
GaussDB

Feature Guide for Distributed
Instances

Issue 01

Date 2024-05-17

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Materialized View... 1
1.1 Complete-Refresh Materialized View... 1
1.1.1 Overview... 1
1.1.2 Usage... 1
1.1.3 Support and Constraints.. 2
1.2 Fast-Refresh Materialized View.. 2
1.2.1 Overview... 3
1.2.2 Usage... 3
1.2.3 Support and Constraints.. 4

2 Setting Encrypted Equality Queries.. 5
2.1 Overview.. 5
2.2 Using gsql to Operate an Encrypted Database...9
2.3 Using JDBC to Operate an Encrypted Database.. 10
2.4 Enhancing Security in the Configuration Phase... 15
2.5 Encrypted Functions and Stored Procedures... 18

3 Partitioned Table... 20
3.1 Large-Capacity Database... 20
3.1.1 Background.. 20
3.1.2 Table Partitioning.. 20
3.1.3 Data Partition Query Optimization... 21
3.1.4 Data Partition O&M Management..22
3.2 Introduction to Partitioned Tables.. 22
3.2.1 Basic Concepts.. 23
3.2.1.1 Partitioned Table.. 23
3.2.1.2 Partition... 24
3.2.1.3 Partition Key.. 24
3.2.2 Partitioning Policy... 25
3.2.2.1 Range Partitioning... 25
3.2.2.2 Hash Partitioning... 27
3.2.2.3 List Partitioning...28
3.2.2.4 Impact of Partitioned Tables on Import Performance.. 29
3.2.3 Basic Usage of Partitions.. 30

GaussDB
Feature Guide for Distributed Instances Contents

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

3.2.3.1 Creating Partitioned Tables.. 30
3.2.3.2 DML Statements for Querying Partitioned Tables... 32
3.3 Partitioned Table Query Optimization.. 33
3.3.1 Partition Pruning..33
3.3.1.1 Static Partition Pruning.. 33
3.3.1.2 Dynamic Partition Pruning... 38
3.3.1.2.1 Dynamic PBE Pruning... 38
3.3.1.2.2 Dynamic Parameterized Path Pruning.. 41
3.3.2 Partitioned Indexes... 45
3.4 Partitioned Table O&M Management... 48
3.4.1 ADD PARTITION... 49
3.4.1.1 Adding a Partition to a Range Partitioned Table.. 49
3.4.1.2 Adding a Partition to a List Partitioned Table..50
3.4.2 DROP PARTITION.. 50
3.4.3 EXCHANGE PARTITION..51
3.4.4 TRUNCATE PARTITION.. 52
3.4.5 SPLIT PARTITION... 53
3.4.5.1 Splitting a Partition for a Range Partitioned Table.. 53
3.4.5.2 Splitting a Partition for a List Partitioned Table..54
3.4.6 MERGE PARTITION... 55
3.4.7 MOVE PARTITION... 55
3.4.8 RENAME PARTITION.. 56
3.4.8.1 Renaming a Partition in a Partitioned Table.. 56
3.4.8.2 Renaming an Index Partition for a Local Index... 56
3.4.9 ALTER TABLE ENABLE/DISABLE ROW MOVEMENT.. 56
3.4.10 Invalidating/Rebuilding Indexes of a Partition... 57
3.4.10.1 Invalidating/Rebuilding Indexes... 57
3.4.10.2 Invalidating/Rebuilding Local Indexes of a Partition.. 57
3.5 System Views & DFX Related to Partitioned Tables..58
3.5.1 System Views Related to Partitioned Tables.. 58
3.5.2 Built-in Tool Functions Related to Partitioned Tables...58

4 Storage Engine... 62
4.1 Storage Engine Architecture..62
4.1.1 Overview...62
4.1.1.1 Static Compilation Architecture.. 62
4.1.1.2 Database Service Layer.. 63
4.1.2 Setting Up a Storage Engine... 64
4.1.3 Storage Engine Update Description.. 65
4.1.3.1 GaussDB 503..65
4.1.3.2 GaussDB R2.. 65
4.2 Astore.. 66
4.2.1 Overview...66

GaussDB
Feature Guide for Distributed Instances Contents

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

4.3 Ustore..66
4.3.1 Overview...66
4.3.1.1 Ustore Features and Specifications.. 67
4.3.1.1.1 Restrictions..67
4.3.1.1.2 Storage Specifications... 67
4.3.1.2 Examples... 68
4.3.1.3 Best Practices of Ustore... 68
4.3.1.3.1 How Can I Configure init_td... 68
4.3.1.3.2 How Can I Configure fillfactor... 69
4.3.1.3.3 Collecting Statistics.. 69
4.3.1.3.4 Online Verification... 69
4.3.1.3.5 How Can I Configure the Size of Rollback Segments.. 69
4.3.2 Storage Format.. 71
4.3.2.1 Relation... 71
4.3.2.1.1 Page-based Row Consistency Read (PbRCR) Heap Multi-Version Management.................................71
4.3.2.1.2 PbPCR Heap Visibility Mechanism.. 72
4.3.2.1.3 Heap Space Management... 72
4.3.2.2 Index... 72
4.3.2.2.1 Row Consistency Read (RCR) UB-tree Multi-Version Management...73
4.3.2.2.2 RCR UB-Tree Visibility Mechanism... 73
4.3.2.2.3 Inserting, Deleting, Updating, and Scanning UB-Tree... 74
4.3.2.2.4 UB-Tree Space Management.. 75
4.3.2.3 Undo... 76
4.3.2.3.1 Rollback Segment Management... 76
4.3.2.3.2 File Structure.. 76
4.3.2.3.3 Undo Space Management... 76
4.3.3 Ustore Transaction Model.. 77
4.3.3.1 Transaction Commit.. 77
4.3.3.2 Transaction Rollback... 77
4.3.4 Flashback.. 78
4.3.4.1 Flashback Query... 79
4.3.4.2 Flashback Table.. 81
4.3.4.3 Flashback DROP/TRUNCATE..83
4.3.5 Common View Tools...91
4.3.6 Common Problems and Troubleshooting Methods... 95
4.3.6.1 Snapshot Too Old...95
4.3.6.1.1 Undo Space Recycling Blocked by Long Transactions..95
4.3.6.1.2 Slow Undo Space Recycling Caused by Many Rollback Transactions.. 96
4.3.6.2 Storage Test Error.. 97
4.3.6.3 An Error "UBTreeSearch::read_page has conflict with recovery, please try again later" Is Reported
when a Service Uses a Standby Node to Read Data... 97

5 FDW.. 100

GaussDB
Feature Guide for Distributed Instances Contents

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iv

5.1 file_fdw... 100

6 Logical Replication... 102
6.1 Logical Decoding.. 102
6.1.1 Overview.. 102
6.1.2 Logical Decoding Options.. 108
6.1.3 Logical Decoding by SQL Function Interfaces...115
6.1.4 Logical Data Replication Using Stream Decoding... 116

GaussDB
Feature Guide for Distributed Instances Contents

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. v

1 Materialized View

A materialized view is a special physical table, which is relative to a common view.
A common view is a virtual table and has many application limitations. Any query
on a view is actually converted into a query on an SQL statement, and
performance is not actually improved. The materialized view actually stores the
results of the statements executed by the SQL statement, and is used to cache the
results.

1.1 Complete-Refresh Materialized View

1.1.1 Overview
Complete-refresh materialized views can be completely refreshed only. The syntax
for creating a complete-refresh materialized view is the same as the CREATE
TABLE AS syntax. You cannot specify a node group to create a complete-refresh
materialized view.

1.1.2 Usage

Syntax
● Create a complete-refresh materialized view.

CREATE MATERIALIZED VIEW [view_name] AS { query_block };

● Refresh a complete-refresh materialized view.
REFRESH MATERIALIZED VIEW [view_name];

● Drop a materialized view.
DROP MATERIALIZED VIEW [view_name];

● Query a materialized view.
SELECT * FROM [view_name];

Examples
-- Prepare data.
CREATE TABLE t1(c1 int, c2 int);
INSERT INTO t1 VALUES(1, 1);
INSERT INTO t1 VALUES(2, 2);

-- Create a complete-refresh materialized view.

GaussDB
Feature Guide for Distributed Instances 1 Materialized View

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

gaussdb=# CREATE MATERIALIZED VIEW mv AS select count(*) from t1;
CREATE MATERIALIZED VIEW

-- Query the materialized view result.
gaussdb=# SELECT * FROM mv;
 count

 2
(1 row)

-- Insert data into the base table in the materialized view again.
gaussdb=# INSERT INTO t1 VALUES(3, 3);

-- Completely refresh a complete-refresh materialized view.
gaussdb=# REFRESH MATERIALIZED VIEW mv;
REFRESH MATERIALIZED VIEW

-- Query the materialized view result.
gaussdb=# SELECT * FROM mv;
 count

 3
(1 row)

-- Drop a materialized view.
gaussdb=# DROP MATERIALIZED VIEW mv;
DROP MATERIALIZED VIEW

1.1.3 Support and Constraints

Supported Scenarios
● Generally, the query scope supported by complete-refresh materialized views

is the same as that supported by the CREATE TABLE AS statement.

● The distribution column can be specified when a complete-refresh
materialized view is created.

● Indexes can be created in a complete-refresh materialized view.

● ANALYZE and EXPLAIN are supported.

Unsupported Scenarios
● Complete-refresh materialized views do not support node groups.

● Materialized views cannot be added, deleted, or modified. Only query
statements are supported.

Constraints
● The base table used to create a complete-refresh materialized view must be

defined on all DNs, and the node group to which the base table belongs must
be an installation group.

● When a complete-refresh materialized view is refreshed or deleted, a high-
level lock is added to the base table. If the definition of a materialized view
involves multiple tables, pay attention to the service logic to avoid deadlock.

1.2 Fast-Refresh Materialized View

GaussDB
Feature Guide for Distributed Instances 1 Materialized View

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

1.2.1 Overview
Fast-refresh materialized views can be incrementally refreshed. You need to
manually execute statements to incrementally refresh materialized views in a
period of time. The difference between the incremental and the complete-refresh
materialized views is that the fast-refresh materialized view supports only a small
number of scenarios. Currently, only base table scanning statements or UNION
ALL can be used to create materialized views.

1.2.2 Usage

Syntax
● Create a fast-refresh materialized view.

CREATE INCREMENTAL MATERIALIZED VIEW [view_name] AS { query_block };

● Completely refresh a materialized view.
REFRESH MATERIALIZED VIEW [view_name];

● Fast refresh a materialized view.
REFRESH INCREMENTAL MATERIALIZED VIEW [view_name];

● Drop a materialized view.
DROP MATERIALIZED VIEW [view_name];

● Query a materialized view.
SELECT * FROM [view_name];

Examples
-- Prepare data.
CREATE TABLE t1(c1 int, c2 int);
INSERT INTO t1 VALUES(1, 1);
INSERT INTO t1 VALUES(2, 2);

-- Create a fast-refresh materialized view.
gaussdb=# CREATE INCREMENTAL MATERIALIZED VIEW mv AS SELECT * FROM t1;
CREATE MATERIALIZED VIEW

-- Insert data.
gaussdb=# INSERT INTO t1 VALUES(3, 3);
INSERT 0 1

-- Fast refresh a materialized view.
gaussdb=# REFRESH INCREMENTAL MATERIALIZED VIEW mv;
REFRESH MATERIALIZED VIEW

-- Query the materialized view result.
gaussdb=# SELECT * FROM mv;
 c1 | c2
----+----
 1 | 1
 2 | 2
 3 | 3
(3 rows)

-- Insert data.
gaussdb=# INSERT INTO t1 VALUES(4, 4);
INSERT 0 1

-- Completely refresh a materialized view.
gaussdb=# REFRESH MATERIALIZED VIEW mv;
REFRESH MATERIALIZED VIEW

-- Query the materialized view result.
gaussdb=# select * from mv;

GaussDB
Feature Guide for Distributed Instances 1 Materialized View

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

 c1 | c2
----+----
 1 | 1
 2 | 2
 3 | 3
 4 | 4
(4 rows)

-- Drop a materialized view.
gaussdb=# DROP MATERIALIZED VIEW mv;
DROP MATERIALIZED VIEW

1.2.3 Support and Constraints

Supported Scenarios
● Supports statements for querying a single table.
● Supports UNION ALL for querying multiple single tables.
● Creates an index in the materialized view.
● Performs the Analyze operation in the materialized view.
● Creates a fast-refresh materialized view based on the node group of base

tables. (Check whether the base tables are in the same node group and create
the fast-refreshmaterialized view based on the node group).

Unsupported Scenarios
● Materialized views do not support the Stream plan, multi-table join plan, or

subquery plan.
● Except for a few ALTER operations, most DDL operations cannot be performed

on base tables in materialized views.
● A distribution key of a materialized view cannot be specified when the

materialized view is created.
● Materialized views cannot be added, deleted, or modified. Only query

statements are supported.
● Materialized views cannot be created using a temporary, hash bucket,

unlogged, or partitioned table. Only the hash distribution table is supported.
● Materialized views cannot be created in nested mode (that is, a materialized

view cannot be created in another materialized view).
● Materialized views of the UNLOGGED type are not supported, and the WITH

syntax is not supported.

Constraints
● If the materialized view is defined as UNION ALL, each subquery must use a

different base table and the distribution key of each base table must be the
same. The distribution key of the materialized view is automatically deduced
and is the same as that of each base table.

● The columns defined in the materialized view must contain all distribution
keys in the base table.

● When a fast-refresh materialized view is created, fully refreshed, or deleted, a
high-level lock is added to the base table. If the materialized view is defined
as UNION ALL, pay attention to the service logic to avoid deadlock.

GaussDB
Feature Guide for Distributed Instances 1 Materialized View

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

2 Setting Encrypted Equality Queries

2.1 Overview
As enterprise data is migrated to the cloud, data security and privacy protection
are facing increasingly severe challenges. The encrypted database will solve the
privacy protection issues in the entire data lifecycle, covering network
transmission, data storage, and data running status. Furthermore, the encrypted
database can implement data privacy permission separation in a cloud scenario,
that is, separate data owners from data administrators in terms of the read
permission. The encrypted equality query is used to solve equality query issues of
ciphertext data.

Encryption Model
A fully-encrypted database uses a multi-level encryption model. The functions of
keys in different encryption scenarios are as follows:

● Data: The encrypted database encrypts data of an encrypted column in SQL
statements and decrypts the query result of the encrypted column returned by
the database server.

● Column key: Data is encrypted by a column key, and the column key is
encrypted by a master key. The column key ciphertext is stored on the
database server.

● Master key: It is generated and stored in the external key management
service. The database driver automatically accesses the external key
management service to encrypt and decrypt column keys.

GaussDB
Feature Guide for Distributed Instances 2 Setting Encrypted Equality Queries

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

Overall Process
The process of using a fully-encrypted database consists of the following five
phases. This section describes the overall process. Using gsql to Operate an
Encrypted Database and Using JDBC to Operate an Encrypted Database
describe the detailed process.

1. Preparation phase: First, you need to generate a master key in the external
key management service. External key management services include Huawei
Cloud key management service. Select one of them as required.

2. Configuration phase: In an application, environment variables or database
driver parameters are used to set information for accessing external key
management service. In subsequent operations, the database driver needs to
use the configuration information in this phase to access external key
management service.

3. DDL statement execution phase: In this phase, you need to use the key syntax
of the encrypted database to define a master key and a column key, define a
table, and specify a column in the table as an encrypted column.

4. DML statement execution phase: After an encrypted table is created, you can
directly execute syntax including but not limited to INSERT, SELECT, UPDATE,
and DELETE. The database driver automatically encrypts and decrypts data of
the encrypted column based on the encryption definition in the previous
phase.

5. Cleanup phase: You can delete the encrypted table, column key, and master
key in sequence.

GaussDB
Feature Guide for Distributed Instances 2 Setting Encrypted Equality Queries

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

Preparation Phase
If you use the encrypted database for the first time, you need to perform the
preparation. The next time you use the database, you can skip this phase.

The encrypted database can use different external keys to manage the master key.
Select one of them as required.

● Huawei Cloud scenario

a. Register an account with the Huawei Cloud official website and log in to
the system.

b. Search for Identity and Access Management (IAM) on the Huawei
Cloud official website. On the page that is displayed, click Create User,
set the IAM password for the IAM user, and grant the data encryption
workshop (DEW) permission to the new IAM user.

c. Go back to the login page, click IAM User, and log in to the system as
the newly created IAM user. The subsequent operations are all performed
by the IAM user.

d. Search for Data Encryption Workshop on Huawei Cloud. On the page
that is displayed, click Key Management Service and click Create Key to
create a key. After the key is created, you can see that each key has a key

GaussDB
Feature Guide for Distributed Instances 2 Setting Encrypted Equality Queries

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

ID. Remember the key ID, which will be used when you create a master
key in the DDL statement execution phase.

e. The key generated in this step is the master key used in the encrypted
database. The key is stored in Huawei Cloud key management service.
When SQL statements related to encryption and decryption are executed,
the database driver automatically accesses the key through the RESTful
API of Huawei Cloud.

Configuration Phase
Configuring Parameters for Accessing External Keys

● Huawei Cloud scenario
Configure the following information through environment variables.
[terminal] # export HUAWEI_KMS_INFO='iamUrl=https://iam.{Project}.myhuaweicloud.com/v3/auth/
tokens, iamUser={IAM username}, iamPassword={IAM user key}, iamDomain={Account name},
kmsProject={Project}'

On the Huawei Cloud console, click the username in the upper right corner
and go to the API Credentials page. On this page, you can obtain the
required parameters, including project, IAM username, and account name.
Remember the project ID on this page, which will be used when you create a
master key in the DDL statement execution phase.

Figure 2-1 Obtaining parameters on the Huawei Cloud page

Example
[terminal] # export HUAWEI_KMS_INFO='iamUrl=https://iam.cn-north-4.myhuaweicloud.com/v3/auth/
tokens, iamUser=test_user, iamPassword=**********, iamDomain=test_account, kmsProject=cn-north-4'

GaussDB
Feature Guide for Distributed Instances 2 Setting Encrypted Equality Queries

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

2.2 Using gsql to Operate an Encrypted Database

Executing SQL Statements

Before running the SQL statements in this section, ensure that the preparation and
configuration phases are complete.

This section uses a complete execution process as an example to describe how to
use the encrypted database syntax, including three phases: DDL statement
execution, DML statement execution, and cleanup.

1. Connect to the database and use the -C parameter to enable the full encryption function.
[terminal] # gsql -p PORT gaussdb -h HOST -U USER -W PASSWORD -r -C

-- 2. Create a master key.
-- For details about the KEY_PATH format, see "SQL Reference > SQL Syntax > CREATE CLIENT MASTER
KEY" in Developer Guide.
-- In the Huawei Cloud scenario, the project ID and key ID are required in KEY_PATH. For details about how
to obtain the key ID, see the preparation phase. For details about how to obtain the project ID, see the
configuration phase.
gaussdb=# CREATE CLIENT MASTER KEY cmk1 WITH (KEY_STORE = huawei_kms , KEY_PATH =
'https://kms.cn-north-4.myhuaweicloud.com/v1.0/00000000000000000000000000000000/kms/
00000000-0000-0000-0000-00000000000', ALGORITHM = AES_256);
-- 3. Create a column key. The column key is encrypted by the master key created in the previous step. For
details about the syntax, see "SQL Reference > SQL Syntax > CREATE COLUMN ENCRYPTION KEY " in
Developer Guide.
gaussdb=# CREATE COLUMN ENCRYPTION KEY cek1 WITH VALUES (CLIENT_MASTER_KEY = cmk1,
ALGORITHM = AES_256_GCM);

-- 4. Create an encrypted table and use syntax to specify name and credit_card in the table as encrypted
columns.
gaussdb=# CREATE TABLE creditcard_info (
 id_number int,
 name text encrypted with (column_encryption_key = cek1, encryption_type = DETERMINISTIC),
 credit_card varchar(19) encrypted with (column_encryption_key = cek1, encryption_type =
DETERMINISTIC));
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'id_number' as the distribution key by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution key.
CREATE TABLE

-- 5. Write data to the encrypted table.
gaussdb=# INSERT INTO creditcard_info VALUES (1,'joe','6217986500001288393');
INSERT 0 1
gaussdb=# INSERT INTO creditcard_info VALUES (2, 'joy','6219985678349800033');
INSERT 0 1

-- 6. Query data from the encrypted table.
gaussdb=# select * from creditcard_info where name = 'joe';
 id_number | name | credit_card
-----------+------+---------------------
 1 | joe | 6217986500001288393

-- 7. Update data in the encrypted table.
gaussdb=# update creditcard_info set credit_card = '80000000011111111' where name = 'joy';
UPDATE 1

-- 8. Other operations: Add an encrypted column to a table.
gaussdb=# ALTER TABLE creditcard_info ADD COLUMN age int ENCRYPTED WITH
(COLUMN_ENCRYPTION_KEY = cek1, ENCRYPTION_TYPE = DETERMINISTIC);
ALTER TABLE

-- 9. Other operations: Delete an encrypted column from a table.
gaussdb=# ALTER TABLE creditcard_info DROP COLUMN age;
ALTER TABLE

GaussDB
Feature Guide for Distributed Instances 2 Setting Encrypted Equality Queries

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

-- 10. Other operations: Query master key information from the system catalog.
gaussdb=# SELECT * FROM gs_client_global_keys;
 global_key_name | key_namespace | key_owner | key_acl | create_date
-----------------+---------------+-----------+---------+----------------------------
 cmk1 | 2200 | 10 | | 2021-04-21 11:04:00.656617
(1 rows)

-- 11. Other operations: Query column key information from the system catalog.
gaussdb=# SELECT column_key_name,column_key_distributed_id ,global_key_id,key_owner FROM
gs_column_keys;
 column_key_name | column_key_distributed_id | global_key_id | key_owner
-----------------+---------------------------+---------------+-----------
 cek1 | 760411027 | 16392 | 10
(1 rows)

-- 12. Other operations: View the metadata of a column in a table.
gaussdb=# \d creditcard_info
 Table "public.creditcard_info"
 Column | Type | Modifiers
-------------+-------------------+------------
 id_number | integer |
 name | text | encrypted
 credit_card | character varying | encrypted

-- 13. Delete an encrypted table.
gaussdb=# DROP TABLE creditcard_info;
DROP TABLE

-- 14. Delete a column key.
gaussdb=# DROP COLUMN ENCRYPTION KEY cek1;
DROP COLUMN ENCRYPTION KEY

-- 15. Delete a master key.
gaussdb=# DROP CLIENT MASTER KEY cmk1;
DROP CLIENT MASTER KEY

2.3 Using JDBC to Operate an Encrypted Database

Obtain the JDBC driver package.
1. Obtain the JDBC driver package. For details about how to obtain and use the

JDBC driver, see "Application Development Guide > Development Based on
JDBC" in Developer Guide.

The encrypted database supports the gsjdbc4.jar, opengaussjdbc.jar, and
gscejdbc.jar driver packages.

– gsjdbc4.jar: The main class name is org.postgresql.Driver, and the URL
prefix of the database connection is jdbc:postgresql.

– opengaussjdbc.jar: The main class name is
com.huawei.opengauss.jdbc.Driver, and the URL prefix of the database
connection is jdbc:opengauss.

– gscejdbc.jar (currently, only EulerOS is supported): The main class name
is com.huawei.gaussdb.jdbc.Driver, and the URL prefix of the database
connection is jdbc:gaussdb. This driver package is recommended in
encrypted scenarios.

2. Configure LD_LIBRARY_PATH.

Before using the JDBC driver package in encrypted scenarios, you need to set
the environment variable LD_LIBRARY_PATH.

GaussDB
Feature Guide for Distributed Instances 2 Setting Encrypted Equality Queries

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

– When the gscejdbc.jar driver package is used, the dependent library
required by the encrypted database in the gscejdbc.jar driver package is
automatically copied to the path and loaded when the encrypted
database function is enabled to connect to the database.

– When using opengaussjdbc.jar or gsjdbc4.jar, you need to decompress
GaussDB-Kernel_Database version number_OS version
number_64bit_libpq.tar.gz to a specified directory, and add the path of
the lib folder to the LD_LIBRARY_PATH environment variable.

CA UTION

To use the JDBC driver package in the full-encryption scenario, you must
have the System.loadLibrary permission as well as the read and write
permissions on files in the first-priority path of the environment variable
LD_LIBRARY_PATH. You are advised to use an independent directory to
store the full-encryption dependent library. If java.library.path is
specified during execution, the value must be the same as the first-
priority path of LD_LIBRARY_PATH.

When gscejdbc.jar is used, JVM that loads class files depends on the libstdc++
library of the system. If the encrypted database function is enabled, gscejdbc.jar
automatically copies the dynamic libraries (including the libstdc++ library) on
which the encrypted database depends to the LD_LIBRARY_PATH path set by the
user. If the version of a dependent library does not match that of the existing
system library, only the dependent library is deployed during the first running.
After the dependent library is called again, it can be used normally.

Executing SQL Statements
Before running the SQL statements in this section, ensure that the
preparation and configuration phases are complete.

This section uses a complete execution process as an example to describe how to
use the encrypted database syntax, including three phases: DDL statement
execution, DML statement execution, and cleanup.

For details about JDBC development operations that are the same as those in non-
encrypted scenarios, see "Application Development Guide > Development Based
on JDBC" in Developer Guide.

● Connection parameters of an encrypted database
enable_ce: string type. If enable_ce is set to 0, the full encryption function is
disabled. If enable_ce is set to 1, the basic capability of encrypted equality
query is supported.
// The following uses the gscejdbc.jar driver as an example. If other driver packages are used, you
only need to change the driver class name and the URL prefix of the database connection.
// gsjdbc4.jar: The main class name is org.postgresql.Driver, and the URL prefix of the database
connection is jdbc:postgresql.
// opengaussjdbc.jar: The main class name is com.huawei.opengauss.jdbc.Driver, and the URL
prefix of the database connection is jdbc:opengauss.
// gscejdbc.jar: The main class name is com.huawei.gaussdb.jdbc.Driver, and the URL prefix of the
database connection is jdbc:gaussdb.

public static void main(String[] args) {

GaussDB
Feature Guide for Distributed Instances 2 Setting Encrypted Equality Queries

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

 // Driver class.
 String driver = "com.huawei.gaussdb.jdbc.Driver";
 // Database connection descriptor. If enable_ce is set to 1, the encrypted equality query basic
capability is supported.
 String sourceURL = "jdbc:gaussdb://127.0.0.1:8000/postgres?enable_ce=1";
 // Set the username and password in the environment variables USER and PASSWORD, respectively.
 String username = System.getenv("USER");
 String passwd = System.getenv("PASSWORD");
 Connection conn = null;
 try {
 // Load the driver.
 Class.forName(driver);
 // Create a connection.
 conn = DriverManager.getConnection(sourceURL, username, passwd);
 System.out.println("Connection succeed!");
 // Create a statement object.
 Statement stmt = conn.createStatement();

 // Create a CMK.
 // For details about the KEY_PATH format, see "SQL Reference > SQL Syntax > CREATE CLIENT
MASTER KEY" in Developer Guide.
 // In the Huawei Cloud scenario, the project ID and key ID are required in KEY_PATH. For details
about how to obtain the key ID, see the preparation phase. For details about how to obtain the
project ID, see the configuration phase.
 int rc = stmt.executeUpdate("CREATE CLIENT MASTER KEY ImgCMK1 WITH (KEY_STORE =
huawei_kms , KEY_PATH = 'https://kms.cn-north-4.myhuaweicloud.com/
v1.0/00000000000000000000000000000000/kms/00000000-0000-0000-0000-00000000000',
ALGORITHM = AES_256);");

 // Create a CEK.
 int rc2 = stmt.executeUpdate("CREATE COLUMN ENCRYPTION KEY ImgCEK1 WITH VALUES
(CLIENT_MASTER_KEY = ImgCMK1, ALGORITHM = AES_256_GCM);");
 // Create an encrypted table.
 int rc3 = stmt.executeUpdate("CREATE TABLE creditcard_info (id_number int, name varchar(50)
encrypted with (column_encryption_key = ImgCEK1, encryption_type = DETERMINISTIC),credit_card
varchar(19) encrypted with (column_encryption_key = ImgCEK1, encryption_type =
DETERMINISTIC));");
 // Insert data.
 int rc4 = stmt.executeUpdate("INSERT INTO creditcard_info VALUES
(1,'joe','6217986500001288393');");
 // Query the encrypted table.
 ResultSet rs = null;
 rs = stmt.executeQuery("select * from creditcard_info where name = 'joe';");
 // Delete the encrypted table.
 int rc5 = stmt.executeUpdate("DROP TABLE IF EXISTS creditcard_info;");
 // Delete a CEK.
 int rc6 = stmt.executeUpdate("DROP COLUMN ENCRYPTION KEY IF EXISTS ImgCEK1;");
 // Delete the CMK.
 int rc7 = stmt.executeUpdate("DROP CLIENT MASTER KEY IF EXISTS ImgCMK1;");
 // Close the statement object.
 stmt.close();
 // Close the connection.
 conn.close();
 } catch (Exception e) {
 e.printStackTrace();
 return;
 }
}

GaussDB
Feature Guide for Distributed Instances 2 Setting Encrypted Equality Queries

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

NO TE

[Proposal] When JDBC is used to perform operations on an encrypted database, one
database connection object corresponds to one thread. Otherwise, conflicts may occur due
to thread changes.

[Proposal] When JDBC is used to perform operations on an encrypted database, different
connections change the encrypted configuration data. The client calls the isvalid method to
ensure that the connections can hold the changed encrypted configuration data. In this
case, the refreshClientEncryption parameter must be set to 1 (default value). In a scenario
where a single client performs operations on encrypted data, the refreshClientEncryption
parameter can be set to 0.

Example of Calling the IsValid Method to Refresh the Cache
// Create a connection conn1.
Connection conn1 = DriverManager.getConnection("url","user","password");
// Create a CMK in another connection conn2.
...
// conn1 calls the IsValid method to refresh the conn1 key cache.
try {
 if (!conn1.isValid(60)) {
 System.out.println("isValid Failed for connection 1");
 }
} catch (SQLException e) {
 e.printStackTrace();
 return null;
}

Decrypting the Encrypted Equality Ciphertext

A decryption API is added to the PgConnection class to decrypt the encrypted
equality ciphertext of the fully-encrypted database. After decryption, the plaintext
value is returned. The ciphertext column corresponding to the decryption is found
based on schema.table.column and the original data type is returned.

Table 2-1 org.postgresql.jdbc.PgConnection function

Method Return Type Support JDBC 4

decryptData(String
ciphertext, Integer len, String
schema, String table, String
column)

ClientLogicDecryptRe-
sult

Yes

Parameters:
● ciphertext

Ciphertext to be decrypted.
● len

Ciphertext length. If the value is less than the actual ciphertext length,
decryption fails.

● schema
Name of the schema to which the encrypted column belongs.

● table

GaussDB
Feature Guide for Distributed Instances 2 Setting Encrypted Equality Queries

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

Name of the table to which the encrypted column belongs.
● column

Name of the column to which the encrypted column belongs.

NO TE

Decryption is successful in the following scenarios, but is not recommended:
● The input ciphertext length is longer than the actual ciphertext.
● The schema.table.column points to other encrypted columns. In this case, the

original data type of the encrypted column is returned.

