MapReduce Service

User Guide

Date 2025-11-25

MapReduce Service
User Guide Contents

Contents

T OVEIVIEW...ueieeeeeeeeneeeenieeesnnesessnssssesssessesssessessssssesssssssssssssssssssssssssssessssssssssessssssesssssassassssasanss 1
1.1 WAL IS IMIRS? .ottt e ettt s s b bbbttt 1
1.2 APPLICALION SCENAIIOS.....vuiirieeeieeiirieie sttt ss s sss s s b st ss s s b s s b bbb et s s b se s s sas b s b s sssensensessnsans 4
1.3 COMPONENTS.....oiieicirieci ettt ettt ettt sttt sttt sttt st s bbb et s ettt se b s bt ataebesatacas 6
1.3.T CArDONDATA ettt ettt et £kttt bbbt 7
1.3.2 CLICKHOUSE.... .ottt bbb bttt 8
1.3.3 DBSEIVICE. ...ttt ese s sttt et ettt srnas 13
1.3 FLINK ettt ettt e ek R £ bR s et st e et 15
1.3.4.1T FUINK BASIC PrINCIPLES. ...ttt sssssss s st st ssssssssssss s s st sss s s ssssssssssasssnsensnnens 15
1.3.4.2 FUNK HA SOLUTION.c.crettieniectreeecitireieitine et esse e sse s s ssts sttt e ettt saees st saeeines 20
1.3.4.3 Relationship With Other COMPONENTS...........oeriiierieiereieeieie st isseesae st sssses st ssssssssssssss b ssessesssssssans 22
1.3.4.4 Flink ENhanced OPEN SOUICE FEATUIES.........cccovuierieriereriresieisisiseessessessns 23
T.3.4. 4.7 WINAOW...c.eririirrirrieeineiseie sttt ss s ss st ssse s st st ss s ss bbb s s s s a e sa et e sanesnees 23
1.3.4.4.2 JOD PIPELINE. ...ttt bbb bbbt s bbbttt s s s bbb s st 26
T.3.4.4.3 SErEAM SQL JON.e ittt ettt s ettt se et et ese st et eseas s et esess s etesess et et eseas s esesenssseseasnssesenennans 30
1.3.4.4.4 FUNK CEP TN SQLouetirieierieieeeeeieceseeseeseeasetse st ess st s ess s es s st s s s s e s s s s et s b ssnes e sssessessesansnes 31
135 FLUMIE ottt bbb b bt 33
1.3.5.1 FLUME@ BASIC PrINCIPLES....vveieeeeriiecieeieeteeettie ettt bbb b as s s sss s bessebassesassesassenansnansanen 33
1.3.5.2 Relationship Between Flume and Other COMPONENLS.......ccocueviiereereeeenieinisiesisieseesessesss s sssesssseessessssansans 37
1.3.5.3 Flume Enhanced OPeN SOUICE FEATUIES........ccovvieieierieriririeisissese s sssenes 37
1,300 HBASE....e ettt ettt ettt R ekt R e AR A £ AR RS et AR s et R s s et e Ae R e s et eeneana et eennansete 37
1.3.6.1T HBASE BASIC PriNCIPLES......cieeeeieeierieiieisiee sttt tssasssss s bbbt sss bbb st st es s sas s bbb s senssssesans 37
1.3.6.2 HBASE HA SOLUTION. ...ttt ettt ssees sttt ettt bbb bttt 43
1.3.6.3 Relationship With Other COMPONENTS........cccoverierierrieeereireieeeseiseeeet et sasess s sss s sese s ssssseeen 44
1.3.6.4 HBase ENhanced OPen SOUICE FEATUIES.........ccovieereerinirisiseisiseessessesssssss s s sssnses 45
1.3.7 HDFS ettt st s bbbttt 52
1.3.7.1 HDFS BaSIC PrINCIPLES.....oovieeeeeceecirieicte ettt sttt ss st sss st s s s s s s s s b s st ensnsansans 52
1.3.7.2 HDFS HA SOLULION ...ttt ss st s s b sttt 56
1.3.7.3 Relationship Between HDFS and Other COMPONENTS........ccoreieinriniereinieeeeeieiseise st ssessessesseseens 57
1.3.7.4 HDFS Enhanced OpPeN SOUICE FEATUIES.......c.coceveueeirieieisiesiee e sssssssssssssssssssssssssssssssssssesssssssssssssassnsssnns 60
12308 HIV ettt e b et 66
1.3.8.T HiVE BASIC PrINCIPLES..... ettt ettt et bbbttt 66
1.3.8.2 HiVE CBO PriNCIPLES.....cueiririeisireieeiesesiisie st tsses st ssssss st st sssassansassnssnes 70

2025-11-25 i

MapReduce Service

User Guide Contents
1.3.8.3 Relationship Between Hive and Other COMPONENTS.......cccourrirrirrerierienininenisissssessessssssssssssssssssssssssssssssans 74
1.3.8.4 ENhanced OPen SOUICE FEATUIE........cco ettt ettt sttt ess s bbbt s s bneas 74
1385 HUMI ettt s s e bbbt 76
12319 HUB ettt e bbb bbb 78
1.3.9.T HUE BaSIC PrINCIPLES. ...cu ettt ettt s et 78
1.3.9.2 Relationship Between Hue and Other COMPONENTES..........ocveieeeeierinisiisisse st sesssessssasssssessssens 80
1.3.9.3 Hue ENhanced OPEN SOUICE FEATUIES........ccovririerrreereeeeieisissessessssssssss st sssans 82
T.3.T0 IMIPALA- ettt s b s R Rtk h ettt 82
130T T KT ettt e bbbt 84
1.3.17.71 Kafka BaSiC PriNCIPLES. ..ottt sttt sttt sass s st sn s nsesssnsssssssnsns 84
1.3.11.2 Relationship Between Kafka and Other COMPONENTES..........oovcererineirrireineereeeeeeire ettt 87
1.3.11.3 Kafka ENhanced OPen SOUICE FEATUIES.........c.cceveeieeieeieeieeissieeiesesss s st sssssssssssssssssssssssssssesssssssasssnsenes 87
LI T A (111, = = T 1= OO P OO PO U PO 87
1.3.13 KrbSErvEr @nd LAQDPSEIVEN ...ttt st esses sttt b s nessennenas 88
1.3.13.1 KrbServer and LdapServer PriNCIPLES........eeeeeirinieieseiesiesesssess st tesssssssssssssssssssss s ssssssssssasssnssssenens 88
1.3.13.2 KrbServer and LdapServer Enhanced Open SOUrCe FEATUIES.........cccorririrrerrineeneeneneneesssessessesssssssssssnnes 92
13,14 KUAU. ettt ee sttt st a s e85 A s s et s s sae et e s s saes 92
13015 LO@AEN ettt e R R bbbttt 93
1.3.15.1 LOQAEI BASIC PrINCIPLES....eveeeeeeecereireeriesieisisissi sttt st ssss s s st ssss s sss s ssnsssssssssssssssssssansnnens 93
1.3.15.2 Relationship Between Loader and Other COMPONENTS.........ccvvriueirireneereereereereiseseeeesssstseesesseseessessssessssees 96
1.3.15.3 Loader Enhanced OPpen SOUICE FEALUIES........ccoieeeeeeerieieieisiesssessssssssssss s ssansans 96
T.3.16 IMIANAGET ettt ettt sttt ettt ettt ettt ettt een 97
1.3.16.1 Man@ger BaSiC PriNCIPLES.......cvuiueiueiieieireiterer ettt sttt sttt cs sttt s s eeanens 97
1.3.16.2 ManNager KEY FEATUIES........o ettt ettt ettt bbbt eten 100
1.3.T7 IMAPREAUCE.......cce ettt st s s ss s st s s s s s s s st ee s s sss s s st ensensnssessnsansans 102
1.3.17.1 MapReduce BasiC PriNCIPLES........coiiuirirrieieiereisei ettt ettt et ss e snen 102
1.3.17.2 Relationship Between MapReduce and Other COMPONENTES.........ccueveveeerreirsresiesenseeseessisssssseessesessensens 103
1.3.17.3 MapReduce ENhanced Open SOUICE FEATUIES........cc.oweeriririreeersireiseessenesssnses 104
1.3.18 DOZIB.uureririeieeieiseiesees sttt s s s sa s s s Rs e AR RS £AeeEE AR R bRt 107
1.3.18.1 O0Zi€ BASIC PrINCIPLES.....veeieeieeiiteriesieceeteieisie sttt s sttt sss s s s bbb ss s s s sas bbbt b sssssessssanssnsas 107
1.3.18.2 Oozie ENhanced OPen SOUICE FEALUIES..........ccoorrrirurrerierenienieeeses s isssnes 109
1.3.19 OPENTSDB.....o ittt st ess et sass st s st s £ aeeb bbb b et bbb benssssas 109
T.3.20 PIESTO. .ttt sttt s st ettt ettt
1.3.21 Ranger

1.3.21.1 RANGET BASIC PrINCIPLES.....eueeeereeieeieieiseireiree ettt se st ettt ssses 111
1.3.21.2 Relationship Between Ranger and Other COMPONENTS.........ccccuevevririreinsireinseesensessssssssss s sesessessssssssanes 112
1.3.22 SPAIK ettt R s et 113
1.3.22.1 BASIC PriNCIPLES OF SPATK....cuiuiuierierieeieieieireire ettt sttt sttt bbb ennens 113
1.3.22.2 SPArK HA SOLULION....cveitriiiitecie sttt sestass e bbbt s s s sss bbb s s s s s s s b n b bt ensesssssssansansans 130
1.3.22.3 Relationship Among Spark, HDFS, @Nd YarN........rnsnnenisesissesssssssssssssssssssssssssssssssssssssssnes 136
1.3.22.4 Spark Enhanced Open Source Feature: Optimized SQL Query of Cross-Source Data.........cc.......... 140
1.3.23 SPAIK2Xuuurtreierierieniarisisissess e sessassssssssss sttt s s s sssssssss s s s s s s ss s se s s e s s s b st st e e s s s s s s s b s st A s s s s s s s s s s s b s st neesaesans 143

2025-11-25 iii

MapReduce Service

User Guide Contents
1.3.23.1 BaSiC PriNCIPLES OF SPArK2X.....vuiuierierierierisisisississessesessssssssssssss st ssanes 143
1.3.23.2 SPArK2X HA SOLULION .. ettt ettt st sttt bbb s s seasenntas 158
1.3.23.2.1 SPArk2X MULLi-aCtiVE INSTANCE........cveeveeereeeeirtsieee ettt esssssse bbbt sss s sss s bbb s s s nsssanes 158
1.3.23.2.2 SPArK2X MU -EENANT ... vttt st ss s s st et snsessssssssssansnsenen 161
1.3.23.3 Relationship Between Spark2x and Other COMPONENTS........cocovreerereeeneeneeneireireeeeieeseeesese e seeseseeseeaeens 164
1.3.23.4 Spark2x Open SOUICE NEW FEATUIES........ccooieivrieeeeeeeieeieisistesssessessassssss s st sesssssssssssssssssssssesssssssssssssansans 168
1.3.23.5 Spark2x Enhanced Open SOUICE FEAUIES..........covvieieriririeeeisieeseissesessessanes 168
1.3.23.5.1 CarbONData OVEIVIEW......ccoiuieiereerieeiieesieisetsets ettt st ss sttt s st s s seastassassassseens 168
1.3.23.5.2 Optimizing SQL Query of Data of MULtiple SOUICES........c.oeeierieirireeeeeeeree st sesseesssansans 171
1.3.24 SEOTM ettt b bbb b e bbbttt 174
1.3.24.1 SEOIM BaSIC PrINCIPLES. ...ttt st sttt 174
1.3.24.2 Relationship Between Storm and Other COMPONENLS........cceurirverirririeeieeienesisissesissesssesessessse s ssssessesenns 178
1.3.24.3 Storm Enhanced Open SOUICE FEATUIES.........ovririrerieisriseiseseesessss st sssssssssssssssssss s sssssssssssssssssssssssssnsnns 179
1.3.25 TOZuuuiuteeeeeertereie sttt ee e sse et s s et R AR R AR R AR ARt ae s 180
1.3.26 YTttt st s b e AR ARttt 181
1.3.26.71 Yarn BaSiC PriNCIPLES.......oorurieirieeririerieisisie sttt sss st sssss s sss s st esssssnssssssssnssnsns 181
1.3.26.2 YArN HA SOLUTION ..ottt ettt ettt s et sesaen 186
1.3.26.3 Relationship Between YARN and Other COMPONENLS.......ccoveruieeeeereiniieisisiesisssseessesssssssessssssssessssssssssns 187
1.3.26.4 Yarn ENhanced OPen SOUICE FEALUIES..........ccorririrriererienererisss s sssnses 190
1.3.27 ZOOKEEPEN ...ttt st sttt et et et ettt bttt 199
1.3.27.1 ZOOKEEPEI BASIC PrINCIPLE.......ceieieieeieiei ettt s bbbt sss s s bbbttt sssas s snsnen 199
1.3.27.2 Relationship Between ZooKeeper and Other COMPONENTES.........cccvrerirrrrreriereeninenenisesesssessessesssssssssnens 201
1.3.27.3 ZooKeeper ENhanced Open SOUICE FEATUIES............oeririeireireineerereeieee st essesseasese ettt essesseasenen 205
T4 FUNCEIONS ...ttt ettt ettt sttt bbb bbbt sttt bbbt bbb aensetas 208
TLATT VUL -EENANT. ettt es bt s s b bbb bbb 208
1.4.2 SECUNTY HAIA@NING ..ottt bttt eses s bantrs 210
1.4.3 Easy Access t0 Web UIS Of COMPONENLS.......oieieiririeieisieetesiseesses sttt sessssssssss s sssssssssssssssansasssnsenes 212
1.4.4 Reliability ENNANCEIMENT ...ttt sttt sss sttt s s s s s st enanssessssansnns 212
1.4.5 JOD MANAGEMENT. ...ttt st eb s st b st bbb s bas s e st 214
T.4.6 BOOESTIAD ACTIONS. ...ttt sttt ss s ss st s st as st as s s s s s s b s s essssesassssassssnesesassesnnsees 214
TLA.7 IMETAAATA. ..ttt s e b bbbt 215
1.4.8 CLUSEET MANAGEIMENT. ...ttt ettt ce ettt es st bbb st s bbbt st s s b st e b s eeseeasenntas 215
1.4.8.1 Cluster LIfecyCle Man@gemMENT.......ceieiririesieeie s sssss st ssssssssssssss s s s ssssssssssssssssnsessssssssssssssssansansans 215
1.4.8.2 Manually SCAle OUL/IN @ CLUSEEI ...ttt st sss s s s s s ss st sssssssssesssssssenssssssssssssssans 217
T.4.8.3 AULO SCALING. .. tereteereeee ettt st b et s sttt st se s santas 218
1.4.8.4 TASK NOGAE CrEATION.ciuieeeeeeceeiee ettt ettt bbb s b bbbkt 219
1.4.8.5 1SOLAtING @ HOSL ...ttt sttt ss st ss sttt s s s es b st st s ssnsnnans 219
1.4.8.6 MANAGING TAGS.c.ttttrtrrierrieirieirteireaeireietsese st es et seb st b st b sttt st s st st bbbt b st st s et st seaetsesetsesetesesaebesaetes 220
T.4.9 CLUSEET O&M ...ttt ettt s et s s s es s s s b e bbb st et aeteeeen 220
1.4.10 MeESSAGE NOTITICATION...ceitrierieiee ettt sttt ss st s nsssnsssansans 221
1.5 CONSTIAINTS. coectieieeirectreit ettt bbb st sttt bbbt et bt bttt sttt etae 222
1.6 PermisSioNS ManAgEIMENT... ..ottt sss st st es s es s b ss s ssnss s s sssssssssessssessssesassesansenas 223

2025-11-25 iv

MapReduce Service

User Guide Contents
1.7 RELATEA SEIVICES.ueeiiireeiieie ettt sttt e e bbbttt 230
2 MRS QUICK STAIt....coceeeeeeeeceeeceeecetecreeesseecsseeessseesssaesssssesssesssssssssssessssesssasessssssssassssasessns 232
2.7 HOW B0 USE MRS.....coiiircirecreetree ettt st e e e et seeas 232
2.2 CrEAtING @ CLUSTEN ...ttt es sttt sttt eb et eaebassanes 233
2.3 Uploading Data @nd PrOgramS.........ccieeeeeierisiiesssssississesssssssssssssssssssssesssessssssssessessssansas 234
2.4 CrEATING @ JOD oottt R s sttt nannaenas 236
2.5 Using Clusters with Kerberos Authentication ENabled..........oorininincneseese et 242
2.6 TEIMINATING @ CLUSLET ..ottt sttt b st ss s bbbt se s bbbt essns s sanssnses 247
3 Preparing @ USE ... ceeeceeceecneeseeeceessescseeessesssssssesssssssassssssssssssssssssessssssssssssssasssassssasssasss 249
3.1 CrEAtiNgG @N MRS USEI ...ttt sttt et et ss s se bbb s s s st s sessssesas 249
3.2 Creating @ CUSTOM POLICY ..ottt sttt sss bbb s s sansensas 254
3.3 SYNchronizing [AM USEIS £0 MRS......o.oeereireireenereeee ettt sttt st sttt 259
4 CoNFigUIING @ CLUSEENc.uiieieieeicereectenicteneneeesneseesasessesasessesssssssssssssesassssessssssssssssassans 265
4.1 Methods Of Creating MRS CLUSTEIS........cvi sttt ee sttt eas s st sassasen 265
4.2 QUICK CrEAtiON OFf @ CLUSTON ...ttt e e e ss s s e e s esssesesessassesssesesesssssesesesenssns 265
4.2.1 Quick Creation of @ HAad0oOp ANQALYSIS CLUSTEN.......cviereririeeeirirrieris s ssssssssssss s s sssssssssssssssssnes 265
4.2.2 Quick Creation of an HBase ANalysis CLUSLEI ...ttt seaseaseasesssas s ssessesees 267
4.2.3 Quick Creation of a Kafka Streaming CLUSTEN ...ttt ssssss s sessnsens 269
4.2.4 Quick Creation Of @ CLICKHOUSE CLUSTEN ...ttt sae s s s s s s sess s s s ssssnns 270
4.2.5 Quick Creation of a Real-time ANaLySiS CLUSTEI.......ccirrrririreireereeeeeeeteie et seseeeses et sessessesseassasens 272
4.3 Creating @ CUSTOM CLUSLEI......ccvueeeeeeieeieieietes sttt s st ssss s s s sss bbbt bt ssessessssss s s b s st essessessesanssnssnsansans 273
4.4 Creating @ CUStOM TOPOLOGY CLUSTEN ...ttt ssssss st sssssssssssssss st ss s sssssssssssssanssnsnns 288
4.5 AAING @ TAG 10 @ CLUSTEI ...ttt sttt st nseesnens 300
4.6 Communication SeCUrity AULNOIIZAtION. ...ttt s s a s esss s s sansans 302
4.7 Configuring AULO SCAlING RULES.........cvieeirieiriesieie sttt sss s st s s sss s s s s st snssnsssssssssansans 304
A.7.T OVEIVIEW.....eiriuiieieieieireeesteeseaet sttt eseasts et ta st b s bbb st sttt st s et h ettt bttt bt se b eaebsseen 305
4.7.2 Configuring Auto Scaling DUring CLUSTEr CrEAtioN.......c..ccevueveeieeieirieiesiete et sessesssssasssssss s ssnssenes 306
4.7.3 Creating an Auto Scaling Policy for an EXiSting CLUSEEI........ccovvirieririririeireisseesesseeseesssssssssessssssssssssssans 307
4.7.4 Scenario 1: Using Auto SCaliNg RULES ALONE.......o.iuierierieieeieireirereetees ettt sb s saeen 308
4.7.5 Scenario 2: Using RESOUICE PLans ALONE.......oviiiiiieeeieeeeieeisissies st sss st sssssssssssssssssssssessssssssssssssnsansas 309
4.7.6 Scenario 3: Using Both Auto Scaling Rules and ReSOUICE PLans..........ccovrireeriresensesiseissssessssseessssnens 310
4.7.7 Modifying an AUtO SCAliNG POLICY.......ocrirrerereireirer ettt bbb sssees 311
4.7.8 Deleting an AULO SCAlING POLICY ...ttt sss sttt ssssss s s ssssssssssssassss st es s sssssnsas 311
4.7.9 Enabling or Disabling an Auto SCAliNg POLICY ...ttt sesssssss s snsns 312
4.7.10 Viewing an AULO SCAlING POLICY ...c.viuirereieiseier ettt ettt s saen 312
4.7.17 Configuring AULOMALION SCIIPES.....vuieieeieieirieeieiesieei ettt sss bbb s sss s bbb s sn s sssssesssssnsans 312
4.7.12 Configuring AULO SCAlING IMELIICS......vririririeirrireireiseerie st sess s ssssss st ssssssssssss s ss st s ssssssssssssssssnsns 313
4.8 Managing Data CONNECLIONS. ..ottt ettt ta et sttt bttt saeen 317
4.8.1 Configuring Data CONNECLIONS.........ccoveveeieieirieissie st ss s se s ssssss s st st sssssssssasssss s s sessssssssessesanes 317
4.8.2 Configuring Ranger Data CONNECLIONS.........cccoururuerirrirrereerenesisie s ississasssnssnes 321
4.8.3 Configuring @ Hive Data CONNECLION. ..ottt sttt 326

2025-11-25 v

MapReduce Service

User Guide Contents
4.9 Installing Third-Party Software Using BOOTStrap ACLIONS.......ccociveerieriririeieirsisseseessessesssssssssssssssssssssssssssssnns 328
4.10 VieWiNg FQIled MRS TASKS......coieiuiieieeieeiieieieiesies s iesessesssssssss st es s sssssssssssssasss st ssesssssesssssssssssssssssssessnssnssssassassensanes 330
4.11 Viewing Information of @ HiStOriCaAl CLUSTEI ..ottt ess s sassans 331
5 ManNaging CLUSTETS.....ucueieeeeeeeereeneeceeceeseeceesseeseessesseesassseessssssessassasssssssessasssessasssessassaennes 334
5.7 LOGQGING IN £0 @ CLUSTEN ...ttt sttt ssss s st s st ssss s s s en s st enssnssssssansansas 334
5.1.7 MRS ClLUSEET NOTAE OVEIVIEW ...ttt s st st s st e s ssssss bbb s s s st ssssassssssssassessessssssssssassansns 334
5.1.2 LOgging N £0 @N ECS....oe ettt et st et st et ettt st 335
5.1.3 Determining Active and Standby Management Nodes of Manager..........cc.coeereerernereeeneneneenssssssnnns 339
5.2 CLUSEET OVEIVIBW.....euieieieieeeeeee ettt ettt ta s et s s b sa s s s b s bnens 341
5.2.T CLUSTRE LISTuuuuniuuiiuieeieineieseireinect sttt es et tase e es st bbb b b ettt 341
5.2.2 ChecKing the CLUSTEI STATUS.......cccucriririeieeieeeeeeeteie sttt sses e sassas bbbt a e ss bbb st s s s sessassas st st ssssessesansans 342
5.2.3 Viewing BasiC CLUSEEr INfOrMAtiON ..ottt sss s s s sttt snasssnsnns 345
5.2.4 Viewing Cluster Patch INfOrMation. ...ttt sss s ssssas s s s st sssssnsans 349
5.2.5 Viewing and Customizing Cluster Monitoring METIICS.......ccieiueeerieieireeeeeieeetse sttt ensssenens 350
5.2.6 Managing Components and MONItOrNG HOSES.......cccouorrrinriniininieieie st ssssssssssssssssssssssssnsnns 352
5.3 CLUSLET O& IVttt sassssss st sss e sss et s ss s s s b s st s bbb et ss bbb e s s e s s s s s s n s b s s s s ssas 357
5.3.1 Importing and EXPOItiNg Data.......ccceeiririririeinsineeneisesissesssissnsens 357
5.3.2 Changing the SUBNEt Of @ CLUSTEI ...ttt bbb s s s bbb s s s s assansans 361
5.3.3 Configuring Message NOTIfiICATION.........cccovirierirreireierere ettt sttt sssannans 363
5.3.4 ChecKiNg HEAIN SEATUS.....c.oiieieriectceeeeerie sttt sttt sss s bbbt s s bbbt s s s sas s s s snens 365
5.3.4.1 BEFOIE YOU STAIT ...ttt sttt bbbttt e s b bbb s s s s s sassansansans 365
5.3.4.2 Performing @ HEAIN CHECK.......c.oiircececeeee ettt st st ss s s s s s s s snnsnen 365
5.3.4.3 Viewing and Exporting @ Health Check REPOI ...ttt s ssssassansans 366
5.3.5 REMOTE O& M.ttt ese st sttt sttt s s nacssnas 367
5.3.5.1T AULNOMIZING O&M ...ttt e e ettt 367
5.3.5.2 SNAING LOGS.... ittt st st sttt sttt sttt ten 367
5.3.6 VIieWinNg MRS OPEration LOGS.....cceiriiurieirieirisisisistisieiseeesiesssesesssssesssstsssstssessssessssesas 368
5.3.7 TErMINQLING @ CLUSLET ...ttt bbb bbb bbb s s s s sas s s bbb s s s ssesanen 369
5.4 MANQAGING NOAES........ooiririeireirereete sttt s s s st ss s ss st n s sse s e ssasn s sassensnsesssssnsansns 370
5.4.1 Manually SCAliNg OUL @ CLUSTENcuiuieeeereeirieieisisiesisee st ss st ssssssssss s bbb sssssssssssssssassssssssssensesenes 370
5.4.2 Manually SCAliNg 1N @ CLUSTEI ...ttt ettt s s bbb s s enas s s snes 372
5.4.3 ManAging @ HOSt (NOE) ..ottt ssssss s ssesssssnsans 375
5.4.4 1SOLATING @ HOST .ottt st a bt s bbb s s st b s sb st sassesassesansnsnss 375
5.4.5 Canceling HOSE 1SOLATION.....vuriieeiriririie sttt ettt sttt s s s st sssssessssanssnsenen 376
5.4.6 Scaling Up Master Node SPeCifiCatioNsS........ccoueueveieirieinrissiesiesissesisssssssssss e sessss st sssssssssssssssssssssasssnens 376
5.5 JOD IMAN@GEIMENT....oieiiieeeeecte ettt ettt as s s s s bbb s bbb s s ebassessstessssensssensssnsesnsessnsessnens 377
5.5.7T INtroduction £0 MRS JODS......c sttt ettt e et 377
5.5.2 RUNNING @ MAPREAUCE JOD.....ouiee ittt ettt 382
5.5.3 RUNNING @ SPArKSUDIMIT JOD....ouiiiiee ettt sttt sess st ssssssnsnsansans 387
5.5.4 RUNNING @ HIVESQL JOD ..ottt bt sa bbb ssesansas 393
5.5.5 RUNNING @ SPATKSGLJOD oottt ettt e e sansas 399
5.5.6 RUNNING @ FUNK JOD ..ottt sttt bbbt st ss s sss bbbt s s s ssssass s s nsnsensnssnsans 404

2025-11-25 Vi

MapReduce Service

User Guide Contents
5.5.7 RUNNING @ KAFK@ JOD....o ettt sttt s sanen 410
5.5.8 Viewing JOb Configuration @nd LOGS.......c.ceovuuruniureuniunenisisineiseisteseisess s essssessessess s sssssssssessessssssassssssesns 412
5.5.9 STOPPING @ JODu ettt sttt a st s s 412
5.5.10 DELETING @ JOD.u ettt bttt sss s s s st se st s st s senns 413
5.5.11 Using Encrypted OBS Data for JOD RUNNING........cooiiririreeee ettt st ssesses s essss s sseseees 413
5.5.12 Configuring JOb NOLIfiCAtioN RULES.......coiviviieree ettt bbb e snsssss s s sansens 421
5.6 COMPONENET MANAGEMENT ...ttt ettt sttt sttt ettt ea et btaes 421
5.6.1 ObDJECE MANAGEMEBNT.....uuitieieieieieieteer ettt ettt et b s bbbt bbb st e st et 421
5.6.2 VIeWING CONTIGUIATION ..ottt sae s bbbt st ss s s s bbbt ss s s s s bbb en s s sessessenes 422
5.6.3 MANQAGING SEIVICES.....oieiiieiieeieieieisieisee ettt sttt ta sttt a st st eae e eae s st ae st ae b s bt a b ssbseseeassesasseeassesassen 423
5.6.4 Configuring SEIrVICE ParameLerS.........o ottt ess st es s ssessess s st ss s s sesseasssssassassns 425
5.6.5 Configuring CustomMized SErviCe ParamMeLErS........ceirieeieeiseiese sttt ssstestesss st st ss s sssssessssssssnssnsans 426
5.6.6 Synchronizing Service CONfIGUIAtION.......corrriericncsee sttt s st sss st s s ssssssssssans 427
5.6.7 MaANAging ROLE INSTANCES.......ovuoiuierieceriireeieie ettt sttt s s e sassanen 428
5.6.8 Configuring ROLE INStANCE PAramELErsS........ocoueieiririsisieieeesesiiese sttt ssssss s bt sasssssssssssassassssssnsnanns 428
5.6.9 Synchronizing Role Instance CoNfigUIatioN........cocoerririnrerinenesesies sttt sssssssss s s ssssssssssansnns 429
5.6.10 Decommissioning and Recommissioning @ ROLle INSTANCE.........c.courierurrereireereererieieese e 430
5.6.11 Starting and StOPPING @ CLUSTEI......vevrveirieeicteete ittt s s st sss bbb ss s s s ssssansanssnsenes 431
5.6.12 Synchronizing Cluster CONfIQUIAtION........covirierieinieir ettt se st sss s s st sssssessssssssssnsansans 431
5.6.13 Exporting Cluster CONfIQUIAtiON. ...ttt sttt bttt 432
5.6.14 Performing ROWING RESTAIt.......cccciiriiiiicieieieeieie sttt ssss s s s st et ssssassassassesssssssesssssnsans 432
5.7 ALArmM MaNQQEIMENT......ieeecereerieirieisieessis s sss st sssssssssssssssssssssssssesssssssssssssssssssssssssasssssssssssssssssssssssssssssssssssansnns 436
5.7.7 VIeWiNg the ALGIT LISttt ettt ess s et es et sttt essesesassantas 436
5.7.2 VIEWING the EVENT LIStu.cuieieeieeieieieieiiesetie ettt st ssssssss s bbb s s sss e s ses bt ensesssssesansansans 439
5.7.3 Viewing and Manually Clearing an ALQrMe.........oerrrnrnerensesssessnes 442
5.8 PAtCh ManagemMENTi ...ttt e bbbttt sttt eeantas 444
5.8.1 Patch Operation Guide for Versions Earlier than MRS 1.7.0.......cerriornrinnrrinseeesessesssssesssessessessssssnsns 444
5.8.2 Patch Operation Guide for Versions from MRS 1.7.0 £t0 MRS 2.0.T....cooorirrinrnenenireressssessessensessnsanes 445
5.8.3 ROLIING PATCNES......ceeee ettt bbb bbb es e 446
5.8.4 Restoring Patches for the 1SOlated HOSES.......c.iieirieieecseeeee ettt s bbb sss s sass s senes 449
5.9 TENANT MANAGEMENT.....ooiieiiicecietrt ettt ettt ettt ettt sttt sttt ettt ettt st ae s b eaneas 450
5.9.71 BEIOIE YOU STAI.....uiieieieieieicieet ettt sttt s bbbt sttt bt tene 450
5.9.2 OVEIVIEW....euiriiireiciseieeiete ettt sttt ettt e s bbbttt bbbttt bas 450
5.9.3 CreatiNg @ TENANT. ..ottt et et sttt et ettt ene 451
5.9.4 Creating @ SUD-TENANT. ...ttt e bbbttt 453
5.9.5 DELELING @ TENANT......uiieieieicteeie ettt sae s s bbb s s bbbt s s a bbb b st ssebssssesans st nen 456
5.9.6 Managing @ TENANT DIFCCLOIY ...ttt ettt sttt as bbbt s e eeasseeassesasseen 457
5.9.7 RESONING TENANT DALa....c.ciiiiiiiiiiieiiriiricisesi ettt et et et ettt 459
5.9.8 Creating @ RESOUITE POOL. ...ttt s st ss s sssss bbbt ssss s sssssssss st st sssssessesansans 459
5.9.9 MOdifyiNg @ RESOUICE POOL........oiririeeririsiss sttt st s st ss s s s s s s s sssnsessnssnssns 460
5.9.10 Deleting @ RESOUICE POOL.......c.oiiierieeeeeiei ettt st bttt et sss 461
5.9.1T CONFIGUIING @ QUEBUE......ccoeieeeietctceeeeie ettt sess s s bbb s bbbttt ss e s bbb s s es s s s sansansansnens 461

