler.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

Go 1.x Not supported. Zip the compiled file
and ensure that the
name of the binary
file is consistent with
that of the handler.
For example, if the
name of the binary
file is Handler, set
the name of the
handler to Handler.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

C# Not supported. Compress project
files into a ZIP file.
The ZIP file must
contain the following
files:
Project_name.deps.js
on, Project_name.dll,
Project_name.runtim
econfig.json,
Project_name.pdb,
and
HC.Serverless.Functi
on.Common.dll.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

Custom Not supported. Compress project
files into a ZIP file.
The ZIP file must
contain a bootstrap
file.

Compress
project files into
a ZIP file and
upload it to an
OBS bucket.

FunctionGraph
Developer Guide 1 Overview

2023-09-30 16

Example ZIP Project Packages
● Example directory of a Nods.js project package

Example.zip Example project package
|--- lib Service file directory
|--- node_modules NPM third-party component directory
|--- index.js .js handler file (mandatory)
|--- package.json NPM project management file

● Example directory of a PHP project package
Example.zip Example project package
|--- ext Extension library directory
|--- pear PHP extension and application repository
|--- index.php PHP handler file

● Example directory of a Python project package
Example.zip Example project package
|--- com Service file directory
|--- PLI Third-party dependency PLI directory
|--- index.py .py handler file (mandatory)
|--- watermark.py .py file for image watermarking
|--- watermark.png Watermarked image

● Example directory of a Java project package
Example.zip Example project package
|--- obstest.jar Service function JAR file
|--- esdk-obs-java-3.20.2.jar Third-party dependency JAR file
|--- jackson-core-2.10.0.jar Third-party dependency JAR file
|--- jackson-databind-2.10.0.jar Third-party dependency JAR file
|--- log4j-api-2.12.0.jar Third-party dependency JAR file
|--- log4j-core-2.12.0.jar Third-party dependency JAR file
|--- okhttp-3.14.2.jar Third-party dependency JAR file
|--- okio-1.17.2.jar Third-party dependency JAR file

● Example directory of a Go project package
Example.zip Example project package
|--- testplugin.so Service function package

● Example directory of a C# project package
Example.zip Example project package
|--- fssExampleCsharp2.0.deps.json File generated after project compilation
|--- fssExampleCsharp2.0.dll File generated after project compilation
|--- fssExampleCsharp2.0.pdb File generated after project compilation
|--- fssExampleCsharp2.0.runtimeconfig.json File generated after project compilation
|--- Handler Help file, which can be directly used
|--- HC.Serverless.Function.Common.dll .dll file provided by FunctionGraph

● Custom
Example.zip Example project package
|--- bootstrap Executable boot file

1.4 Referencing DLLs in Functions
● By default, the root directory and the lib folder in this directory have been

configured in the LD_LIBRARY_PATH environment variable. You only need to
add dynamic link libraries (DLLs) here.

● You can directly modify the LD_LIBRARY_PATH variable in the code.
● If the dependent .so file is stored in another directory, you can specify it when

setting the LD_LIBRARY_PATH environment variable.

FunctionGraph
Developer Guide 1 Overview

2023-09-30 17

● If a library in a mounted file system is used, specify its directory in the
LD_LIBRARY_PATH variable on the Configuration tab page.

FunctionGraph
Developer Guide 1 Overview

2023-09-30 18

2 Initializer

Overview
An initializer is a logic entry for initializing functions. For a function with an
initializer, FunctionGraph invokes the initializer to initialize the function and then
invokes the handler to process function requests. For a function without an
initializer, FunctionGraph only invokes the handler to process function requests.

Applicable Scenario
FunctionGraph executes a function in the following steps:

1. Allocate container resources to the function.
2. Download function code.
3. Use the runtime to load the function code.
4. Initialize the function.
5. Process the function request and return the result.

Steps 1, 2, and 3 are performed during a systematic cold start, ensuring a stable
latency through proper resource scheduling and process optimization. Step 4 is
performed during an application-layer cold start in complex scenarios, such as
loading large models for deep learning, building database connection pools, and
loading function dependencies.

To reduce the latency caused by an application-layer cold start, FunctionGraph
provides the initializer to identify function initialization logic for proper resource
scheduling.

Benefits of the Initializer
● Isolate function initialization and request processing to enable clearer

program logic and better structured and higher-performance code.
● Ensure a smooth function upgrade to prevent performance loss during the

application layer's cold start initialization. Enable new function instances to
automatically execute initialization logic before processing requests.

● Identify the overhead of application layer initialization, and accurately
determine the time for resource scaling and the quantity of required
resources. This feature makes request latency more stable when the
application load increases and more function instances are required.

FunctionGraph
Developer Guide 2 Initializer

2023-09-30 19

● If there are continuous requests and the function is not updated, the system
may still reclaim or update existing containers. Although no code starts on
the platform side, there are cold starts on the service side. The initializer can
be used to ensure that requests can be processed properly.

Features of the Initializer
The initializer of each runtime has the following features:

● No custom parameters
The initializer does not support custom parameters and only uses the
variables in context for logic processing.

● No return values
No values will be returned for initializer invocation.

● Initialization timeout
You can set an initialization timeout (≤ 300s) different from the timeout for
invoking the handler.

● Execution duration
Function instances are processes that execute function logic in a container
and automatically scale if the number of requests changes. When a new
function instance is generated, the system invokes the initializer and then
executes the handler logic if the invocation is successful.