Table 2-2 org.postgresql.jdbc.clientlogic.ClientLogicDecryptResult function

Method Return
Type

Description Support JDBC4
(Yes/No)

isFailed() Boolean Specifies whether the
decryption fails. If the
decryption fails, True is
returned. Otherwise,
False is returned.

Yes

getErrMsg() String Obtains error
information.

Yes

getPlaintext() String Obtains the decrypted
plaintext.

Yes

getPlaintextSize() Integer Obtains the length of
the decrypted plaintext.

Yes

getOriginalType() String Obtains the original
data type of the
encrypted column.

Yes

// After the ciphertext is obtained through non-encrypted connection or logical decoding, this API can be
used to decrypt the ciphertext.
import org.postgresql.jdbc.PgConnection;
import org.postgresql.jdbc.clientlogic.ClientLogicDecryptResult;

// conn is an encrypted connection.
// Call the decryptData method of PgConnection to decrypt the ciphertext, locate the encrypted column to
which the ciphertext belongs based on the column name, and return the original data type.
ClientLogicDecryptResult decrypt_res = null;
decrypt_res = ((PgConnection)conn).decryptData(ciphertext, ciphertext.length(), schemaname_str,
 tablename_str, colname_str);
// Check whether the decryption of the returned result class is successful. If the decryption fails, obtain the
error information. If the decryption is successful, obtain the plaintext, length, and original data type.
if (decrypt_res.isFailed()) {
 System.out.println(String.format("%s\n", decrypt_res.getErrMsg()));
} else {
 System.out.println(String.format("decrypted plaintext: %s size: %d type: %s\n", decrypt_res.getPlaintext(),
 decrypt_res.getPlaintextSize(), decrypt_res.getOriginalType()));
}

Precompiling an Encrypted Table
// Create a prepared statement object by calling the prepareStatement method in Connection.
PreparedStatement pstmt = conn.prepareStatement("INSERT INTO creditcard_info VALUES (?, ?, ?);");

GaussDB
Feature Guide for Distributed Instances 2 Setting Encrypted Equality Queries

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

// Set parameters by triggering the setShort method in PreparedStatement.
pstmt.setInt(1, 2);
pstmt.setString(2, "joy");
pstmt.setString(3, "6219985678349800033");
// Execute the precompiled SQL statement by triggering the executeUpdate method in
PreparedStatement.
int rowcount = pstmt.executeUpdate();
// Close the precompiled statement object by calling the close method in PreparedStatement.
pstmt.close();

Batch Processing on an Encrypted Table
// Create a prepared statement object by calling the prepareStatement method in Connection.
Connection conn = DriverManager.getConnection("url","user","password");
PreparedStatement pstmt = conn.prepareStatement("INSERT INTO creditcard_info (id_number, name,
credit_card) VALUES (?,?,?)");
// Call the setShort method for each piece of data, and call addBatch to confirm that the setting is
complete.
int loopCount = 20;
 for (int i = 1; i < loopCount + 1; ++i) {
 pstmt.setInt(1, i);
 pstmt.setString(2, "Name " + i);
 pstmt.setString(3, "CreditCard " + i);
 // Add row to the batch.
 pstmt.addBatch();
}
// Execute batch processing by calling the executeBatch method in PreparedStatement.
int[] rowcount = pstmt.executeBatch();
// Close the precompiled statement object by calling the close method in PreparedStatement.
pstmt.close();

2.4 Enhancing Security in the Configuration Phase

Setting Environment Variables Securely
Sensitive information exists in HUAWEI_KMS_INFO. You are advised to set the
environment variables as follows:

1. Set temporary environment variables: When an encrypted database is used,
run the export command to set environment variables. After the database is
used, run the unset command to clear environment variables. In this method,
OS logs may record sensitive information. You are advised to use process-level
environment variables or JDBC APIs to set connection parameters.

2. Set process-level environment variables: In the application code, set
environment variables through programming APIs. The following are
examples of setting environment variables in different programming
languages:

a. C/C++: setenv(name, value)
b. Go: os.Setenv(name, value)
c. Java does not support the setting of process-level environment variables.

Connection parameters can be set only through the JDBC APIs.

Verifying External Key Management Service Identity
When the database driver accesses Huawei Cloud KMS, to prevent attackers from
masquerading as the KMS, the CA certificate can be used to verify the validity of
the key server during the establishment of HTTPS connections between the
database driver and the KMS. Therefore, you need to configure the CA certificate

GaussDB
Feature Guide for Distributed Instances 2 Setting Encrypted Equality Queries

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

in advance. If the CA certificate is not configured, the key management service
identity will not be verified. The configuration method is as follows:

In the Huawei Cloud scenario, add the following parameters to the environment
variables:
export HUAWEI_KMS_INFO='Other parameters, iamCaCert=Path/IAM CA certificate file,
kmsCaCert=Path/KMS CA certificate file'

Most browsers automatically download a CA certificate of a website and provide
the certificate export function. Some websites (such as https://www.ssleye.com/
ssltool/certs_down.html) provide the function of automatically downloading CA
certificates. However, the CA certificates may be unavailable due to proxy or
gateway in the local environment. Therefore, you are advised to use a browser to
download the CA certificate. You can perform the following steps:

CA UTION

The RESTful API is used to access the KMS. When you enter the URL of the API in
the address box of the browser, ignore the failure page in Step 2. The browser has
automatically downloaded the CA certificate in advance even if the failure page is
displayed.

Step 1 Enter the domain name: Open a browser. In the Huawei Cloud scenario, enter the
IAM service domain name (iam.cn-north-4.myhuaweicloud.com/v3/auth/tokens)
and KMS domain name (kms.cn-north-4.myhuaweicloud.com/v1.0).

Step 2 Search for a certificate: Each time you enter a domain name, find the SSL
connection information and click the information to view the certificate content.

GaussDB
Feature Guide for Distributed Instances 2 Setting Encrypted Equality Queries

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

https://www.ssleye.com/ssltool/certs_down.html
https://www.ssleye.com/ssltool/certs_down.html

Step 3 Export the certificate. On the Certificate Viewer page, certificates may be
classified into multiple levels. You only need to select the upper-level certificate of
the domain name and click Export to generate a certificate file, that is, the
required certificate file.

GaussDB
Feature Guide for Distributed Instances 2 Setting Encrypted Equality Queries

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

Step 4 Upload the certificate: Upload the exported certificate to the application and set
the preceding parameters.

----End

2.5 Encrypted Functions and Stored Procedures
In the current version, only encrypted functions and stored procedures in SQL or
PL/pgSQL are supported. Because users are unaware of the creation and execution
of functions or stored procedures in an encrypted stored procedure, the syntax has
no difference from that of non-encrypted functions and stored procedures.

For details about the syntax of functions and stored procedures, see "User-defined
Functions" and "Stored Procedures" in Developer Guide.

The gs_encrypted_proc system catalog is added to the function or stored
procedure for encrypted equality query to store the returned original data type.

For details about the fields in the system catalog, see "System Catalogs and
System Views > System Catalogs > GS_ENCRYPTED_PROC" in Developer Guide.

Creating and Executing a Function or Stored Procedure that Involves
Encrypted Columns

Step 1 Create a key. For details, see Using gsql to Operate an Encrypted Database.

Step 2 Create an encrypted table.
gaussdb=# CREATE TABLE creditcard_info (
 id_number int,
 name text,
 credit_card varchar(19) encrypted with (column_encryption_key = cek1, encryption_type =
DETERMINISTIC)
) with (orientation=row) distribute by hash(id_number);
CREATE TABLE

Step 3 Insert data.
gaussdb=# insert into creditcard_info values(1, 'Avi', '1234567890123456');
INSERT 0 1
gaussdb=# insert into creditcard_info values(2, 'Eli', '2345678901234567');
INSERT 0 1

Step 4 Create a function supporting encrypted equality query.
gaussdb=# CREATE FUNCTION f_encrypt_in_sql(val1 text, val2 varchar(19)) RETURNS text AS 'SELECT
name from creditcard_info where name=$1 or credit_card=$2 LIMIT 1' LANGUAGE SQL;
CREATE FUNCTION
gaussdb=# CREATE FUNCTION f_encrypt_in_plpgsql (val1 text, val2 varchar(19), OUT c text) AS $$
 BEGIN
 SELECT into c name from creditcard_info where name=$1 or credit_card =$2 LIMIT 1;
 END; $$
 LANGUAGE plpgsql;
CREATE FUNCTION

Step 5 Execute the function.
gaussdb=# SELECT f_encrypt_in_sql('Avi','1234567890123456');
 f_encrypt_in_sql

 Avi
(1 row)

gaussdb=# SELECT f_encrypt_in_plpgsql('Avi', val2=>'1234567890123456');

GaussDB
Feature Guide for Distributed Instances 2 Setting Encrypted Equality Queries

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

 f_encrypt_in_plpgsql

 Avi
(1 row)

----End

NO TE

1. Because the query, that is, the dynamic query statement executed in a function or
stored procedure, is compiled during execution, the table name and column name in the
function or stored procedure must be known in the creation phase. The input parameter
cannot be used as a table name or column name, or any connection mode.

2. In a function or stored procedure that executes dynamic clauses, data values to be
encrypted cannot be contained in the clauses.

3. Among the RETURNS, IN, and OUT parameters, encrypted and non-encrypted
parameters cannot be used together. Although the parameter types are all original, the
actual types are different.

4. In advanced package interfaces, for example, dbe_output.print_line(), decryption is not
performed on the interfaces whose output is printed on the server. This is because when
the encrypted data type is forcibly converted into the plaintext original data type, the
default value of the data type is printed.

5. In the current version, LANGUAGE of functions and stored procedures can only be SQL
and PL/pgSQL, and does not support other procedural languages such as C and Java.

6. Other functions or stored procedures for querying encrypted columns cannot be
executed in a function or stored procedure.

7. In the current version, default values cannot be assigned to variables in DEFAULT or
DECLARE statements, and return values in DECLARE statements cannot be decrypted.
You can use input parameters and output parameters instead when executing functions.

8. gs_dump cannot be used to back up functions involving encrypted columns.
9. Keys cannot be created in functions or stored procedures.
10. In this version, encrypted functions and stored procedures do not support triggers.
11. Encrypted equality query functions and stored procedures do not support the escape of

the PL/pgSQL syntax. The CREATE FUNCTION AS'Syntax body' syntax whose syntax
body is marked with single quotation marks ('') can be replaced with the CREATE
FUNCTION AS $$Syntax body $$ syntax.

12. The definition of an encrypted column cannot be modified in an encrypted equality
query function or stored procedure, including creating an encrypted table and adding an
encrypted column. Because the function is executed on the server, the client cannot
determine whether to refresh the cache. The column can be encrypted only after the
client is disconnected or the cache of the encrypted column on the client is refreshed.

13. Functions and stored procedures cannot be created using encrypted data types
(byteawithoutorderwithequalcol, byteawithoutordercol, _byteawithoutorderwithequalcol
or _byteawithoutordercol).

14. If an encrypted function returns a value of an encrypted type, the result cannot be an
uncertain row type, for example, RETURN [SETOF] RECORD. You can replace it with a
definite row type, for example, RETURN TABLE(columnname typename[, ...]).

15. When an encrypted function is created, the OID of the encrypted column corresponding
to a parameter is added to the system catalog gs_encrypted_proc. Therefore, if a table
with the same name is deleted and created again, the encrypted function may become
invalid and you need to create the encrypted function again.

GaussDB
Feature Guide for Distributed Instances 2 Setting Encrypted Equality Queries

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

3 Partitioned Table

This chapter describes how to perform query optimization and O&M management
on stored data in partitioned tables in scenarios with a large amount of data,
including semantics, principles, and constraints.

3.1 Large-Capacity Database

3.1.1 Background
With the increasing amount of data to be processed and diversified application
scenarios, databases are facing more and more scenarios with large capacity and
diversified data. In the past 20 years, the data volume has gradually increased
from MB- and GB-level to TB-level. Facing such a large amount of data, the
database management system (DBMS) has higher requirements on data query
and management. Objectively, the database must support multiple optimization
search policies and O&M methods.

In classic algorithms of computer science, people usually use the Divide and
Conquer method to solve problems in large-scale scenarios. The basic idea is to
divide a complex problem into two or more same or similar problems. These
problems are divided into smaller problems until they can be solved directly. The
solution of the original problem can be regarded as the combination of the
solutions to all small problems. In a large-capacity data scenario, the database
provides a Divide and Conquer method, that is, partitioning. The logical database
or its components are divided into different independent partitions. Each partition
maintains data with similar attributes logically. In this way, the large amount of
data is divided, facilitating data management, search, and maintenance.

3.1.2 Table Partitioning
Table partitioning logically divides a large table or index into smaller and easier-
to-manage logical units (partitions), minimizing the impact on table query and
modification statements. Users can quickly locate a partition where data is located
by using a partition key. In this way, users do not need to scan all large tables in
the database and can concurrently perform DDL and DML operations on different
partitions. Table partitioning provides users with the following capabilities:

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

1. Improve query efficiency in large-capacity data scenarios: Because data in a
table is logically partitioned by partition key, the query result can be
implemented by accessing a partition subset instead of the entire table. This
partition pruning technique can provide an order of magnitude performance
gain.

2. Reduce the impact of parallel O&M and query operations. The mutual impact
of parallel DML and DDL statements is reduced, which is obvious in scenarios
where a large amount of data is partitioned by time. For example, new data
partitions are imported to the database and queried in real time, and old data
partitions are cleaned and merged.

3. Provide flexible data O&M management in large-capacity scenarios:
Partitioned tables physically isolate data in different partitions at the table file
level. Each partition can have independent physical attributes, such as data
compression, physical storage settings, and tablespaces. In addition, it
supports data management operations, such as data loading, index creation
and rebuilding, and partition-level backup and restoration, instead of
performing operations on the entire table, reducing operation time.

3.1.3 Data Partition Query Optimization
Partitioned tables help you query data by using predicates based on partition keys.
For example, if a table uses month as the partition key, as shown in Figure 3-1,
you need to access all data in the table (full table scan). If the table is redesigned
based on date, the original full table scan is optimized to partition scan. When the
table contains a large amount of data and has a long historical period, the
performance is greatly improved due to data reduction, as shown in Figure 3-2.

Figure 3-1 Example of a partitioned table

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

Figure 3-2 Example of partition pruning

3.1.4 Data Partition O&M Management
A partitioned table provides flexible support for data lifecycle management
(DLM). DLM is a set of processes and policies used to manage data throughout
the service life of data. An important component is to determine the most
appropriate and cost-effective medium for storing data at any point in the data
lifecycle. New data used in daily operations is stored on the fastest and most
available storage tier, while old data that is infrequently accessed may be stored
on a less costly and inefficient storage tier. Old data may also be updated less
frequently, so it makes sense to compress the data and store it as read-only.

Partitioned tables provide an ideal environment for implementing the DLM
solution. Different partitions use different tablespaces, maximizing usability and
reducing costs in the data lifecycle. The settings are performed by database O&M
personnel on the server. Actually, users are unaware of the optimization settings.
Logically, users still query the same table. In addition, O&M operations, such as
backup, restoration, and index rebuilding, can be performed on different partitions.
The Divide and Conquer method is implemented on different subsets of a single
dataset to meet differentiated requirements of service scenarios.

3.2 Introduction to Partitioned Tables
A partitioned table logically divides table data on a single node based on the
partition key and the partition policy related to the partition key. From the
perspective of data partitioning, it is a horizontal partitioning policy. Partitioned
tables enhance the performance, manageability, and usability of database
applications, and help reduce the total cost of ownership (TCO) for storing large
amounts of data. Partitioning allows tables, indexes, and index-organized tables to
be further divided into smaller parts, enabling these database objects to be
managed and accessed at a finer granularity level. GaussDB provides various
partitioning policies and extensions to meet the requirements of different service
scenarios. The partitioning policy is implemented inside the database and is
transparent to users. Therefore, it enables smooth data migration after the
partitioning optimization policy is implemented, without the need to change

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

applications that consume workforce and material resources. This section
describes GaussDB partitioned tables from the following aspects:

1. Basic concepts of partitioned tables: catalog storage and its principle.
2. Partitioning policies: basic partitioning types, and features, optimization, and

effects of each partitioning type.

3.2.1 Basic Concepts

3.2.1.1 Partitioned Table
A table that is displayed to users. Users can add, delete, query, and modify data in
the table using common DML statements. Generally, it is defined by explicitly by
using the PARTITION BY statement when DDL statements are used for creating a
table. After the table is created, an entry is added to the pg_class table, and the
content in the parttype column is 'p', indicating that the entry is a partitioned
table. The partitioned table is usually a logical form, and does not store any data.

Example 1: t1_hash is a partitioned table whose partitioning type is hash.
gaussdb=# CREATE TABLE t1_hash (c1 INT, c2 INT, c3 INT)
PARTITION BY HASH(c1)
(
 PARTITION p0,
 PARTITION p1,
 PARTITION p2,
 PARTITION p3,
 PARTITION p4,
 PARTITION p5,
 PARTITION p6,
 PARTITION p7,
 PARTITION p8,
 PARTITION p9
);

gaussdb=# \d+ t1_hash
 Table "public.t1_hash"
Column | Type | Modifiers | Storage | Stats target | Description
--------+---------+-----------+---------+--------------+-------------
c1 | integer | | plain | |
c2 | integer | | plain | |
c3 | integer | | plain | |
Partition By HASH(c1)
Number of partitions: 10 (View pg_partition to check each partition range.)
Distribute By: HASH(c1)
Location Nodes: ALL DATANODES
Has OIDs: no
Options: orientation=row, compression=no

-- Query the partitioning type of table t1_hash.
gaussdb=# SELECT relname, parttype FROM pg_class WHERE relname = 't1_hash';
relname | parttype
---------+----------
t1_hash | p
(1 row)

-- Drop table t1_hash.
gaussdb=# DROP TABLE t1_hash;

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

3.2.1.2 Partition
A partition stores data actually. The corresponding entry is usually stored in
pg_partition. The parentid of each partition is used as a foreign key to associate
with the oid column of its partitioned table in the pg_class table.

Example 1: t1_hash is a partitioned table.

gaussdb=# CREATE TABLE t1_hash (c1 INT, c2 INT, c3 INT)
PARTITION BY HASH(c1)
(
 PARTITION p0,
 PARTITION p1,
 PARTITION p2,
 PARTITION p3,
 PARTITION p4,
 PARTITION p5,
 PARTITION p6,
 PARTITION p7,
 PARTITION p8,
 PARTITION p9
);

-- Query the partitioning type of table t1_hash.
gaussdb=# SELECT oid, relname, parttype FROM pg_class WHERE relname = 't1_hash';
oid | relname | parttype
-------+---------+----------
16685 | t1_hash | p
(1 row)

-- Query the partition information about table t1_hash.
gaussdb=# SELECT oid, relname, parttype, parentid FROM pg_partition WHERE parentid = 16685;
oid | relname | parttype | parentid
-------+---------+----------+----------
16688 | t1_hash | r | 16685
16689 | p0 | p | 16685
16690 | p1 | p | 16685
16691 | p2 | p | 16685
16692 | p3 | p | 16685
16693 | p4 | p | 16685
16694 | p5 | p | 16685
16695 | p6 | p | 16685
16696 | p7 | p | 16685
16697 | p8 | p | 16685
16698 | p9 | p | 16685
(11 rows)

-- Drop table t1_hash.
gaussdb=# DROP TABLE t1_hash;

3.2.1.3 Partition Key
A partition key consists of one or more columns. The partition key value and the
corresponding partitioning method can uniquely identify the partition where a
tuple is located. Generally, the partition key value is specified by the PARTITION BY
clause during table creation.

CREATE TABLE table_name (…) PARTITION BY part_strategy (partition_key) (…)

NO TICE

Range partitioned tables and list partitioned tables support a partition key with up
to 16 columns. Other partitioned tables support a one-column partition key only.

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

3.2.2 Partitioning Policy
A partitioning policy is specified by the syntax of the PARTITION BY statement
when DDL statements are used to create tables. A partitioning policy describes the
mapping between data in a partitioned table and partition routes. Common
partitioning types include condition-based range partitioning, hash partitioning
based on hash functions, and list partitioning based on data enumeration.
CREATE TABLE table_name (…) PARTITION BY partition_strategy (partition_key) (…)

3.2.2.1 Range Partitioning
Range partitioning maps data to partitions based on the value range of the
partition key created for each partition. Range partitioning is the most common
partitioning type in production systems and is usually used in scenarios where
data is described by date or timestamp. There are two syntax formats for range
partitioning. The following is an example:

1. VALUES LESS THAN
If the VALUE LESS THAN clause is used, a range partitioning policy supports a
partition key with up to 16 columns.
– The following is an example of a single-column partition key:

gaussdb=# CREATE TABLE range_sales
(
 product_id INT4 NOT NULL,
 customer_id INT4 NOT NULL,
 time DATE,
 channel_id CHAR(1),
 type_id INT4,
 quantity_sold NUMERIC(3),
 amount_sold NUMERIC(10,2)
)
PARTITION BY RANGE (time)
(
 PARTITION date_202001 VALUES LESS THAN ('2020-02-01'),
 PARTITION date_202002 VALUES LESS THAN ('2020-03-01'),
 PARTITION date_202003 VALUES LESS THAN ('2020-04-01'),
 PARTITION date_202004 VALUES LESS THAN ('2020-05-01')
);

-- Cleanup example
gaussdb=# DROP TABLE range_sales;

date_202002 indicates the partition of February 2020, which contains the
data of the partition key from February 1, 2020 to February 29, 2020.
Each partition has a VALUES LESS clause that specifies the upper limit
(excluded) of the partition. Any value greater than or equal to that
partition key will be added to the next partition. Except the first partition,
all partitions have an implicit lower limit specified by the VALUES LESS
clause of the previous partition. You can define the MAXVALUE keyword
for the last partition. MAXVALUE represents a virtual infinite value that is
prior to any other possible value (including null) of the partition key.

– The following is an example of a multi-column partition key:
gaussdb=# CREATE TABLE range_sales_with_multiple_keys
(
 c1 INT4 NOT NULL,
 c2 INT4 NOT NULL,
 c3 CHAR(1)
)
PARTITION BY RANGE (c1,c2)
(

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

 PARTITION p1 VALUES LESS THAN (10,10),
 PARTITION p2 VALUES LESS THAN (10,20),
 PARTITION p3 VALUES LESS THAN (20,10)
);
gaussdb=# INSERT INTO range_sales_with_multiple_keys VALUES(9,5,'a');
gaussdb=# INSERT INTO range_sales_with_multiple_keys VALUES(9,20,'a');
gaussdb=# INSERT INTO range_sales_with_multiple_keys VALUES(9,21,'a');
gaussdb=# INSERT INTO range_sales_with_multiple_keys VALUES(10,5,'a');
gaussdb=# INSERT INTO range_sales_with_multiple_keys VALUES(10,15,'a');
gaussdb=# INSERT INTO range_sales_with_multiple_keys VALUES(10,20,'a');
gaussdb=# INSERT INTO range_sales_with_multiple_keys VALUES(10,21,'a');
gaussdb=# INSERT INTO range_sales_with_multiple_keys VALUES(11,5,'a');
gaussdb=# INSERT INTO range_sales_with_multiple_keys VALUES(11,20,'a');
gaussdb=# INSERT INTO range_sales_with_multiple_keys VALUES(11,21,'a');

gaussdb=# SELECT * FROM range_sales_with_multiple_keys PARTITION (p1);
 c1 | c2 | c3
----+----+----
 9 | 5 | a
 9 | 20 | a
 9 | 21 | a
 10 | 5 | a
(4 rows)

gaussdb=# SELECT * FROM range_sales_with_multiple_keys PARTITION (p2);
 c1 | c2 | c3
----+----+----
 10 | 15 | a
(1 row)

gaussdb=# SELECT * FROM range_sales_with_multiple_keys PARTITION (p3);
 c1 | c2 | c3
----+----+----
 10 | 20 | a
 10 | 21 | a
 11 | 5 | a
 11 | 20 | a
 11 | 21 | a
(5 rows)

-- Cleanup example
gaussdb=# DROP TABLE range_sales_with_multiple_keys;

NO TE

The partitioning rules for multi-column partition keys are as follows:

1. The comparison starts from the first column.

2. If the value of the inserted first column is smaller than the boundary value of
the current column in the target partition, the values are directly inserted.

3. If the value of the inserted first column is equal to the boundary of the
current column in the target partition, compare the value of the inserted
second column with the boundary of the next column in the target partition.

4. If the value of the inserted first column is greater than the boundary of the
current column in the target partition, compare the value with that in the
next partition.

2. START END
If the START END clause is used, a range partitioning policy supports only a
one-column partition key.
Example:
-- Create tablespaces.
gaussdb=# CREATE TABLESPACE startend_tbs1 LOCATION '/home/omm/startend_tbs1';
gaussdb=# CREATE TABLESPACE startend_tbs2 LOCATION '/home/omm/startend_tbs2';
gaussdb=# CREATE TABLESPACE startend_tbs3 LOCATION '/home/omm/startend_tbs3';
gaussdb=# CREATE TABLESPACE startend_tbs4 LOCATION '/home/omm/startend_tbs4';

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

-- Create a temporary schema.
gaussdb=# CREATE SCHEMA tpcds;
gaussdb=# SET CURRENT_SCHEMA TO tpcds;
-- Create a partitioned table with the partition key of the integer type.
gaussdb=# CREATE TABLE tpcds.startend_pt (c1 INT, c2 INT)
TABLESPACE startend_tbs1
PARTITION BY RANGE (c2) (
 PARTITION p1 START(1) END(1000) EVERY(200) TABLESPACE startend_tbs2,
 PARTITION p2 END(2000),
 PARTITION p3 START(2000) END(2500) TABLESPACE startend_tbs3,
 PARTITION p4 START(2500),
 PARTITION p5 START(3000) END(5000) EVERY(1000) TABLESPACE startend_tbs4
)
ENABLE ROW MOVEMENT;

-- View the information of the partitioned table.
gaussdb=# SELECT relname, boundaries, spcname FROM pg_partition p JOIN pg_tablespace t ON
 p.reltablespace=t.oid and p.parentid='tpcds.startend_pt'::regclass ORDER BY 1;
relname | boundaries | spcname
-------------+------------+---------------
p1_0 | {1} | startend_tbs2
p1_1 | {201} | startend_tbs2
p1_2 | {401} | startend_tbs2
p1_3 | {601} | startend_tbs2
p1_4 | {801} | startend_tbs2
p1_5 | {1000} | startend_tbs2
p2 | {2000} | startend_tbs1
p3 | {2500} | startend_tbs3
p4 | {3000} | startend_tbs1
p5_1 | {4000} | startend_tbs4
p5_2 | {5000} | startend_tbs4
startend_pt | | startend_tbs1
(12 rows)

3.2.2.2 Hash Partitioning

Hash partitioning uses a hash algorithm to map data to partitions based on
partition keys. The GaussDB built-in hash algorithm is used. When the value range
of partition keys has no data skew, the hash algorithm evenly distributes rows
among partitions to ensure that the partition sizes are roughly the same.
Therefore, hash partitioning is an ideal method for evenly distributing data among
partitions. Hash partitioning is also an easy-to-use alternative to range
partitioning, especially when the data to be partitioned is not historical data or
has no obvious partition key. The following is an example:

gaussdb=# CREATE TABLE bmsql_order_line (
 ol_w_id INTEGER NOT NULL,
 ol_d_id INTEGER NOT NULL,
 ol_o_id INTEGER NOT NULL,
 ol_number INTEGER NOT NULL,
 ol_i_id INTEGER NOT NULL,
 ol_delivery_d TIMESTAMP,
 ol_amount DECIMAL(6,2),
 ol_supply_w_id INTEGER,
 ol_quantity INTEGER,
 ol_dist_info CHAR(24)
)
-- Define 100 partitions.
PARTITION BY HASH(ol_d_id)
(
 PARTITION p0,
 PARTITION p1,
 PARTITION p2,
 …
 PARTITION p99
);

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

In the preceding example, the ol_d_id column in the bmsql_order_line table is
partitioned. The ol_d_id column is an identifier attribute column and does not
distinguish time or a specific dimension. Using the hash partitioning policy to
divide a table is an ideal choice. Compared with operations of other partitioning
types, when creating partitions, you only need to specify the partition key and the
number of partitions on the basis that the partition key does not have too much
data skew (one or more values are highly repeated). In addition, data in each
partition is evenly distributed, improving usability of partitioned tables.

3.2.2.3 List Partitioning

List partitioning can explicitly control how rows are mapped to partitions by
specifying a list of discrete values for the partition key in the description for each
partition. The advantages of list partitioning are that data can be partitioned by
enumerating partition values, and unordered and irrelevant datasets can be
grouped and organized. For partition key values that are not defined in the list,
you can use the default partition (DEFAULT) to save data. In this way, all rows
that are not mapped to any other partition do not generate errors. Example:

gaussdb=# CREATE TABLE bmsql_order_line (
 ol_w_id INTEGER NOT NULL,
 ol_d_id INTEGER NOT NULL,
 ol_o_id INTEGER NOT NULL,
 ol_number INTEGER NOT NULL,
 ol_i_id INTEGER NOT NULL,
 ol_delivery_d TIMESTAMP,
 ol_amount DECIMAL(6,2),
 ol_supply_w_id INTEGER,
 ol_quantity INTEGER,
 ol_dist_info CHAR(24)
)
PARTITION BY LIST(ol_d_id)
(
 PARTITION p0 VALUES (1,4,7),
 PARTITION p1 VALUES (2,5,8),
 PARTITION p2 VALUES (3,6,9),
 PARTITION p3 VALUES (DEFAULT)
);

-- Cleanup example
gaussdb=# DROP TABLE bmsql_order_line;

The preceding example is similar to that of hash partitioning. The ol_d_id column
is used for partitioning. However, list partitioning limits a possible range of ol_d_id
values, and data that is not in the list enters the p3 partition (DEFAULT).
Compared with hash partitioning, list partitioning has better control over partition
keys and can accurately store target data in the expected partitions. However, if
there are a large number of list values, it is difficult to define partitions. In this
case, hash partitioning is recommended. List partitioning and hash partitioning are
used to group and organize unordered and irrelevant datasets.

CA UTION

List partitioning supports a partition key with up to 16 columns. For one-column
partition keys, the enumerated values in the list cannot be NULL during partition
defining. For multi-column partition keys, the enumerated values in the list can be
NULL during partition defining.

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

3.2.2.4 Impact of Partitioned Tables on Import Performance
In the GaussDB kernel implementation, compared with the non-partitioned table,
the partitioned table has partition routing overheads during data insertion. The
overall data insertion overheads include: (1) heap base table insertion and (2)
partition routing. The heap base table insertion solves the problem of importing
tuples to the corresponding heap table and is shared by ordinary tables and
partitioned tables. The partition routing solves the problem that the tuple is
inserted into the corresponding partRel.

Therefore, data insertion optimization focuses on the following aspects:

1. Heap base table insertion in a partitioned table:

a. The operator noise floor is optimized.
b. Heap data insertion is optimized.
c. Index insertion build (with indexes) is optimized.

2. Partition routing in a partitioned table:

a. The logic of the routing search algorithm is optimized.
b. The routing noise floor is optimized, including enabling the partRel

handle of the partitioned table and adding the logic overhead of function
calling.

