GaussDB

Primary&Standby Edition Feature
Guide

Issue 01
Date 2023-07-17

NN

»)

pIa

V.

HUAWEI

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2023. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

QD

nuawer and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.

Address: Huawei Cloud Data Center Jiaoxinggong Road
Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

GaussDB
Primary&Standby Edition Feature Guide Contents

Contents

T MaAtErAliZEA VIBW.....eieeeeeeeeeictnencenneseenseeesanesesssssssssssssssasessassssssesssssassssssassssssasssass 1
1.1 Complete-refresh MaterialiZed VIBW........c.eieeeece ettt 1
T.T.T OVRIVIBW....eete ettt et ettt b bbb et e et £ et e bttt ae bbbt ae st e bt as st e bt asaebettasanaes 1
T.T.2 USAQ ittt ettt b ettt ettt b et a ettt s et et an 1
1.7.3 SUPPOIE @NA CONSTIAINTS....coiuivieeirieieieieieesie sttt see s st sss st esassesss s s s ssssesse s sse s eesssssssssessssesssssssssessnssansess 2
1.2 Fast-refresh MaterialiZEd VIBW.........iiieeeeeeeeieisisi sttt sttt bbbt a s bbb s ases 2
T.2.T OVEIVIBW...ereieeeieieeeireieesesetaeese et sssasesesse s s ettt es s e e e et s s e e et bbb ase e bbbt bseb s s sacsssaen 2
T.2.2 USQQE. ..ttt sttt s st s s e s st s s s s et eessssseseessses et et aseses et eesese s et eessse s e s et e se s st e seae s e b e sese s et s rnsesestren 3
1.2.3 SUPPOIt @NA CONSLIAINTS.....cucvuierieeieeirieieeieeeseesiesee ettt sss s s bbb e s s s s bbb essessessessssasbsss s b sensesssssnsans 4
2 Setting Encrypted EQUality QUETY.......ccioiiiiniriiiiiniineiinnnsensnssnssnsssssssssssssssssssssssssssssssases 5
2.1 OVEIVIEW...cveeeiieieeeieeeeie st sesssssssssssssssssssasssesssssssssessssssssssssssssssssssessssssassesssssssssesssssssssssssssssssssesassessssessssesassessssessssessssnsns 5
2.2 Using gsql to Operate an ENCrypted Database........rrnrnieneinininieisissississessnns 9
2.3 Using JDBC to Operate an ENCrypted Database..........ieiieeeieeeinecieeieeis ettt s sssssssssnsns 11
2.4 Using Go Driver to Operate an ENncrypted Database..........oeeerieieiisiesseese st 16
2.5 Enhancing Security in the Configuration PRASE........c.cciieeirininsesssece sttt ssssssssssssssnsns 18
2.6 Encrypted FUNCtions and StOred ProCEAUIES.........c.cewieereeeeieee ettt s s esss s s snes 21
2.7 Sorting Encrypted Data on Clients (Lab FEATUIE) ...ttt 23
3 Partitioned Table....... i iiiiiiiinineinneiennenetssnsesssassssssssssssssssssssssssssssssssssssssassssosasns 27
3.7 Large-Capacity Database. ...ttt bbbttt sss bbbt st as s s bbb st se e saesanbas 27
3.1 BACKGIOUNG. ..ottt sss st st sass s s st sa s s s s st ensea s sssbss s ssn s st ensnssnnses 27
3.1.2 TabLe PartitioNiNg...ccuciceeeeceeeecicieictecteee ettt ettt bbb bbbt s s s e s s s s s s ssnssas 27
3.1.3 Data Partition QUErY OPtiMIZAtiON.........cccieeiirierireeieieieieieeeieeessseessissstess et ssssssssssssssssssssssssssssssssssssssessssesans 28
3.1.4 Data Partition O&M ManN@gEMENT.......cociriuriiirieirieieeeiste sttt sss s esss st sss e sas s eessssesssssassessssssssaces 29
3.2 Introduction tO PartitioN@d TAbDLES........co.ieieeee ettt sss s e esenans 29
3.2.1 BaSIC CONCEPLS ..ttt sttt sss s s s s s ssssssss s s s ssasssess st eesssesassesassense s sse s s sessssesassessssesassessssasanes 30
321,71 PArtitioN@d TabBLe...... ottt st s s b b b 30
32012 PaAFEIION ettt st ettt ettt 31
3.2.1.3 PArTITION KY ..o vttt tses sttt s bbb s bbb et as bbb es s en b en st ensssnas 31
3.2.2 PartitioNing POLICY.....cooiueieeieeiieeeisieissis sttt sssssss s sttt ss s s s bbbt s s s s s bbb s st st snsesssssssanssnssnens 32
3.2.2.1 RANGE PATtITIONING ... cieeeeiieeieieieeieieiteisie sttt sttt sss et s s s st sss st ssssssssessssssssesessssssssnssssssssessssssssssssssssns 32
3.2.2.2 INtEIVAL PartitioNinNg.. . oottt s bbb sss s bbbt s bbb bbb st na s 34
3.2.2.3 HASh PartitioNiNg.....cccueueirieieisirsinsisisis s ssesssssssssssss s st s sssssssssssssssssssssssssssessssssssssssssssssssssnssssssssssssssssssasses 35

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

GaussDB

Primary&Standby Edition Feature Guide Contents
3.2.2.4 LISt ParTitioNiNg .. occeeeeeeeeeeeeeicieicie ettt sttt sttt ettt st st a bbb et et enaens 35
3.2.2.5 SUDPAITITIONING ...ttt et s e saneae 36
3.2.2.6 Impact of Partitioned Tables on IMport PerformMance..........eeensieseeeeessssss s sessesissessesssssssssnsns 37
3.2.3 BaSIC USAQE Of PArtitiONS........covovirieirireiriieceieis sttt sttt sssassss s s st ss st sssssssssssssssssssssssesssssssssnssans 39
3.2.3.71 Creating PartitioN@d TabLeS.......co ettt sttt sb et 39
3.2.3.2 DML Statements for Querying Partitioned TabLes.........ccoiiiieiernieiesiseessesessssss st sessssssnsnses 41
3.3 Partitioned Table QUErY OPLiMIZAtioN.........coeeeioririrrirescsenes st ssssssss s sss st ss st snssssssssssnsns 43
3301 PArtitiON PrUNING ettt ettt ettt sttt eae 43
3.3.1.T SEAtiC PArtition PrUNING. ...ttt tsess st s ss sttt sessssassssnssssnssssssssssssssssssssenansns 43
3.3.1.2 DyNamic Partition PrUNING ..ottt sttt sttt ettt sttt sssseeas 46
3.3.1.2.7 DYNAMIC PBE PrUNING...cciiiiicirieiteireieiti ettt ettt st ettt sttt et et ettt 46
3.3.1.2.2 Dynamic Parameterized Path PrUNING......ccoeieeriririniesisissieseesesssess st sass s ssssssssssssssssesssssssssssssssssssansans 51
3.3.2 Optimizing Partition OpPerator EXECULION.......ccirerieerieirceiceisee ettt et et sessens 53
3.3.2.7 Pl ELIMINATION ettt ettt t e 54
3.3.2.2 IMEIGE APPENT....oiiiiiiririeieeiieiieicis sttt sassss s bbbt st ss s s s s sss s b st es s s s s s s ba s bbb et ssesss s e sas bbb s s s s ensessnen 55
3.3.2.3 IMAX/ MMttt ettt b s b b bbb sttt 56
3.3.2.4 Optimizing Performance of Importing Data to Partitions..........cccoeninenneneeereresesee e 58
3.3.3 PartitiONEA INAEXES......eeceieceeeetreereeeeireise sttt ee bbb bbbttt 59
3.4 Partitioned Table O&M MaNAgEMENT........cirrrinirererirsirsisetseesssssss sttt sssens 62
3.4. 1 ADD PARTITION....cottteteieieerieiritsistsetste st s sststssss s ssesssssssstsssssssesssssssssssssssssssssssssesessssssssessssssssesesnssssesessssssesesssssssesnes 63
3.4.1.1 Adding a Partition to @ Range Partitioned Table.........cccoeirieinieeeeeeeee e s s 63
3.4.1.2 Adding a Partition to an Interval Partitioned Table..........ornnireeee e sees 63
3.4.1.3 Adding a Partition to a List Partitioned Table............enrrr ettt eaeeaeens 63
3.4.1.4 Adding a Partition to a Level-2 Partitioned Table..........ccciieeeieieisinse st 64
3.4.1.5 Adding a Level-2 Partition to a Level-2 Partitioned Table........cccorrinincrinee e, 64
3.4.2 DROP PARTITION....cueteiieeeirieeieirttseeietstessseestsssststssssssestsssssssssssssssssssssssesessssssssesssssssssssssssssesassssssesessssssssesssssssesssnsns 65
3.4.2.1 Deleting a Partition from a Partitioned Table..........coerireieieeeceeee st saeses 65
3.4.2.2 Deleting a Partition from a Level-2 Partitioned Table........ccorrrrnrrrnrsessesste s 65
3.4.2.3 Deleting a Level-2 Partition from a Level-2 Partitioned Table.......ccccieienienieeeeeee e 66
3.4.3 EXCHANGE PARTITION . ..cuiiiereetietustireteeisetsete sttt ss st css s ssses s ss st s et s s e s bbb ssee s s b e saneses 66
3.4.3.1 Exchanging Partitions for @ Partitioned Table...........correnenieiesse et saeens 68
3.4.3.2 Exchanging Level-2 Partitions for a Level-2 Partitioned Table.........cccovrrenrnnininere e, 68
3.4.4 TRUNCATE PARTITION. ..ottt ettt eseesseeessesssessesssessebsesssesse e s s s es s e sases s bbb s s s e s s bssaneens 69
3.4.4.1 Clearing Partitions from a Partition@d Table...........oorrrrnerniesisee st sssssssssssansnes 69
3.4.4.2 Clearing Partitions from a Level-2 Partitioned Table..........covnininirr e 69
3.4.4.3 Clearing Level-2 Partitions from a Level-2 Partitioned Table........ccciereeeieinieiesesseeeeeese s ses 69
3.4.5 SPLIT PARTITION ..ctitistieieieeieieettseeeiseeesetse sttt sesse st sss et ettt 70
3.4.5.1 Splitting a Partition for a Range Partitioned Table...........coenee e 70
3.4.5.2 Splitting a Partition for an Interval Partitioned Table.........ceeerieineeeeee s 71
3.4.5.3 Splitting a Partition for @ List Partitioned Table..........cccorrierriinesieeeeieesseessesessese s sessesssssanes 72
3.4.5.4 Splitting a Level-2 Partition for a Level-2 *-Range Partitioned Table..........cccoooevrreoereceireceirecirreeeeenes 72
3.4.5.5 Splitting a Level-2 Partition for a Level-2 *-List Partitioned Table.......c.cccooimerereesecrirnensseseeeseeenans 73

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

GaussDB

Primary&Standby Edition Feature Guide Contents
3.4.6 MERGE PARTITION. ...cotitiirtieieeireieieitstieesstssetseesessetse s bbbt e bbb sttt 74
3.4.6.1 Merging Partitions for @ Partition@d Table........ccoueieeieieieeeses ettt saenee 74
3.4.6.2 Merging Level-2 Partitions for a Level-2 Partitioned Table.......c.coirrrrinereree e 75
3.4.7 MOVE PARTITION. ..ottt cese s seesse s st ese s e et 75
3.4.7.1 Moving Partitions for @ Partitioned Table...........crrreerrese ettt et seaseaeeae 75
3.4.7.2 Moving Level-2 Partitions for a Level-2 Partitioned Table........cccovvrrrrrnenenenressessessseeseesaseens 75
3.4.8 RENAME PARTITION. ...cotttertueterteeesrttrsiseasteseieess s s s s esssssessessesssessesssssssssssssasessssassssessssassssesssssssssessesssssssssessesanssnes 75
3.4.8.1 Renaming a Partition in @ Partitioned Table.........ocirirrreeeie ettt ssees 75
3.4.8.2 Renaming a Partition in a Level-2 Partitioned Table...........cceeieeeeeeeeeeee s 76
3.4.8.3 Renaming a Level-2 Partition in a Level-2 Partitioned Table..........ccoieieeneerceeeeeeeseeeene 76
3.4.8.4 Renaming an Index Partition for @ LOCAl INA@X.......ouivieiriririririrsisissiseessesssis s ssssssessssssssssssssssssssssssssnsens 76
3.4.9 ALTER TABLE ENABLE/DISABLE ROW MOVEMENT.......ccoisiriririreicineteisteisisestsessesessssssssssssssssssssssssssssesssssssns 76
3.4.10 Invalidating/Rebuilding IndeXes Of @ Partition..........covrriereirreneinirnessie st ssssessssssssens 77
3.4.10.1 Invalidating/RebuUildiNg INAEXES.......covuevueieririririeisiseeesieses st sass s s bbb ss s sssssssss s ss st sssssssessnsns 77
3.4.10.2 Invalidating/Rebuilding Local Indexes of @ Partition...........cccieieeeieeeinecieeseeeeeeesete s enassnes 77
3.5 Partition CONCUITENCY CONTIO ...ttt sss s s st s sssssssssssssss s st ssssssssssssssssssssssssssnssssnssessssanes 78
3.5.7 COMMON LOCK DESIGN....ciuiiiiiiiriiieiieieieiseiseisttseiseasessse et sessese s s es sttt bbb th sttt bbbt essesas 78
3.5.2 DQL/DML-DQL/DML CONCUITENCY ..vurereerrerrerisrisessesssssessses 80
3.5.3 DQL/DML-DDL CONCUITENCY....cvevurerurerieriierisienisesissessssesssssssssessessssessssessssessessssesssesssess 80
3.5.4 DDL-DDL CONCUITENCY ..evuturiueerineeriueusiuesstuesstassstassssasesasessssessssasssssassesassstsssstsssssasstsssssssssssssssssssssssssssesessssstnssesassessssesas 83
3.6 System Views & DFX Related to Partitioned TabLes.........cccirereieneninieierssesssessie s ssssssssssssssssssasssnsns 83
3.6.1 System Views Related to Partitioned TabLes.........oririeieireirerseesee et isessese st essssseaseasenes 84
3.6.2 Built-in Tool Functions Related to Partitioned Tables...........nneneneereseeseiseeesseeseeeesseeseenees 84
4 STOrage ENQGINE.....cueoeiieieiiernienrnninnnsnnsnssnsesssssssssssssssssssssssssssossssssossssssssasssssssssssssassssosasns 88
4.1 STOrage ENGINE ArCHITECIUIE. ..ottt bbbt s s s bbb st s s s sas s st nen 88
Z.T.7T OVEIVIEW...oeeeeiiieeieieiee ettt sttt ess sttt ssss et s e esese s et easses e s essseseestssassesatssassesstreassesessssssesestessssesesssssssseensassnsessssnsnsas 88
4.1.1.1 Static COMPILAtION AFCNIEECEUIE.......c.. ettt sttt s s s sse s sanen 88
4.1.1.2 DAtaDASE SEIVICE LAY ...ttt bbbt s s s bbbt ss s s bbb b et s s s sass s b nssneas 89
4.1.2 Setting UpP @ STOrage ENQINE...... ettt sttt sttt sttt s bbbt besasen 89
4.2 ASTOrE STOIAGE ENGINE.....oiieiiee ettt sttt sttt s et s st s st s et enassesassenassenans 90
A.2.T OVEIVIEW...eiriuirierieisieisiees sttt sttt sttt e ea et ae bbbt e ettt bbbttt bbb et bbbt beeas 90
4.3 USTOIE STOrAgE ENGINE....coieiieeieeereer ettt ettt st s sttt et et ettt seeas 90
2,371 OVEIVIEW...oueiiiieeieieieeee ettt ettt sttt s et e e e st e et as et e et ae s e s et e eae s et et et s e s et et st asses et st aese s et taeas s et taeasaesseneansssetneasantas 90
4.3.1.1 Ustore Features and SPECIfiCAtIONS......c..ccovririririririeissireisesesie sttt sesess st sss s assssssas s ss s ssssssssssanen 91
4.3.7.7.71 FEATUIE CONSLIAINTS....viiiieeiieeieieieieicie sttt s sss s s s s sss s s sss s st ssssessssessssessssessssensssensssenssssnssssnssns 91
4.3.1.7.2 StOrage SPECITICALIONS.......ouieeeeeieirieecteie ettt bbb bbb s ssssessnsessnssas 91
2.3.1.2 EXQMIPLE ettt sttt sas s st s s RS R AR bR S e R e AR bbbttt s e 92
4.3.1.3 BESt PraCtiCeS Of USLOIE......iuieieceeeeeecie ettt sttt sas bbbt b b s s asba st snanes 93
4.3.1.3.1 HOW Can | CoNIQUIE INIE_t.. ..ttt sttt s ssssss s s st s snssssssssssnsnnsns 93
4.3.1.3.2 HOW Can | CoNFIGUIE flllFACLON ...ttt sttt s s 93
4.3.1.3.3 COLLECING STALISTICS...uruierieriririeicireiree ettt sttt s st as st essene s st nsnsnens 93
4.3.1.3.4 ONLINE VEIITFICATION. ...ctteieeitreeeeeetirtire ettt ese et sseeb st e ettt 94

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iv

GaussDB

Primary&Standby Edition Feature Guide Contents
4.3.1.3.5 How Can | Configure the Size of Rolback SEGMENTS.........ovviriririrresereee e 94
4.3.2 SEOTAGE FOIMIAT. ..ttt ettt et et ettt ettt bbbt etas 95
4.3.2.1 RELATION ..ottt sttt ses s bbbt b st a bbbt s et e bt s s s b e b A bbbttt b s sa st 95
4.3.2.1.1 Page-based Row Consistency Read (PbRCR) Heap Multi-Version Management.........c.cccoevvrerrnnene 96
4.3.2.1.2 PbPCR Heap Visibility MECHANISIM........cciiirireirereie ettt esses st esseassas s 96
4.3.2.1.3 Heap SPace ManN@geMIENT.... ..ottt ettt sttt sttt ettt sttt et s st et eas 96
4.3.2.2 INABX ettt sttt e b e b bbbt 97
4.3.2.2.1 Row Consistency Read (RCR) UB-tree Multi-Version Management.........cccoeeeeeeeeeerneeersesrseesseesnes 97
4.3.2.2.2 RCR UB-tree Visibility MECHANISIM........ccoirririeicieeeeeeieieis st sessssss st sesssssssss s sssssessssssssssansans 98
4.3.2.2.3 Inserting, Deleting, Updating, and SCanNing UB-Tr€e.........ccoocormrurrrrrerrnrrerrsirsereissessensssssssssssssssssssssssnsans 98
4.3.2.2.4 UB-tree SpPace ManNQgEMENT.....c.ccuiuriiurieirieireeireietresetsesetsesetsesstesstsess sttt esessesessesessesesssesassssassssassssassssans 100
£.3.2.3 UNAO.etttteeritete ettt ettt sttt e e et 100
4.3.2.3.1 Rollback SEgMENt MaANAGEMENT........cvrureriereeeirieieis sttt sess st ssssssasssssssssss s ssssssssssssessssssssnssnsnns 101
£.3.2.3.2 FIlE STIUCLUIE ...ttt sttt et s bbb s s s s s s s senee 101
4.3.2.3.3 UNAO SPACE MANAGEMENT ..ottt esssessssesssssss st sssssssssssssssses s sssssessessesssssssassssesssssssnsansans 101
4.3.3 UStore TranSACION MOGEL......c.cuucueerieeiireireieiircireeitie ettt ts st ss st e st 101
4.3.3.1 TranSACLION COMMIL.....iiiiiiieirieieeeieie ettt ettt et a e st s e s st sesessseseeassssesesssassssessssssssessssssnsesnsanes 102
4.3.3.2 TranSACLION ROWDACK.......cceirieieieicteete ettt s st sas bbb s s s s s s s sanbeneas 102
4.3.4 COMMION VIBW TOOLIS.....ceueuiieireeieireineieeiseie e eise b tsse e ssets st s bbbttt sise s 103
4.3.5 Common Problems and Troubleshooting Methods..............cconreeieeereee e eaeeaees 108
4.3.5.1 SNAPSNOL TOO Old...cvuiieiiiiiiiieieiisieicists ettt sss s bbb s s bbb bbb s s s s sas bbb st nsenaessesas 108
4.3.5.1.1 Undo Space Recycling Blocked by LONG TranSactions..........ccceurerrrereereerienenenisieissessessesssssssssssssssssssenns 108
4.3.5.1.2 Slow Undo Space Recycling Caused by Many Rollback Transactions...........ccceueeurereeereeereeesreeesrennnnns 109
4.3.5.2 STOFAQGE TS EFTON ..ttt ettt sttt bttt ettt ettt taeaeaa 110
4.3.5.3 An Error "UBTreeSearch::read_page has conflict with recovery, please try again later" Is Reported

when a Service Uses a Standby NOde t0 REAd Data.......covririeerinrireineinenenieiesiseiseissessssssssssssssssssssssssssssssssssssnns 110

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. %

GaussDB
Primary&Standby Edition Feature Guide 1 Materialized View

Materialized View

A materialized view is a special physical table, which is relative to a common view.
A common view is a virtual table and has many application limitations. Any query
on a view is actually converted into a query on an SQL statement, and
performance is not actually improved. The materialized view actually stores the
results of the statements executed by the SQL statement, and is used to cache the
results.

Currently, the Ustore engine does not support the creation and use of materialized
views.

1.1 Complete-refresh Materialized View

1.1.1 Overview

Complete-refresh materialized views can be fully refreshed only. The syntax for
creating a complete-refresh materialized view is similar to the CREATE TABLE AS
syntax.

1.1.2 Usage

Syntax
e Create a complete-refresh materialized view.
CREATE MATERIALIZED VIEW [view_name] AS { query_block };
e Refresh a complete-refresh materialized view.
REFRESH MATERIALIZED VIEW [view_name J;
e Delete a materialized view.
DROP MATERIALIZED VIEW [view_name J;
e Query a materialized view.
SELECT * FROM [view_name J;
Examples

-- Prepare data.

gaussdb=# CREATE TABLE t1(c1 int, c2 int);
gaussdb=# INSERT INTO t1 VALUES(1, 1);
gaussdb=# INSERT INTO t1 VALUES(2, 2);

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

GaussDB

Primary&Standby Edition Feature Guide

1 Materialized View

-- Create a complete-refresh materialized view.
gaussdb=# CREATE MATERIALIZED VIEW mv AS select count(*) from t1;
CREATE MATERIALIZED VIEW

-- Query the materialized view result.
gaussdb=# SELECT * FROM my;
count

-- Insert data into the base table in the materialized view.
gaussdb=# INSERT INTO t1 VALUES(3, 3);
INSERT O 1

-- Fully refresh the complete-refresh materialized view.
gaussdb=# REFRESH MATERIALIZED VIEW myv;
REFRESH MATERIALIZED VIEW

-- Query the materialized view result.
gaussdb=# SELECT * FROM my;
count

-- Delete the materialized view.
gaussdb=# DROP MATERIALIZED VIEW myv;
DROP MATERIALIZED VIEW

1.1.3 Support and Constraints

Supported Scenarios
e Supports the same query scope as the CREATE TABLE AS statement does.

e Supports index creation in complete-refresh materialized views.

e Supports ANALYZE and EXPLAIN.

Unsupported Scenarios

Constraints

Materialized views cannot be added, deleted, or modified. They support only query

statements.

When a complete-refresh materialized view is refreshed or deleted, a high-level
lock is added to the base table. If the definition of a materialized view involves
multiple tables, pay attention to the service logic to avoid deadlock.

1.2 Fast-refresh Materialized View

1.2.1 Overview

Fast-refresh materialized views can be incrementally refreshed. You need to
manually execute statements to incrementally refresh materialized views in a
period of time. The difference between the fast-refresh and the complete-refresh
materialized views is that the fast-refresh materialized views support only a small

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

GaussDB
Primary&Standby Edition Feature Guide 1 Materialized View

number of scenarios. Currently, only base table scanning statements or UNION
ALL can be used to create materialized views.

1.2.2 Usage

Syntax
e Create a fast-refresh materialized view.
CREATE INCREMENTAL MATERIALIZED VIEW [view_name] AS { query_block };
e Fully refresh a materialized view.
REFRESH MATERIALIZED VIEW [view_name J;
e Incrementally refresh a materialized view.
REFRESH INCREMENTAL MATERIALIZED VIEW [view_name I;
e Delete a materialized view.
DROP MATERIALIZED VIEW [view_name 1;
e Query a materialized view.
SELECT * FROM [view_name];
Examples

-- Prepare data.

gaussdb=# CREATE TABLE t1(c1 int, c2 int);
gaussdb=# INSERT INTO t1 VALUES(1, 1);
gaussdb=# INSERT INTO t1 VALUES(2, 2);

-- Create a fast-refresh materialized view.
gaussdb=# CREATE INCREMENTAL MATERIALIZED VIEW mv AS SELECT * FROM t1;
CREATE MATERIALIZED VIEW

-- Insert data.
gaussdb=# INSERT INTO t1 VALUES(3, 3);
INSERT O 1

-- Incrementally refresh the materialized view.
gaussdb=# REFRESH INCREMENTAL MATERIALIZED VIEW mv;
REFRESH MATERIALIZED VIEW

-- Query the materialized view result.
gaussdb=# SELECT * FROM my;
cl|c2

-- Insert data.
gaussdb=# INSERT INTO t1 VALUES(4, 4);
INSERT O 1

-- Fully refresh the materialized view.
gaussdb=# REFRESH MATERIALIZED VIEW myv;
REFRESH MATERIALIZED VIEW

-- Query the materialized view result.
gaussdb=# select * from mv;
cl|c2

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

GaussDB

Primary&Standby Edition Feature Guide 1 Materialized View

-- Delete the materialized view.
gaussdb=# DROP MATERIALIZED VIEW myv;
DROP MATERIALIZED VIEW

1.2.3 Support and Constraints

Supported Scenarios

Supports statements for querying a single table.
Supports UNION ALL for querying multiple single tables.
Supports index creation in materialized views.

Supports the Analyze operation in materialized views.

Unsupported Scenarios

Constraints

Multi-table join plans and subquery plans are not supported in materialized
views.

Except for a few ALTER operations, most DDL operations cannot be performed
on base tables in materialized views.

Materialized views cannot be added, deleted, or modified. They support only
query statements.

The temporary table, hashbucket, unlog, or partitioned table cannot be used
to create materialized views.

Materialized views cannot be created in nested mode (that is, a materialized
view cannot be created in another materialized view).

The column-store tables are not supported. Only row-store tables are
supported.

Materialized views of the UNLOGGED type are not supported, and the WITH
syntax is not supported.

If the materialized view definition is UNION ALL, each subquery needs to use
a different base table.

When a fast-refresh materialized view is created, fully refreshed, or deleted, a
high-level lock is added to the base table. If the materialized view is defined
as UNION ALL, pay attention to the service logic to avoid deadlock.

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

GaussDB
Primary&Standby Edition Feature Guide 2 Setting Encrypted Equality Query

Setting Encrypted Equality Query

2.1 Overview

As enterprise data is migrated to the cloud, data security and privacy protection
are facing increasingly severe challenges. The encrypted database will solve the
privacy protection issues in the entire data lifecycle, covering network
transmission, data storage, and data running status. Furthermore, the encrypted
database can implement data privacy permission separation in a cloud scenario,
that is, separate data owners from data administrators in terms of the read
permission. The encrypted equality query is used to solve equality query issues of
ciphertext data.

Encrypted Model

A fully-encrypted database uses a multi-level encrypted model. The functions of
keys in different encryption scenarios are as follows:

e Data: The encrypted database encrypts data of an encrypted column in SQL
statements and decrypts the query result of the encrypted column returned by
the database server.

e Column key: Data is encrypted by a column key, and the column key is
encrypted by a master key. The column key ciphertext is stored on the
database server.

e Master key: It is generated and stored in the external key management
service. The database driver automatically accesses the external key
management service to encrypt and decrypt column keys.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

GaussDB

Primary&Standby Edition Feature Guide 2 Setting Encrypted Equality Query

INSERT ... ('plain") INSERT ... ('plain’)

Overall Process

External key
management

Master key ‘

Encrypt

Column key
¢ Encrypt
INSERT ... ('cipher')

Application Database driver Database server

The process of using a fully-encrypted database consists of the following five
phases. This section describes the overall process. Using gsql to Operate an
Encrypted Database and Using JDBC to Operate an Encrypted Database
describe the detailed process.

1.

Preparation phase: First, you need to generate a master key in the external
key management service. External key management services include Huawei
Cloud key management service, and gs_ktool key management tool. Select
one of them as required.

Configuration phase: In an application, environment variables or database
driver parameters are used to set information for accessing external key
management service. In subsequent operations, the database driver needs to
use the configuration information in this phase to access external key
management service.

DDL statement execution phase: In this phase, you need to use the key syntax
of the encrypted database to define a master key and a column key, define a
table, and specify a column in the table as an encrypted column.

DML statement execution phase: After an encrypted table is created, you can
directly execute syntax including but not limited to INSERT, SELECT, UPDATE,
and DELETE. The database driver automatically encrypts and decrypts data of
the encrypted column based on the encryption definition in the previous
phase.

Cleanup phase: You can delete the encrypted table, column key, and master
key in sequence.

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

GaussDB
Primary&Standby Edition Feature Guide 2 Setting Encrypted Equality Query

User Application Database Driver External key management Database server

Preparation 1. Generate a master key.

Configuration 2. Configure para[neters for accessing external keys.=

3. Run the SQL statement to create a master key.

32 Query the master key status.

3-3 Store master key information.

4. Run the SQL statement to create a column key.

DDL ! l, 4-2 Generate a column key.
statement
execution 4-3 Encrypt the column key with the master key.
4-4 Store column key information and column key ciphertext.
5. Run the SQL statement to create an encrypted table. i
6. Run the SQL statement to perform INSERT, SELECT,
or other operations on data of an encrypted table.
" " 6-2 Read the master key information, column key
information, and column key ciphertext.
DML >
statement 6-3 Use the master key to decrypt the column key ciphertext.
execution < >
6-4 Use the column key plaintext to encrypt and decrypt
data in SQL statements or query results.
7. Run SQL statement to delete the encrypted table, column key, and master key.
Cleanup . »> 2

User Application Database Driver External key management = Database server

Preparation Phase

If you use the encrypted database for the first time, you need to perform the
preparation. The next time you use the database, you can skip this phase.

The encrypted database can use different external keys to manage the master key.
Select one of them as required.

e Huawei Cloud scenario

a. Open the Huawei Cloud official website (https://
www.huaweicloud.com/intl/en-us/), register an account, and log in to
the system.

b. Search for Identity and Access Management (IAM) on Huawei Cloud.
On the page that is displayed, click Users, create an IAM user, set the
IAM password for the IAM user, and grant the data encryption workshop
(DEW) permission to the new IAM user.

= 1AM Users (& © Feedback
.]

1AM User Login Link: https:/fauth huaweicloud com/authuillogin?id=hid_jchfemhcobaaph J

Usemame v Qll@

Username | Description = stas = LastActivity |= Created |5 Operation

st |@ - Enabled B e S e e o m'-w——u@-— More v
SRR Enterprize admin Enabled More +

¢. Go back to the login page, click IAM User, and log in to the system as
the newly created IAM user. The subsequent operations are performed by
the IAM user.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

https://www.huaweicloud.com/intl/zh-cn/
https://www.huaweicloud.com/intl/zh-cn/

GaussDB
Primary&Standby Edition Feature Guide 2 Setting Encrypted Equality Query

d. Search for Data Encryption Workshop on Huawei Cloud. On the page
that is displayed, click Key Management Service and click Create Key to
create a key. After the key is created, you can see that each key has a key
ID. Remember the key ID, which will be used when you create a master
key in the DDL statement execution phase.

" HUAWEI CLOUD

DEW Console Key Management Service @ [2]] Creste ey Import Key

+++++++++++++++++++++++++++++++

+++++++++++++++++++++++++++++++

(-] AES_256

Enabled - Mana: s

e. The key generated in this step is the master key used in the encrypted
database. The key is stored in Huawei Cloud key management service.
When SQL statements related to encryption and decryption are executed,
the database driver automatically accesses the key through the RESTful
API of Huawei Cloud. For details about RESTful APIs, visit https://
www.huaweicloud.com/intl/en-us/product/dew.html

e gs_ktool scenario

a. Search for the GaussDB-Kernel_Database version number OS version
number _64bit_Gsql.tar.gz installation package from the database
installation package.

b. Decompress the installation package and find the gsql_env.sh file that
contains the commands for configuring environment variables. Run the
following command to create a key. After the key is created, you can see
that each key has a key ID.