● One-time execution
After each function instance starts, the initializer can only be executed once. If
an instance fails to execute the initializer, the instance is abandoned and
another instance starts to execute the initializer. A maximum of three
attempts are allowed. If the initializer is executed successfully, the instance
will only process requests upon invocation and will no longer execute the
initializer again within its lifecycle.

● Naming rule
For all runtimes except Java, the initializer can be named in the format of
[File name].[Initializer name], which is similar with the format of a handler
name. For Java, a class needs to be defined to implement the predefined
initializer.

● Billing
The initializer execution duration will be billed at the same rate as the
function execution duration.

FunctionGraph
Developer Guide 2 Initializer

2023-09-30 20

3 Node.js

3.1 Developing an Event Function

Function Syntax
NO TE

You are advised to use Node.js 12.13.

● Node.js 6.10

Use the following syntax when creating a handler function in Node.js 6.10:

export.handler = function(event, context, callback)

– handler: name of the function that FunctionGraph invokes to execute
your code. The name must be consistent with that you define when
creating a function.

– event: event parameter defined for the function. The parameter is in
JSON format.

– context: runtime information provided for executing the function. For
details, see SDK APIs.

– callback: used to return the defined err and message information to the
frontend. The general syntax is callback(err, message). You can define
the error or message content, for example, a character string.

– Function handler: index.handler.

The function handler is in the format of [File name].[Function name]. For
example, if you set the handler to index.handler in your function,
FunctionGraph will load the handler function defined in the index.js file.

● Node.js 8.10, Node.js 10.16, Node.js 12.13, and Node.js 14.18

Node.js 8.10, Node.js 10.16, Node.js 12.13, and Node.js 14.18 are compatible
with the APIs of Node.js 6.10, and supports an async handler.

exports.handler = async (event, context, callback [optional]) => { return data;}

Responses are output through return.

FunctionGraph
Developer Guide 3 Node.js

2023-09-30 21

Node.js Initializer
FunctionGraph supports the following Node.js runtimes:

● Node.js6.10 (runtime = Node.js6)
● Node.js8.10 (runtime = Node.js8)
● Nodejs10.16(runtime = Node.js10)
● Nodejs12.13(runtime = Node.js12)
● Node.js16.17(runtime = Node.js16)
● Node.js18.15(runtime = Node.js18)

Initializer syntax:

[File name].[Initializer name]

For example, if the initializer is named index.initializer, FunctionGraph loads the
initializer function defined in the index.js file.

To use Node.js to build initialization logic, define a Node.js function as the
initializer. The following is a simple initializer:

exports.initializer = function(context, callback) {
 callback(null, '');
 };

● Function Name
The function name exports.initializer must be the initializer function name
specified for a function.
For example, if the initializer is named index.initializer, FunctionGraph loads
the initializer function defined in the index.js file.

● context
The context parameter contains the runtime information about a function.
For example, request ID, temporary AK, and function metadata.

● callback
The callback parameter is used to return the invocation result. The signature
of this parameter is function(err, data), which is the same as that of the
common callback parameter used in Node.js. If the value of err is not null,
the function will return HandledInitializationError. The value of data is
invalid because no value will be returned for function initialization. You can
set the data parameter to null by referring to the previous example.

SDK APIs
Table 3-1 describes the context methods provided by FunctionGraph.

Table 3-1 Context methods

Method Description

getRequestID() Obtains a request ID.

getRemainingTimeInMilliSeconds () Obtains the remaining running time of
a function.

FunctionGraph
Developer Guide 3 Node.js

2023-09-30 22

Method Description

getAccessKey() Obtains the AK (valid for 24 hours)
with an agency. If you use this
method, you need to configure an
agency for the function.
NOTE

FunctionGraph has stopped maintaining
the getAccessKey API in the Runtime SDK.
You cannot use this API to obtain a
temporary AK.

getSecretKey() Obtains the SK (valid for 24 hours)
with an agency. If you use this
method, you need to configure an
agency for the function.
NOTE

FunctionGraph has stopped maintaining
the getSecretKey API in the Runtime SDK.
You cannot use this API to obtain a
temporary SK.

getSecurityAccessKey() Obtains the SecurityAccessKey (valid
for 24 hours) with an agency. If you
use this method, you need to configure
an agency for the function.

getSecuritySecretKey() Obtains the SecuritySecretKey (valid
for 24 hours) with an agency. If you
use this method, you need to configure
an agency for the function.

getSecurityToken() Obtains the SecurityToken (valid for 24
hours) with an agency. If you use this
method, you need to configure an
agency for the function.

getUserData(string key) Uses keys to obtain the values passed
by environment variables.

getFunctionName() Obtains the name of a function.

getRunningTimeInSeconds () Obtains the timeout of a function.

getVersion() Obtains the version of a function.

getMemorySize() Obtains the allocated memory.

getCPUNumber() CPU usage of a function.

getPackage() Obtains a function group, that is, an
app.

getToken() Obtains the token (valid for 24 hours)
with an agency. If you use this
method, you need to configure an
agency for the function.

FunctionGraph
Developer Guide 3 Node.js

2023-09-30 23

Method Description

getLogger() Obtains the logger method provided
by the context and returns a log
output class. Logs are output in the
format of Time-Request ID-Content by
using the info method.
For example, use the info method to
output logs:
logg = context.getLogger()
logg.info("hello")

getAlias Obtains function alias.