NO TE

The performance of partition routing is reflected by a single INSERT statement with a
large amount of data. In the UPDATE scenario, the system searches for the tuple to be
updated, deletes the tuple, and then inserts new tuple. Therefore, the performance is
not as good as that of a single INSERT statement.

Table 3-1 shows the routing algorithm logic of different partitioning types.

Table 3-1 Routing algorithm logic

Partitioning Type Routing Algorithm
Complexity

Implementation Description

Range partitioning O(logN) Implemented based on binary
search

Interval partitioning O(logN) Implemented based on binary
search

Hash partitioning O(1) Implemented based on the key-
partOid hash table

List partitioning O(1) Implemented based on the key-
partOid hash table

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

CA UTION

The main processing logic of routing is to calculate the partition where the
imported data tuple is located based on the partition key. Compared with a non-
partitioned table, this part is an extra overhead. The performance loss caused by
this overhead in the final data import is related to the CPU processing capability
of the server, table width, and actual disk/memory capacity. Generally, it can be
roughly considered that:
● In the x86 server scenario, the import performance of a partitioned table is

10% lower than that of an ordinary table.
● In the Arm server scenario, the performance decreases by 20%. The main

reason is that routing is performed in the in-memory computing
enhancement scenario. The single-core instruction processing capability of
mainstream x86 CPUs is slightly better than that of Arm CPUs.

3.2.3 Basic Usage of Partitions

3.2.3.1 Creating Partitioned Tables

Creating Partitioned Tables
The SQL syntax tree is complex due to the powerful and flexible functions of the
SQL language. So do partitioned tables. The creation of a partitioned table can be
regarded as adding partition attributes to the original non-partitioned table.
Therefore, the syntax interface of a partitioned table can be regarded to extend
the CREATE TABLE statement of a non-partitioned table with a PARTITION BY
clause and specify the following three core elements related to the partition:

1. partType: describes the partitioning policy of a partitioned table. The options
are RANGE, INTERVAL, LIST, and HASH.

2. partKey: describes the partition key of a partitioned table. Currently, range
and list partitioning supports a partition key with up to 16 columns, while
hash partitioning supports a one-column partition key only.

3. partExpr: describes the specific partitioning type of a partitioned table, that
is, the mapping between key values and partitions.

The three elements are reflected in the PARTITION BY clause of the CREATE TABLE
statement, for example, PARTITION BY partType (partKey)
(partExpr[,partExpr]...). Example:
CREATE TABLE [IF NOT EXISTS] partition_table_name
(
 [/* Inherited from the CREATE TABLE statement of an ordinary table */
 { column_name data_type [COLLATE collation] [column_constraint [...]]
 | table_constraint
 | LIKE source_table [like_option [...]] }[, ...]
]
)
[WITH ({storage_parameter = value} [, ...])]
[COMPRESS | NOCOMPRESS]
[TABLESPACE tablespace_name]
/* Range partitioning */
PARTITION BY RANGE (partKey) [INTERVAL ('interval_expr') [STORE IN (tablespace_name [, ...])]] (
 partition_start_end_item [, ...]
 partition_less_then_item [, ...]

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

)
/* List partitioning */
PARTITION BY LIST (partKey)
(
 PARTITION partition_name VALUES (list_values_clause) [TABLESPACE tablespace_name [, ...]]
...
)
/* Hash partitioning */
PARTITION BY HASH (partKey) (
 PARTITION partition_name [TABLESPACE tablespace_name [, ...]]
...
)
/* Enable or disable row migration for a partitioned table. */
[{ ENABLE | DISABLE } ROW MOVEMENT];

Restrictions

1. Range and list partitioning supports a partition key with up to 16 columns.
Hash partitioning supports a one-column partition key only.

2. The partition key value cannot be null except for hash partitioning. Otherwise,
the DML statement reports an error. The only exception is the MAXVALUE
partition defined for a range partitioned table and the DEFAULT partition
defined for a list partitioned table.

3. The maximum number of partitions is 1048575, which can meet the
requirements of most service scenarios. If the number of partitions increases,
the number of files in the system increases, which affects the system
performance. It is recommended that the number of partitions for a single
table be less than or equal to 200.

Modifying Partition Attributes

You can run the ALTER TABLE command similar to that of a non-partitioned table
to modify attributes related to partitioned tables and partitions. Common
statements for modifying partition attributes are as follows:

1. ADD PARTITION

2. DROP PARTITION

3. TRUNCATE PARTITION

4. SPLIT PARTITION

5. MERGE PARTITION

6. MOVE PARTITION

7. EXCHANGE PARTITION

8. RENAME PARTITION

The preceding statements for modifying partition attributes are extended based
on the ALTER TABLE statement of an ordinary table. Most of the statements are
used in a similar way. The following is an example of the basic syntax framework
for modifying partitioned table attributes:
/* Basic ALTER TABLE syntax */
ALTER TABLE [IF EXISTS] { table_name [*] | ONLY table_name | ONLY (table_name)}
action [, ...];

For details about how to use the ALTER TABLE statement, see Partitioned Table
O&M Management and section "SQL Reference > SQL Syntax > ALTER TABLE
PARTITION" in Developer Guide.

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

3.2.3.2 DML Statements for Querying Partitioned Tables
Partitioning is implemented in the database kernel. Therefore, users can query
partitioned tables and non-partitioned tables using the same syntax except for
querying specified partitions.

For ease of use of partitioned tables, GaussDB allows you to query specified
partitions by running PARTITION (partname) or PARTITION FOR (partvalue). The
DML statements for specifying partitions are as follows:

1. SELECT
2. INSERT
3. UPDATE
4. DELETE
5. UPSERT
6. MERGE INTO

The following is an example of DML statements for specifying partitions:

/* Create a partitioned table list_02. */
gaussdb=# CREATE TABLE IF NOT EXISTS list_02
(
 id INT,
 role VARCHAR(100),
 data VARCHAR(100)
)
PARTITION BY LIST (id)
(
 PARTITION p_list_2 VALUES(0,1,2,3,4,5,6,7,8,9),
 PARTITION p_list_3 VALUES(10,11,12,13,14,15,16,17,18,19),
 PARTITION p_list_4 VALUES(DEFAULT),
 PARTITION p_list_5 VALUES(20,21,22,23,24,25,26,27,28,29),
 PARTITION p_list_6 VALUES(30,31,32,33,34,35,36,37,38,39),
 PARTITION p_list_7 VALUES(40,41,42,43,44,45,46,47,48,49)
) ENABLE ROW MOVEMENT;
/* Import data. */
INSERT INTO list_02 VALUES(null, 'alice', 'alice data');
INSERT INTO list_02 VALUES(2, null, 'bob data');
INSERT INTO list_02 VALUES(null, null, 'peter data');

/* Query a specified partition. */
-- Query all data in a partitioned table.
gaussdb=# SELECT * FROM list_02 ORDER BY data;
 id | role | data
----+-------+------------
 | alice | alice data
 2 | | bob data
 | | peter data
(3 rows)
-- Query data in the p_list_2 partition.
gaussdb=# SELECT * FROM list_02 PARTITION (p_list_2) ORDER BY data;
 id | role | data
----+------+----------
 2 | | bob data
(1 row)
-- Query the data of the partition corresponding to (100), that is, partition p_list_4.
gaussdb=# SELECT * FROM list_02 PARTITION FOR (100) ORDER BY data;
 id | role | data
----+-------+------------
 | alice | alice data
 | | peter data
(2 rows)

/* Perform INSERT, UPDATE, and DELETE (IUD) operations on the specified partition. */

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

-- Delete all data from the p_list_5 partition.
gaussdb=# DELETE FROM list_02 PARTITION (p_list_5);
-- Insert data into the specified partition p_list_7. An error is reported because the data does not comply
with the partitioning restrictions.
gaussdb=# INSERT INTO list_02 PARTITION (p_list_7) VALUES(null, 'cherry', 'cherry data');
ERROR: inserted partition key does not map to the table partition
-- Update the data of the partition to which the partition value 100 belongs, that is, partition p_list_4.
gaussdb=# UPDATE list_02 PARTITION FOR (100) SET data = '';

-- UPSERT
gaussdb=# INSERT INTO list_02 (id, role, data) VALUES (1, 'test', 'testdata') ON DUPLICATE KEY UPDATE
role = VALUES(role), data = VALUES(data);

-- MERGE INTO
gaussdb=# CREATE TABLE IF NOT EXISTS list_tmp
(
 id INT,
 role VARCHAR(100),
 data VARCHAR(100)
)
PARTITION BY LIST (id)
(
 PARTITION p_list_2 VALUES(0,1,2,3,4,5,6,7,8,9),
 PARTITION p_list_3 VALUES(10,11,12,13,14,15,16,17,18,19),
 PARTITION p_list_4 VALUES(DEFAULT),
 PARTITION p_list_5 VALUES(20,21,22,23,24,25,26,27,28,29),
 PARTITION p_list_6 VALUES(30,31,32,33,34,35,36,37,38,39),
 PARTITION p_list_7 VALUES(40,41,42,43,44,45,46,47,48,49)) ENABLE ROW MOVEMENT;

gaussdb=# MERGE INTO list_tmp target
USING list_02 source
ON (target.id = source.id)
WHEN MATCHED THEN
 UPDATE SET target.data = source.data,
 target.role = source.role
WHEN NOT MATCHED THEN
 INSERT (id, role, data)
 VALUES (source.id, source.role, source.data);

-- Drop a table.
gaussdb=#
DROP TABLE list_02;
DROP TABLE list_tmp;

3.3 Partitioned Table Query Optimization
NO TE

In this example, explain_perf_mode is set to normal.

3.3.1 Partition Pruning

3.3.1.1 Static Partition Pruning
For partitioned table query statements with constants in the search criteria, the
search criteria contained in operators such as index scan, bitmap index scan, and
index-only scan are used as pruning conditions in the optimizer phase to filter
partitions. The search criteria must contain at least one partition key. For a
partitioned table with a multi-column partition key, the search criteria can contain
any column of the partition key.

Static pruning is supported in the following scenarios:

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

1. Supported partitioning types: range partitioning, hash partitioning, and list
partitioning.

2. Supported expression types: comparison expression (<, <=, =, >=, >), logical
expression, and array expression.

CA UTION

● Currently, static pruning does not support subquery expressions.
● To support partitioned table pruning, the filter condition on the partition key is

forcibly converted to the partition key type when the plan is generated. This
operation is different from the implicit type conversion rule. As a result, an
error may be reported when the same condition is converted on the partition
key, and no error is reported for non-partition keys.

● Typical scenarios where static pruning is supported are as follows:

a. Comparison expressions
-- Create a partitioned table.
gaussdb=# CREATE TABLE t1 (c1 int, c2 int)
PARTITION BY RANGE (c1)
(
 PARTITION p1 VALUES LESS THAN(10),
 PARTITION p2 VALUES LESS THAN(20),
 PARTITION p3 VALUES LESS THAN(MAXVALUE)
);
gaussdb=# SET max_datanode_for_plan = 1;

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 WHERE c1 = 1;
 QUERY PLAN

 Data Node Scan
 Output: t1.c1, t1.c2
 Node/s: datanode1
 Remote query: SELECT c1, c2 FROM public.t1 WHERE c1 = 1

 Remote SQL: SELECT c1, c2 FROM public.t1 WHERE c1 = 1
 Datanode Name: datanode1
 Partition Iterator
 Output: c1, c2
 Iterations: 1
 -> Partitioned Seq Scan on public.t1
 Output: c1, c2
 Filter: (t1.c1 = 1)
 Selected Partitions: 1

(15 rows)

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 WHERE c1 < 1;
 QUERY PLAN

 Data Node Scan
 Output: t1.c1, t1.c2
 Node/s: All datanodes
 Remote query: SELECT c1, c2 FROM public.t1 WHERE c1 < 1

 Remote SQL: SELECT c1, c2 FROM public.t1 WHERE c1 < 1
 Datanode Name: datanode1
 Partition Iterator
 Output: c1, c2
 Iterations: 1
 -> Partitioned Seq Scan on public.t1
 Output: c1, c2
 Filter: (t1.c1 < 1)

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

 Selected Partitions: 1

(15 rows)

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 WHERE c1 > 11;
 QUERY PLAN
--
 Data Node Scan
 Output: t1.c1, t1.c2
 Node/s: All datanodes
 Remote query: SELECT c1, c2 FROM public.t1 WHERE c1 > 11

 Remote SQL: SELECT c1, c2 FROM public.t1 WHERE c1 > 11
 Datanode Name: datanode1
 Partition Iterator
 Output: c1, c2
 Iterations: 2
 -> Partitioned Seq Scan on public.t1
 Output: c1, c2
 Filter: (t1.c1 > 11)
 Selected Partitions: 2..3

(15 rows)

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 WHERE c1 is NULL;
 QUERY PLAN

 Data Node Scan
 Output: t1.c1, t1.c2
 Node/s: datanode1
 Remote query: SELECT c1, c2 FROM public.t1 WHERE c1 IS NULL

 Remote SQL: SELECT c1, c2 FROM public.t1 WHERE c1 IS NULL
 Datanode Name: datanode1
 Partition Iterator
 Output: c1, c2
 Iterations: 1
 -> Partitioned Seq Scan on public.t1
 Output: c1, c2
 Filter: (t1.c1 IS NULL)
 Selected Partitions: 3

(15 rows)

b. Logical expressions
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 WHERE c1 = 1 AND c2 = 2;
 QUERY PLAN
--
 Data Node Scan
 Output: t1.c1, t1.c2
 Node/s: datanode1
 Remote query: SELECT c1, c2 FROM public.t1 WHERE c1 = 1 AND c2 = 2

 Remote SQL: SELECT c1, c2 FROM public.t1 WHERE c1 = 1 AND c2 = 2
 Datanode Name: datanode1
 Partition Iterator
 Output: c1, c2
 Iterations: 1
 -> Partitioned Seq Scan on public.t1
 Output: c1, c2
 Filter: ((t1.c1 = 1) AND (t1.c2 = 2))
 Selected Partitions: 1

(15 rows)

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 WHERE c1 = 1 OR c1 = 2;
 QUERY PLAN

 Data Node Scan
 Output: t1.c1, t1.c2

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

 Node/s: All datanodes
 Remote query: SELECT c1, c2 FROM public.t1 WHERE c1 = 1 OR c1 = 2

 Remote SQL: SELECT c1, c2 FROM public.t1 WHERE c1 = 1 OR c1 = 2
 Datanode Name: datanode1
 Partition Iterator
 Output: c1, c2
 Iterations: 1
 -> Partitioned Seq Scan on public.t1
 Output: c1, c2
 Filter: ((t1.c1 = 1) OR (t1.c1 = 2))
 Selected Partitions: 1

(15 rows)

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 WHERE NOT c1 = 1;
 QUERY PLAN

 Data Node Scan
 Output: t1.c1, t1.c2
 Node/s: All datanodes
 Remote query: SELECT c1, c2 FROM public.t1 WHERE NOT c1 = 1

 Remote SQL: SELECT c1, c2 FROM public.t1 WHERE NOT c1 = 1
 Datanode Name: datanode1
 Partition Iterator
 Output: c1, c2
 Iterations: 3
 -> Partitioned Seq Scan on public.t1
 Output: c1, c2
 Filter: (t1.c1 <> 1)
 Selected Partitions: 1..3

(15 rows)

c. Array expressions
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 WHERE c1 IN (1, 2, 3);
 QUERY PLAN
--
 Data Node Scan
 Output: t1.c1, t1.c2
 Node/s: All datanodes
 Remote query: SELECT c1, c2 FROM public.t1 WHERE c1 = ANY (ARRAY[1, 2, 3])

 Remote SQL: SELECT c1, c2 FROM public.t1 WHERE c1 = ANY (ARRAY[1, 2, 3])
 Datanode Name: datanode1
 Partition Iterator
 Output: c1, c2
 Iterations: 1
 -> Partitioned Seq Scan on public.t1
 Output: c1, c2
 Filter: (t1.c1 = ANY ('{1,2,3}'::integer[]))
 Selected Partitions: 1

(15 rows)

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 WHERE c1 = ALL(ARRAY[1,
2, 3]);
 QUERY PLAN
--
 Data Node Scan
 Output: t1.c1, t1.c2
 Node/s: All datanodes
 Remote query: SELECT c1, c2 FROM public.t1 WHERE c1 = ALL (ARRAY[1, 2, 3])

 Remote SQL: SELECT c1, c2 FROM public.t1 WHERE c1 = ALL (ARRAY[1, 2, 3])
 Datanode Name: datanode1
 Partition Iterator
 Output: c1, c2
 Iterations: 0

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

 -> Partitioned Seq Scan on public.t1
 Output: c1, c2
 Filter: (t1.c1 = ALL ('{1,2,3}'::integer[]))
 Selected Partitions: NONE

(15 rows)

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 WHERE c1 = ANY(ARRAY[1,
2, 3]);
 QUERY PLAN
--
 Data Node Scan
 Output: t1.c1, t1.c2
 Node/s: All datanodes
 Remote query: SELECT c1, c2 FROM public.t1 WHERE c1 = ANY (ARRAY[1, 2, 3])

 Remote SQL: SELECT c1, c2 FROM public.t1 WHERE c1 = ANY (ARRAY[1, 2, 3])
 Datanode Name: datanode1
 Partition Iterator
 Output: c1, c2
 Iterations: 1
 -> Partitioned Seq Scan on public.t1
 Output: c1, c2
 Filter: (t1.c1 = ANY ('{1,2,3}'::integer[]))
 Selected Partitions: 1

(15 rows)

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 WHERE c1 =
SOME(ARRAY[1, 2, 3]);
 QUERY PLAN
--
 Data Node Scan
 Output: t1.c1, t1.c2
 Node/s: All datanodes
 Remote query: SELECT c1, c2 FROM public.t1 WHERE c1 = ANY (ARRAY[1, 2, 3])

 Remote SQL: SELECT c1, c2 FROM public.t1 WHERE c1 = ANY (ARRAY[1, 2, 3])
 Datanode Name: datanode1
 Partition Iterator
 Output: c1, c2
 Iterations: 1
 -> Partitioned Seq Scan on public.t1
 Output: c1, c2
 Filter: (t1.c1 = ANY ('{1,2,3}'::integer[]))
 Selected Partitions: 1

(15 rows)

● Typical scenarios where static pruning is not supported are as follows:

a. Subquery expressions
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 WHERE c1 = ALL(SELECT c2
FROM t1 WHERE c1 > 10);
 QUERY PLAN

 Streaming (type: GATHER)
 Output: public.t1.c1, public.t1.c2
 Node/s: All datanodes
 -> Partition Iterator
 Output: public.t1.c1, public.t1.c2
 Iterations: 3
 -> Partitioned Seq Scan on public.t1
 Output: public.t1.c1, public.t1.c2
 Distribute Key: public.t1.c1
 Filter: (SubPlan 1)
 Selected Partitions: 1..3
 SubPlan 1
 -> Materialize
 Output: public.t1.c2

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

 -> Streaming(type: BROADCAST)
 Output: public.t1.c2
 Spawn on: All datanodes
 Consumer Nodes: All datanodes
 -> Partition Iterator
 Output: public.t1.c2
 Iterations: 2
 -> Partitioned Seq Scan on public.t1
 Output: public.t1.c2
 Distribute Key: public.t1.c1
 Filter: (public.t1.c1 > 10)
 Selected Partitions: 2..3
(26 rows)

-- Clean up the environment.
gaussdb=# DROP TABLE t1;

3.3.1.2 Dynamic Partition Pruning
If a partitioned table query statement with variables exists in the search criteria,
the optimizer cannot obtain the bound parameters of the user. Therefore, only the
search criteria of operators such as index scan, bitmap index scan, and index-only
scan can be parsed in the optimizer phase. After the bound parameters are
obtained in the executor phase, the partition filtering is complete. The search
criteria must contain at least one partition key. For a partitioned table with a
multi-column partition key, the search criteria can contain any column of the
partition key. Currently, dynamic partition pruning supports only the parse-bind-
execute (PBE) and parameterized path scenarios.

3.3.1.2.1 Dynamic PBE Pruning

Dynamic PBE pruning is supported in the following scenarios:

1. Supported partitioning types: range partitioning, hash partitioning, and list
partitioning.

2. Supported expression types: comparison expression (<, <=, =, >=, >), logical
expression, and array expression.

3. Supported conversions and functions: some implicit type conversions and the
IMMUTABLE function.

CA UTION

● Dynamic PBE pruning supports expressions, implicit conversions, the
IMMUTABLE function, and the STABLE function, but does not support subquery
expressions or VOLATILE function. For the STABLE function, type conversion
functions such as to_timestamp may be affected by GUC parameters and lead
to different pruning results. To ensure performance optimization, you can
analyze table to regenerate a gplan.

● Dynamic PBE pruning is based on the generic plan. Therefore, when
determining whether a statement can be dynamically pruned, you need to set
plan_cache_mode to 'force_generic_plan' to eliminate the interference of the
custom plan.

● Typical scenarios where dynamic PBE pruning is supported are as follows:

a. Comparison expressions

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

-- Create a partitioned table.
gaussdb=# CREATE TABLE t1 (c1 int, c2 int)
PARTITION BY RANGE (c1)
(
 PARTITION p1 VALUES LESS THAN(10),
 PARTITION p2 VALUES LESS THAN(20),
 PARTITION p3 VALUES LESS THAN(MAXVALUE)
);

gaussdb=# PREPARE p1(int) AS SELECT * FROM t1 WHERE c1 = $1;
PREPARE
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) EXECUTE p1(1);
 QUERY PLAN
--
 Data Node Scan
 Output: t1.c1, t1.c2
 Node/s: datanode1
 Node expr: $1
 Remote query: SELECT c1, c2 FROM public.t1 WHERE c1 = $1

 Remote SQL: SELECT c1, c2 FROM public.t1 WHERE c1 = $1
 Datanode Name: datanode1
 Partition Iterator
 Output: c1, c2
 Iterations: PART
 -> Partitioned Seq Scan on public.t1
 Output: c1, c2
 Filter: (t1.c1 = $1)
 Selected Partitions: 1 (pbe-pruning)

(16 rows)

b. Logical expressions
gaussdb=# PREPARE p2(INT, INT) AS SELECT * FROM t1 WHERE c1 = $1 AND c2 = $2;
PREPARE
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) EXECUTE p2(1, 2);
 QUERY PLAN
--
 Data Node Scan
 Output: t1.c1, t1.c2
 Node/s: datanode1
 Node expr: $1
 Remote query: SELECT c1, c2 FROM public.t1 WHERE c1 = $1 AND c2 = $2

 Remote SQL: SELECT c1, c2 FROM public.t1 WHERE c1 = $1 AND c2 = $2
 Datanode Name: datanode1
 Partition Iterator
 Output: c1, c2
 Iterations: PART
 -> Partitioned Seq Scan on public.t1
 Output: c1, c2
 Filter: ((t1.c1 = $1) AND (t1.c2 = $2))
 Selected Partitions: 1 (pbe-pruning)

(16 rows)

c. Implicit type conversion
gaussdb=# set plan_cache_mode = 'force_generic_plan';
gaussdb=# PREPARE p3(TEXT) AS SELECT * FROM t1 WHERE c1 = $1;
PREPARE
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) EXECUTE p3('12');
 QUERY PLAN
--
 Data Node Scan
 Output: t1.c1, t1.c2
 Node/s: datanode1
 Node expr: $1
 Remote query: SELECT c1, c2 FROM public.t1 WHERE c1 = $1::bigint

 Remote SQL: SELECT c1, c2 FROM public.t1 WHERE c1 = $1::bigint

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

 Datanode Name: datanode1
 Partition Iterator
 Output: c1, c2
 Iterations: PART
 -> Partitioned Seq Scan on public.t1
 Output: c1, c2
 Filter: (t1.c1 = ($1)::bigint)
 Selected Partitions: 2 (pbe-pruning)

(16 rows)

● Typical scenarios where dynamic PBE pruning is not supported are as follows:

a. Subquery expressions
gaussdb=# PREPARE p4(INT) AS SELECT * FROM t1 WHERE c1 = ALL(SELECT c2 FROM t1
WHERE c1 > $1);
PREPARE
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) EXECUTE p4(1);
 QUERY PLAN

 Streaming (type: GATHER)
 Output: public.t1.c1, public.t1.c2
 Node/s: All datanodes
 -> Partition Iterator
 Output: public.t1.c1, public.t1.c2
 Iterations: 3
 -> Partitioned Seq Scan on public.t1
 Output: public.t1.c1, public.t1.c2
 Distribute Key: public.t1.c1
 Filter: (SubPlan 1)
 Selected Partitions: 1..3
 SubPlan 1
 -> Materialize
 Output: public.t1.c2
 -> Streaming(type: BROADCAST)
 Output: public.t1.c2
 Spawn on: All datanodes
 Consumer Nodes: All datanodes
 -> Partition Iterator
 Output: public.t1.c2
 Iterations: 3
 -> Partitioned Seq Scan on public.t1
 Output: public.t1.c2
 Distribute Key: public.t1.c1
 Filter: (public.t1.c1 > 1)
 Selected Partitions: 1..3
(26 rows)

b. Implicit type conversion failure
gaussdb=# PREPARE p5(name) AS SELECT * FROM t1 WHERE c1 = $1;
PREPARE
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) EXECUTE p5('12');
 QUERY PLAN
--
 Data Node Scan
 Output: t1.c1, t1.c2
 Node/s: All datanodes
 Remote query: SELECT c1, c2 FROM public.t1 WHERE c1::text = '12'::text

 Remote SQL: SELECT c1, c2 FROM public.t1 WHERE c1::text = '12'::text
 Datanode Name: datanode1
 Partition Iterator
 Output: c1, c2
 Iterations: 3
 -> Partitioned Seq Scan on public.t1
 Output: c1, c2
 Filter: ((t1.c1)::text = '12'::text)
 Selected Partitions: 1..3

(15 rows)

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

c. STABLE and VOLATILE functions
gaussdb=# create sequence seq;
gaussdb=# PREPARE p6(TEXT) AS SELECT * FROM t1 WHERE c1 = currval($1);-- The VOLATILE
function does not support pruning.
PREPARE
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) EXECUTE p6('seq');
 QUERY PLAN
--
 Data Node Scan
 Output: t1.c1, t1.c2
 Node/s: All datanodes
 Remote query: SELECT c1, c2 FROM ONLY public.t1 WHERE true
 Coordinator quals: ((t1.c1)::numeric = currval(('seq'::text)::regclass))

 Remote SQL: SELECT c1, c2 FROM ONLY public.t1 WHERE true
 Datanode Name: datanode1
 Partition Iterator
 Output: c1, c2
 Iterations: 3
 -> Partitioned Seq Scan on public.t1
 Output: c1, c2
 Selected Partitions: 1..3

(15 rows)

-- Clean up the environment.
gaussdb=# DROP TABLE t1;

3.3.1.2.2 Dynamic Parameterized Path Pruning

Dynamic parameterized path pruning is supported in the following scenarios:

1. Supported partitioning types: range partitioning, hash partitioning, and list
partitioning.

2. Supported operator types: index scan, index-only scan, and bitmap scan.
3. Supported expression types: comparison expression (<, <=, =, >=, >) and

logical expression.

CA UTION

Dynamic parameterized path pruning does not support subquery expressions,
STABLE and VOLATILE functions, cross-QueryBlock parameterized paths, BitmapOr
operator, or BitmapAnd operator.