1. Configure environment variables using a script.
[terminal] # source gsql_env.sh

2. Use the key management service tool gs_ktool to generate a key. After the key is
generated, the key ID is returned. The key ID starts from 1 and increases by 1 each time a key is
created.
[terminal] # gs_ktool -g
GENERATE
1

¢. The key generated in this step is the master key used in the encrypted
database. The key is stored in gs_ktool. When SQL statements related to
encryption and decryption are executed, the database driver accesses the
key through the dynamic or static library. For details about how to use

gs_ktool, see "Client Tools > gs_ktool" in 7ool Reference.

Configuration Phase
Configuring Parameters for Accessing External Keys

e Huawei Cloud scenario

Configure the following information through environment variables.

[terminal] # export HUAWEI_KMS_INFO="iamUrl=https://iam.{ Project.myhuaweicloud.com/v3/auth/
tokens, iamUser={/AM user name}, iamPassword={/AM user key}, iamDomain={Account name},
kmsProject={ Project}'

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

https://www.huaweicloud.com/intl/zh-cn/product/dew.html
https://www.huaweicloud.com/intl/zh-cn/product/dew.html

GaussDB
Primary&Standby Edition Feature Guide 2 Setting Encrypted Equality Query

On the Huawei Cloud management console, click the user name in the upper
right corner and go to the API Credentials page. On this page, you can
obtain the required parameters, including project, IAM user name, and
account name. Remember the project ID on this page, which will be used
when you create a master key in the DDL statement execution phase.

Figure 2-1 Obtaining parameters on the Huawei Cloud page

API Credentials ()

@ Leamn more about HUAWEI CLOUD accounts, |AM users, and projects

IAM User ID Account ID 0aedf76aa38025570fdc014ed5a74c0 [T

Projects

ProjectID |= Project Name |= Region |=

] S

Example
[terminal] # export HUAWEI_KMS_INFO="iamUrl=https://iam.cn-north-4.myhuaweicloud.com/v3/auth/
tokens, iamUser=test_user, iamPassword=********* jamDomain=test_account, kmsProject=cn-north-4'

e gs_ktool

Configure the following information through environment variables.

Method 1: Manually configure the gs_ktool_conf.ini configuration file in the GaussDB-
Kernel_Database version number_OS version number_64bit_Gsql.tar.gz installation package.
Configure the file path in the environment variables.

[terminal] # export GS_KTOOL_FILE_PATH=Folder where the configuration file is located

Method 2: Configure the gsql_env.sh script in the GaussDB-Kernel_Database version number_OS
version number_64bit_Gsql.tar.gz installation package. The GS_KTOOL_FILE_PATH environment
variable is automatically configured in the script.

[terminal] # source gsql_env.sh

2.2 Using gsql to Operate an Encrypted Database

Executing SQL Statements

Before running the SQL statements in this section, ensure that the preparation and
configuration phases are complete.

This section uses a complete execution process as an example to describe how to
use the encrypted database syntax, including three phases: DDL statement
execution, DML statement execution, and cleanup.

1. Connect to the database and use the -C parameter to enable the full encryption function.
[terminal] # gsql -p PORT gaussdb -h HOST -U USER -W PASSWORD -r -C

-- 2. Create a master key.

-- This section describes how to create a master key in multiple scenarios. Select one of the following
methods as required: key management tool gs_ktool, Huawei Cloud key management service (huawei_kms).
-- For details about the KEY_PATH format, see "SQL Reference > SQL Syntax > CREATE CLIENT MASTER
KEY" in Developer Guide.

gaussdb=# CREATE CLIENT MASTER KEY cmk1 WITH (KEY_STORE = gs_ktool , KEY_PATH =
'gs_ktool/1', ALGORITHM = AES_256_CBC);

CREATE CLIENT MASTER KEY

-- In the Huawei Cloud scenario, the project ID and key ID are required in KEY_PATH. For details about how
to obtain the key ID, see the preparation phase. For details about how to obtain the project ID, see the
configuration phase.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

GaussDB
Primary&Standby Edition Feature Guide 2 Setting Encrypted Equality Query

gaussdb=# -- CREATE CLIENT MASTER KEY cmk1 WITH (KEY_STORE = huawei_kms , KEY_PATH =
'https://kms.cn-north-4.myhuaweicloud.com/v1.0/0b59929e8100268a2f22c01429802728/kms/
00000000-0000-0000-0000-00000000000', ALGORITHM = AES_256);

-- 3. Create a column key. The column key is encrypted by the master key created in the previous step. For
details about the syntax, see "SQL Reference > SQL Syntax > CREATE COLUMN ENCRYPTION KEY " in
Developer Guide.

gaussdb=# CREATE COLUMN ENCRYPTION KEY cek1 WITH VALUES (CLIENT_MASTER_KEY = cmk1,
ALGORITHM = AES_256_GCM);

-- 4. Create an encrypted table and use syntax to specify name and credit_card in the table as encrypted
columns.
gaussdb=# CREATE TABLE creditcard_info (
id_number int,
name text encrypted with (column_encryption_key = cek1, encryption_type = DETERMINISTIC),
credit_card varchar(19) encrypted with (column_encryption_key = cek1, encryption_type =
DETERMINISTIC));
NOTICE: The 'DISTRIBUTE BY' clause is not specified. Using 'id_number' as the distribution column by
default.
HINT: Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE

-- 5. Write data to the encrypted table.

gaussdb=# INSERT INTO creditcard_info VALUES (1,'joe','6217986500001288393');
INSERT O 1

gaussdb=# INSERT INTO creditcard_info VALUES (2, 'joy','6219985678349800033');
INSERT O 1

-- 6. Query data from the encrypted table.
gaussdb=# select * from creditcard_info where name = 'joe';
id_number | name | credit_card

1] joe |6217986500001288393

-- 7. Update data in the encrypted table.
gaussdb=# update creditcard_info set credit_card = '80000000011111111' where name = 'joy";
UPDATE 1

-- 8. Other operations: Add an encrypted column to a table.

gaussdb=# ALTER TABLE creditcard_info ADD COLUMN age int ENCRYPTED WITH
(COLUMN_ENCRYPTION_KEY = cek1, ENCRYPTION_TYPE = DETERMINISTIC);
ALTER TABLE

-- 9. Other operations: Delete an encrypted column from a table.
gaussdb=# ALTER TABLE creditcard_info DROP COLUMN age;
ALTER TABLE

-- 10. Other operations: Query master key information from the system catalog.
gaussdb=# SELECT * FROM gs_client_global_keys;

global_key_name | key_namespace | key_owner | key_acl | create_date
cmk1 | 2200 | 10| | 2021-04-21 11:04:00.656617
(1 rows)

-- 11. Other operations: Query column key information from the system catalog.

gaussdb=# SELECT column_key name,column_key distributed_id ,global key id,key owner FROM
gs_column_keys;

column_key_name | column_key_distributed_id | global_key_id | key_owner

cek1 | 760411027 | 16392 | 10
(1 rows)

-- 12. Other operations: View the metadata of a column in a table.
gaussdb=# \d creditcard_info
Table "public.creditcard_info"
Column | Type | Modifiers

+

id_number | integer |
name | text | encrypted
credit_card | character varying | encrypted

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

GaussDB

Primary&Standby Edition Feature Guide

2 Setting Encrypted Equality Query

-- 13. Delete an encrypted table.
gaussdb=# DROP TABLE creditcard_info;
DROP TABLE

-- 14. Delete a column key.
gaussdb=# DROP COLUMN ENCRYPTION KEY cek1;
DROP COLUMN ENCRYPTION KEY

-- 15. Delete a master key.
gaussdb=# DROP CLIENT MASTER KEY cmk;
DROP CLIENT MASTER KEY

2.3 Using JDBC to Operate an Encrypted Database

Configuring the JDBC Driver

Obtain the JDBC driver package.

The encrypted database supports the gsjdbc4.jar, opengaussjdbc.jar, and
gscejdbc.jar driver packages.

1.

gsjdbc4.jar: The main class name is org.postgresql.Driver, and the URL
prefix of the database connection is jdbc:postgresql.

opengaussjdbc.jar: The main class name is
com.huawei.opengauss.jdbc.Driver, and the URL prefix of the database
connection is jdbc:opengauss.

gscejdbc.jar (supported only in some OSs): The main class name is
com.huawei.gaussdb.jdbc.Driver. The URL prefix of the database
connection is jdbc:gaussdb. The driver package is recommended in
encrypted scenarios. If the driver package does not contain gscejdbc.jar,
you can also use the opengaussjdbc.jar or gsjdbc4.jar package.

Configure LD _LIBRARY PATH.

Before using the JDBC driver package in encrypted scenarios, you need to set
the environment variable LD L/IBRARY PATH.

When the gscejdbc.jar driver package is used, the dependent library
required by the encrypted database in the gscejdbc.jar driver package is
automatically copied to the path and loaded when the encrypted
function is enabled to connect to the database.

When using opengaussjdbc.jar or gsjdbc4.jar, you need to decompress
GaussDB-Kernel_Database version number_OS version
number_64bit_libpg.tar.gz to a specified directory, and add the path of
the lib folder to the LD L/BRARY PATH environment variable.

/A\ CAUTION

To use the JDBC driver package in the full-encryption scenario, you must
have the System.loadLibrary permission as well as the read and write
permissions on files in the first-priority path of the environment variable
LD LIBRARY PATH. You are advised to use an independent directory to
store the full-encryption dependent library. If java.library.path is
specified during execution, the value must be the same as the first-
priority path of LD LIBRARY PATH.

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

GaussDB

Primary&Standby Edition Feature Guide 2 Setting Encrypted Equality Query

When gscejdbc.jar is used, JVM loading class files depends on the libstdc++ library
of the system. If the encryption mode is enabled, gscejdbc.jar automatically
copies the dynamic libraries (including the libstdc++ library) on which the
encryption database depends to the LD L/IBRARY PATH path set by the user. If the
version of a dependent library does not match that of the existing system library,
only the dependent library is deployed during the first running. After the
dependent library is invoked again, it can be used normally.

Executing SQL Statements

Before running the SQL statements in this section, ensure that the preparation and
configuration phases are complete.

This section uses a complete execution process as an example to describe how to
use the encrypted database syntax, including three phases: DDL statement
execution, DML statement execution, and cleanup.

For details about JDBC development operations that are the same as those in non-
encrypted scenarios, see "Application Development Guide > Development Based
on JDBC" in Developer Guide.

e Connection parameters of an encrypted database

enable_ce: string type. If enable_ce is set to 0, the full encryption function is
disabled. If enable_ce is set to 1, the basic capability of encrypted equality
query is supported. If enable_ce is set to 2, client sorting is supported based
on the encrypted equality query capability (lab feature). If enable_ce is set to
3, software and hardware integration is supported based on the encrypted
equality query capability. (The current feature is a lab feature. Contact
Huawei technical support before using it.)

// The following uses gs_ktool as an example. Before executing the test case, run the gs_ktool -g
command on the client to generate a key file.

// The following uses the gscejdbc.jar driver as an example. If other driver packages are used, you
only need to change the driver class name and the URL prefix of the database connection.

// gsjdbc4.jar: The main class name is org.postgresql.Driver, and the URL prefix of the database
connection is jdbc:postgresql.

// opengaussjdbc.jar: The main class name is com.huawei.opengauss.jdbc.Driver, and the URL
prefix of the database connection is jdbc:opengauss.

// gscejdbc.jar: The main class name is com.huawei.gaussdb.jdbc.Driver, and the URL prefix of the
database connection is jdbc:gaussdb.

public static void main(String[] args) {
// Driver class.
String driver = "com.huawei.gaussdb.jdbc.Driver";
// Database connection descriptor. If enable_ce is set to 1, the basic capability of encrypted
equality query is supported.
String sourceURL = "jdbc:gaussdb://10.10.0.13:8000/postgres?enable_ce=1";
String username = "admin";
String passwd = "Gauss_234";
Connection conn = null;
try {
// Load the driver.
Class.forName(driver);
// Create a connection.
conn = DriverManager.getConnection(sourceURL, username, passwd);
System.out.println("Connection succeed!");
// Create a statement object.
Statement stmt = conn.createStatement();

// Create a CMK.
// The following describes how to create a master key in multiple scenarios. Select one of the

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

GaussDB

Primary&Standby Edition Feature Guide 2 Setting Encrypted Equality Query

following methods as required: key management tool gs_ktool, Huawei Cloud key management
service (huawei_kms).

// For details about the KEY_PATH format, see "SQL Reference > SQL Syntax > CREATE CLIENT
MASTER KEY" in Developer Guide.

int rc = stmt.executeUpdate("CREATE CLIENT MASTER KEY ImgCMK1 WITH (KEY_STORE =
gs_ktool , KEY_PATH = \"gs_ktool/1\" , ALGORITHM = AES_256_CBC);");

// In the Huawei Cloud scenario, the project ID and key ID are required in KEY_PATH. For details
about how to obtain the key ID, see the preparation phase. For details about how to obtain the
project ID, see the configuration phase.

// int rc = stmt.executeUpdate("CREATE CLIENT MASTER KEY ImgCMK1 WITH (KEY_STORE =
huawei_kms , KEY_PATH = 'https://kms.cn-north-4.myhuaweicloud.com/
v1.0/00000000000000000000000000000000/kms/00000000-0000-0000-0000-00000000000",
ALGORITHM = AES_256);");

// Create a CEK.

int rc2 = stmt.executeUpdate("CREATE COLUMN ENCRYPTION KEY ImgCEK1 WITH VALUES
(CLIENT_MASTER_KEY = ImgCMK1, ALGORITHM = AES_256_GCM);");

// Create an encrypted table.

int rc3 = stmt.executeUpdate("CREATE TABLE creditcard_info (id_number int, name varchar(50)
encrypted with (column_encryption_key = ImgCEK1, encryption_type = DETERMINISTIC),credit_card
varchar(19) encrypted with (column_encryption_key = ImgCEK1, encryption_type =
DETERMINISTIC));");

// Insert data.

int rc4 = stmt.executeUpdate("INSERT INTO creditcard_info VALUES
(1,'joe','6217986500001288393");");

// Query the encrypted table.

ResultSet rs = null;

rs = stmt.executeQuery("select * from creditcard_info where name = 'joe';");

// Delete the encrypted table.

int rc5 = stmt.executeUpdate("DROP TABLE IF EXISTS creditcard_info;");

// Delete a CEK.

int rc6 = stmt.executeUpdate("DROP COLUMN ENCRYPTION KEY IF EXISTS ImgCEK1;");

// Delete the CMK.

int rc7 = stmt.executeUpdate("DROP CLIENT MASTER KEY IF EXISTS ImgCMK1;");

// Close the statement object.

stmt.close();

// Close the connection.

conn.close();

} catch (Exception e) {
e.printStackTrace();
return;
}

}

(11 NOTE

e [Proposal] When JDBC is used to perform operations on an encrypted database, one
database connection object corresponds to one thread. Otherwise, conflicts may occur
due to thread changes.

e [Proposal] When JDBC is used to perform operations on an encrypted database,
different connections change the encrypted configuration data. The client invokes the
IsValid method to ensure that the connections can hold the changed encrypted
configuration data. In this case, the refreshClientEncryption parameter must be set to
1 (default value). In a scenario where a single client performs operations on encrypted
data, the refreshClientEncryption parameter can be set to 0.

Example of Calling the IsValid Method to Refresh the Cache

// Create a connection conn1.
Connection conn1 = DriverManager.getConnection("url","user","password");

"o

// Create a CMK in another connection conn2.

// conn1 calls the IsValid method to refresh the cache.

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

GaussDB

Primary&Standby Edition Feature Guide 2 Setting Encrypted Equality Query

try {

if (lconn1.isValid(60)) {
System.out.println("isValid Failed for connection 1");

}
} catch (SQLException e) {
e.printStackTrace();

}

return null;

Decrypting the Encrypted Equality Ciphertext

The decryption interface is added to the database connection interfaces of the
PgConnection class. The decryption interface can be used to decrypt the encrypted
equality ciphertext of the fully-encrypted database. After decryption, the plaintext
value is returned. The encrypted column corresponding to the ciphertext is found
based on schema.table.column and the original data type is returned.

Table 2-1 org.postgresqgl.jdbc.PgConnection function interface

Method Return Type Support JDBC 4

decryptData(String ClientLogicDecryptRe- Yes
ciphertext, Integer len, String | sult
schema, String table, String
column)

Parameter description:

ciphertext
Ciphertext to be decrypted.
len

Ciphertext length. If the value is less than the actual ciphertext length,
decryption fails.

schema

Name of the schema to which the encrypted column belongs.
table

Name of the table to which the encrypted column belongs.
column

Name of the column to which the encrypted column belongs.

(10 NOTE

Decryption is successful in the following scenarios, but is not recommended:
e The input ciphertext length is longer than the actual ciphertext.

e The schema.table.column points to other encrypted columns. In this case, the
original data type of the encrypted column is returned.

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

GaussDB

Primary&Standby Edition Feature Guide 2 Setting Encrypted Equality Query

Table 2-2 org.postgresql.jdbc.clientlogic.ClientLogicDecryptResult function
interface

Method Return Description Support JDBC 4
Type
isFailed() Boolean Indicates whether the Yes

decryption fails. If the
decryption fails, True is
returned. Otherwise,
False is returned.

getErrMsg() String Obtains error Yes
information.

getPlaintext() String Obtains the decrypted | Yes
plaintext.

getPlaintextSize() Integer Obtains the length of Yes
the decrypted plaintext.

getOriginalType() | String Obtains the original Yes
data type of the
encrypted column.

// After the ciphertext is obtained through non-encrypted connection or logical decoding, this interface can
be used to decrypt the ciphertext.

import org.postgresql.jdbc.PgConnection;

import org.postgresql.jdbc.clientlogic.ClientLogicDecryptResult;

// conn is an encrypted connection.
// Call the decryptData method of PgConnection to decrypt the ciphertext, locate the encrypted column to
which the ciphertext belongs based on the column name, and return the original data type.
ClientLogicDecryptResult decrypt_res = null;
decrypt_res = ((PgConnection)conn).decryptData(ciphertext, ciphertext.length(), schemaname_str,
tablename_str, colname_str);
// Check whether the decryption of the returned result class is successful. If the decryption fails, obtain the
error information. If the decryption is successful, obtain the plaintext, length, and original data type.
if (decrypt_res.isFailed()) {
System.out.println(String.format("%s\n", decrypt_res.getErrMsg()));
} else {
System.out.println(String.format("decrypted plaintext: %s size: %d type: %s\n", decrypt_res.getPlaintext(),
decrypt_res.getPlaintextSize(), decrypt_res.getOriginalType()));

Precompiling an Encrypted Table

// Create a prepared statement object by calling the prepareStatement method in Connection.
PreparedStatement pstmt = con.prepareStatement("INSERT INTO creditcard_info VALUES (2, ?, ?);");
// Set parameters by triggering the setShort method in PreparedStatement.

pstmt.setint(1, 2);

pstmt.setString(2, "joy");

pstmt.setString(3, "6219985678349800033");

// Execute the precompiled SQL statement by triggering the executeUpdate method in
PreparedStatement.

int rowcount = pstmt.executeUpdate();

// Close the precompiled statement object by calling the close method in PreparedStatement.
pstmt.close();

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

GaussDB
Primary&Standby Edition Feature Guide 2 Setting Encrypted Equality Query

Batch Processing on Encrypted Tables

// Create a prepared statement object by calling the prepareStatement method in Connection.
Connection conn = DriverManager.getConnection("url","user","password");
PreparedStatement pstmt = conn.prepareStatement("INSERT INTO batch_table (id, name, address) VALUES
(G
// Call the setShort method for each piece of data, and call addBatch to confirm that the setting is
complete.
int loopCount = 20;
for (inti=1;i < loopCount + 1; ++i) {

statemnet.setint(1, i);

statemnet.setString(2, "Name " + i);

statemnet.setString(3, "Address " + i);

// Add row to the batch.

statemnet.addBatch();

}

// Execute batch processing by calling the executeBatch method in PreparedStatement.

int[] rowcount = pstmt.executeBatch();

// Close the precompiled statement object by calling the close method in PreparedStatement.
pstmt.close();

2.4 Using Go Driver to Operate an Encrypted Database

Before running the SQL statements in this section, ensure that the preparation and
configuration phases are complete.

This section uses a complete execution process as an example to describe how to
use the encrypted database syntax, including three phases: DDL statement
execution, DML statement execution, and cleanup.

Connecting to an Encrypted Database

To connect to the encrypted database, you need to use the Go driver package
openGauss-connector-go-pq. Currently, online import is not supported. You need
to place the decompressed Go driver source code package in the local project and
configure environment variables. For details about how to develop the Go driver,
see "Application Development Guide > Development Based on the Go Driver" in
Developer Guide. In addition, ensure that GCC 7.3 or later has been installed.

The Go driver supports operations related to the encrypted database. You need to
set the enable_ce parameter and add the -tags=enable_ce tag during
compilation, decompress GaussDB-Kernel_Database version number_OS version
number_64bit_libpg.tar.gz to a specified directory, and add the path of the lib
folder to the LD _L/IBRARY PATH environment variable. The following is an
example of the encryption operation:

//The following uses a single IP address and port number as an example.
func main() {

str := "host=1727.0.0.7 port=8000 user=testuser password=******** dhname=postgres enable_ce=1" // DSN
connection string

// str == "opengauss://testuser:********@ 727 0.0.7:8000/postgres?enable_ce=1" // URL connection string

// Obtain the handle of the database connection pool.
db, err:= sql.Open("opengauss", str)
if err !=nil {

log.Fatal(err)

}
defer db.Close()
// The Open function is only used to verify parameters. Use the Ping method to check whether the data

source is valid.
err = db.Ping()

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

GaussDB
Primary&Standby Edition Feature Guide 2 Setting Encrypted Equality Query

if err == nil {
fmt.Printf("Connection succeed!\n")
}else {
log.Fatal(err)
}
}

Creating Keys for Executing Encrypted Equality Query

// Create a CMK.

// The following describes how to create a master key in multiple scenarios. Select one of the following
methods as required: key management tool gs_ktool, Huawei Cloud key management service (huawei_kms).
// For details about the KEY_PATH format, see "SQL Reference > SQL Syntax > CREATE CLIENT MASTER
KEY" in Developer Guide.

_, err = db.Exec("CREATE CLIENT MASTER KEY ImgCMK1 WITH (KEY_STORE = gs_ktool, KEY_PATH =
\"gs_ktool/1\", ALGORITHM = AES_256_CBC);")

// In the Huawei Cloud scenario, the project ID and key ID are required in KEY_PATH. For details about how
to obtain the key ID, see the preparation phase. For details about how to obtain the project ID, see the
configuration phase.

// _, err = db.Exec("CREATE CLIENT MASTER KEY ImgCMK1 WITH (KEY_STORE = huawei_kms , KEY_PATH =
'https://kms.cn-north-4.myhuaweicloud.com/v1.0/00000000000000000000000000000000/kms/
00000000-0000-0000-0000-00000000000', ALGORITHM = AES_256);");

// Create a CEK.
_, err = db.Exec("CREATE COLUMN ENCRYPTION KEY ImgCEK1 WITH VALUES (CLIENT_MASTER_KEY =
ImgCMK1, ALGORITHM = AEAD_AES_256_CBC_HMAC_SHA256);")

Creating an Encrypted Table for Executing an Encrypted Equality Query

// Create an encrypted table.
_, err = db.Exec("CREATE TABLE creditcard_info (id_number int, name varchar(50) encrypted with
(column_encryption_key = ImgCEK1, encryption_type = DETERMINISTIC), credit_card varchar(19) encrypted
with (column_encryption_key = ImgCEK1, encryption_type = DETERMINISTIC));")
// Insert data.
_, err = db.Exec("INSERT INTO creditcard_info VALUES (1,'joe','6217986500001288393"),
(2,'mike','6217986500001722485"), (3,'joe','6315892300001244581");");
var var1l int
var var2 string
var var3 string
// Query data.
rows, err := db.Query("select * from creditcard_info where name = 'joe';")
defer rows.Close()
// Print information line by line.
for rows.Next() {

err = rows.Scan(&var1, &var2, &var3)

if err !=nil {

log.Fatal(err)
}else {
fmt.Printf("var1:%v, var2:%v, var3:%v\n", var1, var2, var3)

}

}

Precompiling the Encrypted Table

// Call the Prepare method of the database instance to create a precompiled object.

delete_stmt, err := db.Prepare("delete from creditcard_info where name = $1;")

defer delete_stmt.Close()

// Call the Exec method of the precompiled object to bind parameters and execute the SQL statement.
_, err = delete_stmt.Exec("mike")

Performing the Copy In Operation on an Encrypted Table

// Call the Begin and Prepare methods of the database instance to create transaction objects and
precompiled objects.

tx, err := db.Begin()

copy_stmt, err := tx.Prepare("Copy creditcard_info from stdin")

// Declare and initialize the data to be imported.

var records = []struct {

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

GaussDB
Primary&Standby Edition Feature Guide 2 Setting Encrypted Equality Query

field1 int
field2 string
field3 string

H
{4, "james", "6217986500001234567"},

{

field1: 5,

field2: "john",

field3: "6217986500007654321",
j?

// Call the Exec method of the precompiled object to bind parameters and execute the SQL statement.
for _, record := range records {
_, err = copy_stmt.Exec(record.field1, record.field2, record.field3)
if err = nil {
log.Fatal(err)
}

// Call the Commit method of the transaction object to commit the transaction.
err = copy_stmt.Close()
err = tx.Commit()

(11 NOTE

Currently, the Copy In statement of the Go driver has strong constraints and can be
executed only in precompilation mode in transactions.

2.5 Enhancing Security in the Configuration Phase

Setting Environment Variables Securely

Sensitive information exists in HUAWEI_KMS_INFO. You are advised to set the
environment variables as follows:

1. Set temporary environment variables: When an encrypted database is used,
run the export command to set environment variables. After the database is
used, run the unset command to clear environment variables. In this method,
OS logs may record sensitive information. You are advised to use process-level
environment variables or JDBC APIs to set connection parameters.

2. Set process-level environment variables: In the application code, set
environment variables through programming interfaces. The following are
examples of setting environment variables in different programming
languages:

a. C/C++: setenv(name, value)
Go: os.Setenv(name, value)

c. Java does not support the setting of process-level environment variables.
Connection parameters can be set only through the JDBC APIs.

Verifying External Key Management Service Identity

When the database driver accesses Huawei Cloud key management service, to
prevent attackers from masquerading as the key management service, the CA
certificate can be used to verify the validity of the key server during the
establishment of HTTPS connections between the database driver and the key
management service. Therefore, you need to configure the CA certificate in
advance. If the CA certificate is not configured, the key management service
identity will not be verified. The configuration method is as follows:

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

GaussDB
Primary&Standby Edition Feature Guide 2 Setting Encrypted Equality Query

In the Huawei Cloud scenario, add the following parameters to the environment
variables:

export HUAWEI_KMS_INFO="'Other parameters, iamCaCert=Path/IAM CA certificate file,
kmsCaCert=Path/KMS CA certificate file'

Most browsers automatically download a CA certificate of a website and provide
the certificate export function. Some websites (such as https://www.ssleye.com/
ssltool/certs_down.html) provide the function of automatically downloading CA
certificates. However, the CA certificates may be unavailable due to proxy or
gateway in the local environment. Therefore, you are advised to use a browser to
download the CA certificate. You can perform the following steps:

/A\ CAUTION

The RESTful API is used to access the key management service. When you enter
the URL of the API in the address box of the browser, ignore the failure page in
Step 2. The browser has automatically downloaded the CA certificate in advance
even if the failure page is displayed.

Step 1 Enter domain names: Open a browser and enter the domain names of IAM and
KMS in the Huawei Cloud scenario.

Example:
https://iam.cn-north-4.myhuaweicloud.com/v3/auth/tokens
https://kms.cn-north-4.myhuaweicloud.com/v1.0

Step 2 Search for a certificate: Each time you enter a domain name, find the SSL
connection information and click the information to view the certificate content.

< & & jam.cn-north-4.myhuaweicloud.com/v3/auth/tokens

Merror_m=g”: "Incorrect IAM authentication information: z-—auth—token not found”, “error

“ & # iam.cn-north-4.myhuaweicloud.com/v3/auth/tokens

{"error_msg":" " jam.cn-north-4.myhuaweicloud.com X uth-token not found”,"er
@ Connection is secure »
@ Coockies and site data r
£ Site settings E

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

https://www.ssleye.com/ssltool/certs_down.html
https://www.ssleye.com/ssltool/certs_down.html

GaussDB

Primary&Standby Edition Feature Guide 2 Setting Encrypted Equality Query
< & 8 iam.cn-north-4.myhuaweicloud.com/v3/auth/tokens
{"error_msg":" & Security % uth-token not found”,"err
iam.cn-north-4.myhuaweiclcud.com

8 Connection is secure
Your informaticn (for example, passwords or
credit card numbers) is private when it is sent to

this site. Learn more

E Certificate is valid A

Step 3 Export the certificate: On the Certificate Viewer page, certificates may be
classified into multiple levels. You only need to select the upper-level certificate of
the domain name and click Export to generate a certificate file, that is, the
required certificate file.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

GaussDB
Primary&Standby Edition Feature Guide 2 Setting Encrypted Equality Query

Cerificate Viewer: *.cn-north-4.myhuaweicloud.com
Genera Details
Certificate Hisrarchy

Globaliign

GlabalSign 54 OV 551 CA 2018

".Lnenorth '-:--'11:.-" raweitkoud.com

Certificate Fields
“en-narth-4. myhuswecloud.com
Certificate

Warsion
Senal Murnber
Certificate & gnature Algonthm
IsSuer
Walgirty

Mot Bafore -

Fiedd Value

Step 4 Upload the certificate: Upload the exported certificate to the application and set
the preceding parameters.

--—-End

2.6 Encrypted Functions and Stored Procedures

In the current version, only encrypted functions and stored procedures in SQL or
PL/pgSQL are supported. Because users are unaware of the creation and execution
of functions or stored procedures in an encrypted stored procedure, the syntax has
no difference from that of non-encrypted functions and stored procedures.

The gs_encrypted_proc system catalog is added to the function or stored
procedure for encrypted equality query to store the returned original data type.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

GaussDB
Primary&Standby Edition Feature Guide 2 Setting Encrypted Equality Query

Creating and Executing a Function or Stored Procedure that Involves
Encrypted Columns

Step 1 Create a key. For details, see Using gsql to Operate an Encrypted Database and
Using JDBC to Operate an Encrypted Database.

Step 2 Create an encrypted table.

gaussdb=# CREATE TABLE creditcard_info (

gaussdb(# id_number int,

gaussdb(# name text,

gaussdb(# credit_card varchar(19) encrypted with (column_encryption_key = ImgCEK1,
encryption_type = DETERMINISTIC)

gaussdb(#) with (orientation=row);

CREATE TABLE

Step 3 Insert data.

gaussdb=# insert into creditcard_info values(1, 'Avi', '1234567890123456');
INSERT O 1
gaussdb=# insert into creditcard_info values(2, 'Eli', '2345678901234567");
INSERT O 1

Step 4 Create a function supporting encrypted equality query.

gaussdb=# CREATE FUNCTION f_encrypt_in_sql(vall text, val2 varchar(19)) RETURNS text AS 'SELECT
name from creditcard_info where name=$1 or credit_card=$2 LIMIT 1' LANGUAGE SQL;

CREATE FUNCTION

gaussdb=# CREATE FUNCTION f_encrypt_in_plpgsql (vall text, val2 varchar(19), OUT c text) AS $$
gaussdb$# BEGIN

gaussdb$# SELECT into c name from creditcard_info where name=$1 or credit_card =$2 LIMIT 1;
gaussdb$# END; $$

gaussdb-# LANGUAGE plpgsql;

CREATE FUNCTION

Step 5 Execute the function.

gaussdb=# SELECT f_encrypt_in_sql('Avi','1234567890123456');
f_encrypt_in_sql

Avi
(1 row)

gaussdb=# SELECT f_encrypt_in_plpgsql('Avi', val2=>'1234567890123456');
f_encrypt_in_plpgsql

Avi
(1 row)

--—-End

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

GaussDB

Primary&Standby Edition Feature Guide

2 Setting Encrypted Equality Query

(11 NOTE

Because the query, that is, the dynamic query statement executed in a function or
stored procedure, is compiled during execution, the table name and column name in the
function or stored procedure must be known in the creation phase. The input parameter
cannot be used as a table name or column name, or any connection mode.