2025-11-25 vii

MapReduce Service

User Guide Contents
5.9.12 Configuring the Queue Capacity Policy of @ RESOUICE POOL.......c.coorurereerieriereririeie e 464
5.9.13 Clearing Configuration 0f @ QUEUE...........coirrrirrirercee ettt ettt ssnsas 465
5.70 BOOESTIAD ACTIONS. ..ottt sttt ettt sess bbbttt st sttt bbbttt ettt eas 465
5.10.1 Introduction tO BOOLSTIAP ACLIONS.c.ccuoivieeeeeieeieieieeis ettt sttt sesssssas s bbb s s ssssassassass s ssssessesssssnsans 465
5.10.2 Preparing the BOOSTrap ACLION SCHPT.....c.ccciriririrrirersieeessisie s isstssesssssssssssss st sssssssesssssssssssssssssssessnssnes 466
5.10.3 VIEW EXECULION RECOTTS.......cuueueereieiieireieiiieie st estsseaesse st ssess st sss s sttt ssess st sesaesisess 467
5.10.4 AddiNg @ BOOTSTIAD ACTION ...ttt sttt ses sttt es st s s eanesseassnnsns 468
5.10.5 MOdifying @ BOOTSTIAP ACLION......oiuiireeierieieeeereeeeeseese sttt s s s ss s sas sttt ss st s ssssasasessansans 469
5.10.6 Deleting @ BOOTSIAD ACLION. ...ttt ettt sss s s s b ss s sss bbb st ess s s s sass s sensenans 469
6 USING QN MRS CLIENT.....cueiireieiieieernintnsnienencnnesnesnsessessssssssssssssssssssssssessssssssassssssassssssases 471
6.1 INSTALLNG @ CLIENT ..ottt bbb bbb s s s s s s s s ssnsses 471
6.1.1 Installing a Client (Version 3.X OF LALEI) ...ttt se s sas s bbbt ss e s sassansans 471
6.1.2 Installing a Client (Versions EQrlier TRaN 3.X) ... ssisssesssenes 476
6.2 UPAALING @ CLIENT ..ottt sttt s bbbt ss s s bt sen s st ssssan s s s s snens 481
6.2.1 Updating a Client (Version 3.X OF LAteI) ... orrereeeeeeieisisississessesessssssssss st ssssssssssssssssssssssssssssssssssssssns 481
6.2.2 Updating a Client (Versions EQrlier Than 3.X) ...ttt sesss s sessssessssssssssnsnsns 483
6.3 Using the Client of EQCh COMPONENT........ooiiirieiereireieieeireee ettt st s s ess s sase s es s sssaen 487
6.3.1 USING @ CLICKHOUSE CLIENT.....eceieierieiciiiesieetietesstsis ettt ss s ass s ssssss s bbb st sesssssss s s st ensssnsssas 487
6.3.2 USING @ FUINK CLIENT ...ttt ss sttt sss s sss st st ss s s sssssssnsnsessensnsssssssansnns 490
6.3.3 USING @ FLUMIE CLIENT. ettt se st sss s ss s s s st esssasesnnsansas 497
6.3.4 USING @N HBASE CLIENT. ...ttt sttt sttt s s b e s s s s b nssssssessssessssessnsenans 503
6.3.5 USING @N HDFS CLENE. ..ottt ee s sas s bbb s sss s bbbt s e s sassansnsnsans 505
6.3.6 USING @ HIVE CLIENT.....ouiieiiieicecteeteteietetstste sttt ss bbbt ss bbb s s s s s sans s b ssnsessessnsans 508
6.3.7 USING @N IMPALA CLENT....ceierieieieriece ettt s sttt sss s s st s st ssssssssss bbbt snssssessessssanssnsensnnens 511
6.3.8 USING @ KATKQ CLIENT ...ttt sttt s st eees 514
6.3.9 USING @ KUAU CLIBNT.....ceeeieececteeetetet sttt s st sttt bbb bbbt es s s s s s s snsnsenes 517
6.3.10 USING the O0ZIE CLENL. ..ottt sttt b s se s s sass s s s s sessnsans 518
6.3.1T USING @ STOMM CLIENE...eieiiieeeceeee ettt sttt s s s s s st s s s b s st st s s sassss s s b nssssensessnsans 519
6.3.12 USING @ YaIN CLENT ..ttt sss sttt sss st ssssss bbbt sssssssasssssssss s s s sessessssssssssssssssnsensssnsans 520
7 Configuring a Cluster with Storage and Compute Decoupled............ccceveeeueeueenene 522
7.1 Introduction to Storage-Compute DECOUPLING......c..ovieeeeeeerieieiertee ettt s s s s essassanes 522
7.2 Configuring a Storage-Compute Decoupled CLUSEEr (AGENCY)irrririeirirrirriesissensissessssssssssssssssesssssssssssans 523
7.3 Configuring a Storage-Compute Decoupled ClUSter (AK/SK).....cocovrrirririnreneninsnisisissssssssesssssssssssssssssnens 530
7.4 Using a Storage-Compute DECOUPLEA CLUSTEN.........ovrierererieeeieireisesceseses sttt essassssssssssssss s ssssssssssssssssnnes 534
7.4.7 Interconnecting FUINK Wt OBS......o.ueererer sttt et se st sttt ses 534
7.4.2 Interconnecting FLUME With OBS.........uieieiesieeee sttt ettt sss bbb s s sss bbbt ssesseses 535
7.4.3 Interconnecting HDFS With OBS..........iieceeceee sttt sssss s sssssssssssssss st st sssssssssssssssssasssnsnns 536
7.4.4 Interconnecting HIVe WIth OBS.........eesesssie sttt sss s s bbbt st ssssssassanssssnsnen 537
7.4.5 Interconnecting MapRedUCE WIth OBS........orereeineses ettt ss s sanen 540
7.4.6 Interconnecting SPark2X With OBS.......c.corneeireise sttt ses e ess sttt sssssaes 541
7.4.7 Interconnecting Sqoop with External Storage SYSTEMS.......cuieeeeeieieieeeiseesessseesessss s sessassaesas 543
7.4.8 Interconnecting HUAi Wt OBS.........oireeseseeestets sttt ssesss s sttt sss s bbb st s sssssssessssssssnsansnns 547

2025-11-25 viii

MapReduce Service
User Guide Contents

8 Accessing Web Pages of Open Source Components Managed in MRS Clusters..549

8.1 Web Uls of Open SOUICE COMPONENTES.......cveieririririesieeieeeeseesessssssessessesesasssssssssssesssssssssssssssssssssassssssssssssssassans 549
8.2 List of Open SoUrce COMPONENT POIS.......iiririririeisireisnetses sttt sss st ssss s ssssss s ssssensssssssenns 553
8.3 ACCESS TNIOUGN DIr€Ct CONNECL. ...ttt sas bbbt s s s sassas bbb s e ssssassassnsentens 568
8.4 EIP-DASEA ACCESS......veeueieieeiiieieieeitie st teeisea sttt et e b s bbbt 570
8.5 AcCeSS USING @ WINAOWS ECS........iiiiiieeeeeeieie sttt s st ses s bbb s s s s sasss s s s ssssanssnsas 570
8.6 Creating an SSH Channel for Connecting to an MRS Cluster and Configuring the Browser................... 572
9 Interconnecting Jupyter Notebook with MRS Using Custom Python.................... 576
0.1 OVEIVIEW....eieeieieeeireeeieeesieeieis s sssse s sas s s sssssass s sassesassessssessesesss s s s e s sse s s s s e se s e s b ss s s st eb s et st s s s s s s ensn s s s s s st nsesenes 576
9.2 Installing a Client on @ Node OUutSide the CLUSLEN ...ttt ss st sssssssasssnsans 576
9.3 INSLALlING PYLRON 3.ttt bbbt bbbt b bbbt n s s s s s s 578
9.4 ConfiguriNg the MRS CLENT.......ieieririeeeieeicireis ettt ess s s sttt sss st en s st sesssssssssassssssnsnsnes 581
9.5 INStAlliNg JUPYLET NOTEDOOK.........cveceieeieeiieieiesiee ettt sttt bbb bbb b s bbb st nen 581
9.6 Verifying that Jupyter Notebook Can ACCESS IMIRS.........oirieeeirereireeeeses st seesessessess st ssssssssssassans 582
0.7 FAQS .o eereeeeutteeneetstesseseease et s st s s s s e s e e bR E AR AR AR ARkt e et es 583
TO ACCESSING MANQAQGETuoceeiieieneeceecenesenesneessnesssssssssasessssssssssssssssssassssssssssssasssasssassssasssans 585
10.1 Accessing FusionInsight Manager (MRS 3.X OF LAter) ... ssssssssssssssssssssssssssssnes 585
10.2 Accessing MRS Manager MRS 2.X OF EQFlIEI) ...ttt s s sas s s 587
11 Fusioninsight Manager Operation Guide (Applicable to 3.X)....ccccceeeveerrercuecernnene 592
11T GEEEING STAMTEM....e ettt sttt eas s s s bbbt nseesneasassssnsenses 592
11.1.1 FusionInsight Manager INTrOAUCEION............oceveieriririeisseeeie ettt tsstesessse s s s s st sss s sss s s s s nsnes 592
11.1.2 Querying the FusionInsight Manager VEISION.. ...t ssssssssssssssessssssssssssssens 593
11.1.3 Logging In to FUSIONINSIGNt IMANAGET ...ttt sttt sss st s ssssas s s snens 594
11.1.4 Logging In to the Management NOE...........cooirinirieieeeississe st sss st sssssssssssssssens 594
TT.2 HOMIBPAGE. ...ttt et ettt b et b ettt ettt b et et s bt e bbb et ae st st eaebettnn 595
TT1.2.T OVEIVIEW..ueieeiicieteneeeie et eas s sttt sas s st e sttt st sae s nasenae 595
11.2.2 Managing Monitoring MetriC REPOIES.........coiereririreeirieieeeieeeiseetsistses sttt st sessssssssssssssssssssssssssesans 597
1713 CLUSTON ettt et s bbbttt 598
17.3.1 CLUSTEN MANAGEMENT ...ttt ss s s bbbt sss s s s sss s s s s st ensessesssssssssssnsnssssessnssnsans 598
TT1.3.1.T OVEIVIEW..eieiiciireieecee ettt s et s st et se st s s saen 598
11.3.1.2 Performing a RolliNg ReStArt Of @ CLUSLEI ...ttt ss s st sss s sassanes 600
11.3.1.3 Managing EXpired CONfIQUIAtIONS........ccovuriurieriererieieieeireisetseee ettt tsse et ess st s s sess s sss s sssenes 602
11.3.1.4 DOWNLOAAING the CLIENT. ...ttt sas s bbbt ss s s s s s sas s s st nsesssnsessnsans 603
11.3.1.5 MOdifyiNg CLUSTEI ATLIIDULES. ..ottt sttt sss sttt s s sensnes 604
11.3.1.6 Managing ClUSter CONfIGUIAtIONS.......c.coueiririririrrisesseeeie sttt sssssssss s s st sessssss s s s ssssssssnssnes 604
11.3.1.7 Managing StatiC SEIVICE POOLS......coieuieiiieerieeeieiseeseee et sees s s sss st sas st sas s s s s s s ssssesassssananen 606
17.3.1.7.1 STALIC SEIVICE RESOUICES......cuviereireererieeieeteieisteretseisesetse et bbb sessessese st st s sssasesae st bsessessssesne 606
11.3.1.7.2 Configuring ClUStEr StAtiC RESOUITES.......c.oceuieeireeeeieisie ettt sesss st esss st sassessssesassessssnens 607
11.3.1.7.3 Viewing CLUSLEr StAtiC RESOUICTES.......ccccveieereeeeeieririsisiseississessessss st ssssssssssssssssssssssssessssssssssssssssssssssassessnnes 609
171.3.1.8 MaANQAGING CLIENTS.....uiueierieeeeieecieeteecteeie ettt st ettt s s ss b s bt ae s s s s s s ssessssesassesassesasssssssnansssanes 610
11.3.1.8.1 MANAQGING @ CLENT..cuuieeieeieieieiriesies ettt sttt s sttt ss s s sss bbbt ssss s s sas s s s sn s st ensesanen 610

2025-11-25 ix

MapReduce Service

User Guide Contents
11.3.1.8.2 BatCh UpPGrading CLENTS.......covuieiereeeierieesisieiseisees st sssnns 611
11.3.1.8.3 Updating the hosts File in BatChes..........corrreeeeise ettt esssasens 613
171.3.2 MANAGING @ SEIVICE ...ttt ettt sttt s as s st ss s s s b s bbb esasssessteessssssssesssssssssnsessssesans 614
T71.3.2.T OVEIVIEW..c.ueeeririeeeeeneeisetseeseesset et et s e s b b bbbt s sise s 614
11.3.2.2 Other Service Management OPEratioNS..........o et ietsessesseesessessessssssssssssssssssssssesssssssssanes 618
11.3.2.2.1 SEIVICE DELAILS PAQE....uoiiiiiericeeiieisintet sttt b bbb bbb bbb ss s bbb s e 618
11.3.2.2.2 Performing Active/Standby Switchover of @ Role INSTANCE.........ccovevereeeieereeee s 621
11.3.2.2.3 RESOUICE MONITOTING....ciuiieiiieiicirictrieireet sttt tses et ses et b sttt sttt st s bbbt s bt seastneaes 621
11.3.2.2.4 Collecting Stack INfOrMAtION. ...ttt s s bbbt sas s s ssnsans 625
11.3.2.2.5 Switching Ranger AUtNENTICATION. ...ttt s st sss st snsnes 626
171.3.2.3 SEIVICE CONTIGUIALION.....itieieeeeeeeiciretr ettt es sttt assantas 627
11.3.2.3.1 Modifying Service Configuration ParameEters...........ccocneeeeeerenisiisisinsississesesessssessssssssessssssssssssssssssses 628
11.3.2.3.2 Modifying Custom Configuration Parameters Of @ SErViCe......coorrireneerernereesesesesessess e 629
17.3.3 INSEANCE MANAGEMENT. ...ttt sttt eb e bbb bbbttt st sttt st e b benes 630
T1.3.3.T OVRIVIBW.eeieiiieireieeeee ettt ebee ettt bbbt bbbkttt bbb st b eesen s baen 631
11.3.3.2 Decommissioning and Recommissioning an INSLANCE........cccovviereiriririrrersereeseesessessssssssssssssssesssssssssesns 633
11.3.3.3 Managing INstance CONfIGUIAtIONS.........ccoueieirirriniereineiecie ettt sss s s eseeasens 634
11.3.3.4 Viewing the Instance ConfigUration File.........coiieieieieieisiesseeseseesesseses st ss st sse s sassessnenns 636
T71.3.3.5 INSTANCE GIOUP ettt ettt ettt ea et ettt s et s ettt st s bbb eb s b e bt e se bt stacaees 636
11.3.3.5.1 ManNaging INSLANCE GIOUPS.......cccurieurieerieiriieireieistieisesstseasisisie st s sttt st es st sbasas s taesstaesssnens 636
11.3.3.5.2 Viewing Information About an INStANCE GrOUP......c.ccccvueeeeeerieeieinisissisissessessessssssssssssesssssesssssssssssssansens 638
11.3.3.5.3 Configuring Instantiation Group ParameEters............rreneninisiniesssssisssssessssssssssssssssssssssssssssssans 639
T4 HOSES ettt et st ettt bbbt et 639
T1.4.1 HOSt MaN@gemMENT PAge.....u ettt ettt ettt sttt 639
T1.4.1.7 VIEWING The HOST LIST...eiuieiereieiririsisscsss sttt sttt ss s sss s st st sssssssssssssssssnsnssssssssssnsnns 639
11.4.1.2 Viewing the HOSt DashbDO@rd.............oeeere ettt sss 640
11.4.1.3 Checking HOSt ProCesses and RESOUICES..........ccevuewerieerernisirsinseesiesesssssssssssesssssssssssssssssssssssssesssssssssssssassanses 641
11.4.2 HOSt MaiNteNaNCe OPEIAtiONS.......cc.vieurererieireeririericie ittt eas st es s sss s s seasssesssesasssenssaes 642
11.4.2.1 Starting and Stopping All INStaNCES 0N @ HOSE ...ttt 642
11.4.2.2 Performing @ HOSt HEAIN CHECK.......oouiieeeeeee ettt snens 642
11.4.2.3 Configuring RACKS fOr HOSESuvuiviierieieeieiriete sttt sttt st sssss s s st ssssssssnsanen 643
T71.4.2.4 1SOLAtING @ HOSTc .ottt s ettt b st anennenns 645
11.4.2.5 EXPOrting HOSt INfOrMAtiON.......cuivieeceeieeiecicts ettt sttt sss s bbbt s s s s sansans 646
17.4.3 RESOUICE OVEIVIEW......ceuereereincireieieireeeaesessesseasessessessesessesse e ssessesssssesessssssssessssntssesssssesessessssnessessesesesssssessesnesnesns 646
114371 DISTIIDULION ...ttt b s et b ettt bbbt st es s eeassantns 646
TT.3.2 TEEINA. ittt e b s bbb E e e e bbbttt ies 649
T74.3.3 CLUSERT ettt e b s b b bbbttt 650
TT 34 HOSE ettt ettt e A RS s AR s s 650
115 O&M .ottt b s e bR s bbb 651
TT50T ALDIIMNIS ettt s s bbb b 651
11.5.1.1 Overview Of Alarms @nNd EVENTS.........cooirririeririeieireire sttt tsss s ese st st es st s sssseeas 651
11.5.1.2 Configuring the TRrESNOLA..........ccoveieeieiecce ettt bbbt ss s bbb e 654

2025-11-25 X

MapReduce Service

User Guide Contents
11.5.1.3 Configuring the Alarm MasKing STAtUS.........cceririririrrirrieresee ettt st ssassssssssssssenen 672
T1.5.2 LOG ittt ettt sttt e s et e et ettt bbb etae 673
11.5.2.1 LOG ONLINE SEAICN.....ecieieirirteeteetee ettt s s ss bbb bbb bbb bbbt ss s sa s s s sneas 673
171.5.2.2 LOG DOWNLOQA. ...ttt ass sttt sssssssssss st st sssssssssssssssssnssssssssssnsssssssnnsnns 675
11.5.3 Perform @ HEALth CRECK ...ttt st een 676
11.5.3.1 Viewing @ HEAIth CheCK TaSK......coiriririerieiesieieieie sttt sesssssss st ssssssssssssessssss s ses s sssssssssssssansansnns 676
11.5.3.2 Managing Health CheCK REPOIS.........ccvvririeriei et ssssssssss s sss s sssssssssssssssssssssssssssssssssssssssans 677
11.5.3.3 Modifying Health Check ConfigUIation.........ooeeernrnenere ettt es s sses 677
11.5.4 Configuring Backup and Backup ReSLOIatioN........ccccrurivrieiiniieeeeienieieisisstesissessessssssssssssssses s s sssssssssnenns 678
11.5.4.1 Creating @ BACKUP TaSK.. ..ottt ssesssssss st sssesssssssans 678
11.5.4.2 Creating @ Backup ReStOration TaSK........ceeerirrinririirieniieirieieise et eestee sttt ssess st sssssaseanens 679
11.5.4.3 Managing Backup and Backup ReStOration TAsKS.........ccceeeeeeirierriisinsinsiniensissssssessssssssssessssssssssssssssenes 680
T8 AUATE et bbb b bbbt 680
TT1.6.T OVRIVIEW.....ciieiieiieciriieireieisti ettt et ettt bbbt bbbt bttt bttt setas 681
11.6.2 Configuring Audit LOG DUMPING.......c.couriririrrierireiesieeeseeessssssssssissssssessessssssssssssansans 681
T71.7 TENANT RESOUICTES......oueeeeeeceecrreectreeceresetreaesseaeeese s ssess e s st sese s s ssese st seasese e s st saseesessessssensssesssesesnesessenes 683
11721 MU -TENANCY ettt sttt esses st et se st s s e enesesnsees 683
TT1.7.1.1 OVEIVIBW.eeieiiieereiseeeie ettt ettt eaetse e st bbb bbbttt bbb st ebees e s baen 683
171.7.1.2 TECHNICAL PrINCIPLES ...ttt ss s st ss s ss et snssnsessnsnnsns 684
11.7.1.2.1 MUlti-TENANT MANAGEMENT.....iuiiiieieeeeeieieireeetr ettt et b e eas sttt s st s st ssesseassanen 684
11.7.1.2.2 MULEI-TENANT IMOAEL ..ttt s et s 688
17.7.1.2.3 RESOUICE OVEIVIEW......ccueururreireinieeseaieeesesessessessessessesessessessessessessessssesessesssssessesntssessanssessesmessessesssnessssssessessess 691
171.7.7.2.4 DYNAMIC RESOUICES......cuviuiriiiiiritieieisieisesesstess ettt ettt et et ettt bttt stas 692
T1.7.1.2.5 SEOrage RESOUICES.......cueuieiiieeieieieeietetr ettt ettt ettt sttt st bttt b ettt a ettt b et st s 694
11.7.1.3 MULI-TENANCY USAGE....coiiriririreiriereirierieesssissessesssssssssssss s ssnsssssssssssessssssssssnsnns 695
TT1.7.7.3.1 OVEIVIEW...eieiiiireeiseeei ettt bbbttt bbb ea st seen 695
171.7.1.3.2 PrOCESS OVEIVIEW.....cucueeeriacineireieireiseeseaete e isetsesstsseseese sttt st s tssese s ettt sesssssae s bbb st beebsesesasssessesnssncs 696
11.7.2 USING the SUPEIIOr SCREAULET ...ttt sss s sttt ssssss s st sssnssssnsas 698
171.7.2.7 CrEAtING TENMANTS ...ttt b et sttt st b et bbb et s et seae b st seaes 698
11.7.2.1.1 AAAING @ TENANT....ceiieieieieiceceeetie ettt sttt s s bbbt s s s b s s bbb en s st s s ssnsansenbenes 698
11.7.2.1.2 AAdING @ SUD-TENANT ...ttt sttt s st s s s st s st essssssssnsas 702
11.7.2.1.3 Adding a User and Binding the User to @ Tenant ROLe..........ocvrrieireineineireineeceeeeeee e 706
11.7.2.2 MANQAGING TENANTS......ceiieeiieeieieitieieie ettt ettt sss st ss s st sss e tss e s senssbes s s s s sensssnssssnsssansssssssns 708
11.7.2.2.1 Managing TENANT DIFECEOTIES. ..ottt sttt sttt st sens 708
11.7.2.2.2 RESTONNG TENANT Data....cceiiciricirecirecireeireetreistreistes sttt ettt et st sttt 710
11.7.2.2.3 DELELING @ TENANT ..ottt sttt bbb s s ss bbb s s as e bbbt et ssessssansans s 711
171.7.2.3 MANQAQING RESOUITES......eeiveeereeeirieireeireeiseiseseas et es ettt sesssseasssessssesstsessssssssssesassessstesasssenssesassssssssans 711
11.7.2.3.1 ADdING @ RESOUITE POOL....couiiiiiieieieieie sttt sttt sassasbas 711
11.7.2.3.2 MOdifying @ RESOUITE POO ...ttt ssssss bbb ssssssssssss s ss st s s sssssssasssssnssnsnns 712
11.7.2.3.3 Deleting @ RESOUITE POO ..o isstssessessssssssss st sssassnns 713
11.7.2.3.4 CONFIGUIING @ QUEUE.......c ettt es sttt bbb b b esesassantes 713
11.7.2.3.5 Configuring the Queue Capacity Policy of @ ReSOUICe POOL.........cccveuieiinrieeeeeeininieesseeeeseeseesaesas 715

2025-11-25 Xi

MapReduce Service

User Guide Contents
11.7.2.3.6 Clearing QUEUE CONFIGUIAtIONS.......covviiereriireirerisieis ettt s ssssssssssssss st sssssssssssssssssssssssssssnsenes 717
11.7.2.4 Managing GLlODal USEr POLICIES.........ccoueurereieireireieieseres ettt ettt sttt ss s sasseeen 717
11.7.3 UsiNg the CapacCity SCREAULET ...ttt bbbt s s s s s bbb s s ensesanen 718
T71.7.3.7 CrEAtING TENANTS ...ttt sttt bbbt st s et s st s bbb s s s st e e st seastseastsenns 718
17.7.3.1.1 ADAING @ TENANT. ... ettt sttt ek es e ettt e been 718
11.7.3.1.2 AAdING @ SUD-TENANT ...ttt sttt ss bbbt s s s s bbbt s s s sansansas 723
11.7.3.1.3 Adding a User and Binding the User to @ Tenant ROLE..........cccvurrirrreenrirseneneninessieess s sessesssens 726
11.7.3.2 MaNQAQING TENANTS.....ciiieeieieieiriireeireeistctsti ettt et et et ettt etas 728
11.7.3.2.1 Managing TENANT DIFECEOIIES......ccuiueereeeeieeeireeireeieeeisestseas sttt ss s s s st et es s senassensssnns 728
11.7.3.2.2 RESTONNG TENANT DAta....cciuiiciiirieireeireeireeeieteete ettt sttt sttt et sttt eens 730
171.7.3.2.3 DELEtING @ TENMANT.c. ettt et a st st sttt et 731
11.7.3.2.4 Clearing Non-associated QUEUES OF @ TENANT........cieiieeeeierieieeiessi e sss st ssesssssssssansens 731
171.7.3.3 MANQAQING RESOUICTES......eovivieireeirecireeireeiseae st tseas sttt sesssseas s st st sesstsesessssessssesassesasteeassseassssassssssssans 732
11.7.3.3.1 ADdING @ RESOUITE POOL....couiiiireiiieie ettt sttt 732
11.7.3.3.2 MOdifying @ RESOUITE POO ..ottt ssssss s st sss s s sassss st st es s sssssssasssssnssnsnns 733
11.7.3.3.3 Deleting @ RESOUITE POO ..ot isstssessesessssssss st sss s ssnssnns 734
11.7.3.3.4 CONFIGUIING @ QUEUE.......c ettt es sttt sttt s b b s s esesassantas 734
11.7.3.3.5 Configuring the Queue Capacity Policy of @ ReSOUICe POOL.........cccvrreierieeeeieininieese e seesseesaesas 736
11.7.3.3.6 Clearing QUEUE CONFIGUIAtIONS.......ccvuviereriereiriririeis ettt sttt ssasssnsenes 737
11.7.4 SWItChING the SCREAULET ...ttt 737
T 18 SYSTOIML ettt et ettt b e A et ARt ettt e e bbbt b et ettt et aeaas 740
11.8.1 CONFIGUIING PEIMMISSIONS.......ceierierierieieisisiesis sttt ssssss st sss st sssssssssssss s s st ssssssssssssssasssnssnsssessnssnsans 740
T1.8.T.71 MANQAGING USEIS..cciiiiiiiricireietretetet sttt ettt sttt st sttt ettt bt ettt 740
TT1.8.T.1.71 CrEATING @ USBI ettt bttt b e e b s en s s e st s snsas 740
11.8.1.1.2 Modifying USer INFOrMAatioN.........ccoiririririeiesesee sttt sss st sssssssssssssssssssssssssssssssssssssnen 741
11.8.1.1.3 EXPOrting USer INFOrMAtioN......co.iuiuieeiiieicieieietree sttt sess sttt sttt et sneaen 742
TT1.8.1.1.4 LOCKING @ USEI .ottt sae s s s s s sss s sss s bbb s st sssse s s bbb s st s s sassans s bsssensessessnssnsas 742
T71.8.1.1.5 UNLOCKING @ USEI ..ottt ssssss st ssasssssnsensnns 743
T71.8.1.1.6 DELEEING @ USEN ..ottt sttt sttt ss et et aneantas 743
11.8.1.1.7 Changing @ USEIr PASSWOIT...........ccceuririmirrirrisinsieseneiesssessssassansas 744
11.8.1.1.8 INItIAliZING @ PASSWOIT.......oeoieeierieeiriririeieiseses sttt ssssss sttt ssssss s sss bbbt snssssssssssssasssnsensns 746
11.8.1.1.9 Exporting an Authentication Credential File........ooorrrrineernees e 746
11.8.1.2 MANQAQING USEI GIOUPS.....ceuieriieriierisisississssessssssssessssssssssssssssssssssssssssssessssessssessssessssesssssssssessssessssssssssssssesns 747
17.8.1.3 MANAQGING ROLES.....oeeerieeririetrtirte ettt sess st s s as sttt s s s s s s s st esssnanssessssansans 748
T71.8.1.4 SECUNILY POLICIES. ...ttt s s ettt s b s seesen 750
11.8.1.4.1 Configuring PasSWOIrd POLICIES.........cccriuiuriirieeieee et ssss st sasssssss st sssssssssassassensnsnns 750
11.8.1.4.2 Configuring the Independent AtLIDULE.........ccoorieeeir ettt ss s snees 754
11.8.2 Configuring INTEICONNECTIONS.c.cuieieeieieieereir ettt eae sttt bbb bbbt 756
11.8.2.1 Configuring SNMP NOrthbound Parameters............eiieeieeeeeeeisisis s sssessssesssssss st sssssssssssnsans 756
11.8.2.2 Configuring Syslog NOrthbound Parameters............errrenierinininee s ssssssssssssssssssssns 758
11.8.2.3 Configuring Monitoring Metric DUMPING ..ot ssesseasess s essss s sssssssesseaseasenas 762
11.8.3 IMPOItiNG @ COITIfICAtE .. uiiieieirieeieci ettt bbbttt s bbbt s st as s s bbb s s s sensesan 765