● Typical scenarios where dynamic parameterized path pruning is supported are
as follows:

a. Comparison expressions
-- Create partitioned tables and indexes.
gaussdb=# CREATE TABLE t1 (c1 INT, c2 INT)
PARTITION BY RANGE (c1)
(
 PARTITION p1 VALUES LESS THAN(10),
 PARTITION p2 VALUES LESS THAN(20),
 PARTITION p3 VALUES LESS THAN(MAXVALUE)
);
gaussdb=# CREATE TABLE t2 (c1 INT, c2 INT)
PARTITION BY RANGE (c1)
(
 PARTITION p1 VALUES LESS THAN(10),
 PARTITION p2 VALUES LESS THAN(20),
 PARTITION p3 VALUES LESS THAN(MAXVALUE)

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

);
gaussdb=# CREATE INDEX t1_c1 ON t1(c1) LOCAL;
gaussdb=# CREATE INDEX t2_c1 ON t2(c1) LOCAL;
gaussdb=# CREATE INDEX t1_c2 ON t1(c2) LOCAL;
gaussdb=# CREATE INDEX t2_c2 ON t2(c2) LOCAL;

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT /*+ nestloop(t1 t2) indexscan(t1)
indexscan(t2) */ * FROM t2 JOIN t1 ON t1.c1 = t2.c1;
 QUERY
PLAN
--

 Data Node Scan
 Output: t2.c1, t2.c2, t1.c1, t1.c2
 Node/s: All datanodes
 Remote query: SELECT/*+ NestLoop(t1 t2) IndexScan(t1) IndexScan(t2)*/ t2.c1, t2.c2, t1.c1,
t1.c2 FROM public.t2 JOIN public.t1 ON t1.c1 = t2.c1

 Remote SQL: SELECT/*+ NestLoop(t1 t2) IndexScan(t1) IndexScan(t2)*/ t2.c1, t2.c2, t1.c1, t1.c2
FROM public.t2 JOIN public.t1 ON t1.c1 = t2.c1
 Datanode Name: datanode1
 Nested Loop
 Output: t2.c1, t2.c2, t1.c1, t1.c2
 -> Partition Iterator
 Output: t2.c1, t2.c2
 Iterations: 3
 -> Partitioned Index Scan using t2_c1 on public.t2
 Output: t2.c1, t2.c2
 Selected Partitions: 1..3
 -> Partition Iterator
 Output: t1.c1, t1.c2
 Iterations: PART
 -> Partitioned Index Scan using t1_c1 on public.t1
 Output: t1.c1, t1.c2
 Index Cond: (t1.c1 = t2.c1)
 Selected Partitions: 1 (ppi-pruning)

(23 rows)

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT /*+ nestloop(t1 t2) indexscan(t1)
indexscan(t2) */ * FROM t2 JOIN t1 ON t1.c1 < t2.c1;
 QUERY PLAN

 Streaming (type: GATHER)
 Output: t2.c1, t2.c2, t1.c1, t1.c2
 Node/s: All datanodes
 -> Nested Loop
 Output: t2.c1, t2.c2, t1.c1, t1.c2
 -> Streaming(type: BROADCAST)
 Output: t2.c1, t2.c2
 Spawn on: All datanodes
 Consumer Nodes: All datanodes
 -> Partition Iterator
 Output: t2.c1, t2.c2
 Iterations: 3
 -> Partitioned Seq Scan on public.t2
 Output: t2.c1, t2.c2
 Distribute Key: t2.c1
 Selected Partitions: 1..3
 -> Partition Iterator
 Output: t1.c1, t1.c2
 Iterations: PART
 -> Partitioned Index Scan using t1_c1 on public.t1
 Output: t1.c1, t1.c2
 Distribute Key: t1.c1
 Index Cond: (t1.c1 < t2.c1)
 Selected Partitions: 1 (ppi-pruning)
(24 rows)

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT /*+ nestloop(t1 t2) indexscan(t1)
indexscan(t2) */ * FROM t2 JOIN t1 ON t1.c1 < t2.c1;
 QUERY PLAN

 Streaming (type: GATHER)
 Output: t2.c1, t2.c2, t1.c1, t1.c2
 Node/s: All datanodes
 -> Nested Loop
 Output: t2.c1, t2.c2, t1.c1, t1.c2
 -> Streaming(type: BROADCAST)
 Output: t2.c1, t2.c2
 Spawn on: All datanodes
 Consumer Nodes: All datanodes
 -> Partition Iterator
 Output: t2.c1, t2.c2
 Iterations: 3
 -> Partitioned Seq Scan on public.t2
 Output: t2.c1, t2.c2
 Distribute Key: t2.c1
 Selected Partitions: 1..3
 -> Partition Iterator
 Output: t1.c1, t1.c2
 Iterations: PART
 -> Partitioned Index Scan using t1_c1 on public.t1
 Output: t1.c1, t1.c2
 Distribute Key: t1.c1
 Index Cond: (t1.c1 > t2.c1)
 Selected Partitions: 1..3 (ppi-pruning)
(24 rows)

b. Logical expressions
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT /*+ nestloop(t1 t2) indexscan(t1)
indexscan(t2) */ * FROM t2 JOIN t1 ON t1.c1 = t2.c1 AND t1.c2 = 2;
 QUERY
PLAN
--

 Data Node Scan
 Output: t2.c1, t2.c2, t1.c1, t1.c2
 Node/s: All datanodes
 Remote query: SELECT/*+ NestLoop(t1 t2) IndexScan(t1) IndexScan(t2)*/ t2.c1, t2.c2, t1.c1,
t1.c2 FROM public.t2 JOIN public.t1 ON t1.c1 = t2.c1 AND t1.c2 = 2

 Remote SQL: SELECT/*+ NestLoop(t1 t2) IndexScan(t1) IndexScan(t2)*/ t2.c1, t2.c2, t1.c1, t1.c2
FROM public.t2 JOIN public.t1 ON t1.c1 = t2.c1 AND t1.c2 = 2
 Datanode Name: datanode1
 Nested Loop
 Output: t2.c1, t2.c2, t1.c1, t1.c2
 -> Partition Iterator
 Output: t1.c1, t1.c2
 Iterations: 3
 -> Partitioned Index Scan using t1_c2 on public.t1
 Output: t1.c1, t1.c2
 Index Cond: (t1.c2 = 2)
 Selected Partitions: 1..3
 -> Partition Iterator
 Output: t2.c1, t2.c2
 Iterations: PART
 -> Partitioned Index Scan using t2_c1 on public.t2
 Output: t2.c1, t2.c2
 Index Cond: (t2.c1 = t1.c1)
 Selected Partitions: 1..3 (ppi-pruning)

(24 rows)

● Typical scenarios where dynamic parameterized path pruning is not supported
are as follows:

a. BitmapOr and BitmapAnd operators

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

gaussdb=# set enable_seqscan=off;
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT /*+ nestloop(t1 t2) */ * FROM t2 JOIN
t1 ON t1.c1 = t2.c1 OR t1.c2 = 2;
WARNING: Statistics in some tables or columns(public.t2.c1, public.t1.c1, public.t1.c2) are not
collected.
HINT: Do analyze for them in order to generate optimized plan.
 QUERY PLAN
--
 Streaming (type: GATHER)
 Output: t2.c1, t2.c2, t1.c1, t1.c2
 Node/s: All datanodes
 -> Nested Loop
 Output: t2.c1, t2.c2, t1.c1, t1.c2
 -> Streaming(type: BROADCAST)
 Output: t2.c1, t2.c2
 Spawn on: All datanodes
 Consumer Nodes: All datanodes
 -> Partition Iterator
 Output: t2.c1, t2.c2
 Iterations: 3
 -> Partitioned Seq Scan on public.t2
 Output: t2.c1, t2.c2
 Distribute Key: t2.c1
 Selected Partitions: 1..3
 -> Partition Iterator
 Output: t1.c1, t1.c2
 Iterations: 3
 -> Partitioned Bitmap Heap Scan on public.t1
 Output: t1.c1, t1.c2
 Distribute Key: t1.c1
 Recheck Cond: ((t1.c1 = t2.c1) OR (t1.c2 = 2))
 Selected Partitions: 1..3
 -> BitmapOr
 -> Partitioned Bitmap Index Scan on t1_c1
 Index Cond: (t1.c1 = t2.c1)
 -> Partitioned Bitmap Index Scan on t1_c2
 Index Cond: (t1.c2 = 2)
(29 rows)

b. Implicit conversion
gaussdb=# CREATE TABLE t3(c1 TEXT, c2 INT);
CREATE TABLE
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 JOIN t3 ON t1.c1 = t3.c1;
WARNING: Statistics in some tables or columns(public.t1.c1, public.t3.c1) are not collected.
HINT: Do analyze for them in order to generate optimized plan.
 QUERY PLAN

 Streaming (type: GATHER)
 Output: t1.c1, t1.c2, t3.c1, t3.c2
 Node/s: All datanodes
 -> Nested Loop
 Output: t1.c1, t1.c2, t3.c1, t3.c2
 Join Filter: (t1.c1 = ((t3.c1)::bigint))
 -> Partition Iterator
 Output: t1.c1, t1.c2
 Iterations: 3
 -> Partitioned Index Scan using t1_c1 on public.t1
 Output: t1.c1, t1.c2
 Distribute Key: t1.c1
 Selected Partitions: 1..3
 -> Materialize
 Output: t3.c1, t3.c2, ((t3.c1)::bigint)
 -> Streaming(type: REDISTRIBUTE)
 Output: t3.c1, t3.c2, ((t3.c1)::bigint)
 Distribute Key: ((t3.c1)::bigint)
 Spawn on: All datanodes
 Consumer Nodes: All datanodes
 -> Seq Scan on public.t3
 Output: t3.c1, t3.c2, t3.c1

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

 Distribute Key: t3.c1
(23 rows)

c. Functions
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 JOIN t3 ON t1.c1 =
LENGTHB(t3.c1);
 QUERY PLAN

 Nested Loop
 Output: t1.c1, t1.c2, t3.c1, t3.c2
 -> Seq Scan on public.t3
 Output: t3.c1, t3.c2
 -> Partition Iterator
 Output: t1.c1, t1.c2
 Iterations: 3
 -> Partitioned Index Scan using t1_c1 on public.t1
 Output: t1.c1, t1.c2
 Index Cond: (t1.c1 = lengthb(t3.c1))
 Selected Partitions: 1..3
(11 rows)

-- Clean up the environment.
gaussdb=# DROP TABLE t1;
gaussdb=# DROP TABLE t2;
gaussdb=# DROP TABLE t3;

3.3.2 Partitioned Indexes
There are three types of indexes on a partitioned table:

1. Global non-partitioned index
2. Global partitioned index
3. Local partitioned index

Currently, GaussDB supports the global non-partitioned index and local
partitioned index.

Figure 3-3 Global non-partitioned index

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

Figure 3-4 Global partitioned index

Figure 3-5 Local partitioned index

Constraints
● Partitioned indexes are classified into local indexes and global indexes. A local

index binds to a specific partition, and a global index corresponds to the
entire partitioned table.

● If the constraint key of the unique constraint and primary key constraint
contains all partition keys, a local index is created for the constraints.
Otherwise, a global index is created.

NO TE

If the query statement involves multiple partitions, you are advised to use the global index.
Otherwise, you are advised to use the local index. However, note that the global index has
extra overhead in the partition maintenance syntax.

Examples
● Create a table.

gaussdb=# CREATE TABLE web_returns_p2
(
 ca_address_sk INTEGER NOT NULL ,
 ca_address_id CHARACTER(16) NOT NULL ,
 ca_street_number CHARACTER(10) ,
 ca_street_name CHARACTER VARYING(60) ,
 ca_street_type CHARACTER(15) ,
 ca_suite_number CHARACTER(10) ,
 ca_city CHARACTER VARYING(60) ,

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

 ca_county CHARACTER VARYING(30) ,
 ca_state CHARACTER(2) ,
 ca_zip CHARACTER(10) ,
 ca_country CHARACTER VARYING(20) ,
 ca_gmt_offset NUMERIC(5,2) ,
 ca_location_type CHARACTER(20)
)
PARTITION BY RANGE (ca_address_sk)
(
 PARTITION P1 VALUES LESS THAN(5000),
 PARTITION P2 VALUES LESS THAN(10000),
 PARTITION P3 VALUES LESS THAN(15000),
 PARTITION P4 VALUES LESS THAN(20000),
 PARTITION P5 VALUES LESS THAN(25000),
 PARTITION P6 VALUES LESS THAN(30000),
 PARTITION P7 VALUES LESS THAN(40000),
 PARTITION P8 VALUES LESS THAN(MAXVALUE)
)
ENABLE ROW MOVEMENT;

● Create an index.
– Create the local index tpcds_web_returns_p2_index1 without specifying

the partition name.
gaussdb=# CREATE INDEX tpcds_web_returns_p2_index1 ON web_returns_p2 (ca_address_id)
LOCAL;

If the following information is displayed, the test table has been created:
CREATE INDEX

– Create the local index tpcds_web_returns_p2_index2 with the specified
partition name.
gaussdb=# CREATE TABLESPACE example2 LOCATION '/home/omm/example2';
gaussdb=# CREATE TABLESPACE example3 LOCATION '/home/omm/example3';
gaussdb=# CREATE TABLESPACE example4 LOCATION '/home/omm/example4';

gaussdb=# CREATE INDEX tpcds_web_returns_p2_index2 ON web_returns_p2 (ca_address_sk)
LOCAL
(
 PARTITION web_returns_p2_P1_index,
 PARTITION web_returns_p2_P2_index TABLESPACE example3,
 PARTITION web_returns_p2_P3_index TABLESPACE example4,
 PARTITION web_returns_p2_P4_index,
 PARTITION web_returns_p2_P5_index,
 PARTITION web_returns_p2_P6_index,
 PARTITION web_returns_p2_P7_index,
 PARTITION web_returns_p2_P8_index
) TABLESPACE example2;

If the following information is displayed, the creation is successful:
CREATE INDEX

– Create the global index tpcds_web_returns_p2_global_index for a
partitioned table.
gaussdb=# CREATE INDEX tpcds_web_returns_p2_global_index ON web_returns_p2
(ca_street_number) GLOBAL;

If the following information is displayed, the creation is successful:
CREATE INDEX

● Modify the tablespace of an index partition.
– Change the tablespace of index partition web_returns_p2_P2_index to

example1.
gaussdb=# ALTER INDEX tpcds_web_returns_p2_index2 MOVE PARTITION
web_returns_p2_P2_index TABLESPACE example1;

If the following information is displayed, the modification is successful:
ALTER INDEX

– Change the tablespace of index partition web_returns_p2_P3_index to
example2.

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

gaussdb=# ALTER INDEX tpcds_web_returns_p2_index2 MOVE PARTITION
web_returns_p2_P3_index TABLESPACE example2;

If the following information is displayed, the modification is successful:
ALTER INDEX

● Rename an index partition.
– Rename the name of index partition web_returns_p2_P8_index to

web_returns_p2_P8_index_new.
gaussdb=# ALTER INDEX tpcds_web_returns_p2_index2 RENAME PARTITION
web_returns_p2_P8_index TO web_returns_p2_P8_index_new;

If the following information is displayed, the renaming is successful:
ALTER INDEX

● Query indexes.
– Query all indexes defined by the system and users.

gaussdb=# SELECT RELNAME FROM PG_CLASS WHERE RELKIND='i' or RELKIND='I';

– Query information about a specified index.
gaussdb=# \di+ tpcds_web_returns_p2_index2

● Drop an index.
gaussdb=# DROP INDEX tpcds_web_returns_p2_index1;

If the following information is displayed, the deletion is successful:
DROP INDEX

Cleanup example:
gaussdb=# DROP TABLE web_returns_p2;

3.4 Partitioned Table O&M Management
Partitioned table O&M management includes partition management, partitioned
table management, partitioned index management, and partitioned table
statement concurrency support.

● Partition management: also known as partition-level DDL operations,
including ADD, DROP, EXCHANGE, TRUNCATE, SPLIT, MERGE, MOVE, and
RENAME.

CA UTION

● For hash partitions, operations involving partition quantity change will cause
data re-shuffling, including ADD, DROP, SPLIT, and MERGE. Therefore, GaussDB
does not support these operations.

● Operations involving partition data change will invalidate global indexes,
including DROP, EXCHANGE, TRUNCATE, SPLIT, and MERGE. You can use the
UPDATE GLOBAL INDEX clause to update global indexes synchronously.

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

NO TE

● Most partition DDL operations use PARTITION and PARTITION FOR to specify partitions.
For PARTITION, you need to specify the partition name. For PARTITION FOR, you need
to specify any partition value within the partition range. For example, if the range of
partition part1 is defined as [100, 200), partition part1 and partition for(150)
function the same.

● The DDL execution cost varies depending on the partition. The target partition will be
locked during DDL execution. Therefore, you need to evaluate the cost and impact on
services. Generally, the execution cost of splitting and merging is much greater than that
of other partition DDL operations and is positively correlated with the size of the source
partition. The cost of exchanging is mainly caused by global index rebuilding and
validation. The cost of moving is limited by disk I/O. The execution cost of other
partition DDL operations is low.

● Partitioned table management: In addition to the functions inherited from
ordinary tables, you can enable or disable row migration for partitioned
tables.

● Partitioned index management: You can invalidate indexes or index partitions
or rebuild invalid indexes or index partitions. For example, global indexes
become invalid due to partition management operations.

● Partitioned table statement concurrency support: DDL operations on
distributed partitioned tables lock the entire table. Cross-partition DDL-
DQL/DML concurrency is not supported.

3.4.1 ADD PARTITION
You can add partitions to an existing partitioned table to maintain new services.
Currently, a partitioned table can contain a maximum of 1048575 partitions. If the
number of partitions reaches the upper limit, no more partitions can be added. In
addition, the memory usage of partitions must be considered. Typically, the
memory usage of a partitioned table is about (Number of partitions x 3/1024)
MB. The memory usage of a partition cannot be greater than the value of
local_syscache_threshold. In addition, some space must be reserved for other
functions.

CA UTION

● This command cannot be applied to hash partitions.

3.4.1.1 Adding a Partition to a Range Partitioned Table
You can run ALTER TABLE ADD PARTITION to add a partition to the end of an
existing partitioned table. The upper boundary of the new partition must be
greater than that of the last partition.

For example, add a partition to the range partitioned table range_sales.
ALTER TABLE range_sales ADD PARTITION date_202005 VALUES LESS THAN ('2020-06-01') TABLESPACE tb1;

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

NO TICE

If a range partitioned table has the MAXVALUE partition, partitions cannot be
added. You can run the ALTER TABLE SPLIT PARTITION command to split
partitions. Partition splitting is also applicable to the scenario where partitions
need to be added before or in the middle of an existing partitioned table. For
details, see Splitting a Partition for a Range Partitioned Table.

3.4.1.2 Adding a Partition to a List Partitioned Table

You can run ALTER TABLE ADD PARTITION to add a partition to a list partitioned
table. The enumerated values of the new partition cannot be the same as those of
any existing partition.

For example, add a partition to the list partitioned table list_sales.
ALTER TABLE list_sales ADD PARTITION channel5 VALUES ('X') TABLESPACE tb1;

NO TICE

If a list partitioned table has the DEFAULT partition, partitions cannot be added.
You can use the ALTER TABLE SPLIT PARTITION statement to split partitions.

3.4.2 DROP PARTITION
You can run this command to remove unnecessary partitions. You can delete a
partition by specifying the partition name or partition value.

CA UTION

● This command cannot be applied to hash partitions.

● Running this command will invalidate the global index. You can use the
UPDATE GLOBAL INDEX clause to update the global index synchronously or
rebuild the global index.

You can run ALTER TABLE DROP PARTITION to delete any partition from a range
partitioned table or list partitioned table.

For example, delete the partition date_202005 from the range partitioned table
range_sales by specifying the partition name and update the global index.
ALTER TABLE range_sales DROP PARTITION date_202005 UPDATE GLOBAL INDEX;

Alternatively, delete the partition corresponding to the partition value
'2020-05-08' in the range partitioned table range_sales. Global indexes become
invalid after this command is executed because the UPDATE GLOBAL INDEX
clause is not used.
ALTER TABLE range_sales DROP PARTITION FOR ('2020-05-08');

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

NO TICE

● If a partitioned table has only one partition, the partition cannot be deleted by
using the ALTER TABLE DROP PARTITION statement.

● If the partitioned table is a hash partitioned table, partitions in the table
cannot be deleted by using the ALTER TABLE DROP PARTITION statement.

3.4.3 EXCHANGE PARTITION
You can run this command to exchange the data in a partition with that in an
ordinary table. This command can quickly import data to or export data from a
partitioned table, achieving efficient data loading. In service migration scenarios,
using EXCHANGE PARTITION is much faster than using common import operation.
You can exchange a partition by specifying the partition name or partition value.

CA UTION

● Running this command will invalidate the global index. You can use the
UPDATE GLOBAL INDEX clause to update the global index synchronously or
rebuild the global index.

NO TICE

● When exchanging partitions, you can declare WITH/WITHOUT VALIDATION,
indicating whether to validate that ordinary table data meets the partition key
constraint rules of the target partition (validated by default). The overhead of
data validation is high. If you ensure that the exchanged data belongs to the
target partition, you can declare WITHOUT VALIDATION to improve the
exchange performance.

● You can declare WITH VALIDATION VERBOSE. In this case, the database
validates each row of the ordinary table, inserts the data that does not meet
the partition key constraint of the target partition to other partitions of the
partitioned table, and exchanges the ordinary table with the target partition.

For example, if the following partition definition and data distribution of the
exchange_sales table are provided, and the DATE_202001 partition is exchanged
with the exchange_sales table, the following behaviors exist based on the
declaration clause:

● If WITHOUT VALIDATION is declared, all data is exchanged to the
DATE_202001 partition. Because '2020-02-03' and '2020-04-08' do not meet
the range constraint of the DATE_202001 partition, subsequent services may
be abnormal.

● If WITH VALIDATION is declared, and '2020-02-03' and '2020-04-08' do not
meet the range constraint of the DATE_202001 partition, the database
reports an error.

● If WITH VALIDATION VERBOSE is declared, the database inserts '2020-02-03'
into the DATE_202002 partition, inserts '2020-04-08' into the DATE_202004
partition, and exchanges the remaining data with the DATE_202001 partition.

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

-- Partition definition
PARTITION DATE_202001 VALUES LESS THAN ('2020-02-01'),
PARTITION DATE_202002 VALUES LESS THAN ('2020-03-01'),
PARTITION DATE_202003 VALUES LESS THAN ('2020-04-01'),
PARTITION DATE_202004 VALUES LESS THAN ('2020-05-01')
-- Data distribution of exchange_sales
('2020-01-15', '2020-01-17', '2020-01-23', '2020-02-03', '2020-04-08')

WARNING

If the data to be exchanged does not completely belong to the target partition, do
not declare WITHOUT VALIDATION. Otherwise, the partition constraint rules will
be damaged, and subsequent DML statement results of the partitioned table will
be abnormal.

The ordinary table and partition whose data is to be exchanged must meet the
following requirements:
● The number of columns in an ordinary table is the same as that in a partition,

and the information in the corresponding columns is strictly consistent.
● The compression information of the ordinary table and partitioned table is

consistent.
● The number of ordinary table indexes is the same as that of local indexes of

the partition, and the index information is the same.
● The number and information of constraints of the ordinary table and partition

are consistent.
● The ordinary table is not a temporary table.
● The ordinary table and partitioned table do not support dynamic data

masking and row-level access control constraints.

You can use ALTER TABLE EXCHANGE PARTITION to exchange partitions for a
partitioned table.

For example, exchange the partition date_202001 of the partitioned table
range_sales with the ordinary table exchange_sales by specifying the partition
name without validating the partition key, and update the global index.
ALTER TABLE range_sales EXCHANGE PARTITION (date_202001) WITH TABLE exchange_sales WITHOUT
VALIDATION UPDATE GLOBAL INDEX;

Alternatively, exchange the partition corresponding to '2020-01-08' in the range
partitioned table range_sales with the ordinary table exchange_sales by
specifying a partition value, validate the partition, and insert data that does not
meet the target partition constraints into another partition of the partitioned
table. Global indexes become invalid after this command is executed because the
UPDATE GLOBAL INDEX clause is not used.
ALTER TABLE range_sales EXCHANGE PARTITION FOR ('2020-01-08') WITH TABLE exchange_sales WITH
VALIDATION VERBOSE;

3.4.4 TRUNCATE PARTITION
You can run this command to quickly clear data in a partition. The function is
similar to that of DROP PARTITION. The difference is that TRUNCATE PARTITION
deletes only data in a partition, and the definition and physical files of the
partition are retained. You can clear a partition by specifying the partition name or
partition value.

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

CA UTION

● Running this command will invalidate the global index. You can use the
UPDATE GLOBAL INDEX clause to update the global index synchronously or
rebuild the global index.

You can run ALTER TABLE TRUNCATE PARTITION to clear any partition in a
specified partitioned table.

For example, truncate the partition date_202005 in the range partitioned table
range_sales by specifying the partition name and update the global index.
ALTER TABLE range_sales TRUNCATE PARTITION date_202005 UPDATE GLOBAL INDEX;

Alternatively, truncate the partition corresponding to the partition value
'2020-05-08' in the range partitioned table range_sales. Global indexes become
invalid after this command is executed because the UPDATE GLOBAL INDEX
clause is not used.
ALTER TABLE range_sales TRUNCATE PARTITION FOR ('2020-05-08');

3.4.5 SPLIT PARTITION
You can run this command to split a partition into two or more partitions. This
operation is considered when the partition data is too large or you need to add a
partition to a range partition with MAXVALUE or a list partition with DEFAULT. You
can specify a split point to split a partition into two partitions, or split a partition
into multiple partitions without specifying a split point. You can split a partition by
specifying the partition name or partition value.

CA UTION

● This command cannot be applied to hash partitions.
● Running this command will invalidate the global index. You can use the

UPDATE GLOBAL INDEX clause to update the global index synchronously or
rebuild the global index.

NO TICE

The names of the new partitions can be the same as that of the source partition.
For example, partition p1 is split into p1 and p2. However, the database does not
consider the partitions with the same name before and after the splitting as the
same partition.

3.4.5.1 Splitting a Partition for a Range Partitioned Table
You can run ALTER TABLE SPLIT PARTITION to split a partition for a range
partitioned table.

For example, the range of the date_202001 partition in the range partitioned
table range_sales is ['2020-01-01', '2020-02-01'). You can specify the split point
'2020-01-16' to split the date_202001 partition into two partitions and update
the global index.

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

ALTER TABLE range_sales SPLIT PARTITION date_202001 AT ('2020-01-16') INTO
(
 PARTITION date_202001_p1, -- The upper boundary of the first partition is '2020-01-16'.
 PARTITION date_202001_p2 -- The upper boundary of the second partition is '2020-02-01'.
) UPDATE GLOBAL INDEX;

Alternatively, split the partition date_202001 into multiple partitions without
specifying a split point, and update the global index.
ALTER TABLE range_sales SPLIT PARTITION date_202001 INTO
(
 PARTITION date_202001_p1 VALUES LESS THAN ('2020-01-11'),
 PARTITION date_202001_p2 VALUES LESS THAN ('2020-01-21'),
 PARTITION date_202001_p3 -- The upper boundary of the third partition is '2020-02-01'.
)UPDATE GLOBAL INDEX;

Alternatively, split the partition by specifying the partition value instead of the
partition name.
ALTER TABLE range_sales SPLIT PARTITION FOR ('2020-01-15') AT ('2020-01-16') INTO
(
 PARTITION date_202001_p1, -- The upper boundary of the first partition is '2020-01-16'.
 PARTITION date_202001_p2 -- The upper boundary of the second partition is '2020-02-01'.
) UPDATE GLOBAL INDEX;

NO TICE

If the MAXVALUE partition is split, the MAXVALUE range cannot be declared for
the first several partitions, and the last partition inherits the MAXVALUE range.

3.4.5.2 Splitting a Partition for a List Partitioned Table

You can run ALTER TABLE SPLIT PARTITION to split a partition for a list
partitioned table.

For example, assume that the range defined for the partition channel2 of the list
partitioned table list_sales is ('6', '7', '8', '9'). You can specify the split point ('6',
'7') to split the channel2 partition into two partitions and update the global
index.
ALTER TABLE list_sales SPLIT PARTITION channel2 VALUES ('6', '7') INTO
(
 PARTITION channel2_1, -- The first partition range is ('6', '7').
 PARTITION channel2_2 -- The second partition range is ('8', '9').
) UPDATE GLOBAL INDEX;

Alternatively, split the partition channel2 into multiple partitions without
specifying a split point, and update the global index.
ALTER TABLE list_sales SPLIT PARTITION channel2 INTO
(
 PARTITION channel2_1 VALUES ('6'),
 PARTITION channel2_2 VALUES ('8'),
 PARTITION channel2_3 -- The third partition range is ('7', '9').
)UPDATE GLOBAL INDEX;

Alternatively, split the partition by specifying the partition value instead of the
partition name.
ALTER TABLE list_sales SPLIT PARTITION FOR ('6') VALUES ('6', '7') INTO
(
 PARTITION channel2_1, -- The first partition range is ('6', '7').
 PARTITION channel2_2 -- The second partition range is ('8', '9').
) UPDATE GLOBAL INDEX;

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

CA UTION

If the DEFAULT partition is split, the DEFAULT range cannot be declared for the
first several partitions, and the last partition inherits the DEFAULT range.

3.4.6 MERGE PARTITION
You can run this command to merge multiple partitions into one partition.
Partitions can be merged only by specifying partition names, instead of partition
values.

CA UTION

● This command cannot be applied to hash partitions.
● Running this command will invalidate the global index. You can use the

UPDATE GLOBAL INDEX clause to update the global index synchronously or
rebuild the global index.

NO TICE

For a range partition, the name of the new partition can be the same as that of
the last source partition. For example, partitions p1 and p2 can be merged into
p2. For a list partition, the name of the new partition can be the same as that of
any source partition. For example, p1 and p2 can be merged into p1.
If the name of the new partition is the same as that of the source partition, the
database considers the new partition as inheritance of the source partition.

You can run ALTER TABLE MERGE PARTITIONS to merge multiple partitions into
one partition.

For example, merge the partitions date_202001 and date_202002 of the range
partitioned table range_sales into a new partition and update the global index.
ALTER TABLE range_sales MERGE PARTITIONS date_202001, date_202002 INTO
 PARTITION date_2020_old UPDATE GLOBAL INDEX;

3.4.7 MOVE PARTITION
You can run this command to move a partition to a new tablespace. You can move
a partition by specifying the partition name or partition value.

You can use ALTER TABLE MOVE PARTITION to move partitions in a partitioned
table.

For example, move the partition date_202001 from the range partitioned table
range_sales to the tablespace tb1 by specifying the partition name.
ALTER TABLE range_sales MOVE PARTITION date_202001 TABLESPACE tb1;

Alternatively, move the partition corresponding to '0' in the list partitioned table
list_sales to the tablespace tb1 by specifying a partition value.
ALTER TABLE list_sales MOVE PARTITION FOR ('0') TABLESPACE tb1;

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

3.4.8 RENAME PARTITION
You can run this command to rename a partition. You can rename a partition by
specifying the partition name or partition value.

3.4.8.1 Renaming a Partition in a Partitioned Table
You can run ALTER TABLE RENAME PARTITION to rename a partition in a
partitioned table.

For example, rename the partition date_202001 in the range partitioned table
range_sales by specifying the partition name.
ALTER TABLE range_sales RENAME PARTITION date_202001 TO date_202001_new;

Alternatively, rename the partition corresponding to '0' in the list partitioned table
list_sales by specifying a partition value.
ALTER TABLE list_sales RENAME PARTITION FOR ('0') TO channel_new;

3.4.8.2 Renaming an Index Partition for a Local Index
You can run ALTER INDEX RENAME PARTITION to rename an index partition for
a local index. The method is the same as that for renaming a partition in a
partitioned table.

3.4.9 ALTER TABLE ENABLE/DISABLE ROW MOVEMENT
You can run this command to enable or disable row movement for a partitioned
table.

When row migration is enabled, data in a partition can be migrated to another
partition through an UPDATE operation. When row migration is disabled, if such
an UPDATE operation occurs, a service error is reported.

NO TICE

If you are not allowed to update the column where the partition key is located,
you are advised to disable row migration.

For example, if you create a list partitioned table and enable row migration, you
can update the column where the partition key is located across partitions. If you
disable row migration, an error is reported when you update the column where
the partition key is located across partitions.
CREATE TABLE list_sales
(
 product_id INT4 NOT NULL,
 customer_id INT4 PRIMARY KEY,
 time_id DATE,
 channel_id CHAR(1),
 type_id INT4,
 quantity_sold NUMERIC(3),
 amount_sold NUMERIC(10,2)
)
PARTITION BY LIST (channel_id)
(
 PARTITION channel1 VALUES ('0', '1', '2'),
 PARTITION channel2 VALUES ('3', '4', '5'),
 PARTITION channel3 VALUES ('6', '7'),

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

 PARTITION channel4 VALUES ('8', '9')
) ENABLE ROW MOVEMENT;
INSERT INTO list_sales VALUES (153241,65143129,'2021-05-07','0',864134,89,34);
-- The cross-partition update is successful, and data is migrated from partition channel1 to partition
channel2.
UPDATE list_sales SET channel_id = '3' WHERE channel_id = '0';
-- Disable row migration for the partitioned table.
ALTER TABLE list_sales DISABLE ROW MOVEMENT;
-- The cross-partition update fails, and an error is reported: fail to update partitioned table "list_sales".
UPDATE list_sales SET channel_id = '0' WHERE channel_id = '3';
-- The update in the partition is still successful.
UPDATE list_sales SET channel_id = '4' WHERE channel_id = '3';

3.4.10 Invalidating/Rebuilding Indexes of a Partition
You can run commands to invalidate or rebuild a partitioned index or an index
partition. In this case, the index or index partition is no longer maintained. You can
rebuild a partitioned index to restore the index function.

In addition, some partition-level DDL operations also invalidate global indexes,
including DROP, EXCHANGE, TRUNCATE, SPLIT, and MERGE. You can use the
UPDATE GLOBAL INDEX clause to update the global index synchronously.
Otherwise, you need to rebuild the index.

3.4.10.1 Invalidating/Rebuilding Indexes
You can run ALTER INDEX to invalidate or rebuild indexes.

For example, if the range_sales_idx index exists in the range_sales partitioned
table, run the following command to invalidate the index:
ALTER INDEX range_sales_idx UNUSABLE;

Run the following command to rebuild the range_sales_idx index:
ALTER INDEX range_sales_idx REBUILD;

3.4.10.2 Invalidating/Rebuilding Local Indexes of a Partition
● You can run ALTER INDEX PARTITION to invalidate or rebuild local indexes of

a partition.
● You can run ALTER TABLE MODIFY PARTITION to invalidate or rebuild all

indexes of a specified partition in a partitioned table.

For example, assume that the partitioned table range_sales has two local indexes
range_sales_idx1 and range_sales_idx2, and the corresponding indexes on the
partition date_202001 are range_sales_idx1_part1 and range_sales_idx2_part1.