In a function or stored procedure that executes dynamic clauses, data values to be
encrypted cannot be contained in the clauses.

Among the RETURNS, IN, and OUT parameters, encrypted and non-encrypted
parameters cannot be used together. Although the parameter types are all original, the
actual types are different.

In advanced package interfaces, for example, dbe_output.print_line(), decryption is not
performed on the interfaces whose output is printed on the server. This is because when
the encrypted data type is forcibly converted into the plaintext original data type, the
default value of the data type is printed.

In the current version, LANGUAGE of functions and stored procedures can only be SQL
and PL/pgSQL, and does not support other procedural languages such as C and Java.

Other functions or stored procedures for querying encrypted columns cannot be
executed in a function or stored procedure.

In the current version, default values cannot be assigned to variables in DEFAULT or
DECLARE statements, and return values in DECLARE statements cannot be decrypted.
You can use input parameters and output parameters instead when executing functions.

gs_dump cannot be used to back up functions involving encrypted columns.
Keys cannot be created in functions or stored procedures.
In this version, encrypted functions and stored procedures do not support triggers.

Encrypted equality query functions and stored procedures do not support the escape of
the PL/pgSQL syntax. The CREATE FUNCTION AS'Syntax body syntax whose syntax
body is marked with single quotation marks (") can be replaced with the CREATE
FUNCTION AS $$Syntax body $$ syntax.

The definition of an encrypted column cannot be modified in an encrypted equality
query function or stored procedure, including creating an encrypted table and adding an
encrypted column. Because the function is executed on the server, the client cannot
determine whether to refresh the cache. The column can be encrypted only after the
client is disconnected or the cache of the encrypted column on the client is refreshed.

Encrypted functions and stored procedures do not support compilation check. When
creating an encrypted function, do not set behavior_compat_options to
'allow_procedure_compile_check'.

Functions and stored procedures cannot be created using encrypted data types
(byteawithoutorderwithequalcol, byteawithoutordercol, _byteawithoutorderwithequalcol
or _byteawithoutordercol).

If an encrypted function returns a value of an encrypted type, the result cannot be an
uncertain row type, for example, RETURN [SETOF] RECORD. You can replace it with a
definite row type, for example, RETURN TABLE(columnname typename], ...]).

When an encrypted function is created, the OID of the encrypted column corresponding
to a parameter is added to the system catalog gs_encrypted_proc. Therefore, if a table
with the same name is deleted and created again, the encrypted function may become
invalid and you need to create the encrypted function again.

2.7 Sorting Encrypted Data on Clients (Lab Feature)

The current feature is a lab feature. Contact Huawei technical support before
using it.

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

GaussDB
Primary&Standby Edition Feature Guide 2 Setting Encrypted Equality Query

The client decrypts and sorts the ciphertext returned by the query on the client. To
enable encrypted data sorting on clients, use gsql to enable -C2 or set --enable-
client-encryption to 2, and set enable_ ce to 2 by using JDBC connections.

Currently, the client supports the following sorting syntax:

SELECT [DISTINCT] { * | {colname [[AS] output_name] | [SUM | MIN | MAX | COUNT | AVG]
(colname) [[AS] output_name]} [, ..]}

[FROM tablename]

[[INNER] JOIN | LEFT [OUTER] JOIN | RIGHT [OUTER] JOIN | FULL [OUTER] JOIN | CROSS JOIN]

{ tablename } ON condition { [AND | OR] condition }

[WHERE condition]

[GROUP BY {colname | output_name} [, ...]]

[ORDER BY { {colname | output_name} [ASC | DESC | USING operator] [NULLS { FIRST | LAST} 1} [, ..11
[LIMIT count]

[OFFSET start 1;

Parameter Description
e colname

When colname is used as the input parameter of aggregate functions MAX,
MIN, SUM, AVG, and COUNT, only column names can be directly referenced
and column types cannot be converted.

e output_name

output_name is the alias of colname. GROUP BY and ORDER BY cannot be
followed by the alias of an aggregate function.

e WHERE clause

condition is an equivalent condition connected by AND or OR, for example,
colname=1, colname!=1, and colname IS NULL. It cannot contain
expressions.

For details about other parameters, see section "SQL Reference > SQL Syntax >
SELECT" in Developer Guide.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

GaussDB

Primary&Standby Edition Feature Guide 2 Setting Encrypted Equality Query

(11 NOTE

This version supports the ORDER BY, GROUP BY, DISTINCT, LIMIT, and OFFSET operations on
encrypted columns, but does not support the following sorting scenarios:

e DISTINCT ON, HAVING, and EXECUTE DIRECT clauses, functions, stored procedures,
nested SQL statements, and views are not supported.

e Only aggregate functions MAX, MIN, SUM, AVG, and COUNT can be used for sorting
encrypted columns. The corresponding window functions are not supported. The five
aggregate functions override the aggregate operations on the ciphertext on the client.
You cannot use this method to call a server-defined aggregate function with the same
name or use a schema name combined with a function name, for example,
PG_CATALOG.MAX, to call a client aggregate function. The result of executing the SUM
or AVG aggregate function on strings is 0.

e If GROUP BY is followed by an encrypted column, the column name must be explicitly
specified in the SELECT target column. The asterisk (*) cannot be used.

e |f ORDER BY or GROUP BY contains encrypted columns, LIMIT and OFFSET cannot be
followed by any expression, for example, 2+2. In this example, replace it with 4.

e The ORDER BY 1,2 syntax is not supported. The encrypted column name must be
explicitly specified.

e Encrypted strings can only be sorted in ASCII order, regardless of the character set on
the server. Encrypted data of the floating-point or numeric type is calculated using the
default precision on the client, regardless of the precision setting on the server.

e Table names, column names, and aliases after GROUP BY and ORDER BY cannot contain
special characters such as single quotation marks ('), for example, SELECT i2 as c FROM
t1 as "'a" ORDER BY "'a".i2;.

e Multiple queries sent in a PQexec call are not supported. Example: PQexec("PREPARE p1
select distinct i1 from t1 order by i1;EXECUTE p1;");

e Columns with the same name are not verified in join scenarios. Otherwise, it may cause
unexpected results. If two tables have identical column names, you are not advised to
use JOIN for sorting on clients.

The ciphertext data returned by the server is decrypted on the client before being sorted,
which consumes some resources on the client. It is recommended that a maximum of
100,000 data records be returned for each query.

The current version supports only a limited number of sorting scenarios. In other scenarios
where no proper syntax is provided, unexpected results may occur. Therefore, you are not
advised to sort encrypted columns in this case.

Querying and Sorting Data in an Encrypted Table

Step 1

Step 2

Step 3

Create a key. For details, see Using gsql to Operate an Encrypted Database and
Using JDBC to Operate an Encrypted Database.

Create an encrypted table.

gaussdb=# CREATE TABLE IF NOT EXISTS t1(

gaussdb=# id int, i1 int,

gaussdb=# i2 INT ENCRYPTED WITH (COLUMN_ENCRYPTION_KEY = cek1, ENCRYPTION_TYPE =
DETERMINISTIC),

gaussdb=# i3 varchar(20) ENCRYPTED WITH (COLUMN_ENCRYPTION_KEY = cek1, ENCRYPTION_TYPE
= DETERMINISTIC),

gaussdb=# i4 INT);

CREATE TABLE

Insert data.

gaussdb=# INSERT INTO t1 VALUES(2,2,200, 'two hundreds - 1', 10);
INSERT 0 1

gaussdb=# INSERT INTO t1 VALUES(3,7,300, 'three hundreds - 1', 11);
INSERT 0 1

gaussdb=# INSERT INTO t1 VALUES(4,6,400, 'four hundreds', 12);

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

GaussDB

Primary&Standby Edition Feature Guide 2 Setting Encrypted Equality Query

Step 4

INSERT O 1

gaussdb=# INSERT INTO t1 VALUES(5,5,300, 'three hundreds - 2');
INSERT O 1

gaussdb=# INSERT INTO t1 VALUES(6,4,200, 'two hundreds - 2');
INSERT O 1

gaussdb=# INSERT INTO t1 VALUES(7,3,200, 'two hundreds - 3');
INSERT O 1

Perform sorting.

gaussdb=# select sum(id), i2 from t1 group by i2 order by i2;
sum | i2

min | i2

4400
(4 rows)

--—-End

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

Partitioned Table

This chapter describes how to perform query optimization and O&M management
on stored data in partitioned tables in scenarios with a large amount of data,
including semantics, principles, and constraints.

3.1 Large-Capacity Database

3.1.1 Background

With the increasing amount of data to be processed and diversified application
scenarios, databases are facing more and more scenarios with large capacity and
diversified data. In the past 20 years, the data volume has gradually increased
from MB- and GB-level to TB-level. Facing such a large amount of data, the
database management system (DBMS) has higher requirements on data query
and management. Objectively, the database must support multiple optimization
search policies and O&M methods.

In classic algorithms of computer science, people usually use the Divide and
Conquer method to solve problems in large-scale scenarios. The basic idea is to
divide a complex problem into two or more same or similar problems. These
problems are divided into smaller problems until they can be solved directly. The
solution of the original problem can be regarded as the combination of the
solutions to all small problems. In a large-capacity data scenario, the database
provides a Divide and Conquer method, that is, partitioning. The logical database
or its components are divided into different independent partitions. Each partition
maintains data with similar attributes logically. In this way, the large amount of
data is divided, facilitating data management, search, and maintenance.

3.1.2 Table Partitioning

Table partitioning logically divides a large table or index into smaller and easier-
to-manage logical units (partitions), minimizing the impact on table query and
modification statements. Users can quickly locate a partition where data is located
by using a partition key. In this way, users do not need to scan all large tables in
the database and can concurrently perform DDL and DML operations on different
partitions. Table partitioning provides users with the following capabilities:

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

1. Improve query efficiency in large-capacity data scenarios: Because data in a
table is logically partitioned by partition key, the query result can be
implemented by accessing a partition subset instead of the entire table. This
partition pruning technique can provide an order of magnitude performance
gain.

2. Reduce the impact of concurrent O&M and query operations: The mutual
impact of concurrent DML and DDL statements is reduced, especially in
scenarios where a large amount of data is partitioned by time, for example,
data import to new partitions, real-time point query, data cleaning in old
partitions, and partition merging.

3. Provide flexible data O&M management in large-capacity scenarios:
Partitioned tables physically isolate data in different partitions at the table file
level. Each partition can have independent physical attributes, such as data
compression, physical storage settings, and tablespaces. In addition, it
supports data management operations, such as data loading, index creation
and rebuilding, and partition-level backup and restoration, instead of
performing operations on the entire table, reducing operation time.

3.1.3 Data Partition Query Optimization

Partitioned tables help you query data by using predicates based on partition keys.
For example, if a table uses month as the partition key, as shown in Figure 3-1,
you need to access all data in the table (full table scan). If the table is redesigned
based on the date when the data is imported to the database, the original full
table scan is optimized to partition scan. When the table contains a large amount
of data and has a long historical period, the performance is greatly improved due
to data reduction, as shown in Figure 3-2.

Figure 3-1 Example of a partitioned table

1 A 202101 parﬂ
1 A 202101 4 D 20210
2 B 202102 /' - G 202101
3 c 202103
4 D 20210
2 B 202102 par‘tz
5 E 202102 ——» 5 E 202102
i F 202103 5 H 202102
Fi G 202101
8 H 202102
\ 3 for 202103 Pﬂl"t-j)
g | 202103
8 F 202103
a8 1 202103

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

GaussDB

Primary&Standby Edition Feature Guide 3 Partitioned Table

Figure 3-2 Example of partition pruning

select * from T

Partition Pruning where month = 202107’
select * from T
where month = "202101°
1 A 202101
Partition scan
1 A 202101 4 [n} 202101
z B 202102 / 7 G 202101
3 &l 202103
4 (n) 202101 2 B 202102
Full table 5 E 202102 ————® 35 E 202102
scan & E 202103 5 5 STRE
7 G 202101
8 H 202102 \
3 c 202103
] I 202103
1 8 F 202103
9 I 202103

3.1.4 Data Partition O&M Management

A partitioned table provides flexible support for data lifecycle management
(DLM). DLM is a set of processes and policies used to manage data throughout
the service life of data. An important component is to determine the most
appropriate and cost-effective medium for storing data at any point in the data
lifecycle. New data used in daily operations is stored on the fastest and most
available storage tier, while old data that is infrequently accessed may be stored
on a less costly and inefficient storage tier. Old data may also be updated less
frequently, so it makes sense to compress the data and store it as read-only.

Partitioned tables provide an ideal environment for implementing the DLM
solution. Different partitions use different tablespaces, maximizing usability and
reducing costs in the data lifecycle. The settings are performed by database O&M
personnel on the server. Actually, users are unaware of the optimization settings.
Logically, users still query the same table. In addition, O&M operations, such as
backup, restoration, and index rebuilding, can be performed on different partitions.
The Divide and Conquer method is implemented on different subsets of a single
dataset to meet differentiated requirements of service scenarios.

3.2 Introduction to Partitioned Tables

A partitioned table logically divides table data on a single node based on a
partition key and its partitioning policy. From the perspective of data partitioning,
it is a horizontal partitioning policy. Partitioned tables enhance the performance,
manageability, and usability of database applications, and help reduce the total
cost of ownership (TCO) for storing large amounts of data. Partitioning allows
tables, indexes, and index-organized tables to be further divided into smaller parts,
enabling these database objects to be managed and accessed at a finer
granularity level. GaussDB provides various partitioning policies and extensions to
meet the requirements of different service scenarios. The partitioning policy is
implemented inside the database and is transparent to users. Therefore, it enables
smooth data migration after the partitioning optimization policy is implemented,
without the need to change applications that consume manpower and material

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

resources. This section describes GaussDB partitioned tables from the following
aspects:

1. Basic concepts of partitioned tables: catalog storage and its principle.

2. Partitioning policies: basic partitioning types, and features, optimization, and
effects of each partitioning type.

3.2.1 Basic Concepts

3.2.1.1 Partitioned Table

A partitioned table is user-facing table on which users can add, delete, query, and
modify data in the table using common DML statements. Generally, the
PARTITION BY clause of the CREATE TABLE statement is used to define a table.
After the table is created, an entry is added to the pg_class table. If 'p' (partition)
or's' (level-2 partition) is displayed in the parttype column, the entry is a
partitioned table. The partitioned table is usually a logical form, and does not
store any data.

Example 1: t1_hash is a partitioned table whose partitioning type is hash.
gaussdb=# \d+ t1_hash

Table "public.t1_hash"
Column | Type | Modifiers | Storage | Stats target | Description

+ + + + +
cl |integer | | plain | |
c2 |integer | | plain | |
c3 |integer | | plain | |

Partition By HASH(c1)

Number of partitions: 10 (View pg_partition to check each partition range.)
Has OIDs: no

Options: orientation=row, compression=no

-- Query the partitioning type of table t1_hash.
gaussdb=# SELECT relname, parttype FROM pg_class WHERE relname = 't1_hash’;

relname | parttype
_________ oo

t1_hash | p
(1 row)

Example 2: t1_sub_rr is a level-2 partitioned table whose partitioning type is
range-list.
gaussdb=# \d+ t1_sub_rr
Table "public.t1_sub_rr"
Column | Type | Modifiers | Storage | Stats target | Description

+

¢l |integer | | plain | |

c2 |integer | | plain | |

c3 |integer | | plain |

Partition By RANGE(c1) Subpartition By LIST(c2)

Number of partitions: 6 (View pg_partition to check each partition range.)
Number of subpartitions: 18 (View pg_partition to check each subpartition range.)
Has OIDs: no

Options: orientation=row, compression=no

-- Query the partitioning type of table t1_sub_rr.

gaussdb=# SELECT relname, parttype FROM pg_class WHERE relname = 't1_sub_rr’;
relname | parttype

___________ | ———

t1_sub_rr|s

(1 row)

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

3.2.1.2 Partition

A partition stores data actually. The corresponding entry is usually stored in
pg_partition. The parentid of each partition is used as a foreign key to associate
with the oid column of its partitioned table in the pg_class table.

Example 1: t1_hash is a partitioned table.

CREATE TABLE t1_hash (c1 INT, 2 INT, c3 INT)

PARTITION BY HASH(c1)

(
PARTITION pO,
PARTITION p1,
PARTITION p2,
PARTITION p3,
PARTITION p4,
PARTITION p5,
PARTITION p6,
PARTITION p7,
PARTITION p8,
PARTITION p9

)

-- Query the partitioning type of table t1_hash.

gaussdb=# SELECT oid, relname, parttype FROM pg_class WHERE relname = 't1_hash";
oid | relname | parttype

16685 | t1_hash | p

(1 row)

-- Query the partition information about table t1_hash.
gaussdb=# SELECT oid, relname, parttype, parentid FROM pg_partition WHERE parentid = 16685;
oid | relname | parttype | parentid

16688 | t1_hash | r | 16685
16689 | p0 | p | 16685
16690 | p1 | p | 16685
16691 | p2 | p | 16685
16692 |p3 | p | 16685
16693 | p4 | p | 16685
16694 |p5 | p | 16685
16695 |p6 | p | 16685
16696 | p7 | p | 16685
16697 | p8 | p | 16685
16698 |p9 | p | 16685
(11 rows)

3.2.1.3 Partition Key

A partition key consists of one or more columns. The partition key value and the
corresponding partitioning method can uniquely identify the partition where a
tuple is located. Generally, the partition key value is specified by the PARTITION BY
clause during table creation.

CREATE TABLE table_name (...) PARTITION BY part_strategy (partition_key) (...)

NOTICE

Range partitioned tables and list partitioned tables support a partition key with up
to 16 columns. Other partitioned tables support a one-column partition key only.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

3.2.2 Partitioning Policy

A partitioning policy is specified by the PARTITION BY clause of the CREATE TABLE
statement. A partitioning policy describes the mapping between data in a
partitioned table and partition routing. Common partitioning types include range/
interval partitioning (based on conditions), hash partitioning (based on hash

functions), and list partitioning (based on data enumeration).
CREATE TABLE table_name (...) PARTITION BY partition_strategy (partition_key) (...)

3.2.2.1 Range Partitioning

Range partitioning maps data to partitions based on the value range of the
partition key created for each partition. Range partitioning is the most common
partitioning type in production systems and is usually used in scenarios where
data is described by date or timestamp. There are two syntax formats for range
partitioning. The following is an example:

1. VALUES LESS THAN

If the VALUE LESS THAN clause is used, a range partitioning policy supports a
partition key with up to 16 columns.

- The following is an example of a single-column partition key:
CREATE TABLE range_sales
(
product_id INT4 NOT NULL,
customer_id INT4 NOT NULL,

time DATE,
channel_id CHAR(1),
type_id INT4,

quantity_sold NUMERIC(3),
amount_sold NUMERIC(10,2)

)
PARTITION BY RANGE (time_id)

(
PARTITION date_202001 VALUES LESS THAN ('2020-02-01"),
PARTITION date_202002 VALUES LESS THAN ('2020-03-01"),
PARTITION date_202003 VALUES LESS THAN ('2020-04-01"),
PARTITION date_202004 VALUES LESS THAN ('2020-05-01")

N

date_202002 indicates the partition of February 2020, which contains the
data of the partition key from February 1, 2020 to February 29, 2020.

Each partition has a VALUES LESS clause that specifies the upper limit
(excluded) of the partition. Any value greater than or equal to that
partition key will be added to the next partition. Except the first partition,
all partitions have an implicit lower limit specified by the VALUES LESS
clause of the previous partition. You can define the MAXVALUE keyword
for the last partition. MAXVALUE represents a virtual infinite value that is
prior to any other possible value (including null) of the partition key.

- The following is an example of a multi-column partition key:
CREATE TABLE range_sales

cl INT4 NOT NULL,
2 INT4 NOT NULL,
3 CHAR(1)
)
PARTITION BY RANGE (c1,c2)

PARTITION p1 VALUES LESS THAN (10,10),
PARTITION p2 VALUES LESS THAN (10,20),

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

PARTITION p3 VALUES LESS THAN (20,10)
)
INSERT INTO range_sales VALUES(9,5,'a");
INSERT INTO range_sales VALUES(9,20,'a");
INSERT INTO range_sales VALUES(9,21,'a");
INSERT INTO range_sales VALUES(10,5,'a");
INSERT INTO range_sales VALUES(10,15,'a');
INSERT INTO range_sales VALUES(10,20,'a');
INSERT INTO range_sales VALUES(10,21,'a");
INSERT INTO range_sales VALUES(11,5,'a");
INSERT INTO range_sales VALUES(11,20,'a');
INSERT INTO range_sales VALUES(11,21,'a");

gaussdb=# SELECT * FROM range_sales PARTITION (p1);
cl|c2]|c3
S T S,

gaussdb=# SELECT * FROM range_sales PARTITION (p2);
cl|c2|c3

S T S,

10]15|a

(1 row)

gaussdb=# SELECT * FROM range_sales PARTITION (p3);
cl|c2|c3

S T S,

10|20 a

10[21]a

11] 5]a

11120 a

11021 a

(5 rows)

(10 NOTE

The partitioning rules for multi-column partition keys are as follows:
1. The comparison starts from the first column.

2. If the value of the inserted first column is smaller than the boundary value of
the current column in the target partition, the values are directly inserted.

3. If the value of the inserted first column is equal to the boundary of the
current column in the target partition, compare the value of the inserted
second column with the boundary of the next column in the target partition.
If the value of the inserted second column is smaller than the boundary of
the next column in the target partition, the values are directly inserted.
Otherwise, the comparison of the next columns between the source and
target continues.

4. If the value of the inserted first column is greater than the boundary of the
current column in the target partition, compare the value with that in the
next partition.

2. START END

If the START END clause is used, a range partitioning policy supports only a
one-column partition key.

Example:

-- Create tablespaces.

CREATE TABLESPACE startend_tbs1 LOCATION '/home/omm/startend_tbs1';
CREATE TABLESPACE startend_tbs2 LOCATION '/home/omm/startend_tbs2';
CREATE TABLESPACE startend_tbs3 LOCATION '/home/omm/startend_tbs3';
CREATE TABLESPACE startend_tbs4 LOCATION '/home/omm/startend_tbs4';
-- Create a temporary schema.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

GaussDB

Primary&Standby Edition Feature Guide 3 Partitioned Table

CREATE SCHEMA tpcds;
SET CURRENT_SCHEMA TO tpcds;
-- Create a partitioned table with the partition key of the integer type.
CREATE TABLE tpcds.startend_pt (c1 INT, c2 INT)
TABLESPACE startend_tbs1
PARTITION BY RANGE (c2) (
PARTITION p1 START(1) END(1000) EVERY(200) TABLESPACE startend_tbs2,
PARTITION p2 END(2000),
PARTITION p3 START(2000) END(2500) TABLESPACE startend_tbs3,
PARTITION p4 START(2500),
PARTITION p5 START(3000) END(5000) EVERY(1000) TABLESPACE startend_tbs4
)
ENABLE ROW MOVEMENT;

-- View the information of the partitioned table.
gaussdb=# SELECT relname, boundaries, spcname FROM pg_partition p JOIN pg_tablespace t ON
p.reltablespace=t.oid and p.parentid="tpcds.startend_pt'":regclass ORDER BY 1;
relname | boundaries | spcname
p1_0| {1} | startend_tbs2
p1_11]{201} | startend_tbs2
p1_2| {401} | startend_tbs2
p1_3 {601} | startend_tbs2
p1_4 {801} | startend_tbs2
p1_5]{1000} | startend_tbs2
p2 | {2000} | startend_tbs1
p3 | {2500} | startend_tbs3
p4 | {3000} | startend_tbs1
p5_1| {4000} | startend_tbs4
p5_2 | {5000} | startend_tbs4
startend_pt | | startend_tbs1
(12 rows)

3.2.2.2 Interval Partitioning

Interval partitioning is an enhancement and extension of range partitioning. When
interval partitions are defined, the upper and lower limits do not need to be
specified for each new partition. After a partition length is determined, partitions
are automatically created and expanded during insertion. At least one range
partition must be specified when an interval partition is created. The range
partitioning key value determines the high value of the range partitions, which is
called the transition point, and the database creates interval partitions for data
with values that are beyond that transition point. The lower boundary of every
interval partition is the non-inclusive upper boundary of the previous range or
interval partition. Example:

CREATE TABLE interval_sales

(
prod_id NUMBER(6),
cust_id NUMBER,
time_id DATE,
channel_id CHAR(1),
promo_id NUMBER(6),
quantity_sold NUMBER(3),
amount_sold NUMBER(10, 2)

)

PARTITION BY RANGE (time_id) INTERVAL ('1 month')

(
PARTITION date_2015 VALUES LESS THAN ('2016-01-01")
PARTITION date_2016 VALUES LESS THAN ('2017-01-01")
PARTITION date_2017 VALUES LESS THAN ('2018-01-01"),
PARTITION date_2018 VALUES LESS THAN ('2019-01-01")
PARTITION date_2019 VALUES LESS THAN ('2020-01-01")

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

In the preceding example, partitions are created by year from 2015 to 2019. When
data after 2020-01-01 is inserted, a partition is automatically created because the
data exceeds the upper boundary of the predefined range partition.

/A\ CAUTION

Interval partitioning supports only the date and time types, such as date, time,
and timestamp.

3.2.2.3 Hash Partitioning

Hash partitioning uses a hash algorithm to map data to partitions based on
partition keys. The GaussDB built-in hash algorithm is used. When the value range
of partition keys has no data skew, the hash algorithm evenly distributes rows
among partitions to ensure that the partition sizes are roughly the same.
Therefore, hash partitioning is an ideal method for evenly distributing data among
partitions. Hash partitioning is also an easy-to-use alternative to range
partitioning, especially when the data to be partitioned is not historical data or
has no obvious partition key. The following is an example:

CREATE TABLE bmsql_order_line (

ol_w._id INTEGER NOT NULL,
ol_d_id INTEGER NOT NULL,
ol_o_id INTEGER NOT NULL,
ol_number INTEGER NOT NULL,
ol_i_id INTEGER NOT NULL,

ol_delivery_d TIMESTAMP,
ol_amount DECIMAL(6,2),
ol_supply_w_id INTEGER,
ol_quantity INTEGER,
ol_dist_info CHAR(24)

-- Define 100 partitions.
PARTITION BY HASH(ol_d_id)

(
PARTITION pO,
PARTITION p1,
PARTITION p2,

PARTITION p99
)

In the preceding example, the bmsql_order_line table is partitioned by the

ol _d_id column. The ol_d_id column is an identifier column and does not
distinguish time or a specific dimension. Using the hash partitioning policy to
divide tables is an ideal choice. Compared with other partitioning types, it ensures
that the partition key does not have too much data skew (one or more values are
highly repeated), and you only need to specify the partition key and the number
of partitions to be created. In addition, data in each partition is evenly distributed,
improving usability of partitioned tables.

3.2.2.4 List Partitioning

List partitioning can explicitly control how rows are mapped to partitions by
specifying a list of discrete values for the partition key in the description for each
partition. The advantages of list partitioning are that data can be partitioned by
enumerating partition values, and unordered and irrelevant datasets can be

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

grouped and organized. For partition key values that are not defined in the list,
you can use the default partition (DEFAULT) to save data. In this way, all rows
that are not mapped to any other partition do not generate errors. Example:

CREATE TABLE bmsql_order_line (

ol_w_id INTEGER NOT NULL,
ol _d_id INTEGER NOT NULL,
ol_o_id INTEGER NOT NULL,
ol_number INTEGER NOT NULL,
ol i_id INTEGER NOT NULL,

ol_delivery_.d TIMESTAMP,
ol_amount DECIMAL(6,2),
ol_supply_w_id INTEGER,
ol_quantity = INTEGER,
ol_dist_info CHAR(24)

)
PARTITION BY LIST(ol_d_id)

(
PARTITION p0 VALUES (1,4,7),
PARTITION p1 VALUES (2,5,8),
PARTITION p2 VALUES (3,6,9),
PARTITION p3 VALUES (DEFAULT)
)

The preceding example is similar to that of hash partitioning. The ol_d_id column
is used for partitioning. However, list partitioning limits a possible range of ol_d_id
values, and data that is not in the list enters the p3 partition (DEFAULT).
Compared with hash partitioning, list partitioning has better control over partition
keys and can accurately store target data in the expected partitions. However, if
there are a large number of list values, it is difficult to define partitions. In this
case, hash partitioning is recommended. List partitioning and hash partitioning are
used to group and organize unordered and irrelevant datasets.

/\ CAUTION

List partitioning supports a partition key with up to 16 columns. For one-column
partition keys, the enumerated values in the list cannot be NULL during partition
defining. For multi-column partition keys, the enumerated values in the list can be
NULL during partition defining.

3.2.2.5 Subpartitioning

Subpartitioning (also referred to as composite partitioning) is a combination of
basic data partitioning types. A table is partitioned by one data distribution
method and then each partition is further subdivided into new partitions using a
second data distribution method. All new partitions of a given partition represent
a logical subset of the data. Common types of composite partitioning are as
follows:

Range-Range
Range-List
Range-Hash
List-Range
List-List
List-Hash

o v A~ W =

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

GaussDB

Primary&Standby Edition Feature Guide

3 Partitioned Table

7. Hash-Range

8. Hash-List

9. Hash-Hash
/A\ CAUTION

Interval partitioning is a special form of range partitioning. Currently, interval
partitioning cannot be defined in subpartitioning.

The partitions and level-2 partitions of a level-2 partitioned table support a one-
column partition key only.

3.2.2.6 Impact of Partitioned Tables on Import Performance

In the GaussDB kernel implementation, compared with the non-partitioned table,
the partitioned table has partition routing overheads during data insertion. The
overall data insertion overheads include: (1) heap base table insertion and (2)
partition routing, as shown in Figure 3-3. The heap base table insertion solves the
problem of importing tuples to the corresponding heap table and is shared by
ordinary tables and partitioned tables. The partition routing solves the problem
that the tuple is inserted into the corresponding partRel. In addition, the partition
routing algorithm is shared by partitions and level-2 partitions. The difference is
that the level-2 partition has one more routing operation than the partition, and
calls the routing algorithm twice.

Figure 3-3 Inserting data into ordinary tables and partitioned tables

Insert overheads

Ordinary table

Level-1
partitioned table

Level-2
partitioned table

- I

Shared by level-1 and level-2 partitions

Level-2 partitions

Common part
(partitioned & non-partitioned tables)

Therefore, data insertion optimization focuses on the following aspects:

1.

2.

Heap base table insertion in a partitioned table:

a.
b.
C.

The operator noise floor is optimized.

Heap data insertion is optimized.
Index insertion build (with indexes) is optimized.

Partition routing in a partitioned table:

a.

The logic of the routing search algorithm is optimized.

The routing noise floor is optimized, including enabling the partRel
handle of the partitioned table and adding the logic overhead of function

calling.

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

37

GaussDB

Primary&Standby Edition Feature Guide 3 Partitioned Table

(11 NOTE

The performance of partition routing is reflected by a single INSERT statement with a
large amount of data. In the UPDATE scenario, the system searches for the tuple to be
updated, deletes the tuple, and then inserts new tuple. Therefore, the performance is
not as good as that of a single INSERT statement.

Table 3-1 shows the routing algorithm logic of different partitioning types.