2025-11-25 Xii

MapReduce Service

User Guide Contents
T71.8.4 OMS MaANAGEMENT ..ottt sttt s ettt b ettt e bbbt b ettt s bt e s bebtacae st etacacans 766
11.8.4.1 OVErvieW Of The OMS Page.......oriieeieireireiseeeieee ettt ettt cs ettt sttt ssssees 767
11.8.4.2 Modifying OMS Service Configuration Parameters........ccceieeeieieisinsissssesseesesssssssssssessessssssssssanes 768
11.8.5 COMPONENT MANAGEIMENT ..ottt ettt ettt s ettt s st besen 770
11.8.5.1 Viewing COmMPONENTt PACKAGES........ccorriuiirierereeeeieise ittt et ettt sttt st eens 770
17.9 CLUSTEN MANAGEMENT......iiiiiirieieeee ettt s b s et sssss s s bbb s s st sses s bbb s s st s sessessssansenbenassensessnsans 770
17.9.7 CONFIGUIING CLIENT ..ottt as s s s ss sttt ss s s s sssss s ssss st ensnsnsssasssansans 770
17.9.1.7 INSTALNG @ CLIENT ..ottt bbbttt eene 771
T7.9.1.2 USING @ CLIENT..c.ieieiiiitecctecteieietesit st sas s ss sttt s bbbt b st ss s s bbbt b st s s ssnsas bbb st st ssnssnsas 776
11.9.1.3 Updating the Configuration of an INstalled ClUENT........cccoorrerrireernee e ssesseeeeees 777
11.9.2 Cluster Mutual TruSt Man@gEMENT........coouiriuriureerieeeieireisetreeseesesseeees st b st sss s ess st e et ss s ss s ssssassasens 778
11.9.2.1 Overview of Mutual Trust BeTWEEN CLUSTEIS. ...ttt eeses e s e esses s essessssaes 778
11.9.2.2 Changing Manager's DOMAiN NAMIE........ccovirirrrierininisieisissessssssssssssssss s ssseses 779
11.9.2.3 Configuring Cross-Manager Mutual Trust Between CLUSTErS........cccvrerrereereerireenesiseirese et 783
11.9.2.4 Assigning User Permissions After Cross-Cluster Mutual Trust Is Configured..........ccccveveerererenennnes 786
11.9.3 Configuring Scheduled Backup of Alarm and Audit INfOrmMation.........c..oeeeerorceeenesesnssesseeenee 786
11.9.4 Modifying the Fusionlnsight Manager ROUtING Table.........coorreiriernerreseeeeeee et 787
11.9.5 Switching to the MaintenNaNCe MOE...........eeirireeeeeeeeeee sttt sss st sa s s snen 790
17.9.6 ROULINEG IMAINTENANCE.....ciiiiiriiiereiereicieieiseisesseesesees e ssase st sseseese st es st s sssese e sas s st ssssesssasesesssasens 792
T7.70 LOG MaAN@GEIMENT ...ttt ettt et et bt ettt bbbttt et b eeas 794
TT1.10.T ADOUL LOGS...iuiiiiiiiieieiieiesiieieisistss st ses s sss bbb s st ssss s s bbbt s s s s s ss bbbt ensesssssssssbss s st ensssessessnsanssnsansans 794
T71.710.2 MANAQGET LOG LiSTuu ettt ess st s st s sttt st ess st ss bbb s b e s eeastesastnnass 811
11.10.3 Configuring the Log Level and LOg File SiZe.......orireieereiresesee sttt 821
11.10.4 Configuring the Number of Local Audit LOG BaCKUPS........ccceurumimirrieineeneeesenieisssiseesissseseesessssssssessssnes 823
11.10.5 Viewing ROLE INSTANCE LOGS......cvririririrriririesenienisesisssassssssssnsnns 824
11.11 Backup and ReCOVEry ManagEMENT.......oiviurieriurerieeeeneeeisetseeseisessese st tsessess s ss s st ssseassassasssesenes 825
TTT 10T INEEOAUCTION. .ttt e bbbt 825
17.17.2 BACKING UP Dat@..e ittt sttt sssss s ssssss st sssassnssnssssssssssanen 832
11.11.2.1 Backing Up Manager Data........ceceeeirieieireineiseietis et tsetsessess s sess s sss st ssssesssassss s sssssssssssssessesssassanes 832
171.17.2.2 BACKING UP CDL DAta.....cccueieieirisireiseeesesiesisssssssssiesesssessessssansans 836
11.11.2.3 Backing Up CLICKHOUSE MELATATa......cccouovureririreireieireeisieieississississes s sss st sessssssssssssssssssssssssssssssssnssnen 838
11.11.2.4 Backing Up CLICKHOUSE SEIvViCe Data.......oueeueerieerieeeineirieeieieisie e iseeseiseasess s st ssessessess s ssssssssssssees 840
11.11.2.5 Backing Up DBSEIVICE Dat.....ccccoeuririuerieeriieinisieisesiesissesssssssssssssssssssessesssssssans 843
11.11.2.6 Backing Up HBas@ MeEtadata.......ccccoururiririnriiireireesiisesisisessssisssans 847
11.11.2.7 Backing Up HBaS@ SEIVICE Data.......cccvuueeeirirerrireireinieneeesieiseseeseisesseseessess s ssssssssessessssssssssssssssssssssssssassassans 851
11.11.2.8 Backing Up NamMeENOAE Data.......cccouvruerurierieririniieieiseiesssessisssans 857
11.11.2.9 Backing Up HDFS SEIVICE Data......ccovvvereerierrririeieieessiseessessnns 860
11.11.2.10 Backing Up HiVe SEIVICE Data......cocovueunrureeriireireineieieieiseiseiseisesseee ettt essesssss s sssssssesssessesssssssssanes 865
11.11.2.11 Backing Up 10TDB MELATALA........cocceurieiririeiceeie et essassasssssss st sses st ssssss s ssss st sssssssssssssansansans 871
11.11.2.12 Backing Up I0TDB SEIVICE Data.....ccccovsirierireeriririsirsisiseessessens 874
11.11.2.13 Backing Up Kafka Metadata.......ccoeuririririeeireireireineie sttt ettt ssssssess s ss s sesses 877
T71.17.3 RECOVEING Data..eciuieiieirieieeeieieieieisest sttt sttt ssstsess s sss s st ss st essss st saasseesstssassessssessssssssssnsessssesans 880

2025-11-25 xiii

MapReduce Service

User Guide Contents
11.11.3.71 ReStOriNg Man@ger Data......cciriieriieicrieisies ettt sttt sttt st ettt sesneas 880
T7.717.3.2 RESEONNG CDL Data....coieeiieeieerisireeie ettt atee st sssss st sssssesassessssssss s sssssssssnssssnsssssssesnssessssessssesassace 884
11.11.3.3 Restoring CLICKHOUSE MELAAATa. ...ttt s s sas s snees 886
11.11.3.4 Restoring CLICKHOUSE SEIVICE Data.......coovrurruiereiriirierinieieiseiseeseiseesesets st esesssess s ssssss s ssssessesssassnssnns 889
11.11.3.5 ReStOring DBSEIVICE Aata......coovuvierieririeieisicires ettt sttt ss s assesssss s sss st ssssssssssssssssnssnsnes 892
11.11.3.6 Restoring HBase MeEtadata.......ccccceriririnririineinsiniinesisisssssisstsssessssasssssanes 895
11.11.3.7 ReStoring HBASE SEIVICE Dala.......ccoueuiueiierieirieineeieeeisesisessesessessssssssssssessssesssesans 899
11.11.3.8 Restoring NameENOAE Data........cccoourruriiniiriiriieieieieireiseiseeseisess et st bs s sssess st ss st s s sssesseassssssssassnns 903
11.11.3.9 ReStoring HDFS SEIVICE Data......cccoieieriiericinieirieireeiseeisese ettt s sttt sttt sese s esessssessssesacs 907
11.11.3.10 ReStoring HiVe SEIVICE Data......ccceciereceirieireeireeieeieieeeiste sttt sttt sttt senssens 911
11.11.3.11 ResStoring I0TDB MeELAdata......c.ccvevueieereeiririnisieisseeesseis sttt essassss s bbbt sssssssssssssss s st n s ssssssssnssnen 916
11.11.3.12 Restoring I0TDB SEIVICE Data.......ccvreiricirieineieireisieisicirectsect et tsesessese s ssese s sttt ssesessenes 919
11.11.3.13 Restoring Kafka Metadata.......cccoereririneirerererieeeee sttt st se st sasssnsns 921
11.11.4 Enabling Cross-ClUSter REPUCATION.......covuiuierieeiriree ettt ss s sss s sttt ssssssssssssssnsanes 925
11.11.5 Managing Local QUick REStOration TaSKS.......ccccieiuererieriririsisisiseissessssss s ssnsans 926
11.11.6 MOdifying @ BACKUP TASK.....ciiiiirieieeiecieeicicisieis ettt sassas s st sas bbbt ses s s s s bas b s en s s ssessesanes 927
11.11.7 Viewing Backup and ReStOration TasKS.........oerieirrineineireineeseeisisiseiseiseesesseas et sssssessessesseasssssssseses 928
11.11.8 How Do | Configure the Environment When | Create a ClickHouse Backup Task on Fusioninsight

Manager and Set the Path Type t0 REMOLEHDFS? ...ttt ssssasenen 929
T71.12 SECUNILY MaANAGEIMENT. ..ottt s st s sttt s e s et ss s s st e e s e as s e st nssssesessnsnens 930
TT.T2.T SECUNIEY OVEIVIEW.....ceeeeieieeecieieeieeieieeee st saesssss st st sssssssssessssessssssss s sssssssssssssssssssssssssssessssessssessssssssasssssnsess 930
TT.72.1.7 RIGNE IMOAEL oottt st es s sanees 930
17.12.7.2 RIGNT MECNANISIM.....ceociiriiii ettt sttt bbbt st s s st enssesnsnnanns 932
17.72.1.3 AULNENTICATION POLICIES......ceuieeeieciecicectei ettt ettt 933
11.12.1.4 Permission VerifiCation POLICIES. ...ttt sesssssssss s sssssssss st ssssssssssssnsansans 935
TT.T2.1.5 USEE ACCOUNT LISt ettt ettt ettt ettt as et tseanans 937
11.12.1.6 Default Permission INFOrMAtioN..... ..ot sssessessesssessessesssessessessesesaesans 995
11.12.1.7 Fusionlnsight Manager SECUItY FUNCLIONS........cccorririnrinrrineeisieieie et sssssssssssssssssssssassssens 998
T1.72.2 ACCOUNT MaANAGEMENT ..ottt ettt ettt sttt ettt bbbttt ae b st eaebetataes 999
11.12.2.T ACCOUNT SECUNILY SEELINGS. ..cvuiuiiieriririeieicieeeie ettt sttt s s s s s sssssssssssssssssssassessssans 999
11.12.2.1.1 Unlocking LDAP Users and Management ACCOUNTES........ccewrerueereereereereeneenessesieessssssssesessessesssssssseseens 999
11.12.2.1.2 Internal @an INternal SYSTEM USEI ... ssssss s ssssss s ssssssssssssssssssssssssssssens 1000
11.12.2.1.3 Enabling and Disabling Permission Verification on Cluster Components..........cc.cocoeureerrrienrennnns 1001
11.12.2.1.4 Logging In to a Non-Cluster Node Using a Cluster User in Normal Mode.........ccccccoeurrrrrrennee. 1003
11.12.2.2 Changing the Password for @ SYStEM USErccvrerienrinneeneersieieseeseiesesseseseessssssssessssssssssssssssssasesseens 1005
11.12.2.2.1 Changing the Password for USer admMin.........c.crrnnisiseeiseseesesesesess s sssssssssssssssssssssssnns 1005
11.12.2.2.2 Changing the Password fOr @n OS USEr..........rnnssinesssessnes 1006
11.12.2.3 Changing the Password for a System INtErNal USEr ... sssnens 1006
11.12.2.3.1 Changing the Password for the Kerberos Administrator.......c..coceeveeeineineineeneeneeecseseeceseeseeeeenees 1006
11.12.2.3.2 Changing the Password for the OMS Kerberos Administrator.........ccccceeeeeeceieeeirrersesesseeseenenns 1007
11.12.2.3.3 Changing the Passwords of the LDAP Administrator and the LDAP User (Including OMS LDAP)
... 1008
11.12.2.3.4 Changing the Password for the LDAP AdMiniStrator.......c.ccceeierieiesineinsnsnssssisssssssssessessessssssssenes 1010

2025-11-25 Xiv

MapReduce Service

User Guide Contents
11.12.2.3.5 Changing the Password for a Component RUNNING USEI.......ccovvvveerererininerninsinseseensensesssesnsnes 1011
11.12.2.4 Changing the Password for @ Database USEr ... sessessessssessssssssssssssessnns 1013
11.12.2.4.1 Changing the Password of the OMS Database AdminiStrator..........ccccoceerreeneenereereereeneseseeeeeees 1013
11.12.2.4.2 Changing the Password for the Data Access User of the OMS Database..........cccouerrrrrerrnenne. 1013
11.12.2.4.3 Changing the Password for a Component Database USer.........c.eeneenceneneenceeeeneereesecenees 1014
11.12.2.4.4 Resetting the Component Database USer PasSWOI..........ccouvrirerrnirinninsensensninssssssssssssssssssssssns 1015
11.12.2.4.5 Changing the Password for User compdbuser of the DBService Database...........cccceeueervrrnnnee. 1016
17.12.3 SECUILY HArA@NING ...ttt sttt ss sttt as e sass st st st ensnsanen 1017
171.12.3.7 HArd@NINgG POLICIES.oveuivieerierieeiriieieisie sttt ssssss bbbt ss st s essssss s bbb ensssssssssansanssnsenes 1017
11.12.3.2 Configuring a Trusted IP Address to ACCESS LDAP..........crreereieereireiseeseie et sesseaseaeens 1018
11.12.3.3 HFile anNd WAL ENCIYPLION......iiieririeisieee sttt ssessssssssssssssss s sssssssssssssssssssssssssessssssssesssssssssssssans 1021
11.12.3.4 Configuring Hadoop SECUILY PArameEters.........oeeieieieeieieeieeeseeseesess st sessassss s ssssessssenes 1026
11.12.3.5 Configuring an IP Address Whitelist for Modification Allowed by HBase.........ccccocovenereercurernennn. 1029
11.12.3.6 Updating @ KEY fOr @ CLUSLENovrireieierteeteiteceiei ettt sssss s sss bbb s s esssssnssnssnsansnns 1030
11.12.3.7 Hardening the LDAP........ ettt bbb s s s s sa s a s sa st s s s s sessesanans 1031
11.12.3.8 Configuring Kafka Data Encryption DUring TranSmiSSiON........cc.cceeeeeerereerrenserinsessssssesessessesssssssssssnes 1032
11.12.3.9 Configuring HDFS Data Encryption During TranSmiSSiON...........ceceerereereereeseeeneerseseesessssssssssssssseseens 1033
11.12.3.10 Encrypting the Communication Between the Controller and the Agent.......c.ccccooveverrrererrnnnns 1036
11.12.3.11 Updating SSH KeYs fOr USEI OMIMe......cieeiecieeieinisissieeeseesessas s sssessss s sssssssssssssssssssssesssssssssssssssssssnsnns 1037
171.12.4 SECUNILY MaINTENANCE. ...ttt sttt st st sttt st es et bebasbsnastn 1038
11.12.4.1 Account MaintenNanNCe SUGQGESTIONS......c.ccviriierieirieirieesesietes et ssess s st s s s sssssssssesassssssssssssessssnes 1038
11.12.4.2 Password Maint@nance SUGGESTIONS.cewieiririreereireitiseiseisiete st esessessessess st bs s ssssssssssesssssssesases 1039
11.12.4.3 LOG MaiNteNANCE SUGQESTIONS......ouieiiieeieerieireeireet ettt sttt sttt st ettt senasseeas 1039
TT1.12.5 SECUNIEY STATEIMENT. ..ttt sss bbbt s bbb e b st s s en s sen st snsssenas 1039
12 MRS Manager Operation Guide (Applicable to 2.x and Earlier Versions)........ 1041
12.71 INtroduction t0 MRS IMANAGET ...ttt seaseas s st s st ess s es e easasesassstas 1041
12.2 CheCKing RUNNING TaSKS......ioiuiirierierieririesisissisessessessnssssssssssssssssssssssnsnns 1044
12.3 MONItOrNG MaNAGEMENT..... ittt ettt ettt b sttt et et ae s e b et easaesessen 1044
12.3.T DASHDOAIM. ...ttt s sttt 1044
12.3.2 Managing Services and MONItOrNG HOSES.........ccoirriierierieeeieiesie sttt sssssssssssssssssessesens 1046
12.3.3 Managing ReSOUICE DiSTrDULION........c.ovueirieieereire ettt et 1051
12.3.4 Configuring Monitoring Metric DUMPING.....c.cocccrreinrinrnrnenesiris s sssessnns 1051
12.4 AlArmM MaN@GEMENT.......ceeveieieieeteieeeeierese st see e bbbt a st b ss b s s s s s s s s s s b s b b es s s b s s essesassassansansnsnes 1053
12.4.1 Viewing and Manually Clearing an ALQIM......creeesiressieessesssssse s sssssssesssssssssssssssssssssssssssssssans 1053
12.4.2 Configuring an ALArm TRreSNOLd..........cueiiieiece ettt bbb se s ses 1054
12.4.3 Configuring Syslog Northbound Interface Parameters..........oeeeieieinecineeeeee st sees 1056
12.4.4 Configuring SNMP Northbound Interface Parameters.........rirensnsssssssssese s sssssessssssnsens 1059
12.5 ObJECE MANAGEMENT ...ttt sttt et st b sttt bbb st et baeen 1061
12.5.1 MANAQGING ODJECES......ieiereerieirieieireiee sttt ss s s sttt ss s sttt sssesssssssssssnsssssnsssssssessssansnns 1061
12.5.2 VieWiNG CONFIGUIALIONS......c.oouiiiiiiecieeeeiieieie sttt st s sas bbb s s sssss bbbt sesansas s sanssnens 1062
12.5.3 MANAGING SEIVICES....ouiuiierieirieirieirieis ettt ettt bttt bbbttt sttt ettt betaebetas 1062
12.5.4 ConfiguIing SEIrVICE ParamMELErS.......ooveceeieiririeieisiesiseessisss st sss st sss s s s s s s sssssssssssssssssssasssssssssssssses 1063

2025-11-25 XV

MapReduce Service

User Guide Contents
12.5.5 Configuring Customized ServiCe Parameters........... s ssessssssssss s sssssssssssssssssssssanes 1064
12.5.6 Synchronizing Service CONFIGUIATIONS.........corurirrireiriereeeee ettt bttt eb s eesseanen 1066
12.5.7 ManNaging ROLE INSLANCES.......cceurieieiricisieiesie st sssssssstssessss s sas s sss st st sssss s sssss s bbbt sssssssasssssssssnsassssens 1067
12.5.8 Configuring Role INSTtANCE ParameELters.........coveiriririririreieiseeseessesessassns 1067
12.5.9 Synchronizing Role Instance CoNfigUIatioN.........o ettt es st 1068
12.5.10 Decommissioning and Recommissioning @ ROLe INStANCE........c.ouevrerrrererirrireieeeeeeeeesse et seseenenes 1069
T2.5.TT MANAQGING @ HOSEu ..ottt sttt st se bt senssseasseeastnans 1070
12.5.12 1SOLATING @ HOST .ottt s st seas st 1070
12.5.13 CaNCeliNg HOSE 1SOLATION.......cuiviiririceeeee ettt st st b st ssss bbb s s s s s sansansas 1071
12.5.14 Starting or StOPPING @ CLUSEE.....c.vvrereeeee ettt ss s ss s sss s ss st ssssssssssssasssnsanes 1071
12.5.15 Synchronizing Cluster CoONfIQUIAtIONS.......ccoviueerirerieie ettt essess s st sssessesses s sasens 1072
12.5.16 Exporting Configuration Data Of @ CLUSTEN........c..cevririeierieeeeee et s st ss s saes 1072
T2.6 LOG MANAGEIMENT. ...ttt ettt ettt ettt sttt sttt bbbt b et e aeaetnene 1073
T2.6.1 ADOUL LOGS...eueuiiieieieirtiieeeieisie ettt eae sttt se st sttt sttt b s et e s enstansenen 1073
12.6.2 MANAGET LOG LISttt ettt s s s s s s s s snsssnssssnssssnnsnen 1087
12.6.3 Viewing and EXPOrting AUAIT LOGS......ouviririririrrirrireineinisssis s istsssnsans 1096
12.6.4 EXPOITING SEIVICE LOGS. ...ttt sttt tsese st s ettt st sttt bbb bbb etastntacs 1098
12.6.5 Configuring Audit Log DUMPING ParameLters.........cceeuririiereeeeneeeisssissssssseesessessasssssssssessssssssssssssssssssssnens 1099
12.7 Health Check Man@gemIENt.......reieeceeeeeisisisisiss e s ss s sss sttt ssssssssassssssssensessssssssnsns 1100
12.7.1 Performing @ HEAIN CRECK. ...ttt ettt 1101
12.7.2 Viewing and Exporting a Health Check REPOIt........coeeieiiierieeeeeeeieie ettt se s sanes 1102
12.7.3 Configuring the Number of Health Check Reports to Be Reserved.........nrneneneenesessirsissennens 1102
12.7.4 Managing Health CheCk REPOITS.........ceere sttt sttt es st eaen 1103
12.7.5 DBService Health Check INAICATOIS. ..ottt cs ettt ss et ssses e eees 1104
12.7.6 Flume Health Check INAICAtOrS. ...ttt ss st 1104
12.7.7 HBase Health Check INAICATOrS. ..ottt st 1104
12.7.8 HOSt Health Check INAICAtOrS. ... ettt ettt 1105
12.7.9 HDFS Health Check INAICAtors... ..ottt seeseesseeseasess s ssse bbb saens 1112
12.7.10 Hive Health Check INAICATOrS. ..ottt es st 1113
12.7.11 Kafka Health Check INAICAtOrs........oc ettt es s 1113
12.7.12 KrbServer Health Check INAICAtOrs. ...ttt sases e sesesse e sasesss e sseees 1114
12.7.13 LdapServer Health Check INAICATOrS. ...ttt et eees 1115
12.7.14 Loader Health Check INICATOIS. ...ttt et een 1116
12.7.15 MapReduce Health Check INAICATOIS.....cccrruierrerieieie ettt sssssssss st sssssssssssssssnsnns 1117
12.7.16 OMS Health Check INAICAtOrS.......cco ettt ettt sttt 1117
12.7.17 Spark Health CheCK INAICAtOrS.. ...ttt essas s ssssss bbb ss s s bbb s e 1122
12.7.18 Storm Health Check INAICATOIS. ...ttt s ettt 1122
12.7.19 Yarn Health Check INAICATOrS. ..ottt 1123
12.7.20 ZooKeeper Health Check INAICATOrS.. ...ttt sessas s st sssssss s s sansenens 1123
12.8 Static Service POOL MAnN@gEIMENT.......o.virieerieriereirie e esstssssssssss s ssesens 1124
12.8.1 Viewing the Status of @ STatiC SErvice POOL. ...ttt saeen 1124
12.8.2 Configuring @ StatiC SEIVICE POOL.......c.cuoiuiiieeieeeeeieieieets ettt ss s s s st sas s sas e ssnsas 1126

2025-11-25 Xvi

MapReduce Service

User Guide Contents
T2.9 TENANET MANAGEIMENT ...ttt ettt sttt sttt bttt eten 1129
T2.9.T OVEIVIEW....cuieiieirieiiieireie sttt sttt et et sttt bt bt bttt ettt eas 1129
12.9.2 Creating @ TENANT. ..ottt ettt ettt ettt ss s st sa st s s st s st ssesssssssssesssssessssasssensssensssnans 1130
12.9.3 Creating @ SUD-TENANT ...ttt bbbt s sttt s s sanen 1133
12.9.4 DELEING @ TENANT.....cu ettt ettt s s et s ettt s es e bas s e b s taes 1135
12.9.5 Managing @ TENANT DirBCLOTY.....cccoiueieieieirieireeireieeieetsiseees et ss s bbb s s ss s ss et s sss s sessnsenas 1136
12.9.6 ReStOrING TENANE Dal@....ouieeeeieeeirieir ittt ese sttt eaesenaees 1138
12.9.7 Creating @ RESOUITE POOL......c.oiiiereieie sttt es sttt saesas 1139
12.9.8 MOdifying @ RESOUITE POOL......oiiieiieieceeiicieisisis ettt bbb st s sassas bbbt essesssassansanen 1139
12.9.9 Deleting @ RESOUITE POOL........ccoiiiriririririresisieisisiss st sssss st s sssssssss s ssssssssssssssssssssssssssssssssnsssssnsas 1140
12.9.10 CONFIGUINNG @ QUEUE.......ce ettt sess ettt b sttt bbb eae s sanen 1141
12.9.11 Configuring the Queue Capacity Policy of @ ReSource POOL.........ccccieieeeeeieieirneeeeeseeeeese s 1142
12.9.12 Clearing Configuration Of @ QUEUE.........c.ccevrieireerieeee ettt sssssessss s s sttt ssssssssssasssnssnsnns 1143
12.10 BACKUP @Nd RESTOIATION. ..ottt sttt ettt et sttt 1143
T2.T0.T INTFOAUCTION. co.ue ettt ts ettt bbb bbbk et 1143
12.10.2 BAcking UP MeETAdata......covevrieiririeireiisesisiessssisstsssssesass sttt sss s s s sssssssssssssssssssssssssssssssssnsns 1146
12.10.3 RESLONNG MEEAAATA. ...ttt bbbt 1148
12.10.4 MOdifyiNg @ BACKUP TASK.....oiueiueiieiteieriirieieisiesiesessiesie st ssssssss s bbb s s sssssssssssssssssssessesssssessssasssnsassnnens 1150
12.10.5 Viewing Backup and ReStOration TasKS.........coerririririnrireineinesinesssssissses 1151
12,17 SECUNILY MaANAGEIMENT. ...ttt ettt ettt bt ettt et eas 1152
12.11.1 Default Users of Clusters with Kerberos Authentication Disabled.........ccccooneenneeoncneineennineineenn. 1152
12.11.2 Default Users of Clusters with Kerberos Authentication Enabled..........coennenccneneinecnennee 1155
12.11.3 Changing the Password Of @n OS USEI ...ttt issesessessssseasessssssssssssssssssesssssens 1161
12.11.4 Changing the password Of USEr @dMiN..........cccoieieirieiisieiereseee sttt ss s sas 1162
12.11.5 Changing the Password of the Kerberos AdminiStrator........c.coccrernrnrensneninseessseessessesssssssssssenns 1164
12.11.6 Changing the Passwords of the LDAP Administrator and the LDAP USerccccovevereeeeeneeneeneen. 1165
12.11.7 Changing the Password of a Component RUNNING USEr.......c.coerrirrnrinrinieneninisiisissssssesessesssessssssssnsns 1166
12.11.8 Changing the Password of the OMS Database AdMIiNiStrator.........cccoererirrinsirrrresesenessssesesseeeens 1167
12.11.9 Changing the Password of the Data Access User of the OMS Database..........cccceovveurereurenerreoneneenas 1168
12.11.10 Changing the Password of a Component Database USEr..........ccereeerenrnininsisiesisseesenseesssessanens 1168
12.11.17 Replacing the HA CertifiCate.. ...ttt sttt sss s s s snsnes 1169
12.17.12 UPAAting CLUSLEE KEYS......eieeerieiereieieeieieisietsets ettt ss sttt st e seanesesasens 1171
12.12 Permissions ManN@gEIMENT.......ccciuriruririririeisieeeiseeessseessessssssssssssssssssssssssessssessssssssssssssssssssssssssesssssssssessssessssesaess 1172
12.12.7 CrEatiNgG @ ROLE...ceeieeeeeeeieee sttt sttt st ss st ss e bbbt st s s s s s snn s snen 1172
12.12.2 Creating @ USEE GIOUP....c.ccuveeeieericirieireetseetseae sttt s tes st st s sttt sttt bbbt et s et et beeastens 1178
T2.12.3 CrEatiNg @ USEI ..ttt sttt sttt sttt se b sstee s ss st rs e sasseasssenas 1179
12.12.4 Modifying UsSer INfOrMation........coorirrrercnessieiss ettt sssss s st ssssssssssssssssnssssnsens 1181
T2.12.5 LOCKING @ USEH ..ottt st s bbbttt 1181
12.12.6 UNLOCKING @ USET ...oieiiieieieieriesistete sttt ses st bbbt sss s sss s s bbbt s s s s bas s s s s s ssssessessnssesanes 1182
12.12.7 DELETING @ USEI ettt stssss s ss s st s ssssss s st st ssssssssssssssssssssassssssssssssssssnsssssssnsnes 1182
12.12.8 Changing the Password of an Operation USEI ...t sssssessessessssssseens 1182
12.12.9 Initializing the Password Of @ SYStEM USET ... sssss s ssssssssssssss s sassssesenns 1183

2025-11-25 Xvii

MapReduce Service

User Guide Contents
12.12.10 Downloading a User AUthentiCation File.......ooeriririercsrie sttt sss s ssssssnnnns 1184
12.12.11 Modifying @ PassWOrd POLICYccoriiririenirieeieieireiseiseiscesesieee ettt sseseesses st ess s seens 1185
12.13 MRS Multi-User Permission ManagemMeENnti.........cceuceueeuruerurrinsensesisessssssssssissessssssssssssssssssesssssssesssssssssssens 1187
12.13.1 Users and Permissions Of MRS CLUSTEIS........cveriireineeneineineeseiseiesssesseaesssessesesseessesesssesse e sssesse e sasesns 1187
12.13.2 Default Users of Clusters with Kerberos Authentication Enabled.........cccocoevnrnnennnenencnenes 1191
12.13.3 CrEAtING @ ROLE..cueeieceeeceeet ittt b bbb bbbt s bbbt s s s s s e s bnen 1198
12.13.4 Creating @ USEI GIOUP......occveereeericirieireeisestseae st tsesets sttt ess st sess s tssssssesstsssstsssetsssessssssassssasssassnens 1204
T2.13.5 CrEatiNG @ USEI ..ttt sttt sttt bttt sttt ettt 1205
12.13.6 MOdifying User INfOrMation.........oeeiriiiieceeesie sttt sss s bbb ssssss s sesss s senens 1207
12.13.7 LOCKING @ USEF ..ottt sssass st s s sss s sttt s s s s sss st sssessssssssssssssnssnssnsnsens 1208
12.13.8 UNLOCKING @ USEH ..ottt sttt ettt st s e sanen 1208
12.13.9 DELELING @ USEI ettt sss st s s ss s s bbb s s s s s bbbt n s s s ssssanssnbensnenns 1209
12.13.10 Changing the Password of an OPeration USEr...........ciririsinsinsereensensnssnsssssssssssssssssssssssssssssssssens 1209
12.13.11 Initializing the Password Of @ SYStEM USEr ...ttt ese s sees 1210
12.13.12 Downloading a User AUthentiCation File........oieeiririeieieese ettt ssss s s sssessensans 1212
12.13.13 MOdifying @ PasSWOIA POLICY........cocruriririririersineenisessisississesssssss s sssnes 1213
12.13.14 Configuring Cross-Cluster Mutual Trust RelationShips.........ccccveereerererieeneinenereseeeeee e eeseeees 1215
12.13.15 Configuring Users to Access Resources of @ Trusted CLUSTEN..........ceeveeverirrreireiesieeseneesesssesssiens 1218
12.13.16 Configuring Fine-Grained Permissions for MRS Multi-User Access to OBS........c.cccovevereerrrrrrrereenns 1219
12.14 PatCh OPeration GUIAE........coc ettt st s st ettt st s et seanenneans 1225
12.14.1 Patch Operation Guide for Versions Earlier than MRS 1.7.0......coeieeeeeeeeereiessieseeesessessessaenns 1225
12.14.2 Patch Operation Guide for Versions from MRS 1.7.0 £t0 MRS 2.0.T.....ccoororrrrrrrrrrrrenenesiessesseeeens 1227
12.14.3 SUPPOIrtiNg ROLING PAtCRES.......ooiiiie ettt ettt st 1228
12.15 Restoring Patches for the 1S0lated HOSES.......ccciiieeieeiecie sttt sass e ssssss st sssssensans 1231
12.16 ROWING RESLAI. ..ottt sess sttt ss s sss sttt s s s s s bbb nssnsensnssessnsanssnses 1231
13 SECUKitY DESCHIPLION.. ... ceeeeeeeeeceeeeceesteceeceeeeesaeseesaseseesaseseesasssassnsssessassssessassassnanns 1236
13.1 Security Configuration Suggestions for Clusters with Kerberos Authentication Disabled................... 1236
13.2 Security Authentication Principles and MeChaniSMS...........ccovuririuririerinieineenereeseiseieeses e essesseaseasenns 1237
14 High-RisK OP@rations.........cccccieeeeriecnieseesereseesenessssansssssasessssasessssasssssssssssssassssssssssasssasss 1241
15 TroUbLESNOOTING......ucoeeceeeecececceeeeceeeeceeceeeeeseeeseesnesseesaeeseessssseessssssesasssaesassssesasssnanns 1274
15.1 ACCESSING the WED PAQES......ooiieieieireirce sttt sssss st st s s st ssensssssssnsns 1274
15.1.1 Failed to ACCESS MRS IMANAGET ...ttt ea sttt es et ss b sb et eeanennen 1274
15.1.2 Failed to Log In to MRS Manager After the Python Upgrade.........ecrieenensnsesesessessssssssnes 1275
15.1.3 Failed to Log In to MRS Manager After Changing the Domain Name.........ccccooevrernrnrneeneneenenennns 1276
15.1.4 A Blank Page Is Displayed Upon LOGIin t0 ManN@ger........ccoeviurieriurereeensineireereiseeseiseesesssssssssesessessesssasssenns 1277
15.1.5 Failed to Download Authentication Credentials When the Username Is Too Long........cccccceveeveene. 1277
15.2 CLUSTEE MAN@GEMIENT ..ottt sss s s st ss st ssssssss st ssssssesssssesssssss s sns st sssnsssasssssssnssnsnsnes 1279
15.2.1 Failed to REAUCE TaSK NOGES.........cvurieisireireiret sttt sttt ea sttt 1279
15.2.2 Adding @ New Disk t0 @n IMRS ClLUSTENoveieeieeieieiriee sttt ssesssssssss st sssssssssssssssnssnsenanns 1280
15.2.3 Replacing a Disk in an MRS Cluster (Applicable to 2.x and EQrlier).......coeeerorreerrneeneneneninnnanns 1284
15.2.4 Replacing a Disk in an MRS Cluster (Applicable t0 3.X).....cccoerrireinrirrrerrerceeeeee e eseeseeseeeeaeeseees 1286