The syntax for maintaining partitioned indexes of a partitioned table is as follows:

● Run the following command to disable all indexes on the date_202001
partition:
ALTER TABLE range_sales MODIFY PARTITION date_202001 UNUSABLE LOCAL INDEXES;

● Alternatively, run the following command to disable the index
range_sales_idx1_part1 on the date_202001 partition:
ALTER INDEX range_sales_idx1 MODIFY PARTITION range_sales_idx1_part1 UNUSABLE;

● Run the following command to rebuild all indexes on the date_202001
partition:
ALTER TABLE range_sales MODIFY PARTITION date_202001 REBUILD UNUSABLE LOCAL INDEXES;

● Alternatively, run the following command to rebuild the index
range_sales_idx1_part1 on the date_202001 partition:

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

ALTER INDEX range_sales_idx1 REBUILD PARTITION range_sales_idx1_part1;

3.5 System Views & DFX Related to Partitioned Tables

3.5.1 System Views Related to Partitioned Tables
The system views related to partitioned tables are classified into three types based
on permissions. For details about the columns, see section "System Catalogs and
System Views > System Views" in Developer Guide.

1. Views related to all partitions:
– ADM_PART_TABLES: stores information about all partitioned tables.
– ADM_TAB_PARTITIONS: stores information about all partitions.
– ADM_PART_INDEXES: stores information about all local indexes.
– ADM_IND_PARTITIONS: stores information about all index partitions.

2. Views accessible to the current user:
– DB_PART_TABLES: stores information about partitioned tables accessible

to the current user.
– DB_TAB_PARTITIONS: stores information about partitions accessible to

the current user.
– DB_PART_INDEXES: stores local index information accessible to the

current user.
– DB_IND_PARTITIONS: stores information about index partitions accessible

to the current user.
3. Views owned by the current user:

– MY_PART_TABLES: stores information about partitioned tables owned by
the current user.

– MY_TAB_PARTITIONS: stores information about partitions owned by the
current user.

– MY_PART_INDEXES: stores local indexes owned by the current user.
– MY_IND_PARTITIONS: stores information about index partitions owned by

the current user.

3.5.2 Built-in Tool Functions Related to Partitioned Tables

Information About Table Creation
● Create a table.

CREATE TABLE test_range_pt (a INT, b INT, c INT)
PARTITION BY RANGE (a)
(
 PARTITION p1 VALUES LESS THAN (2000),
 PARTITION p2 VALUES LESS THAN (3000),
 partition p3 VALUES LESS THAN (4000),
 partition p4 VALUES LESS THAN (5000),
 partition p5 VALUES LESS THAN (MAXVALUE)
)ENABLE ROW MOVEMENT;

● View the OID of the partitioned table.
SELECT oid FROM pg_class WHERE relname = 'test_range_pt';
oid

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

49290
(1 row)

● View the partition information.
SELECT oid,relname,parttype,parentid,boundaries FROM pg_partition WHERE parentid = 49290;
oid | relname | parttype | parentid | boundaries
-------+---------------+----------+----------+------------
49293 | test_range_pt | r | 49290 |
49294 | p1 | p | 49290 | {2000}
49295 | p2 | p | 49290 | {3000}
49296 | p3 | p | 49290 | {4000}
49297 | p4 | p | 49290 | {5000}
49298 | p5 | p | 49290 | {NULL}
(6 rows)

● Create an index.
CREATE INDEX idx_range_a ON test_range_pt(a) LOCAL;
CREATE INDEX
-- Check the OID of the partitioned index.
SELECT oid FROM pg_class WHERE relname = 'idx_range_a';
oid

90250
(1 row)

● View the index partition information.
SELECT oid,relname,parttype,parentid,boundaries,indextblid FROM pg_partition WHERE parentid =
90250;
oid | relname | parttype | parentid | boundaries | indextblid
-------+----------+----------+----------+------------+------------
90255 | p5_a_idx | x | 90250 | | 49298
90254 | p4_a_idx | x | 90250 | | 49297
90253 | p3_a_idx | x | 90250 | | 49296
90252 | p2_a_idx | x | 90250 | | 49295
90251 | p1_a_idx | x | 90250 | | 49294
(5 rows)

Example of Tool Functions
● pg_get_tabledef is used to obtain the definition of a partitioned table. The

input parameter can be the table OID or table name.
SELECT pg_get_tabledef('test_range_pt');
 pg_get_tabledef
--
 SET search_path = public; +
 CREATE TABLE test_range_pt (+
 a integer, +
 b integer, +
 c integer +
) +
 WITH (orientation=row, compression=no) +
 PARTITION BY RANGE (a) +
 (+
 PARTITION p1 VALUES LESS THAN (2000) TABLESPACE pg_default, +
 PARTITION p2 VALUES LESS THAN (3000) TABLESPACE pg_default, +
 PARTITION p3 VALUES LESS THAN (4000) TABLESPACE pg_default, +
 PARTITION p4 VALUES LESS THAN (5000) TABLESPACE pg_default, +
 PARTITION p5 VALUES LESS THAN (MAXVALUE) TABLESPACE pg_default+
) +
 ENABLE ROW MOVEMENT;
(1 row)

● pg_stat_get_partition_tuples_hot_updated is used to return the number of
hot updated tuples in a partition with a specified partition ID.
Insert 10 data records into partition p1 and update the data. Count the
number of hot updated tuples in partition p1.
INSERT INTO test_range_pt VALUES(generate_series(1,10),1,1);
INSERT 0 10

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

SELECT pg_stat_get_partition_tuples_hot_updated(49294);
pg_stat_get_partition_tuples_hot_updated
--
0
(1 row)
UPDATE test_range_pt SET b = 2;
UPDATE 10
SELECT pg_stat_get_partition_tuples_hot_updated(49294);
pg_stat_get_partition_tuples_hot_updated
--
10
(1 row)

● pg_partition_size(oid,oid) is used to specify the disk space used by the
partition with a specified OID. The first oid is the OID of the table and the
second oid is the OID of the partition.

Check the disk space of partition p1.
SELECT pg_partition_size(49290, 49294);
pg_partition_size

90112
(1 row)

● pg_partition_size(text, text) is used to specify the disk space used by the
partition with a specified name. The first text is the table name and the
second text is the partition name.

Check the disk space of partition p1.
SELECT pg_partition_size('test_range_pt', 'p1');
pg_partition_size

90112
(1 row)

● pg_partition_indexes_size(oid,oid) is used to specify the disk space used by
the index of the partition with a specified OID. The first oid is the OID of the
table and the second oid is the OID of the partition.

Check the disk space of the index partition of partition p1.
SELECT pg_partition_indexes_size(49290, 49294);
pg_partition_indexes_size

204800
(1 row)

● pg_partition_indexes_size(text,text) is used to specify the disk space used
by the index of the partition with a specified name. The first text is the table
name and the second text is the partition name.

Check the disk space of the index partition of partition p1.
SELECT pg_partition_indexes_size('test_range_pt', 'p1');
pg_partition_indexes_size

204800
(1 row)

● pg_partition_filenode(partition_oid) is used to obtain the file node
corresponding to the OID of the specified partitioned table.

Check the file node of partition p1.
SELECT pg_partition_filenode(49294);
pg_partition_filenode

49294
(1 row)

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

● pg_partition_filepath(partition_oid) is used to specify the file path name of
the partition.
Check the file path of partition p1.
SELECT pg_partition_filepath(49294);
pg_partition_filepath

base/16521/49294
(1 row)

GaussDB
Feature Guide for Distributed Instances 3 Partitioned Table

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

4 Storage Engine

4.1 Storage Engine Architecture

4.1.1 Overview

4.1.1.1 Static Compilation Architecture
From the perspective of the entire database service architecture, the storage
engine upward connects to the SQL engine to provide or receive data in a
standard format (tuple or vector array) for or from the SQL engine, and
downward reads data from or writes data to storage media by a specific data
organization mode such as page, compress unit, or other forms through specific
interfaces provided by the storage media. GaussDB Kernel enables database
professionals to select dedicated storage engines for meeting specific application
requirements through static compilation. To reduce interference to the execution
engines, the row-store table access method (TableAM) layer is provided to shield
the differences caused by the underlying row-store engines so that different row-
store engines can evolve independently. See the following figure.

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

On this basis, the storage engines provide data persistence and reliability
capabilities through the log system. The concurrency control (transaction) system
ensures atomicity, consistency, and isolation between multiple read and write
operations that are executed at the same time. The index system provides
accelerated addressing and query capabilities for specific data. The primary/
standby replication system provides high availability of the entire database service.

Row-store engines are oriented to online transaction processing (OLTP) scenarios,
which are suitable for highly concurrent read and write operations on a small
amount of data at a single point or within a small range. Row-store engines
upward provide interfaces to read tuples from or write tuples to the SQL engine,
downward perform read and write operations on storage media by page through
an extensible media manager, and improve read and write operation efficiency in
the shared buffer by page. For concurrent read and write operations, multi-version
concurrency control (MVCC) is used. For concurrent write and write operations,
pessimistic concurrency control (PCC) based on the two-phase locking (2PL)
protocol is used. Currently, the default media manager of row-store engines uses
the disk file system interface. Other types of storage media such as block devices
will be supported in the future. The GaussDB Kernel row-store engine can be the
append update-based Astore or in-place update-based Ustore.

4.1.1.2 Database Service Layer
From the technical perspective, a storage engine requires some infrastructure
components.

Concurrency: The overhead of a storage engine can be reduced by properly
employing locks, so as to improve overall performance. In addition, it provides
functions such as multi-version concurrency control and snapshot reading.

Transaction: All transactions must meet the ACID requirements and their statuses
can be queried.

Memory cache: Typically, storage engines cache indexes and data when accessing
them. You can directly process common data in the cache pool, which facilitates
the handling speed.

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

Checkpoint: Though storage engines are different, they all support incremental
checkpoint/double write and full checkpoint/full page write. For different
applications, you can select incremental checkpoint/double write or full
checkpoint/full page write based on different conditions, which is transparent to
storage engines.

Log: GaussDB Kernel uses physical logs. The write, transmission, and replay
operations of physical logs are transparent to the storage engine.

4.1.2 Setting Up a Storage Engine
The storage engine has a great impact on the overall efficiency and performance
of the database. Select a proper storage engine based on the actual requirements.
You can run WITH ([ORIENTATION | STORAGE_TYPE] [= value] [, ...]) to
specify an optional storage parameter for a table or index. The parameters are
described as follows.

ORIENTATION STORAGE_TYPE

ROW (default value): The data will
be stored in rows.

[USTORE (default value)|ASTORE|Null]

If ORIENTATION is set to ROW and STORAGE_TYPE is left empty, the type of the
created table is determined by the value of the enable_default_ustore_table
parameter. The parameter value can be on or off. The default value is on. For
details about the parameter, see "Configuring GUC Parameters > GUC Parameters"
in Administrator Guide. If this parameter is set to on, a Ustore table is created. If
this parameter is set to off, an Astore table is created.

Example:
gaussdb=# CREATE TABLE TEST(a int);
gaussdb=# \d+ test
 Table "public.test"
 Column | Type | Modifiers | Storage | Stats target | Description
--------+---------+-----------+---------+--------------+-------------
 a | integer | | plain | |
Has OIDs: no
Options: orientation=row, compression=no, storage_type=USTORE

gaussdb=# CREATE TABLE TEST1(a int) with(orientation=row, storage_type=ustore);
gaussdb=# \d+ test1
Table "public.test1"
 Column | Type | Modifiers | Storage | Stats target | Description
--------+---------+-----------+---------+--------------+-------------
 a | integer | | plain | |
Has OIDs: no
Options: orientation=row, storage_type=ustore, compression=no

gaussdb=# CREATE TABLE TEST2(a int) with(orientation=row, storage_type=astore);
gaussdb=# \d+ test2
Table "public.test2"
 Column | Type | Modifiers | Storage | Stats target | Description
--------+---------+-----------+---------+--------------+-------------
 a | integer | | plain | |
Has OIDs: no
Options: orientation=row, storage_type=astore, compression=no

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

gaussdb=# create table test4(a int) with(orientation=row);
gaussdb=# \d+
 List of relations
 Schema | Name | Type | Owner | Size | Storage | Description
--------+-------+-------+-----------+---------+--+-------------
 public | test4 | table | l30048445 | 0 bytes | {orientation=row,compression=no,storage_type=USTORE} |
(1 row)

gaussdb=# show enable_default_ustore_table;
 enable_default_ustore_table

 on
(1 row)

4.1.3 Storage Engine Update Description

4.1.3.1 GaussDB 503
- Adapted Ustore to distributed deployment/parallel query/global temporary
table/full vacuum/column constraints DEFERRABLE and INITIALLY DEFERRED.

- Added the online index rebuild function to Ustore.

- Enhanced B-tree empty page estimation for Ustore to improve the cost
estimation accuracy of an optimizer.

- Added the storage engine reliability verification framework Dignose Page/Page
Verify to Ustore.

- Enhanced the view parsing, detection, and repair related to Ustore.

- Enhanced the WAL locating capability for Ustore. The gs_redo_upage system
view is added to support constant replay of a single page and obtain and print any
historical page, accelerating fault locating for damaged pages.

- Extended the Ustore transaction directory's physical format for transaction slots
for space reuse within a transaction.

- Added the online index creation function for Ustore.

- Adapted Ustore to the flashback function and ultimate RTO.

4.1.3.2 GaussDB R2
- Added the Ustore row storage engine based on in-place update to implement
separate storage of new and old data.

- Added rollback segments to Ustore.

- Added the synchronous, asynchronous, and in-page rollback to Ustore.

- Enhanced Ustore B-tree indexes for transactions.

- Added the flashback function to Astore to support table flashback, flashback
query, flashback DROP, and flashback TRUNCATE.

- Ustore does not support the following features: distributed deployment/parallel
query/table sampling/global temporary table/online creation/index rebuild/
ultimate RTO/full vacuum/column constraints such as DEFERRABLE and INITIALLY
DEFERRED.

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

4.2 Astore

4.2.1 Overview
The biggest difference between Astore and Ustore lies in whether the latest data
and historical data are stored separately. Astore does not perform separated
storage. Ustore only separates data, but does not separate indexes.

Astore Advantages
1. Astore does not have rollback segments, but Ustore does. For Ustore, rollback

segments are very important. If rollback segments are damaged, data will be
lost or even the database cannot be started. In addition, redo and undo
operations are required for Ustore restoration. For Astore, it does not have a
rollback segment, therefore, old data is stored in the original files, whose
restoration is not as complex as that of Ustore.

2. Besides, the error "Snapshot Too Old" is not frequently reported, because old
data is directly recorded in data files instead of rollback segments.

3. The rollback operation can be completed quickly since no data needs to be
deleted. However, the rollback operation is complex, because the
modifications and the inserted records must be deleted, and the updated
records must be undone. In addition, a large number of redo logs are
generated during rollback.

4. WAL in Astore is simpler than that in Ustore. Only data file changes need to
be recorded in WALs. Rollback segment changes do not need to be recorded.

4.3 Ustore

4.3.1 Overview
Ustore is an in-place update storage engine launched by GaussDB. The biggest
difference between Ustore and Astore lies in that, the latest data and historical
data (excluding indexes) are stored separately.

Ustore Advantages
1. The latest data and historical data are stored separately. Compared with

Astore, Ustore has a smaller scanning scope. The HOT chain of Astore is
removed. Non-index columns, index columns, and heaps can be updated in-
place without change to row IDs. Historical data can be recycled in batches,
which is friendly to the expansion of the latest data.

2. If the same row is updated in a large concurrency, the in-place update
mechanism of Ustore ensures the stability of tuple row IDs and update
latency.

3. VACUUM is not the only way to clear historical data. Indexes are decoupled
from heaps and can be cleared separately with good I/O stability.

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

4. The flashback function is supported.

However, in addition to modifying data pages, Ustore DML operations also modify
undo logs. Therefore, the update overhead is higher. In addition, the scanning
overhead of a single tuple is high because of replication (Astore returns pointers).

4.3.1.1 Ustore Features and Specifications

4.3.1.1.1 Restrictions

Category Feature Supported or Not

Transactio
n

Serializable ×

DDL operations on a partitioned table in a
transaction block

×

Scalability Hash bucket ×

SQL Table sampling/Materialized view/Key-value
lock

×

4.3.1.1.2 Storage Specifications

1. The maximum number of columns in a data table is 1600.

2. The maximum tuple length of a Ustore table (excluding toast) cannot exceed
8192 – MAXALIGN(56 + init_td x 26 + 4), where MAXALIGN indicates 8-byte
alignment. When the length of the inserted data exceeds the threshold, you
will receive an error reporting that the tuple is too long to be inserted. The
impact of init_td on the tuple length is as follows:

– If the value of init_td is the minimum value 2, the tuple length cannot
exceed 8192 – MAXALIGN(56 + 2 x 26 + 4) = 8080 bytes.

– If the value of init_td is the default value 4, the tuple length cannot
exceed 8192 – MAXALIGN(56 + 4 x 26 + 4) = 8024 bytes.

– If the value of init_td is the maximum value 128, the tuple length cannot
exceed 8192 – MAXALIGN(56 + 128 x 26 + 4) = 4800 bytes.

3. The value range of init_td is [2,128], and the default value is 4. A single page
supports a maximum of 128 concurrent transactions.

4. The maximum number of index columns is 32. The maximum number of
columns in a global partitioned index is 31.

5. The length of an index tuple cannot exceed (8192 – MAXALIGN(28 + 3 x 4 + 3
x 10) – MAXALIGN(42))/3, where MAXALIGN indicates 8-byte alignment.
When the length of the inserted data exceeds the threshold, you will receive
an error reporting that the tuple is too long to be inserted. As for the
threshold, the index page header is 28 bytes, row pointer is 4 bytes, tuple
CTID+INFO flag is 10 bytes, and page tail is 42 bytes.

6. The maximum rollback segment size is 16 TB.

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

4.3.1.2 Examples
Create a Ustore table.

Run the CREATE TABLE statement to create a Ustore table.

gaussdb=# CREATE TABLE ustore_table(a INT PRIMARY KEY, b CHAR (20)) WITH (STORAGE_TYPE=USTORE);
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "ustore_table_pkey" for table
"ustore_table"
CREATE TABLE
gaussdb=# \d+ ustore_table
Table "public.ustore_table"
Column | Type | Modifiers | Storage | Stats target | Description
--------+---------------+-----------+----------+--------------+-------------
a | integer | not null | plain | |
b | character(20) | | extended | |
Indexes:
"ustore_table_pkey" PRIMARY KEY, ubtree (a) WITH (storage_type=USTORE) TABLESPACE pg_default
Has OIDs: no
Options: orientation=row, storage_type=ustore, compression=no

Create an index for a Ustore table.

Currently, Ustore supports only multi-version B-tree indexes. In some scenarios, to
distinguish them from Astore B-tree indexes, a multi-version B-tree index of the
Ustore table is also called a Ustore B-tree or UB-tree. For details about UB-tree,
see Index. You can run the CREATE INDEX statement to create a UB-tree index
for the "a" attribute of a Ustore table.

If no index type is specified for a Ustore table, a UB-tree index is created by
default.

gaussdb=# CREATE INDEX UB-tree_index ON ustore_table(a);
CREATE INDEX
gaussdb=# \d+ ustore_table
Table "public.ustore_table"
Column | Type | Modifiers | Storage | Stats target | Description
--------+---------------+-----------+----------+--------------+-------------
a | integer | not null | plain | |
b | character(20) | | extended | |
Indexes:
"ustore_table_pkey" PRIMARY KEY, ubtree (a) WITH (storage_type=USTORE) TABLESPACE pg_default
"ubtree_index" ubtree (a) WITH (storage_type=USTORE) TABLESPACE pg_default
Has OIDs: no
Options: orientation=row, storage_type=ustore, compression=no

4.3.1.3 Best Practices of Ustore

4.3.1.3.1 How Can I Configure init_td

Transaction directory (TD) is a unique structure used by Ustore tables to store
page transaction information. The number of TDs determines the maximum
number of concurrent transactions supported on a page. When creating a table or
index, you can specify the initial TD size init_td, whose default value is 4. That is,
four concurrent transactions are supported to modify the page. The maximum
value of init_td is 128.

You can configure init_td based on the service concurrency requirements. Besides,
you can also configure it based on the occurrence frequency of wait available td
events during service running. Generally, the value of wait available td is 0. If the
value of wait available td is not 0, there are events waiting for available TDs. In
this case, you are advised to increase the value of init_td. If the value 0 is an

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

occasional situation, you are not advised to adjust init_td because extra TD slots
occupy more space. You are advised to gradually increase the value in ascending
order, such as 8, 16, 32, 48, ..., and 128, and check whether the number of wait
events decreases significantly in this process. Use the minimum value of init_td
with few wait events as the default value to save space. For details about how to
configure and modify init_td, see "SQL Reference > SQL Syntax > CREATE TABLE"
in Developer Guide.

4.3.1.3.2 How Can I Configure fillfactor

fillfactor is a parameter used to describe the page filling rate and is directly
related to the number and size of tuples that can be stored on a page and the
physical space of a table. The default page filling rate of Ustore tables is 92%. The
reserved 8% space is used for page update and TD list expansion. For details
about how to configure and modify fillfactor, see "SQL Reference > SQL Syntax >
CREATE TABLE" in Developer Guide.

You can configure fillfactor after analyzing services. If only query or fixed-length
update operations are performed after table data is imported, you can increase
the page filling rate to 100%. If a large number of fixed-length updates are
performed after data is imported, you are advised to retain or decrease the page
filling rate to reduce performance loss caused by cross-page update.

4.3.1.3.3 Collecting Statistics

Clearing invalid tuples in Ustore tables depends on the accuracy of statistics.
Disabling track_counts and track_activities will cause tablespace bloat. By
default, they are enabled. You are advised to enable them, except in performance-
sensitive scenarios.

To enable them, run the following commands:

gs_guc reload -Z datanode -N all -I all -c "track_counts=on;"
gs_guc reload -Z datanode -N all -I all -c "track_activities=on;"

To disable them, run the following commands:

gs_guc reload -Z datanode -N all -I all -c "track_counts=off;"
gs_guc reload -Z datanode -N all -I all -c "track_activities=off;"

4.3.1.3.4 Online Verification

Online verification is unique to Ustore. It can effectively prevent logic damage on
a page caused by encoding logic errors during running. By default, it is enabled.
Keep it enabled on the live network, except in performance-sensitive scenarios.

To disable it, run the following command:

gs_guc reload -Z datanode -N all -I all -c "ustore_attr='';"

To enable it, run the following command:

gs_guc reload -Z datanode -N all -I all -c
"ustore_attr=''ustore_verify_level=fast;ustore_verify_module=upage:ubtree:undo"

4.3.1.3.5 How Can I Configure the Size of Rollback Segments

Generally, use the default size of rollback segments. To achieve optimal
performance, you can adjust the parameters related to the rollback segment size
in some scenarios. The scenarios and corresponding configurations are as follows:

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

1. Historical data within a specified period needs to be retained.

To use flashback or locate faults, you can change the value of
undo_retention_time to retain more historical data. The default value of
undo_retention_time is 0. The value ranges from 0 to 3 days.

You are advised to set it to 900s. Note that a larger value of
undo_retention_time indicates more undo space usage and data space bloat,
which further affects the data scanning and update performance. When
flashback is not used, you are advised to set undo_retention_time to a
smaller value to reduce the disk space occupied by historical data and achieve
optimal performance. You can use the following method to determine the
new value of undo_retention_time that is more suitable for your service
model:

new_val = 0.5 x (undo_space_limit_size x 0.8 – curr_used_undo_size)/
avg_space_increse_speed, where avg_space_increse_speed is the recent
average growth speed of the undo space and curr_used_undo_size is the
current undo space and both of them can be queried in the gs_stat_undo
view.

2. Historical data within a specified size needs to be retained.

If long transactions or large transactions exist in your service, undo space may
bloat. In this case, you need to increase the value of undo_space_limit_size.
The default value of undo_space_limit_size is 256GB, and the value ranges
from 800 MB to 16 TB.

If the disk space is sufficient, you are advised to double the value of
undo_space_limit_size. In addition, a larger value of undo_space_limit_size
indicates more disk space occupation and deteriorated performance. If no
undo space bloat is found by querying curr_used_undo_size of
gs_stat_undo(), you can restore the value to the original value.

After adjusting the value of undo_space_limit_size, you can increase the
value of undo_limit_size_per_transaction, which ranges from 2 MB to 16 TB.
The default value is 32GB. It is recommended that the value of
undo_limit_size_per_transaction be less than or equal to that of
undo_space_limit_size, that is, the threshold of the undo space allocated to a
single transaction be less than or equal to the threshold of the total undo
space.

To accurately set this parameter to achieve optimal performance, you are
advised to determine the new value by using the following methods:

– undo_space_limit_size: new_val = 86400 x 30 x avg_space_increse_speed
+ curr_used_undo_size, where avg_space_increse_speed and
curr_used_undo_size can be queried in the gs_stat_undo view.

– undo_limit_size_per_transaction: new_val = 10 x max_xact_space, where
max_xact_space indicates the maximum undo space occupied by a single
transaction and can be queried in the gs_stat_undo() view in the 503.2
version.

3. The parameter adjustment priority is retained for historical data.

If any of undo_retention_time, undo_space_limit_size and
undo_limit_size_per_transaction is reached, the corresponding restriction is
triggered.

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

For example, assume that undo_space_limit_size is set to 1GB, and
undo_retention_time is set to 900s. If the size of historical data generated
within 900s is less than 1 GB x 0.8, the system recycles the data generated
within 900s. If the data exceeds 1 GB x 0.8 generated within 900s, only 1 GB x
0.8 data will be recycled. In this case, if the disk space is sufficient, you can
increase the value of undo_space_limit_size. If not, decrease the value of
undo_retention_time.

4.3.2 Storage Format

4.3.2.1 Relation

4.3.2.1.1 Page-based Row Consistency Read (PbRCR) Heap Multi-Version
Management

1. The heap multi-version management is row-level multi-version management
based on tuples.

2. When a transaction modifies a record, historical data is recorded in an undo
row.

3. The address of the generated undo row (zone_id, block no, page offset) is
recorded in td_id in a tuple.

4. New data is overwritten to the heap page.

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

5. Each data modification generates an undo row. Undo rows with the same
record is connected by block_prev.

4.3.2.1.2 PbPCR Heap Visibility Mechanism

1. Currently, only row consistency read is supported. In the future, CR page
construction and page consistency read will be supported, greatly improving
the sequence scanning efficiency.

2. Space can be reused after data deletion transactions are committed without
waiting for oldestxmin, increasing the space utilization. Old snapshots can be
obtained from undo records.

4.3.2.1.3 Heap Space Management

Ustore uses the free space map (FSM) file to record the free space of each data
page and organizes it in the tree structure. When you want to perform insert
operations or non-in-place update operations on a table, search an FSM file
corresponding to the table to check whether the maximum free space recorded in
current FSM file meets the requirement of the insert operation. If yes, perform the
insert operation after the corresponding block number is returned. If no, expand
the page logic.

The FSM structure corresponding to each table or partition is stored in an
independent FSM file. The FSM file and the table data are stored in the same
directory. For example, if the data file corresponding to table t1 is 32181, the
corresponding FSM file is 32181_fsm. FSM is stored in the format of data blocks,
which are called FSM block. The logical structure among FSM blocks is a tree with
three layers of nodes. The nodes of the tree in logic are max heaps. Each searching
on FSM starts from the root node to leaf nodes to search for and return an
available page for the following operations. This structure may not keep real-time
consistency with the actual available space of data pages and is maintained
during DML execution. Ustore occasionally repairs and rebuilds FSM during the
automatic vacuum process.

4.3.2.2 Index
The UB-tree is enhanced as follows:

1. Added the MVCC capability.
2. Added the capability of recycling independent empty pages.

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

4.3.2.2.1 Row Consistency Read (RCR) UB-tree Multi-Version Management

1. The UB-tree multi-version management adopts the key-based multi-version
management. The latest version and historical versions are both on UB-tree.

2. To save the space, xmin/xmax is expressed in xid-base + delta. The 64-bit xid-
base is stored on pages and the 32-bit delta is stored on tuples. The xid-base
on pages also needs to be maintained through additional logic.

3. Keys are inserted into or deleted from the UB-tree in the sequence of key +
TID. Tuples with the same index column are sorted based on their TIDs as the
second keywords. The xmin and xmax are added to the end of the key.

4. During index splitting, multi-version information is migrated with key
migration.

4.3.2.2.2 RCR UB-Tree Visibility Mechanism

1. Multi-version management and visibility check of index data are supported to
identify tuples of historical versions and recycle them. In addition, the visibility
check at the index layer greatly improves the probability of index scanning
and index-only scanning.

2. In addition to the index insertion operation, an index deletion operation is
added to mark an index tuple corresponding to a deleted or modified tuple.

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

4.3.2.2.3 Inserting, Deleting, Updating, and Scanning UB-Tree

● Insert: The insertion logic of UB-tree is basically not changed, except that you
need to directly obtain the transaction information and fill in the xmin
column during index insertion.

● Delete: The index deletion process is added for UB-tree. The main procedure
of index deletion is similar to that of index insertion. That is, obtain the
transaction information, fill in the xmax column (The B-tree index does not
maintain the version information so that the deletion operation is required.),
and update active_tuple_count on pages. If active_tuple_count is reduced to
0, the system attempts to recycle the page.

● Update: For Ustore, data update operations on UB-tree index columns are
different from those on Astore. Data update includes index column update
and non-index column update. The following figure shows the processing of
UB-tree data update.

The preceding figure shows the differences between UB-tree updates in index
columns and non-index columns.

a. When a non-index column is updated, the index does not change. The
index tuple points to the data tuple inserted at the first time. The Uheap
does not insert a new data tuple. Instead, the Uheap modifies the current
data tuple and saves historical data to the undo segment.

b. When the index column is updated, a new index tuple is inserted into UB-
tree and points to the same data linepointer and data tuple. To scan the
data of historical versions, you need to read it from the undo segment.

● Scan: When reading data, you can use index to speed up scanning. UB-tree
supports multi-version management and visibility check of index data. The
visibility check at the index layer improves the performance of index scanning
and index-only scanning.
For index scanning:

a. If the index column contains all columns to be scanned (index-only
scanning), binary search is performed on indexes based on the scanning
conditions. If a tuple that meets the conditions is found, data is returned.

b. If the index column does not contain all columns to be scanned (index
scanning), binary search is performed on indexes based on the scanning
conditions to find TIDs of the tuples that meet the conditions, and then

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

the corresponding data tuples are found in data tables based on the TIDs.
See the following figure.

4.3.2.2.4 UB-Tree Space Management

Currently, Astore indexes depend on AutoVacuum and FSM for space
management. The space may not be recycled in a timely manner. However, Ustore
indexes use the UB-tree recycle queue (URQ) to manage idle index space. The
URQ contains two circular queues: potential empty page queue and available
empty page queue. Completing space management of indexes in a DML process
can effectively alleviate the sharp space expansion caused during the DML
process. Index recycle queues are separately stored in FSM files corresponding to
the B-tree indexes.

As shown in the preceding figure, the index page flow in the URQ is as follows:

1. Index empty page > Potential queue
The index page tail column records the number of active tuples
(activeTupleCount) on the page. During the DML process, all tuples on a page
are deleted, that is, when activeTupleCount is set to 0, the index page is
placed in the potential queue.