Table 3-1 Routing algorithm logic

Partitioning Type

Routing Algorithm

Implementation Description

Complexity

Range partitioning O(logN) Implemented based on binary
search

Interval partitioning O(logN) Implemented based on binary
search

Hash partitioning o(1) Implemented based on the key-
partOid hash table

List partitioning o(1) Implemented based on the key-
partOid hash table

List-list partitioning Oo(1) + O(1) Implemented based on a hash

table and another hash table

List-range
partitioning

O(1) +O(1) =0(1)

Implemented based on a hash
table and binary search

List-hash partitioning

O(1) +0(1) =0(1)

Implemented based on a hash
table and another hash table

Range-list
partitioning

O(1) +O(1) =0(1)

Implemented based binary search
and a hash table

Range-range

O(1) +0O(1) =0(1)

Implemented based on binary

partitioning search and another binary search
Range-hash O(1) + O(1) = 0O(1) | Implemented based binary search
partitioning and a hash table

Hash-list partitioning

O(1) + O(1) = O(1)

Implemented based on a hash
table and another hash table

Hash-range O(1) + O(1) = 0O(1) | Implemented based on a hash
partitioning table and binary search
Hash-hash O(1) + O(1) =0(1) | Implemented based on a hash
partitioning table and another hash table

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

38

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

/A\ CAUTION

The main processing logic of routing is to calculate the partition where the
imported data tuple is located based on the partition key. Compared with a non-
partitioned table, this part is an extra overhead. The performance loss caused by
this overhead in the final data import is related to the CPU processing capability
of the server, table width, and actual disk/memory capacity. Generally, it can be
roughly considered that:

e In the x86 server scenario, the import performance of a partitioned table is
10% lower than that of an ordinary table, and the import performance of a
level-2 partitioned table is 20% lower than that of an ordinary table.

e In the Arm server scenario, the performance decreases by 20% and 30%
respectively. The main reason is that routing is performed in the in-memory
computing enhancement scenario. The single-core instruction processing
capability of mainstream x86 CPUs is slightly better than that of Arm CPUs.

3.2.3 Basic Usage of Partitions

3.2.3.1 Creating Partitioned Tables

Creating a Partitioned Table

The SQL syntax tree is complex due to the powerful and flexible functions of the
SQL language. So do partitioned tables. The creation of a partitioned table can be
regarded as adding partition attributes to the original non-partitioned table.
Therefore, the syntax interface of a partitioned table can be regarded to extend
the CREATE TABLE statement of a non-partitioned table with a PARTITION BY
clause and specify the following three core elements related to the partition:

1. partType: describes the partitioning policy of a partitioned table. The options
are RANGE, INTERVAL, LIST, and HASH.

2. partKey: describes the partition key of a partitioned table. Currently, range
and list partitioning supports a partition key with up to 16 columns, while
interval and hash partitioning supports a one-column partition key only.

3. partExpr: describes the specific partitioning type of a partitioned table, that
is, the mapping between key values and partitions.

The three elements are reflected in the PARTITION BY clause of the CREATE TABLE
statement, for example, PARTITION BY partType (partKey)

(partExpr] partExpr]...). Example:
CREATE TABLE [IF NOT EXISTS] partition_table_name
(
[/* Inherited from the CREATE TABLE statement of an ordinary table */
{ column_name data_type [COLLATE collation] [column_constraint [...]]
| table_constraint
| LIKE source_table [like_option [...]]}, ...]
1
)
[WITH ({storage_parameter = value} [, ... 1)]
[COMPRESS | NOCOMPRESS]
[TABLESPACE tablespace_name]
/* Range partitioning. If the INTERVAL clause is declared, interval partitioning is used. */
PARTITION BY RANGE (partKey) [INTERVAL (‘interval_expr') [STORE IN (tablespace_name [, ...1) 11 (
partition_start_end_item [, ...]

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

GaussDB

Primary&Standby Edition Feature Guide 3 Partitioned Table

partition_less_then_item [, ...]
)
/* List partitioning */
PARTITION BY LIST (partKey)

(
PARTITION partition_name VALUES (list_values_clause) [TABLESPACE tablespace_name [, ...]]

/* Hash partitioning */
PARTITION BY HASH (partKey) (
PARTITION partition_name [TABLESPACE tablespace_name [, ...]]

/* Enable or disable row migration for a partitioned table. */
[{ ENABLE | DISABLE } ROW MOVEMENT J;

Restrictions

1. Range and list partitioning supports a partition key with up to 16 columns.
Interval and hash partitioning supports a one-column partition key only. All
subpartitioning types support a one-column partition key only.

2. Interval partitioning supports only partition keys of the time/date data type
and interval partitions cannot be created in a level-2 partitioned table.

3. The partition key value cannot be null except for hash partitioning. Otherwise,
the DML statement reports an error. The only exception is the MAXVALUE
partition defined for a range partitioned table and the DEFAULT partition
defined for a list partitioned table.

4. The maximum number of partitions is 1048575, which can meet the
requirements of most service scenarios. If the number of partitions increases,
the number of files in the system increases, which affects the system
performance. It is recommended that the number of partitions for a single
table be less than or equal to 200.

Creating a Level-2 Partitioned Table

The level-2 partitioned table may be considered as an extension of the partitioned
table. In the level-2 partitioned table, the partition is a logical table and does not
actually store data, and the data is actually stored on the level-2 partition node.
The subpartitioning solution is implemented by nesting two partitions. For details
about the partitioning solution, see section "CREATE TABLE PARTITION." Common
subpartitioning solutions include range-range partitioning, range-list partitioning,
range-hash partitioning, list-range partitioning, list-list partitioning, list-hash
partitioning, hash-range partitioning, hash-list partitioning, and hash-hash
partitioning. Currently, subpartitioning is only applicable to row-store tables. The
following is an example of creating a level-2 partition:

CREATE TABLE [IF NOT EXISTS] subpartition_table_name
(
[/* Inherited from the CREATE TABLE statement of an ordinary table */
{ column_name data_type [COLLATE collation] [column_constraint [...]]
| table_constraint
| LIKE source_table [like_option [..]]1} [, ...]
1
)
[WITH ({storage_parameter = value} [, ... 1)]
[COMPRESS | NOCOMPRESS]
[TABLESPACE tablespace_name]
/* Level-2 partition definition */
PARTITION BY {RANGE | LIST | HASH} SUBPARTITOIN BY {RANGE | LIST | HASH}
(
PARTITION partition_name partExpr... /* Partition */

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

SUBPARTITION partition_name partExpr ...
SUBPARTITION partition_name partExpr ...

PARTITION partition_name partExpr... /* Partition */
(
SUBPARTITION partition_name partExpr ...
SUBPARTITION partition_name partExpr ...
),

=
[{ ENABLE | DISABLE } ROW MOVEMENT J;

Restrictions

1. Subpartitioning support a combination of any two of the list, hash, and range
partitioning methods.

2. Subpartitioning supports only a single partition key.
Subpartitioning does not support interval partitions.
4. Subpartitioning supports a maximum of 1048575 partitions.

Modifying Partition Attributes

You can run the ALTER TABLE command similar to that of a non-partitioned table
to modify attributes related to partitioned tables and partitions. Common
statements for modifying partition attributes are as follows:

ADD PARTITION
DROP PARTITION
TRUNCATE PARTITION
SPLIT PARTITION
MERGE PARTITION
MOVE PARTITION
EXCHANGE PARTITION
RENAME PARTITION

© N ok~ W=

The preceding statements for modifying partition attributes are extended based
on the ALTER TABLE statement of an ordinary table. Most of the statements are
used in a similar way. The following is an example of the basic syntax framework

for modifying partitioned table attributes:

/* Basic ALTER TABLE syntax */

ALTER TABLE [IF EXISTS] { table_name [*] | ONLY table_name | ONLY (table_name)}
action [, ... 1;

For details about how to use the ALTER TABLE statement, see Partitioned Table
O&M Management and sections "SQL Reference > SQL Syntax > ALTER TABLE
PARTITION and ALTER TABLE SUBPARTITION" in Developer Guide.

3.2.3.2 DML Statements for Querying Partitioned Tables

Partitioning is implemented in the database kernel. Therefore, users can query
partitioned tables and non-partitioned tables using the same syntax except for
querying specified partitions.

For ease of use of partitioned tables, GaussDB allows you to query specified
partitions using PARTITION (partname) or PARTITION FOR (partvalue). For

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

level-2 partitioned tables, you can use SUBPARTITION (subpartname) or
SUBPARTITION FOR (subpartvalue) to specify a specific level-2 partition. The
DML statements for specifying partitions are as follows:

SELECT

INSERT

UPDATE

DELETE

UPSERT

MERGE INTO

S L T o B

The following is an example of DML statements for specifying partitions:

/* Create a level-2 partitioned table list_list_02. */
CREATE TABLE IF NOT EXISTS list_list_02
(
id INT,
role VARCHAR(100),
data VARCHAR(100)
)
PARTITION BY LIST (id) SUBPARTITION BY LIST (role)
(
PARTITION p_list_2 VALUES(0,1,2,3,4,5,6,7,8,9)
(
SUBPARTITION p_list_2_1 VALUES (0,1,2,3,4,5,6,7,89),
SUBPARTITION p_list_2_2 VALUES (DEFAULT),
SUBPARTITION p_list_2_3 VALUES (10,11,12,13,14,15,16,17,18,19),
SUBPARTITION p_list_2_4 VALUES (20,21,22,23,24,25,26,27,28,29),
SUBPARTITION p_list_2_5 VALUES (30,31,32,33,34,35,36,37,38,39)

PARTITION p_list_3 VALUES(10,11,12,13,14,15,16,17,18,19)
(
SUBPARTITION p_list_3_2 VALUES (DEFAULT)
)I
PARTITION p_list_4 VALUES(DEFAULT),
PARTITION p_list_5 VALUES(20,21,22,23,24,25,26,27,28,29)
(
SUBPARTITION p_list_5_1 VALUES (0,1,2,3,4,5,6,7,8,9),
SUBPARTITION p_list_5_2 VALUES (DEFAULT),
SUBPARTITION p_list_5_3 VALUES (10,11,12,13,14,15,16,17,18,19),
SUBPARTITION p_list_5_4 VALUES (20,21,22,23,24,25,26,27,28,29),
SUBPARTITION p_list_5_5 VALUES (30,31,32,33,34,35,36,37,38,39)
)I
PARTITION p_list_6 VALUES(30,31,32,33,34,35,36,37,38,39),
PARTITION p_list_7 VALUES(40,41,42,43,44,45,46,47,48,49)
(
SUBPARTITION p_list_7_1 VALUES (DEFAULT)

)
) ENABLE ROW MOVEMENT;
/* Import data. */
INSERT INTO list_list_02 VALUES(null, 'alice’, 'alice data');
INSERT INTO list_list_02 VALUES(2, null, 'bob data');
INSERT INTO list_list_02 VALUES(null, null, 'peter data');

/* Query a specified partition. */

-- Query all data in a partitioned table.

gaussdb=# SELECT * FROM list_list_02 ORDER BY data;
id| role | data

+ +
t t

| alice | alice data
2 | | bob data
| | peter data
(3 rows)
-- Query data in the p_list_4 partition.
gaussdb=# SELECT * FROM list_list_02 PARTITION (p_list_4) ORDER BY data;

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

id | role | data
| alice | alice data
| | peter data
(2 rows)
-- Query the data of the level-2 partition corresponding to (100, 100), that is, the level-2 partition
p_list_4_subpartdefault1.
gaussdb=# SELECT * FROM list_list_02 SUBPARTITION FOR(100, 100) ORDER BY data;
id | role | data

| alice | alice data
| | peter data
(2 rows)
-- Query data in the p_list_2 partition.
gaussdb=# SELECT * FROM list_list_02 PARTITION (p_list_2) ORDER BY data;
id | role | data
S — B S
2| | bob data
(1 row)
-- Query the data of the level-2 partition corresponding to (0, 100), that is, the level-2 partition p_list_2_2.
gaussdb=# SELECT * FROM list_list_02 SUBPARTITION FOR (0, 100) ORDER BY data;
id | role | data
S — B S

2| | bob data
(1 row)

/* Perform INSERT, UPDATE, and DELETE (IUD) operations on the specified partition. */

-- Delete all data from the p_list_5 partition.

gaussdb=# DELETE FROM list_list_02 PARTITION (p_list_5);

-- Insert data into the specified partition p_list_7_1. An error is reported because the data does not comply
with the partitioning restrictions.

gaussdb=# INSERT INTO list_list_02 SUBPARTITION (p_list_7_1) VALUES(null, 'cherry', 'cherry data');
ERROR: inserted subpartition key does not map to the table subpartition

-- Update data of a partition to which the partition value 100 belongs.

gaussdb=# UPDATE list_list_02 PARTITION FOR (100) SET id = 1;

3.3 Partitioned Table Query Optimization

3.3.1 Partition Pruning

3.3.1.1 Static Partition Pruning

For partitioned table query statements with constants in the search criteria, the
search criteria contained in operators such as index scan, bitmap index scan, and
index-only scan are used as pruning conditions in the optimizer phase to filter
partitions. The search criteria must contain at least one partition key. For a
partitioned table with a multi-column partition key, the search criteria can contain
any column of the partition key.

Static pruning is supported in the following scenarios:

1. Supported partitioning levels: level-1 partition and level-2 partition.

2. Supported partitioning types: range partitioning, interval partitioning, hash
partitioning, and list partitioning.

3. Supported expression types: comparison expression (<, <=, =, >=, >), logical
expression, and array expression.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

/A\ CAUTION

e Currently, static pruning does not support subquery expressions.

e Query statements that specify level-1 partitions in level-2 partitioned tables
cannot prune the filter conditions of the level-2 partition keys.

e Typical scenarios where static pruning is supported are as follows:

a. Comparison expressions
-- Create a partitioned table.
CREATE TABLE t1 (c1 int, c2 int)
PARTITION BY RANGE (c1)

PARTITION p1 VALUES LESS THAN(10),

PARTITION p2 VALUES LESS THAN(20),

PARTITION p3 VALUES LESS THAN (MAXVALUE)
);

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 WHERE c1 = 1;
QUERY PLAN

Partition Iterator
Output: c1, c2
Iterations: 1
-> Partitioned Seq Scan on public.t1
Output: c1, c2
Filter: (t1.c1=1)
Selected Partitions: 1
(7 rows)

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 WHERE c1 < 1;
QUERY PLAN

Partition Iterator
Output: c1, c2
Iterations: 1
-> Partitioned Seq Scan on public.t1
Output: c1, c2
Filter: (t1.c1 < 1)
Selected Partitions: 1
(7 rows)

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 WHERE c1 > 11;
QUERY PLAN

Partition Iterator
Output: c1, c2
Iterations: 2
-> Partitioned Seq Scan on public.t1
Output: c1, c2
Filter: (t1.c1 > 11)
Selected Partitions: 2..3
(7 rows)

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 WHERE c1 is NULL;
QUERY PLAN

Partition Iterator
Output: c1, c2
Iterations: 1
-> Partitioned Seq Scan on public.t1
Output: c1, c2
Filter: (t1.c1 1S NULL)
Selected Partitions: 3
(7 rows)

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

b. Logical expressions
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 WHERE c1 =1 AND c2 = 2;

QUERY PLAN

Partition Iterator
Output: c1, c2
Iterations: 1
-> Partitioned Seq Scan on public.t1
Output: c1, c2
Filter: ((t1.c1 =1) AND (t1.c2 = 2))
Selected Partitions: 1
(7 rows)

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 WHERE c1 =1 OR c1 = 2;
QUERY PLAN

Partition Iterator
Output: c1, c2
Iterations: 1
-> Partitioned Seq Scan on public.t1
Output: c1, c2
Filter: ((t1.c1 =1) OR (t1.c1 = 2))
Selected Partitions: 1
(7 rows)

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 WHERE NOT c1 = 1;
QUERY PLAN

Partition Iterator
Output: c1, c2
Iterations: 3
-> Partitioned Seq Scan on public.t1
Output: c1, c2
Filter: (t1.c1 <> 1)
Selected Partitions: 1..3
(7 rows)

c. Array expressions
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 WHERE c1 IN (1, 2, 3);

QUERY PLAN

Partition Iterator
Output: c1, c2
Iterations: 1
-> Partitioned Seq Scan on public.t1
Output: c1, c2
Filter: (t1.c1 = ANY ('{1,2,3}:integer[]))
Selected Partitions: 1
(7 rows)

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 WHERE c1 = ALL(ARRAY([T,

2, 3]);
QUERY PLAN

Partition Iterator
Output: c1, c2
Iterations: 0
-> Partitioned Seq Scan on public.t1
Output: c1, c2
Filter: (t1.c1 = ALL ('{1,2,3}:integer[]))
Selected Partitions: NONE
(7 rows)

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 WHERE c1 = ANY(ARRAY([1,

2, 3]);
QUERY PLAN

Partition Iterator
Output: c1, c2
Iterations: 1

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

-> Partitioned Seq Scan on public.t1
Output: c1, c2
Filter: (t1.c1 = ANY ('{1,2,3}:integer[]))
Selected Partitions: 1
(7 rows)

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 WHERE c1 =
SOME(ARRAY[T, 2, 3]);
QUERY PLAN

Partition Iterator
Output: c1, 2
Iterations: 1
-> Partitioned Seq Scan on public.t1
Output: c1, c2
Filter: (t1.c1 = ANY ('{1,2,3}:integer[]))
Selected Partitions: 1
(7 rows)

e Typical scenarios where static pruning is not supported are as follows:

a. Subquery expressions

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 WHERE c1 = ALL(SELECT c2
FROM t1 WHERE c1 > 10);

QUERY PLAN

Partition Iterator
Output: public.t1.c1, public.t1.c2
Iterations: 3
-> Partitioned Seq Scan on public.t1
Output: public.t1.c1, public.t1.c2
Filter: (SubPlan 1)
Selected Partitions: 1..3
SubPlan 1
-> Materialize
Output: public.t1.c2
-> Partition Iterator
Output: public.t1.c2
Iterations: 2
-> Partitioned Seq Scan on public.t1
Output: public.t1.c2
Filter: (public.t1.c1 > 10)
Selected Partitions: 2..3
(17 rows)

3.3.1.2 Dynamic Partition Pruning

If a partitioned table query statement with variables exists in the search criteria,
the optimizer cannot obtain the bound parameters of the user. Therefore, only the
search criteria of operators such as index scan, bitmap index scan, and index-only
scan can be parsed in the optimizer phase. After the bound parameters are
obtained in the executor phase, the partition filtering is complete. The search
criteria must contain at least one partition key. For a partitioned table with a
multi-column partition key, the search criteria can contain any column of the
partition key. Currently, dynamic partition pruning supports only the parse-bind-
execute (PBE) and parameterized path scenarios.

3.3.1.2.1 Dynamic PBE Pruning

Dynamic PBE pruning is supported in the following scenarios:

1. Supported partitioning levels: level-1 partition and level-2 partition

2. Supported partitioning types: range partitioning, interval partitioning, hash
partitioning, and list partitioning.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

3. Supported expression types: comparison expression (<, <=, =, >=, >), logical
expression, and array expression.

4. Supported conversions and functions: some implicit type conversions and the
IMMUTABLE function.

/A\ CAUTION

e Dynamic PBE pruning supports expressions, implicit conversions, the
IMMUTABLE function, and the STABLE function, but does not support subquery
expressions or VOLATILE function. For the STABLE function, type conversion
functions such as to_timestamp may be affected by GUC parameters and lead
to different pruning results. To ensure performance optimization, you can
analyze table to regenerate a gplan.

e Dynamic PBE pruning is based on the generic plan. Therefore, when
determining whether a statement can be dynamically pruned, you need to set
plan_cache_mode to 'force_generic_plan' to eliminate the interference of the
custom plan.

e Query statements that specify level-1 partitions in level-2 partitioned tables
cannot prune the filter conditions of the level-2 partition keys.

e Typical scenarios where dynamic PBE pruning is supported are as follows:

a. Comparison expressions
-- Create a partitioned table.
CREATE TABLE t1 (c1 int, c2 int)
PARTITION BY RANGE (c1)
(
PARTITION p1 VALUES LESS THAN(10),
PARTITION p2 VALUES LESS THAN(20),
PARTITION p3 VALUES LESS THAN(MAXVALUE)
)i
-- Set parameters.
gaussdb=# set plan_cache_mode = 'force_generic_plan’;

gaussdb=# PREPARE p1(int) AS SELECT * FROM t1 WHERE c1 = $1;

PREPARE

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) EXECUTE p1(1);
QUERY PLAN

Partition Iterator
Output: c1, c2
Iterations: PART
-> Partitioned Seq Scan on public.t1
Output: c1, c2
Filter: (t1.c1 = $1)
Selected Partitions: 1 (pbe-pruning)
(7 rows)

gaussdb=# PREPARE p2(int) AS SELECT * FROM t1 WHERE c1 < $1;

PREPARE

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) EXECUTE p2(1);
QUERY PLAN

Partition Iterator
Output: c1, c2
Iterations: PART
-> Partitioned Seq Scan on public.t1
Output: c1, c2
Filter: (t1.c1 < $1)
Selected Partitions: 1 (pbe-pruning)

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

GaussDB

Primary&Standby Edition Feature Guide 3 Partitioned Table

(7 rows)

gaussdb=# PREPARE p3(int) AS SELECT * FROM t1 WHERE c1 > $1;

PREPARE
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) EXECUTE p3(1);

QUERY PLAN

Partition Iterator
Output: c1, 2
Iterations: PART
-> Partitioned Seq Scan on public.t1
Output: c1, c2
Filter: (t1.c1 > $1)
Selected Partitions: 1..3 (pbe-pruning)
(7 rows)

b. Logical expressions
gaussdb=# PREPARE p5(INT, INT) AS SELECT * FROM t1 WHERE c1 = $1 AND 2 = $2;

PREPARE
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) EXECUTE p5(1, 2);

QUERY PLAN

Partition Iterator
Output: c1, 2
Iterations: PART
-> Partitioned Seq Scan on public.t1
Output: c1, c2
Filter: ((t1.c1 = $1) AND (t1.c2 = $2))
Selected Partitions: 1 (pbe-pruning)
(7 rows)

gaussdb=# PREPARE p6(INT, INT) AS SELECT * FROM t1 WHERE c1 = $1 OR c2 = $2;

PREPARE
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) EXECUTE p6(1, 2);

QUERY PLAN

Partition Iterator
Output: c1, 2
Iterations: PART
-> Partitioned Seq Scan on public.t1
Output: c1, 2
Filter: ((t1.c1 = $1) OR (t1.c2 = $2))
Selected Partitions: 1..3 (pbe-pruning)
(7 rows)
gaussdb=# PREPARE p7(INT) AS SELECT * FROM t1 WHERE NOT c1 = $1;
PREPARE
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) execute p7(1);
QUERY PLAN

Partition Iterator
Output: c1, 2
Iterations: PART
-> Partitioned Seq Scan on public.t1
Output: c1, 2
Filter: (t1.c1 <> $1)
Selected Partitions: 1..3 (pbe-pruning)
(7 rows)

c. Array expressions
gaussdb=# PREPARE p8(INT, INT, INT) AS SELECT * FROM t1 WHERE c1 IN ($1, $2, $3);

PREPARE
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) EXECUTE p8(1, 2, 3);

QUERY PLAN

Partition Iterator
Output: c1, 2
Iterations: PART
-> Partitioned Seq Scan on public.t1
Output: c1, c2
Filter: (t1.c1 = ANY (ARRAY[$1, $2, $3]))

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

Primary&Standby Edition Feature Guide

3 Partitioned Table

Selected Partitions: 1 (pbe-pruning)

(7 rows)
gaussdb=# PREPARE p9(INT, INT, INT) AS SELECT * FROM t1 WHERE c1 NOT IN ($1, $2, $3);

PREPARE
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) EXECUTE p9(1, 2, 3);

QUERY PLAN

Partition Iterator
Output: c1, 2
Iterations: PART
-> Partitioned Seq Scan on public.t1
Output: c1, c2
Filter: (t1.c1 <> ALL (ARRAY[$1, $2, $31))
Selected Partitions: 1..3 (pbe-pruning)
(7 rows)
gaussdb=# PREPARE p10(INT, INT, INT) AS SELECT * FROM t1 WHERE c1 = ALL(ARRAY[$1, $2,
$31);
PREPARE
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) EXECUTE p10(1, 2, 3);
QUERY PLAN

Partition Iterator
Output: c1, 2
Iterations: PART
-> Partitioned Seq Scan on public.t1
Output: c1, c2
Filter: (t1.c1 = ALL (ARRAY[$1, $2, $31))
Selected Partitions: NONE (pbe-pruning)
(7 rows)
gaussdb=# PREPARE p11(INT, INT, INT) AS SELECT * FROM t1 WHERE c1 = ANY(ARRAY[$1, $2,
$31);
PREPARE
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) EXECUTE p11(1, 2, 3);
QUERY PLAN

Partition Iterator
Output: c1, 2
Iterations: PART
-> Partitioned Seq Scan on public.t1
Output: c1, c2
Filter: (t1.c1 = ANY (ARRAY[$1, $2, $31))
Selected Partitions: 1 (pbe-pruning)
(7 rows)
gaussdb=# PREPARE p12(INT, INT, INT) AS SELECT * FROM t1 WHERE c1 = SOME(ARRAY[$1,
$2, $3]);
PREPARE
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) EXECUTE p12(1, 2, 3);
QUERY PLAN

Partition Iterator
Output: c1, 2
Iterations: PART
-> Partitioned Seq Scan on public.t1
Output: c1, c2
Filter: (t1.c1 = ANY (ARRAY[$1, $2, $31))
Selected Partitions: 1 (pbe-pruning)
(7 rows)

Implicit type conversion
gaussdb=# set plan_cache_mode = 'force_generic_plan’;
gaussdb=# PREPARE p13(TEXT) AS SELECT * FROM t1 WHERE c1 = $1;

PREPARE
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) EXECUTE p13('12");

QUERY PLAN

Partition Iterator
Output: c1, 2
Iterations: PART
-> Partitioned Seq Scan on public.t1
Output: c1, 2

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

Filter: (t1.c1 = ($1):bigint)
Selected Partitions: 2 (pbe-pruning)
(7 rows)

e. IMMUTABLE function
gaussdb=# PREPARE p14(TEXT) AS SELECT * FROM t1 WHERE c1 = LENGTHB($1);
PREPARE
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) EXECUTE p14('hello);
QUERY PLAN

Partition Iterator
Output: c1, 2
Iterations: PART
-> Partitioned Seq Scan on public.t1
Output: c1, c2
Filter: (t1.c1 = lengthb($1))
Selected Partitions: 1 (pbe-pruning)
(7 rows)

e Typical scenarios where dynamic PBE pruning is not supported are as follows:

a. Subquery expressions
gaussdb=# PREPARE p15(INT) AS SELECT * FROM t1 WHERE c1 = ALL(SELECT c2 FROM t1
WHERE c1 > $1);
PREPARE
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) EXECUTE p15(1);
QUERY PLAN

Partition Iterator
Output: public.t1.c1, public.t1.c2
Iterations: 3
-> Partitioned Seq Scan on public.t1
Output: public.t1.c1, public.t1.c2
Filter: (SubPlan 1)
Selected Partitions: 1..3
SubPlan 1
-> Materialize
Output: public.t1.c2
-> Partition Iterator
Output: public.t1.c2
Iterations: PART
-> Partitioned Seq Scan on public.t1
Output: public.t1.c2
Filter: (public.t1.c1 > $1)
Selected Partitions: 1..3 (pbe-pruning)
(17 rows)

b. Implicit type conversion failure
gaussdb=# PREPARE p16(name) AS SELECT * FROM t1 WHERE c1 = $1;
PREPARE
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) EXECUTE p16('12");
QUERY PLAN

Partition Iterator
Output: c1, c2
Iterations: 3
-> Partitioned Seq Scan on public.t1
Output: c1, c2
Filter: ((t1.c1):text = ($1)::text)
Selected Partitions: 1..3
(7 rows)

c. STABLE and VOLATILE functions
gaussdb=# create sequence seq;
gaussdb=# PREPARE p17(TEXT) AS SELECT * FROM t1 WHERE c1 = currval($1);-- The VOLATILE
function does not support pruning.
PREPARE
gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) EXECUTE p17('seq');
QUERY PLAN

Partition Iterator

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

GaussDB

Primary&Standby Edition Feature Guide 3 Partitioned Table

Output: c1, 2
Iterations: 3
-> Partitioned Seq Scan on public.t1
Output: c1, c2
Filter: ((t1.c1):numeric = currval(($1):regclass))
Selected Partitions: 1..3
(7 rows)

3.3.1.2.2 Dynamic Parameterized Path Pruning

Dynamic parameterized path pruning is supported in the following scenarios:

1. Supported partitioning levels: level-1 partition and level-2 partition

2. Supported partitioning types: range partitioning, interval partitioning, hash
partitioning, and list partitioning.

3. Supported operator types: indexscan, indexonlyscan, and bitmapscan.

4. Supported expression types: comparison expression (<, <=, =, >=, >) and
logical expression.

=

/A\ CAUTION

Dynamic parameterized path pruning does not support subquery expressions,
STABLE and VOLATILE functions, cross-QueryBlock parameterized paths, bitmapOr
operator, or bitmapAnd operator.

e Typical scenarios where dynamic parameterized path pruning is supported are
as follows:

a.

Comparison expressions

-- Create partitioned tables and indexes.
CREATE TABLE t1 (c1 INT, c2 INT)
PARTITION BY RANGE (c1)

PARTITION p1 VALUES LESS THAN(10),
PARTITION p2 VALUES LESS THAN(20),
PARTITION p3 VALUES LESS THAN(MAXVALUE)

)i

CREATE TABLE t2 (c1 INT, c2 INT)

PARTITION BY RANGE (c1)

(
PARTITION p1 VALUES LESS THAN(10),
PARTITION p2 VALUES LESS THAN(20),
PARTITION p3 VALUES LESS THAN(MAXVALUE)

)i

CREATE INDEX t1_c1 ON t1(c1) LOCAL;

CREATE INDEX t2_c1 ON t2(c1) LOCAL;

CREATE INDEX t1_c2 ON t1(c2) LOCAL;

CREATE INDEX t2_c2 ON t2(c2) LOCAL;

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t2 JOIN t1 ON t1.c1 = t2.c2;
QUERY PLAN

Nested Loop
Output: t2.c1, t2.c2, t1.c1, t1.c2
-> Partition Iterator
Output: t2.c1, t2.c2
Iterations: 3
-> Partitioned Seq Scan on public.t2
Output: t2.c1, t2.c2
Selected Partitions: 1..3
-> Partition Iterator
Output: t1.c1, t1.c2

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

GaussDB
Primary&Standby Edition Feature Guide

3 Partitioned Table

Iterations: PART

-> Partitioned Index Scan using t2_c1 on public.t1
Output: t1.c1, t1.c2
Index Cond: (t1.c1 = t2.c2)

Selected Partitions: 1..3 (ppi-pruning)
(15 rows)

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t2 JOIN t1 ON t1.c1 < t2.c2;
QUERY PLAN

Nested Loop
Output: t2.c1, t2.c2, t1.c1, t1.c2
-> Partition Iterator
Output: t2.c1, t2.c2
Iterations: 3
-> Partitioned Seq Scan on public.t2
Output: t2.c1, t2.c2
Selected Partitions: 1..3
-> Partition Iterator
Output: t1.c1, t1.c2
Iterations: PART
-> Partitioned Index Scan using t2_c1 on public.t1
Output: t1.c1, t1.c2
Index Cond: (t1.c1 < t2.c2)

Selected Partitions: 1..3 (ppi-pruning)
(15 rows)

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t2 JOIN t1 ON t1.c1 > t2.c2;
QUERY PLAN

Nested Loop
Output: t2.c1, t2.c2, t1.c1, t1.c2
-> Partition Iterator
Output: t2.c1, t2.c2
Iterations: 3
-> Partitioned Seq Scan on public.t2
Output: t2.c1, t2.c2
Selected Partitions: 1..3
-> Partition Iterator

Output: t1.c1, t1.c2

Iterations: PART

-> Partitioned Index Scan using t2_c1 on public.t1
Output: t1.c1, t1.c2

Index Cond: (t1.c1 > t2.c2)

Selected Partitions: 1..3 (ppi-pruning)

(15 rows)
b. Logical expressions

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t2 JOIN t1 ON t1.c1 = t2.c2

AND t1.c2 = 2;

QUERY PLAN

Nested Loop
Output: t2.c1, t2.c2, t1.c1, t1.c2
-> Partition Iterator
Output: t2.c1, t2.c2
Iterations: 3
-> Partitioned Seq Scan on public.t2
Output: t2.c1, t2.c2
Selected Partitions: 1..3
-> Partition Iterator
Output: t1.c1, t1.c2
Iterations: PART
-> Partitioned Index Scan using t1_c1 on public.t1
Output: t1.c1, t1.c2
Index Cond: (t1.c1 = t2.c2)
Filter: (t1.c2 =2)

Selected Partitions: 1..3 (ppi-pruning)
(16 rows)

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd 52

GaussDB
Primary&Standby Edition Feature Guide

3 Partitioned Table

e Typical scenarios where dynamic parameterized path pruning is not supported
are as follows:

a. BitmapOr and BitmapAnd operators
gaussdb=# SET enable_seqgscan=off;

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t2 JOIN t1 ON t1.c1 = t2.c2 OR
tl.c1 =2;

QUERY PLAN

Nested Loop

Output: t2.c1, t2.c2, t1.c1, t1.c2
-> Seq Scan on public.t2
Output: t2.c1, t2.c2
-> Partition Iterator
Output: t1.c1, t1.c2
Iterations: 3
-> Partitioned Bitmap Heap Scan on public.t1
Output: t1.c1, t1.c2
Recheck Cond: ((t1.c1 = t2.c2) OR (t1.c1 = 2))
Selected Partitions: 1..3
-> BitmapOr
-> Partitioned Bitmap Index Scan on t1_two
Index Cond: (t1.c1 = t2.c2)
Selected Partitions: 1..3
-> Partitioned Bitmap Index Scan on t1_two
Index Cond: (t1.c1 =2)
Selected Partitions: 1..3

(18 rows)
b. Implicit conversion

gaussdb=# CREATE TABLE t3(c1 TEXT, c2 INT);
CREATE TABLE

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 JOIN t3 ON t1.c1 = t3.c1;
QUERY PLAN

Nested Loop
Output: t1.c1, t1.c2, t3.c1, t3.c2
-> Seq Scan on public.t3
Output: t3.c1, t3.c2
-> Partition Iterator
Output: t1.c1, t1.c2
Iterations: 3
-> Partitioned Index Scan using t1_c1 on public.t1
Output: t1.c1, t1.c2

Index Cond: (t1.c1 = (t3.c1)::bigint)
Selected Partitions: 1..3
(11 rows)

c. Functions

gaussdb=# EXPLAIN (VERBOSE ON, COSTS OFF) SELECT * FROM t1 JOIN t3 ON t1.c1 =
LENGTHB(t3.c1);

QUERY PLAN

Nested Loop
Output: t1.c1, t1.c2, t3.c1, t3.c2
-> Seq Scan on public.t3
Output: t3.c1, t3.c2
-> Partition Iterator
Output: t1.c1, t1.c2
Iterations: 3
-> Partitioned Index Scan using t1_c1 on public.t1
Output: t1.c1, t1.c2
Index Cond: (t1.c1 = lengthb(t3.c1))

Selected Partitions: 1..3
(11 rows)

3.3.2 Optimizing Partition Operator Execution

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

GaussDB

Primary&Standby Edition Feature Guide 3 Partitioned Table

3.3.2.1 PI Elimination

Scenario

Example

In the current partitioned table architecture, the executor iteratively accesses each
partition by using the Partition Iterator (PI) operator. When the partition pruning
result has only one partition, the Pl operator has lost its function as an iterator. In
this case, eliminating the Pl operator can avoid some unnecessary overheads
during execution. Due to the PIPELINE architecture of the executor, the Pl operator
is executed repeatedly. In scenarios with a large amount of data, the benefits of
eliminating the Pl operator are considerable.