2025-11-25 xviii

MapReduce Service

User Guide Contents
15.2.5 MRS BACKUP FAILUI ...ttt sss st st ss s s s bbbt st enssssessnsanen 1289
15.2.6 Inconsistency Between df and du Command Output on the Core NOde.........ccovvrerrererrnrerrerrnennn. 1290
15.2.7 Disassociating a Subnet from the ACL NETWOIK.......ccoceveveiririreieniieieeeseesee e ssssesesssssssssssssessssnens 1291
15.2.8 MRS Becomes Abnormal After hostname ModifiCation...........coveeirrneenineneneseeeeeseeeeeeseesesseenes 1291
15.2.9 DataNode Restarts UNEXPECLEALY..........ccovriurieriririnie ettt essese st ssas s s sseees 1292
15.2.10 Network Is Unreachable When Using pip3 to Install the Python Package in an MRS Cluster.... 1294
15.2.11 Failed to Download the MRS CLUSTEr CLENT.......ociiuiriereeerireiectseereeeceset et sssesse e sseesse e esse e saees 1294
15.2.12 Failed to Scale OUL @n MRS CLUSTEN ..ottt ss st sss s st ssssssssssanssnsensans 1295
15.2.13 Error Occurs When MRS Executes the Insert Command Using Beeline..........cccoooeeeneneineeneinnineenns 1296
15.2.14 How Do | Upgrade EulerOS to Fix Vulnerabilities in an MRS ClUSter?..........cooeeeeeveeecereeerseeennns 1297
15.2.15 Using CDM to Migrate Data tO HDFS.......o ettt sttt seens 1299
15.2.16 Alarms Are Frequently Generated in the MRS CLUSTEN.......ccovrreeieriririeeeeeeeseese s ssesnessennans 1300
15.2.17 Memory Usage of the PMS Process IS High........ccieieinieisiessseiesesisss st ssesssessssassssssssnens 1302
15.2.18 High Memory Usage Of the KNOX PrOCESS........cccvireririereieeneensieieseessiesesesssessssssssssssssesssssssssssssasessesssanens 1303
15.2.19 It Takes a Long Time to Access HBase from a Client Installed on a Node Outside the Security
CLUSTRT ..ttt s e bbb bbbttt 1304
15.2.20 How Do | Locate a JOb SUBMISSION FAIlU@?........ceiiiricecrerceecireieeciseieseeese e saeese s 1305
15.2.21 OS Disk Space Is Insufficient Due to Oversized HBase LOG Files.........cccorrerrrrrrnrnenrnrnssieissessines 1309
15.2.22 Failed to Delete a New Tenant on FusionInsight Manager..........rrriesnsnsesessssessssssessessesenns 1310
15.3 USING ALLUIXO....eieieiericirieteee ettt s st s st bbb s bbb bbb s b s bbb bt assessnsansanseneas 1310
15.3.1 Error Message "Does not contain a valid host:port authority" Is Reported When Alluixo Is in HA
IMIOAE.....ou ettt ettt s b e e ettt 1311
15.4 USING CLICKHOUSE.......ceeeeeeeereeie ettt sttt ass st s e s s st et et nasenessnsanen 1311
15.4.1 ClickHouse Fails to Start Due to Incorrect Data in ZOOKEEPETcovrrrerrereerererisisisessessessesssssssssnsns 1311
T5.5 USING DBSEIVICE. ...ttt ettt ettt ss e ae bbbttt st s eaasbensssenassnssens 1313
15.5.1 DBServer Instance IS in ADNOIMAL STAtUS.......c..oveveeieeiririeeeeieeteeee ettt s st snes 1313
15.5.2 DBServer Instance Remains in the ReStOring STAte........covrreririeneereree ettt seeeeaeeeeaen 1314
15.5.3 Default Port 20050 0r 200571 IS OCCUPIEA......covuierierirerieieirsireiseiseses st sssesessess s ssssssssssssssssssssssssanes 1315
15.5.4 DBServer Instance Is Always in the Restoring State Because the Incorrect /tmp Directory
PIIMIISSION. ..ttt eb s e bbb s s s bbb bbb bbbt 1316
15.5.5 DBSErVICE BACKUP FAILUIE. ...ttt sttt s st ssssas bbb sssnnsnes 1317
15.5.6 Components Failed to Connect to DBService in Normal State........cccceeveveieieeiesesieseeeeeesese s 1318
15.5.7 DBSEIVEr FAIled £0 STAIT.....oiieeieeiiereie ettt bttt es sttt aesas 1319
15.5.8 DBService Backup Failed Because the Floating IP Address Is Unreachable...........cccoovrrircrinrennnnee. 1320
15.5.9 DBService Failed to Start Due to the Loss of the DBService Configuration File........ccccoceerverrerrnenee. 1321
156 USING FLUNK..otrtieriieieiriesieseeiese ettt sess s st sttt sssssssss s s es st ssss s s bbb en st st essssass s s s s st snssssessnssnssnsansns 1323
15.6.1 "lllegalConfigurationException: Error while parsing YAML configuration file:
"security.kerberos.login.keytab" Is Displayed When a Command Is Executed on an Installed Client....... 1323
15.6.2 "lllegalConfigurationException: Error while parsing YAML configuration file" Is Displayed When a
Command Is Executed After Configurations of the Installed Client Are Changedccccoocovvvinenenininnenne 1324
15.6.3 The yarn-session.sh Command Fails to Be Executed When the Flink Cluster Is Created.................. 1325
15.6.4 Failed to Create a Cluster by Executing the yarn-session Command When a Different User Is Used
... 1326
15.6.5 Flink Service Program Fails to Read Files 0N the NFS DisK......cccoieeirinierinninniersenssinssssisesesssessennes 1327

2025-11-25 Xix

MapReduce Service

User Guide Contents
15.6.6 Failed to Customize the FLiNk LOG4j LOG LEVEL.......orririreierreiresereeee sttt sssssssssssssnns 1328
15.7 USING FLUMIE. ...ttt sttt e s s sttt s st bne s e benen 1329
15.7.1 Class Cannot Be Found After Flume Submits Jobs to Spark Streaming.......cccccoeveereenecenrnrsnrennn. 1329
15.7.2 Failed t0 INStall @ FLUME CLIENT. ...ttt ssees sttt s eas 1329
15.7.3 A Flume Client Cannot CONNECE t0 the SEIVET ...ttt ssessesseas s 1330
15.7.4 Flume Data Fails to Be Written to the COMPONENT........cciiieieeieeeieee ettt sse s sanes 1331
15.7.5 FLUME SEIVET ProCESS FAULL......ccuieieeieriireieiireireiecetie ittt ss sttt et eees 1332
15.7.6 FlumMe Data COLECTION 1S SLOW......c.iuiierieirieirei sttt sttt ss sttt ees s sanen 1332
15.7.7 FQIled 1O StArt FLUMIE. ...ttt bttt a bbb s s sn s s sansas 1332
T5.8 USING HBASE. ...ttt sttt s e b stas bt as s easssanes 1334
15.8.1 Slow Response to HBase CONNECHION. ..ottt es st st esses s sasenes 1334
15.8.2 Failed to Authenticate the HBASE USEr ...t sssssssss s sssessssssssssasssssssssnssssnsens 1334
15.8.3 RegionServer Failed to Start Because the Port IS OCCUPIEd.......c.ccorrurerrerrerierinininieeireessessesessssesseens 1335
15.8.4 HBase Failed to Start Due to Insufficient Node MemOry.........coonrinneinineeneneeereise s 1336
15.8.5 HBase Service Unavailable Due to Poor HDFS Performance..........eeeeeeeninessniesiesessessessessssssssanes 1336
15.8.6 HBase Failed to Start Due to Inappropriate Parameter Settings.......cocoverierirrereinreneenensensessisesssnsens 1337
15.8.7 RegionServer Failed to Start Due to Residual ProCESSES.........ocvwueeriureererensensireireiseieesesisese e sesseeseasens 1338
15.8.8 HBase Failed to Start Due to @ QUOLA SET ON HDFS......oo ettt se sttt s sssesaes 1338
15.8.9 HBase Failed to Start Due to Corrupted VErsion FileS..........ririeinrireinrereensnesesssssssssssssssesssssssssssas 1339
15.8.10 High CPU Usage Caused by Zero-Loaded ReGIONSEIVETcvumrereereeriereenereeineinseseisesseeseaseasessesesees 1340
15.8.11 HBase Failed to Started with "FileNotFoundException" in RegionServer LOgs........ccccoueurveererrnunnn. 1342
15.8.12 The Number of RegionServers Displayed on the Native Page Is Greater Than the Actual Number
ATEEE HBASE IS STAITEA. ..uc ettt e bbbttt 1343
15.8.13 RegionServer Instance Is in the ReStOring STate........oo et 1344
15.8.14 HBase Failed to Start in @ Newly INStalled CLUSTEN ...t esseesanes 1345
15.8.15 HBase Failed to Start Due to the Loss of the ACL Table DireCtory......nrnrneneenrenessesseneneens 1345
15.8.16 HBase Failed to Start After the Cluster Is Powered Off and On.......cccovvennrneneneneenereeeeseereeeene 1346
15.8.17 Failed to Import HBase Data Due to Oversized File BLOCKS.......ccccoiireerrerieieieseresseeee e 1348
15.8.18 Failed to Load Data to the Index Table After an HBase Table Is Created Using Phoenix.............. 1349
15.8.19 Failed to Run the hbase shell Command on the MRS Cluster Client........ccccoocoevevinerenesesiseireerennees 1350
15.8.20 Disordered Information Display on the HBase Shell Client Console Due to Printing of the INFO

[N FOIMALION. ..ottt bbbttt b bbb s s s bbb bbbt b st s s b s s e s b anen 1351
15.8.21 HBase Failed to Start Due to Insufficient RegionServer MemOry........cvrrneneereensensensesssssesesnes 1352
T5.9 USING HDFS....ee ettt sttt st sttt bbbt bttt 1353

15.9.1 All NameNodes Become the Standby State After the NameNode RPC Port of HDFS Is Changed1353
15.9.2 An Error Is Reported When the HDFS Client Is Used After the Host Is Connected Using a Public

INEEWOTK TP AGAIESS.....oneeeeeecencireieeeeiretse ettt ettt bbbttt 1354
15.9.3 Failed to Use Python to Remotely Connect to the Port of HDFS.........cccooiirnennrereeeeeeeeis 1355
15.9.4 HDFS Capacity Usage Reaches 100%, Causing Unavailable Upper-layer Services Such as HBase and
SPAIK ettt bttt RS SA SRR A AR AR R AR eSS A bR ARt ses e e bbbt enee 1355
15.9.5 An Error Is Reported During HDFS and Yarn STartup.......ccnrsinsnsensseeseesssssssssssssesssssssssssssssnes 1357
15.9.6 HDFS Permission SETLING EFTOF ..ottt sses sttt sttt saeen 1358
15.9.7 A DataNode of HDFS Is Always in the Decommissioning State........cccccevrereeerenrnierseresissiesssesseesessenns 1359

2025-11-25 XX

MapReduce Service

User Guide Contents
15.9.8 HDFS Failed to Start Due to INSUffiCIENT IMEMOIY ..ot sssssssss s saeen 1361
15.9.9 A Large Number of Blocks Are Lost in HDFS due to the Time Change Using ntpdate..................... 1362
15.9.10 CPU Usage of a DataNode Reaches 100% Occasionally, Causing Node Loss (SSH Connection Is
SLOW OF FQILS) couteeeee ettt ettt et sttt s s s st s st b st sas s bas s sas s sas s sansasassasassassesasanen 1364
15.9.11 Manually Performing Checkpoints When a NameNode Is Faulty for a Long Time........ccccceeuunne... 1365
15.9.12 ComMmMON File REAA/WITEE FAULES......cooveeeieeeeeee ettt ettt es et s sttt s s s sesssssenenenes 1367
15.9.13 Maximum Number of File Handles Is Set to a Too Small Value, Causing File Reading and Writing
EXCEPEIONS. ..ttt st st e e A ettt ettt et ettt 1367
15.9.14 A Client File Fails to Be Closed After Data WIitiNg. ... ssessssssessssens 1369
15.9.15 File Fails to Be Uploaded to HDFS DUe tO File ErTOrS.......eeieieirisieeeeeeeesesisssss s sesessessessassssssnsnes 1371
15.9.16 After dfs.blocksize Is Configured and Data Is Put, Block Size Remains Unchanged........................ 1371
15.9.17 Failed to Read Files, and "FileNotFoundException" Is Displayed.........c.cccoevrnrnrerenereneneosisireisseseeees 1372
15.9.18 Failed to Write Files to HDFS, and "item limit of / is exceeded" Is Displayed.........c.ccccooveuviureunruncen. 1373
15.9.19 Adjusting the Log Level of the Shell CLENT........ ettt 1373
15.9.20 File Read Fails, and "No common protection layer" Is DiSplayed........ccccoceueurrerrerirerrerreinsessensersninnnns 1374
15.9.21 Failed to Write Files Because the HDFS Directory Quota Is Insufficient..........ccccoveeericererirrernernenen. 1375
15.9.22 Balancing Fails, and "Source and target differ in block-size" Is Displayed.........ccccocoverererevrerrerrinnanee 1376
15.9.23 A File Fails to Be Queried or Deleted, and the File Can Be Viewed in the Parent Directory
(INVISIDLIE CRATACEEIS) ...ttt ettt ettt s s ettt s st ses s b st bassesassesassesassesassesassenas 1377
15.9.24 Uneven Data Distribution Due to Non-HDFS Data ReSiduals.........ccocoervieererinerinninniesseeseseesesenans 1378
15.9.25 Uneven Data Distribution Due to the Client Installation on the DataNode.........ccccooneeveeneneencnnee 1379
15.9.26 Handling Unbalanced DataNode Disk Usage 0n NOAES..........cccoerreererrirrereerinenisisinseseeseesesssssesnesenns 1379
15.9.27 Locating Common Balance ProbLEMIS.......... sttt ssae s 1380
15.9.28 HDFS Displays Insufficient Disk Space But 10% Disk Space Remains..........ccccoeveueeveerneeneeneeeensensnnns 1381
15.9.29 An Error Is Reported When the HDFS Client Is Installed on the Core Node in a Common Cluster
... 1382
15.9.30 Client Installed on a Node Outside the Cluster Fails to Upload Files Using hdfs.........c.ccccoevuuun.... 1382
15.9.31 Insufficient Number of Replicas Is Reported During High Concurrent HDFS Writes..........ccccc...... 1383
15.9.32 HDFS Client Failed to Delete Overlong Dir€CLOrIES.......ooiiuieereeierieinisieseseeeeesess s sssessenses 1384
15.9.33 An Error Is Reported When a Node Outside the Cluster Accesses MRS HDFS.........ccovvrerernrennene 1385
T5.T0 USING HIVE .ottt sttt st s b s ae s sesneseen 1386
15.10.1 Content RECOrAEd iN HIVE LOGS....c.iieiieeeiieirieeeieisieee et ssseesssae s s sssss st se s sssss s ssssssssssssessssessssnes 1387
15.10.2 Causes Of HiVe StAartup FAilUIe.........coveeeeeiciciceeetes ettt sae s s st s s 1388
15.10.3 "Cannot modify xxx at runtime" Is Reported When the set Command Is Executed in a Security
CLUSEET ...ttt bbbt bbbt et s s b s s b s b b s e s b s s b s bbb s s s b s b e bbb st st s s s st e bbb nen 1388
15.10.4 How to Specify a Queue When Hive SUDMIS @ JOD......orrrr e 1389
15.10.5 How to Set Map and Reduce Memory on the CLENT........coerrrrrreirerre et 1390
15.10.6 Specifying the Output File Compression Format When Importing a Table.......cccccooereierrerererenane 1391
15.10.7 desc Table Cannot Be Completely DiSPlayd..........ccieieeeeeininiseissiesesessesssssss s ssssssssesssessssssssnens 1391
15.10.8 NULL Is Displayed When Data Is Inserted After the Partition Column Is Added...........cccocruuruuen.. 1392
15.10.9 A Newly Created User Has NO QUEIY PErmMIiSSIONS........cocrverierierierereresiseeseeseesessessssssssssssssssssssssssssssssanes 1393
15.10.10 An Error Is Reported When SQL Is Executed to Submit a Task to a Specified Queue.................. 1394
15.10.11 An Error Is Reported When the "load data inpath" Command Is Executed...........ccccoeeveervrrvnrnnnne. 1395
15.10.12 An Error Is Reported When the "load data local inpath" Command Is Executed..........c.cccceuue.... 1396

2025-11-25 XXi

MapReduce Service

User Guide Contents
15.10.13 An Error Is Reported When the "create external table" Command Is Executed...........cocouruene... 1397
15.10.14 An Error Is Reported When the dfs -put Command Is Executed on the Beeline Client............... 1397
15.10.15 Insufficient Permissions to Execute the set role admin Command...........cccccoeererereerecrcnienienrennnns 1398
15.10.16 An Error Is Reported When UDF Is Created Using Beeline..........cccoovverirerercnesinseneneineineeseseeeeeees 1399
15.10.17 Difference Between Hive Service Health Status and Hive Instance Health Status........................ 1399
15.10.18 Hive Alarms and Triggering CONAITIONS.........ccovvirrririeirisrississississesssssss st ssssssssssssssssssssssssssssssssessssanes 1400
15.10.19 "authentication failed" Is Displayed During an Attempt to Connect to the Shell Client............. 1401
15.10.20 Failed to Access ZooKeeper from the CLHENT ...t sseese st ssesssssssaens 1402
15.10.21 "Invalid function" Is Displayed When @ UDF IS USEd........ccccoonrruniurrririnirieisireissiseeseeseeseesssssssssssnes 1403
15.10.22 Hive Service STatus IS UNKNOWN........ciirreercirceciseeseeete sttt ssses s ssesssessesesans 1404
15.10.23 Health Status of a HiveServer or MetaStore Instance IS UNKNOWN........c..coceveeerinenererreinnieseesenseenenes 1404
15.10.24 Health Status of a HiveServer or MetaStore Instance Is CONCErNiNg......cocoeeveereereereereerseereerseeenneens 1404
15.10.25 Garbled Characters Returned upon a select Query If Text Files Are Compressed Using ARC4..1405
15.10.26 Hive Task Failed to Run on the Client But Successful 0N Yarn......nnecneneenecseneenecnenne 1405
15.10.27 An Error Is Reported When the select Statement IS EXECULEA.......ccovuveeeerrrinineirrinsissnsneeisssiesinenns 1406
15.10.28 Failed to Drop a Large NUMDer Of Partitions.........c.ceeeeeiiiesiesieeeeeeieses st sssessssesssessesenes 1408
15.10.29 Failed to STArt @ LOCAL TASK. ..ottt ettt es sttt sanen 1408
15.10.30 Failed tO STart WEDHGCAT. ...ttt ss ettt 1410
15.10.31 Sample Code Error for Hive Secondary Development After Domain Switching.........ccccceeuevuenne. 1411
15.10.32 MetaStore Exception Occurs When the Number of DBService Connections Exceeds the Upper

] 0T OO P OO PO OT O TP E OO PO PP OEOP OO POV 1412
15.10.33 "Failed to execute session hooks: over max connections" Reported by Beeline.........ccccccocvuuunee. 1413
15.10.34 beeline Reports the "OUtOfMEMOIYEITOr" EFTON.......ocieieririreeeeireiseiseeseesesesesssssssssssssesssssassssssssssssssnes 1414
15.10.35 Task Execution Fails Because the Input File Number Exceeds the Threshold........cccccovvirinuenn.e. 1415
15.10.36 Task Execution Fails Because of Stack Memory OVErfloW...........ereeeneninieninsesissesessssessssnsnns 1417
15.10.37 Task Failed Due to Concurrent Writes to One Table or Partition...........cceeeeeeeeierienesereeeereecnnnenans 1418
15.10.38 Hive Task Failed Due to a Lack of HDFS Directory PermisSion.........ccccceeeeeeeueeerseeeuseessseesseesssesnenns 1419
15.10.39 Failed to Load Data to Hive TabLes.........iirereesesee it sssesseae st sessessesssessesasesnennes 1420
15.10.40 HiveServer and HiveHCat ProCess FAULES.........cocecrineineineirese et sssessesesssessessesaseas 1421
15.10.41 An Error Occurs When the INSERT INTO Statement Is Executed on Hive But the Error Message Is
UNCLAT .ottt bbbt bbbttt s s bbb bbb s b s b e bbbt s s s s b e bbb st st s s s s s ebaebantaes 1421
15.10.42 Timeout Reported When Adding the Hive Table Field........c.ccooonnnnrcresereree e 1423
15.10.43 Failed to ReStart the HIVE SEIVICE. ...ttt ss sttt sss s ssnens 1426
15.10.44 Hive Failed t0 Delete @ Table. ...ttt es e es e sases et esies 1426
15.10.45 An Error Is Reported When msck repair table table_name Is Run on Hive........ccccocoueericricrieerennnes 1427
15.10.46 How Do | Release Disk Space After Dropping a Table in HIVe?........cccovrinrneeninsiseenreeercseies 1428
15.10.47 Connection Timeout During SQL Statement Execution on the Client.........cccooveeveernrreererirennnnes 1428
15.10.48 WebHCat Failed to Start Due to Abnormal Health Status.......coccneneeneeneneeereneeeeseeseeeens 1430
15.10.49 WebHCat Failed to Start Because the mapred-default.xml File Cannot Be Parsed....................... 1431
T5.T7T USING HUC... ettt b et et et ettt ettt 1431
15.11.1 A JOD IS RUNNING ON HUE.....ctieieiecte ettt ettt s st s st ss bbb ssssessnsenssssnssssnsnsanens 1431
15.11.2 HQL Fails to Be Executed on Hue Using Internet EXPLOrer........covieeneernenesirseseissseeseessenessssseeens 1432
15.11.3 Hue (Active) Cannot OPeNn WED PAgEs.........coveirerinisirissinsirsissessessessnss 1432

2025-11-25 XXii

MapReduce Service

User Guide Contents
15.11.4 Failed to ACCesS the HUE WED Ul........rrercicetiset ettt ssecssees 1433
15.11.5 HBase Tables Cannot Be Loaded on the Hue Web Ul.........coinnireeeerecseeee e 1434
15.12 USING IMPALA...titiieiirieieiriseretiesistete sttt ses st bbbt s s s s bbbt et s s s s s s e s e bbb st s sessssassassnsns st ensessnen 1434
15.12.1 Failed to Connect t0 iMPala=Shell.......oco it ssasssnnnns 1435
15.12.2 Failed to Create @ KUAU Table....... ettt s s s s s sssa s sassssassnes 1435
15.12.3 Failed to Log In t0 the IMPala ClIENT.........coireeee ettt sss s sss s st ssnsssssssesanen 1436
1513 USING KATKQ. ettt ettt e s bbbt en st eesnsanen 1438
15.13.1 An Error Is Reported When Kafka Is Run to Obtain @ TOPIC....cccereruerereeeereeinienieseeeeesee s snes 1438
15.13.2 Flume Normally Connects to Kafka But Fails to Send MeSSages..........cccvvvreererennrrernsiseeneensensensssnins 1439
15.13.3 Producer Failed to Send Data and Threw "NullPointerException".........ccccevierreeeeneceeeeeeeenen. 1440
15.13.4 Producer Fails to Send Data and "TOPIC_AUTHORIZATION_FAILED" Is Thrown.........ccccoceeeeuene... 1443
15.13.5 Producer Occasionally Fails to Send Data and the Log Displays "Too many open files in system"
... 1445
15.13.6 Consumer Is Initialized Successfully, But the Specified Topic Message Cannot Be Obtained from
KT ettt e et 1447
15.13.7 Consumer Fails to Consume Data and Remains in the Waiting State.......c.cccoeeeveervrneseenercenennnn. 1452
15.13.8 SparkStreaming Fails to Consume Kafka Messages, and "Error getting partition metadata" Is
DISPLAYE. ..ottt ss st s e s eSS e A e e AR S seeA ARt s et e sanaas 1454
15.13.9 Consumer Fails to Consume Data in a Newly Created Cluster, and the Message "
GROUP_COORDINATOR_NOT_AVAILABLE" IS DiSPlay@d..........cccoeoeuerureerirerirerireeniseesssseessseesseesssessssesssessssessssssens 1456
15.13.10 SparkStreaming Fails to Consume Kafka Messages, and the Message "Couldn't find leader
OFfSELS" IS DISPLAYEM.....oeieeieeirieieet ettt sttt s s as bbbt s s s b s s s b s bbbt ensessnnans 1457
15.13.11 Consumer Fails to Consume Data and the Message " SchemaException: Error reading field
'DIOKEIS"" IS DISPLAYEA. ...ttt sttt st st se s s s bbbt enseessssnssnsas 1459
15.13.12 Checking Whether Data Consumed by @ CUStOMEr IS LOSt......coccevreuneecemneuneeeeeneerensecureeensecuressenaeeanes 1460
15.13.13 Failed to Start a Component Due t0 ACCOUNE LOCK........oriririrrirrinrieeeeesisiniees e 1461
15.13.14 Kafka Broker Reports Abnormal Processes and the Log Shows "lllegalArgumentException”....1461
15.13.15 Kafka Topics CannOt Be DELELEM. ..ottt ettt ses s s es s saees 1462
15.13.16 Error "AdminOperationException" Is Displayed When a Kafka Topic Is Deleted...........cccccevumnnn... 1465
15.13.17 When a Kafka Topic Fails to Be Created, "NoAuthException" Is Displayed........cccccoocvvrrrrrrrrenunnes 1466
15.13.18 Failed to Set an ACL for a Kafka Topic, and "NoAuthException" Is Displayed..........ccccccceeuvrrnnne.. 1468
15.13.19 When a Kafka Topic Fails to Be Created, "NoNode for /brokers/ids" Is Displayed.........cccccou....... 1470
15.13.20 When a Kafka Topic Fails to Be Created, "replication factor larger than available brokers" Is
DISPLAYEM. ...ttt s s AR R ARt R ARt s st aeeaeeas 1471
15.13.21 Consumer Repeatedly CONSUMES Data......cccocoriiierireieeeeienienieiesiesiesissessaesessssss s sss st sssssssssssssnssssanssssnes 1472
15.13.22 Leader for the Created Kafka Topic Partition Is Displayed as NONe..........ccccovrcrrnirnrrernreernnennnnnns 1474
15.13.23 Safety Instructions 0N USING KafKa.......ccorrreerree ettt ses s 1476
15.13.24 Obtaining Kafka Consumer Offset INfOrmation..........ocieiecnicicese s seenesees 1481
15.13.25 Adding or Deleting Configurations fOr @ TOPIC......cccvurrierieririenirsirrisseseisseseesesssissssssssssssssssssssssssssssssnes 1483
15.13.26 Reading the Content of the __consumer_offsets Internal TOPIC.......cccoeerueeuerrereereereeieeesienee e 1484
15.13.27 Configuring Logs for Shell Commands 0N the CLENt........cc.coeeirieririeeeeeeeeeeese s 1485
15.13.28 Obtaining Topic Distribution INfOrmMation.........orrrnrerrneeses et sneseeeens 1486
15.13.29 Kafka HA USAge DESCHIPTION.....ccrierreeierieeieieeiereie ettt eess st ssssssesss s sssesss s sasess s sssesssssssssssssssasssnns 1488
15.13.30 Kafka Producer Writes OVersized RECOIMS........c.ocuiureneeureuneieireineieieseise st eeeeseesessesssetsessssssessesaseasennes 1491

2025-11-25 xxiii

MapReduce Service

User Guide Contents
15.13.31 Kafka Consumer Reads OVErsSiZed RECOITS........ccuwueeureereemeeireineieeireiseeseisesse s sssesssssessesssessessessnes 1492
15.13.32 High Usage of Multiple Disks on a Kafka Cluster NOde..........ccooueuruveinrnenireneneeiesereireeseeseeeeeeeaeens 1493
T5.T4 USING OOZIC....cuuireriieeiiiretisisieesises et tessssssssssssssss s sssssssssssssssssssssssssssessssessssesssssssssssssssssssnssssnssesassesassessssessssessssaes 1495
15.14.1 Oozie Jobs Do Not Run When a Large Number of Jobs Are Submitted Concurrently.................... 1495
T5.T5 USING PrESTO...cceieeeerereer ettt ettt sttt et bt bttt 1496
15.15.1 During sql-standard-with-group Configuration, a Schema Fails to Be Created and the Error
Message "Access Denied" IS DISPLAYEA..........crrieririeeeieeeeeisis sttt s st ss s s s sss bbb ssessssssssessesanen 1496
15.15.2 The Presto coordinator cannot be started Properly......... e ssssssssseseens 1498
15.15.3 An Error Is Reported When Presto Is Used to Query a Kudu Table........covervrneninencneneeeenes 1499
15.15.4 No Data is Found in the Hive Table USING PreSto........oreerieressseseessseis s ssessssssssassssssnens 1500
T5.16 USING SPAIK ettt sss st st s s sssssssss s st st ssasssssssssssssssasssnssssessesssssssssssnssssssssssssnsans 1501
15.16.1 An Error Occurs When the Split Size Is Changed in a Spark Application.........cccoeveevereseneineineeneen. 1501
15.16.2 An Error Is Reported When SPark IS USEd..........ciieeierininiesiessissesiessssssssss st ssssssssssssssssssssssens 1502
15.16.3 A Spark Job Fails to Run Due to Incorrect JAR File IMPOrt.....c.coovrrrininrrinieereesssessessssessessseeens 1503
15.16.4 A Spark Job Is Pending Due to INSUfficient MEMOIY ...t isseseeseesessesseees 1504
15.16.5 An Error Is Reported During Spark RUNNING.........ccoiriieeierieieieisisississiesessesssssss st ssssessssssssssssssnsans 1505
15.16.6 Executor Memory Reaches the Threshold Is Displayed in DIiVEr........coevrnrrininrcsereeseisseneeseenseneens 1506
15.16.7 Message "Can't get the Kerberos realm" Is Displayed in Yarn-cluster Mode.........ccccoovueeuvrvrrneennnnee. 1507
15.16.8 Failed to Start spark-sql and spark-shell Due to JDK Version Mismatch........c.ccccccorvrnrrrrrrrcnrnnnnn. 1508
15.16.9 ApplicationMaster Failed to Start Twice in Yarn-client Mode.........covvrrrrinerininiisirsensiseseeneesssssseens 1509
15.16.10 Failed to Connect to ResourceManager When a Spark Task Is Submitted.........ccccocovereiveeveinnennen. 1510
15.16.11 DataArts Studio Failed to Schedule SPark JODS........... et sssessaeses 1511
15.16.12 Submission Status of the SPark JOD API IS ErTOr ...t ssaseessssssssssssnens 1512
15.16.13 Alarm 43006 Is Repeatedly Generated in the CLUSLEN.........ccoirreireirenereeeese et 1513
15.16.14 Failed to Create or Delete a Table in Spark BEELINE..........coeveerveireieeeseeeeeeeeee et 1513
15.16.15 Failed to Connect to the Driver When a Node Outside the Cluster Submits a Spark Job to Yarn
... 1515
15.16.16 Large Number of Shuffle Results Are Lost During Spark Task EXeCUtion.........ccccoceeerereresenseneenen. 1516
15.16.17 Disk Space Is Insufficient Due to Long-Term Running of JDBCSEIVEr...........cceoreeremrerrrrrreeneeneensnnnns 1517
15.16.18 Failed to Load Data to a Hive Table Across File Systems by Running SQL Statements Using Spark
SRIELL e b st 1518
15.16.19 Spark Task SUDMISSION FQILUIE.........cciiiireire ettt een 1519
15.16.20 Spark Task EXECULION FAILUIE........c.curiririeireecieeeeteteissst sttt s bt ssss s s bbbt ssssssanssnses 1520
15.16.27 JDBCServer CONNECLION FAIlUIE........oieecerirceciretseeti ettt saseis 1520
15.16.22 Failed to VIeW SPArk TASK LOGS.....ccccowrireerirerieieensiseiseestaeeiees s sssssessessessesssss s ssssssssssssssssssssssssssssssnees 1521
15.16.23 Authentication Fails When Spark Connects to Other SErViCeS........oierierrererieriesesseesessssssssenens 1522
15.16.24 An Error Occurs When Spark ConNeCts t0 REAIS........ccovururerrerierininirisisississssessesssssssssssssssssssssssssssens 1522
15.16.25 An Error Is Reported When spark-beeline Is Used to Query a Hive View.......ccccccoeevreeveeererrennnee. 1524
T5.T7 USING SQOOP. e iuiuririririririeeesiseeeteesstsessassssssssssssssssssssssassssssssssssssssssssssssssssssssssssssasssssssessssessssessssessssssssssssssssessssessssesans 1525
15.17.1 Connecting SQOOP t0 MYSQL.....cuviiuriiirieiricirieirieirteeseie sttt ess s sas s e ssssassnssssasssenssen 1525
15.17.2 Failed to Find the HBaseAdmin.<init> Method When Sqoop Reads Data from the MySQL
DAt@base t0 HBASE......c.ccu ettt es et ettt st sas b bes 1526
15.17.3 Failed to Export HBase Data to HDFS Through Hue's SGQOOP TasK.......ccoceeeieerrinirnrninnineinseneensensnanns 1527