WARNING

Results returned by using the getToken(), getAccessKey(), and getSecretKey()
methods contain sensitive information. Exercise caution when using these
methods.

Execution Result
The execution result consists of the function output, summary, and log output.

Table 3-2 Description of the execution result

Parame
ter

Successful Execution Failed Execution

Functio
n
Output

The defined function output
information is returned.

A JSON file that contains
errorMessage and errorType is
returned. The format is as follows:
{
 "errorMessage": "",
 "errorType":"",
}

errorMessage: Error message
returned by the runtime.
errorType: Error type.

Summa
ry

Request ID, Memory
Configured, Execution
Duration, Memory Used,
and Billed Duration are
displayed.

Request ID, Memory Configured,
Execution Duration, Memory Used,
and Billed Duration are displayed.

Log
Output

Function logs are printed. A
maximum of 4 KB logs can
be displayed.

Error information is printed. A
maximum of 4 KB logs can be
displayed.

FunctionGraph
Developer Guide 3 Node.js

2023-09-30 24

3.2 Creating a Dependency
You are advised to create function dependencies in EulerOS. If other OSs are
used, an error may occur due to underlying dependent libraries. For example, the
dynamic link library cannot be found.

NO TE

● If the modules to be installed need dependencies such as .dll, .so, and .a, archive them
to a .zip package.

Creating a Dependency for a Node.js Function

Ensure that the corresponding Node.js version has been installed in the
environment.

To install the MySQL dependency for a Node.js 8.10 function, run the following
command:

npm install mysql --save

The node_modules folder is generated under the current directory.

● Linux OS

Run the following command to generate a ZIP package.
zip -rq mysql-node8.10.zip node_modules

The required dependency is generated.

● Windows OS

Compress node_modules into a ZIP file.

To install multiple dependencies, create a package.json file first. For example,
enter the following content into the package.json file and then run the following
command:

{
 "name": "test",
 "version": "1.0.0",
 "dependencies": {
 "redis": "~2.8.0",
 "mysql": "~2.17.1"
 }
}
npm install --save

NO TE

Do not run the CNPM command to generate Node.js dependencies.

Compress node_modules into a ZIP package. This generates a dependency that
contains both MySQL and Redis.

For other Node.js versions, you can create dependencies in the way stated above.

FunctionGraph
Developer Guide 3 Node.js

2023-09-30 25

4 Python

4.1 Developing an Event Function

Function Syntax
NO TE

You are advised to use Python 3.6.

FunctionGraph supports Python 2.7, Python 3.6, and Python 3.9.

Syntax for creating a handler function in Python:

def handler (event, context)

● handler: name of the function that FunctionGraph invokes to execute your
code. The name must be consistent with that you define when creating a
function.

● event: event parameter defined for the function. The parameter is in JSON
format.

● Context: runtime information provided for executing the function. For details,
see SDK APIs.

Python Initializer

FunctionGraph supports the following Python runtimes:

● Python 2.7 (runtime = python2.7)
● Python 3.6 (runtime = python3)
● Python 3.9 (runtime = python3)

Initializer syntax:

[File name].[Initializer name]

For example, if the initializer is named main.my_initializer, FunctionGraph loads
the my_initializer function defined in the main.py file.

FunctionGraph
Developer Guide 4 Python

2023-09-30 26

To use Python to build initialization logic, define a Python function as the
initializer. The following is a simple initializer (Python 2.7 is used as an example):

def my_initializer(context):
 print 'hello world!'

● Function Name
The function name my_initializer must be the initializer function name
specified for a function. For example, if the initializer is named
main.my_initializer, FunctionGraph loads the my_initializer function defined
in the main.py file.

● context
The context parameter contains the runtime information about a function.
For example, request ID, temporary AK, and function metadata.

SDK APIs
Table 4-1 describes the context methods provided by FunctionGraph.

Table 4-1 Context methods

Method Description

getRequestID() Obtains a request ID.

getRemainingTimeInMilliSeconds () Obtains the remaining running time of
a function.

getAccessKey() Obtains the AK (valid for 24 hours)
with an agency. If you use this
method, you need to configure an
agency for the function.
NOTE

FunctionGraph has stopped maintaining
the getAccessKey API in the Runtime SDK.
You cannot use this API to obtain a
temporary AK.

getSecretKey() Obtains the SK (valid for 24 hours)
with an agency. If you use this
method, you need to configure an
agency for the function.
NOTE

FunctionGraph has stopped maintaining
the getSecretKey API in the Runtime SDK.
You cannot use this API to obtain a
temporary SK.

getSecurityAccessKey() Obtains the SecurityAccessKey (valid
for 24 hours) with an agency. If you
use this method, you need to configure
an agency for the function.