The PI elimination takes effect only after the GUC parameter
partition_iterator_elimination is enabled. The following is an example:

CREATE TABLE test_range_pt (a INT, b INT, c INT)
PARTITION BY RANGE (a)
(
PARTITION p1 VALUES LESS THAN (2000),
PARTITION p2 VALUES LESS THAN (3000),
PARTITION p3 VALUES LESS THAN (4000),
PARTITION p4 VALUES LESS THAN (5000),
PARTITION p5 VALUES LESS THAN (MAXVALUE)
)JENABLE ROW MOVEMENT;

gaussdb=# EXPLAIN SELECT * FROM test_range_pt WHERE a = 3000;
QUERY PLAN

Partition Iterator (cost=0.00..25.31 rows=10 width=12)
Iterations: 1
-> Partitioned Seq Scan on test_range_pt (cost=0.00..25.31 rows=10 width=12)
Filter: (a = 3000)
Selected Partitions: 3
(5 rows)

gaussdb=# SET partition_iterator_elimination = on;

SET

gaussdb=# EXPLAIN SELECT * FROM test_range_pt WHERE a = 3000;
QUERY PLAN

Partitioned Seq Scan on test_range_pt (cost=0.00..25.31 rows=10 width=12)
Filter: (a = 3000)
Selected Partitions: 3

(3 rows)

Precautions and Constraints

1. The optimization in the target scenario takes effect only when the GUC
parameter partition_iterator_elimination is enabled and the optimizer
pruning result contains only one partition.

2. The Pl operator does not support level-2 partitioned tables.

CPLAN and some GPLAN scenarios are supported, for example, the partition
key a = $1 (that is, the scenario where data can be pruned to one partition in
the optimizer phase).

4. The SeqScan, Indexscan, Indexonlyscan, Bitmapscan, RowToVec, and Tidscan
operators are supported.

5. Row store, column store, Astore, Ustore, and SQLBypass are supported.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

GaussDB

Primary&Standby Edition Feature Guide 3 Partitioned Table

6. The Pl operator can be eliminated only when its lower-layer operator is a
supported Scan operator.

3.3.2.2 Merge Append

Scenario

Example

To globally sort a partitioned table, the SQL engine uses the Pl operator and
PartitionScan to perform a full scan on the partitioned table before sorting. In this
case, it is difficult to perform global sorting based on the data partition algorithm.
If the ORDER BY column contains ordered indexes, the existing order cannot be
used. To solve this problem, partitioned tables support MergeAppend to improve
the sorting mechanism.

The following is an example of executing MergeAppend.

CREATE TABLE test_range_pt (a INT, b INT, c INT)
PARTITION BY RANGE(a)
(
PARTITION p1 VALUES LESS THAN (2000),
PARTITION p2 VALUES LESS THAN (3000),
PARTITION p3 VALUES LESS THAN (4000),
PARTITION p4 VALUES LESS THAN (5000),
PARTITION p5 VALUES LESS THAN (MAXVALUE)
)JENABLE ROW MOVEMENT;
INSERT INTO test_range_pt VALUES
(generate_series(1,10000),generate_series(1,10000),generate_series(1,10000));
CREATE INDEX idx_range_b ON test_range_pt(b) LOCAL;
ANALYZE test_range_pt;

gaussdb=# EXPLAIN ANALYZE SELECT * FROM test_range_pt WHERE b >10 AND b < 5000 ORDER BY b
LIMIT 10;
QUERY PLAN

Limit (cost=0.06..1.02 rows=10 width=12) (actual time=0.990..1.041 rows=10 loops=1)
-> Result (cost=0.06..480.32 rows=10 width=12) (actual time=0.988..1.036 rows=10 loops=1)
-> Merge Append (cost=0.06..480.32 rows=10 width=12) (actual time=0.985..1.026 rows=10 loops=1)
Sort Key: b
-> Partitioned Index Scan using idx_range_b on test_range_pt (cost=0.00..44.61 rows=998
width=12) (actual time=0.256..0.284 rows=10 loops=1)
Index Cond: ((b > 10) AND (b < 5000))
Selected Partitions: 1
-> Partitioned Index Scan using idx_range_b on test_range_pt (cost=0.00..44.61 rows=998
width=12) (actual time=0.208..0.208 rows=1 loops=1)
Index Cond: ((b > 10) AND (b < 5000))
Selected Partitions: 2
-> Partitioned Index Scan using idx_range_b on test_range_pt (cost=0.00..44.61 rows=998
width=12) (actual time=0.205..0.205 rows=1 loops=1)
Index Cond: ((b > 10) AND (b < 5000))
Selected Partitions: 3
-> Partitioned Index Scan using idx_range_b on test_range_pt (cost=0.00..44.61 rows=998
width=12) (actual time=0.212..0.212 rows=1 loops=1)
Index Cond: ((b > 10) AND (b < 5000))
Selected Partitions: 4
-> Partitioned Index Scan using idx_range_b on test_range_pt (cost=0.00..44.61 rows=998
width=12) (actual time=0.092..0.092 rows=0 loops=1)
Index Cond: ((b > 10) AND (b < 5000))
Selected Partitions: 5
Total runtime: 1.656 ms
(20 rows)

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

GaussDB

Primary&Standby Edition Feature Guide 3 Partitioned Table

-- Disable the MergeAppend operator of a partitioned table.
gaussdb=# SET sql_beta_feature = 'disable_merge_append_partition’;
SET
gaussdb=# EXPLAIN ANALYZE SELECT * FROM test_range_pt WHERE b >10 AND b < 5000 ORDER BY b
LIMIT 10;
QUERY PLAN

Limit (cost=296.85..296.88 rows=10 width=12) (actual time=33.559..33.565 rows=10 loops=1)
-> Sort (cost=296.85..309.33 rows=10 width=12) (actual time=33.555..33.557 rows=10 loops=1)
Sort Key: b
Sort Method: top-N heapsort Memory: 26kB
-> Partition Iterator (cost=0.00..189.00 rows=4991 width=12) (actual time=0.352..27.176 rows=4989
loops=1)
Iterations: 5
-> Partitioned Seq Scan on test_range_pt (cost=0.00..189.00 rows=4991 width=12) (actual
time=16.874..25.637 rows=4989 loops=5)
Filter: ((b > 10) AND (b < 5000))
Rows Removed by Filter: 5011
Selected Partitions: 1..5
Total runtime: 33.877 ms
(11 rows)

Executing MergeAppend consumes much less resources than the common
execution mode.

Precautions and Constraints

1. MergeAppend can be executed only when the partition scanning path is
Index/Index Only.

2. MergeAppend can be executed only when the partition pruning result is
greater than 1.

3. MergeAppend can be executed only when all partitioned indexes are valid and
are B-tree indexes.

4. MergeAppend can be executed only when the SQL statement contains the
LIMIT clause.

5. MergeAppend cannot be executed when a filter exists during partition
scanning.

6. The MergeAppend path is no longer generated when the GUC parameter
sql_beta_feature is set to 'disable_merge_append_partition'.

3.3.2.3 Max/Min

Scenario

When the max/min function is used for a partitioned table, the SQL engine uses
the PI operator and PartitionScan to perform a full scan on the partitioned table
before sorting and limiting. If index scan is used on the partitions, the SQL engine
performs the limit operation on each partition to calculate the max/min values
before sorting and limiting the partitioned table. In this way, when the partitioned
table is sorted, the amount of data to be sorted is the same as the number of
partitions because the max/min values have been calculated for each partition, so
that the sorting overhead is greatly reduced.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

Example

The following is an example of executing the max/min function on a partitioned

table.
CREATE TABLE test_range_pt (a INT, b INT, c INT)
PARTITION BY RANGE(a)
(
PARTITION p1 VALUES LESS THAN (2000),
PARTITION p2 VALUES LESS THAN (3000),
PARTITION p3 VALUES LESS THAN (4000),
PARTITION p4 VALUES LESS THAN (5000),
PARTITION p5 VALUES LESS THAN (MAXVALUE)
)JENABLE ROW MOVEMENT;
CREATE INDEX idx_range_b ON test_range_pt(b) LOCAL;
INSERT INTO test_range_pt VALUES(generate_series(1,10000), generate_series(1,10000),
generate_series(1,10000));

Before:
gaussdb=# explain analyze select min(b) from test_range_pt;
QUERY PLAN

Aggregate (cost=164.00..164.01 rows=1 width=8) (actual time=6.779..6.780 rows=1 loops=1)
-> Partition Iterator (cost=0.00..139.00 rows=10000 width=4) (actual time=0.099..4.588 rows=10000

loops=1)

Iterations: 5

-> Partitioned Seq Scan on test_range_pt (cost=0.00..139.00 rows=10000 width=4) (actual
time=0.326..3.516 rows=10000 loops=5)

Selected Partitions: 1..5

Total runtime: 6.942 ms
(6 rows)

After:
gaussdb=# explain analyze select min(b) from test_range_pt;
QUERY PLAN

Result (cost=441.25..441.26 rows=1 width=0) (actual time=0.554..0.555 rows=1 loops=1)
InitPlan 1 (returns $2)
-> Limit (cost=441.25..441.25 rows=1 width=4) (actual time=0.547..0.547 rows=1 loops=1)
-> Sort (cost=441.25..466.25 rows=1 width=4) (actual time=0.544..0.544 rows=1 loops=1)
Sort Key: public.test_range_pt.b
Sort Method: top-N heapsort Memory: 25kB
-> Partition Iterator (cost=0.00..391.25 rows=10000 width=4) (actual time=0.135..0.502 rows=5
loops=1)
Iterations: 5
-> Limit (cost=0.00..0.04 rows=1 width=4) (actual time=0.322..0.322 rows=5 loops=5)
-> Partitioned Index Only Scan using idx_range_b on test_range_pt (cost=0.00..391.25
rows=1 width=4) (actual time=0.319..0.319 rows=5 loops=5)
Index Cond: (b IS NOT NULL)
Heap Fetches: 5
Selected Partitions: 1..5
Total runtime: 0.838 ms
(14 rows)

The time consumed after the optimization is much shorter than that before the
optimization.

Precautions and Constraints

1. The max/min function is supported only when the partition scan path is index
or index only.

2. The max/min function is supported only when all partitioned indexes are valid
and are B-tree indexes.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

3.3.2.4 Optimizing Performance of Importing Data to Partitions

Scenario

When data is inserted into a partitioned table, if the inserted data is of simple
types such as constants, parameters, and expressions, the INSERT operator is
automatically optimized (FastPath). You can determine whether the operator
optimization is triggered based on the execution plan. When the operator
optimization is triggered, the keyword FastPath is added before the INSERT plan.

Example

create table fastpath_t1
(

coll int,

col2 text

)
PARTITION BY RANGE(col1)

PARTITION p1 VALUES LESS THAN(10),
PARTITION p2 VALUES LESS THAN(MAXVALUE)

)

-- Insert a constant and execute FastPath.
gaussdb=# explain insert into fastpath_t1 values (0, 'test_insert');
QUERY PLAN

FastPath Insert on fastpath_t1 (cost=0.00..0.01 rows=1 width=0)
-> Result (cost=0.00..0.01 rows=1 width=0)
(2 rows)

-- Insert an expression with parameters or a simple expression and execute FastPath.
gaussdb=# prepare insert_t1 as insert into fastpath_t1 values($1 + 1 + $2, $2);
PREPARE
gaussdb=# explain execute insert_t1(10, '0');

QUERY PLAN

FastPath Insert on fastpath_t1 (cost=0.00..0.02 rows=1 width=0)
-> Result (cost=0.00..0.02 rows=1 width=0)
(2 rows)

-- Insert a subquery. FastPath cannot be executed. The standard executor is used.
gaussdb=# create table test_1(col1 int, col3 text);
gaussdb=# explain insert into fastpath_t1 select * from test_1;

QUERY PLAN

Insert on fastpath_t1 (cost=0.00..22.38 rows=1238 width=36)
-> Seq Scan on test_1 (cost=0.00..22.38 rows=1238 width=36)
(2 rows)

Precautions and Constraints

1. FastPath can only be executed under the INSERT VALUES statement, and the
data following the VALUES clause must be of the constant, parameter, or
expression type.

2. FastPath can only be executed for row-store tables. Column-store tables are
not supported.

3. FastPath does not support triggers.
FastPath cannot be executed under the UPSERT statement.

5. In case of CPU resource bottleneck, the performance is improved. In the
typical MetaERP data import scenario (16 cores and 256 GB memory), 37

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

columns are imported by using 64 concurrent threads, improving the
performance by more than 30%.

3.3.3 Partitioned Indexes

There are three types of indexes on a partitioned table:

1. Global non-partitioned index
2. Global partitioned index
3. Local partitioned index

Currently, GaussDB supports the global non-partitioned index and local
partitioned index.

Figure 3-4 Global non-partitioned index

Index EEREREEEEEEE000000000

partitioned | REOCINEAN OEOOE0E
ables

Figure 3-5 Global partitioned index

] EEEEEERE | | 000000000

Partitioned
Indexes

yYv l L vy vyy
partitioned | JNECNDER OEDOE0E

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

GaussDB
Primary&Standby Edition Feature Guide

3 Partitioned Table

Figure 3-6 Local partitioned index

r'z:jrtitioned
nexes OoOmmmEEmE| |[ooEEm Oo0OmEm

$artitioned LimBELOmE RN
ables

)]]]]

Constraints

e Partitioned indexes are classified into local indexes and global indexes. A local
index binds to a specific partition, and a global index corresponds to the

entire partitioned table.

e If the constraint key of the unique constraint and primary key constraint
contains all partition keys, a local index is created for the constraints.

Otherwise, a global index is created.

(1 NOTE

If the query statement involves multiple target partitions, you are advised to use the global
index. Otherwise, you are advised to use the local index. However, note that the global

index has extra overhead in the partition maintenance syntax.

Examples

e C(Create a table.

CREATE TABLE web_returns_p2

(
ca_address_sk INTEGER NOT NULL,
ca_address_id CHARACTER(16) NOT NULL ,
ca_street_number CHARACTER(10) ,
ca_street_name CHARACTER VARYING(60) ,
ca_street_type CHARACTER(15) ,
ca_suite_number CHARACTER(10) ,
ca_city CHARACTER VARYING(60) ,
ca_county CHARACTER VARYING(30) ,
ca_state CHARACTER(2) ,
ca_zip CHARACTER(10) ,
ca_country CHARACTER VARYING(20) ,
ca_gmt_offset NUMERIC(5,2) ,
ca_location_type CHARACTER(20)

)

PARTITION BY RANGE (ca_address_sk)

(
PARTITION P1 VALUES LESS THAN(5000),
PARTITION P2 VALUES LESS THAN(10000),
PARTITION P3 VALUES LESS THAN(15000),
PARTITION P4 VALUES LESS THAN(20000),
PARTITION P5 VALUES LESS THAN(25000),
PARTITION P6 VALUES LESS THAN(30000),
PARTITION P7 VALUES LESS THAN(40000),
PARTITION P8 VALUES LESS THAN(MAXVALUE)

)
ENABLE ROW MOVEMENT;
e (Create an index.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

- Create the local index tpcds_web_returns_p2_index1 without specifying

the partition name.
gaussdb=# CREATE INDEX tpcds_web_returns_p2_index1 ON web_returns_p2 (ca_address_id)
LOCAL;

If the following information is displayed, the test table has been created:
CREATE INDEX

- Create the local index tpcds_web_returns_p2_index2 with the specified

partition name.
gaussdb=# CREATE INDEX tpcds_web_returns_p2_index2 ON web_returns_p2 (ca_address_sk)
LOCAL

(
PARTITION web_returns_p2_P1_index,
PARTITION web_returns_p2_P2_index TABLESPACE example3,
PARTITION web_returns_p2_P3_index TABLESPACE example4,
PARTITION web_returns_p2_P4_index,
PARTITION web_returns_p2_P5_index,
PARTITION web_returns_p2_P6_index,
PARTITION web_returns_p2_P7_index,
PARTITION web_returns_p2_P8_index
) TABLESPACE example2;

If the following information is displayed, the test table has been created:
CREATE INDEX

- Create the global index tpcds_web_returns_p2_global_index for a

partitioned table.
gaussdb=# CREATE INDEX tpcds_web_returns_p2_global_index ON web_returns_p2
(ca_street_number) GLOBAL;

If the following information is displayed, the test table has been created:
CREATE INDEX

e Modify the tablespace of an index partition.

- Change the tablespace of index partition web_returns_p2_P2_index to
examplel.
gaussdb=# ALTER INDEX tpcds_web_returns_p2_index2 MOVE PARTITION
web_returns_p2_P2_index TABLESPACE exampleT;
If the following information is displayed, the tablespace of the index

partition has been modified:
ALTER INDEX

- Change the tablespace of index partition web_returns_p2_P3_index to

example2.
gaussdb=# ALTER INDEX tpcds_web_returns_p2_index2 MOVE PARTITION
web_returns_p2_P3_index TABLESPACE example2;
If the following information is displayed, the tablespace of the index
partition has been modified:
ALTER INDEX

e Rename an index partition.

- Rename the name of index partition web_returns_p2_P8_index to

web_returns_p2_P8_index_new.
gaussdb=# ALTER INDEX tpcds_web_returns_p2_index2 RENAME PARTITION
web_returns_p2_P8_index TO web_returns_p2_P8_index_new;
If the following information is displayed, the index partition has been
renamed:
ALTER INDEX

e Query indexes.

- Run the following command to query all indexes defined by the system

and users:
gaussdb=# SELECT RELNAME FROM PG_CLASS WHERE RELKIND='{' or RELKIND='";

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

GaussDB

Primary&Standby Edition Feature Guide 3 Partitioned Table

- Run the following command to query information about a specified
index:
gaussdb=# \di+ tpcds_web_returns_p2_index2

Delete an index.
gaussdb=# DROP INDEX tpcds_web_returns_p2_index1;

If the following information is displayed, the index has been deleted:
DROP INDEX

3.4 Partitioned Table O&M Management

Partitioned table O&M management includes partition management, partitioned
table management, partitioned index management, and partitioned table

sta

tement concurrency support.

Partition management: also known as partition-level DDL operations,
including ADD, DROP, EXCHANGE, TRUNCATE, SPLIT, MERGE, MOVE, and
RENAME.

/A\ CAUTION

For hash partitions, operations involving partition quantity change will cause
data re-shuffling, including ADD, DROP, SPLIT, and MERGE. Therefore, GaussDB
does not support these operations.

Operations involving partition data change will invalidate global indexes,
including DROP, EXCHANGE, TRUNCATE, SPLIT, and MERGE. You can use the
UPDATE GLOBAL INDEX clause to update global indexes synchronously.

(11 NOTE

e Most partition DDL operations use PARTITION/SUBPARTITION and PARTITION/
SUBPARTITION FOR to specify partitions. For PARTITION/SUBPARTITION, you need to
specify the partition name. For PARTITION/SUBPARTITION FOR, you need to specify any
partition value within the partition range. For example, if the range of partition part1 is
defined as [100, 200), partition part1 and partition for(150) function the same.

e The DDL execution cost varies depending on the partition. The target partition will be
locked during DDL execution. Therefore, you need to evaluate the cost and impact on
services. Generally, the execution cost of splitting and merging is much greater than that
of other partition DDL operations and is positively correlated with the size of the source
partition. The cost of exchanging is mainly caused by global index rebuilding and
validation. The cost of moving is limited by disk I/O. The execution cost of other
partition DDL operations is low.

Partitioned table management: In addition to the functions inherited from
ordinary tables, you can enable or disable row migration for partitioned
tables.

Partitioned index management: You can invalidate indexes or index partitions
or rebuild invalid indexes or index partitions. For example, global indexes
become invalid due to partition management operations.

Partitioned table statement concurrency support: When partition-level DDL
operations and partition-level DQL/DML operations are applied to different
partitions, concurrency at the execution layer is supported.

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

3.4.1 ADD PARTITION

You can add partitions to an existing partitioned table to maintain new services.
Currently, a partitioned table can contain a maximum of 1048575 partitions. If the
number of partitions reaches the upper limit, no more partitions can be added. In
addition, the memory usage of partitions must be considered. Typically, the
memory usage of a partitioned table is about (Number of partitions x 3/1024)
MB. The memory usage of a partition cannot be greater than the value of

local_syscache_threshold. In addition, some space must be reserved for other
functions.

/A\ CAUTION

e This command cannot be applied to hash partitions.

3.4.1.1 Adding a Partition to a Range Partitioned Table

You can use ALTER TABLE ADD PARTITION to add a partition to the end of an

existing partitioned table. The upper boundary of the new partition must be
greater than that of the last partition.

For example, add a partition to the range partitioned table range_sales.
ALTER TABLE range_sales ADD PARTITION date_202005 VALUES LESS THAN ('2020-06-01') TABLESPACE tb1;

NOTICE

If a range partitioned table has the MAXVALUE partition, partitions cannot be
added. You can use the ALTER TABLE SPLIT PARTITION statement to split
partitions. Partition splitting is also applicable to the scenario where partitions
need to be added before or in the middle of an existing partitioned table.

3.4.1.2 Adding a Partition to an Interval Partitioned Table

You cannot use the ALTER TABLE ADD PARTITION statement to add partitions to
an interval partitioned table. If the data inserted into an interval partitioned table
exceeds the range of the existing interval partitioned table, the database

automatically creates a partition based on the interval value of the interval
partitioned table.

For example, after the following data is inserted into the interval partitioned table
interval_sales, the database creates a partition whose range is ['2020-07-01",
'2020-08-01"). The new partition names start from sys_p1 in ascending order.

INSERT INTO interval_sales VALUES (263722,42819872,'2020-07-09','E',432072,213,17);

3.4.1.3 Adding a Partition to a List Partitioned Table

You can use ALTER TABLE ADD PARTITION to add a partition to a list partitioned
table. The enumerated values of the new partition cannot be the same as those of
any existing partition.

For example, add a partition to the list partitioned table list_sales.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

ALTER TABLE list_sales ADD PARTITION channel5 VALUES ('X') TABLESPACE tb1;

NOTICE

If a list partitioned table has the DEFAULT partition, partitions cannot be added.
You can use the ALTER TABLE SPLIT PARTITION statement to split partitions.

3.4.1.4 Adding a Partition to a Level-2 Partitioned Table

You can use ALTER TABLE ADD PARTITION to add a range or list partition to a
level-2 partitioned table. If a level-2 partition definition is declared under the new
partition, the database creates the corresponding level-2 partition based on the
definition. If no level-2 partition definition is declared under the new partition, the
database automatically creates a default level-2 partition.

For example, add a partition to the level-2 partitioned table range_list_sales and

create four level-2 partitions.
ALTER TABLE range_list_sales ADD PARTITION date_202005 VALUES LESS THAN ('2020-06-01")
TABLESPACE tb1

(
SUBPARTITION date_202005_channel1 VALUES ('0', '1", '2"),
SUBPARTITION date_202005_channel2 VALUES ('3', '4', '5') TABLESPACE tb2,
SUBPARTITION date_202005_channel3 VALUES ('6', '7"),
SUBPARTITION date_202005_channel4 VALUES ('8','9")

)

Alternatively, add only a partition to the level-2 partitioned table range_list_sales.
ALTER TABLE range_list_sales ADD PARTITION date_202005 VALUES LESS THAN ('2020-06-01")
TABLESPACE tb1;

The preceding statement is equivalent to the following SQL statement:
ALTER TABLE range_list_sales ADD PARTITION date_202005 VALUES LESS THAN ('2020-06-01')
TABLESPACE tb1

SUBPARTITION date_202005_channel1 VALUES (DEFAULT)
)i

NOTICE

If the level-1 partitioning policy of a level-2 partitioned table is HASH, the
partition cannot be added using ALTER TABLE ADD PARTITION.

3.4.1.5 Adding a Level-2 Partition to a Level-2 Partitioned Table

You can use ALTER TABLE MODIFY PARTITION ADD SUBPARTITION to add a
level-2 range or list partition to a level-2 partitioned table.

For example, add a level-2 partition named date_202004 to the level-2

partitioned table range_list_sales.
ALTER TABLE range_list_sales MODIFY PARTITION date_202004 ADD SUBPARTITION date_202004_channel5
VALUES ('X') TABLESPACE tb2;

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

NOTICE

If the level-2 partitioning policy of a level-2 partitioned table is HASH, the level-2
partition cannot be added using ALTER TABLE MODIFY PARTITION ADD
SUBPARTITION.

3.4.2 DROP PARTITION

You can run this command to remove unnecessary partitions. You can delete a
partition by specifying the partition name or partition value.

/\ CAUTION

e This command cannot be applied to hash partitions.

e Running this command will invalidate the global index. You can use the
UPDATE GLOBAL INDEX clause to update the global index synchronously or
rebuild the global index.

3.4.2.1 Deleting a Partition from a Partitioned Table

You can use ALTER TABLE DROP PARTITION to delete any partition from a range
partitioned table, interval partitioned table, or list partitioned table.

For example, delete the partition date_202005 from the range partitioned table

range_sales by specifying the partition name and update the global index.
ALTER TABLE range_sales DROP PARTITION date_202005 UPDATE GLOBAL INDEX;

Alternatively, delete the partition corresponding to the partition value
'2020-05-08' in the range partitioned table range_sales. Global indexes become
invalid after this command is executed because the UPDATE GLOBAL INDEX

clause is not used.
ALTER TABLE range_sales DROP PARTITION FOR ('2020-05-08');

NOTICE

e |f a partitioned table has only one partition, the partition cannot be deleted by
using the ALTER TABLE DROP PARTITION statement.

e |f the partitioned table is a hash partitioned table, partitions in the table
cannot be deleted by using the ALTER TABLE DROP PARTITION statement.

3.4.2.2 Deleting a Partition from a Level-2 Partitioned Table

You can use ALTER TABLE DROP PARTITION to delete a range or list partition from
a level-2 partitioned table. The database deletes the partition and all level-2
partitions under the partition.

For example, delete the partition date_202005 from the level-2 partitioned table

range_list_sales by specifying the partition name and update the global index.
ALTER TABLE range_list_sales DROP PARTITION date_202005 UPDATE GLOBAL INDEX;

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

Alternatively, delete a partition corresponding to the partition value
('2020-05-08') in the level-2 partitioned table range_list_sales. Global indexes
become invalid after this command is executed because the UPDATE GLOBAL

INDEX clause is not used.
ALTER TABLE range_list_sales DROP PARTITION FOR ('2020-05-08');

NOTICE

e |f a level-2 partitioned table has only one partition, the partition cannot be
deleted using the ALTER TABLE DROP PARTITION statement.

e If the level-1 partition policy of a level-2 partitioned table is HASH, the
partition cannot be deleted using the ALTER TABLE DROP PARTITION
statement.

3.4.2.3 Deleting a Level-2 Partition from a Level-2 Partitioned Table

You can use ALTER TABLE DROP SUBPARTITION to delete a level-2 range or list
partition from a level-2 partitioned table.

For example, delete the level-2 partition date_202005_channel1 from the level-2
partitioned table range_list_sales by specifying the partition name and update

the global index.
ALTER TABLE range_list_sales DROP SUBPARTITION date_202005_channel1 UPDATE GLOBAL INDEX;

Alternatively, delete a level-2 partition corresponding to the partition value
('2020-05-08', '0') in the level-2 partitioned table range_list_sales. Global indexes
become invalid after this command is executed because the UPDATE GLOBAL

INDEX clause is not used.
ALTER TABLE range_list_sales DROP SUBPARTITION FOR ('2020-05-08', '0');

NOTICE

e |If the level-2 partitioned table has only one level-2 partition, the level-2
partition cannot be deleted using the ALTER TABLE DROP SUBPARTITION
statement.

e If the level-2 partition policy of a level-2 partitioned table is HASH, the level-2
partition cannot be deleted using the ALTER TABLE DROP SUBPARTITION
statement.

3.4.3 EXCHANGE PARTITION

You can run this command to exchange the data in a partition with that in an
ordinary table. This command can quickly import data to or export data from a
partitioned table, achieving efficient data loading. In service migration scenarios,
using EXCHANGE PARTITION is much faster than using common import operation.
You can exchange a partition by specifying the partition name or partition value.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

GaussDB

Primary&Standby Edition Feature Guide 3 Partitioned Table

/A\ CAUTION

e Running this command will invalidate the global index. You can use the
UPDATE GLOBAL INDEX clause to update the global index synchronously or
rebuild the global index.

NOTICE

e When exchanging partitions, you can declare WITH/WITHOUT VALIDATION,
indicating whether to validate that ordinary table data meets the partition key
constraint rules of the target partition (validated by default). The overhead of
data validation is high. If you ensure that the exchanged data belongs to the
target partition, you can declare WITHOUT VALIDATION to improve the
exchange performance.

e You can declare WITH VALIDATION VERBOSE. In this case, the database
validates each row of the ordinary table, inserts the data that does not meet

the partition key constraint of the target partition to other partitions of the
partitioned table, and exchanges the ordinary table with the target partition.