2025-11-25 XXiv

MapReduce Service

User Guide Contents
15.17.4 A Format Error Is Reported When Sqoop Is Used to Export Data from Hive to MySQL 8.0......... 1531
15.17.5 An Error Is Reported When sqoop import Is Executed to Import PostgreSQL Data to Hive......... 1532
15.17.6 Sqoop Failed to Read Data from MySQL and Write Parquet Files to OBS.......ccccoenrnrnererenecnienenas 1533
T5.T8 USING SEOIM .ttt ettt sttt bttt st sae s st sen 1534
15.18.1 Invalid Hyperlink of Events on the STOrmM Ul......ceeseseiseeisesesiesse e sseeseasessessesssssseens 1534
15.18.2 Failed t0 SUDMIL @ TOPOLOGY.....ciniuieeireirieicireieireise ettt ettt bbbt 1536
15.18.3 Topology Submission Fails and the Message "Failed to check principle for keytab" Is Displayed1537
15.18.4 The Worker Log Is Empty After a Topology IS SUDMILEEd........ccceueeeeveririririeeereee e 1539
15.18.5 Worker Runs Abnormally After a Topology Is Submitted and Error "Failed to bind to:host:ip" Is
DISPLAYEM. ...ttt bbbt bbbt b s e A bR b ARttt s e bbbt s st ensesaesas 1541
15.18.6 "well-known file is not secure" Is Displayed When the jstack Command Is Used to Check the
PrOCESS SEACK.....iuiieiririesieeieeieeie sttt ss bbbt st s s bbbt s st s s a b b A bbb b s s s b b s b bbb s b s sanssnbanen 1543
15.18.7 When the Storm-JDBC plug-in is used to develop Oracle write Bolts, data cannot be written into
TN BOLES .ttt ettt b bR bbbttt 1545
15.18.8 The GC Parameter Configured for the Service Topology Does Not Take Effect.......ccccccevvrerrrrrnnee. 1547
15.18.9 Internal Server Error Is Displayed When the User Queries Information on the Ul.............cccc........ 1548
T5.T9 USING RANGET ..ttt sttt ettt b s seastseassseassseanes 1549
15.19.1 After Ranger Authentication Is Enabled for Hive, Unauthorized Tables and Databases Can Be
VIEWEA ON ThE HUE PAGE.....ieeeie ettt sss st s s bbb ssassssessssanen 1549
T5.20 USING YA Nttt ettt ettt s ts st tas st aa s tae s ta et st ae bt ae st ae bt se bt a et s e b s et e sbaeseeaesetaesesneseen 1550
15.20.1 Plenty of Jobs Are Found After Yarn IS Started......oo s ssessisssssssessesssssens 1551
15.20.2 "GC overhead" Is Displayed on the Client When Tasks Are Submitted Using the Hadoop Jar
COMIMANG...uiiiiiirticeer ettt ettt ettt e e bbb st et ettt 1552
15.20.3 Disk Space Is Used Up Due to Oversized Aggregated Logs Of Yarn........ernenenenenenenineenes 1553
15.20.4 Temporary Files Are Not Deleted When an MR Job IS ADNOrmal.......ccceceneenecnecneeneeneeneineneeens 1554
15.20.5 ResourceManager of Yarn (Port 8032) Throws Error "connection refused".........ccccooeeeeeerrrnnnne. 1556
15.20.6 Failed to View Job Logs on the Yarn WED Ul..........ieeeeieeeisisesisesiesessasss s sesssssssssssssansans 1556
15.20.7 An Error Is Reported When a Queue Name Is Clicked on the Yarn Page.........cccccoevrvineeeneeninrennnns 1558
T5.271 USING ZOOKEEPEN ...ttt sttt sss e tassssss st s s sssssss s sssssssssssssssssessssessssesassesssssssssesassssssssssnssnens
15.21.1 Accessing ZooKeeper from an MRS Cluster

T5.22 ACCESSING OBS..... ittt sttt et ettt bttt s et e sneas
15.22.1 When Using the MRS Multi-user Access to OBS Function, a User Does Not Have the Permission
£0 ACCESS the /LMD DIFECLOINY..ouuieierieeieieieetreireeree sttt st sss s bbbt s st ss s s st sn s s snsnssnsanssnsanen 1559
15.22.2 When the Hadoop Client Is Used to Delete Data from OBS, It Does Not Have the Permission for
TN .TIASH DIFECEOIY ...ttt sttt s st s st st esssesns s sas s st nes 1561
T6 APPENAIX..uueiiiireiiiicniiinnniennenniessssnsessssnsessssansssssassssssasssasssassass 1563
16.1 BMS Specifications USEd DY IMIRS........... ettt s s sssss s s s st essssesassensnsenans 1563
16.2 Data Migration SOLUTION ...ttt sttt es et ese st ns e 1564
16.2.1 MaKIiNG PreParations........cc ettt seeseas ettt s s ses st st s sttt sb s sebssntns 1564
16.2.2 EXPOItiNG MELAAALA.oeeeieeecieieteie ettt bbbt bbb s s s e bbbt saseesansas 1564
16.2.3 COPYING DALttt sttt ss e ss s s s s s bbbt s st ssasssessssssssssssssssssssssssssssssesassessssesassasans 1566
T6.2.4 RESEOING Data...cvieiieeiieeiiieicieicieietses ettt st a sttt s s s bt s s sas s s s s s s s s ssasssbassssassssassesassesanes 1567
16.3 PreCautioNs fOr IMRS B.X.. .ttt st sesssssss st ss st sas bbb st ssssssassas s s ss st esssnssssessnsas 1567
16.4 INStAlliNg the FLUME CLENT......oicceee sttt bbbt sas bbb sa s s s senen 1569

2025-11-25 XXV

MapReduce Service

User Guide Contents
16.4.1 Installing the Flume Client on Clusters of Versions Earlier Than MRS 3. X.....cccooevervenrnrnenicnenennnns 1569
16.4.2 Installing the Flume Client on MRS 3.x 0 Later CLUSTEIS......ocoueiurireeeeireereireireeseeeeeeeeeese s eneese s eaees 1572
17 Chang@ HiStOrY ... iieieiieieeeneetecnteeecnneseesnnesessnsssssssssssssssessssssassssssssassssssassssasassssassasss 1574

2025-11-25 XXVi

MapReduce Service
User Guide 1 Overview

Overview

1.1 What Is MRS?

Big data is a huge challenge facing the Internet era as the data volume and types
increase rapidly. Conventional data processing technologies, such as single-node
storage and relational databases, are unable to solve the emerging big data
problems. In this case, the Apache Software Foundation (ASF) has launched an
open source Hadoop big data processing solution. Hadoop is an open source
distributed computing platform that can fully utilize computing and storage
capabilities of clusters to process massive amounts of data. If enterprises deploy
Hadoop systems by themselves, the disadvantages include high costs, long
deployment period, difficult maintenance, and inflexible use.

To solve the preceding problems, the cloud provides MapReduce Service (MRS) for
managing the Hadoop system. With MRS, you can deploy a Hadoop cluster in just
one click. MRS provides enterprise-level big data clusters on the cloud. Tenants
can fully control clusters and easily run big data components such as Storm,
Hadoop, Spark, HBase, and Kafka. MRS is fully compatible with open source APIs,
and incorporates advantages of the cloud computing and storage and big data
industry experience to provide customers with a full-stack big data platform
featuring high performance, low cost, flexibility, and ease-of-use. In addition, the
platform can be customized based on service requirements to help enterprises
quickly build a massive data processing system and discover new value points and
business opportunities by analyzing and mining massive amounts of data in real
time or in non-real time.

Product Architecture

Figure 1-1 shows the MRS logical architecture.

(1 NOTE

MRS 3.x or later does not support patch management on the management console.

2025-11-25 1

MapReduce Service

User Guide

1 Overview

Figure 1-1 MRS architecture

Converged | [gm
!) l Hive Tez
| processing | - -

Cluster
management

Cluster deployment

Offline analysis || Offline analysis

Offline analysis |

™ o |

Elastic scaling

Version
management

Job management

§ MapReduce

Tag management

Configuration
management

Refined monitoring
Online log retrieval

Security

Data management

Tenant
management

Backup
management

MRS architecture includes infrastructure and big data processing phases.

Infrastructure

MRS big data clusters are built based on Elastic Cloud Server (ECS), and make
full use of the high reliability and security capabilities of the virtualization
layer.

- AVirtual Private Cloud (VPC) is a virtual internal network provided for
each tenant. It is isolated from other networks by default.

- Elastic Volume Service (EVS) provides highly reliable and high-
performance storage.

- ECS provides scalable VMs, and works with VPCs, security groups, and the
EVS multi-replica mechanism to build an efficient, reliable, and secure
computing environment.

Data collection

The data collection layer provides the capability of importing data from
various dta sources, such as Flume (data ingestion), Loader (relational data
import), and Kafka (highly reliable message queue), to MRS big data clusters.
Alternatively, you can use Cloud Data Migration (CDM) to import external
data to MRS clusters.

Data storage

MRS clusters can store structured and unstructured data, and support
multiple efficient formats to meet the requirements of different computing
engines.

- HDFS is a general-purpose distributed file system on a big data platform.

- OBS is an object storage service that features high availability and low
cost.

- HBase supports data storage with indexes, and is applicable to high-
performance index-based query scenarios.

2025-11-25

MapReduce Service

User Guide

1 Overview

Data convergence processing

- MRS provides multiple mainstream compute engines, including
MapReduce (batch processing), Tez (DAG model), Spark (in-memory
computing), Spark Streaming (micro-batch stream computing), Storm
(stream computing), and Flink (stream computing), to convert data
structures and logic into data models that meet service requirements in a
variety of big data application scenarios.

- Based on the preset data model and easy-to-use SQL data analysis, users
can select Hive (data warehouse), SparkSQL, and Presto (interactive
query engine).

Data display and scheduling

Displays data analysis results and integrates with Data Lake Governance
Center (DGC) to provide a one-stop big data collaborative development
platform, helping you easily complete multiple tasks, such as data modeling,
data integration, script development, job scheduling, and O&M monitoring,
making big data more accessible than ever before, and helping you
effortlessly build big data processing centers.

Cluster management

All components of the Hadoop-based big data ecosystem are deployed in
distributed mode, and their deployment, management, and O&M are
complex.

MRS provides a unified O&M management platform for cluster management,
supporting one-click cluster deployment, multi-version selection, as well as
manual scaling and auto scaling of clusters without service interruption. In
addition, MRS provides job management, resource tag management, and
O&M of the preceding data processing components at each layer. It also
provides one-stop O&M capabilities, covering monitoring, alarm reporting,
configuration, and patch upgrade.

Product Advantages

MRS has a powerful Hadoop kernel team and is deployed based on enterprise-
level Fusionlnsight big data platform. MRS has been deployed on tens of
thousands of nodes and can ensure Service Level Agreements (SLAs) for multi-
level users.

MRS has the following advantages:

High performance

MRS supports self-developed CarbonData storage technology. CarbonData is
a high-performance big data storage solution. It allows one data set to apply
to multiple scenarios and supports features, such as multi-level indexing,
dictionary encoding, pre-aggregation, dynamic partitioning, and quasi-real-
time data query. This improves I/O scanning and computing performance and
returns analysis results of tens of billions of data records in seconds. In
addition, MRS supports self-developed enhanced scheduler Superior, which
breaks the scale bottleneck of a single cluster and is capable of scheduling
over 10,000 nodes in a cluster.

Cost-effectiveness

Based on diversified cloud infrastructure, MRS provides various computing and
storage choices and separates computing from storage, delivering cost-

2025-11-25

MapReduce Service

User Guide

1 Overview

effective massive data storage solutions. MRS supports auto scaling to
address peak and off-peak service loads, releasing idle resources on the big
data platform for customers. MRS clusters can be created and scaled out
when you need them, and can be terminated or scaled in after you use them,
minimizing cost.

High security

MRS delivers enterprise-level big data multi-tenant permissions management
and security management to support table-based and column-based access
control and data encryption.

Easy O&M

MRS provides a visualized big data cluster management platform, improving
O&M efficiency. MRS supports rolling patch upgrade and provides visualized
patch release information and one-click patch installation without manual
intervention, ensuring long-term stability of user clusters.

High reliability
The proven large-scale reliability and long-term stability of MRS meet
enterprise-level high reliability requirements. In addition, MRS supports

automatic data backup across AZs and regions, as well as automatic anti-
affinity. It allows VMs to be distributed on different physical machines.

Using MRS for the First Time

If you are a first-time user, get familiar with the following information:

Basic concepts

See Components to learn the basic knowledge of MRS, including the basic
principles and enhanced features of each MRS component, as well as the
unique concepts and functions of MRS.

Getting started

See Getting Started to learn how to use MRS. "Getting Started" provides
detailed operation guidance of samples. You can create and use MRS clusters
based on the operation guidance.

Other functions and operation guides

If you are an MRS cluster user and O&M engineer, you can perform
operations such as cluster life cycle management, scaling, and job
management by referring to Users Guide. See Component Operation Guide to
learn how to use components in a cluster.

If you are a developer, you can refer to APIs to manage MRS clusters and
execute jobs. For details, see AP/ Reference.

1.2 Application Scenarios

Big data is ubiquitous in people's lives. MRS is suitable to process big data in the
industries such as the Internet of things (loT), e-commerce, finance,
manufacturing, healthcare, energy, and government departments.

Large-scale data analysis

Large-scale data analysis is @ major scenario in modern big data systems.
Generally, an enterprise has multiple data sources. After data is accessed,extract,

2025-11-25

MapReduce Service

User Guide

1 Overview

transform, and load (ETL) processing is required to generate modelized data for
each service module to analyze and sort out data. This type of service has the
following characteristics:

e The requirements for real-time execution are not high, and job execution time
ranges from dozens of minutes to hours.

e The data volume is large.

e There are various data sources and diversified formats.

e Data processing usually consists of multiple tasks, and resources need to be
planned in detail.

In the environmental protection industry, climate data is stored on OBS and
periodically dumped into HDFS for batch analysis. 10 TB of climate data can be
analyzed in 1 hour.

Figure 1-2 Large-scale data analysis in the environmental protection industry

Fa ™,

K: _}
I”Lnader

_"I 4 -'___.-d'-\.‘_\
@ O BA—a
0BS *

Raw climate —
dats DWS Bl

-
— -\BHDFS
Mo

MRS has the following advantages in this scenario.

e Low cost: OBS offers cost-effective storage.
e Massive data analysis: TB/PB-level data is analyzed by Hive.

e Visualized data import and export tool: Loader exports data to Data
Warehouse Service (DWS) for business intelligence (BI) analysis.

Large-scale data storage

A user who has a large amount of structured data usually requires index-based
quasi-real-time query capabilities. For example, in an Internet of Vehicles (loV)
scenario, vehicle maintenance information is queried by vehicle number. Therefore,
vehicle information is indexed based on vehicle numbers when it is being stored,
to implement second-level response in this scenario. Generally, the data volume is
large. The user may store data for one to three years.

For example, in the loV industry, an automobile company stores data on HBase,
which supports PB-level storage and CDR queries in milliseconds.

2025-11-25

MapReduce Service
User Guide 1 Overview

Figure 1-3 Large-scale data storage in the loV industry

HBase
-
Il- -‘l
=& |
. L
Details al:_n:uut Kafka
each vehicle

Spark

loV system

MRS has the following advantages in this scenario.

e Real time: Kafka accesses massive amounts of vehicle messages in real time.

e Massive data storage: HBase stores massive volumes of data and supports
data queries in milliseconds.

e Distributed data query: Spark analyzes and queries massive volumes of data.

Real-time data processing

Real-time data processing is usually used in scenarios such as anomaly detection,
fraud detection, rule-based alarming, and service process monitoring. Data is
processed while it is being inputted to the system.

For example, in the Internet of elevators & escalators (loEE) industry, data of
smart elevators and escalators is imported to MRS streaming clusters in real time
for real-time alarming.

Figure 1-4 Low-latency streaming processing in the IoEE industry

—{(E—
Kafka Spark
‘y O o [oEE system
, Flume
Details about each _.., —
elevator or escalator

HEIa se Storm

MRS has the following advantages in this scenario.

e Real-time data ingestion: Flume implements real-time data ingestion and
provides various data collection and storage access methods.

e Data source access: Kafka accesses data of tens of thousands of elevators and
escalators in real time.

1.3 Components

2025-11-25 6

MapReduce Service

User Guide

1 Overview

1.3.1 CarbonData

CarbonData is a new Apache Hadoop native data-store format. CarbonData
allows faster interactive queries over PetaBytes of data using advanced columnar
storage, index, compression, and encoding techniques to improve computing
efficiency. In addition, CarbonData is also a high-performance analysis engine that
integrates data sources with Spark.

Figure 1-5 Basic architecture of CarbonData

More Analysis Tools

Spark SQL

Spark

Other Data CARBON

Source File Format

The purpose of using CarbonData is to provide quick response to ad hoc queries of
big data. Essentially, CarbonData is an Online Analytical Processing (OLAP)
engine, which stores data using tables similar to those in Relational Database
Management System (RDBMS). You can import more than 10 TB data to tables
created in CarbonData format, and CarbonData automatically organizes and
stores data using the compressed multi-dimensional indexes. After data is loaded
to CarbonData, CarbonData responds to ad hoc queries in seconds.

CarbonData integrates data sources into the Spark ecosystem. You can use Spark
SQL to query and analyze data, or use the third-party tool ThriftServer provided by
Spark to connect to Spark SQL.

CarbonData features

e SQL: CarbonData is compatible with Spark SQL and supports SQL query
operations performed on Spark SQL.

e Simple Table dataset definition: CarbonData allows you to define and create
datasets by using user-friendly Data Definition Language (DDL) statements.
CarbonData DDL is flexible and easy to use, and can define complex tables.

e Easy data management: CarbonData provides various data management
functions for data loading and maintenance. It can load historical data and
incrementally load new data. The loaded data can be deleted according to the
loading time and specific data loading operations can be canceled.

2025-11-25

MapReduce Service

User Guide

1 Overview

e CarbonData file format is a columnar store in HDFS. It has many features that
a modern columnar format has, such as splittable and compression schema.

Unique features of CarbonData

e Stores data along with index: Significantly accelerates query performance and
reduces the 1/O scans and CPU resources, when there are filters in the query.
CarbonData index consists of multiple levels of indices. A processing
framework can leverage this index to reduce the task it needs to schedule and
process, and it can also perform skip scan in more finer grain unit (called
blocklet) in task side scanning instead of scanning the whole file.

e Operable encoded data: Through supporting efficient compression and global
encoding schemes, CarbonData can query on compressed/encoded data. The
data can be converted just before returning the results to the users, which is
"late materialized".

e Supports various use cases with one single data format: like interactive OLAP-
style query, Sequential Access (big scan), and Random Access (narrow scan).

Key technologies and advantages of CarbonData

e Quick query response: CarbonData features high-performance query. The
query speed of CarbonData is 10 times of that of Spark SQL. It uses dedicated
data formats and applies multiple index technologies, global dictionary code,
and multiple push-down optimizations, providing quick response to TB-level
data queries.

e Efficient data compression: CarbonData compresses data by combining the
lightweight and heavyweight compression algorithms. This significantly saves
60% to 80% data storage space and the hardware storage cost.

For details about CarbonData architecture and principles, see https://
carbondata.apache.org/.

1.3.2 ClickHouse

Introduction to ClickHouse

ClickHouse is an open-source columnar database oriented to online analysis and
processing. It is independent of the Hadoop big data system and features ultimate
compression rate and fast query performance. In addition, ClickHouse supports
SQL query and provides good query performance, especially the aggregation
analysis and query performance based on large and wide tables. The query speed
is one order of magnitude faster than that of other analytical databases.

The core functions of ClickHouse are as follows:
Comprehensive DBMS functions
ClickHouse has comprehensive database management functions, including the

basic functions of a Database Management System (DBMS):

e Data Definition Language (DDL): allows databases, tables, and views to be
dynamically created, modified, or deleted without restarting services.

e Data Manipulation Language (DML): allows data to be queried, inserted,
modified, or deleted dynamically.

2025-11-25

https://carbondata.apache.org/
https://carbondata.apache.org/

MapReduce Service
User Guide

1 Overview

e Permission control: supports user-based database or table operation
permission settings to ensure data security.

e Data backup and restoration: supports data backup, export, import, and
restoration to meet the requirements of the production environment.

e Distributed management: provides the cluster mode to automatically manage
multiple database nodes.

Column-based storage and data compression

ClickHouse is a database that uses column-based storage. Data is organized by

column. Data in the same column is stored together, and data in different columns

is stored in different files.

During data query, columnar storage can reduce the data scanning range and
data transmission size, thereby improving data query efficiency.

In a traditional row-based database system, data is stored in the sequence in

Table 1-1:

Table 1-1 Row-based database

row ID Flag Name Event Time

0 123456789 | 0 name1 1 2020/1/11
01 15:19

1 323456789 | 1 name2 1 2020/5/12
01 18:10

2 423456789 | 1 name3 1 2020/6/13
01 17:38

N

In a row-based database, data in the same row is physically stored together. In a
column-based database system, data is stored in the sequence in Table 1-2:

Table 1-2 Columnar database

row: 0 1 2

ID: 12345678901 | 32345678901 | 42345678901

Flag: 0 1 1

Name: name1 name2 name3

Event: 1 1 1

Time: 2020/1/11 2020/5/12 2020/6/13
15:19 18:10 17:38

This example shows only the arrangement of data in a columnar database.
Columnar databases store data in the same column together and data in different

2025-11-25

MapReduce Service

User Guide

1 Overview

columns separately. Columnar databases are more suitable for online analytical
processing (OLAP) scenarios.

Vectorized executor

ClickHouse uses CPU's Single Instruction Multiple Data (SIMD) to implement
vectorized execution. SIMD is an implementation mode that uses a single
instruction to operate multiple pieces of data and improves performance with data
parallelism (other methods include instruction-level parallelism and thread-level
parallelism). The principle of SIMD is to implement parallel data operations at the
CPU register level.

Relational model and SQL query

ClickHouse uses SQL as the query language and provides standard SQL query APIs
for existing third-party analysis visualization systems to easily integrate with
ClickHouse.

In addition, ClickHouse uses a relational model. Therefore, the cost of migrating
the system built on a traditional relational database or data warehouse to
ClickHouse is lower.

Data sharding and distributed query

The ClickHouse cluster consists of one or more shards, and each shard corresponds
to one ClickHouse service node. The maximum number of shards depends on the
number of nodes (one shard corresponds to only one service node).

ClickHouse introduces the concepts of local table and distributed table. A local
table is equivalent to a data shard. A distributed table itself does not store any
data. It is an access proxy of the local table and functions as the sharding
middleware. With the help of distributed tables, multiple data shards can be
accessed by using the proxy, thereby implementing distributed query.

ClickHouse Applications

ClickHouse is short for Click Stream and Data Warehouse. It is initially applied to a
web traffic analysis tool to perform OLAP analysis for data warehouses based on
page click event flows. Currently, ClickHouse is widely used in Internet advertising,
app and web traffic analysis, telecommunications, finance, and Internet of Things
(IoT) fields. It is applicable to business intelligence application scenarios and has a
large number of applications and practices worldwide. For details, visit https://
clickhouse.tech/docs/en/introduction/adopters/.

ClickHouse Enhanced Open Source Features

MRS ClickHouse has advantages such as automatic cluster mode, HA deployment,
and smooth and elastic scaling.

e Automatic Cluster Mode

As shown in Figure 1-6, a cluster consists of multiple ClickHouse nodes, which
has no central node. It is more of a static resource pool. If the ClickHouse
cluster mode is used for services, you need to pre-define the cluster
information in the configuration file of each node. Only in this way, services
can be correctly accessed.

2025-11-25

10

https://clickhouse.tech/docs/en/introduction/adopters/
https://clickhouse.tech/docs/en/introduction/adopters/

MapReduce Service
User Guide

1 Overview

Figure 1-6 ClickHouse cluster

ClickHouse node 1 ClickHouse node 2 ClickHouse node 3

ClickHouse node 4 ClickHouse node 5 ClickHouse node 6

Users are unaware of data partitions and replica storage in common database
systems. However, ClickHouse allows you to proactively plan and define
detailed configurations such as shards, partitions, and replica locations. The
ClickHouse instance of MRS packs the work in a unified manner and adapts it
to the automatic mode, implementing unified management, which is flexible
and easy to use. A ClickHouse instance consists of three ZooKeeper nodes and
multiple ClickHouse nodes. The Dedicated Replica mode is used to ensure
high reliability of dual data copies.

Figure 1-7 ClickHouse cluster structure

Cluster1

)

(shard1

shard2

shard3 \

replica replica replica replica replica replica & ®
i)l zookeeper

|

Cluster2

Smooth and Elastic Scaling

As business grows rapidly, MRS provides ClickHouse, a data migration tool, for
scenarios such as the cluster's storage capacity or CPU compute resources
approaching the limit. This tool is used to migrate some partitions of one or
multiple MergeTree tables on several ClickHouseServer nodes to the same
tables on other ClickHouseServer nodes. In this way, service availability is
ensured and smooth capacity expansion is implemented.

When you add ClickHouse nodes to a cluster, use this tool to migrate some
data from the existing nodes to the new ones for data balancing after the
expansion.

shard1 shard2

HA Deployment Architecture

MRS uses the ELB-based high availability (HA) deployment architecture to
automatically distribute user access traffic to multiple backend nodes,

shard3

shard4

2025-11-25

11

MapReduce Service
User Guide

1 Overview

expanding service capabilities to external systems and improving fault
tolerance. As shown in Figure 1-8, when a client application requests a
cluster, Elastic Load Balance (ELB) is used to distribute traffic. With the ELB
polling mechanism, data is written to local tables and read from distributed
tables on different nodes. In this way, data read/write load and high
availability of application access are guaranteed.

After the ClickHouse cluster is provisioned, each ClickHouse instance node in
the cluster corresponds to a replica, and two replicas form a logical shard. For
example, when creating a ReplicatedMergeTree table, you can specify shards
so that data can be automatically synchronized between two replicas in the
same shard.

Figure 1-8 HA deployment architecture

ELB

Write e >
Local Table

e———» Read
Distributed Table

shard3

Relationships Between ClickHouse and Other Components

ClickHouse depends on ZooKeeper for installation and deployment.

Flink stream computing applications are used to generate common report data
(detail flat-wide tables) and write the report data to ClickHouse in quasi-real time.
Hive/Spark jobs are used to generate common report data (detail flat-wide tables)
and batch import the data to ClickHouse.

2025-11-25

12

MapReduce Service
User Guide 1 Overview

Stream computing

Bka

|

Offline data lake ClickHouse

A T

oark

(11 NOTE

Currently, ClickHouse does not support interconnection with Kafka in normal mode or HDFS
in security mode.

1.3.3 DBService

Overview

DBService is a HA storage system for relational databases, which is applicable to
the scenario where a small amount of data (about 10 GB) needs to be stored, for
example, component metadata. DBService can only be used by internal
components of a cluster and provides data storage, query, and deletion functions.

DBService is a basic component of a cluster. Components such as Hive, Hue, Oozie,
Loader, and Redis, and Loader store their metadata in DBService, and provide the
metadata backup and restoration functions by using DBService.

DBService Architecture

DBService in the cluster works in active/standby mode. Two DBServer instances
are deployed and each instance contains three modules: HA, Database, and
FloatlIP.

Figure 1-9 shows the DBService logical architecture.

2025-11-25 13

MapReduce Service
User Guide 1 Overview

Figure 1-9 DBService architecture

Client

Table 1-3 describes the modules shown in Figure 1-9

Table 1-3 Module description

Name Description

HA HA management module. The active/standby DBServer uses the HA
module for management.

Databas | Database module. This module stores the metadata of the Client
e module.

FloatlP | Floating IP address that provides the access function externally. It is
enabled only on the active DBServer instance and is used by the
Client module to access Database.

Client Client using the DBService component, which is deployed on the
component instance node. The client connects to the database by
using FloatIP and then performs metadata adding, deleting, and
modifying operations.

Relationship Between DBService and Other Components

DBService is a basic component of a cluster. Components such as Hive, Hue, Oozie,
Loader, Metadata, and Redis, and Loader store their metadata in DBService, and
provide the metadata backup and restoration functions by using DBService.

2025-11-25 14

MapReduce Service

User Guide

1 Overview

1.3.4 Flink

1.3.4.1 Flink Basic Principles

Overview
Flink is a unified computing framework that supports both batch processing and
stream processing. It provides a stream data processing engine that supports data
distribution and parallel computing. Flink features stream processing and is a top
open source stream processing engine in the industry.
Flink provides high-concurrency pipeline data processing, millisecond-level latency,
and high reliability, making it extremely suitable for low-latency data processing.
Figure 1-10 shows the technology stack of Flink.
Figure 1-10 Technology stack of Flink
Gelly
CEP Tabl Flink ML
Event Processing Relzhoial Machine PmCGr:g:ng Re-lr:g:nal
A e o Data Stream AP| Dataset API
Stream Processing Batch Processing
Core . Rm
Distributed Streaming Dataflow
Local Clust
Dy Singie JVM Standalone Yam
Flink provides the following features in the current version:
e DataStream
e Checkpoint
e Window
e Job Pipeline
e Configuration Table
Other features are inherited from the open source community and are not
enhanced. For details, visit https://ci.apache.org/projects/flink/flink-docs-
release-1.12/.
Flink Architecture

Figure 1-11 shows the Flink architecture.

2025-11-25

15

https://flink.apache.org/
https://ci.apache.org/projects/flink/flink-docs-release-1.12/
https://ci.apache.org/projects/flink/flink-docs-release-1.12/

MapReduce Service
User Guide 1 Overview

Figure 1-11 Flink architecture

(Worker) (Worker)
TaskManager TaskManager
Task | Task | Task Task | Task | Task
Slot Slot Slot Slot Slot Slot
Memory & I'O Manager Memory & VO Manager
Network Manager Data Streams Network Manager
Actor System _ ~ Actor System,
Flink Program e, K
Task Status // Deploy/Stop/
Program Heartbeats J/ Gancel Task
B i R Stalistics L
pooe D S g
Status Statistics & “-_“‘.‘ ;i Checkpoint
T updates results | JobManager g4 s
Optimizer/ Client | ----=-mmmmome- e R
Graph Builder * K
e Actor | | .] Actor System
System | | s -
Dataflow graph Submit job
(send dataflow) Cancel /

update job| | Dataflow Graph | - g poqyjer

oI5

Checkpoint
Coordinator

As shown in the above figure, the entire Flink system consists of three parts:

e C(Client
Flink client is used to submit jobs (streaming jobs) to Flink.
e TaskManager

TaskManager is a service execution node of Flink. It executes specific tasks. A
Flink system can have multiple TaskManagers. These TaskManagers are
equivalent to each other.

e JobManager

JobManager is a management node of Flink. It manages all TaskManagers
and schedules tasks submitted by users to specific TaskManagers. In high-
availability (HA) mode, multiple JobManagers are deployed. Among these
JobManagers, one is selected as the active JobManager, and the others are
standby.

For more information about the Flink architecture, visit https://ci.apache.org/
projects/flink/flink-docs-master/docs/concepts/flink-architecture/.

Flink Principles
e Stream & Transformation & Operator
A Flink program consists of two building blocks: stream and transformation.

a. Conceptually, a stream is a (potentially never-ending) flow of data
records, and a transformation is an operation that takes one or more
streams as input, and produces one or more output streams as a result.

b. When a Flink program is executed, it is mapped to a streaming dataflow.
A streaming dataflow consists of a group of streams and transformation
operators. Each dataflow starts with one or more source operators and
ends in one or more sink operators. A dataflow resembles a directed
acyclic graph (DAG).

2025-11-25 16

https://ci.apache.org/projects/flink/flink-docs-master/docs/concepts/flink-architecture/
https://ci.apache.org/projects/flink/flink-docs-master/docs/concepts/flink-architecture/

MapReduce Service
User Guide

1 Overview

Figure 1-12 shows the streaming dataflow to which a Flink program is

mapped.

Figure 1-12 Example of Flink DataStream

stats.addSink(new Roll

DataStreamStx > lines = e:".add58}1r0?£) } Source
new FlinkFafkaConsumex>(..));
DataStreaxEvent> events =linesmap((line) -> parse(line)): } Transformation
DataStream > STats = events
JkeyBy("id")
.timeWindowl Transformation
.apply(new M onFunctiof)) 7

]- Sink

Source Operator Transformation Operators Sink Operator
///\ \
APP ‘E‘ Map() ‘ — ‘ EeET e ‘ Sink ‘

/

Stream

[

Streaming Dataflow

As shown in Figure 1-12, FlinkKafkaConsumer is a source operator;
Map, KeyBy, TimeWindow, and Apply are transformation operators;
RollingSink is a sink operator.

Pipeline Dataflow

Applications in Flink can be executed in parallel or distributed modes. A
stream can be divided into one or more stream partitions, and an operator
can be divided into multiple operator subtasks.