FunctionGraph
Developer Guide 4 Python

2023-09-30 27

Method Description

getSecuritySecretKey() Obtains the SecuritySecretKey (valid
for 24 hours) with an agency. If you
use this method, you need to configure
an agency for the function.

getSecurityToken() Obtains the SecurityToken (valid for 24
hours) with an agency. If you use this
method, you need to configure an
agency for the function.

getUserData(string key) Uses keys to obtain the values passed
by environment variables.

getFunctionName() Obtains the name of a function.

getRunningTimeInSeconds () Obtains the timeout of a function.

getVersion() Obtains the version of a function.

getMemorySize() Obtains the allocated memory.

getCPUNumber() CPU usage of a function.

getPackage() Obtains a function group, that is, an
app.

getToken() Obtains the token (valid for 24 hours)
with an agency. If you use this
method, you need to configure an
agency for the function.

getLogger() Obtains the logger method provided
by the context and returns a log
output class. Logs are output in the
format of Time-Request ID-Content by
using the info method.
For example, use the info method to
output logs:
log = context.getLogger()
log.info("test")

getAlias Obtains function alias.

WARNING

Results returned by using the getToken(), getAccessKey(), and getSecretKey()
methods contain sensitive information. Exercise caution when using these
methods.

FunctionGraph
Developer Guide 4 Python

2023-09-30 28

Execution Result
The execution result consists of the function output, summary, and log output.

Table 4-2 Description of the execution result

Parame
ter

Successful Execution Failed Execution

Functio
n
Output

The defined function output
information is returned.

A JSON file that contains
errorMessage, errorType, and
stackTrace is returned. The format is
as follows:
{
 "errorMessage": "",
 "errorType": "",
 "stackTrace": []
}

errorMessage: Error message
returned by the runtime.
errorType: Error type.
stackTrace: Stack error information
returned by the runtime.

Summa
ry

Request ID, Memory
Configured, Execution
Duration, Memory Used,
and Billed Duration are
displayed.

Request ID, Memory Configured,
Execution Duration, Memory Used,
and Billed Duration are displayed.

Log
Output

Function logs are printed. A
maximum of 4 KB logs can
be displayed.

Error information is printed. A
maximum of 4 KB logs can be
displayed.

4.2 Creating a Dependency
You are advised to create function dependencies in EulerOS. If other OSs are
used, an error may occur due to underlying dependent libraries. For example, the
dynamic link library cannot be found.

NO TE

● If the modules to be installed need dependencies such as .dll, .so, and .a, archive them
to a .zip package.

Creating a Dependency for a Python Function
Ensure that the Python version of the packaging environment is the same as that
of the function. For Python 2.7, Python 2.7.12 or later is recommended. For Python
3.6, Python 3.6.3 or later is recommended.

To install the PyMySQL dependency for a Python 2.7 function in the local /tmp/
pymysql directory, run the following command:

FunctionGraph
Developer Guide 4 Python

2023-09-30 29

pip install PyMySQL --root /tmp/pymysql

After the command is successfully executed, go to the /tmp/pymysql directory:

cd /tmp/pymysql/

Go to the site-packages directory (generally, usr/lib64/python2.7/site-
packages/) and then run the following command:

zip -rq pymysql.zip *

The required dependency is generated.

NO TE

To install the local wheel installation package, run the following command:
pip install piexif-1.1.0b0-py2.py3-none-any.whl --root /tmp/piexif
//Replace piexif-1.1.0b0-py2.py3-none-any.whl with the actual installation package name.

FunctionGraph
Developer Guide 4 Python

2023-09-30 30

5 Java

5.1 Developing an Event Function

5.1.1 Developing Functions in Java (Using Eclipse)

Function Syntax

The following is the syntax for creating a handler function in Java:

Scope Return parameter Function name (User-defined parameter, Context)

● Scope: It must be defined as public for the function that FunctionGraph
invokes to execute your code.

● Return parameter: user-defined output, which is converted into a character
string and returned as an HTTP response. The HTTP response is a JSON string.

● Function name: user-defined function name.
● User-defined parameter: FunctionGraph supports only one user-defined

parameter. For complex parameters, define them as an object and provide
data through JSON strings. When invoking a function, FunctionGraph parses
the JSON strings as an object.

● Context: runtime information provided for executing the function. For details,
see SDK APIs.

When creating a function in Java, define a handler in the format of [Package
name].[Class name].[Function name].

Java Initializer

FunctionGraph supports the following Java runtime:

● Java 8 (runtime = Java8)
Initializer syntax:
[Package name].[Class name].[Execution function name]

FunctionGraph
Developer Guide 5 Java

2023-09-30 31

For example, if the initializer is named com.Demo.my_initializer,
FunctionGraph loads the my_initializer function defined in the com file.
To use Java to build initialization logic, define a Java function as the initializer.
The following is a simple initializer:
public void my_initializer(Context context)
{
RuntimeLogger log = context.getLogger();
log.log(String.format("ak:%s", context.getAccessKey()));
}

● Function Name
The function name my_initializer must be the initializer function name
specified for a function.
For example, if the initializer is named com.Demo.my_initializer,
FunctionGraph loads the my_initializer function defined in the com file.

● context
The context parameter contains the runtime information about a function.
For example, request ID, temporary AK, and function metadata.

SDK APIs
The Java SDK (verification file: fss-java-sdk-sha256) provides context and logging
APIs.

● Context APIs
The context APIs are used to obtain the context, such as agency AK/SK,
current request ID, allocated memory space, and number of CPUs, required for
executing a function.
Table 5-1 describes the context APIs provided by FunctionGraph.

Table 5-1 Context methods

Method Description

getRequestID() Obtains a request ID.

getRemainingTimeInMilliSeconds () Obtains the remaining running time
of a function.

getAccessKey() Obtains the AK (valid for 24 hours)
with an agency. If you use this
method, you need to configure an
agency for the function.
NOTE

FunctionGraph has stopped maintaining
the getAccessKey API in the Runtime
SDK. You cannot use this API to obtain a
temporary AK.