For example, if the following partition definition and data distribution of the
exchange_sales table are provided, and the DATE_202001 partition is exchanged
with the exchange_sales table, the following behaviors exist based on the
declaration clause:

If WITHOUT VALIDATION is declared, all data is exchanged to the
DATE_202001 partition. Because '2020-02-03' and '2020-04-08' do not meet
the range constraint of the DATE_202001 partition, subsequent services may
be abnormal.

If WITH VALIDATION is declared, and '2020-02-03' and '2020-04-08' do not
meet the range constraint of the DATE_202001 partition, the database
reports an error.

If WITH VALIDATION VERBOSE is declared, the database inserts '2020-02-03"
into the DATE_202002 partition, inserts '2020-04-08' into the DATE_202004
partition, and exchanges the remaining data with the DATE_202001 partition.

-- Partition definition

PARTITION DATE_202001 VALUES LESS THAN ('2020-02-01"),
PARTITION DATE_202002 VALUES LESS THAN ('2020-03-01"),
PARTITION DATE_202003 VALUES LESS THAN ('2020-04-01"),
PARTITION DATE_202004 VALUES LESS THAN ('2020-05-01")

-- Data distribution of exchange_sales

('2020-01-15', '2020-01-17", '2020-01-23', '2020-02-03', '2020-04-08")

If the data to be exchanged does not completely belong to the target partition, do
not declare WITHOUT VALIDATION. Otherwise, the partition constraint rules will
be damaged, and subsequent DML statement results of the partitioned table will
be abnormal.

The ordinary table and partition whose data is to be exchanged must meet the
following requirements:

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

e The number of columns in an ordinary table is the same as that in a partition,
and the information in the corresponding columns is strictly consistent.

e The compression information of the ordinary table and partitioned table is
consistent.

e The number of ordinary table indexes is the same as that of local indexes of
the partition, and the index information is the same.

e The number and information of constraints of the ordinary table and partition
are consistent.

e The ordinary table is not a temporary table.

e The ordinary table and partitioned table do not support dynamic data
masking and row-level access control constraints.

3.4.3.1 Exchanging Partitions for a Partitioned Table

You can use ALTER TABLE EXCHANGE PARTITION to exchange partitions for a
partitioned table.

For example, exchange the partition date_202001 of the partitioned table
range_sales with the ordinary table exchange_sales by specifying the partition

name without validating the partition key, and update the global index.
ALTER TABLE range_sales EXCHANGE PARTITION (date_202001) WITH TABLE exchange_sales WITHOUT
VALIDATION UPDATE GLOBAL INDEX;

Alternatively, exchange the partition corresponding to '2020-01-08' in the range
partitioned table range_sales with the ordinary table exchange_sales by
specifying a partition value, validate the partition, and insert data that does not
meet the target partition constraints into another partition of the partitioned
table. Global indexes become invalid after this command is executed because the

UPDATE GLOBAL INDEX clause is not used.
ALTER TABLE range_sales EXCHANGE PARTITION FOR ('2020-01-08') WITH TABLE exchange_sales WITH
VALIDATION VERBOSE;

3.4.3.2 Exchanging Level-2 Partitions for a Level-2 Partitioned Table

You can use ALTER TABLE EXCHANGE SUBPARTITION to exchange level-2
partitions in a level-2 partitioned table.

For example, exchange the level-2 partition date_202001_channel1 of the level-2
partitioned table range_list_sales with the ordinary table exchange_sales by
specifying the partition name without validating the partition key, and update the

global index.
ALTER TABLE range_list_sales EXCHANGE SUBPARTITION (date_202001_channel1) WITH TABLE
exchange_sales WITHOUT VALIDATION UPDATE GLOBAL INDEX;

Alternatively, exchange the level-2 partition corresponding to ('2020-01-08', '0')
in the level-2 partitioned table range_list_sales with the ordinary table
exchange_sales by specifying a partition value, validate the partition, and insert
data that does not meet the target partition constraints into another partition of
the partitioned table. Global indexes become invalid after this command is

executed because the UPDATE GLOBAL INDEX clause is not used.
ALTER TABLE range_list_sales EXCHANGE SUBPARTITION FOR ('2020-01-08', '0') WITH TABLE
exchange_sales WITH VALIDATION VERBOSE;

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

NOTICE

Partitions in a level-2 partitioned table cannot be exchanged.

3.4.4 TRUNCATE PARTITION

You can run this command to quickly clear data in a partition. The function is
similar to that of DROP PARTITION. The difference is that TRUNCATE PARTITION
deletes only data in a partition, and the definition and physical files of the
partition are retained. You can clear a partition by specifying the partition name or
partition value.

/\ CAUTION

e Running this command will invalidate the global index. You can use the
UPDATE GLOBAL INDEX clause to update the global index synchronously or
rebuild the global index.

3.4.4.1 Clearing Partitions from a Partitioned Table

You can use ALTER TABLE TRUNCATE PARTITION to clear any partition in a
specified partitioned table.

For example, truncate the partition date_202005 in the range partitioned table

range_sales by specifying the partition name and update the global index.
ALTER TABLE range_sales TRUNCATE PARTITION date_202005 UPDATE GLOBAL INDEX;

Alternatively, truncate the partition corresponding to the partition value
'2020-05-08' in the range partitioned table range_sales. Global indexes become
invalid after this command is executed because the UPDATE GLOBAL INDEX

clause is not used.
ALTER TABLE range_sales TRUNCATE PARTITION FOR ('2020-05-08');

3.4.4.2 Clearing Partitions from a Level-2 Partitioned Table

You can use ALTER TABLE TRUNCATE PARTITION to clear a partition in a level-2
partitioned table. The database clears all level-2 partitions under the partition.

For example, truncate the partition date_202005 in the level-2 partitioned table

range_list_sales by specifying the partition name and update the global index.
ALTER TABLE range_list_sales TRUNCATE PARTITION date_202005 UPDATE GLOBAL INDEX;

Alternatively, truncate a partition corresponding to the partition value
('2020-05-08') in the level-2 partitioned table range_list_sales. Global indexes
become invalid after this command is executed because the UPDATE GLOBAL

INDEX clause is not used.
ALTER TABLE range_list_sales TRUNCATE PARTITION FOR ('2020-05-08');

3.4.4.3 Clearing Level-2 Partitions from a Level-2 Partitioned Table

You can use ALTER TABLE TRUNCATE SUBPARTITION to clear a level-2 partition in
a level-2 partitioned table.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

For example, truncate the level-2 partition date_202005_channel1 in the level-2
partitioned table range_list_sales by specifying the partition name and update

the global index.
ALTER TABLE range_list_sales TRUNCATE SUBPARTITION date_202005_channell UPDATE GLOBAL INDEX;

Alternatively, truncate a level-2 partition corresponding to the partition value
('2020-05-08', '0') in the level-2 partitioned table range_list_sales. Global indexes
become invalid after this command is executed because the UPDATE GLOBAL

INDEX clause is not used.
ALTER TABLE range_list_sales TRUNCATE SUBPARTITION FOR ('2020-05-08', '0');

3.4.5 SPLIT PARTITION

You can run this command to split a partition into two or more partitions. This
operation is considered when the partition data is too large or you need to add a
partition to a range partition with MAXVALUE or a list partition with DEFAULT. You
can specify a split point to split a partition into two partitions, or split a partition
into multiple partitions without specifying a split point. You can split a partition by
specifying the partition name or partition value.

/A\ CAUTION

e This command cannot be applied to hash partitions.
e Partitions in a level-2 partitioned table cannot be split.

e Running this command will invalidate the global index. You can use the
UPDATE GLOBAL INDEX clause to update the global index synchronously or
rebuild the global index.

NOTICE

The names of the new partitions can be the same as that of the source partition.
For example, partition p1 is split into p1 and p2. However, the database does not
consider the partitions with the same name before and after the splitting as the
same partition, which affects the query of the source partition p1 during the
splitting. For details, see DQL/DML-DDL Concurrency.

3.4.5.1 Splitting a Partition for a Range Partitioned Table

You can use ALTER TABLE SPLIT PARTITION to split a partition for a range
partitioned table.

For example, the range of the date_202001 partition in the range partitioned
table range_sales is ['2020-01-01', '2020-02-01"). You can specify the split point
'2020-01-16"' to split the date_202001 partition into two partitions and update

the global index.
ALTER TABLE range_sales SPLIT PARTITION date_202001 AT ('2020-01-16') INTO
(
PARTITION date_202001_p1, -- The upper boundary of the first partition is '2020-01-16'.
PARTITION date_202001_p2 -- The upper boundary of the second partition is '2020-02-01".
) UPDATE GLOBAL INDEX;

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

GaussDB

Primary&Standby Edition Feature Guide

3 Partitioned Table

Alternatively, split the partition date_202001 into multiple partitions without

specifying a split point, and update the global index.
ALTER TABLE range_sales SPLIT PARTITION date 202001 INTO
(
PARTITION date_202001_p1 VALUES LESS THAN ('2020-01-11"),
PARTITION date_202001_p2 VALUES LESS THAN ('2020-01-21"),
PARTITION date_202001_p3 -- The upper boundary of the third partition is '2020-02-01'.
JUPDATE GLOBAL INDEX;

Alternatively, split the partition by specifying the partition value instead of the

partition name.
ALTER TABLE range_sales SPLIT PARTITION FOR ('2020-01-15") AT ('2020-01-16') INTO
(
PARTITION date_202001_p1, -- The upper boundary of the first partition is '2020-01-16'".
PARTITION date_202001_p2 -- The upper boundary of the second partition is '2020-02-01".
) UPDATE GLOBAL INDEX;

NOTICE

If the MAXVALUE partition is split, the MAXVALUE range cannot be declared for
the first several partitions, and the last partition inherits the MAXVALUE range.

3.4.5.2 Splitting a Partition for an Interval Partitioned Table

You can use ALTER TABLE SPLIT PARTITION to split a partition for an interval
partitioned table.

NOTICE

After an interval partition is split, the interval partition before the split partition
becomes a range partition.

For example, create the following interval partitioned table and add three

partitions: sys_p1, sys_p2, and sys_p3.
CREATE TABLE interval_sales
(

prod_id NUMBER(6),

cust_id NUMBER,

time_id DATE,

channel_id CHAR(1),

promo_id NUMBER(6),

quantity_sold NUMBER(3),

amount_sold NUMBER(10, 2)

)
PARTITION BY RANGE (TIME_ID) INTERVAL (‘1 MONTH')
(
PARTITION date_2015 VALUES LESS THAN ('2016-01-01"),
PARTITION date_2016 VALUES LESS THAN ('2017-01-01"),
PARTITION date_2017 VALUES LESS THAN ('2018-01-01"),
PARTITION date_2018 VALUES LESS THAN ('2019-01-01"),
PARTITION date_2019 VALUES LESS THAN ('2020-01-01")
)i
INSERT INTO interval_sales VALUES (263722,42819872,'2020-07-09','E',432072,213,17); -- The sys_p1
partition is added.
INSERT INTO interval_sales VALUES (345724,72651233,'2021-03-05','A",352451,146,9); -- The sys_p2
partition is added.
INSERT INTO interval_sales VALUES (153241,65143129,'2021-05-07','H',864134,89,34); -- The sys_p3
partition is added.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

71

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

If the sys_p2 partition is split, the sys_p1 partition is changed to a range partition,
and the lower boundary of the partition range depends on the upper boundary of
the previous partition instead of the interval partition value. That is, the partition
range changes from ['2020-07-01', '2020-08-01') to ['2020-01-01', '2020-08-01").
The sys_p3 partition is still an interval partition, and its partition range is
['2021-05-01", '2021-06-01").

3.4.5.3 Splitting a Partition for a List Partitioned Table

You can use ALTER TABLE SPLIT PARTITION to split a partition for a list partitioned
table.

For example, assume that the range defined for the partition channel2 of the list
partitioned table list_sales is ('6', '7', '8', '9'). You can specify the split point ('6',
'7") to split the channel2 partition into two partitions and update the global

index.
ALTER TABLE list_sales SPLIT PARTITION channel2 VALUES ('6', '7') INTO

PARTITION channel2_1, -- The first partition range is ('6', '7").
PARTITION channel2_2 -- The second partition range is ('8', '9").
) UPDATE GLOBAL INDEX;

Alternatively, split the partition channel2 into multiple partitions without

specifying a split point, and update the global index.
ALTER TABLE list_sales SPLIT PARTITION channel2 INTO
(

PARTITION channel2_1 VALUES ('6"),

PARTITION channel2_2 VALUES ('8"),

PARTITION channel2_3 -- The third partition range is ('7', '9').
)UPDATE GLOBAL INDEX;

Alternatively, split the partition by specifying the partition value instead of the

partition name.
ALTER TABLE list_sales SPLIT PARTITION FOR ('6') VALUES ('6','7") INTO

PARTITION channel2_1, -- The first partition range is ('6', '7").
PARTITION channel2_2 -- The second partition range is ('8', '9").
) UPDATE GLOBAL INDEX;

/A\ CAUTION

If the DEFAULT partition is split, the DEFAULT range cannot be declared for the
first several partitions, and the last partition inherits the DEFAULT range.

3.4.5.4 Splitting a Level-2 Partition for a Level-2 *-Range Partitioned Table

You can use ALTER TABLE SPLIT SUBPARTITION to split a level-2 partition for a
level-2 *-range partitioned table.

For example, assume that the defined range of the level-2 partition
channel1_customer4 of a level-2 *-range partitioned table list_range_sales is
[1000, MAXVALUE). You can specify the split point 1200 to split the
channel1_customer4 level-2 partition into two partitions and update the global

index.
ALTER TABLE list_range_sales SPLIT SUBPARTITION channel1_customer4 AT (1200) INTO

(
SUBPARTITION channel1_customer4_p1, -- The upper boundary of the first partition is 1200.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

GaussDB

Primary&Standby Edition Feature Guide 3 Partitioned Table

SUBPARTITION channel1_customer4_p2 -- The upper boundary of the second partition is MAXVALUE.
) UPDATE GLOBAL INDEX;

Alternatively, split the partition channel1_customer4 into multiple partitions

without specifying a split point, and update the global index.
ALTER TABLE list_range_sales SPLIT SUBPARTITION channel1_customer4 INTO

SUBPARTITION channel1_customer4_p1 VALUES LESS THAN (1200),

SUBPARTITION channel1_customer4_p2 VALUES LESS THAN (1400),

SUBPARTITION channel1_customer4_p3 -- The upper boundary of the third partition is MAXVALUE.
JUPDATE GLOBAL INDEX;

Alternatively, split the partition by specifying the partition value instead of the

partition name.
ALTER TABLE range_sales SPLIT SUBPARTITION FOR ('1', 1200) AT (1200) INTO

PARTITION channell1_customer4_p1,
PARTITION channell1_customer4_p2
) UPDATE GLOBAL INDEX;

NOTICE

If the MAXVALUE partition is split, the MAXVALUE range cannot be declared for
the first several partitions, and the last partition inherits the MAXVALUE range.

3.4.5.5 Splitting a Level-2 Partition for a Level-2 *-List Partitioned Table

You can use ALTER TABLE SPLIT SUBPARTITION to split a level-2 partition for a
level-2 *-list partitioned table.

For example, assume that the defined range of the level-2 partition
product2_channel2 of a level-2 *-list partitioned table hash_list_sales is DEFAULT.
You can specify a split point to split the level-2 partition into two partitions and

update the global index.
ALTER TABLE hash_list_sales SPLIT SUBPARTITION product2_channel2 VALUES ('6', '7', '8','9") INTO
(
SUBPARTITION product2_channel2_p1, -- The first partition range is ('6', '7', '8','9').
SUBPARTITION product2_channel2_p2 -- The second partition range is DEFAULT.
) UPDATE GLOBAL INDEX;

Alternatively, split the partition product2_channel2 into multiple partitions

without specifying a split point, and update the global index.
ALTER TABLE hash_list_sales SPLIT SUBPARTITION product2_channel2 INTO

SUBPARTITION product2_channel2_p1 VALUES ('6', '7', '8"),

SUBPARTITION product2_channel2_p2 VALUES ('9', '10'),

SUBPARTITION product2_channel2_p3 -- The third partition range is DEFAULT.
) UPDATE GLOBAL INDEX;

Alternatively, split the partition by specifying the partition value instead of the

partition name.
ALTER TABLE hash_list_sales SPLIT SUBPARTITION FOR (1200, '6') VALUES ('6', '7','8','9") INTO

SUBPARTITION product2_channel2_p1, -- The first partition range is ('6', '7', '8', '9').
SUBPARTITION product2_channel2_p2 -- The second partition range is DEFAULT.
) UPDATE GLOBAL INDEX;

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

/A\ CAUTION

If the DEFAULT partition is split, the DEFAULT range cannot be declared for the
first several partitions, and the last partition inherits the DEFAULT range.

3.4.6 MERGE PARTITION

You can run this command to merge multiple partitions into one partition.
Partitions can be merged only by specifying partition names, instead of partition
values.

/A\ CAUTION

e This command cannot be applied to hash partitions.

e Running this command will invalidate the global index. You can use the
UPDATE GLOBAL INDEX clause to update the global index synchronously or
rebuild the global index.

NOTICE

For a range or interval partition, the name of the new partition can be the same
as that of the last source partition. For example, partitions p1 and p2 can be
merged into p2. For a list partition, the name of the new partition can be the
same as that of any source partition. For example, p1 and p2 can be merged into
p1.

If the name of the new partition is the same as that of the source partition, the
database considers the new partition as inheritance of the source partition, which
affects the query of the source partition during the merging. For details, see DQL/
DML-DDL Concurrency.

3.4.6.1 Merging Partitions for a Partitioned Table

You can use ALTER TABLE MERGE PARTITIONS to merge multiple partitions into
one partition.

For example, merge the partitions date_202001 and date_202002 of the range

partitioned table range_sales into a new partition and update the global index.
ALTER TABLE range_sales MERGE PARTITIONS date_202001, date_202002 INTO
PARTITION date_2020_old UPDATE GLOBAL INDEX;

NOTICE

After interval partitions are merged, the interval partition before the merged
partitions becomes a range partition.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

3.4.6.2 Merging Level-2 Partitions for a Level-2 Partitioned Table

You can use ALTER TABLE MERGE SUBPARTITIONS to merge multiple level-2
partitions into one level-2 partition.

For example, merge the level-2 partitions product1_channel1,
product1_channel2 and product1_channel3 of the level-2 partitioned table

hash_list_sales into a new level-2 partition and update the global index.
ALTER TABLE hash_list_sales MERGE SUBPARTITIONS product1_channel1, product1_channel2,
product1_channel3 INTO

SUBPARTITION product1_channell UPDATE GLOBAL INDEX;

3.4.7 MOVE PARTITION

You can run this command to move a partition to a new tablespace. You can move
a partition by specifying the partition name or partition value.

3.4.7.1 Moving Partitions for a Partitioned Table

You can use ALTER TABLE MOVE PARTITION to move partitions in a partitioned
table.

For example, move the partition date_202001 from the range partitioned table

range_sales to the tablespace tb1 by specifying the partition name.
ALTER TABLE range_sales MOVE PARTITION date_202001 TABLESPACE tb1;

Alternatively, move the partition corresponding to '0" in the list partitioned table

list_sales to the tablespace tb1 by specifying a partition value.
ALTER TABLE list_sales MOVE PARTITION FOR ('0') TABLESPACE tb1;

3.4.7.2 Moving Level-2 Partitions for a Level-2 Partitioned Table

You can use ALTER TABLE MOVE SUBPARTITION to move level-2 partitions in a
level-2 partitioned table.

For example, move the partition date_202001_channel1 from the level-2
partitioned table range_list_sales to the tablespace tb1 by specifying the partition

name.
ALTER TABLE range_list_sales MOVE SUBPARTITION date_202001_channel1 TABLESPACE tb1;

Alternatively, move the partition corresponding to the partition value
('2020-01-08', '0') from the level-2 partitioned table range_list_sales to the

tablespace tb1.
ALTER TABLE range_list_sales MOVE SUBPARTITION FOR ('2020-01-08', '0') TABLESPACE tb1;

3.4.8 RENAME PARTITION

You can run this command to rename a partition. You can rename a partition by
specifying the partition name or partition value.
3.4.8.1 Renaming a Partition in a Partitioned Table

You can use ALTER TABLE RENAME PARTITION to rename a partition in a
partitioned table.

For example, rename the partition date_202001 in the range partitioned table
range_sales by specifying the partition name.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

ALTER TABLE range_sales RENAME PARTITION date_202001 TO date_202001_new;

Alternatively, rename the partition corresponding to '0' in the list partitioned table
list_sales by specifying a partition value.
ALTER TABLE list_sales RENAME PARTITION FOR ('0') TO channel_new;

3.4.8.2 Renaming a Partition in a Level-2 Partitioned Table

You can use ALTER TABLE RENAME PARTITION to rename a partition in a level-2
partitioned table. The specific method is the same as that of the partitioned table.

3.4.8.3 Renaming a Level-2 Partition in a Level-2 Partitioned Table

You can use ALTER TABLE RENAME SUBPARTITION to rename a level-2 partition
in a level-2 partitioned table.

For example, rename the partition date_202001_channel1 in the level-2

partitioned table range_list_sales by specifying the partition name.
ALTER TABLE range_list_sales RENAME SUBPARTITION date_202001_channel1 TO date_202001_channelnew;

Alternatively, rename the partition corresponding to the partition value

('2020-01-08', '0') in the level-2 partitioned table range_list_sales.
ALTER TABLE range_list_sales RENAME SUBPARTITION FOR ('2020-01-08', '0') TO date_202001_channelnew;

3.4.8.4 Renaming an Index Partition for a Local Index

You can use ALTER INDEX RENAME PARTITION to rename an index partition for a
local index. The method is the same as that for renaming a partition in a
partitioned table.

3.4.9 ALTER TABLE ENABLE/DISABLE ROW MOVEMENT

You can run this command to enable or disable row movement for a partitioned
table.

When row migration is enabled, data in a partition can be migrated to another
partition through an UPDATE operation. When row migration is disabled, if such
an UPDATE operation occurs, a service error is reported.

NOTICE

If you are not allowed to update the column where the partition key is located,
you are advised to disable row migration.

For example, if you create a list partitioned table and enable row migration, you
can update the column where the partition key is located across partitions. If you
disable row migration, an error is reported when you update the column where

the partition key is located across partitions.
CREATE TABLE list_sales
(

product_id INT4 NOT NULL,

customer_id INT4 PRIMARY KEY,

time_id DATE,

channel_id CHAR(1),

type_id INT4,

quantity_sold NUMERIC(3),

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

amount_sold NUMERIC(10,2)

)
PARTITION BY LIST (channel_id)

PARTITION channel1 VALUES ('0', '1', '2'),
PARTITION channel2 VALUES ('3, '4', '5"),
PARTITION channel3 VALUES ('6', '7"),
PARTITION channel4 VALUES ('8','9")
) ENABLE ROW MOVEMENT;
INSERT INTO list_sales VALUES (153241,65143129,'2021-05-07','0',864134,89,34);
-- The cross-partition update is successful, and data is migrated from partition channel1 to partition
channel2.
UPDATE list_sales SET channel_id = '3' WHERE channel_id = '0;
-- Disable row migration for the partitioned table.
ALTER TABLE list_sales DISABLE ROW MOVEMENT;
-- The cross-partition update fails, and an error is reported: fail to update partitioned table "list_sales".
UPDATE list_sales SET channel_id = '0' WHERE channel_id = '3/;
-- The update in the partition is still successful.
UPDATE list_sales SET channel_id = '4' WHERE channel_id = '3/,

3.4.10 Invalidating/Rebuilding Indexes of a Partition

You can run commands to invalidate or rebuild a partitioned index or an index
partition. In this case, the index or index partition is no longer maintained. You can
rebuild a partitioned index to restore the index function.

In addition, some partition-level DDL operations also invalidate global indexes,
including DROP, EXCHANGE, TRUNCATE, SPLIT, and MERGE. You can use the
UPDATE GLOBAL INDEX clause to update the global index synchronously.
Otherwise, you need to rebuild the index.

3.4.10.1 Invalidating/Rebuilding Indexes
You can use ALTER INDEX to invalidate or rebuild indexes.

For example, if the range_sales_idx index exists in the range_sales partitioned

table, run the following command to invalidate the index:
ALTER INDEX range_sales_idx UNUSABLE;

Run the following command to rebuild the range_sales_idx index:
ALTER INDEX range_sales_idx REBUILD;

3.4.10.2 Invalidating/Rebuilding Local Indexes of a Partition

e You can use ALTER INDEX PARTITION to invalidate or rebuild local indexes of
a partition.

e You can use ALTER TABLE MODIFY PARTITION to invalidate or rebuild all
indexes of a specified partition in a partitioned table. If this syntax is applied
to the partition of a level-2 partitioned table, this command takes effect on
all level-2 partitions of the partition.

e You can use ALTER TABLE MODIFY SUBPARTITION to invalidate or rebuild all
indexes of a specified level-2 partition in a level-2 partitioned table.

For example, assume that the partitioned table range_sales has two local indexes
range_sales_idx1 and range_sales_idx2, and the corresponding indexes on the
partition date_202001 are range_sales_idx1_part1 and range_sales_idx2_part1.

The syntax for maintaining partitioned indexes of a partitioned table is as follows:

e Run the following command to disable all indexes on the date_202001
partition:

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

GaussDB

Primary&Standby Edition Feature Guide 3 Partitioned Table

ALTER TABLE range_sales MODIFY PARTITION date_202001 UNUSABLE LOCAL INDEXES;

e Alternatively, run the following command to disable the index
range_sales_idx1_part1 on the date_202001 partition:
ALTER INDEX range_sales_idx1 MODIFY PARTITION range_sales_idx1_part1 UNUSABLE;
e Run the following command to rebuild all indexes on the date_202001
partition:
ALTER TABLE range_sales MODIFY PARTITION date_202001 REBUILD UNUSABLE LOCAL INDEXES;
e Alternatively, run the following command to rebuild the index

range_sales_idx1_part1 on the date_202001 partition:
ALTER INDEX range_sales_idx1 REBUILD PARTITION range_sales_idx1_part1;

Assume that the level-2 partitioned table list_range_sales has two local indexes:
list_range_sales_idx1 and list_range_sales_idx2. The table has a partition
channell and its level-2 partitions channel1_product1, channel1_product2 and
channel1_product3. The indexes corresponding to level-2 partition
channel1_product1 are channel1_product1_idx1 and channel1_product1_idx2.

The syntax for maintaining the partitioned indexes of a level-2 partitioned table is
as follows:

e Run the following command to disable all indexes on the level-2 partitions of
partition channell, including level-2 partitions channel1_product1,
channel1_product2 and channel1_product3:

ALTER TABLE list_range_sales MODIFY PARTITION channell UNUSABLE LOCAL INDEXES;
e Run the following command to rebuild all indexes on the level-2 partitions

under partition channel1:
ALTER TABLE list_range_sales MODIFY PARTITION channel1 REBUILD UNUSABLE LOCAL INDEXES;

The syntax for maintaining the level-2 partitioned indexes of a level-2 partitioned
table is as follows:

e Run the following command to disable all indexes on the level-2 partition
channel1_product1:
ALTER TABLE list_range_sales MODIFY SUBPARTITION channel1_productl’ UNUSABLE LOCAL INDEXES;

e Run the following command to rebuild all indexes on the level-2 partition
channel1_product1:
ALTER TABLE list_range_sales MODIFY SUBPARTITION channel1_product1 REBUILD UNUSABLE LOCAL
INDEXES;

e Alternatively, run the following command to disable the index
channel1_product1_idx1 on the level-2 partition channel1_product1:
ALTER INDEX list_range_sales_idx1 MODIFY PARTITION channel1_product1_idx1 UNUSABLE;

e Run the following command to rebuild the index channel1_product1_idx1 on

the level-2 partition channel1_product1:
ALTER INDEX list_range_sales_idx1 REBUILD PARTITION channell_product1_idx1;

3.5 Partition Concurrency Control

Partition concurrency control limits the behavior specifications during concurrent
DQL, DML, and DDL operations on partitioned tables. You can refer to this section
when designing concurrent statements for partitioned tables, especially when
maintaining partitions.

3.5.1 Common Lock Design

Partitioned tables use table locks and partition locks. Eight common locks of
different levels are applied to tables and partitions to ensure proper behavior

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

GaussDB

Primary&Standby Edition Feature Guide

3 Partitioned Table

Table 3-2 Common lock behavior

control during concurrent DQL, DML, and DDL operations. The following table lists
the mutually exclusive behavior of locks at different levels. Each two types of
common locks marked with v do not block each other and can be executed
concurrently.

ACCESS |ROW. S |ROW E |SHARE_ |SHARE | SHARE_ | EXCLUSI | ACCESS
_SHARE | HARE | XCLUSIV | UPDATE ROW E | VE _EXCLUS
E _EXCLUS XCLUSIV IVE
IVE E
ACCESS_ | V v v v v v v
SHARE
ROWS |V v v v v v
HARE
ROW _EX | ¥ v v v
CLUSIVE
SHARE_ |V v v
UPDATE
_EXCLUS
IVE
SHARE |V v v
SHARE_ |V v
ROW_EX
CLUSIVE
EXCLUSI | ¥
VE
ACCESS_
EXCLUSI
VE

Different statements of a partitioned table are applied to the same target

partition. The database applies different levels of table locks and partition locks to
the target partitioned table and partition to control the concurrency behavior. The
following table lists the lock control level for different statements. Numbers 1 to 8
indicate the eight common locks listed in the preceding table.

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

79

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

Table 3-3 Lock control level of different partitioned table statements

Statement Partitioned Table Lock Level-2 Partitioned
(Table Lock + Partition Table Lock (Table
Lock) Lock + Partition Lock

+ Level-2 Partition
Lock)
SELECT 1-1 1-1-1
SELECT FOR UPDATE 2-2 2-2-2
DML statements, including 3-3 3-3-3

INSERT, UPDATE, DELETE,
UPSERT, MERGE INTO, and

COPY

Partition-level DDL 4-8 4-8-8 (used for
statements, including ADD, partitions in a level-2
DROP, EXCHANGE, partitioned table)
TRUNCATE, SPLIT, MERGE, 4-4-8 (used for level-2

MOVE, and RENAME partitions in a level-2

partitioned table)

CREATE INDEX and 5-5 5-5-5
REBUILD INDEX

REBUILD INDEX 1-5 1-1-5
PARTITION

Other partitioned table- 8-8 8-8-8

level DDL statements

3.5.2 DQL/DML-DQL/DML Concurrency

Level 1-3 locks will be used for DQL/DML statements on tables and partitions.
DQL and DML statements do not block each other and DQL/DML-DQL/DML
concurrency is supported.

/\ CAUTION

Adding partitions to an interval partitioned table using statements, such as
INSERT, UPDATE, UPSERT, MERGE INTO, and COPY, is regarded as a partition-level
DDL operation.

3.5.3 DQL/DML-DDL Concurrency

Level-8 locks will be used for table-level DDL statements on a partitioned table.
All DQL/DML statements are blocked.

Level-4 locks will be used for partition-level DDL statements on a partitioned table
and level-8 locks will be used for the target partition. When DQL/DML and DDL

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

GaussDB

Primary&Standby Edition Feature Guide 3 Partitioned Table

statements are used in different partitions, concurrent execution is supported.
When DQL/DML and DDL statements are used in the same partition, statements
triggered later will be blocked.

NOTICE

If the target partitions of the concurrent DDL and DQL/DML statements overlap,
the DQL/DML statements may occur before or after the DDL statements due to
serial blocking. You need to know the possible expected results. For example,
when TRUNCATE and INSERT take effect on the same partition, if TRUNCATE is
triggered before INSERT, data exists in the target partition after the statements are
complete. If TRUNCATE is triggered after INSERT, no data exists in the target
partition after the statements are complete.

During partition-level DDL operations, do not perform DQL/DML operations on
the target partition at the same time.

DQL/DML-DDL Concurrency Across Partitions

GaussDB supports DQL/DML-DDL concurrency across partitions.