The executor of streams and operators are automatically optimized based on
the density of upstream and downstream operators.

- Operators with low density cannot be optimized. Each operator subtask is
separately executed in different threads. The number of operator subtasks
is the parallelism of that particular operator. The parallelism (the total
number of partitions) of a stream is that of its producing operator.
Different operators of the same program may have different levels of
parallelism, as shown in Figure 1-13.

Figure 1-13 Operator

StreamingDataflow

KSYBY()NV‘MUW()‘ — ‘ Sink | } (Condensed view)

/apply()

‘ Source |l:T | Map ‘ —
Operator Stream

= — | | R

t \/f Yapoly) N
A
‘ Paraliglism=2
1 KeyBy()f >

Operator Stream
Subtask Partition
Map2 ||| —— Pl Za
v Vapo | ||
2

StreamingDataflow
(Parallelied view)

Parallelism=1

- Operators with high density can be optimized. Flink chains operator
subtasks together into a task, that is, an operator chain. Each operator

2025-11-25

17

MapReduce Service
User Guide

1 Overview

Key Features

chain is executed by one thread on TaskManager, as shown in Figure
1-14.

Figure 1-14 Operator chain

,,,

5 i . | - i StreamingDataflow
| I f ’ }5 }(Condensed view)

| Window(

D { """" \ Yapply() |
N
Operator Chain . T /

\ " Task
il source 1 ‘ Map 1 ‘ — || KeyBy(/
! ! || Window(|1 .
""""""" ['"""'"&i&\ | Vapply() |1
A 1 !
)
Subtask S\// e
(=Thread) s A Subtask 3 i L StreamingDataflow
/! i (=Thread) ! 1 (Parallelied view)
| & N | :
__________________________________ |
Source2 | Map2 | .|| KeyBy(¥ | 5/\
| T——> | Window(|}
'| Yapply() || <
2 |

® |n the upper part of Figure 1-14, the condensed Source and Map
operators are chained into an Operator Chain, that is, a larger
operator. The Operator Chain, KeyBy, and Sink all represent an
operator respectively and are connected with each other through
streams. Each operator corresponds to one task during the running.
Namely, there are three tasks in the upper part.

®" In the lower part of Figure 1-14, each task, except Sink, is paralleled
into two subtasks. The parallelism of the Sink operator is one.

Stream processing

The real-time stream processing engine features high throughput, high
performance, and low latency, which can provide processing capability within
milliseconds.

Various status management

The stream processing application needs to store the received events or
intermediate result in a certain period of time for subsequent access and
processing at a certain time point. Flink provides diverse features for status
management, including:

Multiple basic status types: Flink provides various states for data
structures, such as ValueState, ListState, and MapState. Users can select
the most efficient and suitable status type based on the service model.

Rich State Backend: State Backend manages the status of applications
and performs Checkpoint operations as required. Flink provides different
State Backends. State can be stored in the memory or RocksDB, and
supports the asynchronous and incremental Checkpoint mechanism.

2025-11-25

18

MapReduce Service
User Guide

1 Overview

- Exactly-once state consistency: The Checkpoint and fault recovery
capabilities of Flink ensure that the application status of tasks is
consistent before and after a fault occurs. Flink supports transactional
output for some specific storage devices. In this way, exactly-once output
can be ensured even when a fault occurs.

Various time semantics

Time is an important part of stream processing applications. For real-time
stream processing applications, operations such as window aggregation,
detection, and matching based on time semantics are very common. Flink
provides various time semantics.

- Event-time: The timestamp provided by the event is used for calculation,
making it easier to process the events that arrive at a random sequence
or arrive late.

- Watermark: Flink introduces the concept of Watermark to measure the
development of event time. Watermark also provides flexible assurance
for balancing processing latency and data integrity. When processing
event streams with Watermark, Flink provides multiple processing options
if data arrives after the calculation, for example, redirecting data (side
output) or updating the calculation result.

- Processing-time and Ingestion-time are supported.

- Highly flexible streaming window: Flink supports the time window, count
window, session window, and data-driven customized window. You can
customize the triggering conditions to implement the complex streaming
calculation mode.

Fault tolerance mechanism

In a distributed system, if a single task or node breaks down or is faulty, the
entire task may fail. Flink provides a task-level fault tolerance mechanism,
which ensures that user data is not lost when an exception occurs in a task
and can be automatically restored.

- Checkpoint: Flink implements fault tolerance based on checkpoint. Users
can customize the checkpoint policy for the entire task. When a task fails,
the task can be restored to the status of the latest checkpoint and data
after the snapshot is resent from the data source.

- Savepoint: A savepoint is a consistent snapshot of application status. The
savepoint mechanism is similar to that of checkpoint. However, the
savepoint mechanism needs to be manually triggered. The savepoint
mechanism ensures that the status information of the current stream
application is not lost during task upgrade or migration, facilitating task
suspension and recovery at any time point.

Flink SQL

Table APIs and SQL use Apache Calcite to parse, verify, and optimize queries.
Table APIs and SQL can be seamlessly integrated with DataStream and
DataSet APIs, and support user-defined scalar functions, aggregation
functions, and table value functions. The definition of applications such as
data analysis and ETL is simplified. The following code example shows how to
use Flink SQL statements to define a counting application that records session
times.

SELECT userld, COUNT(¥)

FROM clicks
GROUP BY SESSION(clicktime, INTERVAL '30' MINUTE), userld

2025-11-25

19

MapReduce Service

User Guide

1 Overview

For more information about Flink SQL, see https://ci.apache.org/projects/
flink/flink-docs-master/dev/table/sqlClient.html

e CEPinSQL

Flink allows users to represent complex event processing (CEP) query results
in SQL for pattern matching and evaluate event streams on Flink.

CEP SQL is implemented through the MATCH_RECOGNIZE SQL syntax. The
MATCH_RECOGNIZE clause is supported by Oracle SQL since Oracle
Database 12c and is used to indicate event pattern matching in SQL. The
following is an example of CEP SQL:

SELECT T.aid, T.bid, T.cid
FROM MyTable
MATCH_RECOGNIZE (
PARTITION BY userid
ORDER BY proctime
MEASURES

A.id AS aid,

B.id AS bid,

C.id AS cid
PATTERN (A B C)
DEFINE

A AS name ="'a',

B AS name ='b’,

CAS name ='c'

)AST

1.3.4.2 Flink HA Solution

Flink HA Solution

A Flink cluster has only one JobManager. This has the risks of single point of
failures (SPOFs). There are three modes of Flink: Flink On Yarn, Flink Standalone,
and Flink Local. Flink On Yarn and Flink Standalone modes are based on clusters
and Flink Local mode is based on a single node. Flink On Yarn and Flink
Standalone provide an HA mechanism. With such a mechanism, you can recover
the JobManager from failures and thereby eliminate SPOF risks. This section
describes the HA mechanism of the Flink On Yarn.

Flink supports the HA mode and job exception recovery that highly depend on
ZooKeeper. If you want to enable the two functions, configure ZooKeeper in the
flink-conf.yaml file in advance as follows:

high-availability: zookeeper

high-availability.zookeeper.quorum: ZooKeeper IP address:2187
high-availability.storageDir: hdfs:///flink/recovery

Flink On Yarn

Flink JobManager and Yarn ApplicationMaster are in the same process. Yarn
ResourceManager monitors ApplicationMaster. If ApplicationMaster is abnormal,
Yarn restarts it and restores all JobManager metadata from HDFS. During the
recovery, existing tasks cannot run and new tasks cannot be submitted. ZooKeeper
stores JobManager metadata, such as information about jobs, to be used by the
new JobManager. A TaskManager failure is listened and processed by the
DeathWatch mechanism of Akka on JobManager. When a TaskManager fails, a
container is requested again from Yarn and a TaskManager is created.

For more information about the HA solution of Flink on YARN, visit:

2025-11-25

20

https://ci.apache.org/projects/flink/flink-docs-master/dev/table/sqlClient.html
https://ci.apache.org/projects/flink/flink-docs-master/dev/table/sqlClient.html

MapReduce Service

User Guide

1 Overview

http://hadoop.apache.org/docs/r3.1.1/hadoop-yarn/hadoop-yarn-site/
ResourceManagerHA.html

Standalone

In the standalone mode, multiple JobManagers can be started and ZooKeeper
elects one as the leader JobManager. In this mode, there is a leader JobManager
and multiple standby JobManagers. If the leader JobManager fails, a standby
JobManager takes over the leadership. Figure 1-15 shows the process of a leader/
standby JobManager switchover.

Figure 1-15 Switchover process

Time

t1 T

JobManager

Leader

CRASH

JobManager
Standby

JobManager

Standby

JobManager

JobManager
Standby

JobManager
Standby

JobManager

t2 + Recovering

Leader Standby

JobManager

JobManager 8 JobManager

BT Standby

Leader

Standby

Restoring TaskManager

A TaskManager failure is listened and processed by the DeathWatch mechanism of
Akka on JobManager. If the TaskManager fails, the JobManager creates a
TaskManager and migrates services to the created TaskManager.

Restoring JobManager

Flink JobManager and Yarn ApplicationMaster are in the same process. Yarn
ResourceManager monitors ApplicationMaster. If ApplicationMaster is abnormal,
Yarn restarts it and restores all JobManager metadata from HDFS. During the
recovery, existing tasks cannot run and new tasks cannot be submitted.

Restoring Jobs

If you want to restore jobs, ensure that the startup policy is configured in Flink
configuration files. Supported restart policies are fixed-delay, failure-rate, and

2025-11-25

21

http://hadoop.apache.org/docs/r3.1.1/hadoop-yarn/hadoop-yarn-site/ResourceManagerHA.html
http://hadoop.apache.org/docs/r3.1.1/hadoop-yarn/hadoop-yarn-site/ResourceManagerHA.html

MapReduce Service

User Guide

1 Overview

none. Jobs can be restored only when the policy is configured to fixed-delay or
failure-rate. If the restart policy is configured to none and checkpoint is
configured for jobs, the restart policy is automatically configured to fixed-delay
and the value of restart-strategy.fixed-delay.attempts (which specifies the
number of retry times) is configured to Integer. MAX_VALUE.

For details about the three strategies, visit the Flink official website at https://
ci.apache.org/projects/flink/flink-docs-release-1.12/dev/
task_failure_recovery.html. The configuration strategies are as follows:

restart-strategy: fixed-delay
restart-strategy.fixed-delay.attempts: 3
restart-strategy.fixed-delay.delay: 10 s

Jobs will be restored in the following scenarios:

e If a JobManager fails, all its jobs are stopped, and will be recovered after
another JobManager is created and running.

e If a TaskManager fails, all tasks on the TaskManager are stopped, and will be
started until there are available resources.

e When a task of a job fails, the job is restarted.

(11 NOTE

For details about how to configure job restart strategies, see https://ci.apache.org/
projects/flink/flink-docs-release-1.12/ops/jobmanager_high_availability.html.

1.3.4.3 Relationship with Other Components

Relationship between Flink and Yarn

Flink supports Yarn-based cluster management mode. In this mode, Flink serves as
an application of Yarn and runs on Yarn.

Figure 1-16 shows how Flink interacts with Yarn.

Figure 1-16 Flink interaction with Yarn

Yarn Resource
./4 Manager
//’
2. Register resources and request /
AppMaster container /
/,/ 3. Allocate AppMaster container
/
/
Master / Yarn Yarn Yarn
Node Container Container Container
Flink
Elink \ JobManager " Flink Flink
Yarn Client N Yam APP. 4. Allocate\Worker Task Manager Task Manager
N\ Master
N
\\
— —
N\ /// -
\ -
. N\ / -
1. Store Uberjar and configuration \\ // —
N\ ——
N HDFS = Always Bootstrap containers with

Uberjar and config

2025-11-25

22

https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/task_failure_recovery.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/task_failure_recovery.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/task_failure_recovery.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/ops/jobmanager_high_availability.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/ops/jobmanager_high_availability.html

MapReduce Service

User Guide

1 Overview

1. The Flink Yarn Client first checks whether there are sufficient resources for
starting the Yarn cluster. If yes, the Flink Yarn client uploads JAR packages and
configuration files to HDFS.

2. Flink Yarn client communicates with Yarn ResourceManager to request a
container for starting ApplicationMaster. After all Yarn NodeManagers finish
downloading the JAR package and configuration files, the ApplicationMaster
is started.

3. During the startup, the ApplicationMaster interacts with the Yarn
ResourceManager to request the container for starting a TaskManager. After
the container is ready, the TaskManager process is started.

4. In the Flink Yarn cluster, the ApplicationMaster and Flink JobManager are
running in the same container. The ApplicationMaster informs each
TaskManager of the RPC address of the JobManager. After TaskManagers are
started successfully, they register with the JobManager.

5. After all TaskManagers have registered with the JobManager successfully,
Flink starts up in the Yarn cluster. Then, the Flink Yarn client can submit Flink
jobs to the JobManager, and Flink can perform mapping, scheduling, and
computing for the jobs.

1.3.4.4 Flink Enhanced Open Source Features

1.3.4.4.1 Window

Enhanced Open Source Feature: Window

This section describes the sliding window of Flink and provides the sliding window
optimization method. For details about windows, visit the official website at
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/
operators/windows.html.

Introduction to Window

Data in a window is saved as intermediate results or original data. If you perform
a sum operation (window(SlidingEventTimeWindows.of(Time.seconds(20),
Time.seconds(5))).sum) on data in the window, only the intermediate result will
be retained. If a custom window

(window(SlidingEventTimeWindows.of (Time.seconds(20),
Time.seconds(5))).apply(new UDF)) is used, all original data in the window will
be saved.

If custom windows SlidingEventTimeWindow and
SlidingProcessingTimeWindow are used, data is saved as multiple backups.
Assume that the window is defined as follows:

window(SlidingEventTimeWindows.of (Time.seconds(20), Time.seconds(5))).apply(new
UDFWindowFunction)

If a block of data arrives, it is assigned to four different windows (20/5 = 4). That
is, the data is saved as four copies in the memory. When the window size or
sliding period is set to a large value, data will be saved as excessive copies, causing
redundancy.

2025-11-25

23

https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/operators/windows.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/operators/windows.html

MapReduce Service

User Guide

1 Overview

Figure 1-17 Original structure of a window
80 | 100
| } |1os
90 | i | 110
95 | [115

i I 1 |] b 1 I | | 1

L 4

75 B0 85 90 95 100| 105 110 115 4120 125 430 135 140

Current time point of data

If a data block arrives at the 102nd second, it is assigned to windows [85, 105),
[90, 110), [95, 115), and [100, 120).

Window Optimization

As mentioned in the preceding, there are excessive data copies when original data
is saved in SlidingEventTimeWindow and SlidingProcessingTimeWindow. To resolve
this problem, the window that stores the original data is restructured, which
optimizes the storage and greatly lowers the storage space. The window
optimization scheme is as follows:

1. Use the sliding period as a unit to divide a window into different panes.

A window consists of one or multiple panes. A pane is essentially a sliding
period. For example, the sliding period (namely, the pane) of
window(SlidingEventTimeWindows.of(Time.seconds(20),
Time.seconds.of(5))) lasts for 5 seconds. If this window ranges from [100,
120), this window can be divided into panes [100, 105), [105, 110), [110,
115), and [115, 120).

Figure 1-18 Window optimization

R =2 Window

Before optimization
120 1 I I >
75 80 85 90 8 100 105 110 115 120 125 130 135 140

ﬂ Pane

1 1 L 1
75 80 85 S0 8 100 105 10 115 120 125 130 135 140

After optimization

2. When a data block arrives, it is not assigned to a specific window. Instead,
Flink determines the pane to which the data block belongs based on the
timestamp of the data block, and saves the data block into the pane.

A data block is saved only in one pane. In this case, only a data copy exists in
the memory.

2025-11-25

24

MapReduce Service
User Guide

1 Overview

Figure 1-19 Saving data in a window

80 | | 100
| ¢ Jios
%0 | { | 110

Before optimization

105 110 115 120 125

Time at which the data
block arrives

|
NS T I I

130 135 1

After optimization

40

I
75 80 85 90 95 100 105 110 M5 120 125

Time at which the data
block arrives

I 1
130 135 1

40

3. To trigger a window, compute all panes contained in the window, and
combine all these panes into a complete window.

Figure 1-20 Triggering a window

a0 100

85 | |105

90| 110
95 115

Before optimization

Window to be triggered

75 80 85 90 95 100 105 110 115 120

125 130 1356

%/ Window to be triggered

After optimization

T L T 1 1.
75 80 85 9 100 105 110 115 120

4. If a pane is not required, you can delete it from the memory.

Figure 1-21 Deleting a window

BO|

] 105
a0 110

95 | 115
120

1 1 | 1 L 10 |

I 1
125 130 135

Window that can be deleted

Before reconstruction

75 80 85 60 o5 100 105 110 115 120 125

Pane that can be deleted \:

i
[T

130 135

After reconstruction

140

75 B0 85 80 95 100 105 110 115 120 125

130 135

140

After optimization, the quantity of data copies in the memory and snapshot is

greatly reduced.

2025-11-25

25

MapReduce Service

User Guide

1 Overview

1.3.4.4.2 Job Pipeline

Enhanced Open Source Feature: Job Pipeline

Generally, logic code related to a service is stored in a large JAR package, which is
called Fat JAR. Disadvantages of Fat JAR are as follows:

When service logic becomes more and more complex, the size of the Fat JAR
increases.

Fat Jar makes coordination complex. Developers of all services are working
with the same service logic. Even though the service logic can be divided into
several modules, all modules are tightly coupled with each other. If the
requirement needs to be changed, the entire flow diagram needs to be
replanned.

Splitting of jobs is facing the following problems:

Data transmission between jobs can be achieved using Kafka. For example,
job A transmits data to the topic A in Kafka, and then job B and job C read
data from the topic A in Kafka. This solution is simple and easy to implement,
but the latency is always longer than 100 ms.

Operators are connected using the TCP protocol. In distributed environment,
operators can be scheduled to any node and upstream and downstream
services cannot detect the scheduling.

Job Pipeline

A pipeline consists of multiple Flink jobs connected through TCP. Upstream jobs
can send data to downstream jobs. The flow diagram about data transmission is
called a job pipeline, as shown in Figure 1-22.

Figure 1-22 Job pipeline

Job 4

Job Pipeline Principles

2025-11-25

26

MapReduce Service
User Guide 1 Overview

Figure 1-23 Job pipeline principles

) NettySource
NettySink

NettyClient

NettyServer

Registerserver
Handler NettyServerHandler |~ |

—

RegisterServer
Handler

NettyClientHandler

Internal data of a job
Internal data of a job

»
>

e NettySink and NettySource

In a pipeline, upstream jobs and downstream jobs communicate with each
other through Netty. The Sink operator of the upstream job works as a server
and the Source operator of the downstream job works as a client. The Sink
operator of the upstream job is called NettySink, and the Source operator of
the downstream job is called NettySource.

e NettyServer and NettyClient

NettySink functions as the server of Netty. In NettySink, NettyServer achieves
the function of a server. NettySource functions as the client of Netty. In
NettySource, NettyClient achieves the function of a client.

e Publisher

The job that sends data to downstream jobs through NettySink is called a
publisher.

e Subscriber

The job that receives data from upstream jobs through NettySource is called a
subscriber.

e RegisterServer

RegisterServer is the third-party memory that stores the IP address, port
number, and concurrency information about NettyServer.

e The general outside-in architecture is as follows:
- NettySink->NettyServer->NettyServerHandler
- NettySource->NettyClient->NettyClientHandler

Job Pipeline Functions

e NettySink
NettySink consists of the following major modules:
- RichParallelSinkFunction

NettySink inherits RichParallelSinkFunction and attributes of Sink
operators. The RichParallelSinkFunction APl implements following
functions:

® Starts the NettySink operator.

® Runs the NettySink operator and receives data from the upstream
operator.

2025-11-25 27

MapReduce Service
User Guide 1 Overview

® Cancels the running of NettySink operators.

Following information can be obtained using the attribute of
RichParallelSinkFunction:

® subtaskindex about the concurrency of each NettySink operator.

® Concurrency of the NettySink operator.
- RegisterServerHandler

RegisterServerHandler interacts with the component of RegisterServer
and defines following APIs:

= start();: Starts the RegisterServerHandler and establishes a contact
with the third-party RegisterServer.

" createTopicNode();: Creates a topic node.

® register();: Registers information such as the IP address, port
number, and concurrency to the topic node.

= deleteTopicNode();: Deletes a topic node.

® unregister();: Deletes registration information.

= query();: Queries registration information.

= jsExist();: Verifies that a specific piece of information exists.

® shutdown();: Disables the RegisterServerHandler and disconnects
from the third-party RegisterServer.

(11 NOTE

e RegisterServerHandler APl enables ZooKeeper to work as the handler of
RegisterServer. You can customize your handler as required. Information is
stored in ZooKeeper in the following form:

Namespace

|---Topic-1
|---parallel-1
|---parallel-2

[....

|---parallel-n

|---Topic-2
|---parallel-1
|---parallel-2

|‘—.:—parallel—m
o
e Information about NameSpace can be obtained from the following

parameters of the flink-conf.yaml file:
nettyconnector.registerserver.topic.storage: /flink/nettyconnector

e The simple authentication and security layer (SASL) authentication between
ZookeeperRegisterServerHandler and ZooKeeper is implemented through the
Flink framework.

e Ensure that each job has a unique topic. Otherwise, the subscription
relationship may be unclear.

e When calling shutdown(), ZookeeperRegisterServerHandler deletes the
registration information about the current concurrency, and then attempts to
delete the topic node. If the topic node is not empty, deletion will be
canceled, because not all concurrency has exited.

2025-11-25 28

MapReduce Service

User Guide

1 Overview

NettyServer

NettyServer is the core of the NettySink operator, whose main function is
to create a NettyServer and receive connection requests from NettyClient.
Use NettyServerHandler to send data received from upstream operators
of a same job. The port number and subnet of NettyServer needs to be
configured in the flink-conf.yaml file.

® Port range
nettyconnector.sinkserver.port.range: 28444-28943

® Subnet
nettyconnector.sinkserver.subnet: 10.162.222.123/24

(10 NOTE

The nettyconnector.sinkserver.subnet parameter is set to the subnet
(service IP address) of the Flink client by default. If the client and
TaskManager are not in the same subnet, an error may occur. Therefore,
you need to manually set this parameter to the subnet (service IP address)
of TaskManager.

NettyServerHandler

The handler enables the interaction between NettySink and subscribers.
After NettySink receives messages, the handler sends these messages out.
To ensure data transmission security, this channel is encrypted using SSL.
The nettyconnector.ssl.enabled configures whether to enable SSL
encryption. The SSL encryption is enabled only when
nettyconnector.ssl.enabled is set to true.

e NettySource

NettySource consists of the following major modules:

RichParallelSourceFunction

NettySource inherits RichParallelSinkFunction and attributes of Source
operators. The RichParallelSourceFunction APl implements following
functions:

® Starts the NettySink operator.

® Runs the NettySink operator, receives data from subscribers, and
injects the data to jobs.

® Cancels the running of Source operators.

Following information can be obtained using the attribute of
RichParallelSourceFunction:

® subtaskindex about the concurrency of each NettySource operator.

® Concurrency of the NettySource operator.

When the NettySource operator enters the running stage, the NettyClient
status is monitored. Once abnormality occurs, NettyClient is restarted and
reconnected to NettyServer, preventing data confusion.

RegisterServerHandler

RegisterServerHandler of NettySource has similar function as the
RegisterServerHandler of NettySink. It obtains the IP address, port
number, and information of concurrent operators of each subscribed job
obtained in the NettySource operator.

2025-11-25

29

MapReduce Service
User Guide

1 Overview

NettyClient

NettyClient establishes a connection with NettyServer and uses
NettyClientHandler to receive data. Each NettySource operator must have
a unique name (specified by the user). NettyServer determines whether
each client comes from different NettySources based on unique names.
When a connection is established between NettyClient and NettyServer,
NettyClient is registered with NettyServer and the NettySource name of
NettyClient is transferred to NettyServer.

NettyClientHandler

The NettyClientHandler enables the interaction with publishers and other
operators of the job. When messages are received, NettyClientHandler
transfers these messages to the job. To ensure secure data transmission,
SSL encryption is enabled for the communication with NettySink. The SSL
encryption is enabled only when SSL is enabled and
nettyconnector.ssl.enabled is set to true.

The relationship between the jobs may be many-to-many. The concurrency
between each NettySink and NettySource operator is one-to-many, as shown in
Figure 1-24.

Figure 1-24 Relationship diagram

MNettySink NettySource
TN
I\x . ___Jf
Concurren Concurren
Job 4 i i
. S
Job 5 Concurrency Concurrency
2 2
TN
Job 3 Jediis Concurrency Concurrency
3 3

1.3.4.4.3 Stream SQL Join

Enhanced Open Source Feature: Stream SQL Join

Flink's Table API&SQL is an integrated query API for Scala and Java that allows the
composition of queries from relational operators such as selection, filter, and join
in an intuitive way. For details about Table API & SQL, visit the official website at
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/table/
index.html.

Introduction to Stream SQL Join

2025-11-25

30

https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/table/index.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/table/index.html

MapReduce Service

User Guide

1 Overview

SQL Join is used to query data based on the relationship between columns in two
or more tables. Flink Stream SQL Join allows you to join two streaming tables and
query results from them. Queries similar to the following are supported:

SELECT o.proctime, o.productld, o.orderld, s.proctime AS shipTime

FROM Orders AS o

JOIN Shipments AS s

ON o.orderld = s.orderld

AND o.proctime BETWEEN s.proctime AND s.proctime + INTERVAL '1' HOUR;

Currently, Stream SQL Join needs to be performed within a specified window. The
join operation for data within the window requires at least one equi-join predicate
and a join condition that bounds the time on both sides. Such a condition can be
defined by two appropriate range predicates (<, <=, >=, >), a BETWEEN predicate,
or a single equality predicate that compares the same type of time attributes
(such as processing time or event time) of both input tables.

The following example will join all orders with their corresponding shipments if
the order was shipped four hours after the order was received.

SELECT *

FROM Orders o, Shipments s

WHERE o.id = s.orderld AND

o.ordertime BETWEEN s.shiptime - INTERVAL '4' HOUR AND s.shiptime

L] NOTE
1. Stream SQL Join supports only inner join.
2. The ON clause should include an equal join condition.
3. Time attributes support only the processing time and event time.
4. The window condition supports only the bounded time range, for example, o.proctime

BETWEEN s.proctime - INTERVAL '1' HOUR AND s.proctime + INTERVAL '1' HOUR.
The unbounded range such as o. proctime > s.proctime is not supported. The proctime
attribute of two streams must be included. o.proctime BETWEEN proctime () AND
proctime () + 1 is not supported.

1.3.4.4.4 Flink CEP in SQL

Flink CEP in SQL

Flink allows users to represent complex event processing (CEP) query results in
SQL for pattern matching and evaluate event streams on Flink engines.

SQL Query Syntax

CEP SQL is implemented through the MATCH_RECOGNIZE SQL syntax. The
MATCH_RECOGNIZE clause is supported by Oracle SQL since Oracle Database 12c
and is used to indicate event pattern matching in SQL. Apache Calcite also
supports the MATCH_RECOGNIZE clause.

Flink uses Calcite to analyze SQL query results. Therefore, this operation complies
with the Apache Calcite syntax.

MATCH_RECOGNIZE (
[PARTITION BY expression [, expression]*]
[ORDER BY orderltem [, orderltem]*]
[MEASURES measureColumn [, measureColumn]*]
[ONE ROW PER MATCH | ALL ROWS PER MATCH]
[AFTER MATCH
(SKIP TO NEXT ROW

2025-11-25

31

MapReduce Service

User Guide

1 Overview

| SKIP PAST LAST ROW
| SKIP TO FIRST variable
| SKIP TO LAST variable
| SKIP TO variable)

1

PATTERN (pattern)

[WITHIN intervalLiteral]

[SUBSET subsetltem [, subsetltem 1*]

DEFINE variable AS condition [, variable AS condition]*

)
The syntax elements of the MATCH_RECOGNIZE clause are defined as follows:

(Optional) -PARTITION BY: defines partition columns. This clause is optional. If
this parameter is not defined, the parallelism 1 is used.

(Optional) -ORDER BY: defines the sequence of events in a data flow. The ORDER
BY clause is optional. If it is ignored, non-deterministic sorting is used. Since the
order of events is important in pattern matching, this clause should be specified in
most cases.

(Optional) -MEASURES: specifies the attribute value of the successfully matched
event.

(Optional) -ONE ROW PER MATCH | ALL ROWS PER MATCH: defines how to
output the result. ONE ROW PER MATCH indicates that only one row is output
for each matching. ALL ROWS PER MATCH indicates that one row is output for
each matching event.

(Optional) -AFTER MATCH: specifies the start position for processing after the
next pattern is successfully matched.

-PATTERN: defines the matching pattern as a regular expression. The following
operators can be used in the PATTERN clause: join operators, quantifier operators
(*, +, 2, {n}, {n,}, {n,m}, and {,m}), branch operators (vertical bar |), and differential
operators ('{- -}).

(Optional) -WITHIN: outputs a pattern clause match only when the match occurs
within the specified time.

(Optional) -SUBSET: combines one or more associated variables defined in the
DEFINE clause.

-DEFINE: specifies the Boolean condition, which defines the variables used in the
PATTERN clause.

In addition, the MATCH_RECOGNIZE clause supports the following functions:

-MATCH_NUMBER(): Used in the MEASURES clause to allocate the same number
to each row that is successfully matched.

-CLASSIFIER(): Used in the MEASURES clause to indicate the mapping between
matched rows and variables.

-FIRST() and LAST(): Used in the MEASURES clause to return the value of the
expression evaluated in the first or last row of the row set mapped to the schema
variable.

-NEXT() and PREV(): Used in the DEFINE clause to evaluate an expression using
the previous or next row in a partition.

2025-11-25

32

MapReduce Service
User Guide 1 Overview

-RUNNING and FINAL keywords: Used to determine the semantics required for
aggregation. RUNNING can be used in the MEASURES and DEFINE clauses,
whereas FINAL can be used only in the MEASURES clause.

- Aggregate functions (COUNT, SUM, AVG, MAX, MIN): Used in the MEASURES
and DEFINE clauses.

Query Example

The following query finds the V-shaped pattern in the stock price data flow.

SELECT *
FROM MyTable
MATCH_RECOGNIZE (
ORDER BY rowtime
MEASURES
STRT.name as s_name,
LAST(DOWN.name) as down_name,
LAST(UP.name) as up_name
ONE ROW PER MATCH
PATTERN (STRT DOWN+ UP+)
DEFINE
DOWN AS DOWN.v < PREV(DOWN.v),
UP AS UPv > PREV(UPv)
)

In the following query, the aggregate function AVG is used in the MEASURES
clause of SUBSET E consisting of variables related to A and C.

SELECT *
FROM Ticker
MATCH_RECOGNIZE (
MEASURES
AVG(E.price) AS avgPrice
ONE ROW PER MATCH
AFTER MATCH SKIP PAST LAST ROW
PATTERN (A B+ C)
SUBSET E = (AQ)
DEFINE
A AS A.price < 30,
B AS B.price < 20,
C AS C.price < 30
)

1.3.5 Flume

1.3.5.1 Flume Basic Principles

Flume is a distributed, reliable, and HA system that supports massive log
collection, aggregation, and transmission. Flume supports customization of various
data senders in the log system for data collection. In addition, Flume can roughly
process data and write data to various data receivers (customizable). A Flume-NG
is a branch of Flume. It is simple, small, and easy to deploy. The following figure
shows the basic architecture of the Flume-NG.

2025-11-25 33

https://flume.apache.org/

MapReduce Service

User Guide

1 Overview

Figure 1-25 Flume-NG architecture

—
e
—
-

A Flume-NG consists of agents. Each agent consists of three components (source,
channel, and sink). A source is used for receiving data. A channel is used for
transmitting data. A sink is used for sending data to the next end.

Table 1-4 Module description

Module

Description

Source

A source receives data or generates data by using a special
mechanism, and places the data in batches in one or more
channels. The source can work in data-driven or polling mode.

Typical source types are as follows:

e Sources that are integrated with the system, such as Syslog
and Netcat

e Sources that automatically generate events, such as Exec and
SEQ

e |PC sources that are used for communication between agents,
such as Avro

A source must be associated with at least one channel.

Channel

A channel is used to buffer data between a source and a sink.
The channel caches data from the source and deletes that data
after the sink sends the data to the next-hop channel or final
destination.