2. Potential queue > Available queue
The flow from a potential queue to an available queue mainly achieves an
income and expense balance for the potential queue and ensure that pages
are available for the available queue. That is, after an index empty page is
used up in an available queue, at least one index page is transferred from a
potential queue to the available queue. Besides, if a new index page is added

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

to a potential queue, at least one index page can be removed from the
potential queue and inserted into the available queue.

3. Available queue > Index empty page
When an empty index page is obtained during index splitting, the system first
searches an available queue for an index page that can be reused. If such
index page is found, it is directly reused. If no index page can be reused,
physical page expansion is performed.

4.3.2.3 Undo

Data of historical versions is stored in the $GAUSS_HOME/undo directory. The
rollback segment log is a collection of all undo logs associated with a single write
transaction. Permanent, unlogged, and temp tables are supported.

4.3.2.3.1 Rollback Segment Management

1. Each undo zone manages some txn pages and undo pages.
2. Undo rows are stored on undo pages. Therefore, the modified data of

historical versions is recorded on the undo pages.
3. Records on the undo pages are also data. Therefore, modifications on the

undo pages are also recorded on the redo pages.

4.3.2.3.2 File Structure

Structure of the file where the txn page is stored

$GAUSS_HOME/undo/{permanent|unlogged|temp}/$undo_zone_id.meta.$segno

Structure of the file where the undo row is stored

$GAUSS_HOME/undo/{permanent|unlogged|temp}/$undo_zone_id.$segno

4.3.2.3.3 Undo Space Management

The undo subsystem relies on the backend recycle thread to recycle free space. It
recycles the space of the undo module on the primary server. As for the standby
server, it recycles the space by replaying the Xlog. The recycle thread traverses the
undo zones in use. The txn pages in the undo zone are scanned in the ascending
order of XIDs. The transactions that have been committed or rolled back are also
recycled. The commit time of transactions must be earlier than $ (current_time –
undo_retention_time). For a transaction that needs to be rolled back during a
traversal, the recycle thread adds an asynchronous rollback task for the
transaction.

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

When the database has transactions that run for a long time and contain a large
amount of modified data, or it takes a long time to enable flashback, the undo
space may continuously expand. When the undo space is close to the value
specified by undo_space_limit_size, forcible recycling is triggered. As long as a
transaction has been committed or rolled back, the transaction may be recycled
even if it is committed later than $ (current_time – undo_retention_time).

4.3.3 Ustore Transaction Model
GaussDB transaction basis:

1. An XID is not automatically allocated when a transaction is started, unless the
first DML/DDL statement in the transaction is executed.

2. When a transaction ends, a commit log (CLOG) indicating the transaction
commit state is generated. The states can be IN_PROGRESS, COMMITTED,
ABORTED, or SUB_COMMITTED. Each transaction has two CLOG status bits.
Each byte on the CLOG page indicates four transaction commit states.

3. When a transaction ends, a commit sequence number (CSN) is generated,
which is an instance-level variable. Each XID has its unique CSN. The CSN can
mark the following transaction states: IN_PROGRESS, COMMITTED, ABORTED,
or SUB_COMMITTED.

4.3.3.1 Transaction Commit
1. Implicit transaction. A single DML/DDL statement can automatically trigger

an implicit transaction, which does not have explicit transaction block control
statements (such as START TRANSACTION/BEGIN/COMMIT/END). After a
DML/DDL statement ends, the transaction is automatically committed.

2. Explicit transaction. An explicit transaction uses an explicit statement, such as
START TRANSACTION or BEGIN, to control the start of the transaction. The
COMMIT and END statements control the commit of a transaction.
Sub-transactions must be in explicit transactions or stored procedures. The
SAVEPOINT statement controls the start of sub-transactions, and the RELEASE
SAVEPOINT statement controls the end of sub-transactions. If sub-
transactions that are not released during transaction committing, the sub-
transactions are committed before the transaction is committed.
Ustore supports READ COMMITTED. At the beginning of statement execution,
the current system CSN is obtained for querying the current statement. The
visible result of the entire statement is determined at the beginning of
statement execution and is not affected by subsequent transaction
modifications. By default, READ COMMITTED in the Ustore is consistent.
Ustore also supports standard 2PC transactions.

4.3.3.2 Transaction Rollback

Rollback is a process in which a transaction cannot be executed if a fault occurs
during transaction running. In this case, the system needs to cancel the
modification operations that have been completed in the transaction. Astore and
UB-tree do not have rollback segments. Therefore, there is no dedicated rollback
operation. To ensure performance, the Ustore rollback process supports
synchronous, asynchronous, and in-page instant rollback.

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

1. Synchronous rollback.
Transaction rollback is triggered in any of the following scenarios:

a. The ROLLBACK keyword in a transaction block triggers a synchronous
rollback.

b. If an error is reported during transaction running, the COMMIT keyword
has the same function as ROLLBACK and triggers synchronous rollback.

c. If a fatal/panic error is reported during transaction running, the system
attempts to roll back the transaction bound to the thread before exiting
the thread.

2. Asynchronous rollback. When the synchronous rollback fails or the system is
restarted after breakdown, the undo recycling thread initiates an
asynchronous rollback task for the transaction that is not rolled back
completely and provides services for external systems immediately. The task
initiation thread Undo Launch of asynchronous rollback starts the working
thread Undo Worker to execute the rollback task. The Undo Launch thread
can start a maximum of five Undo Worker threads at the same time.

3. In-page rollback. If the rollback operation of a transaction page is not
completed, but other transactions need to reuse the TD occupied by this
transaction, the in-page rollback operation is performed for all modifications
on the current page. In-page rollback only rolls back modifications on the
current page. Other pages are not involved.
The rollback of a Ustore sub-transaction is controlled by the ROLLBACK TO
SAVEPOINT statement. After a sub-transaction is rolled back, the parent
transaction can continue to run. The rollback of a sub-transaction does not
affect the transaction status of the parent transaction. If sub-transactions that
are not released during the parent transaction rollback, the sub-transactions
are rolled back before the parent transaction is rolled back.

4.3.4 Flashback
Flashback is a part of the database recovery technology. It can be used to
selectively cancel the impact of a committed transaction and restore data from
incorrect manual operations. Before the flashback technology is used, the
committed database modifications can be retrieved only by means of backup/
restoration or point-in-time recovery (PITR). The restoration takes several minutes
or even hours. After the flashback technology is used, it takes only seconds to
restore the DROP/TRUNCATE data committed in the database through
FLASHBACK DROP and FLASHBACK TRUNCATE. In addition, the restoration time is
irrelevant to the database size.

NO TE

● Astore does not support the flashback function.
● Standby nodes do not support the flashback function.
● You can enable the flashback function as required. Note that enabling this function will

cause performance deterioration.

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

4.3.4.1 Flashback Query

Background
Flashback query enables you to query a snapshot of a table at a certain time point
in the past. This feature can be used to view and logically rebuild damaged data
that is accidentally deleted or modified. The flashback query is based on the
MVCC mechanism. You can retrieve and query an earlier version to obtain the
data of the specified version.

Prerequisites
The undo_retention_time parameter has been set for specifying the retention
period of undo logs.

Syntax
{[ONLY] table_name [*] [partition_clause] [[AS] alias [(column_alias [, ...])]]
[TABLESAMPLE sampling_method (argument [, ...]) [REPEATABLE (seed)]]
[TIMECAPSULE { TIMESTAMP | CSN } expression]
|(select) [AS] alias [(column_alias [, ...])]
|with_query_name [[AS] alias [(column_alias [, ...])]]
|function_name ([argument [, ...]]) [AS] alias [(column_alias [, ...] | column_definition [, ...])]
|function_name ([argument [, ...]]) AS (column_definition [, ...])
|from_item [NATURAL] join_type from_item [ON join_condition | USING (join_column [, ...])]}

In the syntax tree, TIMECAPSULE {TIMESTAMP | CSN} expression is a new
expression for the flashback function. TIMECAPSULE indicates that the flashback
function is used. TIMESTAMP and CSN indicate that the flashback function uses
specific time point information or commit sequence number (CSN) information.

Parameter Description
● TIMESTAMP

– Specifies a historical time point of the table data to be queried.

● CSN
– Specifies a logical commit time point of the data in the entire database

to be queried. Each CSN in the database represents a consistency point of
the entire database. To query the data under a CSN means to query the
data related to the consistency point in the database through SQL
statements.

Note: When the time point is used for flashback, there may be a 3s error. To flash
back to an operation point exactly, you need to use CSN for flashback. In GTM-
free mode, there is no globally unified CSN. Therefore, flashback in CSN mode is
not supported.

Examples
● Example:

gaussdb=# drop TABLE IF EXISTS "public".flashtest;
NOTICE: table "flashtest" does not exist, skipping
DROP TABLE
-- Create the flashtest table.
gaussdb=# CREATE TABLE "public".flashtest (col1 INT,col2 TEXT) with(storage_type=ustore);
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'col1' as the distribution column by
default.

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
-- Query the CSN.
gaussdb=# select int8in(xidout(next_csn)) from gs_get_next_xid_csn();
 int8in

 79351682
 79351682
 79351682
 79351682
 79351682
 79351682
(6 rows)
-- Query the current timestamp.
gaussdb=# select now();
 now

 2023-09-13 19:35:26.011986+08
(1 row)
-- Insert data.
gaussdb=# INSERT INTO flashtest VALUES(1,'INSERT1'),(2,'INSERT2'),(3,'INSERT3'),(4,'INSERT4'),
(5,'INSERT5'),(6,'INSERT6');
INSERT 0 6
gaussdb=# SELECT * FROM flashtest;
 col1 | col2
------+---------
 3 | INSERT3
 1 | INSERT1
 2 | INSERT2
 4 | INSERT4
 5 | INSERT5
 6 | INSERT6
(6 rows)
-- Use flashback query to query the table at a CSN.
gaussdb=# SELECT * FROM flashtest TIMECAPSULE CSN 79351682;
 col1 | col2
------+------
(0 rows)
gaussdb=# SELECT * FROM flashtest;
 col1 | col2
------+---------
 1 | INSERT1
 2 | INSERT2
 4 | INSERT4
 5 | INSERT5
 3 | INSERT3
 6 | INSERT6
(6 rows)
-- Use flashback query to query the table at a timestamp.
gaussdb=# SELECT * FROM flashtest TIMECAPSULE TIMESTAMP '2023-09-13 19:35:26.011986';
 col1 | col2
------+------
(0 rows)
gaussdb=# SELECT * FROM flashtest;
 col1 | col2
------+---------
 1 | INSERT1
 2 | INSERT2
 4 | INSERT4
 5 | INSERT5
 3 | INSERT3
 6 | INSERT6
(6 rows)
-- Use flashback query to query the table at a timestamp.
gaussdb=# SELECT * FROM flashtest TIMECAPSULE TIMESTAMP to_timestamp ('2023-09-13
19:35:26.011986', 'YYYY-MM-DD HH24:MI:SS.FF');
 col1 | col2
------+------
(0 rows)

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

-- Use flashback query to query the table at a CSN and rename the table.
gaussdb=# SELECT * FROM flashtest AS ft TIMECAPSULE CSN 79351682;
 col1 | col2
------+------
(0 rows)
gaussdb=# drop TABLE IF EXISTS "public".flashtest;
DROP TABLE

4.3.4.2 Flashback Table

Background
Flashback table enables you to restore a table to a specific point in time. When
only one table or a group of tables are logically damaged instead of the entire
database, this feature can be used to quickly restore the table data. Based on the
MVCC mechanism, the flashback table deletes incremental data at a specified
time point and after the specified time point and retrieves the data deleted at the
specified time point and the current time point to restore table-level data.

Prerequisites
The undo_retention_time parameter has been set for specifying the retention
period of undo logs.

Syntax
TIMECAPSULE TABLE table_name TO { TIMESTAMP | CSN } expression

Examples
gaussdb=# drop TABLE IF EXISTS "public".flashtest;
NOTICE: table "flashtest" does not exist, skipping
DROP TABLE
-- Create a table.
gaussdb=# CREATE TABLE "public".flashtest (col1 INT,col2 TEXT) with(storage_type=ustore);
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'col1' as the distribution column by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
-- Query the CSN.
gaussdb=# select int8in(xidout(next_csn)) from gs_get_next_xid_csn();
 int8in

 79352065
 79352065
 79352065
 79352065
 79352065
 79352065
(6 rows)
-- Query the current timestamp.
gaussdb=# select now();
 now

 2023-09-13 19:46:34.102863+08
(1 row)
-- View the flashtest table.
gaussdb=# SELECT * FROM flashtest;
 col1 | col2
------+------
(0 rows)
-- Insert data.
gaussdb=# INSERT INTO flashtest VALUES(1,'INSERT1'),(2,'INSERT2'),(3,'INSERT3'),(4,'INSERT4'),
(5,'INSERT5'),(6,'INSERT6');

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

INSERT 0 6
gaussdb=# SELECT * FROM flashtest;
 col1 | col2
------+---------
 3 | INSERT3
 1 | INSERT1
 2 | INSERT2
 4 | INSERT4
 5 | INSERT5
 6 | INSERT6
(6 rows)
-- Flash a table back to a specific CSN.
gaussdb=# TIMECAPSULE TABLE flashtest TO CSN 79352065;
TimeCapsule Table
gaussdb=# SELECT * FROM flashtest;
 col1 | col2
------+------
(0 rows)
gaussdb=# select now();
 now

 2023-09-13 19:52:21.551028+08
(1 row)
-- Insert data.
gaussdb=# INSERT INTO flashtest VALUES(1,'INSERT1'),(2,'INSERT2'),(3,'INSERT3'),(4,'INSERT4'),
(5,'INSERT5'),(6,'INSERT6');
INSERT 0 6
gaussdb=# SELECT * FROM flashtest;
 col1 | col2
------+---------
 3 | INSERT3
 6 | INSERT6
 1 | INSERT1
 2 | INSERT2
 4 | INSERT4
 5 | INSERT5
(6 rows)
-- Flash a table back to a specific timestamp.
gaussdb=# TIMECAPSULE TABLE flashtest TO TIMESTAMP to_timestamp ('2023-09-13 19:52:21.551028',
'YYYY-MM-DD HH24:MI:SS.FF');
TimeCapsule Table
gaussdb=# SELECT * FROM flashtest;
 col1 | col2
------+------
(0 rows)
gaussdb=# select now();
 now

 2023-09-13 19:54:00.641506+08
(1 row)
-- Insert data.
gaussdb=# INSERT INTO flashtest VALUES(1,'INSERT1'),(2,'INSERT2'),(3,'INSERT3'),(4,'INSERT4'),
(5,'INSERT5'),(6,'INSERT6');
INSERT 0 6
gaussdb=# SELECT * FROM flashtest;
 col1 | col2
------+---------
 3 | INSERT3
 6 | INSERT6
 1 | INSERT1
 2 | INSERT2
 4 | INSERT4
 5 | INSERT5
(6 rows)
-- Flash a table back to a specific timestamp.
gaussdb=# TIMECAPSULE TABLE flashtest TO TIMESTAMP '2023-09-13 19:54:00.641506';
TimeCapsule Table
gaussdb=# SELECT * FROM flashtest;
 col1 | col2

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

------+------
(0 rows)
gaussdb=# drop TABLE IF EXISTS "public".flashtest;
DROP TABLE

4.3.4.3 Flashback DROP/TRUNCATE

Background
● Flashback DROP enables you to restore tables that are dropped by mistake

and their auxiliary structures, such as indexes and table constraints, from the
recycle bin. Flashback DROP is based on the recycle bin mechanism. You can
restore physical table files recorded in the recycle bin to restore dropped
tables.

● Flashback TRUNCATE enables you to restore tables that are truncated by
mistake and restore the physical data of the truncated tables and indexes
from the recycle bin. Flashback TRUNCATE is based on the recycle bin
mechanism. You can restore physical table files recorded in the recycle bin to
restore truncated tables.

Prerequisites
● The enable_recyclebin parameter has been enabled (by modifying the GUC

parameter in the postgresql.conf file) to enable the recycle bin. For details,
contact the administrator.

● The recyclebin_retention_time parameter has been set for specifying the
retention period of objects in the recycle bin. The objects will be automatically
deleted after the retention period expires. For details, contact the
administrator.

Syntax
● Drop a table.

DROP TABLE table_name [PURGE]

● Purge objects in the recycle bin.
PURGE { TABLE { table_name }
| INDEX { index_name }
| RECYCLEBIN
}

● Flash back a dropped table.
TIMECAPSULE TABLE { table_name } TO BEFORE DROP [RENAME TO new_tablename]

● Truncate a table.
TRUNCATE TABLE { table_name } [PURGE]

● Flash back a truncated table.
TIMECAPSULE TABLE { table_name } TO BEFORE TRUNCATE

Parameter Description
● DROP/TRUNCATE TABLE table_name PURGE

– Purges table data in the recycle bin by default.
● PURGE RECYCLEBIN

– Purges objects in the recycle bin.
● TO BEFORE DROP

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

Retrieves dropped tables and their objects from the recycle bin.
You can specify either the original user-defined name of the table or the
system-generated name assigned to the object when it was dropped.
– System-generated recycle bin object names are unique. Therefore, if you

specify the system-generated name, the database retrieves that specified
object. To see the content in your recycle bin, run select * from
gs_recyclebin;.

– If you specify the user-specified name and the recycle bin contains more
than one object of that name, the database retrieves the object that was
moved to the recycle bin most recently. If you want to retrieve an older
version of the table, then do one of these things:

▪ Specify the system-generated recycle bin name of the table you want
to retrieve.

▪ Run the TIMECAPSULE TABLE... TO BEFORE DROP statement until
the table you want to retrieve is found.

– When a dropped table is restored, only the base table name is restored,
and the names of other objects remain the same as those in the recycle
bin. You can run the DDL command to manually change the names of
other objects as required.

– The recycle bin does not support write operations such as DML, DCL, and
DDL, and does not support DQL query operations (will be supported in
later versions).

– Between the flashback point and the current point, a statement has been
executed to modify the table structure or to affect the physical structure.
Therefore, the flashback fails. The error message "ERROR: The table
definition of %s has been changed." is displayed when flashback is
performed on a table where DDL operations have been performed. The
error message "ERROR: recycle object %s desired does not exis" is
displayed when flashback is performed on DDL operations, such as
changing namespaces and table names.

– If the base table has a truncate trigger, the trigger fails when you
truncate the target table together. The target table can only be truncated
manually.

● RENAME TO
Specifies a new name for the table retrieved from the recycle bin.

● TO BEFORE TRUNCATE
Flashes back to the point in time before the TRUNCATE operation.

Syntax Example
-- PURGE TABLE table_name; --
-- Check the recycle bin.
gaussdb=# select * from gs_recyclebin;
 rcybaseid | rcydbid | rcyrelid | rcyname | rcyoriginname | rcyoperation | rcytype | rcyrecyclecsn |
rcyrecycletime | rcycreatecsn | rcychangecsn | rcynamespace | rcyowner | rcytablespace
 | rcyrelfilenode | rcycanrestore | rcycanpurge | rcyfrozenxid | rcyfrozenxid64
-----------+---------+----------+---------+---------------+--------------+---------+---------------+----------------
+--------------+--------------+--------------+----------+--------------
-+----------------+---------------+-------------+--------------+----------------
(0 rows)

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

gaussdb=# drop table if EXISTS flashtest;
NOTICE: table "flashtest" does not exist, skipping
DROP TABLE
gaussdb=# select * from gs_recyclebin;
 rcybaseid | rcydbid | rcyrelid | rcyname | rcyoriginname | rcyoperation | rcytype | rcyrecyclecsn |
rcyrecycletime | rcycreatecsn | rcychangecsn | rcynamespace | rcyowner | rcytablespace
 | rcyrelfilenode | rcycanrestore | rcycanpurge | rcyfrozenxid | rcyfrozenxid64
-----------+---------+----------+---------+---------------+--------------+---------+---------------+----------------
+--------------+--------------+--------------+----------+--------------
-+----------------+---------------+-------------+--------------+----------------
(0 rows)
-- Create the flashtest table.
gaussdb=# create table if not EXISTS flashtest(id int, name text) with (storage_type = ustore);
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'id' as the distribution column by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
-- Insert data.
gaussdb=# insert into flashtest values(1, 'A');
INSERT 0 1
gaussdb=# select * from flashtest;
 id | name
----+------
 1 | A
(1 row)
-- Drop the flashtest table.
gaussdb=# drop table if EXISTS flashtest;
DROP TABLE
-- Check the recycle bin. The deleted table is moved to the recycle bin.
gaussdb=# select * from gs_recyclebin;
 rcybaseid | rcydbid | rcyrelid | rcyname | rcyoriginname | rcyoperation | rcytype |
rcyrecyclecsn | rcyrecycletime | rcycreatecsn | rcychangecs
n | rcynamespace | rcyowner | rcytablespace | rcyrelfilenode | rcycanrestore | rcycanpurge | rcyfrozenxid |
rcyfrozenxid64
-----------+---------+----------+------------------------------+----------------------+--------------+---------
+---------------+-------------------------------+--------------+------------
--+--------------+----------+---------------+----------------+---------------+-------------+--------------
+----------------
 18591 | 12737 | 18585 | BIN$31C14EB4899$9737$0==$0 | flashtest | d | 0 |
79352606 | 2023-09-13 20:01:28.640664+08 | 79352595 | 7935259
5 | 2200 | 10 | 0 | 18585 | t | t | 225492 | 225492
 18591 | 12737 | 18590 | BIN$31C14EB489E$12D1B978==$0 | pg_toast_18585_index | d | 3
| 79352606 | 2023-09-13 20:01:28.64093+08 | 79352595 | 7935259
5 | 99 | 10 | 0 | 18590 | f | f | 0 | 0
 18591 | 12737 | 18588 | BIN$31C14EB489C$12D1BF60==$0 | pg_toast_18585 | d | 2
| 79352606 | 2023-09-13 20:01:28.641018+08 | 0 |
0 | 99 | 10 | 0 | 18588 | f | f | 225492 | 225492
(3 rows)
-- Check the flashtest table. The table does not exist.
gaussdb=# select * from flashtest;
ERROR: relation "flashtest" does not exist
LINE 1: select * from flashtest;
 ^
-- Purge the table from the recycle bin.
gaussdb=# PURGE TABLE flashtest;
PURGE TABLE
-- Check the recycle bin. The table is deleted from the recycle bin.
gaussdb=# select * from gs_recyclebin;
 rcybaseid | rcydbid | rcyrelid | rcyname | rcyoriginname | rcyoperation | rcytype | rcyrecyclecsn |
rcyrecycletime | rcycreatecsn | rcychangecsn | rcynamespace | rcyowner | rcytablespace
 | rcyrelfilenode | rcycanrestore | rcycanpurge | rcyfrozenxid | rcyfrozenxid64
-----------+---------+----------+---------+---------------+--------------+---------+---------------+----------------
+--------------+--------------+--------------+----------+--------------
-+----------------+---------------+-------------+--------------+----------------
(0 rows)

-- PURGE INDEX index_name; --
gaussdb=# drop table if EXISTS flashtest;
NOTICE: table "flashtest" does not exist, skipping
DROP TABLE

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

-- Create the flashtest table.
gaussdb=# create table if not EXISTS flashtest(id int, name text) with (storage_type = ustore);
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'id' as the distribution column by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
-- Create the flashtest_index index for the flashtest table.
gaussdb=# create index flashtest_index on flashtest(id);
CREATE INDEX
-- View basic information about the flashtest table.
gaussdb=# \d+ flashtest
 Table "public.flashtest"
 Column | Type | Modifiers | Storage | Stats target | Description
--------+---------+-----------+----------+--------------+-------------
 id | integer | | plain | |
 name | text | | extended | |
Indexes:
 "flashtest_index" ubtree (id) WITH (storage_type=USTORE) TABLESPACE pg_default
Has OIDs: no
Distribute By: HASH(id)
Location Nodes: ALL DATANODES
Options: orientation=row, storage_type=ustore, compression=no, toast.storage_type=ustore

-- Drop the table.
gaussdb=# drop table if EXISTS flashtest;
DROP TABLE
-- Check the recycle bin.
gaussdb=# select * from gs_recyclebin;
 rcybaseid | rcydbid | rcyrelid | rcyname | rcyoriginname | rcyoperation | rcytype |
rcyrecyclecsn | rcyrecycletime | rcycreatecsn | rcychangecs
n | rcynamespace | rcyowner | rcytablespace | rcyrelfilenode | rcycanrestore | rcycanpurge | rcyfrozenxid |
rcyfrozenxid64
-----------+---------+----------+------------------------------+----------------------+--------------+---------
+---------------+-------------------------------+--------------+------------
--+--------------+----------+---------------+----------------+---------------+-------------+--------------
+----------------
 18648 | 12737 | 18641 | BIN$31C14EB48D1$9A85$0==$0 | flashtest | d | 0 |
79354509 | 2023-09-13 20:40:11.360638+08 | 79354506 | 7935450
8 | 2200 | 10 | 0 | 18641 | t | t | 226642 | 226642
 18648 | 12737 | 18646 | BIN$31C14EB48D6$12E230B8==$0 | pg_toast_18641_index | d | 3
| 79354509 | 2023-09-13 20:40:11.361034+08 | 79354506 | 7935450
6 | 99 | 10 | 0 | 18646 | f | f | 0 | 0
 18648 | 12737 | 18644 | BIN$31C14EB48D4$12E236A0==$0 | pg_toast_18641 | d | 2
| 79354509 | 2023-09-13 20:40:11.36112+08 | 0 |
0 | 99 | 10 | 0 | 18644 | f | f | 226642 | 226642
 18648 | 12737 | 18647 | BIN$31C14EB48D7$9A85$0==$0 | flashtest_index | d | 1 |
79354509 | 2023-09-13 20:40:11.361246+08 | 79354508 | 7935450
8 | 2200 | 10 | 0 | 18647 | f | t | 0 | 0
(4 rows)

--Purge the flashtest_index index.
gaussdb=# PURGE index flashtest_index;
PURGE INDEX
-- Check the recycle bin. The flashtest_index index is deleted from the recycle bin.
gaussdb=# select * from gs_recyclebin;
 rcybaseid | rcydbid | rcyrelid | rcyname | rcyoriginname | rcyoperation | rcytype |
rcyrecyclecsn | rcyrecycletime | rcycreatecsn | rcychangecs
n | rcynamespace | rcyowner | rcytablespace | rcyrelfilenode | rcycanrestore | rcycanpurge | rcyfrozenxid |
rcyfrozenxid64
-----------+---------+----------+------------------------------+----------------------+--------------+---------
+---------------+-------------------------------+--------------+------------
--+--------------+----------+---------------+----------------+---------------+-------------+--------------
+----------------
 18648 | 12737 | 18641 | BIN$31C14EB48D1$9A85$0==$0 | flashtest | d | 0 |
79354509 | 2023-09-13 20:40:11.360638+08 | 79354506 | 7935450
8 | 2200 | 10 | 0 | 18641 | t | t | 226642 | 226642
 18648 | 12737 | 18646 | BIN$31C14EB48D6$12E230B8==$0 | pg_toast_18641_index | d | 3
| 79354509 | 2023-09-13 20:40:11.361034+08 | 79354506 | 7935450
6 | 99 | 10 | 0 | 18646 | f | f | 0 | 0
 18648 | 12737 | 18644 | BIN$31C14EB48D4$12E236A0==$0 | pg_toast_18641 | d | 2

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

| 79354509 | 2023-09-13 20:40:11.36112+08 | 0 |
0 | 99 | 10 | 0 | 18644 | f | f | 226642 | 226642
(3 rows)

-- PURGE RECYCLEBIN --
-- Purge the recycle bin.
gaussdb=# PURGE RECYCLEBIN;
PURGE RECYCLEBIN
-- Check the recycle bin. The recycle bin is cleared.
gaussdb=# select * from gs_recyclebin;
 rcybaseid | rcydbid | rcyrelid | rcyname | rcyoriginname | rcyoperation | rcytype | rcyrecyclecsn |
rcyrecycletime | rcycreatecsn | rcychangecsn | rcynamespace | rcyowner | rcytablespace
 | rcyrelfilenode | rcycanrestore | rcycanpurge | rcyfrozenxid | rcyfrozenxid64
-----------+---------+----------+---------+---------------+--------------+---------+---------------+----------------
+--------------+--------------+--------------+----------+--------------
-+----------------+---------------+-------------+--------------+----------------
(0 rows)

-- TIMECAPSULE TABLE { table_name } TO BEFORE DROP [RENAME TO new_tablename] --
gaussdb=# drop table if EXISTS flashtest;
NOTICE: table "flashtest" does not exist, skipping
DROP TABLE
-- Create the flashtest table.
gaussdb=# create table if not EXISTS flashtest(id int, name text) with (storage_type = ustore);
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'id' as the distribution column by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
-- Insert data.
gaussdb=# insert into flashtest values(1, 'A');
INSERT 0 1
gaussdb=# select * from flashtest;
 id | name
----+------
 1 | A
(1 row)

-- Drop the table.
gaussdb=# drop table if EXISTS flashtest;
DROP TABLE
-- Check the recycle bin. The table is moved to the recycle bin.
gaussdb=# select * from gs_recyclebin;
 rcybaseid | rcydbid | rcyrelid | rcyname | rcyoriginname | rcyoperation | rcytype |
rcyrecyclecsn | rcyrecycletime | rcycreatecsn | rcychangecs
n | rcynamespace | rcyowner | rcytablespace | rcyrelfilenode | rcycanrestore | rcycanpurge | rcyfrozenxid |
rcyfrozenxid64
-----------+---------+----------+------------------------------+----------------------+--------------+---------
+---------------+-------------------------------+--------------+------------
--+--------------+----------+---------------+----------------+---------------+-------------+--------------
+----------------
 18658 | 12737 | 18652 | BIN$31C14EB48DC$9B2B$0==$0 | flashtest | d | 0 |
79354760 | 2023-09-13 20:47:57.075907+08 | 79354753 | 7935475
3 | 2200 | 10 | 0 | 18652 | t | t | 226824 | 226824
 18658 | 12737 | 18657 | BIN$31C14EB48E1$12E45E00==$0 | pg_toast_18652_index | d | 3
| 79354760 | 2023-09-13 20:47:57.076129+08 | 79354753 | 7935475
3 | 99 | 10 | 0 | 18657 | f | f | 0 | 0
 18658 | 12737 | 18655 | BIN$31C14EB48DF$12E46400==$0 | pg_toast_18652 | d | 2
| 79354760 | 2023-09-13 20:47:57.07621+08 | 0 |
0 | 99 | 10 | 0 | 18655 | f | f | 226824 | 226824
(3 rows)

-- Check the table. The table does not exist.
gaussdb=# select * from flashtest;
ERROR: relation "flashtest" does not exist
LINE 1: select * from flashtest;
 ^
-- Flash back a dropped table.
gaussdb=# timecapsule table flashtest to before drop;
TimeCapsule Table
-- Check the table. The table is restored to the state before the DROP operation.