The following provides some examples of supporting concurrency in the

partitioned table range_sales.
CREATE TABLE range_sales
(
product_id INT4 NOT NULL,
customer_id INT4 NOT NULL,
time_id DATE,
channel_id CHAR(1),
type_id INT4,
quantity_sold NUMERIC(3),
amount_sold NUMERIC(10,2)
)
PARTITION BY RANGE (time_id)
(
PARTITION time_2008 VALUES LESS THAN ('2009-01
PARTITION time_2009 VALUES LESS THAN ('2010-01
PARTITION time_2010 VALUES LESS THAN ('2011-01
PARTITION time_2011 VALUES LESS THAN ('2012-01
)

Partitioned tables support the following concurrent statements:

-- In case 1, inserting partition time_2011 and truncating partition time_2008 do not block each other.
\parallel on

INSERT INTO range_sales VALUES (455124, 92121433, '2011-09-17', 'X', 4513, 7, 17);

ALTER TABLE range_sales TRUNCATE PARTITION time_2008 UPDATE GLOBAL INDEX;

\parallel off

’
’

’

-01")
-01")
-01")
-01")

-- In case 2, querying partition time_2010 and exchanging partition time_2009 do not block each other.
\parallel on

SELECT COUNT(*) FROM range_sales PARTITION (time_2010);

ALTER TABLE range_sales EXCHANGE PARTITION (time_2009) WITH TABLE temp UPDATE GLOBAL INDEX;
\parallel off

-- In case 3, updating partitioned table range_sales and dropping partition time_2008 do not block each
other. This is because the UPDATE SQL statement with conditions is pruned to the time_2010 and

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

GaussDB

Primary&Standby Edition Feature Guide 3 Partitioned Table

time_2011 partitions.

\parallel on

UPDATE range_sales SET channel_id = 'T' WHERE channel_id = 'X' AND time_id > '2010-06-01";
ALTER TABLE range_sales DROP PARTITION time_2008 UPDATE GLOBAL INDEX;

\parallel off

-- In case 4, any DQL/DML statement of partitioned table range_sales and adding partition time_2012 do
not block each other. This is because ADD PARTITION is invisible to other statements.

\parallel on

DELETE FROM range_sales WHERE channel_id = 'T";

ALTER TABLE range_sales ADD PARTITION time_2012 VALUES LESS THAN ('2013-01-01");

\parallel off

DQL/DML-DDL Concurrency on the Same Partition

GaussDB does not support DQL/DML-DDL concurrency on the same partition. A
triggered statement will block the subsequent statements.

In principle, you are not advised to perform DQL/DML operations on a partition
when performing DDL operations on the partition. This is because the status of
the target partition changes abruptly, which may cause unexpected statement
query results.

If the DQL/DML and DDL target partitions overlap due to improper statements or
pruning failures, consider the following two scenarios:

Scenario 1: If DQL/DML statements are triggered before DDL statements, DDL
statements are blocked until DQL/DML statements are committed.

Scenario 2: if DDL statements are triggered before DQL/DML statements,
DQL/DML statements are blocked and are executed after DDL statements are
committed. The result may be unexpected. To ensure data consistency, the
expected result is formulated based on the following rules:

e ADD PARTITION

During ADD PARTITION, a new partition is generated and is invisible to the
triggered DQL/DML statements. There is no blocking.

e DROP PARTITION

During DROP PARTITION, an existing partition is dropped, and the DQL/DML
statements triggered on the target partition are blocked. After the blocking is
complete, the processing on the partition will be skipped.

e TRUNCATE PARTITION

During TRUNCATE PARTITION, data is cleared from an existing partition, and
the DQL/DML statements triggered on the target partition are blocked. After
the blocking is complete, the processing on the partition continues.

Note that no data can be queried in the target partition during this period
because no data exists in the target partition after the TRUNCATE operation is
committed.

e EXCHANGE PARTITION

The EXCHANGE PARTITION exchanges an existing partition with an ordinary
table. During this period, the DQL/DML statements on the target partition are
blocked. After the blocking is complete, the partition processing continues.
The actual data of the partition corresponds to the original ordinary table.

Exception: If the global index exists in the partitioned table, the EXCHANGE
statement contains the UPDATE GLOBAL INDEX clause, and the partitioned

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

table query triggered during this period uses the global index, the data in the
partition after the exchange cannot be queried. As a result, an error is
reported during the query after the blocking is complete.

ERROR: partition xxxxxx does not exist on relation "xxxxxx"

DETAIL: this partition may have already been dropped by cocurrent DDL
operations EXCHANGE PARTITION

e SPLIT PARTITION

The SPLIT PARTITION splits a partition into multiple partitions. Even if a new
partition has the same name as the source partition, the new partition is
regarded as a different partition. During this period, the DQL/DML statements
on the target partition are blocked. After the blocking is complete, an error is
reported.

ERROR: partition xxxxxx does not exist on relation "xxxxxx"

DETAIL: this partition may have already been dropped by cocurrent DDL
operations SPLIT PARTITION

e MERGE PARTITION

The MERGE PARTITION merges multiple partitions into one partition. If the
name of the merged partition is the same as that of any of the source
partitions, the merged partition is logically considered the same as the source
partition. The DQL/DML statements on the target partition triggered during
this period are blocked. After the blocking is complete, the system determines
whether the target partition is the specified source partition based on the
target partitioning type. If the target partition is the specified source partition,
the statements take effect on the new partition. If the target partition is
another source partition, an error is reported.

ERROR: partition xxxxxx does not exist on relation "xxxxxx"

DETAIL: this partition may have already been dropped by cocurrent DDL
operations MERGE PARTITION

o RENAME PARTITION

The RENAME PARTITION does not change the partition structure information.
The DQL/DML statements triggered during this period do not encounter any
exception but are blocked until the RENAME operation is committed.

e MOVE PARTITION

The MOVE PARTITION does not change the partition structure information.
The DQL/DML statements triggered during this period do not encounter any
exception but are blocked until the MOVE operation is committed.

3.5.4 DDL-DDL Concurrency

GaussDB does not support concurrent DDL statements. DDL statements triggered
later will be blocked.

3.6 System Views & DFX Related to Partitioned Tables

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

GaussDB

Primary&Standby Edition Feature Guide 3 Partitioned Table

3.6.1 System Views Related to Partitioned Tables

The system views related to partitioned tables are classified into three types based
on permissions. For details about the columns, see section "System Catalogs and
System Views > System Views" in Developer Guide.

1. Views related to all partitions:

ADM_PART_TABLES: stores information about all partitioned tables.
ADM_TAB_PARTITIONS: stores information about all partitions.

ADM_TAB_SUBPARTITIONS: stores information about all level-2
partitions.

ADM_PART_INDEXES: stores information about all local indexes.

ADM_IND_PARTITIONS: stores index partition information about all
partitioned tables.

ADM_IND_SUBPARTITIONS: stores index partition information about all
level-2 partitioned tables.

2. Views accessible to the current user:

DB_PART_TABLES: stores information about partitioned tables accessible
to the current user.

DB_TAB_PARTITIONS: stores information about partitions accessible to
the current user.

DB_TAB_SUBPARTITIONS: stores information about level-2 partitions
accessible to the current user.

DB_PART_INDEXES: stores local index information accessible to the
current user.

DB_IND_PARTITIONS: stores index partition information about partitioned
tables accessible to the current user.

DB_IND_SUBPARTITIONS: stores index partition information about level-2
partitioned tables accessible to the current user.

3. Views owned by the current user:

MY_PART_TABLES: stores information about partitioned tables owned by
the current user.

MY_TAB_PARTITIONS: stores information about partitions owned by the
current user.

MY_TAB_SUBPARTITIONS: stores information about level-2 partitions
owned by the current user.

MY_PART_INDEXES: stores local indexes owned by the current user.

MY_IND_PARTITIONS: stores index partition information about
partitioned tables owned by the current user.

MY_IND_SUBPARTITIONS: stores index partition information about
level-2 partitioned tables owned by the current user.

3.6.2 Built-in Tool Functions Related to Partitioned Tables

Information About Table Creation
e C(Create a table.

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

GaussDB

Primary&Standby Edition Feature Guide

3 Partitioned Table

CREATE TABLE test_range_pt (a INT, b INT, c INT)

PARTITION BY RANGE (a)
(

PARTITION p1 VALUES LESS THAN (2000),
PARTITION p2 VALUES LESS THAN (3000),
PARTITION p3 VALUES LESS THAN (4000),
PARTITION p4 VALUES LESS THAN (5000),
PARTITION p5 VALUES LESS THAN (MAXVALUE)

)ENABLE ROW MOVEMENT;

View the OID of the partitioned table.

SELECT oid FROM pg_class WHERE relname = 'test_range_pt’;

oid

View the partition information.
SELECT oid,relname,parttype,parentid,boundaries FROM pg_partition WHERE parentid = 49290;

oid | relname | parttype
+

+

| parentid | boundaries
+ +

49293 | test_range_pt | r
49294 | p1 | p
49295 | p2 | p
49296 | p3 | p
49297 | p4 | p
49298 | p5 | p

(6 rows)

Create an index.

CREATE INDEX idx_range_a ON test_range_pt(a) LOCAL;

CREATE INDEX

| 49290 |

49290 | {2000}
49290 | {3000}
49290 | {4000}
49290 | {5000}
49290 | {NULL}

-- Check the OID of the partitioned index.

SELECT oid FROM pg_class WHERE relname = 'idx_range_a";

oid

View the index partition information.

SELECT oid,relname,parttype,parentid,boundaries,indextblid FROM pg_partition WHERE parentid =

90250;

oid | relname | parttype | parentid | boundaries | indextblid

+
+

+
t

90255 | p5_a_idx | x
90254 | p4_a_idx | x
90253 | p3_a_idx | x
90252 | p2_a_idx | x
90251 | p1_a_idx | x
(5 rows)

Example of Tool Functions
pg_get_tabledef is used to obtain the definition of a partitioned table. The

input parameter can be the table OID or table name.

90250 | |
90250 | |
90250 | |
90250 | |
90250 | |

SELECT pg_get_tabledef('test_range_pt');
pg_get_tabledef

49298
49297
49296
49295
49294

SET search_path = public;
CREATE TABLE test_range_pt (

a integer,
b integer,
c integer

)

WITH (orientation=row, compression=no)

PARTITION BY RANGE (a)

(

PARTITION p1 VALUES LESS THAN (2000) TABLESPACE pg_default,
PARTITION p2 VALUES LESS THAN (3000) TABLESPACE pg_default,
PARTITION p3 VALUES LESS THAN (4000) TABLESPACE pg_default,

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

PARTITION p4 VALUES LESS THAN (5000) TABLESPACE pg_default, +
PARTITION p5 VALUES LESS THAN (MAXVALUE) TABLESPACE pg_default+
) +
ENABLE ROW MOVEMENT;
(1 row)

e pg_stat_get_partition_tuples_hot_updated is used to return the number of
hot updated tuples in a partition with a specified partition ID.

Insert 10 data records into partition p1 and update the data. Count the
number of hot updated tuples in partition p1.

INSERT INTO test_range_pt VALUES(generate_series(1,10),1,1);

INSERT 0 10

SELECT pg_stat_get_partition_tuples_hot_updated(49294);
pg_stat_get_partition_tuples_hot_updated

0

(1 row)

UPDATE test_range_pt SET b = 2;

UPDATE 10

SELECT pg_stat_get_partition_tuples_hot_updated(49294);
pg_stat_get_partition_tuples_hot_updated

10
(1 row)

e pg_partition_size(oid,oid) is used to specify the disk space used by the
partition with a specified OID. The first oid is the OID of the table and the
second oid is the OID of the partition.

Check the disk space of partition p1.

SELECT pg_partition_size(49290, 49294);
pg_partition_size

e pg_partition_size(text, text) is used to specify the disk space used by the
partition with a specified name. The first text is the table name and the
second text is the partition name.

Check the disk space of partition p1.

SELECT pg_partition_size('test_range_pt', 'p1');
pg_partition_size

e pg_partition_indexes_size(oid,oid) is used to specify the disk space used by
the index of the partition with a specified OID. The first oid is the OID of the
table and the second oid is the OID of the partition.

Check the disk space of the index partition of partition p1.

SELECT pg_partition_indexes_size (49290, 49294);
pg_partition_indexes_size

204800
(1 row)

e pg_partition_indexes_size(text,text) is used to specify the disk space used
by the index of the partition with a specified name. The first text is the table
name and the second text is the partition name.

Check the disk space of the index partition of partition p1.

SELECT pg_partition_indexes_size('test_range_pt', 'p1");
pg_partition_indexes_size

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

GaussDB
Primary&Standby Edition Feature Guide 3 Partitioned Table

204800
(1 row)

e pg_partition_filenode(partition_oid) is used to obtain the file node
corresponding to the OID of the specified partitioned table.

Check the file node of partition p1.

SELECT pg_partition_filenode(49294);
pg_partition_filenode

e pg_partition_filepath(partition_oid) is used to specify the file path name of
the partition.

Check the file path of partition p1.

SELECT pg_partition_filepath(49294);
pg_partition_filepath

base/16521/49294
(1 row)

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

GaussDB

Primary&Standby Edition Feature Guide

4 Storage Engine

Storage

Engine

4.1 Storage Engine Architecture

4.1.1 Overview

4.1.1.1 Static Compilation Architecture

As for the whole architecture of database services, the storage engine connects to
the SQL engine upwards to send standard data (tuples or vector arrays) to or
receive such data from the SQL engine. Besides, the storage engine also connects
to storage media downwards to read and write data in a specific data form such
as pages and compression units through specific interfaces provided by storage
media. By providing static compilation, GaussDB allows database professionals to
select a dedicated storage engine based on the special requirements of
applications. To reduce interference to the execution, an interface layer TableAM
for accessing row-store tables is provided to shield differences brought by
underlying row-store engines, enabling independent evolution of different row-
store engines. See the following figure.

.2
’I Disk engine Memory engine 1
! 1
I o Lo Lo 1
| ' Tuple| Veftor affay I ple !
y 1 y | Y
: Row-store table access Column-store Accpss and :
| and storage interface table access and j————1 storagg interface j«—— 1
I 1 Table access method storage interface 1 for external tables H
IiInterface __~2<7 N\~ Interface Interface for !
Cllent | 1iforastore 227 N3 Jor Ustore Cstore 1
' - - CUDESC (for 1
| i [astre ngine I | Ustore storage engine ||~ rowsiore !
1 (app: -place updat 1
libpa/jdbe l ! (inplaco updste) table)) '
________ [— | //:/’ V‘Slb“"YLDE‘Efm“’\a“ﬂ" File/OBS/Interface '
| Page ~uy _-2~" Page for external tables in
H aC | | ! 984 9 Compressed Interface HDFS !
! e ke Shared buffer unit format for Mstore '
1 1 [H
| TupleNVector array; | ' x o d g, "
| | orppresse H
| 3! ’I ' ‘Page} ! nit 1
v
: Storage : 1 - R:ﬁgggly !
) engine H : Media manager buffer :
L, [Default medium | Other media I
Database service 1 [| '
1 1
Block davice segment- H Disk file
\ : Disk il system | | fatibase | Disk file system | | Memory | e OaHDFS | :
\ i
! —— 1
\ 1 control for read-write MVCC and Concgf:’:‘é‘;“éw"m 1
\ 1 write-write two-phase locking protocols silo) 1
1 1
1 " |
Quorum replication
vl Logsystem | Quorum replicatior
\I | Log system }‘ et Standby server '
___ 1

On this basis, the storage engine provides the log system to ensure data
persistence and reliability, provides the concurrency control (transaction) system to

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

88

GaussDB
Primary&Standby Edition Feature Guide 4 Storage Engine

ensure atomicity, consistency, and isolation among multiple read and write
operations that are executed at the same time, provides the index system to
accelerate addressing and query for specific data, and provides the primary-
standby replication system to ensure high availability of the entire database
services.

Row-store engines are oriented to online transaction processing (OLTP) scenarios,
which are suitable for single read/write transactions on a small amount of data or
highly concurrent read/write transactions on data within a small range. Row-store
engines provide interfaces for the SQL engine to read and write tuples, perform
read and write operations on storage media in pages through an extensible media
manager, and improve read and write operation efficiency in the shared buffer by
page. For concurrent read and write operations, multi-version concurrency control
(MVCQ) is used. For concurrent write and write operations, pessimistic concurrency
control (PCC) based on the two-phase locking (2PL) protocol is used. Currently,
the default media manager of row-store engines uses the disk file system
interface. Other types of storage media such as block devices will be supported in
the future. GaussDB row-store engine can use append update Astore or in-place
update Ustore.

4.1.1.2 Database Service Layer

From the technical perspective, a storage engine requires some infrastructure
components.

Concurrency: The overhead of a storage engine can be reduced by properly
employing locks, so as to improve overall performance. In addition, it provides
functions such as MVCC and snapshot reading.

Transaction: All transactions must meet the ACID requirements and their statuses
can be queried.

Memory cache: Typically, storage engines cache indexes and data when accessing
them. You can directly process common data in the cache pool, which facilitates
the handling speed. The basic logic of this part is the same.

Checkpoint: Storage engines support the incremental checkpoint/double write
mode or full checkpoint/full page write mode. You can select the incremental or
full mode based on different conditions, which is transparent to storage engines.

Log: GaussDB uses physical logs. The write, transmission, and replay operations of
physical logs are transparent to the storage engine.

Choosing a proper storage engine for a set of specific application requirements
can have a significant impact on the overall system efficiency and performance.

4.1.2 Setting Up a Storage Engine

You can run WITH ([ORIENTATION | STORAGE_TYPE] [=value] [, ...]1) to
specify an optional storage parameter for a table or index. The parameters are
described as follows.

ORIENTATION STORAGE_TYPE

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

GaussDB

Primary&Standby Edition Feature Guide 4 Storage Engine

ROW (default value): The data will [USTORE (default value)|ASTORE|Null]
be stored in rows.

COLUMN: The data will be stored in [Null]
columns.

If ORIENTATION is set to ROW and STORAGE_TYPE is set to Null, the type of the
created table depends on the value of enable_default_ustore_table. If this
parameter is set to TRUE, a Ustore table is created. If this parameter is set to
FALSE, an Astore table is created.

4.2 Astore Storage Engine

4.2.1 Overview

The biggest difference between Astore and Ustore lies in whether the latest data
and historical data are stored separately. Astore does not perform separated
storage. Ustore only separates data, but does not separate indexes.

Astore Advantages

1.

Astore does not have rollback segments, but Ustore does. For Ustore, rollback
segments are very important. If rollback segments are damaged, data will be
lost or even the database cannot be started. In addition, redo and undo
operations are required for Ustore restoration. For Astore, it does not have a
rollback segment, therefore, old data is stored in the original files, whose
restoration is not as complex as that of Ustore.

Besides, the error "Snapshot Too Old" is not frequently reported, because old
data is directly recorded in data files instead of rollback segments.

The rollback operation can be completed quickly since no data needs to be
deleted. However, the rollback operation is complex, because the
modifications and the inserted records must be deleted, and the updated
records must be undone. In addition, a large number of redo logs are
generated during rollback.

WAL in Astore is simpler than that in Ustore. Only data file changes need to
be recorded in WALs. Rollback segment changes do not need to be recorded.

4.3 Ustore Storage Engine

4.3.1 Overview

Unified storage (Ustore) is an in-place update storage engine launched by
GaussDB. The biggest difference between Ustore and Astore lies in that, the latest
data and historical data (excluding indexes) are stored separately. Now, Ustore is a
default row-store engine of GaussDB.

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

GaussDB

Primary&Standby Edition Feature Guide 4 Storage Engine

Ustore Advantages

1.

4.

The latest data and historical data are stored separately. Compared with
Astore, Ustore has a smaller scanning scope. The HOT chain of Astore is
removed. Non-index columns, index columns, and heaps can be updated in-
place without change to row IDs. Historical data can be recycled in batches,
which is friendly to the expansion of the latest data.

If the same row is updated in a large concurrency, the in-place update
mechanism of Ustore ensures the stability of tuple row IDs and update
latency.

VACUUM is not the only way to clear historical data. Indexes are decoupled
from heaps and can be cleared separately with good 1/O stability.

The flashback function is supported.

However, in addition to modifying data pages, Ustore DML operations also modify
undo logs. Therefore, the update overhead is higher. In addition, the scanning
overhead of a single tuple is high because of replication (Astore returns pointers).

4.3.1.1 Ustore Features and Specifications

4.3.1.1.1 Feature Constraints

Category | Feature Supported or Not
Transactio | Repeatable read/Serializable x
n

DDL operations on a partitioned table in a x
transaction block

Index Gist index/Gin index x

Scalability | Hash bucket X

SQL Table sampling/Materialized view/Key-value | x
lock

File Segment-page storage X

managem

ent

4.3.1.1.2 Storage Specifications

The maximum number of columns in a data table is 1600.

The maximum tuple length of a Ustore table (excluding toast) cannot exceed
8192 - MAXALIGN(56 + init_td x 26 + 4), where MAXALIGN indicates 8-byte
alignment. When the length of the inserted data exceeds the threshold, you
will receive an error reporting that the tuple is too long to be inserted. The
impact of init_td on the tuple length is as follows:

- If the value of init_td is the minimum value 2, the tuple length cannot
exceed 8192 - MAXALIGN(56 + 2 x 26 + 4) = 8080 bytes.

- If the value of init_td is the default value 4, the tuple length cannot
exceed 8192 - MAXALIGN(56 + 4 x 26 + 4) = 8024 bytes.

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

GaussDB
Primary&Standby Edition Feature Guide 4 Storage Engine

- If the value of init_td is the maximum value 128, the tuple length cannot
exceed 8192 - MAXALIGN(56 + 128 x 26 + 4) = 4800 bytes.

3. The value range of init_td is [2,128], and the default value is 4. A single page
supports a maximum of 128 concurrent transactions.

4. The maximum number of index columns is 32. The maximum number of
columns in a global partitioned index is 31.

5. The length of an index tuple cannot exceed (8192 - MAXALIGN(28 + 3 x 4 + 3
x 10) - MAXALIGN(42))/3, where MAXALIGN indicates 8-byte alignment.
When the length of the inserted data exceeds the threshold, you will receive
an error reporting that the tuple is too long to be inserted. As for the
threshold, the index page header is 28 bytes, row pointer is 4 bytes, tuple
CTID+INFO flag is 10 bytes, and page tail is 42 bytes.

6. The maximum rollback segment size is 16 TB.

4.3.1.2 Example

Create a Ustore table.

Run the CREATE TABLE statement to create a Ustore table.

gaussdb=#CREATE TABLE ustore_table(a INT PRIMARY KEY, b CHAR (20)) WITH (STORAGE_TYPE=USTORE);
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "ustore_table_pkey" for table
"ustore_table"

CREATE TABLE

gaussdb=#\d+ ustore_table

Table "public.ustore_table"

Column| Type | Modifiers | Storage | Stats target | Description

+ + + + +
a | integer | not null | plain |
b | character(20) | | extended | |
Indexes:
"ustore_table_pkey" PRIMARY KEY, ubtree (a) WITH (storage_type=USTORE) TABLESPACE pg_default
Has OIDs: no

Options: orientation=row, storage_type=ustore, compression=no
Create an index for a Ustore table.

Currently, Ustore supports only multi-version B-tree indexes. In some scenarios, to
distinguish them from Astore B-tree indexes, a multi-version B-tree index of the
Ustore table is also called a Ustore B-tree or UB-tree. For details about UB-tree,
see Index. You can run the CREATE INDEX statement to create a UB-tree index
for the "a" attribute of a Ustore table.

If no index type is specified for a Ustore table, a UB-tree index is created by
default.

gaussdb=#CREATE INDEX UB-tree_index ON ustore_table(a);
CREATE INDEX

gaussdb=#\d+ ustore_table

Table "public.ustore_table"

Column| Type | Modifiers | Storage | Stats target | Description

+ +. + + +.
t t t t 1

a | integer | not null | plain |
b | character(20) | | extended | |
Indexes:

"ustore_table_pkey" PRIMARY KEY, ubtree (a) WITH (storage_type=USTORE) TABLESPACE pg_default
"ubtree_index" ubtree (a) WITH (storage_type=USTORE) TABLESPACE pg_default

Has OIDs: no

Options: orientation=row, storage_type=ustore, compression=no

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

GaussDB

Primary&Standby Edition Feature Guide 4 Storage Engine

4.3.1.3 Best Practices of Ustore

4.3.1.3.1 How Can | Configure init_td

Transaction directory (TD) is a unique structure used by Ustore tables to store
page transaction information. The number of TDs determines the maximum
number of concurrent transactions supported on a page. When creating a table or
index, you can specify the initial TD size init_td, whose default value is 4. That is,
four concurrent transactions are supported to modify the page. The maximum
value of init_td is 128.

You can configure init_td based on the service concurrency requirements. Besides,
you can also configure it based on the occurrence frequency of wait available td
events during service running. Generally, the value of wait available td is 0. If the
value of wait available td is not 0, there are events waiting for available TDs. In
this case, you are advised to increase the value of init_td. If the value 0 is an
occasional situation, you are not advised to adjust init_td because extra TD slots
occupy more space. You are advised to gradually increase the value in ascending
order, such as 8, 16, 32, 48, ..., and 128, and check whether the number of wait
events decreases significantly in this process. Use the minimum value of init_td
with few wait events as the default value to save space. For details about how to
configure and modify init_td, see "SQL Reference > SQL Syntax > CREATE TABLE"
in Developer Guide.

4.3.1.3.2 How Can | Configure fillfactor

fillfactor is a parameter used to describe the page filling rate and is directly
related to the number and size of tuples that can be stored on a page and the
physical space of a table. The default page filling rate of Ustore tables is 92%. The
reserved 8% space is used for page update and TD list expansion. For details
about how to configure and modify fillfactor, see "SQL Reference > SQL Syntax >
CREATE TABLE" in Developer Guide.

You can configure fillfactor after analyzing services. If only query or fixed-length
update operations are performed after table data is imported, you can increase
the page filling rate to 100%. If a large number of fixed-length updates are
performed after data is imported, you are advised to retain or decrease the page
filling rate to reduce performance loss caused by cross-page update.

4.3.1.3.3 Collecting Statistics

Clearing invalid tuples in Ustore tables depends on the accuracy of statistics.
Disabling track_counts and track_activities will cause tablespace bloat. By
default, they are enabled. You are advised to enable them, except in performance-
sensitive scenarios.

To enable them, run the following commands:

gs_guc reload -Z datanode -N all -I all -c "track_counts=on;"
gs_guc reload -Z datanode -N all -I all -c "track_activities=on;"

To disable them, run the following commands:

gs_guc reload -Z datanode -N all -I all -c¢ "track_counts=off;"
gs_guc reload -Z datanode -N all -1 all -c "track_activities=off;"

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

GaussDB
Primary&Standby Edition Feature Guide 4 Storage Engine

4.3.1.3.4 Online Verification

Online verification is unique to Ustore. It can effectively prevent logic damage on
a page caused by encoding logic errors during running. By default, it is enabled.
Keep it enabled on the live network, except in performance scenarios.

To disable it, run the following command:

gs_guc reload -Z datanode -N all -I all -c "ustore_attr=";"

To enable it, run the following command:

gs_guc reload -Z datanode -N all -1 all -c
"ustore_attr="ustore_verify_level=fast;ustore_verify_module=upage:ubtree:undo"

4.3.1.3.5 How Can | Configure the Size of Rollback Segments

Generally, use the default size of rollback segments. To achieve optimal
performance, you can adjust the parameters related to the rollback segment size
in some scenarios. The scenarios and corresponding configurations are as follows:

1. Historical data within a specified period needs to be retained.

To use flashback or locate faults, you can change the value of
undo_retention_time to retain more historical data. The default value of
undo_retention_time is 0. The value ranges from 0 to 3 days.

You are advised to set it to 900s. Note that a larger value of
undo_retention_time indicates more undo space usage and data space bloat,
which further affects the data scanning and update performance. When
flashback is not used, you are advised to set undo_retention_time to a
smaller value to reduce the disk space occupied by historical data and achieve
optimal performance. You can use the following method to select a value that
is more suitable for your service model:

Recommended value of undo_retention_time: new_val = 0.5 x
(undo_space_limit_size x 0.8 - curr_used_undo_size)/avg_space_increse_speed,
where undo_space_limit_size is the GUC parameter you query,
avg_space_increse_speed is the recent average growth speed of the undo
space, and curr_used_undo_size is the current undo space. The last two can
be queried in the gs_stat_undo view.

2. Historical data within a specified size needs to be retained.

If long transactions or large transactions exist in your service, undo space may
bloat. In this case, you need to increase the value of undo_space_limit_size.
The default value of undo_space_limit_size is 256GB, and the value ranges
from 800 MB to 16 TB.

If the disk space is sufficient, you are advised to double the value of
undo_space_limit_size. In addition, a larger value of undo_space_limit_size
indicates more disk space occupation and deteriorated performance. If no
undo space bloat is found by querying curr_used_undo_size of
gs_stat_undo(), you can restore the value to the original value.

After adjusting the value of undo_space_limit_size, you can increase the
value of undo_limit_size_per_transaction, which ranges from 2 MB to 16 TB.
The default value is 32GB. It is recommended that the value of
undo_limit_size_per_transaction be less than or equal to that of
undo_space_limit_size, that is, the threshold of the undo space allocated to a

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

GaussDB

Primary&Standby Edition Feature Guide 4 Storage Engine

4.3.2 Storage

4.3.2.1 Relation

single transaction be less than or equal to the threshold of the total undo
space.

To accurately set this parameter to achieve optimal performance, you are
advised to determine the new value by using the following methods:

- undo_space_limit_size: new_val = 86400 x 30 x avg_space_increse_speed
+ curr_used_undo_size, where avg_space_increse_speed and
curr_used_undo_size can be queried in the gs_stat_undo view.

- undo_limit_size_per_transaction: new_val = 10 x max_xact_space, where
max_xact_space indicates the maximum undo space occupied by a single
transaction and can be queried in the gs_stat_undo() view in the 503.2
version.

Historical data needs to be retained according to constraints of different
space threshold parameters.

If any space threshold of undo_retention_time, undo_space_limit_size and
undo_limit_size_per_transaction is exceeded, the corresponding constraint is
triggered.

space

&

— situation 1

,-f“’#é

eaching undo_space_limit_size

undo _space limit_size

situation 2
Reaching undo retention time

undo_limit_size_per_transaction [

! .
0 undo_retention time

time

For example, assume that undo_space_limit_size is set to 1GB, and
undo_retention_time is set to 900s. If the size of historical data generated
within 900s is less than 1 GB x 0.8, the system recycles the data generated
within 900s. If the data exceeds 1 GB x 0.8 generated within 900s, only 1 GB x
0.8 data will be recycled. In this case, if the disk space is sufficient, you can
increase the value of undo_space_limit_size. If not, decrease the value of
undo_retention_time.

Format

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

GaussDB
Primary&Standby Edition Feature Guide 4 Storage Engine

4.3.2.1.1 Page-based Row Consistency Read (PbRCR) Heap Multi-Version
Management

undo page

tuple

td

—

The heap multi-version management is row-level multi-version management
based on tuples.

2. When a transaction modifies a record, historical data is recorded in an undo
row.

3. The address of the generated undo row (zone_id, block no, page offset) is
recorded in td_id in a tuple.

4. New data is overwritten to the heap page.

5. Each data modification generates an undo row. Undo rows with the same

record is connected by block_prev.

4.3.2.1.2 PbPCR Heap Visibility Mechanism

td{committed. csn

100) undo row(_)

td(mm;:;o“)ad’ csn Undo row1(update) Undo td(csn 400) Undo row?2(delete) Undo td(csn 200)
Reader(CSN 300)
td(in-progress) Undo row3(update) Undo row4(update) Undo td(csn 0)

1. Currently, only row consistency read is supported. In the future, CR page
construction and page consistency read will be supported, greatly improving
the sequence scanning efficiency.

2. Space can be reused after data deletion transactions are committed without
waiting for oldestxmin, increasing the space utilization. Historical versions of
old snapshots can be obtained through undo records.

4.3.2.1.3 Heap Space Management

Ustore uses the free space map (FSM) file to record the free space of each data
page and organizes it in the tree structure. When you want to perform insert
operations or non-in-place update operations on a table, search an FSM file
corresponding to the table to check whether the maximum free space recorded in
current FSM file meets the requirement of the insert operation. If yes, perform the

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

GaussDB
Primary&Standby Edition Feature Guide 4 Storage Engine

insert operation after the corresponding block number is returned. If no, expand
the page logic.