Different channels provide different persistence levels.
e Memory channel: non-persistency
e File channel: Write-Ahead Logging (WAL)-based persistence

e JDBC channel: persistency implemented based on the
embedded database

The channel supports the transaction feature to ensure simple
sequential operations. A channel can work with sources and sinks
of any quantity.

2025-11-25

34

MapReduce Service

User Guide 1 Overview
Module Description
Sink A sink sends data to the next-hop channel or final destination.
Once completed, the transmitted data is removed from the
channel.

Typical sink types are as follows:

e Sinks that send storage data to the final destination, such as
HDFS and HBase

e Sinks that are consumed automatically, such as Null Sink

e |PC sinks used for communication between Agents, such as
Avro

A sink must be associated with a specific channel.

As shown in Figure 1-26, a Flume client can have multiple sources, channels, and
sinks.

Figure 1-26 Flume structure

Channel 1 » Sink 1 -
Source » Channel 2 » Sink 2 » JMS
Agent Channel 3 » Sink3
foo \
Y
Source Sink
Agent \\\h Channel 4 //K’
bar

The reliability of Flume depends on transaction switchovers between agents. If the
next agent breaks down, the channel stores data persistently and transmits data
until the agent recovers. The availability of Flume depends on the built-in load
balancing and failover mechanisms. Both the channel and agent can be
configured with multiple entities between which they can use load balancing
policies. Each agent is a Java Virtual Machine (JVM) process. A server can have
multiple agents. Collection nodes (for example, Agents 1, 2, 3) process logs.
Aggregation nodes (for example, Agent 4) write the logs into HDFS. The agent of
each collection node can select multiple aggregation nodes for load balancing.

2025-11-25

35

MapReduce Service

User Guide 1 Overview

Figure 1-27 Flume cascading

| Web server }—*| Avio Sﬁj ‘ | Avro Sink F\ @
i_cnannel —_
A 4 | Web server }—~*| Avro Source ‘ | Avro Sink |
| e
Web server }—\-D| Avro Source ‘ | AVIo Sink I/ Agent 4
Agent 2
Web server }—\"{ Avro Source ‘ | Avro Sink |
Channel
Agent 3
For details about Flume architecture and principles, see https://
flume.apache.org/releases/1.9.0.html.
Principle

Reliability Between Agents

Figure 1-28 shows the data exchange between agents.

Figure 1-28 Data transmission process

Agent1 Agent2
Sink 1 Channel 1 Source 2 Channel 2
'] Start a transaction. i i i
Take events. i i
" Send events. | Start a transaction i
Put events. i’
Commit transaction. Commit transaction.

1. Flume ensures reliable data transmission based on transactions. When data
flows from one agent to another agent, the two transactions take effect. The
sink of Agent 1 (agent that sends a message) needs to obtain a message
from a channel and sends the message to Agent 2 (agent that receives the

2025-11-25 36

https://flume.apache.org/releases/1.9.0.html
https://flume.apache.org/releases/1.9.0.html

MapReduce Service
User Guide 1 Overview

message). If Agent 2 receives and successfully processes the message, Agent 1
will submit a transaction, indicating a successful and reliable data
transmission.

2. When Agent 2 receives the message sent by Agent 1 and starts a new
transaction, after the data is processed successfully (written to a channel),
Agent 2 submits the transaction and sends a success response to Agent 1.

3. Before a commit operation, if the data transmission fails, the last transcription
starts and retransmits the data that fails to be transmitted last time. The
commit operation has written the transaction into a disk. Therefore, the last
transaction can continue after the process fails and restores.

1.3.5.2 Relationship Between Flume and Other Components

Relationship Between Flume and HDFS

If HDFS is configured as the Flume sink, HDFS functions as the final data storage
system of Flume. Flume installs, configures, and writes all transmitted data into
HDFS.

Relationship Between Flume and HBase

If HBase is configured as the Flume sink, HBase functions as the final data storage
system of Flume. Flume writes all transmitted data into HBase based on
configurations.

1.3.5.3 Flume Enhanced Open Source Features

Flume Enhanced Open Source Features

e Improving transmission speed: Multiple lines instead of only one line of data
can be specified as an event. This improves the efficiency of code execution
and reduces the times of disk writes.

e Transferring ultra-large binary files: According to the current memory usage,
Flume automatically adjusts the memory used for transferring ultra-large
binary files to prevent out-of-memory.

e Supporting the customization of preparations before and after transmission:
Flume supports customized scripts to be run before or after transmission for
making preparations.

e Managing client alarms: Flume receives Flume client alarms through
MonitorServer and reports the alarms to the alarm management center on
MRS Manager.

1.3.6 HBase

1.3.6.1 HBase Basic Principles

HBase undertakes data storage. HBase is an open source, column-oriented,
distributed storage system that is suitable for storing massive amounts of
unstructured or semi-structured data. It features high reliability, high performance,

2025-11-25 37

MapReduce Service
User Guide 1 Overview

and flexible scalability, and supports real-time data read/write. For more
information about HBase, see https://hbase.apache.org/.

Typical features of a table stored in HBase are as follows:

e Big table (BigTable): One table contains hundred millions of rows and millions
of columns.

e Column-oriented: Column-oriented storage, retrieval, and permission control
e Sparse: Null columns in the table do not occupy any storage space.

MRS HBase supports secondary indexing to allow indexes to be created for
column values so that data can be filtered by column using native HBase APIs.

HBase Architecture

An HBase cluster consists of active and standby HMaster processes and multiple
RegionServer processes.

Figure 1-29 HBase architecture

ZooKeeper
cluster

HBase cluster

Active Standby
Hiaster Hiviaster

Client

HDFS
cluster

2025-11-25 38

https://hbase.apache.org/

MapReduce Service

User Guide

1 Overview

Table 1-5 Module description

Module

Description

Master

Master is also called HMaster. In HA mode, HMaster consists of
an active HMaster and a standby HMaster.

e Active Master: manages RegionServer in HBase, including the
creation, deletion, modification, and query of a table,
balances the load of RegionServer, adjusts the distribution of
Region, splits Region and distributes Region after it is split,
and migrates Region after RegionServer expires.

e Standby Master: takes over services when the active HMaster
is faulty. The original active HMaster demotes to the standby
HMaster after the fault is rectified.

Client

Client communicates with Master for management and with
RegionServer for data protection by using the Remote Procedure
Call (RPC) mechanism of HBase.

RegionServe
r

RegionServer provides read and write services of table data as a
data processing and computing unit in HBase.

RegionServer is deployed with DataNodes of HDFS clusters to
store data.

ZooKeeper
cluster

ZooKeeper provides distributed coordination services for
processes in HBase clusters. Each RegionServer is registered with
ZooKeeper so that the active Master can obtain the health status
of each RegionServer.

HDFS cluster

HDFS provides highly reliable file storage services for HBase. All
HBase data is stored in the HDFS.

HBase Principles

HBase Data Model

HBase stores data in tables, as shown in Figure 1-30. Data in a table is
divided into multiple Regions, which are allocated by Master to RegionServers
for management.

Each Region contains data within a RowKey range. An HBase data table
contains only one Region at first. As the number of data increases and
reaches the upper limit of the Region capacity, the Region is split into two
Regions. You can define the RowKey range of a Region when creating a table
or define the Region size in the configuration file.

2025-11-25

39

MapReduce Service

User Guide 1 Overview
Figure 1-30 HBase data model
URI Content Column 1 Column 2
CrowlT T 12 T www com <m0 T T T T T
I |
- |

i 11 WAV com <html= Region i

| [

|__I'Di\!\ﬂ.___.5

| row M+1 1 1|

| owhs2 3 :

| = Region |

| 11 1

| 1

| I

|__r_cl_:_N_______t____________-___-_______-_-_i

W I
: Region |
y - - |- L 1 | - 1
Table 1-6 Concepts

Module Description

RowKey Similar to the primary key in a relationship table, which is the
unique ID of the data in each row. A RowKey can be a string,
integer, or binary string. All records are stored after being
sorted by RowKey.

Timestamp | The timestamp of a data operation. Data can be specified
with different versions by time stamp. Data of different
versions in each cell is stored by time in descending order.

Cell Minimum storage unit of HBase, consisting of keys and
values. A key consists of six fields, namely row, column family,
column qualifier, timestamp, type, and MVCC version. Values
are the binary data objects.

Column One or multiple horizontal column families form a table. A

Family column family can consist of multiple random columns. A
column is a label under a column family, which can be added
as required when data is written. The column family supports
dynamic expansion so the number and type of columns do
not need to be predefined. Columns of a table in HBase are
sparsely distributed. The number and type of columns in
different rows can be different. Each column family has the
independent time to live (TTL). You can lock the row only.
Operations on the row in a column family are the same as
those on other rows.

Column Similar to traditional databases, HBase tables also use

columns to store data of the same type.

RegionServer Data Storage

2025-11-25

40

MapReduce Service

User Guide 1 Overview
RegionServer manages the regions allocated by HMaster. Figure 1-31 shows
the data storage structure of RegionServer.

Figure 1-31 RegionServer data storage structure

RegionServer
HLog
Region
MemStore
StoreFile StoreFile
Table 1-7 lists each component of Region described in Figure 1-31.
Table 1-7 Region structure description

Module | Description

Store A Region consists of one or multiple Stores. Each Store maps a
column family in Figure 1-30.

MemSto | A Store contains one MemStore. The MemStore caches data

re inserted to a Region by the client. When the MemStore capacity
reaches the upper limit, RegionServer flushes data in MemStore
to the HDFS.

StoreFile | The data flushed to the HDFS is stored as a StoreFile in the
HDFS. As more data is inserted, multiple StoreFiles are
generated in a Store. When the number of StoreFiles reaches the
upper limit, RegionServer merges multiple StoreFiles into a big
StoreFile.

HFile HFile defines the storage format of StoreFiles in a file system.
HFile is the underlying implementation of StoreFile.

HLog HLogs prevent data loss when RegionServer is faulty. Multiple
Regions in a RegionServer share the same HLog.

e Metadata Table
The metadata table is a special HBase table, which is used by the client to
locate a region. Metadata table includes hbase:meta table to record region
2025-11-25 41

MapReduce Service

User Guide 1 Overview
information of user tables, such as the region location and start and end
RowKey.

Figure 1-32 shows the mapping relationship between metadata tables and
user tables.
Figure 1-32 Mapping relationships between metadata tables and user tables
User table 1
Table hbase:meta @~ _o4——— == ==
User table N
— Mapping
P Metadata table 00— ————
[] Usertabe ("]
e Data Operation Process
Figure 1-33 shows the HBase data operation process.
Figure 1-33 Data processing
1
T SR ZooKeeper
cluster
RegionServer 1 RegionServer 2 RegionServer N
User table Metadata table o9 =+ Metadata table
Region hbase meta hbase:meta
2025-11-25 42

MapReduce Service

User Guide

1 Overview

a. When you add, delete, modify, and query HBase data, the HBase client
first connects to ZooKeeper to obtain information about the RegionServer
where the hbase:meta table is located. If you modify the namespace,
such as creating and deleting a table, you need to access HMaster to
update the meta information.

b. The HBase client connects to the RegionServer where the region of the
hbase:meta table is located and obtains the RegionServer location where
the region of the user table resides.

¢. Then the HBase client connects to the RegionServer where the region of
the user table is located and issues a data operation command to the
RegionServer. The RegionServer executes the command.

To improve data processing efficiency, the HBase client caches region
information of the hbase:meta table and user table. When an application
initiates a second data operation, the HBase client queries the region
information from the memory. If no match is found in the memory, the HBase
client performs the preceding operations to obtain region information.

1.3.6.2 HBase HA Solution

HBase HA

HMaster in HBase allocates Regions. When one RegionServer service is stopped,
HMaster migrates the corresponding Region to another RegionServer. The
HMaster HA feature is brought in to prevent HBase functions from being affected
by the HMaster single point of failure (SPOF).

Figure 1-34 HMaster HA implementation architecture

2. When the active HMaster
is faulty, automatic backup

Active HMaster sters. -~ Standby HMaster

1. The active HMaster
writes states into
ZooKeeper.

ZooKeeper cluster

The HMaster HA architecture is implemented by creating the ephemeral
ZooKeeper node in a ZooKeeper cluster.

Upon startup, HMaster nodes try to create a master znode in the ZooKeeper
cluster. The HMaster node that creates the master znode first becomes the active
HMaster, and the other is the standby HMaster.

It will add watch events to the master node. If the service on the active HMaster is
stopped, the active HMaster disconnects from the ZooKeeper cluster. After the

2025-11-25

43

MapReduce Service

User Guide

1 Overview

session expires, the active HMaster disappears. The standby HMaster detects the
disappearance of the active HMaster through watch events and creates a master
node to make itself be the active one. Then, the active/standby switchover
completes. If the failed node detects existence of the master node after being
restarted, it enters the standby state and adds watch events to the master node.

When the client accesses the HBase, it first obtains the HMaster's address based
on the master node information on the ZooKeeper and then establishes a
connection to the active HMaster.

1.3.6.3 Relationship with Other Components

Relationship Between HDFS and HBase

HDFS is the subproject of Apache Hadoop. HBase uses the Hadoop Distributed File
System (HDFS) as the file storage system. HBase is located in structured storage
layer. The HDFS provides highly reliable support for lower-layer storage of HBase.
All the data files of HBase can be stored in the HDFS, except some log files
generated by HBase.

Relationship Between ZooKeeper and HBase

Figure 1-35 describes the relationship between ZooKeeper and HBase.

Figure 1-35 Relationship between ZooKeeper and HBase

RegionServer writes its
state information to
_ ZooKeeper.

The active HMaster
monitors RegionServer.

@S}

& e?
@ A% Z

N ‘z‘é\@e? 2 @“’{Q

& '8& .

&
__ HMaster HMaster

(Active) (Standby)

— " Input message
_______ - Monitoring

1. HRegionServer registers itself to ZooKeeper in Ephemeral node. ZooKeeper
stores the HBase information, including the HBase metadata and HMaster
addresses.

2. HMaster detects the health status of each HRegionServer using ZooKeeper,
and monitors them.

2025-11-25

44

MapReduce Service
User Guide 1 Overview

3. HBase can deploy multiple HMasters (like HDFS NameNode). When the
active HMatser node is faulty, the standby HMaster node obtains the state
information of the entire cluster using ZooKeeper, which means that HBase
single point faults can be avoided using ZooKeeper.

1.3.6.4 HBase Enhanced Open Source Features

Hindex

HBase is a distributed storage database of the Key-Value type. Data of a table is
sorted in the alphabetic order based on row keys. If you query data based on a
specified row key or scan data in the scale of a specified row key, HBase can
quickly locate the target data, enhancing the efficiency.

However, in most actual scenarios, you need to query the data of which the
column value is XXX HBase provides the Filter feature to query data with a
specific column value. All data is scanned in the order of row keys, and then the
data is matched with the specific column value until the required data is found.
The Filter feature scans some unnecessary data to obtain the only required data.
Therefore, the Filter feature cannot meet the requirements of frequent queries
with high performance standards.

HBase HIndex is designed to address these issues. HBase Hindex enables HBase to
query data based on specific column values.

Figure 1-36 Hindex

_ Column Family A Column Family B

- RowKey AName A:Addr AAge B:Mobile B:Email
When Hindex is not used, —_—
the Mobile field needs to 001 ZhangShan 35 18623532
be matched in the entire .
table by row to search the :>| 002 | Lisi 27 ‘18623542 | - ‘
specified mobile number 003 Wang\Wu 29 18635355
such as 18623542, which
pralongs dglay. [| - |

Column Family B Hindex
Column
Family D

RowKey A'Name A:Addr AAge B:Mobile B:Email
tho ndex dete m o able |, " Zhangshan . ¥
to locate the phone :H LiSi 27 \13623542 | - - ‘
{’#emsgmwhhr‘;:gla;ﬂ” 5 003 WangWu 29 18635355 - 7
shortens delay. hindex-row-001 -
hindex-row-002 - ‘

hindex-row-003 -

e Rolling upgrade is not supported for index data.
e Restrictions of combined indexes:

- All columns involved in combined indexes must be entered or deleted in a
single mutation. Otherwise, inconsistency will occur.
Index: IDX1=>cf1:[q1->datatype],[q2];cf2:[q2->datatype]
Correct write operations:

Put put = new Put(Bytes.toBytes("row"));
put.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q1"), Bytes.toBytes("valueA"));

2025-11-25 45

MapReduce Service
User Guide

1 Overview

put.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q2"), Bytes.toBytes("valueB"));
put.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q2"), Bytes.toBytes("valueC"));

table.put(put);

Incorrect write operations:
Put put1 = new Put(Bytes.toBytes("row"));

putl.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q1"), Bytes.toBytes("valueA"));

table.put(put?);
Put put2 = new Put(Bytes.toBytes("row"));

put2.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q2"), Bytes.toBytes("valueB"));

table.put(put2);
Put put3 = new Put(Bytes.toBytes("row"));

put3.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q2"), Bytes.toBytes("valueC"));

table.put(put3);

- The combined conditions-based query is supported only when the
combined index column contains filter criteria, or StartRow and StopRow

are not specified for some index columns.
Index: IDX1=>cf1:[q1->datatype],[q2];cf2:[q1->datatype]
Correct query operations:

scan 'table', {FILTER=>"SingleColumnValueFilter('cf1','q1',>=,'binary:valueA' true,true) AND

SingleColumnValueFilter('cf1','q2',>=,'binary:valueB',true,true) AND
SingleColumnValueFilter('cf2','q1',>=,'binary:valueC',true,true) "}

scan 'table', {FILTER=>"SingleColumnValueFilter('cf1','q1',=,'binary:valueA’ true,true) AND

SingleColumnValueFilter('cf1','q2',>=,'binary:valueB',true,true)" }

scan 'table', {FILTER=>"SingleColumnValueFilter('cf1','q1',>=,'binary:valueA' true,true) AND

SingleColumnValueFilter('cf1','q2',>=,'binary:valueB',true,true) AND

SingleColumnValueFilter('cf2','q1',>=,'binary:valueC',true,true)",STARTROW=>'row001',STOPROW

=>'row100'}
Incorrect query operations:

scan 'table', {FILTER=>"SingleColumnValueFilter('cf1','q1',>=,'binary:valueA' true,true) AND

SingleColumnValueFilter('cf1','q2',>=,'binary:valueB',true,true) AND
SingleColumnValueFilter('cf2','q1',>=,'binary:valueC',true,true) AND
SingleColumnValuefFilter('cf2','q2',>=,'binary:valueD',true,true)"}

scan 'table', {FILTER=>"SingleColumnValueFilter('cf1','q1',=,'binary:valueA’ true,true) AND

SingleColumnValueFilter('cf2','q1',>=,'binary:valueC',true,true)" }

scan 'table', {FILTER=>"SingleColumnValueFilter('cf1','q1',=,'binary:valueA’ true,true) AND

SingleColumnValuefFilter('cf2','q2',>=,'binary:valueD',true,true)" }

scan 'table’, {FILTER=>"SingleColumnValueFilter('cf1','q1',=,'binary:valueA’ true,true) AND
SingleColumnValueFilter('cf1','q2',>=,'binary:valueB',true,true)" ,STARTROW=>'row001',STOPROW

=>'row100' }

Do not explicitly configure any split policy for tables with index data.

Other mutation operations, such as increment and append, are not

supported.

Index of the column with maxVersions greater than 1 is not supported.

The data index column in a row cannot be updated.
Index 1: IDX1=>cf1:[q1->datatype],[q2];cf2:[q1->datatype]
Index 2: IDX2=>cf2:[q2->datatype]

Correct update operations:

Put put1 = new Put(Bytes.toBytes("row"));

put1.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q1"), Bytes.toBytes("valueA"));
put1.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q2"), Bytes.toBytes("valueB"));
put1.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q1"), Bytes.toBytes("valueC"));
put1.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q2"), Bytes.toBytes("valueD"));
table.put(put?);

2025-11-25

46

MapReduce Service
User Guide

1 Overview

Put put2 = new Put(Bytes.toBytes("row"));

put2.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q3"), Bytes.toBytes("valueE"));
put2.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q3"), Bytes.toBytes("valueF"));
table.put(put2);

Incorrect update operations:

Put put1 = new Put(Bytes.toBytes("row"));

put1.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q1"), Bytes.toBytes("valueA"));
put1.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q2"), Bytes.toBytes("valueB"));
put1.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q1"), Bytes.toBytes("valueC"));
put1.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q2"), Bytes.toBytes("valueD"));
table.put(put?);

Put put2 = new Put(Bytes.toBytes("row"));

put2.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q1"), Bytes.toBytes("valueA_new"));
put2.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("q2"), Bytes.toBytes("valueB_new"));
put2.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q1"), Bytes.toBytes("valueC_new"));
put2.addColumn(Bytes.toBytes("cf2"), Bytes.toBytes("q2"), Bytes.toBytes("valueD_new"));
table.put(put2);

The table to which an index is added cannot contain a value greater than 32
KB.

If user data is deleted due to the expiration of the column-level TTL, the
corresponding index data is not deleted immediately. It will be deleted in the
major compaction operation.

The TTL of the user column family cannot be modified after the index is
created.

- If the TTL of a column family increases after an index is created, delete
the index and re-create one. Otherwise, some generated index data will
be deleted before user data is deleted.

- If the TTL value of the column family decreases after an index is created,
the index data will be deleted after user data is deleted.

The index query does not support the reverse operation, and the query results
are disordered.

The index does not support the clone snapshot operation.

The index table must use HindexWALPlayer to replay logs. WALPlayer cannot

be used to replay logs.

hbase org.apache.hadoop.hbase.hindex.mapreduce.HIndexWALPlayer

Usage: WALPlayer [options] <wal inputdir> <tables> [<tableMappings>]
Read all WAL entries for <tables>.

If no tables ("") are specific, all tables are imported.

(Careful, even -ROOT- and hbase:meta entries will be imported in that case.)
Otherwise <tables> is a comma separated list of tables.

The WAL entries can be mapped to new set of tables via <tableMapping>.
<tableMapping> is a command separated list of targettables.
If specified, each table in <tables> must have a mapping.

By default WALPlayer will load data directly into HBase.

To generate HFiles for a bulk data load instead, pass the option:
-Dwal.bulk.output=/path/for/output
(Only one table can be specified, and no mapping is allowed!)

Other options: (specify time range to WAL edit to consider)
-Dwal.start.time=[date|ms]
-Dwal.end.time=[date|ms]

For performance also consider the following options:
-Dmapreduce.map.speculative=false
-Dmapreduce.reduce.speculative=false

When the deleteall command is executed for the index table, the
performance is low.

2025-11-25

47

MapReduce Service
User Guide 1 Overview

e The index table does not support HBCK. To use HBCK to repair the index
table, delete the index data first.

Multi-point Division

When you create tables that are pre-divided by region in HBase, you may not
know the data distribution trend so the division by region may be inappropriate.
After the system runs for a period, regions need to be divided again to achieve
better performance. Only empty regions can be divided.

The region division function delivered with HBase divides regions only when they
reach the threshold. This is called "single point division".

To achieve better performance when regions are divided based on user
requirements, multi-point division is developed, which is also called "dynamic
division". That is, an empty region is pre-divided into multiple regions to prevent
performance deterioration caused by insufficient region space.

Figure 1-37 Multi-point division

Empty Region

Connection Limitation

Too many sessions mean that too many queries and MapReduce tasks are running
on HBase, which compromises HBase performance and even causes service
rejection. You can configure parameters to limit the maximum number of sessions
that can be established between the client and the HBase server to achieve HBase
overload protection.

Improved Disaster Recovery

The disaster recovery (DR) capabilities between the active and standby clusters
can enhance HA of the HBase data. The active cluster provides data services and
the standby cluster backs up data. If the active cluster is faulty, the standby cluster
takes over data services. Compared with the open source replication function, this
function is enhanced as follows:

1. The standby cluster whitelist function is only applicable to pushing data to a
specified cluster IP address.

2. In the open source version, replication is synchronized based on WAL, and
data backup is implemented by replaying WAL in the standby cluster. For

2025-11-25 48

MapReduce Service

User Guide

1 Overview

HBase MOB

BulkLoad operations, since no WAL is generated, data will not be replicated to
the standby cluster. By recording BulkLoad operations on the WAL and
synchronizing them to the standby cluster, the standby cluster can read
BulkLoad operation records through WAL and load HFile in the active cluster
to the standby cluster to implement data backup.

3. In the open source version, HBase filters ACLs. Therefore, ACL information will
not be synchronized to the standby cluster. By adding a filter
(org.apache.hadoop.hbase.replication.SystemTableWALEntryFilterAllowAC
L), ACL information can be synchronized to the standby cluster. You can
configure hbase.replication.filter.sytemWALEnNtryFilter to enable the filter
and implement ACL synchronization.

4. As for read-only restriction of the standby cluster, only super users within the
standby cluster can modify the HBase of the standby cluster. In other words,
HBase clients outside the standby cluster can only read the HBase of the
standby cluster.

In the actual application scenarios, data in various sizes needs to be stored, for
example, image data and documents. Data whose size is smaller than 10 MB can
be stored in HBase. HBase can yield the best read-and-write performance for data
whose size is smaller than 100 KB. If the size of data stored in HBase is greater
than 100 KB or even reaches 10 MB and the same number of data files are
inserted, the total data amount is large, causing frequent compaction and split,
high CPU consumption, high disk 1/O frequency, and low performance.

MOB data (whose size ranges from 100 KB to 10 MB) is stored in a file system
(for example, HDFS) in HFile format. The expiredMobFileCleaner and Sweeper
tools are used to manage HFiles and save the address and size information about
the HFiles to the store of HBase as values. This greatly decreases the compaction
and split frequency in HBase and improves performance.

As shown in Figure 1-38, MOB indicates mobstore stored on HRegion. Mobstore
stores keys and values. Wherein, a key is the corresponding key in HBase, and a
value is the reference address and data offset stored in the file system. When
reading data, mobstore uses its own scanner to read key-value data objects and
uses the address and data size information in the value to obtain target data from
the file system.

2025-11-25

49

MapReduce Service

User Guide 1 Overview
Figure 1-38 MOB data storage principle
HRegionServer HRegionServer
HRegion HRegion HRegion
[=)] o
8 s . MOB
I N E
HFS

HBase FileStream (HFS) is an independent HBase file storage module. It is used in
MRS upper-layer applications by encapsulating HBase and HDFS interfaces to
provide these upper-layer applications with functions such as file storage, read,
and deletion.

In the Hadoop ecosystem, the HDFS and HBase face tough problems in mass file
storage in some scenarios:

e If a large number of small files are stored in HDFS, the NameNode will be
under great pressure.

e Some large files cannot be directly stored on HBase due to HBase APIs and
internal mechanisms.

HFS is developed for the mixed storage of massive small files and some large files
in Hadoop. Simply speaking, massive small files (smaller than 10 MB) and some
large files (greater than 10 MB) need to be stored in HBase tables.

For such a scenario, HFS provides unified operation APIs similar to HBase function
APIs.

Multiple RegionServers Deployed on the Same Server

Multiple RegionServers can be deployed on one node to improve HBase resource
utilization.

If only one RegionServer is deployed, resource utilization is low due to the
following reasons:

1. A RegionServer supports a limited number of regions, and therefore memory
and CPU resources cannot be fully used.

2. Asingle RegionServer supports a maximum of 20 TB data, of which two
copies require 40 TB, and three copies require 60 TB. In this case, 96 TB
capacity cannot be used up.

2025-11-25

50

MapReduce Service

User Guide

1 Overview

3. Poor write performance: One RegionServer is deployed on a physical server,
and only one HLog exists. Only three disks can be written at the same time.

The HBase resource utilization can be improved when multiple RegionServers are
deployed on the same server.

1. A physical server can be configured with a maximum of five RegionServers.
The number of RegionServers deployed on each physical server can be
configured as required.

Resources such as memory, disks, and CPUs can be fully used.

3. A physical server supports a maximum of five HLogs and allows data to be
written to 15 disks at the same time, significantly improving write
performance.

Figure 1-39 Improved HBase resource utilization

HBase HBase HBase
Host Host Host Host Host Host

E
e
H
H
w
e
H
E
E

‘DN“DN“DN“DN“DN“DN"DN“DN‘
HBase HBase HBase
Host Host Host Host Host Host Host Host Host
RS RS RS

e o |
===

RS

s e |
= I= =
= I= =

‘DN‘ ‘DN‘ ‘DN‘ ‘DN‘ ‘DN‘ ‘DN‘

RS RS
RS RS
RS RS
RS RS

HDFS

)
E
ﬂ
llllﬂ

EX

HBase Dual-Read

In the HBase storage scenario, it is difficult to ensure 99.9% query stability due to
GC, network jitter, and bad sectors of disks. The HBase dual-read feature is added
to meet the requirements of low glitches during large-data-volume random read.

The HBase dual-read feature is based on the DR capability of the active and
standby clusters. The probability that the two clusters generate glitches at the
same time is far less than that of one cluster. The dual-cluster concurrent access
mode is used to ensure query stability. When a user initiates a query request, the
HBase service of the two clusters is queried at the same time. If the active cluster
does not return any result after a period of time (the maximum tolerable glitch

2025-11-25

51

MapReduce Service

User Guide 1 Overview
time), the data of the cluster with the fastest response can be used. The following
figure shows the working principle.

W Offline
write
: @
Ve
) ?‘e'a |
Dual Client v Replication
. 7=~ Real-time read
- Standby |
' Cluster
1.3.7 HDFS

1.3.7.1 HDFS Basic Principles

Architecture

Hadoop Distributed File System (HDFS) implements reliable and distributed read/
write of massive amounts of data. HDFS is applicable to the scenario where data
read/write features "write once and read multiple times". However, the write
operation is performed in sequence, that is, it is a write operation performed
during file creation or an adding operation performed behind the existing file.
HDFS ensures that only one caller can perform write operation on a file but
multiple callers can perform read operation on the file at the same time.

HDFS consists of active and standby NameNodes and multiple DataNodes, as
shown in Figure 1-40.

HDFS works in master/slave architecture. NameNodes run on the master (active)
node, and DataNodes run on the slave (standby) node. ZKFC should run along
with the NameNodes.

The communication between NameNodes and DataNodes is based on
Transmission Control Protocol (TCP)/Internet Protocol (IP). The NameNode,
DataNode, ZKFC, and JournalNode can be deployed on Linux servers.

2025-11-25

52

MapReduce Service
User Guide 1 Overview

Figure 1-40 HA HDFS architecture

ZK
cluster

Shared storage

ZKI:C - -- - --_-_-_-_-- ZKFC

NameNode NameNode
(Active) (Standby)
DataNode DataNode ---~------------ DataNode

Table 1-8 describes the functions of each module shown in Figure 1-40.

Table 1-8 Module description

Modu | Description
le

Name | A NameNode is used to manage the namespace, directory structure,
Node | and metadata information of a file system and provide the backup
mechanism. The NameNode is classified into the following two types:

e Active NameNode: manages the namespace, maintains the directory
structure and metadata of file systems, and records the mapping
relationships between data blocks and files to which the data blocks
belong.

e Standby NameNode: synchronizes with the data in the active
NameNode, and takes over services from the active NameNode
when the active NameNode is faulty.

e Observer NameNode: synchronizes with the data in the active
NameNode, and processes read requests from the client.

DataN | A DataNode is used to store data blocks of each file and periodically
ode report the storage status to the NameNode.

Journa | In HA cluster, synchronizes metadata between the active and standby
INode | NameNodes.

ZKFC | ZKFC must be deployed for each NameNode. It monitors NameNode
status and writes status information to ZooKeeper. ZKFC also has
permissions to select the active NameNode.

2025-11-25 53

MapReduce Service

User Guide 1 Overview
Modu | Description
le
ZK ZooKeeper is a coordination service which helps the ZKFC to elect the
Cluste | active NameNode.
r
HttpF | HttpFS is a single stateless gateway process which provides the
S WebHDFS REST API for external processes and FileSystem API for the
gatew | HDFS. HttpFS is used for data transmission between different versions
ay of Hadoop. It is also used as a gateway to access the HDFS behind a

firewall.

e HDFS HA Architecture

HA is used to resolve the SPOF problem of NameNode. This feature provides
a standby NameNode for the active NameNode. When the active NameNode
is faulty, the standby NameNode can quickly take over to continuously
provide services for external systems.

In a typical HDFS HA scenario, there are usually two NameNodes. One is in
the active state, and the other in the standby state.

A shared storage system is required to support metadata synchronization of
the active and standby NameNodes. This version provides Quorum Journal
Manager (QJM) HA solution, as shown in Figure 1-41. A group of
JournalNodes are used to synchronize metadata between the active and
standby NameNodes.