FunctionGraph
Developer Guide 5 Java

2023-09-30 32

Method Description

getSecretKey() Obtains the SK (valid for 24 hours)
with an agency. If you use this
method, you need to configure an
agency for the function.
NOTE

FunctionGraph has stopped maintaining
the getSecretKey API in the Runtime
SDK. You cannot use this API to obtain a
temporary SK.

getSecurityAccessKey() Obtains the SecurityAccessKey (valid
for 24 hours) with an agency. If you
use this method, you need to
configure an agency for the
function.

getSecuritySecretKey() Obtains the SecuritySecretKey (valid
for 24 hours) with an agency. If you
use this method, you need to
configure an agency for the
function.

getSecurityToken() Obtains the SecurityToken (valid for
24 hours) with an agency. If you use
this method, you need to configure
an agency for the function.

getUserData(string key) Uses keys to obtain the values
passed by environment variables.

getFunctionName() Obtains the name of a function.

getRunningTimeInSeconds () Obtains the timeout of a function.

getVersion() Obtains the version of a function.

getMemorySize() Obtains the allocated memory.

getCPUNumber() CPU usage of a function.

getPackage() Obtains a function group, that is, an
app.

getToken() Obtains the token (valid for 24
hours) with an agency. If you use
this method, you need to configure
an agency for the function.

getLogger() Obtains the logger method provided
by the context. By default,
information such as the time and
request ID is output.

getAlias Obtains function alias.

FunctionGraph
Developer Guide 5 Java

2023-09-30 33

WARNING

Results returned by using the getToken(), getAccessKey(), and
getSecretKey() methods contain sensitive information. Exercise caution when
using these methods.

● Logging API
Table 5-2 describes the logging API provided in the Java SDK.

Table 5-2 Logging API

Method Description

RuntimeLogger() Records user input logs using the
method log(String string).

Execution Result
The execution result consists of the function output, summary, and log output.

Table 5-3 Description of the execution result

Parame
ter

Successful Execution Failed Execution

Functio
n
Output

The defined function output
information is returned.

A JSON file that contains
errorMessage and stackTrace is
returned. The format is as follows:
{
 "errorMessage": "",
 "stackTrace": []
}

errorMessage: Error message
returned by the runtime.
stackTrace: Stack error information
returned by the runtime.

Summa
ry

Request ID, Memory
Configured, Execution
Duration, Memory Used,
and Billed Duration are
displayed.

Request ID, Memory Configured,
Execution Duration, Memory Used,
and Billed Duration are displayed.

Log
Output

Function logs are printed. A
maximum of 4 KB logs can
be displayed.

Error information is printed. A
maximum of 4 KB logs can be
displayed.

FunctionGraph
Developer Guide 5 Java

2023-09-30 34

5.2 Creating a Dependency
You are advised to create function dependencies in EulerOS. If other OSs are
used, an error may occur due to underlying dependent libraries. For example, the
dynamic link library cannot be found.

NO TE

● If the modules to be installed need dependencies such as .dll, .so, and .a, archive them
to a .zip package.

When you compile a function using Java, dependencies need to be compiled
locally.

FunctionGraph
Developer Guide 5 Java

2023-09-30 35

6 Go

6.1 Developing an Event Function

Function Syntax

Syntax for creating a handler function in Go:

func Handler (payload []byte, ctx context.RuntimeContext)

● Handler: name of the handler function.

● payload: event parameter defined for the function. The parameter is in JSON
format.

● ctx: runtime information provided for executing the function. For details, see
SDK APIs.

SDK APIs

The Go SDK provides context, and logging APIs. Download the Go SDK (Go
SDK.sha256).

● Context APIs

The context APIs are used to obtain the context, such as agency AK/SK,
current request ID, allocated memory space, and number of CPUs, required for
executing a function.

Table 6-1 describes the context APIs provided by FunctionGraph.

Table 6-1 Context methods

Method Description

getRequestID() Obtains a request ID.

getRemainingTimeInMilligetRun-
ningTimeInSecondsSeconds ()

Obtains the remaining running time
of a function.

FunctionGraph
Developer Guide 6 Go

2023-09-30 36

Method Description

getAccessKey() Obtains the AK (valid for 24 hours)
with an agency. If you use this
method, you need to configure an
agency for the function.
NOTE

FunctionGraph has stopped maintaining
the getAccessKey API in the Runtime
SDK. You cannot use this API to obtain a
temporary AK.

getSecretKey() Obtains the SK (valid for 24 hours)
with an agency. If you use this
method, you need to configure an
agency for the function.
NOTE

FunctionGraph has stopped maintaining
the getSecretKey API in the Runtime
SDK. You cannot use this API to obtain a
temporary SK.

getSecurityAccessKey() Obtains the SecurityAccessKey (valid
for 24 hours) with an agency. If you
use this method, you need to
configure an agency for the
function.

getSecuritySecretKey() Obtains the SecuritySecretKey (valid
for 24 hours) with an agency. If you
use this method, you need to
configure an agency for the
function.

getSecurityToken() Obtains the SecurityToken (valid for
24 hours) with an agency. If you use
this method, you need to configure
an agency for the function.

getUserData(string key) Uses keys to obtain the values
passed by environment variables.

getFunctionName() Obtains the name of a function.

getRunningTimeInSeconds () Obtains the timeout of a function.

getVersion() Obtains the version of a function.

getMemorySize() Obtains the allocated memory.

getCPUNumber() CPU usage of a function.

getPackage() Obtains a function group, that is, an
app.