The FSM structure corresponding to each table or partition is stored in an
independent FSM file. The FSM file and the table data are stored in the same
directory. For example, if the data file corresponding to table t1 is 32181, the
corresponding FSM file is 32181_fsm. FSM is stored in the format of data blocks,
which are called FSM block. The logical structure among FSM blocks is a tree with
three layers of nodes. The nodes of the tree in logic are max heaps. Each searching
on FSM starts from the root node to leaf nodes to search for and return an
available page for the following operations. This structure may not keep real-time
consistency with the actual available space of data pages and is maintained
during DML execution. Ustore occasionally repairs and rebuilds FSM during the
automatic vacuum process.

4.3.2.2 Index
The UB-tree is enhanced as follows:

1. Added the MVCC capability.
2. Added the capability of recycling independent empty pages.

4.3.2.2.1 Row Consistency Read (RCR) UB-tree Multi-Version Management

b-tree key b-tree key b-tree key
o key o key -
b-tree key
info ctid data partoid xmin Xmax

1. The UB-tree multi-version management adopts the key-based multi-version
management. The latest version and historical versions are both on UB-tree.

2. To save the space, xmin/xmax is expressed in xid-base + delta. The 64-bit xid-
base is stored on pages and the 32-bit delta is stored on tuples. The xid-base
on pages also needs to be maintained through additional logic.

3. Keys are inserted into or deleted from the UB-tree in the sequence of key +
TID. Tuples with the same index column are sorted based on their TIDs as the
second keywords. The xmin and xmax are added to the end of the key.

4. During index splitting, multi-version information is migrated with key
migration.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

GaussDB

Primary&Standby Edition Feature Guide 4 Storage Engine

4.3.2.2.2 RCR UB-tree Visibility Mechanism

RCR B-tree MVCC

/ Key (xmin == committed && csn==100 && xmax == invalid)

visable

Key (xmin == committed && csn==100 && xmax == committed && csn ==200)

visable

——» Key (xmin == committed && csn==500)

Reader £__in-visable

(csn=300)

in-visable

T Key (xmin == committed && csn==100 && xmax == committed && csn==1500)

in-visable

visable Key (xmin == inprogress && xmax == invalid)

Key (xmin == committed && csn==100 && xmax == inprogress

Multi-version management and visibility check of index data are supported to
identify tuples of historical versions and recycle them. In addition, the visibility
check at the index layer greatly improves the probability of index scanning
and index-only scanning.

In addition to the index insertion operation, an index deletion operation is
added to mark an index tuple corresponding to a deleted or modified tuple.

4.3.2.2.3 Inserting, Deleting, Updating, and Scanning UB-tree

Insert: The insertion logic of UB-tree is basically not changed, except that you
need to directly obtain the transaction information and fill in the xmin
column during index insertion.

Delete: The index deletion process is added for UB-tree. The main procedure
of index deletion is similar to that of index insertion. That is, obtain the
transaction information, fill in the xmax column (The B-tree index does not
maintain the version information so that the deletion operation is required.),
and update active_tuple_count on pages. If active_tuple_count is reduced to
0, the system attempts to recycle the page.

Update: For Ustore, data update operations on UB-tree index columns are
different from those on Astore. Data update includes index column update
and non-index column update. The following figure shows the processing of
UB-tree data update.

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

GaussDB

Primary&Standby Edition Feature Guide 4 Storage Engine

UB-tree UB-tree
index index

e —

Key = ‘A’ Key = ‘A Key =B’ Key='C’
TID = (5,1) TID=(51) p—| TID=(51) p—| TID=(51)
Version [1,] Version [1,2] Version [2,3] Version [3, «]
. \
Header I 1 ‘ Header | 1 I

Ustore index
column update

Ustore non-index
column update

The preceding figure shows the differences between UB-tree updates in index
columns and non-index columns.

a.

When a non-index column is updated, the index does not change. The
index tuple points to the data tuple inserted at the first time. The Uheap
does not insert a new data tuple. Instead, the Uheap modifies the current
data tuple and saves historical data to the undo segment.

When the index column is updated, a new index tuple is inserted into UB-
tree and points to the same data linepointer and data tuple. To scan the
data of historical versions, you need to read it from the undo segment.

Scan: When reading data, you can use index to speed up scanning. UB-tree
supports multi-version management and visibility check of index data. The
visibility check at the index layer improves the performance of index scanning
and index-only scanning.

For index scanning:

a.

If the index column contains all columns to be scanned (index-only
scanning), binary search is performed on indexes based on the scanning
conditions. If a tuple that meets the conditions is found, data is returned.

If the index column does not contain all columns to be scanned (index
scanning), binary search is performed on indexes based on the scanning
conditions to find TIDs of the tuples that meet the conditions, and then
the corresponding data tuples are found in data tables based on the TIDs.
See the following figure.

‘ Index AM |

[

‘ Read the index |

Klbk ~No

J;Y&S or not
“Whether all
columns are N
included for —o
Index-only ~
scanning Index
scanning
(i)

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

GaussDB

Primary&Standby Edition Feature Guide 4 Storage Engine

4.3.2.2.4 UB-tree Space Management

4.3.2.3 Undo

Currently, Astore indexes depend on AutoVacuum and FSM for space
management. The space may not be recycled in a timely manner. However, Ustore
indexes use the UB-tree recycle queue (URQ) to manage idle index space. The
URQ contains two circular queues: potential empty page queue and available
empty page queue. Completing space management of indexes in a DML process
can effectively alleviate the sharp space expansion caused during the DML
process. Index recycle queues are separately stored in FSM files corresponding to
the B-tree indexes.

I
I
I
|
I

') I)

A sSQL . Delete | Addpage Potential empty _

[| statement index data : page queue ~

T \
User ‘~, } Recycle
S| nsert _ Alocate Available empty -
index data page page queue
|

As shown in the preceding figure, the index page flow in the URQ is as follows:

1. Index empty page > Potential queue

The index page tail column records the number of active tuples
(activeTupleCount) on the page. During the DML process, all tuples on a page
are deleted, that is, when activeTupleCount is set to 0, the index page is
placed in the potential queue.

2. Potential queue > Available queue

The flow from a potential queue to an available queue mainly achieves an
income and expense balance for the potential queue and ensure that pages
are available for the available queue. That is, after an index empty page is
used up in an available queue, at least one index page is transferred from a
potential queue to the available queue. Besides, if a new index page is added
to a potential queue, at least one index page can be removed from the
potential queue and inserted into the available queue.

3. Available queue > Index empty page

When an empty index page is obtained during index splitting, the system first
searches an available queue for an index page that can be reused. If such
index page is found, it is directly reused. If no index page can be reused,
physical page expansion is performed.

Data of historical versions is stored in the SGAUSS_HOME/undo directory. The
rollback segment log is a collection of all undo logs associated with a single write
transaction. Permanent, unlogged, and temp tables are supported.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

GaussDB
Primary&Standby Edition Feature Guide 4 Storage Engine

4.3.2.3.1 Rollback Segment Management

undo space

thread 1 thread 2 thread ...

- - - - - -
undo row undo row undo row
o . o .

Each undo zone manages some txn pages and undo pages.

undo row undo row

2. Undo rows are stored on undo pages. Therefore, the modified data of
historical versions is recorded on the undo pages.

3. Records on the undo pages are also data. Therefore, modifications on the
undo pages are also recorded on the redo pages.

4.3.2.3.2 File Structure

Structure of the file where the txn page is stored

$GAUSS_HOME/undo/{permanent|unlogged|temp}/$undo_zone_id.meta.$segno

Structure of the file where the undo row is stored

$GAUSS_HOME/undo/{permanent|unlogged|temp}/$undo_zone_id.$segno

4.3.2.3.3 Undo Space Management

The undo subsystem relies on the backend recycle thread to recycle free space. It
recycles the space of the undo module on the primary server. As for the standby
server, it recycles the space by replaying the Xlog. The recycle thread traverses the
undo zones in use. The txn pages in the undo zone are scanned in the ascending
order of XIDs. The transactions that have been committed or rolled back are also
recycled. The commit time of transactions must be earlier than the value of $
(current_time - undo_retention_time). For a transaction that needs to be rolled
back during a traversal, the recycle thread adds an asynchronous rollback task for
the transaction.

When the database has transactions that run for a long time and contain a large
amount of modified data, or it takes a long time to enable flashback, the undo
space may continuously expand. When the undo space is close to the value
specified by undo_space_limit_size, forcible recycling is triggered. As long as a
transaction has been committed or rolled back, the transaction may be recycled
even if it is committed later than the value of $(current_time -
undo_retention_time).

4.3.3 Ustore Transaction Model

GaussDB transaction basis:

1. An XID is not automatically allocated when a transaction is started, unless the
first DML/DDL statement in the transaction is executed.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

GaussDB

Primary&Standby Edition Feature Guide 4 Storage Engine

When a transaction ends, a commit log (CLOG) indicating the transaction
commit state is generated. The states can be IN_PROGRESS, COMMITTED,
ABORTED, or SUB_COMMITTED. Each transaction has two CLOG status bits.
Each byte on the CLOG page indicates four transaction commit states.

When a transaction ends, a commit sequence number (CSN) is generated,
which is an instance-level variable. Each XID has its unique CSN. The CSN can
mark the following transaction states: IN_PROGRESS, COMMITTED, ABORTED,
or SUB_COMMITTED.

4.3.3.1 Transaction Commit

1.

Implicit transaction. A single DML/DDL statement can automatically trigger
an implicit transaction, which does not have explicit transaction block control
statements (such as START TRANSACTION/BEGIN/COMMIT/END). After a
DML/DDL statement ends, the transaction is automatically committed.

Explicit transaction. An explicit transaction uses an explicit statement, such as
START TRANSACTION or BEGIN, to control the start of the transaction. The
COMMIT and END statements control the commit of a transaction.

Sub-transactions must be in explicit transactions or stored procedures. The
SAVEPOINT statement controls the start of sub-transactions, and the RELEASE
SAVEPOINT statement controls the end of sub-transactions. If sub-
transactions that are not released during transaction committing, the sub-
transactions are committed before the transaction is committed.

Ustore supports READ COMMITTED. At the beginning of statement execution,
the current system CSN is obtained for querying the current statement. The
visible result of the entire statement is determined at the beginning of
statement execution and is not affected by subsequent transaction
modifications. By default, READ COMMITTED in the Ustore is consistent.
Ustore also supports standard 2PC transactions.

4.3.3.2 Transaction Rollback

Rollback is a process in which a transaction cannot be executed if a fault occurs
during transaction running. In this case, the system needs to cancel the
modification operations that have been completed in the transaction. Astore and
UB-tree do not have rollback segments. Therefore, there is no dedicated rollback
operation. To ensure performance, the Ustore rollback process supports
synchronous, asynchronous, and in-page instant rollback.

1.

Synchronous rollback.
Transaction rollback is triggered in any of the following scenarios:

a. The ROLLBACK keyword in a transaction block triggers a synchronous
rollback.

b. If an error is reported during transaction running, the COMMIT keyword
has the same function as ROLLBACK and triggers synchronous rollback.

c. If a fatal/panic error is reported during transaction running, the system
attempts to roll back the transaction bound to the thread before exiting
the thread.

Asynchronous rollback. When the synchronous rollback fails or the system is
restarted after breakdown, the undo recycling thread initiates an
asynchronous rollback task for the transaction that is not rolled back

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

GaussDB

Primary&Standby Edition Feature Guide 4 Storage Engine

completely and provides services for external systems immediately. The task
initiation thread Undo Launch of asynchronous rollback starts the working
thread Undo Worker to execute the rollback task. The Undo Launch thread
can start a maximum of five Undo Worker threads at the same time.

In-page rollback. If the rollback operation of a transaction page is not
completed, but other transactions need to reuse the TD occupied by this
transaction, the in-page rollback operation is performed for all modifications
on the current page. In-page rollback only rolls back modifications on the
current page. Other pages are not involved.

The rollback of a Ustore sub-transaction is controlled by the ROLLBACK TO
SAVEPOINT statement. After a sub-transaction is rolled back, the parent
transaction can continue to run. The rollback of a sub-transaction does not
affect the transaction status of the parent transaction. If sub-transactions that
are not released during the parent transaction rollback, the sub-transactions
are rolled back before the parent transaction is rolled back.

4.3.4 Common View Tools

View | Type | Function Applicatio | Function
Type n Scenario

Parsi | All Parses a specified table page and | e Page gs_parse_page
ng

types | returns the path for storing the informa | _bypath

parsed content. tion
viewing

e Tuple
(non-
user
data)
informa
tion

e Damag
ed
pages
and
tuples

e Tuple
visibility
proble
ms

e Verificat
ion
errors

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

GaussDB

Primary&Standby Edition Feature Guide

4 Storage Engine

View | Type | Function Applicatio | Function
Type h Scenario
Index | Parses key information in the e UB-tree | gs_urg_dump_
recycl | URQ. index stat
e space
queue expansi
(URQ on
) o UB-tree
index
space
recycle
exceptio
ns
e Verificat
ion
errors
Rollba | Parses the specified undo record, | ¢ Expand | gs_undo_dum
ck excluding the tuple data of old ed undo | p_record
segm | versions. space
?Sﬁdo Parses all undo records ° Undol' gs_undo_dum
) generated by a specified recycin | p xid
transaction, excluding tuple data 9)
of old versions. (re]>s<cept|o
Parses all information about e Rollbac | 9s_undo_transl
transaction slots in a specified k ot_dump_slot
undo zone. exceptio
Parses the transaction slot ns gs_undo_transl
information of a specified e Routine | ot_dump_xid
transaction, including the XID mainte
and the range of undo records nance
generated by the transaction. e Verificat
Parses the metadata of a lon gs_undo_meta
specified undo zone and displays errors _dump_zone
the pointer usage of undo e Visibilit
records and transaction slots. y
judgme
Parses the undo space metadata nt gs_undo_meta
corresponding to a specified exceptio | _dump_spaces
undo zone and displays the file ns
usage of undo records. e Parame
Parses the slot space metadata ter . gs_undo_meta
corresponding to a specified mf)d'f'c _dump_slot
undo zone and displays the file ations
usage of transaction slots.
Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

GaussDB

Primary&Standby Edition Feature Guide

4 Storage Engine

View | Type | Function Applicatio | Function
Type h Scenario
Parses the data page and all gs_undo_dum
data of historical versions and p_parsepage_
returns the path for storing the mv
parsed content.
Write | Parses Xlog within the specified o WAL gs_xlogdump_l
ahead | LSN range and returns the path errors sn
log for storing parsed content. You e Log
(WAL | can use) replay
) pg_current_xlog_location() to errors
obtain the current Xlog position.
e Damag
Parses Xlog of a specified XID ed gs_xlogdump_
and returns the path for storing pages xid
parsed content. You can use
txid_current() to obtain the
current XID.
Parses logs corresponding to a gs_xlogdump_t
specified table page and returns ablepath
the path for storing the parsed
content.
Parses the specified table page gs_xlogdump_
and logs corresponding to the parsepage_tab
table page and returns the path lepath
for storing the parsed content. It
can be regarded as one
execution of
gs_parse_page_bypath and
gs_xlogdump_tablepath. The
prerequisite for executing this
function is that the table file
exists. To view logs of deleted
tables, call
gs_xlogdump_tablepath.
Colle | Rollba | Displays the statistics of the e Undo gs_stat_undo
cting | ck Undo module, including the space
segm | usage of undo zones and undo expansi
ent links, creation and deletion of on
(undo | undo module files, and e Undo
) recommended values of undo resourc
module parameters. e
monitor
ing

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

105

GaussDB

Primary&Standby Edition Feature Guide

4 Storage Engine

View | Type | Function Applicatio | Function
Type h Scenario
Write | Collects statistics of the memory | e WAL gs_stat_wal_en
ahead | status table when WALs are write/ trytable
log written to disks. disk
(WAL Collects WAL statistics about the I]lquosrl;\ig% gs_walwriter_fl
) disk flushing status and location. ing ush_position
Collects WAL statistic about the e Suspen gs_walwriter_fl
frequency of disk flushing, data ded ush_stat
volume, and flushing files. WAL
write/
disk
flushing
Valid | Heap | Checks whether the disk page e Damag | ANALYZE
ation | table/ | data of tables or index files is ed VERIFY
Index | normal offline. pages
and
tuples
e Visibilit
y issues
e lLog
replay
errors
Checks whether physical files of | Lost files gs_verify_data
the current database in the _file
current instance are lost.
Index | Checks whether the data of the | e UB-tree | gs_verify_urq
recycl | URQ (potential queue/available index
e queue/single page) is normal. space
queue expansi
(URQ on
) e UB-tree
index
space
recycle
exceptio
ns

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

106

GaussDB
Primary&Standby Edition Feature Guide 4 Storage Engine

View | Type | Function Applicatio | Function
Type h Scenario

Rollba | Checks whether undo records are | @ Abnorm | gs_verify_undo
ck normal offline. al or _record
segm damage
ent d undo
(undo records
) e Visibilit
y issues
e Abnorm
al or
damage
d
rollback

Checks whether the transaction | ¢ Abnorm | gs_verify_undo
slot data is normal offline. al or _slot
damage
d undo
records
e Visibilit
y issues
e Abnorm
al or
damage
d
rollback

Checks whether the undo e Node gs_verify_undo
metadata is normal offline. startup | _meta

failure
caused
by undo
metada
ta

e Undo
space
recyclin
g .
exceptio
ns

e Outdate
d

snapsho
ts

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

GaussDB

Primary&Standby Edition Feature Guide

4 Storage Engine

View | Type | Function Applicatio | Function
Type h Scenario
Resto | Heap | Restores lost physical files on the | Lost heap | gs_repair_file
ratio | table/ | primary server based on the tables/
n Index/ | standby server. Indexes/
Undo undo files
file
Heap | Checks and restores damaged Damaged | gs_verify_and_
table/ | pages on the primary server heap tryrepair_page
Index/ | based on the standby server. tables/
Undo indexes/)
page Re;tores the pages of the undo gs_repair_page
primary server based on the pages
pages of the standby server.
Modifies the bytes of the page gs_edit_page_
backup based on the offset. bypath
Overwrites the modified page to gs_repair_page
the target page. _bypath
Rollba | Rebuilds undo metadata. If the Abnormal | gs_repair_und
ck undo metadata is proper, or o_byzone
segm | rebuilding is not required. damaged
ent undo
(undo metadata
)
Index | Rebuilds the URQ. Abnormal | gs_repair_urq
recycl or
e damaged
queue URQ
(URQ
)

4.3.5 Common Problems and Troubleshooting Methods

4.3.5.1 Snapshot Too Old

Undo space cannot save historical data if the execution time of the query SQL
statement is too long or other reasons. Therefore, an error may be reported if the
historical data is forcibly recycled. Generally, the rollback segment space needs to

be expanded. However, the specific problem needs to be analyzed.

4.3.5.1.1 Undo Space Recycling Blocked by Long Transactions

Symptom

1. The following error information is printed in pg_log:

snapshot too old! the undo record has been forcibly discarded

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

108

GaussDB

Primary&Standby Edition Feature Guide 4 Storage Engine

Solution

xid xxx, the undo size xxx of the transaction exceeds the threshold xxx. trans_undo_threshold_size
xxx,undo_space_limit_size xxx.

In the actual error information, xxx indicates the actual data.

The value of global_recycle_xid (global recycling XID of the Undo subsystem)
does not change for a long time.

gaussdb=# select * from gs_undo_meta_dump_slot(1,-1);
zone_id | allocate | recycle | frozen_xid | global_frozen_xid | recycle_xid | global_recycle xid

--------- B T T LT r ST TR S,

1] 280 | 248 | 17028 | 17028 | 17025 | 17028

Long transactions exist in the pg_running_xacts and pg_stat_activity views,
blocking the progress of oldestxmin and global_recycle_xid. If the value of
xmin for querying active transactions in pg_running_xacts is the same as
that of gs_txid_oldestxmin and the execution time of the pg_stat_activity
query thread based on a PID is too long, the recycling is suspended by a long

transaction.

select * from pg_running_xacts where xmin::text::bigint<>0 and vacuum <> 't' order by
xmin:text:bigint asc limit 5;

select * from gs_txid_oldextxmin();

select * from pg_stat_activity where pid = Thread PID where the long transaction exists

Use pg_terminate_session(pid, sessionid) to terminate the sessions of the long
transactions. (Note: There is no fixed quick restoration method for long
transactions. Forcibly ending the execution of SQL statements is a common but
high-risk operation. Exercise caution when performing this operation. Before
performing this operation, please confirm with the administrator and Huawei
technical personnel to prevent service failures or errors.)

4.3.5.1.2 Slow Undo Space Recycling Caused by Many Rollback Transactions

Symptom

The gs_async_rollback_xact_status view shows that there are a large number of
transactions to be rolled back, and the humber of transactions to be rolled back
remains unchanged or keeps increasing.

select * from gs_async_rollback_xact_status();

Issue 01 (2023-07-17)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

GaussDB

Primary&Standby Edition Feature Guide 4 Storage Engine

Solution

Increase the number of asynchronous rollback threads in either of the following
ways:

Method 1: Configure max_undo_workers in postgresql.conf and restart the node.

Method 2: Restart the instance using gs_guc reload -Z NODE-TYPE [-N NODE-
NAME] [-1 INSTANCE-NAME | -D DATADIR] -¢c max_undo_workers=100.

4.3.5.2 Storage Test Error

Symptom

Solution

During service execution, if a data page, index, or undo page changes, logic
damage detection is performed before the page is locked. If a page damage is
detected, log information containing the keyword "storage test error" is exported
to the database running log file pg_log. The page is restored to the status before
the modification after rollback.

The keyword "storage test error" is printed in pg_Llog.

Contact Huawei technical support.

4.3.5.3 An Error "UBTreeSearch::read_page has conflict with recovery, please
try again later” Is Reported when a Service Uses a Standby Node to Read

Data

Symptom

Analysis

When the service uses the standby node to read data, an error (error code 43244)
is reported. The error information contains "UBTreeSearch::read_page has conflict
with recovery, please try again later."

When parallel or serial replay is enabled (if the GUC parameters
recovery_parse_workers and recovery_max_workers are both set to 1, serial
replay is enabled; if recovery_parse_workers is set to 1 and
recovery_max_workers is greater than 1, parallel replay is enabled): If the query
thread of the standby node scans indexes, a read lock is added to the index page.
Each time a tuple is scanned, the visibility is checked. If the transaction
corresponding to the tuple is in the committing state, the visibility is checked after
the transaction is committed. Transaction committed on the standby node
depends on the log replay thread. During this process, the index page is modified.
Therefore, a lock is required. The query thread releases the lock of the index page
during waiting. Otherwise, the query thread waits for the replay thread to commit
the transaction, and the replay thread waits for the query thread to release the
lock.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

GaussDB
Primary&Standby Edition Feature Guide 4 Storage Engine

This error occurs only when the same index page needs to be accessed during
query and replay. When the query thread releases the lock and waits for the
transaction to end, the accessed page is modified.

(1 NOTE

e When scanning tuples in the committing state, the standby node needs to wait for
transaction to be committed because the transaction committing sequence and log
generation sequence may be out of order. For example, the transaction of tx_1 on the
primary node is committed earlier than that of tx_2, the commit log of tx_1 on the
standby node is replayed after the commit log of tx_2. According to the transaction
committing sequence, tx_1 should be visible to tx_2. Therefore, you need to wait for the
transaction to be committed.

e When the standby node scans the index page, it is found that the number of tuples
(including dead tuples) on the page changes and cannot be retried. This is because the
scanning may be forward or reverse scanning. For example, after the page is split, some
tuples are moved to the right page. In the case of reverse scanning, even if the retry is
performed, the tuples can only be read from the left, the correctness of the result
cannot be ensured, and the split or insertion cannot be distinguished. Therefore, retry is
not allowed.

Figure 4-1 Analysis

UB-tree
Page

Item

12345867

When scanning a UB-tree, the guery thread locks the current UB-tree
page. Each time an item is scanned, the thread checks the visibility. If the
transaction status of the item is C5M committing, the thread needs to
wait for the transaction to be committed. The transaction committed on
the standby node depends on the replay thread. During the waiting
process, the query thread releases the lock of the UB-tree page to avoid
deadlocks of the query thread and replay thread.

UB-tree
UB-tree Page
Page
Item Item
12345 || 67 12345

The query thread continues to scan the page. The number of
items on the page changes. As a result, an error message is
displayed, indicating that a conflict occurs. [f the queryis
canceled, run the command again.

After the query thread releases the lock, the replay thread
replays the Xlog of a split page. Some items on the UB-tree
page are moved to other pages.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

GaussDB

Primary&Standby Edition Feature Guide 4 Storage Engine

Solution

If an error is reported, you are advised to retry the query. In addition, you are
advised to select index columns that are not frequently updated and use the soft
deletion mode (physical deletion is performed during off-peak hours) to reduce

the probability of this error.

Issue 01 (2023-07-17) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

	Contents
	1 Materialized View
	1.1 Complete-refresh Materialized View
	1.1.1 Overview
	1.1.2 Usage
	1.1.3 Support and Constraints

	1.2 Fast-refresh Materialized View
	1.2.1 Overview
	1.2.2 Usage
	1.2.3 Support and Constraints

	2 Setting Encrypted Equality Query
	2.1 Overview
	2.2 Using gsql to Operate an Encrypted Database
	2.3 Using JDBC to Operate an Encrypted Database
	2.4 Using Go Driver to Operate an Encrypted Database
	2.5 Enhancing Security in the Configuration Phase
	2.6 Encrypted Functions and Stored Procedures
	2.7 Sorting Encrypted Data on Clients (Lab Feature)

	3 Partitioned Table
	3.1 Large-Capacity Database
	3.1.1 Background
	3.1.2 Table Partitioning
	3.1.3 Data Partition Query Optimization
	3.1.4 Data Partition O&M Management

	3.2 Introduction to Partitioned Tables
	3.2.1 Basic Concepts
	3.2.1.1 Partitioned Table
	3.2.1.2 Partition
	3.2.1.3 Partition Key

	3.2.2 Partitioning Policy
	3.2.2.1 Range Partitioning
	3.2.2.2 Interval Partitioning
	3.2.2.3 Hash Partitioning
	3.2.2.4 List Partitioning
	3.2.2.5 Subpartitioning
	3.2.2.6 Impact of Partitioned Tables on Import Performance

	3.2.3 Basic Usage of Partitions
	3.2.3.1 Creating Partitioned Tables
	3.2.3.2 DML Statements for Querying Partitioned Tables

	3.3 Partitioned Table Query Optimization
	3.3.1 Partition Pruning
	3.3.1.1 Static Partition Pruning
	3.3.1.2 Dynamic Partition Pruning
	3.3.1.2.1 Dynamic PBE Pruning
	3.3.1.2.2 Dynamic Parameterized Path Pruning

	3.3.2 Optimizing Partition Operator Execution
	3.3.2.1 PI Elimination
	3.3.2.2 Merge Append
	3.3.2.3 Max/Min
	3.3.2.4 Optimizing Performance of Importing Data to Partitions

	3.3.3 Partitioned Indexes

	3.4 Partitioned Table O&M Management
	3.4.1 ADD PARTITION
	3.4.1.1 Adding a Partition to a Range Partitioned Table
	3.4.1.2 Adding a Partition to an Interval Partitioned Table
	3.4.1.3 Adding a Partition to a List Partitioned Table
	3.4.1.4 Adding a Partition to a Level-2 Partitioned Table
	3.4.1.5 Adding a Level-2 Partition to a Level-2 Partitioned Table

	3.4.2 DROP PARTITION
	3.4.2.1 Deleting a Partition from a Partitioned Table
	3.4.2.2 Deleting a Partition from a Level-2 Partitioned Table
	3.4.2.3 Deleting a Level-2 Partition from a Level-2 Partitioned Table

	3.4.3 EXCHANGE PARTITION
	3.4.3.1 Exchanging Partitions for a Partitioned Table
	3.4.3.2 Exchanging Level-2 Partitions for a Level-2 Partitioned Table

	3.4.4 TRUNCATE PARTITION
	3.4.4.1 Clearing Partitions from a Partitioned Table
	3.4.4.2 Clearing Partitions from a Level-2 Partitioned Table
	3.4.4.3 Clearing Level-2 Partitions from a Level-2 Partitioned Table

	3.4.5 SPLIT PARTITION
	3.4.5.1 Splitting a Partition for a Range Partitioned Table
	3.4.5.2 Splitting a Partition for an Interval Partitioned Table
	3.4.5.3 Splitting a Partition for a List Partitioned Table
	3.4.5.4 Splitting a Level-2 Partition for a Level-2 *-Range Partitioned Table
	3.4.5.5 Splitting a Level-2 Partition for a Level-2 *-List Partitioned Table

	3.4.6 MERGE PARTITION
	3.4.6.1 Merging Partitions for a Partitioned Table
	3.4.6.2 Merging Level-2 Partitions for a Level-2 Partitioned Table

	3.4.7 MOVE PARTITION
	3.4.7.1 Moving Partitions for a Partitioned Table
	3.4.7.2 Moving Level-2 Partitions for a Level-2 Partitioned Table

	3.4.8 RENAME PARTITION
	3.4.8.1 Renaming a Partition in a Partitioned Table
	3.4.8.2 Renaming a Partition in a Level-2 Partitioned Table
	3.4.8.3 Renaming a Level-2 Partition in a Level-2 Partitioned Table
	3.4.8.4 Renaming an Index Partition for a Local Index

	3.4.9 ALTER TABLE ENABLE/DISABLE ROW MOVEMENT
	3.4.10 Invalidating/Rebuilding Indexes of a Partition
	3.4.10.1 Invalidating/Rebuilding Indexes
	3.4.10.2 Invalidating/Rebuilding Local Indexes of a Partition

	3.5 Partition Concurrency Control
	3.5.1 Common Lock Design
	3.5.2 DQL/DML-DQL/DML Concurrency
	3.5.3 DQL/DML-DDL Concurrency
	3.5.4 DDL-DDL Concurrency

	3.6 System Views & DFX Related to Partitioned Tables
	3.6.1 System Views Related to Partitioned Tables
	3.6.2 Built-in Tool Functions Related to Partitioned Tables

	4 Storage Engine
	4.1 Storage Engine Architecture
	4.1.1 Overview
	4.1.1.1 Static Compilation Architecture
	4.1.1.2 Database Service Layer

	4.1.2 Setting Up a Storage Engine

	4.2 Astore Storage Engine
	4.2.1 Overview

	4.3 Ustore Storage Engine
	4.3.1 Overview
	4.3.1.1 Ustore Features and Specifications
	4.3.1.1.1 Feature Constraints
	4.3.1.1.2 Storage Specifications

	4.3.1.2 Example
	4.3.1.3 Best Practices of Ustore
	4.3.1.3.1 How Can I Configure init_td
	4.3.1.3.2 How Can I Configure fillfactor
	4.3.1.3.3 Collecting Statistics
	4.3.1.3.4 Online Verification
	4.3.1.3.5 How Can I Configure the Size of Rollback Segments

	4.3.2 Storage Format
	4.3.2.1 Relation
	4.3.2.1.1 Page-based Row Consistency Read (PbRCR) Heap Multi-Version Management
	4.3.2.1.2 PbPCR Heap Visibility Mechanism
	4.3.2.1.3 Heap Space Management

	4.3.2.2 Index
	4.3.2.2.1 Row Consistency Read (RCR) UB-tree Multi-Version Management
	4.3.2.2.2 RCR UB-tree Visibility Mechanism
	4.3.2.2.3 Inserting, Deleting, Updating, and Scanning UB-tree
	4.3.2.2.4 UB-tree Space Management

	4.3.2.3 Undo
	4.3.2.3.1 Rollback Segment Management
	4.3.2.3.2 File Structure
	4.3.2.3.3 Undo Space Management

	4.3.3 Ustore Transaction Model
	4.3.3.1 Transaction Commit
	4.3.3.2 Transaction Rollback

	4.3.4 Common View Tools
	4.3.5 Common Problems and Troubleshooting Methods
	4.3.5.1 Snapshot Too Old
	4.3.5.1.1 Undo Space Recycling Blocked by Long Transactions
	4.3.5.1.2 Slow Undo Space Recycling Caused by Many Rollback Transactions

	4.3.5.2 Storage Test Error
	4.3.5.3 An Error "UBTreeSearch::read_page has conflict with recovery, please try again later" Is Reported when a Service Uses a Standby Node to Read Data