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

gaussdb=# select * from flashtest;
 id | name
----+------
 1 | A
(1 row)

-- Check the recycle bin. The table is deleted from the recycle bin.
gaussdb=# select * from gs_recyclebin;
 rcybaseid | rcydbid | rcyrelid | rcyname | rcyoriginname | rcyoperation | rcytype | rcyrecyclecsn |
rcyrecycletime | rcycreatecsn | rcychangecsn | rcynamespace | rcyowner | rcytablespace
 | rcyrelfilenode | rcycanrestore | rcycanpurge | rcyfrozenxid | rcyfrozenxid64
-----------+---------+----------+---------+---------------+--------------+---------+---------------+----------------
+--------------+--------------+--------------+----------+--------------
-+----------------+---------------+-------------+--------------+----------------
(0 rows)

-- Drop the table.
gaussdb=# drop table if EXISTS flashtest;
DROP TABLE
gaussdb=# select * from flashtest;
ERROR: relation "flashtest" does not exist
LINE 1: select * from flashtest;
 ^
-- Check the recycle bin. The table is moved to the recycle bin.
gaussdb=# select * from gs_recyclebin;
 rcybaseid | rcydbid | rcyrelid | rcyname | rcyoriginname | rcyoperation | rcytype |
rcyrecyclecsn | rcyrecycletime | rcycreatecsn | rcy
changecsn | rcynamespace | rcyowner | rcytablespace | rcyrelfilenode | rcycanrestore | rcycanpurge |
rcyfrozenxid | rcyfrozenxid64
-----------+---------+----------+------------------------------+------------------------------+--------------+---------
+---------------+-------------------------------+--------------+----
----------+--------------+----------+---------------+----------------+---------------+-------------+--------------
+----------------
 18664 | 12737 | 18652 | BIN$31C14EB48DC$9B4E$0==$0 | flashtest | d | 0
| 79354845 | 2023-09-13 20:49:17.762977+08 | 79354753 |
 79354753 | 2200 | 10 | 0 | 18652 | t | t | 226824 | 226824
 18664 | 12737 | 18657 | BIN$31C14EB48E1$12E680A8==$0 | BIN$31C14EB48E1$12E45E00==$0 |
d | 3 | 79354845 | 2023-09-13 20:49:17.763271+08 | 79354753 |
 79354753 | 99 | 10 | 0 | 18657 | f | f | 0 | 0
 18664 | 12737 | 18655 | BIN$31C14EB48DF$12E68698==$0 | BIN$31C14EB48DF$12E46400==$0 |
d | 2 | 79354845 | 2023-09-13 20:49:17.763343+08 | 0 |
 0 | 99 | 10 | 0 | 18655 | f | f | 226824 | 226824
(3 rows)

-- Flash back the dropped table. The table name is rcyname in the recycle bin.
gaussdb=# timecapsule table "BIN$31C14EB48DC$9B4E$0==$0" to before drop;
TimeCapsule Table
-- Check the recycle bin. The table is deleted from the recycle bin.
gaussdb=# select * from gs_recyclebin;
 rcybaseid | rcydbid | rcyrelid | rcyname | rcyoriginname | rcyoperation | rcytype | rcyrecyclecsn |
rcyrecycletime | rcycreatecsn | rcychangecsn | rcynamespace | rcyowner | rcytablespace
 | rcyrelfilenode | rcycanrestore | rcycanpurge | rcyfrozenxid | rcyfrozenxid64
-----------+---------+----------+---------+---------------+--------------+---------+---------------+----------------
+--------------+--------------+--------------+----------+--------------
-+----------------+---------------+-------------+--------------+----------------
(0 rows)

gaussdb=# select * from flashtest;
 id | name
----+------
 1 | A
(1 row)

-- Drop the table.
gaussdb=# drop table if EXISTS flashtest;
DROP TABLE
-- Check the recycle bin. The table is moved to the recycle bin.
gaussdb=# select * from gs_recyclebin;
 rcybaseid | rcydbid | rcyrelid | rcyname | rcyoriginname | rcyoperation | rcytype |

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

rcyrecyclecsn | rcyrecycletime | rcycreatecsn | rcy
changecsn | rcynamespace | rcyowner | rcytablespace | rcyrelfilenode | rcycanrestore | rcycanpurge |
rcyfrozenxid | rcyfrozenxid64
-----------+---------+----------+------------------------------+------------------------------+--------------+---------
+---------------+-------------------------------+--------------+----
----------+--------------+----------+---------------+----------------+---------------+-------------+--------------
+----------------
 18667 | 12737 | 18652 | BIN$31C14EB48DC$9B8D$0==$0 | flashtest | d | 0
| 79354943 | 2023-09-13 20:52:14.525946+08 | 79354753 |
 79354753 | 2200 | 10 | 0 | 18652 | t | t | 226824 | 226824
 18667 | 12737 | 18657 | BIN$31C14EB48E1$1320B4F0==$0 | BIN$31C14EB48E1$12E680A8==$0 |
d | 3 | 79354943 | 2023-09-13 20:52:14.526319+08 | 79354753 |
 79354753 | 99 | 10 | 0 | 18657 | f | f | 0 | 0
 18667 | 12737 | 18655 | BIN$31C14EB48DF$1320BAE0==$0 | BIN$31C14EB48DF$12E68698==$0 |
d | 2 | 79354943 | 2023-09-13 20:52:14.526423+08 | 0 |
 0 | 99 | 10 | 0 | 18655 | f | f | 226824 | 226824
(3 rows)

-- Check the table. The table does not exist.
gaussdb=# select * from flashtest;
ERROR: relation "flashtest" does not exist
LINE 1: select * from flashtest;
 ^
-- Flash back the dropped table and rename the table.
gaussdb=# timecapsule table flashtest to before drop rename to flashtest_rename;
TimeCapsule Table
-- Check the original table. The table does not exist.
gaussdb=# select * from flashtest;
ERROR: relation "flashtest" does not exist
LINE 1: select * from flashtest;
 ^
-- Check the renamed table. The table exists.
gaussdb=# select * from flashtest_rename;
 id | name
----+------
 1 | A
(1 row)

-- Check the recycle bin. The table is deleted from the recycle bin.
gaussdb=# select * from gs_recyclebin;
 rcybaseid | rcydbid | rcyrelid | rcyname | rcyoriginname | rcyoperation | rcytype | rcyrecyclecsn |
rcyrecycletime | rcycreatecsn | rcychangecsn | rcynamespace | rcyowner | rcytablespace
 | rcyrelfilenode | rcycanrestore | rcycanpurge | rcyfrozenxid | rcyfrozenxid64
-----------+---------+----------+---------+---------------+--------------+---------+---------------+----------------
+--------------+--------------+--------------+----------+--------------
-+----------------+---------------+-------------+--------------+----------------
(0 rows)
-- Drop a table.
gaussdb=# drop table if EXISTS flashtest_rename;
DROP TABLE
-- Clear the recycle bin.
gaussdb=# PURGE RECYCLEBIN;
PURGE RECYCLEBIN
-- Check the recycle bin. The recycle bin is cleared.
gaussdb=# select * from gs_recyclebin;
 rcybaseid | rcydbid | rcyrelid | rcyname | rcyoriginname | rcyoperation | rcytype | rcyrecyclecsn |
rcyrecycletime | rcycreatecsn | rcychangecsn | rcynamespace | rcyowner | rcytablespace
 | rcyrelfilenode | rcycanrestore | rcycanpurge | rcyfrozenxid | rcyfrozenxid64
-----------+---------+----------+---------+---------------+--------------+---------+---------------+----------------
+--------------+--------------+--------------+----------+--------------
-+----------------+---------------+-------------+--------------+----------------
(0 rows)

-- TIMECAPSULE TABLE { table_name } TO BEFORE TRUNCATE --
gaussdb=# drop table if EXISTS flashtest;
NOTICE: table "flashtest" does not exist, skipping
DROP TABLE
-- Create the flashtest table.

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

gaussdb=# create table if not EXISTS flashtest(id int, name text) with (storage_type = ustore);
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'id' as the distribution column by default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
-- Insert data.
gaussdb=# insert into flashtest values(1, 'A');
INSERT 0 1
gaussdb=# select * from flashtest;
 id | name
----+------
 1 | A
(1 row)

-- Truncate a table.
gaussdb=# truncate table flashtest;
TRUNCATE TABLE
-- Check the recycle bin. The table data is moved to the recycle bin.
gaussdb=# select * from gs_recyclebin;
 rcybaseid | rcydbid | rcyrelid | rcyname | rcyoriginname | rcyoperation | rcytype |
rcyrecyclecsn | rcyrecycletime | rcycreatecsn | rcychangecs
n | rcynamespace | rcyowner | rcytablespace | rcyrelfilenode | rcycanrestore | rcycanpurge | rcyfrozenxid |
rcyfrozenxid64
-----------+---------+----------+------------------------------+----------------------+--------------+---------
+---------------+-------------------------------+--------------+------------
--+--------------+----------+---------------+----------------+---------------+-------------+--------------
+----------------
 18703 | 12737 | 18697 | BIN$31C14EB4909$9E4C$0==$0 | flashtest | t | 0 |
79356608 | 2023-09-13 21:24:42.819863+08 | 79356606 | 7935660
6 | 2200 | 10 | 0 | 18697 | t | t | 227927 | 227927
 18703 | 12737 | 18700 | BIN$31C14EB490C$132FE3F0==$0 | pg_toast_18697 | t | 2
| 79356608 | 2023-09-13 21:24:42.820358+08 | 0 |
0 | 99 | 10 | 0 | 18700 | f | f | 227927 | 227927
 18703 | 12737 | 18702 | BIN$31C14EB490E$132FEA40==$0 | pg_toast_18697_index | t | 3
| 79356608 | 2023-09-13 21:24:42.821012+08 | 79356606 | 7935660
6 | 99 | 10 | 0 | 18702 | f | f | 0 | 0
(3 rows)

-- Check the table. The table is empty.
gaussdb=# select * from flashtest;
 id | name
----+------
(0 rows)

-- Flash back a truncated table.
gaussdb=# timecapsule table flashtest to before truncate;
TimeCapsule Table
-- Check the table. The data in the table is restored.
gaussdb=# select * from flashtest;
 id | name
----+------
 1 | A
(1 row)

-- Check the recycle bin.
gaussdb=# select * from gs_recyclebin;
 rcybaseid | rcydbid | rcyrelid | rcyname | rcyoriginname | rcyoperation | rcytype |
rcyrecyclecsn | rcyrecycletime | rcycreatecsn | rcychangecs
n | rcynamespace | rcyowner | rcytablespace | rcyrelfilenode | rcycanrestore | rcycanpurge | rcyfrozenxid |
rcyfrozenxid64
-----------+---------+----------+------------------------------+----------------------+--------------+---------
+---------------+-------------------------------+--------------+------------
--+--------------+----------+---------------+----------------+---------------+-------------+--------------
+----------------
 18703 | 12737 | 18702 | BIN$31C14EB490E$132FFC38==$0 | pg_toast_18697_index | t | 3
| 79356610 | 2023-09-13 21:24:42.872654+08 | 79356606 | 7935660
6 | 99 | 10 | 0 | 18708 | f | f | 0 | 0
 18703 | 12737 | 18700 | BIN$31C14EB490C$13300228==$0 | pg_toast_18697 | t | 2
| 79356610 | 2023-09-13 21:24:42.872732+08 | 0 |
0 | 99 | 10 | 0 | 18706 | f | f | 0 | 227928

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

 18703 | 12737 | 18697 | BIN$31C14EB4909$9E4D$0==$0 | flashtest | t | 0 |
79356610 | 2023-09-13 21:24:42.872792+08 | 79356606 | 7935660
6 | 2200 | 10 | 0 | 18704 | t | t | 0 | 227928
(3 rows)

-- Drop a table.
gaussdb=# drop table if EXISTS flashtest;
DROP TABLE
-- Clear the recycle bin.
gaussdb=# PURGE RECYCLEBIN;
PURGE RECYCLEBIN
-- Check the recycle bin. The recycle bin is cleared.
gaussdb=# select * from gs_recyclebin;
 rcybaseid | rcydbid | rcyrelid | rcyname | rcyoriginname | rcyoperation | rcytype | rcyrecyclecsn |
rcyrecycletime | rcycreatecsn | rcychangecsn | rcynamespace | rcyowner | rcytablespace
 | rcyrelfilenode | rcycanrestore | rcycanpurge | rcyfrozenxid | rcyfrozenxid64
-----------+---------+----------+---------+---------------+--------------+---------+---------------+----------------
+--------------+--------------+--------------+----------+--------------
-+----------------+---------------+-------------+--------------+----------------
(0 rows)

4.3.5 Common View Tools
View
Type

Type Function Application
Scenario

Function

Parsing All
types

Parses a specified table page and
returns the path for storing the parsed
content.

● Page
informatio
n viewing

● Tuple
(non-user
data)
informatio
n

● Damaged
pages and
tuples

● Tuple
visibility
problems

● Verificatio
n errors

gs_parse_page_by
path

Index
recycle
queue
(URQ)

Parses key information in the URQ. ● UB-tree
index
space
expansion

● UB-tree
index
space
recycle
exceptions

● Verificatio
n errors

gs_urq_dump_stat

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

View
Type

Type Function Application
Scenario

Function

Rollbac
k
segmen
t
(undo)

Parses the specified undo record,
excluding the old tuple data.

● Expanded
undo
space

● Undo
recycling
exceptions

● Rollback
exceptions

● Routine
maintenan
ce

● Verificatio
n errors

● Visibility
judgment
exceptions

● Parameter
modificati
ons

gs_undo_dump_re
cord

Parses all undo records generated by a
specified transaction, excluding old tuple
data.

gs_undo_dump_xi
d

Parses all information about transaction
slots in a specified undo zone.

gs_undo_translot_
dump_slot

Parses the transaction slot information
of a specified transaction, including the
XID and the range of undo records
generated by the transaction.

gs_undo_translot_
dump_xid

Parses the metadata of a specified undo
zone and displays the pointer usage of
undo records and transaction slots.

gs_undo_meta_du
mp_zone

Parses the undo space metadata
corresponding to a specified undo zone
and displays the file usage of undo
records.

gs_undo_meta_du
mp_spaces

Parses the slot space metadata
corresponding to a specified undo zone
and displays the file usage of
transaction slots.

gs_undo_meta_du
mp_slot

Parses the data page and all data of
historical versions and returns the path
for storing the parsed content.

gs_undo_dump_pa
rsepage_mv

Write
ahead
log
(WAL)

Parses Xlog within the specified LSN
range and returns the path for storing
parsed content. You can use
pg_current_xlog_location() to obtain
the current Xlog position.

● WAL errors
● Log replay

errors
● Damaged

pages

gs_xlogdump_lsn

Parses Xlog of a specified XID and
returns the path for storing parsed
content. You can use txid_current() to
obtain the current XID.

gs_xlogdump_xid

Parses logs corresponding to a specified
table page and returns the path for
storing the parsed content.

gs_xlogdump_tabl
epath

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

View
Type

Type Function Application
Scenario

Function

Parses the specified table page and logs
corresponding to the table page and
returns the path for storing the parsed
content. It can be regarded as one
execution of gs_parse_page_bypath
and gs_xlogdump_tablepath. The
prerequisite for executing this function is
that the table file exists. To view logs of
deleted tables, call
gs_xlogdump_tablepath.

gs_xlogdump_pars
epage_tablepath

Collecti
ng

Rollbac
k
segmen
t
(undo)

Displays the statistics of the Undo
module, including the usage of undo
zones and undo links, creation and
deletion of undo module files, and
recommended values of undo module
parameters.

● Undo
space
expansion

● Undo
resource
monitoring

gs_stat_undo

Write
ahead
log
(WAL)

Collects statistics of the memory status
table when WALs are written to disks.

● WAL
write/disk
flushing
monitoring

● Suspended
WAL
write/disk
flushing

gs_stat_wal_entryt
able

Collects WAL statistics about the disk
flushing status and location.

gs_walwriter_flush
_position

Collects WAL statistic about the
frequency of disk flushing, data volume,
and flushing files.

gs_walwriter_flush
_stat

Validat
ion

Heap
table/
Index

Checks whether the disk page data of
tables or index files is normal offline.

● Damaged
pages and
tuples

● Visibility
issues

● Log
playback
errors

ANALYZE VERIFY

Checks whether physical files of the
current database in the current instance
are lost.

Lost files gs_verify_data_file

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

View
Type

Type Function Application
Scenario

Function

Index
recycle
(URQ)

Checks whether the data of the URQ
(potential queue/available queue/single
page) is normal.

● UB-tree
index
space
expansion

● UB-tree
index
space
reclamatio
n
exceptions

gs_verify_urq

Rollbac
k
segmen
t
(undo)

Checks whether undo records are
normal offline.

● Abnormal
or
damaged
undo
records

● Visibility
issues

● Abnormal
or
damaged
rollback

gs_verify_undo_rec
ord

Checks whether the transaction slot
data is normal offline.

● Abnormal
or
damaged
undo
records

● Visibility
issues

● Abnormal
or
damaged
rollback

gs_verify_undo_slo
t

Checks whether the undo metadata is
normal offline.

● Node
startup
failure
caused by
undo
metadata

● Undo
space
reclamatio
n
exceptions

● Outdated
snapshots

gs_verify_undo_m
eta

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

View
Type

Type Function Application
Scenario

Function

Restora
tion

Heap
table/
Index/
Undo
file

Restores lost physical files on the
primary server based on the standby
server.

Lost heap
tables/
Indexes/undo
files

gs_repair_file

Heap
table/
Index/
Undo
page

Checks and restores damaged pages on
the primary server based on the standby
server.

Damaged
heap tables/
indexes/undo
pages

gs_verify_and_tryr
epair_page

Restores the pages of the primary server
based on the pages of the standby
server.

gs_repair_page

Modifies the bytes of the page backup
based on the offset.

gs_edit_page_bypa
th

Overwrites the modified page to the
target page.

gs_repair_page_by
path

Rollbac
k
segmen
t
(undo)

Rebuilds undo metadata. If the undo
metadata is proper, rebuilding is not
required.

Abnormal or
damaged
undo
metadata

gs_repair_undo_by
zone

Index
recycle
queue
(URQ)

Rebuilds the URQ. Abnormal or
damaged
URQ

gs_repair_urq

4.3.6 Common Problems and Troubleshooting Methods

4.3.6.1 Snapshot Too Old
Undo space cannot save historical data if the execution time of the query SQL
statement is too long or other reasons. Therefore, an error may be reported if the
historical data is forcibly recycled. Generally, the rollback segment space needs to
be expanded. However, the specific problem needs to be analyzed.

4.3.6.1.1 Undo Space Recycling Blocked by Long Transactions

Symptom
1. The following error information is printed in pg_log:

snapshot too old! the undo record has been forcibly discarded
xid xxx, the undo size xxx of the transaction exceeds the threshold xxx. trans_undo_threshold_size
xxx,undo_space_limit_size xxx.

In the actual error information, xxx indicates the actual data.

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

2. The value of global_recycle_xid (global recycling XID of the Undo subsystem)
does not change for a long time.

3. Long transactions exist in the pg_running_xacts and pg_stat_activity views,
blocking the progress of oldestxmin and global_recycle_xid. If the value of
xmin obtained by querying active transactions in pg_running_xacts is the
same as that of gs_txid_oldestxmin and the thread execution time obtained
by querying pg_stat_activity based on a PID is too long, the recycling is
suspended by a long transaction.
select * from pg_running_xacts where xmin::text::bigint<>0 and vacuum <> 't' order by
xmin::text::bigint asc limit 5;
select * from gs_txid_oldextxmin();
select * from pg_stat_activity where pid = Thread PID where the long transaction exists

Solution

Use pg_terminate_session(pid, sessionid) to terminate the sessions of the long
transactions. (Note: There is no fixed quick restoration method for long
transactions. Forcibly ending the execution of SQL statements is a common but
high-risk operation. Exercise caution when performing this operation. Before
performing this operation, please confirm with the administrator and Huawei
technical personnel to prevent service failures or errors.)

4.3.6.1.2 Slow Undo Space Recycling Caused by Many Rollback Transactions

Symptom

The gs_async_rollback_xact_status view shows that there are a large number of
transactions to be rolled back, and the number of transactions to be rolled back
remains unchanged or keeps increasing.

select * from gs_async_rollback_xact_status();

Solution

Increase the number of asynchronous rollback threads in either of the following
ways:

Method 1: Configure max_undo_workers in postgresql.conf and restart the node.

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

Method 2: Restart the instance using gs_guc reload -Z NODE-TYPE [-N NODE-
NAME] [-I INSTANCE-NAME | -D DATADIR] -c max_undo_workers=100.

4.3.6.2 Storage Test Error

During service execution, if a data page, index, or undo page changes, logic
damage detection is performed before the page is locked. If a page damage is
detected, log information containing the keyword "storage test error" is exported
to the database running log file pg_log. The page is restored to the status before
the modification after rollback.

Symptom

The keyword "storage test error" is printed in pg_log.

Solution

Contact Huawei technical support.

4.3.6.3 An Error "UBTreeSearch::read_page has conflict with recovery, please
try again later" Is Reported when a Service Uses a Standby Node to Read
Data

Symptom

When the service uses the standby node to read data, an error (error code 43244)
is reported. The error information contains "UBTreeSearch::read_page has conflict
with recovery, please try again later."

Analysis

When parallel or serial replay is enabled (if the GUC parameters
recovery_parse_workers and recovery_max_workers are both set to 1, serial
replay is enabled; if recovery_parse_workers is set to 1 and
recovery_max_workers is greater than 1, parallel replay is enabled): If the query
thread of the standby node scans indexes, a read lock is added to the index page.
Each time a tuple is scanned, the visibility is checked. If the transaction
corresponding to the tuple is in the committing state, the visibility is checked after
the transaction is committed. Transaction committed on the standby node
depends on the log replay thread. During this process, the index page is modified.
Therefore, a lock is required. The query thread releases the lock of the index page
during waiting. Otherwise, the query thread waits for the replay thread to commit
the transaction, and the replay thread waits for the query thread to release the
lock.

This error occurs only when the same index page needs to be accessed during
query and replay. When the query thread releases the lock and waits for the
transaction to end, the accessed page is modified.

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

NO TE

● When scanning tuples in the committing state, the standby node needs to wait for
transactions to be committed because the transaction committing sequence and log
generation sequence may be out of order. For example, the transaction tx_1 on the
primary node is committed earlier than transaction tx_2, the commit log of tx_1 on the
standby node is replayed after the commit log of tx_2. According to the transaction
committing sequence, tx_1 should be visible to tx_2. Therefore, you need to wait for the
transaction to be committed.

● When the standby node scans the index page, it is found that the number of tuples
(including dead tuples) on the page changes and cannot be retried. This is because the
scanning may be forward or reverse scanning. For example, after the page is split, some
tuples are moved to the right page. In the case of reverse scanning, even if the retry is
performed, the tuples can only be read from the left, the correctness of the result
cannot be ensured, and the split or insertion cannot be distinguished. Therefore, retry is
not allowed.

Figure 4-1 Analysis

Solution
If an error is reported, you are advised to retry the query. In addition, you are
advised to select index columns that are not frequently updated and use the soft

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

deletion mode (physical deletion is performed during off-peak hours) to reduce
the probability of this error.

GaussDB
Feature Guide for Distributed Instances 4 Storage Engine

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

5 FDW

The foreign data wrapper (FDW) of GaussDB can implement cross-database
operations between GaussDB databases and remote servers (including databases
and file systems). Currently, the supported FDW is file_fdw.

5.1 file_fdw
The file_fdw module provides the foreign data wrapper file_fdw, which can be
used to access data files in the file system of a server. The data file must be
readable by COPY FROM. For details, see "SQL Reference > SQL Syntax > COPY" in
Developer Guide. file_fdw is only used to access readable data files, but cannot
write data to the data files.

By default, file_fdw is compiled in GaussDB. During database initialization, the
plug-in is created in the pg_catalog schema.

The server and foreign table corresponding to file_fdw can be created only by the
initial user of the database or the O&M administrator when the O&M mode is
enabled.

When you create a foreign table using file_fdw, you can add the following options:

● filename
File to be read. This parameter is required and must be an absolute path.

● format
File format of the remote server, which is the same as the FORMAT option of
the COPY statement. The value can be text, csv, or binary.

● header
Specifies whether a specified file has a header, which is the same as the
HEADER option of the COPY statement.

● delimiter
File delimiter, which is the same as the DELIMITER option of the COPY
statement.

● quote
Quote character of a file, which is the same as the QUOTE option of the
COPY statement.

GaussDB
Feature Guide for Distributed Instances 5 FDW

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

● escape
Escape character of a file, which is the same as the ESCAPE option of the
COPY statement.

● null
Null string of a file, which is the same as the NULL option of the COPY
statement.

● encoding
Encoding of a file, which is the same as the ENCODING option of the COPY
statement.

● force_not_null
This is a Boolean option. If it is true, the value of the declared field cannot be
an empty string. This option is the same as the FORCE_NOT_NULL option of
the COPY statement.

NO TE

● file_fdw does not support the OIDS and FORCE_QUOTE options of the COPY statement.
● These options can only be declared for a foreign table or the columns of the foreign

table, not for file_fdw itself, nor for the server or user mapping that uses file_fdw.
● To modify table-level options, you must obtain the system administrator permissions.

For security reasons, only the system administrator can determine the files to be read.
● For a foreign table that uses file_fdw, running EXPLAIN displays the name and size (in

bytes) of the file to be read. If the keyword COSTS OFF is specified, the file size is not
displayed.

Using file_fdw
● To create a server object, run CREATE SERVER.
● To create a user mapping, run CREATE USER MAPPING.
● To drop a user mapping, run DROP USER MAPPING.
● To drop a server object, run DROP SERVER.

Precautions
● To use file_fdw, you need to specify the file to be read. Prepare the file and

grant the read permission on the file for the database to access the file.
● DROP EXTENSION cannot be used for file_fdw.

GaussDB
Feature Guide for Distributed Instances 5 FDW

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

6 Logical Replication

6.1 Logical Decoding

6.1.1 Overview

Description
In GaussDB:

● Data is periodically synchronized to heterogeneous databases (such as Oracle
databases) using a data migration tool. Real-time data replication is not
supported. Therefore, the requirements for real-time data synchronization to
heterogeneous databases are not satisfied.

● For details about data synchronization for dual-cluster GaussDB DR, see
"Server Tools > SyncDataToStby.py" in Tool Reference. The standby cluster
requires that the numbers of CNs and DNs and the instance deployment
mode be consistent with those in the primary cluster. When the standby
cluster is restored, read and write operations cannot be performed, and
replication latency is relatively high.

Based on the above two points, GaussDB provides the logical decoding function to
generate logical logs by decoding Xlogs. A target database parses logical logs to
replicate data in real time. For details, see Figure 6-1. Logical replication reduces
the restrictions on target databases, allowing for data synchronization between
heterogeneous databases and homogeneous databases with different forms. It
allows data to be read and written during data synchronization on a target
database, reducing the data synchronization latency.

GaussDB
Feature Guide for Distributed Instances 6 Logical Replication

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

Figure 6-1 Logical replication

Logical replication consists of logical decoding and data replication. Logical
decoding outputs logical logs by transaction. The database service or middleware
parses the logical logs to implement data replication. Currently, GaussDB supports
only logical decoding. Therefore, this section involves only logical decoding.

Logical decoding provides basic transaction decoding capabilities for logical
replication. GaussDB uses SQL functions for logical decoding. This method features
easy function calling, requires no tools to obtain logical logs, and provides specific
APIs for interconnecting with external replay tools, saving the need of additional
adaptation.

Logical logs are output only after transactions are committed because they use
transactions as the unit and logical decoding is driven by users. Therefore, to
prevent Xlogs from being recycled by the system when transactions start and
prevent required transaction information from being recycled by VACUUM,
GaussDB introduces logical replication slots to block Xlog recycling.

A logical replication slot means a stream of changes that can be replayed in other
clusters in the order they were generated in the original cluster. Each owner of
logical logs maintains one logical replication slot. If the database where the
logical replication slot in streaming decoding resides does not have services, the
replication slot is updated based on the log location of other databases. The LSN-
based logical replication slot in the active state may be updated based on the LSN
of the current log when processing the active transaction snapshot log. The CSN-
based logical replication slot in the active state may be updated based on the CSN
of the current log when processing the virtual transaction log.

Prerequisites
● Logical logs are extracted from DNs. If logical replication is required, ensure

that the GUC parameter ssl on DNs is set to on.

NO TE

For security purposes, ensure that SSL connections are enabled.

● The GUC parameter wal_level is set to logical.
● The GUC parameter max_replication_slots is set to a value greater than or

equal to the number of physical streaming replication slots, backup slots, and
logical replication slots required by each DN.
Physical streaming replication slots provide an automatic method to ensure
that Xlogs are not removed from a primary DN before they are received by all
the standby DNs. That is, physical replication slots are used to support HA
clusters. The number of physical replication slots required by a cluster is equal
to the ratio of standby to the primary DN in a ring of DNs. For example, if the

GaussDB
Feature Guide for Distributed Instances 6 Logical Replication

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

cluster has one primary DN and three standby DNs, three physical replication
slots are required.

Plan the number of logical replication slots as follows:

– A logical replication slot can carry changes of only one database for
decoding. If multiple databases are involved, create multiple logical
replication slots.

– If logical replication is needed by multiple target databases, create
multiple logical replication slots in the source database. Each logical
replication slot corresponds to one logical replication link.

– A maximum of 20 logical replication slots can be enabled for decoding on
the same instance.

● A user needs to connect to a database through a DN port before using SQL
functions to perform logical decoding. If a CN port is used to connect to the
database, EXECUTE DIRECT ON (datanode_name) 'statement' is needed to
execute SQL functions.

● Only initial users and users with the REPLICATION permission can perform
this operation. When separation of duties is disabled, database administrators
can perform logical replication operations. When separation of duties is
enabled, database administrators are not allowed to perform logical
replication operations.

Precautions
● DDL statement decoding is not supported. When a specific DDL statement

(for example, to truncate an ordinary table or exchange a partitioned table) is
executed, decoded data may be lost.

● Decoding is not supported for data page replication.

● After a DDL statement (for example, ALTER TABLE) is executed, the physical
logs that are not decoded before the DDL statement execution may be lost.

● Online cluster scale-out is not allowed during logical decoding.

● The size of a single tuple cannot exceed 1 GB, and decoding results may be
larger than inserted data. Therefore, it is recommended that the size of a
single tuple be less than or equal to 500 MB.

● Decoding compressed tables into DML statements is not supported.

● GaussDB supports the following types of data to be decoded: INTEGER,
BIGINT, SMALLINT, TINYINT, SERIAL, SMALLSERIAL, BIGSERIAL, FLOAT,
DOUBLE PRECISION, BOOLEAN, BIT(n), BIT VARYING(n), DATE,
TIME[WITHOUT TIME ZONE], TIMESTAMP[WITHOUT TIME ZONE], CHAR(n),
VARCHAR(n), TEXT, and CLOB (decoded into the text format).

● If the SSL connection is required, ensure that the GUC parameter ssl is set to
on.

● The logical replication slot name must contain fewer than 64 characters and
contain only one or more types of the following characters: lowercase letters,
digits, and underscores (_).

● After the database where a logical replication slot resides is deleted, the
replication slot becomes unavailable and needs to be manually deleted.

● Interval partitioned tables cannot be replicated.

GaussDB
Feature Guide for Distributed Instances 6 Logical Replication

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

● To decode multiple databases, you need to create a streaming replication slot
in each database and start decoding. Logs need to be scanned for decoding of
each database.

● Forcible switchover is not supported. After forcible switchover, you need to
export all data again.

● After a DDL statement is executed in a transaction, the DDL statement and
subsequent statements are not decoded.