FunctionGraph
Developer Guide 6 Go

2023-09-30 37

Method Description

getToken() Obtains the token (valid for 24
hours) with an agency. If you use
this method, you need to configure
an agency for the function.

getLogger() Obtains the logger method provided
by the context. By default,
information such as the time and
request ID is output.

getAlias Obtains function alias.

WARNING

Results returned by using the GetToken(), GetAccessKey(), and
GetSecretKey() methods contain sensitive information. Exercise caution when
using these methods.

● Table 6-2 describes the logging API provided in the Go SDK.

Table 6-2 Logging API

Method Description

RuntimeLogger() ● Records user input logs by using
the method Logf(format string,
args ...interface{}).

● This method outputs logs in the
format of Time-Request ID-
Output, for example,
2017-10-25T09:10:03.328Z
473d369d-101a-445e-
a7a8-315cca788f86 test log
output.

Execution Result
The execution result consists of the function output, summary, and log output.

FunctionGraph
Developer Guide 6 Go

2023-09-30 38

Table 6-3 Description of the execution result

Parame
ter

Successful Execution Failed Execution

Functio
n
Output

The defined function output
information is returned.

A JSON file that contains
errorMessage and errorType is
returned. The format is as follows:
{
 "errorMessage": "",
 "errorType":"",
}

errorMessage: Error message
returned by the runtime.
errorType: Error type.

Summa
ry

Request ID, Memory
Configured, Execution
Duration, Memory Used,
and Billed Duration are
displayed.

Request ID, Memory Configured,
Execution Duration, Memory Used,
and Billed Duration are displayed.

Log
Output

Function logs are printed. A
maximum of 4 KB logs can
be displayed.

Error information is printed. A
maximum of 4 KB logs can be
displayed.

FunctionGraph
Developer Guide 6 Go

2023-09-30 39

7 C#

7.1 Developing an Event Function

7.1.1 C# Function Development

Function Syntax
NO TE

You are advised to use .NET Core 3.1.

FunctionGraph supports C# (.NET Core 2.0), C# (.NET Core 2.1), and C# (.NET
Core 3.1).

Scope Return parameter Function name (User-defined parameter, Context)

● Scope: It must be defined as public for the function that FunctionGraph
invokes to execute your code.

● Return parameter: user-defined output, which is converted into a character
string and returned as an HTTP response.

● Function name: user-defined function name. The name must be consistent
with that you define when creating a function.
In the navigation pane on the left of the FunctionGraph console, choose
Functions > Function List. Click the name of the function to be set. On the
function details page that is displayed, choose Configuration > Basic
Settings and set the Handler parameter, as shown in Figure 7-1. The
parameter value is in the format of index.handler. The values of index and
handler can be customized.

FunctionGraph
Developer Guide 7 C#

2023-09-30 40

Figure 7-1 Handler parameter

● Event: event parameter defined for the function.

● context: runtime information provided for executing the function. For details,
see the description of SDK APIs.

The HC.Serverless.Function.Common library needs to be referenced when
you deploy a project in FunctionGraph. For details about the
IFunctionContext object, see the context description.

When creating a C# function, you need to define a method as the handler of
the function. The method can access the function by using specified
IFunctionContext parameters. Example:
public Stream handlerName(Stream input,IFunctionContext context)
{
 // TODO
}

Function Handler

ASSEMBLY::NAMESPACE.CLASSNAME::METHODNAME

● ASSEMBLY: name of the .NET assembly file for your application, for example,
HelloCsharp.

● NAMESPACE and CLASSNAME: names of the namespace and class to which
the handler function belongs.

● METHODNAME: name of the handler function. Example:

Set the handler to HelloCsharp::Example.Hello::Handler when you create a
function.

SDK APIs
● Context APIs

Table 7-1 describes the provided context attributes.

FunctionGraph
Developer Guide 7 C#

2023-09-30 41

Table 7-1 Context objects

Attribute Description

String RequestId Request ID.

String ProjectId Project Id

String PackageName Name of the group to which the function
belongs.

String FunctionName Function name.

String FunctionVersion Function version.

Int MemoryLimitInMb Allocated memory.

Int CpuNumber CPU usage of a function.

String Accesskey Obtains the AK (valid for 24 hours) with an
agency. If you use this method, you need to
configure an agency for the function.
NOTE

FunctionGraph has stopped maintaining the String
AccessKey API in the Runtime SDK. You cannot use
this API to obtain a temporary AK.

String Secretkey Obtains the SK (valid for 24 hours) with an
agency. If you use this method, you need to
configure an agency for the function.
NOTE

FunctionGraph has stopped maintaining the String
SecretKey API in the Runtime SDK. You cannot use
this API to obtain a temporary SK.

String SecurityAccessKey Obtains the SecurityAccessKey (valid for 24
hours) with an agency. If you use this method,
you need to configure an agency for the
function.

String SecuritySecretKey Obtains the SecuritySecretKey (valid for 24
hours) with an agency. If you use this method,
you need to configure an agency for the
function.