● During decoding on the standby node, the decoded data may increase due to
switchover or failover, which needs to be manually filtered out. When the
quorum protocol is used, switchover and failover should be performed on the
standby node that is to be promoted to primary, and logs must be
synchronized from the primary node to the standby node.

● The same replication slot for decoding cannot be used between the primary
node and standby node or between different standby nodes at the same time.
Otherwise, data inconsistency occurs.

● Replication slots can only be created or deleted on hosts.
● After the database is restarted due to a fault or the logical replication process

is restarted, duplicate decoded data may exist. You need to filter out the
duplicate data.

● If the computer kernel is faulty, garbled characters may be displayed during
decoding, which need to be manually or automatically filtered out.

● Ensure that the long transaction is not started during the creation of the
logical replication slot. If the long transaction is started, the creation of the
logical replication slot will be blocked. If the creation of a replication slot is
blocked due to a long transaction, you can use the SQL function
pg_terminate_backend (ID of the thread that creates the replication slot) to
manually stop the creation.

● To parse the UPDATE and DELETE statements of an Astore table, you need to
configure the REPLICA IDENTITY attribute for the table. If the table does not
have a primary key, set the REPLICA IDENTITY attribute to FULL. Otherwise,
modified rows are not identified in the decoding result of the UPDATE and
DELETE statements. For details, see the REPLICA IDENTITY { DEFAULT |
USING INDEX index_name | FULL | NOTHING } field in "SQL Reference >
SQL Syntax > ALTER TABLE" in Developer Guide.

● Do not perform operations on the replication slot on other nodes when the
logical replication slot is in use. To delete a replication slot, stop decoding in
the replication slot first.

● Considering that the target database may require the system status
information of the source database, logical decoding automatically filters only
logical logs of system catalogs whose OIDs are less than 16384 in the
pg_catalog and pg_toast schemas. If the target database does not need to
copy the content of other related system catalogs, the related system catalogs
need to be filtered during logical log replay.

● When logical replication is enabled, if you need to create a primary key index
that contains system columns, you must set the REPLICA IDENTITY attribute
of the table to FULL or use USING INDEX to specify a unique, non-local, non-
deferrable index that does not contain system columns and contains only
columns marked NOT NULL.

● If a replication table exists before scale-in or upgrade, you need to manually
set the logical_repl_node attribute or reset to the default value for the

GaussDB
Feature Guide for Distributed Instances 6 Logical Replication

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

replication table. For details, see the usage of the storage_parameter
parameter and the logical_repl_node attribute in "SQL Reference > SQL
Syntax > ALTER TABLE" in Developer Guide.

● If a transaction has too many sub-transactions, too many files are flushed to
disks. To exit decoding, you need to run the SQL function
pg_terminate_backend (walsender thread ID for logical decoding) to manually
stop decoding. In addition, the exit delay increases by about 1 minute per
300,000 sub-transactions. Therefore, when logical decoding is enabled, if the
number of sub-transactions of a transaction reaches 50,000, a WARNING log
is generated.

● When a logical replication slot is inactive, GUC parameters
enable_xlog_prune is set to on, enable_logicalrepl_xlog_prune is set to on,
and max_size_for_xlog_retention is set to a non-zero value, the number of
retained log segments caused by the backup slot or logical replication slot
exceeds the value of wal_keep_segments, and other replication slots do not
cause more retained log segments, if the value of
max_size_for_xlog_retention is greater than 0 and the number of retained
log segments (the size of each log segment is 16 MB) caused by the current
logical replication slot exceeds the value of max_size_for_xlog_retention, or
if the value of max_size_for_xlog_retention is less than 0 and the disk usage
reaches the value of –max_size_for_xlog_retention/100, the logical
replication slot is forcibly invalidated and restart_lsn is set to FFFFFFFF/
FFFFFFFF. Logical replication slots in this state do not participate in the
recycling of blocked logs or historical system catalogs, but the limitation on
the maximum number of replication slots still takes effect. In this case, you
need to manually delete them.

● After the standby node starts decoding and sends an instruction of updating
the replication slot number to the primary node, the standby node occupies a
corresponding logical replication slot (identified as an active state) on the
primary node. Before that, the corresponding logical replication slot on the
primary node is inactive. In this state, if the condition for forcibly invalidating
the logical replication slot is met, the logical replication slot is marked as
invalid (that is, restart_lsn is set to FFFFFFFF/FFFFFFFF). As a result, the
standby node cannot update the replication slot on the primary node. In
addition, after the standby node replays the logs indicating that the
replication slot is invalid, the standby node of the current replication slot
cannot be reconnected if decoding is disconnected.

● Inactive logical replication slots block WAL recycling and historical system
catalog tuple clearing. As a result, disk logs are accumulated and system
catalog scanning performance deteriorates. Therefore, you need to clear
logical replication slots that are no longer used in time. During the
observation period before the upgrade is committed, the extended IP address
of the DN is used to connect to the logical replication slot created on the DN.
Before the upgrade rollback, manually clear the logical replication slot.
Otherwise, the DN cannot be directly connected to clear the logical
replication slot when the extended IP address feature of the DN is rolled back.

● Logical decoding with strong consistency in a distributed system (with CNs
connected) supports only GTM-lite distributed deployment and streaming
decoding. It does not support CNs connecting to standby DNs for decoding,
SQL logical decoding functions, online scale-out, or global indexes.

GaussDB
Feature Guide for Distributed Instances 6 Logical Replication

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

● For logical decoding with strong consistency in a distributed system (with CNs
connected), the CN HA is switched by the service.

● The xmin, catalog_xmin, restart_lsn, confirmed_flush, and confirmed_csn
columns of the CSN-based logical replication slots on CNs are not displayed
because the CSN-based logical replication slots function only as placeholders
and do not move with logical decoding or block log recycling.

● If a protocol is used to connect to a CN to create a logical replication slot,
only CSN-based replication slots are supported. If a protocol is used to
connect to a DN to create a logical replication slot, only LSN-based replication
slots are supported.

● For distributed decoding, if an error is reported or the decoding client is
manually stopped, wait for 15 seconds and try decoding again. If a replication
slot is occupied, run the command pg_terminate_backend(ID of the thread
that occupies the replication slot) to manually release the replication slot.

● If an error is reported when a replication slot fails to be created on a CN,
delete the replication slot on the CN and create a replication slot on the CN
again.

● When a logical replication slot is deleted from a CN, if the logical replication
slot is an LSN-based logical replication slot, only the replication slot of the
current node is deleted. Logical replication slots with the same name on other
nodes are not affected. When a CSN-based logical replication slot with the
same name exists on other nodes, no error is reported because some nodes
do not have replication slots. In addition, replication slots with the same
name on all nodes are successfully deleted. If no replication slot exists on any
node, an error is reported.

● When a CSN-based logical replication slot is created on a CN, if there are
residual LSN-based logical replication slots with the same name on some
nodes, you need to delete the residual replication slots on these nodes.
Otherwise, CSN-based logical replication slots will be created on CNs and
primary DNs that do not have replication slots with the same name except
the current CN.

● If an LSN-based logical replication slot remains on the current CN and a CSN-
based logical replication slot with the same name remains on other nodes,
deleting the replication slot on the current CN will delete only the local LSN-
based logical replication slot. After the deletion is complete, perform the
deletion operation again to delete the replication slots with the same name
on other nodes.

● When the JSON format is used for decoding, the data column cannot contain
special characters (such as the null character '\0'). Otherwise, the content in
the decoding output column will be truncated.

● When a transaction generates a large number of sub-transactions that need
to be flushed to disks, the number of opened file handles may exceed the
upper limit. In this case, set max_files_per_process to a value greater than
twice the upper limit of sub-transactions.

● sql_decoding decodes the UPDATE statement as a "DELETE+INSERT"
operation.

Performance
In the Benchmarksql-5.0 with 100 warehouses, when pg_logical_slot_get_changes
is used:

GaussDB
Feature Guide for Distributed Instances 6 Logical Replication

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

● If 4000 lines of data (about 5 MB to 10 MB logs) are decoded at a time, the
decoding performance ranges from 0.3 MB/s to 0.5 MB/s.

● If 32000 lines of data (about 40 MB to 80 MB logs) are decoded at a time,
the decoding performance ranges from 3 MB/s to 5 MB/s.

● If 256000 lines of data (about 320 MB to 640 MB logs) are decoded at a time,
the decoding performance ranges from 3 MB/s to 5 MB/s.

● If the amount of data to be decoded at a time still increases, the decoding
performance is not significantly improved.

If pg_logical_slot_peek_changes and pg_replication_slot_advance are used, the
decoding performance is 30% to 50% lower than that when
pg_logical_slot_get_changes is used.

6.1.2 Logical Decoding Options
● General options:

– include-xids:
Specifies whether the decoded data column contains XID information.
Valid value: 0 and 1. The default value is 1.

▪ 0: The decoded data column does not contain XID information.

▪ 1: The decoded data column contains XID information.

– skip-empty-xacts:
Specifies whether to ignore empty transaction information during
decoding.
Valid value: 0 and 1. The default value is 0.

▪ 0: The empty transaction information is not ignored during decoding.

▪ 1: The empty transaction information is ignored during decoding.

– include-timestamp:
Specifies whether decoded information contains the commit timestamp.
Valid value: 0 and 1. The default value is 0.

▪ 0: The decoded information does not contain the commit timestamp.

▪ 1: The decoded information contains the commit timestamp.

– only-local:
Specifies whether to decode only local logs.
Valid value: 0 and 1. The default value is 1.

▪ 0: Non-local logs and local logs are decoded.

▪ 1: Only local logs are decoded.

– force-binary:
Specifies whether to output the decoding result in binary format.
Value range: 0

GaussDB
Feature Guide for Distributed Instances 6 Logical Replication

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

▪ 0: The decoding result is output in text format.

– white-table-list:
Whitelist parameter, including the schema and table name to be decoded.
Value range: a string that contains table names in the whitelist. Different
tables are separated by commas (,). An asterisk (*) is used to fuzzily
match all tables. Schema names and table names are separated by
periods (.). No space character is allowed. For example:
select * from pg_logical_slot_peek_changes('slot1', NULL, 4096, 'white-table-list',
'public.t1,public.t2,*.t3,my_schema.*');

– max-txn-in-memory:
Memory control parameter. The unit is MB. If the memory occupied by a
single transaction is greater than the value of this parameter, data is
flushed to disks.
Value range: an integer ranging from 0 to 100. The default value is 0,
indicating that memory control is disabled.

– max-reorderbuffer-in-memory:
Memory control parameter. The unit is GB. If the total memory (including
the cache) of transactions being concatenated in the sender thread is
greater than the value of this parameter, the current decoding transaction
is flushed to disks.
Value range: an integer ranging from 0 to 100. The default value is 0,
indicating that memory control is disabled.

– include-user:
Specifies whether the BEGIN logical log of a transaction records the
username of the transaction. The username of a transaction refers to the
authorized user, that is, the login user who executes the session
corresponding to the transaction. The username does not change during
the execution of the transaction.
Valid value: 0 and 1. The default value is 0.

▪ 0: The BEGIN logical log of a transaction does not contain the
username of the transaction.

▪ 1: The BEGIN logical log of a transaction records the username of the
transaction.

– exclude-userids:
Specifies the OID of a blacklisted user. It can be used only when SQL
functions are used for decoding and cannot be specified when a logical
decoding task is started.
Value range: a string, which specifies the OIDs of blacklisted users.
Multiple OIDs are separated by commas (,). The system does not check
whether the OIDs exist.

– exclude-users:
Name list of blacklisted users.
Value range: a string, which specifies the names of blacklisted users.
Multiple names are separated by commas (,). The system does not check
whether the names exist.

GaussDB
Feature Guide for Distributed Instances 6 Logical Replication

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

– dynamic-resolution:
Specifies whether to dynamically parse the names of blacklisted users.
Valid value: 0 and 1. The default value is 1.

▪ 0: If the parameter is set to 0, an error is reported and the logical
decoding exits when the decoding detects that the user does not
exist in blacklist exclude-users.

▪ 1: If the parameter is set to 1, decoding continues when it detects
that the user does not exist in blacklist exclude-users.

– standby-connection:
Specifies whether to restrict decoding only on the standby node. This
option is set only for streaming decoding. It can be used only when
SQL functions are used for decoding and cannot be specified when a
logical decoding task is started.
Value range: Boolean. The default value is false.

▪ true: Only the standby node can be connected for decoding. When
the primary node is connected for decoding, an error is reported and
the system exits.

▪ false: The primary or standby node can be connected for decoding.

– sender-timeout:
Heartbeat timeout threshold between the kernel and the client. This
option is set only for streaming decoding. If no message is received
from the client within the period, the logical decoding stops and
disconnects from the client. The unit is ms.
Value range: an integer ranging from 0 to 2147483647. The default value
depends on the value of the GUC parameter logical_sender_timeout.

– enable-heartbeat:
Specifies whether to generate heartbeat logs. This option is set only for
streaming decoding.
Value range: Boolean. The default value is false.

▪ true: Heartbeat logs are generated.

▪ false: Heartbeat logs are not generated.

GaussDB
Feature Guide for Distributed Instances 6 Logical Replication

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

NO TE

If the heartbeat log output option is enabled, heartbeat logs will be generated.
The heartbeat logs can be parsed as follows: For a binary heartbeat log message,
it starts with a character 'h' and then the heartbeat log content: an 8-byte uint64
string, an 8-byte uint64 string, and an 8-byte int64 string. For the first 8-byte
uint64 string, in the decoding scenario where DNs are directly connected, this
string is an LSN, indicating the end position of the WAL read when the heartbeat
logical log is sent; in the decoding scenario where distributed strong consistency
is required, this string is a CSN, indicating the decoding log transaction CSN that
has been sent when the heartbeat logical log is sent. For the second 8-byte
uint64 string, in the decoding scenario where DNs are directly connected, this
string is an LSN, indicating the location of the WAL that has been flushed to
disks when the heartbeat logical log is sent; in the decoding scenario where
distributed strong consistency is required, this string is a CSN, indicating the CSN
to be obtained by the next transaction committed by the cluster. The last 8-byte
int64 string indicates the generation timestamp (starting from January 1, 1970)
of the latest decoded transaction log or checkpoint log. Then, it ends with
character 'F'. TEXT/JSON heartbeat log messages that are sent in batches end
with '0'. There is no such terminator for each TEXT/JSON heartbeat log message.
The message content is transmitted in big-endian mode. The following figure
shows the format. (In consideration of forward compatibility, the LSN naming
mode is retained. The actual meaning depends on the specific scenario.)

– parallel-decode-num:
Number of decoder threads for parallel decoding. This option is set only
for streaming decoding. When the system function is called, this option
is invalid and only the value range is verified.
Value range: The value 1 indicates that decoding is performed based on
the original serial logic. Other values indicate that parallel decoding is
enabled. The default value is 1.

NO TICE

If parallel-decode-num is not set (the default value is 1) or is explicitly
set to 1, the options in the following "Parallel decoding" cannot be
configured.

– output-order:
Specifies whether to use the CSN sequence to output decoding results.
This option is set only for streaming decoding. When the system
function is called, this option is invalid and only the value range is
verified.
Valid value: 0 or 1 of the int type. The default value is 0.

▪ 0: The decoding results are sorted by transaction COMMIT LSN. This
mode can be used only when the value of confirmed_csn of the
decoding replication slot is set to 0 (not displayed). Otherwise, an
error is reported.

GaussDB
Feature Guide for Distributed Instances 6 Logical Replication

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

▪ 1: The decoding results are sorted by transaction CSN. This mode can
be used only when the value of confirmed_csn of the decoding
replication slot is not set to 0. Otherwise, an error is reported.

NO TICE

● When output-order is not configured (that is, the default value 0 is
used and the order is based on the COMMIT LSN) or is explicitly
configured to 0, the options in the following "CSN decoding" cannot
be configured.

● In streaming decoding scenarios, when a DN receives a logical
decoding connection from a CN, the output-order option is invalid
and CSN decoding is performed by default.

– auto-advance:

Specifies whether to automatically advance logical replication slots. This
parameter is set only for streaming decoding.

Value range: Boolean. The default value is false.

▪ true: The logical replication slot is advanced to the current decoding
position when all sent logs are confirmed and there is no transaction
to be sent.

▪ false: The replication service invokes the log confirmation interface
to advance the logical replication slot.

– skip-generated-columns:

Specifies whether to skip generated columns in the logical decoding
result. This parameter is invalid for UPDATE and DELETE on old tuples,
and the corresponding tuples always output the generated columns.
Generated columns are not supported in a distributed system and
therefore, this parameter has no actual impact. It can be used only when
SQL functions are used for decoding and cannot be specified when a
logical decoding task is started.

Value range: Boolean. The default value is false.

▪ true: The decoding result of generated columns is not output.

▪ false: The decoding result of generated columns is output.

● CSN decoding:

– logical-receiver-num:

Number of logical receivers started for distributed decoding. This option
is set only for streaming decoding. When the system function is called,
this option is invalid and only the value range is verified.

Value range: an integer ranging from 1 to 20. The default value is 1. If
this option is set to a value greater than the number of shards in the
current cluster, the value is changed to the number of shards.

– slice-id:

GaussDB
Feature Guide for Distributed Instances 6 Logical Replication

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

ID of the shard where the current DN is located. This option is set only
when DNs are connected for decoding. It is used to decode replication
tables.
Value range: an integer ranging from 0 to 8192. The default value is -1,
indicating that the shard ID is not specified. However, an error is reported
when the data is decoded to the replication table.

CA UTION

This configuration option is used when the DN attempts to use the CSN
logical replication slot (confirmed_csn is a non-zero replication slot) for
decoding. It is used to indicate the shard ID (that is, the sequence number of
the shard. Enter 0 for the first shard). If this option is not set (that is, the
default value -1 is used), an error is reported when data is decoded to the
replication table. This option is used when the CN collects decoding results
from DNs in distributed decoding mode. You are advised not to manually
connect to DNs for decoding in this scenario.

– start-position:
Filters out transactions whose CSNs are less than the specified CSN, and
filters out logs whose LSNs are less than the specified LSN for the
transaction with specified CSN. This option is set only when DNs are
connected. BEGIN logs of the transaction with specified CSN must be
filtered out.
Value: a string of two uint64 characters separated by a slash (/). The left
and right sides indicate the CSN and LSN, respectively.

CA UTION

This option is used to filter logs that may have been received when the
CN sends a decoding request after establishing a connection to the DN
during CN decoding. You are advised not to manually connect to DNs for
decoding in this scenario.

● Parallel decoding:
The following configuration options are set only for streaming decoding:
– decode-style:

Specifies the decoding format.
Valid value: 'j', 't', or 'b' of the char type, indicating the JSON, TEXT, or
binary format, respectively. The default value is 'b', indicating binary
decoding.
For the JSON and TEXT formats, in the decoding result sent in batches,
the uint32 consisting of the first four bytes of each decoding statement
indicates the total number of bytes of the statement (the four bytes
occupied by the uint32 are excluded, and 0 indicates that the decoding of
this batch ends). The 8-byte uint64 indicates the corresponding LSN
(begin corresponds to first_lsn, commit corresponds to end_lsn, and
other values correspond to the LSN of the statement).

GaussDB
Feature Guide for Distributed Instances 6 Logical Replication

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

NO TE

The binary encoding rules are as follows:

1. The first four bytes represent the total number of bytes of the decoding result of
statements following the statement-level delimiter letter P (excluded) or the batch
end character F (excluded). If the value is 0, the decoding of this batch ends.

2. The next eight bytes (uint64) indicate the corresponding LSN (begin corresponds
to first_lsn, commit corresponds to end_lsn, and other values correspond to the
LSN of the statement).

3. The next one-byte letter can be B, C, I, U, or D, representing BEGIN, COMMIT,
INSERT, UPDATE, or DELETE.

4. If B is used in the step 3:

1. The next eight bytes (uint64) indicate the CSN.

2. The next eight bytes (uint64) indicate first_lsn.

3. (Optional) If the next 1-byte letter is T, the following four bytes (uint32)
indicate the timestamp length for committing the transaction. The following
characters with the same length are the timestamp character string.

4. (Optional) If the next one-byte letter is N, the following four bytes (uint32)
indicate the length of the transaction username. The following characters with
the same length are the transaction username.

5. Because there may still be a decoding statement subsequently, a 1-byte letter P
or F is used as a separator between statements. P indicates that there are still
decoded statements in this batch, and F indicates that this batch is completed.

5. If C is used in the step c:

1. (Optional) If the next 1-byte letter is X, the following eight bytes (uint64)
indicate XID.

2. (Optional) If the next 1-byte letter is T, the following four bytes (uint32)
indicate the timestamp length. The following characters with the same length
are the timestamp character string.

3. When logs are sent in batches, decoding results of other transactions may still
exist after a COMMIT log is decoded. If the next 1-byte letter is P, the batch
still needs to be decoded. If the letter is F, the batch decoding ends.

6. If I, U, or D is used in the step c:

1. The next two bytes (uint16) indicate the length of the schema name.

2. The schema name is read based on the preceding length.

3. The next two bytes (uint16) indicate the length of the table name.

4. The table name is read based on the preceding length.

5. (Optional) If the next 1-byte letter is N, it indicates a new tuple. If the letter is
O, it indicates an old tuple. In this case, the new tuple is sent first.

1. The following two bytes (uint16) indicate the number of columns to be
decoded for the tuple, which is recorded as attrnum.

2. The following procedure is repeated for attrnum times.

1. The next two bytes (uint16) indicate the length of the column name.

2. The column name is read based on the preceding length.

3. The next four bytes (uint32) indicate the OID of the current column
type.

4. The next four bytes (uint32) indicate the length of the value (stored in
the character string format) in the current column. If the value is
0xFFFFFFFF, it indicates null. If the value is 0, it indicates a character
string whose length is 0.

5. The column value is read based on the preceding length.

GaussDB
Feature Guide for Distributed Instances 6 Logical Replication

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

6. Because there may still be a decoding statement subsequently, if the next one-
byte letter is P, it indicates that the batch still needs to be decoded, and if the
next one-byte letter is F, it indicates that decoding of the batch ends.

– sending-batch:
Specifies whether to send messages in batches.
Valid value: 0 or 1 of the int type. The default value is 0.

▪ 0: The decoding results are sent one by one.

▪ 1: When the accumulated size of decoding results reaches 1 MB,
decoding results are sent in batches.

In the scenario where batch sending is enabled, if the decoding format is
'j' or 't', before each original decoding statement, a uint32 number is
added indicating the length of the decoding result (excluding the current
uint32 number), and a uint64 number is added indicating the LSN
corresponding to the current decoding result.

NO TICE

In the CSN decoding scenario, batch sending is limited to a single transaction
(that is, if a transaction has multiple small statements, batch sending is used).
The batch sending function is not used to send multiple transactions in the
same batch.

– parallel-queue-size:
Specifies the length of the queue for interaction between parallel logical
decoding threads.
Value range: an integer ranging from 2 to 1024. The value must be an
integer power of 2. The default value is 128.
The queue length is positively correlated with the memory usage during
decoding.

6.1.3 Logical Decoding by SQL Function Interfaces
In GaussDB, you can call SQL functions to create, delete, and update logical
replication slots, as well as obtain decoded transaction logs.

Procedure

Step 1 Log in to any host in the GaussDB cluster as a user with the REPLICATION
permission.

Step 2 Connect to the database through a CN port.
gsql -U user1 -d gaussdb -p 40000 -r

In the preceding command, user1 indicates the username, gaussdb indicates the
name of the database to be connected, and 40000 indicates the database DN port
number. You can replace them as required. Replication slots are created on DNs.
Therefore, you need to connect to a database through a DN port.

Step 3 Create a logical replication slot named slot1.

GaussDB
Feature Guide for Distributed Instances 6 Logical Replication

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

gaussdb=# SELECT * FROM pg_create_logical_replication_slot('slot1', 'mppdb_decoding');
slotname | xlog_position
----------+---------------
slot1 | 0/601C150
(1 row)

Step 4 Create a table t in the database and insert data into it.
gaussdb=# CREATE TABLE t(a int PRIMARY KEY, b int);
gaussdb=# INSERT INTO t VALUES(3,3);

Step 5 Read the decoding result of slot1 on all DNs. The number of decoded records is
4096.

NO TE

For details about the logical decoding options, see Logical Decoding Options.
gaussdb=# EXECUTE DIRECT ON DATANODES 'SELECT * FROM pg_logical_slot_peek_changes(''slot1'', NULL,
4096);';
location | xid | data
-----------+-------
+--

 0/601C188 | 1010023 | BEGIN 1010023
 0/601ED60 | 1010023 | COMMIT 1010023 CSN 1010022
 0/601ED60 | 1010024 | BEGIN 1010024
 0/601ED60 | 1010024 | {"table_name":"public.t","op_type":"INSERT","columns_name":
["a","b"],"columns_type":["integer","integer"],"columns_val":["3","3"],"old_keys_name":[],"old_keys_type":
[],"old_keys_val":[]}
 0/601EED8 | 1010024 | COMMIT 1010024 CSN 1010023
(5 rows)

Step 6 Delete the logical replication slot slot1.
gaussdb=# SELECT * FROM pg_drop_replication_slot('slot1');
 pg_drop_replication_slot

(1 row)

----End

6.1.4 Logical Data Replication Using Stream Decoding
A third-party replication tool extracts logical logs from GaussDB and replays them
on the peer database. For details about the code of the replication tool that uses
JDBC to connect to the database, see "Application Development Guide >
Development Based on JDBC > Example: Logic Replication Code" in Developer
Guide.

GaussDB
Feature Guide for Distributed Instances 6 Logical Replication

Issue 01 (2024-05-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

	Contents
	1 Materialized View
	1.1 Complete-Refresh Materialized View
	1.1.1 Overview
	1.1.2 Usage
	1.1.3 Support and Constraints

	1.2 Fast-Refresh Materialized View
	1.2.1 Overview
	1.2.2 Usage
	1.2.3 Support and Constraints

	2 Setting Encrypted Equality Queries
	2.1 Overview
	2.2 Using gsql to Operate an Encrypted Database
	2.3 Using JDBC to Operate an Encrypted Database
	2.4 Enhancing Security in the Configuration Phase
	2.5 Encrypted Functions and Stored Procedures

	3 Partitioned Table
	3.1 Large-Capacity Database
	3.1.1 Background
	3.1.2 Table Partitioning
	3.1.3 Data Partition Query Optimization
	3.1.4 Data Partition O&M Management

	3.2 Introduction to Partitioned Tables
	3.2.1 Basic Concepts
	3.2.1.1 Partitioned Table
	3.2.1.2 Partition
	3.2.1.3 Partition Key

	3.2.2 Partitioning Policy
	3.2.2.1 Range Partitioning
	3.2.2.2 Hash Partitioning
	3.2.2.3 List Partitioning
	3.2.2.4 Impact of Partitioned Tables on Import Performance

	3.2.3 Basic Usage of Partitions
	3.2.3.1 Creating Partitioned Tables
	3.2.3.2 DML Statements for Querying Partitioned Tables

	3.3 Partitioned Table Query Optimization
	3.3.1 Partition Pruning
	3.3.1.1 Static Partition Pruning
	3.3.1.2 Dynamic Partition Pruning
	3.3.1.2.1 Dynamic PBE Pruning
	3.3.1.2.2 Dynamic Parameterized Path Pruning

	3.3.2 Partitioned Indexes

	3.4 Partitioned Table O&M Management
	3.4.1 ADD PARTITION
	3.4.1.1 Adding a Partition to a Range Partitioned Table
	3.4.1.2 Adding a Partition to a List Partitioned Table

	3.4.2 DROP PARTITION
	3.4.3 EXCHANGE PARTITION
	3.4.4 TRUNCATE PARTITION
	3.4.5 SPLIT PARTITION
	3.4.5.1 Splitting a Partition for a Range Partitioned Table
	3.4.5.2 Splitting a Partition for a List Partitioned Table

	3.4.6 MERGE PARTITION
	3.4.7 MOVE PARTITION
	3.4.8 RENAME PARTITION
	3.4.8.1 Renaming a Partition in a Partitioned Table
	3.4.8.2 Renaming an Index Partition for a Local Index

	3.4.9 ALTER TABLE ENABLE/DISABLE ROW MOVEMENT
	3.4.10 Invalidating/Rebuilding Indexes of a Partition
	3.4.10.1 Invalidating/Rebuilding Indexes
	3.4.10.2 Invalidating/Rebuilding Local Indexes of a Partition

	3.5 System Views & DFX Related to Partitioned Tables
	3.5.1 System Views Related to Partitioned Tables
	3.5.2 Built-in Tool Functions Related to Partitioned Tables

	4 Storage Engine
	4.1 Storage Engine Architecture
	4.1.1 Overview
	4.1.1.1 Static Compilation Architecture
	4.1.1.2 Database Service Layer

	4.1.2 Setting Up a Storage Engine
	4.1.3 Storage Engine Update Description
	4.1.3.1 GaussDB 503
	4.1.3.2 GaussDB R2

	4.2 Astore
	4.2.1 Overview

	4.3 Ustore
	4.3.1 Overview
	4.3.1.1 Ustore Features and Specifications
	4.3.1.1.1 Restrictions
	4.3.1.1.2 Storage Specifications

	4.3.1.2 Examples
	4.3.1.3 Best Practices of Ustore
	4.3.1.3.1 How Can I Configure init_td
	4.3.1.3.2 How Can I Configure fillfactor
	4.3.1.3.3 Collecting Statistics
	4.3.1.3.4 Online Verification
	4.3.1.3.5 How Can I Configure the Size of Rollback Segments

	4.3.2 Storage Format
	4.3.2.1 Relation
	4.3.2.1.1 Page-based Row Consistency Read (PbRCR) Heap Multi-Version Management
	4.3.2.1.2 PbPCR Heap Visibility Mechanism
	4.3.2.1.3 Heap Space Management

	4.3.2.2 Index
	4.3.2.2.1 Row Consistency Read (RCR) UB-tree Multi-Version Management
	4.3.2.2.2 RCR UB-Tree Visibility Mechanism
	4.3.2.2.3 Inserting, Deleting, Updating, and Scanning UB-Tree
	4.3.2.2.4 UB-Tree Space Management

	4.3.2.3 Undo
	4.3.2.3.1 Rollback Segment Management
	4.3.2.3.2 File Structure
	4.3.2.3.3 Undo Space Management

	4.3.3 Ustore Transaction Model
	4.3.3.1 Transaction Commit
	4.3.3.2 Transaction Rollback

	4.3.4 Flashback
	4.3.4.1 Flashback Query
	4.3.4.2 Flashback Table
	4.3.4.3 Flashback DROP/TRUNCATE

	4.3.5 Common View Tools
	4.3.6 Common Problems and Troubleshooting Methods
	4.3.6.1 Snapshot Too Old
	4.3.6.1.1 Undo Space Recycling Blocked by Long Transactions
	4.3.6.1.2 Slow Undo Space Recycling Caused by Many Rollback Transactions

	4.3.6.2 Storage Test Error
	4.3.6.3 An Error "UBTreeSearch::read_page has conflict with recovery, please try again later" Is Reported when a Service Uses a Standby Node to Read Data

	5 FDW
	5.1 file_fdw

	6 Logical Replication
	6.1 Logical Decoding
	6.1.1 Overview
	6.1.2 Logical Decoding Options
	6.1.3 Logical Decoding by SQL Function Interfaces
	6.1.4 Logical Data Replication Using Stream Decoding