String SecuritySecretTo-
ken

Obtains the SecuritySecretToken (valid for 24
hours) with an agency. If you use this method,
you need to configure an agency for the
function.

String Token Obtains the token (valid for 24 hours) with an
agency. If you use this method, you need to
configure an agency for the function.

Int RemainingTimeInMilli-
Seconds

Remaining running time of a function.

FunctionGraph
Developer Guide 7 C#

2023-09-30 42

Attribute Description

String GetUserData(string
key,string defvalue=" ")

Uses keys to obtain the values passed by
environment variables.

● Logging APIs

The following table describes the logging APIs provided in the C# SDK.

Table 7-2 Logging APIs

Method Description

Log(string message) Creates a logger object by using context.
var logger = context.Logger;
logger.Log("hello CSharp runtime
test(v1.0.2)");

Logf(string format,
args ...interface{})

Creates a logger object by using context.
var logger = context.Logger;
var version = "v1.0.2"
logger.Logf("hello CSharp runtime test({0})",
version);

Execution Result

The execution result consists of the function output, summary, and log output.

Table 7-3 Description of the execution result

Parame
ter

Successful Execution Failed Execution

Functio
n
Output

The defined function output
information is returned.

A JSON file that contains
errorMessage and errorType is
returned. The format is as follows:
{
 "errorMessage": "",
 "errorType": ""
}

errorMessage: Error message
returned by the runtime.
errorType: Error type.

Summa
ry

Request ID, Memory
Configured, Execution
Duration, Memory Used,
and Billed Duration are
displayed.

Request ID, Memory Configured,
Execution Duration, Memory Used,
and Billed Duration are displayed.

FunctionGraph
Developer Guide 7 C#

2023-09-30 43

Parame
ter

Successful Execution Failed Execution

Log
Output

Function logs are printed. A
maximum of 4 KB logs can
be displayed.

Error information is printed. A
maximum of 4 KB logs can be
displayed.

FunctionGraph
Developer Guide 7 C#

2023-09-30 44

8 PHP

8.1 Developing an Event Function

Function Syntax
Use the following syntax when creating a handler function in PHP 7.3:

function handler($event, $context)

● $handler: name of the function that FunctionGraph invokes to execute your
code. The name must be consistent with that you define when creating a
function.

● $event: event parameter defined for the function. The parameter is in JSON
format.

● $context: runtime information provided for executing the function. For
details, see SDK APIs.

● Function handler: index.handler.
● The function handler is in the format of [File name].[Function name]. For

example, if you set the handler to index.handler in your function,
FunctionGraph will load the handler function defined in the index.php file.

PHP Initializer
FunctionGraph supports the following PHP runtime:

● Php 7.3 (runtime = Php7.3)

Initializer syntax:

[File name].[Initializer name]

For example, if the initializer is named main.my_initializer, FunctionGraph loads
the my_initializer function defined in the main.php file.

To use PHP to build initialization logic, define a PHP function as the initializer. The
following is a simple initializer:

<?php
Function my_initializer($context) {

FunctionGraph
Developer Guide 8 PHP

2023-09-30 45

 echo 'hello world' . PHP_EOL;
 }
?>

● Function Name

The function name my_initializer must be the initializer function name
specified for a function.

For example, if the initializer is named main.my_initializer, FunctionGraph
loads the my_initializer function defined in the main.php file.

● context

The context parameter contains the runtime information about a function.
For example, request ID, temporary AK, and function metadata.

SDK APIs

The following table describes the context methods provided by FunctionGraph.

Table 8-1 Context methods

Method Description

getRequestID() Obtains a request ID.

getRemainingTimeIn-
MilliSeconds ()

Obtains the remaining running time of a function.

getAccessKey() Obtains the AK (valid for 24 hours) with an agency. If
you use this method, you need to configure an
agency for the function.
NOTE

FunctionGraph has stopped maintaining the getAccessKey
API in the Runtime SDK. You cannot use this API to obtain a
temporary AK.

getSecretKey() Obtains the SK (valid for 24 hours) with an agency. If
you use this method, you need to configure an
agency for the function.
NOTE

FunctionGraph has stopped maintaining the getSecretKey
API in the Runtime SDK. You cannot use this API to obtain a
temporary SK.

getSecurityAccessKey() Obtains the SecurityAccessKey (valid for 24 hours)
with an agency. If you use this method, you need to
configure an agency for the function.

getSecuritySecretKey() Obtains the SecuritySecretKey (valid for 24 hours)
with an agency. If you use this method, you need to
configure an agency for the function.

getSecurityToken() Obtains the SecurityToken (valid for 24 hours) with
an agency. If you use this method, you need to
configure an agency for the function.

FunctionGraph
Developer Guide 8 PHP

2023-09-30 46

Method Description

getUserData(string key) Uses keys to obtain the values passed by environment
variables.

getFunctionName() Obtains the name of a function.

getRunningTimeInSec-
onds ()

Obtains the timeout of a function.

getVersion() Obtains the version of a function.

getMemorySize() Obtains the allocated memory.

getCPUNumber() CPU usage of a function.

getPackage() Obtains a function group, that is, an app.

getToken() Obtains the token (valid for 24 hours) with an
agency. If you use this method, you need to configure
an agency for the function.

getLogger() Obtains the logger method provided by the context
and returns a log output class. Logs are output in the
format of Time-Request ID-Content by using the info
method.
For example, use the info method to output logs:
logg = context.getLogger()$
$logg->info("hello")

getAlias Obtains function alias.

NO TE

Results returned by using the getToken(), getAccessKey(), and getSecretKey() methods
contain sensitive information. Exercise caution when using these methods.

Execution Result
The execution result consists of the function output, summary, and log output.

FunctionGraph
Developer Guide 8 PHP

2023-09-30 47

Table 8-2 Description of the execution result

Parame
ter

Successful Execution Failed Execution

Functio
n
Output

The defined function output
information is returned.

A JSON file that contains
errorMessage, errorType, and
stackTrace is returned. The format is
as follows:
{
 "errorMessage": "",
 "errorType": "",
 "stackTrace": {}
}

errorMessage: Error message
returned by the runtime.
errorType: Error type.
stackTrace: Stack error information
returned by the runtime.

Summa
ry

Request ID, Memory
Configured, Execution
Duration, Memory Used,
and Billed Duration are
displayed.

Request ID, Memory Configured,
Execution Duration, Memory Used,
and Billed Duration are displayed.

Log
Output

Function logs are printed. A
maximum of 4 KB logs can
be displayed.

Error information is printed. A
maximum of 4 KB logs can be
displayed.

FunctionGraph
Developer Guide 8 PHP

2023-09-30 48

9 Development Tools

9.1 Eclipse Plug-in
Currently, FunctionGraph does not provide Java function templates and only
allows you to upload Java function packages through OBS. With the Eclipse plug-
in, you can quickly create Java function templates, package function project files,
upload function packages to OBS, and deploy functions.

Step 1 Obtain the Eclipse plug-in (software package verification file: Eclipse plug-
in.sha256).

Step 2 Put the Eclipse plug-in package (.jar or .zip) in the plugins folder under the
Eclipse installation directory. Then restart Eclipse. Figure 9-1 shows the Eclipse
installation directory.

Figure 9-1 Installing the Eclipse plug-in

Step 3 Open Eclipse and choose File > New > Other, as shown in Figure 9-2.

FunctionGraph
Developer Guide 9 Development Tools

2023-09-30 49

Figure 9-2 Creating a template

Step 4 Choose FunctionGraph > Default Java project, as shown in Figure 9-3.

FunctionGraph
Developer Guide 9 Development Tools

2023-09-30 50

Figure 9-3 Selecting the default Java template

Step 5 Enter a project name, specify a project directory (or use the default directory), and
click Finish, as shown in Figure 9-4.

FunctionGraph
Developer Guide 9 Development Tools

2023-09-30 51

Figure 9-4 Setting the project name and directory

----End

9.2 PyCharm Plug-in
With PyCharm, you can quickly generate Python templates, package project files,
and deploy Python functions.

Step 1 Obtain the plug-in (Plug-in.sha256).

Step 2 Run JetBrains PyCharm. Choose File > Settings, choose Plugins in the left pane,
and then click Install Plugin from Disk in the upper right corner, as shown in
Figure 9-5.

FunctionGraph
Developer Guide 9 Development Tools

2023-09-30 52

Figure 9-5 Installing the plug-in

Step 3 Select the plug-in package you want to install, and click OK, as shown in Figure
9-6.

FunctionGraph
Developer Guide 9 Development Tools

2023-09-30 53

Figure 9-6 Selecting a plug-in package

Step 4 In the plug-in list, select the desired plug-in and click Restart IDE, as shown in
Figure 9-7.

FunctionGraph
Developer Guide 9 Development Tools

2023-09-30 54

Figure 9-7 Restarting the IDE

Step 5 Choose File > New Project, as shown in Figure 9-8.

FunctionGraph
Developer Guide 9 Development Tools

2023-09-30 55

Figure 9-8 Creating a project

Step 6 On the displayed New Project page, choose FunctionGraph, as shown in Figure
9-9.

FunctionGraph
Developer Guide 9 Development Tools

2023-09-30 56

Figure 9-9 FunctionGraph

Step 7 Select the path in which the project will be stored in Location, and select a Python
version in Base interpreter, as shown in Figure 9-10.

Figure 9-10 Selecting a version

Step 8 Select a template you want to create in the More Settings area, as shown in
Figure 9-11.

FunctionGraph
Developer Guide 9 Development Tools

2023-09-30 57

Figure 9-11 Selecting a template

NO TE

Currently, only the Python 2.7 context template is supported.

Step 9 Click Create.

----End

FunctionGraph
Developer Guide 9 Development Tools

2023-09-30 58

	Contents
	1 Overview
	1.1 Function Development
	1.2 Supported Event Sources
	1.3 Function Project Packaging Rules
	1.4 Referencing DLLs in Functions

	2 Initializer
	3 Node.js
	3.1 Developing an Event Function
	3.2 Creating a Dependency

	4 Python
	4.1 Developing an Event Function
	4.2 Creating a Dependency

	5 Java
	5.1 Developing an Event Function
	5.1.1 Developing Functions in Java (Using Eclipse)

	5.2 Creating a Dependency

	6 Go
	6.1 Developing an Event Function

	7 C#
	7.1 Developing an Event Function
	7.1.1 C# Function Development

	8 PHP
	8.1 Developing an Event Function

	9 Development Tools
	9.1 Eclipse Plug-in
	9.2 PyCharm Plug-in