Generally, an odd number (2N+1) of JournalNodes are configured, and at
least three JournalNodes are required. For one metadata update message,
data writing is considered successful as long as data writing is successful on N
+1 JournalNodes. In this case, data writing failure of a maximum of N
JournalNodes is allowed. For example, when there are three JournalNodes,
data writing failure of one JournalNode is allowed; when there are five
JournalNodes, data writing failure of two JournalNodes is allowed.

JournalNode is a lightweight daemon process and shares a host with other
services of Hadoop. It is recommended that the JournalNode be deployed on
the control node to prevent data writing failure on the JournalNode during
massive data transmission.

Figure 1-41 QIM-based HDFS architecture

JournalNode JourmalNode JournalNode
Write] l Read
NameNode NameNode
(Active) (Standby)
| Block reports to the active and standby NameNodes.
DataNode DataNode DataNode DataNode

2025-11-25

54

MapReduce Service
User Guide 1 Overview

Principle

MRS uses the HDFS copy mechanism to ensure data reliability. One backup file is
automatically generated for each file saved in HDFS, that is, two copies are
generated in total. The number of HDFS copies can be queried using the
dfs.replication parameter.

e When the Core node specification of the MRS cluster is set to non-local hard
disk drive (HDD) and the cluster has only one Core node, the default number
of HDFS copies is 1. If the number of Core nodes in the cluster is greater than
or equal to 2, the default number of HDFS copies is 2.

e When the Core node specification of the MRS cluster is set to local disk and
the cluster has only one Core node, the default number of HDFS copies is 1. If
there are two Core nodes in the cluster, the default number of HDFS copies is
2. If the number of Core nodes in the cluster is greater than or equal to 3, the
default number of HDFS copies is 3.

Figure 1-42 HDFS architecture

Metadata (Name,replicas,...):

NameNode

/home/foo/data,3,...
el Block ops
Read DataNodes DataNodes
D |:| Replication
Blocks
: / \ Y.
Y N
Rack 1 Write Rack 2

Client

The HDFS component of MRS supports the following features:

e Supports erasure code, reducing data redundancy to 50% and improving
reliability. In addition, the striped block storage structure is introduced to
maximize the use of the capability of a single node and multiple disks in an
existing cluster. After the coding process is introduced, the data write
performance is improved, and the performance is close to that with the multi-
copy redundancy.

e Supports balanced node scheduling on HDFS and balanced disk scheduling on
a single node, improving HDFS storage performance after node or disk scale-
out.

For details about the Hadoop architecture and principles, see https://
hadoop.apache.org/.

2025-11-25 55

http://hadoop.apache.org/
http://hadoop.apache.org/

MapReduce Service

User Guide

1 Overview

1.3.7.2 HDFS HA Solution

HDFS HA Background

In versions earlier than Hadoop 2.0.0, SPOF occurs in the HDFS cluster. Each
cluster has only one NameNode. If the host where the NameNode is located is
faulty, the HDFS cluster cannot be used unless the NameNode is restarted or
started on another host. This affects the overall availability of HDFS in the
following aspects:

1. In the case of an unplanned event such as host breakdown, the cluster would
be unavailable until the NameNode is restarted.

2. Planned maintenance tasks, such as software and hardware upgrade, will
cause the cluster stop working.

To solve the preceding problems, the HDFS HA solution enables a hot-swap
NameNode backup for NameNodes in a cluster in automatic or manual
(configurable) mode. When a machine fails (due to hardware failure), the active/
standby NameNode switches over automatically in a short time. When the active
NameNode needs to be maintained, the administrator can manually perform an
active/standby NameNode switchover to ensure cluster availability during
maintenance.

For details about HDFS automatic failover, see

http://hadoop.apache.org/docs/r3.1.1/hadoop-project-dist/hadoop-hdfs/
HDFSHighAvailabilityWithQJM.html#Automatic_Failover

HDFS HA Implementation

Figure 1-43 Typical HA deployment

ZooKeeper ZooKeeper ZooKeeper

/ Heartbeat Heartbez:t\

FailoverController
Active

Monitor Health Cmds
of NN. OS, HW

FailoverController
Standby

Monitor Health
of NN. OS, HW

Shared NN state with

ingl it
NameNode S"E?ei:éz)e r NameNode
Active Standby
Block Reports to Active & Standby
DataNode fencing: Update cmds from one
DataNode DataNode DataNode

In a typical HA cluster (as shown in Figure 1-43), two NameNodes need to be
configured on two independent servers, respectively. At any time point, one
NameNode is in the active state, and the other NameNode is in the standby state.
The active NameNode is responsible for all client operations in the cluster, while
the standby NameNode maintains synchronization with the active node to provide
fast switchover if necessary.

2025-11-25

56

http://hadoop.apache.org/docs/r3.1.1/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html#Automatic_Failover
http://hadoop.apache.org/docs/r3.1.1/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html#Automatic_Failover

MapReduce Service
User Guide 1 Overview

To keep the data synchronized with each other, both nodes communicate with a
group of JournalNodes. When the active node modifies any file system's metadata,
it will store the modification log to a majority of these JournalNodes. For example,
if there are three JournalNodes, then the log will be saved on two of them at
least. The standby node monitors changes of JournalNodes and synchronizes
changes from the active node. Based on the modification log, the standby node
applies the changes to the metadata of the local file system. Once a switchover
occurs, the standby node can ensure its status is the same as that of the active
node. This ensures that the metadata of the file system is synchronized between
the active and standby nodes if the switchover is incurred by the failure of the
active node.

To ensure fast switchover, the standby node needs to have the latest block
information. Therefore, DataNodes send block information and heartbeat
messages to two NameNodes at the same time.

It is vital for an HA cluster that only one of the NameNodes be active at any time.
Otherwise, the namespace state would split into two parts, risking data loss or
other incorrect results. To prevent the so-called "split-brain scenario”, the
JournalNodes will only ever allow a single NameNode to write data to it at a time.
During switchover, the NameNode which is to become active will take over the
role of writing data to JournalNodes. This effectively prevents the other
NameNodes from being in the active state, allowing the new active node to safely
proceed with switchover.

For more information about the HDFS HA solution, visit the following website:

http://hadoop.apache.org/docs/r3.1.1/hadoop-project-dist/hadoop-hdfs/
HDFSHighAvailabilityWithQJM.html

1.3.7.3 Relationship Between HDFS and Other Components

Relationship Between HDFS and HBase

HDFS is a subproject of Apache Hadoop, which is used as the file storage system
for HBase. HBase is located in the structured storage layer. HDFS provides highly
reliable support for lower-layer storage of HBase. All the data files of HBase can
be stored in the HDFS, except some log files generated by HBase.

Relationship Between HDFS and MapReduce

e HDFS features high fault tolerance and high throughput, and can be deployed
on low-cost hardware for storing data of applications with massive data sets.

e MapReduce is a programming model used for parallel computation of large
data sets (larger than 1 TB). Data computed by MapReduce comes from
multiple data sources, such as Local FileSystem, HDFS, and databases. Most
data comes from the HDFS. The high throughput of HDFS can be used to read
massive data. After being computed, data can be stored in HDFS.

Relationship Between HDFS and Spark

Data computed by Spark comes from multiple data sources, such as local files and
HDFS. Most data comes from HDFS which can read data in large scale for parallel
computing. After being computed, data can be stored in HDFS.

2025-11-25 57

http://hadoop.apache.org/docs/r3.1.1/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html
http://hadoop.apache.org/docs/r3.1.1/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html

MapReduce Service

User Guide 1 Overview
Spark involves Driver and Executor. Driver schedules tasks and Executor runs tasks.
Figure 1-44 shows how data is read from a file.

Figure 1-44 File reading process
3. Launch tasks.
3. Launch tasks. ‘
1. Get File A 2. Return four 4. Read. 4. Read.
status. blocks. 1. Read. 4. Read.
HDFS
b4 v A4 v
The file reading process is as follows:
1. Driver interconnects with HDFS to obtain the information of File A.
2. The HDFS returns the detailed block information about this file.
3. Driver sets a parallel degree based on the block data amount, and creates
multiple tasks to read the blocks of this file.
4. Executor runs the tasks and reads the detailed blocks as part of the Resilient
Distributed Dataset (RDD).
Figure 1-45 shows how data is written to a file.
Figure 1-45 File writing process
2. Launch tasks.
2. Launch tasks. ‘
1 Create the File 8 3. Write. 3. Write.
recon 3. Write. 3. Write.
HDFS
v v v v
File 8 Block Block2 (Blocks Blookt
The file writing process is as follows:
2025-11-25

58

MapReduce Service

User Guide

1 Overview

Driver creates a directory where the file is to be written.

Based on the RDD distribution status, the number of tasks related to data
writing is computed, and these tasks are sent to Executor.

Executor runs these tasks, and writes the computed RDD data to the directory
created in 1.

Relationship Between HDFS and ZooKeeper

Figure 1-46 shows the relationship between ZooKeeper and HDFS.

Figure 1-46 Relationship between ZooKeeper and HDFS

ZooKeeper
cluster

NameNode
(Standby)

— ™ Input message
______ = Monitoring

As the client of a ZooKeeper cluster, ZKFailoverController (ZKFC) monitors the
status of NameNode. ZKFC is deployed only in the node where NameNode resides,
and in both the active and standby HDFS NameNodes.

1.

The ZKFC connects to ZooKeeper and saves information such as host names
to ZooKeeper under the znode directory /hadoop-ha. NameNode that creates
the directory first is considered as the active node, and the other is the
standby node. NameNodes read the NameNode information periodically
through ZooKeeper.

When the process of the active node ends abnormally, the standby
NameNode detects changes in the /hadoop-ha directory through ZooKeeper,
and then takes over the service of the active NameNode.

2025-11-25

59

MapReduce Service
User Guide 1 Overview

1.3.7.4 HDFS Enhanced Open Source Features

Enhanced Open Source Feature: File Block Colocation

In the offline data summary and statistics scenario, Join is a frequently used
computing function, and is implemented in MapReduce as follows:

1. The Map task processes the records in the two table files into Join Key and
Value, performs hash partitioning by Join Key, and sends the data to different
Reduce tasks for processing.

2. Reduce tasks read data in the left table recursively in the nested loop mode
and traverse each line of the right table. If join key values are identical, join
results are output.

The preceding method sharply reduces the performance of the join
calculation. Because a large amount of network data transfer is required
when the data stored in different nodes is sent from MAP to Reduce, as
shown in Figure 1-47.

Figure 1-47 Data transmission in the non-colocation scenario

Inputs Map Reduce Output
t1,p3,u1,5300,sweater u1.US- ul,p3
t1,p1,u2,$100, chicken UEIGB & ulus
13,p1,u1,$100, chicken 3=CA‘ u1.pi
14,p2,u2,$10, banana ﬂ oA\ w2p1
t5,p4,u4 59, apple ' ’

P4,u4.59, app uz,p2

uz,GB

ul,p3 ud.pd

ul,a@example.com,EN,US u2,p1 ud,CA
u2 b@example com,EN GB ut,pt
u3,ci@example.com,EN,CA uz p2

ud, d@example.com.FR.CA ud pa u3,CA

Partition, sort, and group

Data tables are stored in physical file system by HDFS block. Therefore, if two to-
be-joined blocks are put into the same host accordingly after they are partitioned
by join key, you can obtain the results directly from Map join in the local node
without any data transfer in the Reduce process of the join calculation. This will
greatly improve the performance.

With the identical distribution feature of HDFS data, a same distribution ID is
allocated to files, FileA and FileB, on which association and summation
calculations need to be performed. In this way, all the blocks are distributed
together, and calculation can be performed without retrieving data across nodes,
which greatly improves the MapReduce join performance.

2025-11-25 60

MapReduce Service
User Guide

1 Overview

Figure 1-48 Data block distribution in colocation and non-colocation scenarios

Non-Colocation

DataNode 1 DataNode 2 DataNode 3 DataNode 4
File A (Di) o 2
cb G
Local Network Local
Fie B (Di) Network
Block1
oc Mapper 1 Mapper 2
Block2 .
Colocation
DataNode 1 DataNode 2 DataNode 3 DataNode 4
Local Local Local Local
Mapper 1 Mapper 2

Enhanced Open Source Feature: Damaged Hard Disk Volume Configuration

In the open source version, if multiple data storage volumes are configured for a
DataNode, the DataNode stops providing services by default if one of the volumes
is damaged. If the configuration item dfs.datanode.failed.volumes.tolerated is
set to specify the number of damaged volumes that are allowed, DataNode
continues to provide services when the number of damaged volumes does not

exceed the threshold.

The value of dfs.datanode.failed.volumes.tolerated ranges from -1 to the
number of disk volumes configured on the DataNode. The default value is -1, as

shown in Figure 1-49.

Figure 1-49 Item being set to 0

DataNode (bad)
dfs.datanode.data.dir:

/srv/iBigData/hadoop/data1/dn
/srv/iBigData/hadoop/data2/dn
/srv/BigData/hadoop/data3/dn

data1:good data2:good data3:bad

/srv/BigData/hadoop /srv/BigData/hadoop/ /srv/BigData/hadoop/
/data1/dn data2/dn data3/dn

For example, three data storage volumes are mounted to a DataNode, and
dfs.datanode.failed.volumes.tolerated is set to 1. In this case, if one data storage
volume of the DataNode is unavailable, this DataNode can still provide services, as
shown in Figure 1-50.

2025-11-25

61

MapReduce Service

User Guide 1 Overview

Figure 1-50 Item being set to 1

DataNode (good)
dfs.datanode. data.dir:

/srv/BigData/hadoop/data1/dn
/srv/BigData/hadoop/data2/dn
/srv/BigData/hadoop/data3/dn

data1:good data2:good data3:bad
/srv/BigData/hadoop /srv/BigData/hadoop/ IsrviBigData/hadoop/
/datal/dn dataZ/dn data3/dn

This native configuration item has some defects. When the number of data
storage volumes in each DataNode is inconsistent, you need to configure each
DataNode independently instead of generating the unified configuration file for all
nodes.

Assume that there are three DataNodes in a cluster. The first node has three data
directories, the second node has four, and the third node has five. If you want to
ensure that DataNode services are available when only one data directory is
available, you need to perform the configuration as shown in Figure 1-51.

Figure 1-51 Attribute configuration before being enhanced

dfs datanode.failed volumes.tolera
ted

3

DataNode3
dfs.datanode.data.dir:
{srv/iBigData/hadoop/data1/dn

DataNode2

DataNode 1 dfs.datanode.data.dir:

dfs.datanode.data.dir;

IsrviBigData/hadoop/datat/dn
[srv/BigData/hadoop/data2/dn
/srv/BigData/hadoop/data3/dn

lsrviBigData/hadoop/datat/dn
/srv/BigData/hadoop/data2/dn
/srv/BigData/hadoop/data3/dn
/srv/BigData/hadoop/datad/dn

/srv/BigData/hadoop/data2/dn
/srv/BigData/hadoop/data3/dn
Isrv/iBigData/hadoop/data4/dn
/srviBigData/hadoop/data5/dn

In self-developed enhanced HDFS, this configuration item is enhanced, with a
value -1 added. When this configuration item is set to -1, all DataNodes can
provide services as long as one data storage volume in all DataNodes is available.

To resolve the problem in the preceding example, set this configuration to -1, as

shown in Figure 1-52.

2025-11-25

62

MapReduce Service

User Guide

1 Overview

Figure 1-52 Attribute configuration after being enhanced

dfs.datanode.failed.volumes.tolera

ted

-

DataNode1
dfs.datanode.data.dir:
/srv/iBigData/hadoop/datat/dn
[srv/BigData/hadoop/data2/dn
/srv/iBigData/hadoop/data3/dn

DataMNodeZ2
dfs.datanode data.dir:
IsrviBigData/hadoop/datat/dn
Isrv/BigData/hadoop/data2/dn
/srv/BigData/hadoop/data3/dn
/srv/BigData/hadoop/data4/dn

DataNode3
dfs.datanode.data.dir:
Isrv/BigData/hadoop/data1/dn
/srv/BigData/hadoop/data2/dn
{srv/BigData/hadoop/data3/dn
/srv/BigData/hadoop/datad/dn

fsrv/BigData/hadoop/data5/dn

Enhanced Open Source Feature: HDFS Startup Acceleration

In HDFS, when NameNodes start, the metadata file Fsimage needs to be loaded.
Then, DataNodes will report the data block information after the DataNodes
startup. When the data block information reported by DataNodes reaches the
preset percentage, NameNodes exits safe mode to complete the startup process. If
the number of files stored on the HDFS reaches the million or billion level, the two
processes are time-consuming and will lead to a long startup time of the
NameNode. Therefore, this version optimizes the process of loading metadata file
FsImage.

In the open source HDFS, Fslmage stores all types of metadata information. Each
type of metadata information (such as file metadata information and folder
metadata information) is stored in a section block, respectively. These section
blocks are loaded in serial mode during startup. If a large number of files and
folders are stored on the HDFS, loading of the two sections is time-consuming,
prolonging the HDFS startup time. HDFS NameNode divides each type of
metadata by segments and stores the data in multiple sections when generating
the FsImage files. When the NameNodes start, sections are loaded in parallel
mode. This accelerates the HDFS startup.

Enhanced Open Source Feature: Label-based Block Placement Policies (HDFS

Nodelabel)

You need to configure the nodes for storing HDFS file data blocks based on data
features. You can configure a label expression to an HDFS directory or file and
assign one or more labels to a DataNode so that file data blocks can be stored on
specified DataNodes. If the label-based data block placement policy is used for
selecting DataNodes to store the specified files, the DataNode range is specified
based on the label expression. Then proper nodes are selected from the specified
range.

e You can store the replicas of data blocks to the nodes with different labels
accordingly. For example, store two replicas of the data block to the node
labeled with L1, and store other replicas of the data block to the nodes
labeled with L2.

e You can set the policy in case of block placement failure, for example, select a
node from all nodes randomly.

Figure 1-53 gives an example:

2025-11-25

63

MapReduce Service
User Guide 1 Overview

e Data in /HBase is stored in A, B, and D.

e Datain /Spark is stored in A, B, D, E, and F.
e Data in /user is stored in C, D, and F.

e Data in /user/shl is stored in A, E, and F.

Figure 1-53 Example of label-based block placement policy

NameNode

/HBase L1 /Spark L1
J{use I.;‘.}hl

DataNode A

DataNode D

o

Enhanced Open Source Feature: HDFS Load Balance

The current read and write policies of HDFS are mainly for local optimization
without considering the actual load of nodes or disks. Based on 1/O loads of
different nodes, the load balance of HDFS ensures that when read and write
operations are performed on the HDFS client, the node with low I/O load is
selected to perform such operations to balance I/O load and fully utilize the
overall throughput of the cluster.

If HDFS Load Balance is enabled during file writing, the NameNode selects a
DataNode (in the order of local node, local rack, and remote rack). If the |/O load
of the selected node is heavy, the NameNode will choose another DataNode with
lighter load.

If HDFS Load Balance is enabled during file reading, an HDFS client sends a
request to the NameNode to provide the list of DataNodes that store the block to
be read. The NameNode returns a list of DataNodes sorted by distance in the
network topology. With the HDFS Load Balance feature, the DataNodes on the list

2025-11-25 64

MapReduce Service

User Guide

1 Overview

are also sorted by their I/O load. The DataNodes with heavy load are at the
bottom of the list.

Enhanced Open Source Feature: HDFS Auto Data Movement

Hadoop has been used for batch processing of immense data in a long time. The
existing HDFS model is used to fit the needs of batch processing applications very
well because such applications focus more on throughput than delay.

However, as Hadoop is increasingly used for upper-layer applications that demand
frequent random 1/O access such as Hive and HBase, low latency disks such as
solid state disk (SSD) are favored in delay-sensitive scenarios. To cater to the
trend, HDFS supports a variety of storage types. Users can choose a storage type
according to their needs.

Storage policies vary depending on how frequently data is used. For example, if
data that is frequently accessed in the HDFS is marked as ALL_SSD or HOT, the
data that is accessed several times may be marked as WARM, and data that is
rarely accessed (only once or twice access) can be marked as COLD. You can
select different data storage policies based on the data access frequency.

ALL SSD HOT WARM COLD

However, low latency disks are far more expensive than spinning disks. Data
typically sees heavy initial usage with decline in usage over a period of time.
Therefore, it can be useful if data that is no longer used is moved out from
expensive disks to cheaper ones storage media.

A typical example is storage of detail records. New detail records are imported
into SSD because they are frequently queried by upper-layer applications. As
access frequency to these detail records declines, they are moved to cheaper
storage.

Before automatic data movement is achieved, you have to manually determine by
service type whether data is frequently used, manually set a data storage policy,
and manually trigger the HDFS Auto Data Movement Tool, as shown in the figure
below.

/:)

(~ 1. Change storage policy manually:

f hdfs storagepolicies -setStoragePolicy —path <path> -policy <policy>
| 2. Trigger “mover” manually:

= hdfs mover [-p <files/dirs> | -f <local file name> |

v

Polic | PolicyName Block Fallback Fallback
y D Placement storages storages for
(n replacas) for creation replication
15 Lazy_Persist RAN_DISK:1 DISK DISK
DISK:n-1
12 All_SSD SSDin DISK DISK
10 One_SSD S8D:1,DISK:n-1 SSD,DISK SSD,DISK
HDFS
@ [j D D T Hot(default) DISK:n <none> ARCHIVE
- 5 Warm DISK:1,ARCHIV | ARCHIVE, DISK ARCHIVE,
E:n-1 DISK
Tier 1 Z Cold ARCHIVE:n <none> <none>
Tier 2
Tier 3

2025-11-25

65

MapReduce Service

User Guide

1 Overview

1.3.8 Hive

If aged data can be automatically identified and moved to cheaper storage (such
as disk/archive), you will see significant cost cuts and data management efficiency
improvement.

The HDFS Auto Data Movement Tool is at the core of HDFS Auto Data Movement.
It automatically sets a storage policy depending on how frequently data is used.
Specifically, functions of the HDFS Auto Data Movement Tool can:

e Mark a data storage policy as All_SSD, One_SSD, Hot, Warm, Cold, or
FROZEN according to age, access time, and manual data movement rules.

e Define rules for distinguishing cold and hot data based on the data age,
access time, and manual migration rules.

e Define the action to be taken if age-based rules are met.

MARK: the action for identifying whether data is frequently or rarely used
based on the age rules and setting a data storage policy. MOVE: the action
for invoking the HDFS Auto Data Movement Tool and moving data based on
the age rules to identify whether data is frequently or rarely used after you
have determined the corresponding storage policy.

- MARK: identifies whether data is frequently or rarely used and sets the
data storage policy.

- MOVE: the action for invoking the HDFS Auto Data Movement Tool and
moving data across tiers.

- SET_REPL: the action for setting new replica quantity for a file.

- MOVE_TO_FOLDER: the action for moving files to a target folder.

- DELETE: the action for deleting a file or directory.

- SET_NODE_LABEL: the action for setting node labels of a file.
With the HDFS Auto Data Movement feature, you only need to define age based
on access time rules. HDFS Auto Data Movement Tool matches data according to

age-based rules, sets storage policies, and moves data. In this way, data
management efficiency and cluster resource efficiency are improved.

1.3.8.1 Hive Basic Principles

Hive is a data warehouse infrastructure built on Hadoop. It provides a series of
tools that can be used to extract, transform, and load (ETL) data. Hive is a
mechanism that can store, query, and analyze mass data stored on Hadoop. Hive
defines simple SQL-like query language, which is known as HiveQL. It allows a
user familiar with SQL to query data. Hive data computing depends on
MapReduce, Spark, and Tez.

The new execution engine Tez is used to replace the original MapReduce, greatly
improving performance. Tez can convert multiple dependent jobs into one job, so
only once HDFS write is required and fewer transit nodes are needed, greatly
improving the performance of DAG jobs.

Hive provides the following functions:

e Analyzes massive structured data and summarizes analysis results.

2025-11-25

66

http://hive.apache.org/
https://tez.apache.org/

MapReduce Service

User Guide

1 Overview

e Allows complex MapReduce jobs to be compiled in SQL languages.

e Supports flexible data storage formats, including JavaScript object notation
(JSON), comma separated values (CSV), TextFile, RCFile, SequenceFile, and
ORC (Optimized Row Columnar).

Hive system structure:

e User interface: Three user interfaces are available, that is, CLI, Client, and
WUIL. CLI is the most frequently-used user interface. A Hive transcript is
started when CLI is started. Client refers to a Hive client, and a client user
connects to the Hive Server. When entering the client mode, you need to
specify the node where the Hive Server resides and start the Hive Server on
this node. The web Ul is used to access Hive through a browser. MRS can
access Hive only in client mode.

e Metadata storage: Hive stores metadata into databases, for example, MySQL
and Derby. Metadata in Hive includes a table name, table columns and
partitions and their properties, table properties (indicating whether a table is
an external table), and the directory where table data is stored.

Hive Framework

Hive is a single-instance service process that provides services by translating HQL
into related MapReduce jobs or HDFS operations. Figure 1-54 shows how Hive is
connected to other components.

Figure 1-54 Hive framework

JDBC/ODBC applications Python applications REST client
JDBC/ODBC driver Python driver applications

DBservice

HDFS/HBase Yarn/Spark

ZooKeeper

2025-11-25

67

MapReduce Service

User Guide

1 Overview

Table 1-9 Module description

Module Description

HiveServer Multiple HiveServers can be deployed in a cluster to share loads.
HiveServer provides Hive database services externally, translates
HQL statements into related YARN tasks or HDFS operations to
complete data extraction, conversion, and analysis.

MetaStore e Multiple MetaStores can be deployed in a cluster to share
loads. MetaStore provides Hive metadata services as well as
reads, writes, maintains, and modifies the structure and
properties of Hive tables.

e MetaStore provides Thrift APIs for HiveServer, Spark,
WebHCat, and other MetaStore clients to access and operate
metadata.

WebHCat Multiple WebHCats can be deployed in a cluster to share loads.
WebHCat provides REST APIs and runs the Hive commands
through the REST APIs to submit MapReduce jobs.

Hive client Hive client includes the human-machine command-line interface
(CLI) Beeline, JDBC drive for JDBC applications, Python driver for
Python applications, and HCatalog JAR files for MapReduce.

ZooKeeper As a temporary node, ZooKeeper records the IP address list of

cluster each HiveServer instance. The client driver connects to
ZooKeeper to obtain the list and selects corresponding
HiveServer instances based on the routing mechanism.

HDFS/HBase | The HDFS cluster stores the Hive table data.

cluster

MapReduce/ | Provides distributed computing services. Most Hive data

YARN operations rely on MapReduce. The main function of HiveServer

cluster is to translate HQL statements into MapReduce jobs to process
massive data.

HCatalog is built on Hive Metastore and incorporates the DDL capability of Hive.
HCatalog is also a Hadoop-based table and storage management layer that
enables convenient data read/write on tables of HDFS by using different data
processing tools such as MapReduce. Besides, HCatalog also provides read/write
APIs for these tools and uses a Hive CLI to publish commands for defining data
and querying metadata. After encapsulating these commands, WebHCat Server
can provide RESTful APls, as shown in Figure 1-55.

2025-11-25

68

MapReduce Service

User Guide 1 Overview
Figure 1-55 WebHCat logical architecture
Hcat
_ WebHcat Server _
? — (Also known as the Templeton server) —mo"—ovuv-— DDL
5
“\\\\\\\\ QQ)
Q
\ o%@
Hive
WebHDFS/HDFS Ve
Principles

Hive functions as a data warehouse based on HDFS and MapReduce architecture
and translates HQL statements into MapReduce jobs or HDFS operations. For
details about Hive and HQL, see HiveQL Language Manual.

Figure 1-56 shows the Hive structure.

Metastore: reads, writes, and updates metadata such as tables, columns, and
partitions. Its lower layer is relational databases.

Driver: manages the lifecycle of HiveQL execution and participates in the
entire Hive job execution.

Compiler: translates HQL statements into a series of interdependent Map or
Reduce jobs.

Optimizer: is classified into logical optimizer and physical optimizer to
optimize HQL execution plans and MapReduce jobs, respectively.

Executor: runs Map or Reduce jobs based on job dependencies.

ThriftServer: functions as the servers of JDBC, provides Thrift APIs, and
integrates with Hive and other applications.

Clients: include the WebUI and JDBC APIs and provides APIs for user access.

2025-11-25

69

https://cwiki.apache.org/confluence/display/Hive/LanguageManual

MapReduce Service
User Guide 1 Overview

Figure 1-56 Hive framework

JDBC

F 3

v

Thrift Server

F 3

A 4

Driver
(Compiler, optimizer, and executor)

1.3.8.2 Hive CBO Principles

Hive CBO Principles
CBO is short for Cost-Based Optimization.
It will optimize the following:

During compilation, the CBO calculates the most efficient join sequence based on
tables and query conditions involved in query statements to reduce time and
resources required for query.

In Hive, the CBO is implemented as follows:

Hive uses open-source component Apache Calcite to implement the CBO. SQL
statements are first converted into Hive Abstract Syntax Trees (ASTs) and then
into RelNodes that can be identified by Calcite. After Calcite adjusts the join
sequence in RelNodes, RelNodes are converted into ASTs by Hive to continue the
logical and physical optimization. Figure 1-57 shows the working flow.

2025-11-25 70

MapReduce Service

User Guide

1 Overview

Figure 1-57 CBO Implementation process

Hive SQL > Hive AST » Hive operator tree

¥

Hive AST -~ Calcite optimized < Calcite operator tree

operator tree

A J

Hive operator tree > Hive normal optimization process

Calcite adjusts the join sequence as follows:

A table is selected as the first table from the tables to be joined.

2. The second and third tables are selected based on the cost. In this way,
multiple different execution plans are obtained.

3. A plan with the minimum costs is calculated and serves as the final sequence.
The cost calculation method is as follows:

In the current version, costs are measured based on the number of data entries
after joining. Fewer data entries mean less cost. The number of joined data entries
depends on the selection rate of joined tables. The number of data entries in a
table is obtained based on the table-level statistics.

The number of data entries in a table after filtering is estimated based on the
column-level statistics, including the maximum values (max), minimum values
(min), and Number of Distinct Values (NDV).

For example, there is a table table_a whose total number of data records is
1,000,000 and NDV is 50. The query conditions are as follows:

Select * from table_a where colum_a='value1’;

The estimated number of queried data entries is: 1,000,000 x 1/50 = 20,000. The
selection rate is 2%.

The following takes the TPC-DS Q3 as an example to describe how the CBO
adjusts the join sequence:

select
dt.d_year,
item.i_brand_id brand_id,
item.i_brand brand,
sum(ss_ext_sales_price) sum_agg
from
date_dim dt,
store_sales,
item
where
dt.d_date_sk = store_sales.ss_sold_date_sk
and store_sales.ss_item_sk = item.i_item_sk

2025-11-25

71

MapReduce Service
User Guide

1 Overview

and item.i_manufact_id = 436

and dt.d_moy = 12
group by dt.d_year , item.i_brand , item.i_brand_id
order by dt.d_year, sum_agg desc , brand_id
limit 10;

Statement explanation: This statement indicates that inner join is performed for
three tables: table store_sales is a fact table with about 2,900,000,000 data
entries, table date_dim is a dimension table with about 73,000 data entries, and
table item is a dimension table with about 18,000 data entries. Each table has

filtering conditions. Figure 1-58 shows the join relationship.

Figure 1-58 Join relationship

date_dim

store sales

itemn

The CBO must first select the tables that bring the best filtering effect for joining.

By analyzing min, max, NDV, and the number of data entries, the CBO estimates
the selection rates of different dimension tables, as shown in Table 1-10.

Table 1-10 Data filtering

Table Number of Number of Data | Selection Rate
Original Data Entries After
Entries Filtering

date_dim 73,000 6,200 8.5%

item 18,000 19 0.1%

The selection rate can be estimated as follows: Selection rate = Number of data

entries after filtering/Number of original data entries

As shown in the preceding table, the item table has a better filtering effect.
Therefore, the CBO joins the item table first before joining the date_dim table.

Figure 1-59 shows the join process when the CBO is disabled.

2025-11-25

72

MapReduce Service
User Guide 1 Overview

Figure 1-59 Join process when the CBO is disabled

JOIN#2
495,000,000 19
JOIN#1 item
2,900,000,000 6,200
Store_sales date_dim

Figure 1-60 shows the join process when the CBO is enabled.

Figure 1-60 Join process when the CBO is enabled

JOIN#2

2,900,000 6,200

JOIN#1 date_dim

2,900,000,000 19

Store_sales item

After the CBO is enabled, the number of intermediate data entries is reduced from
495,000,000 to 2,900,000 and thus the execution time can be remarkably reduced.

2025-11-25 73

MapReduce Service

User Guide

1 Overview

1.3.8.3 Relationship Between Hive and Other Components

Relationship Between Hive and HDFS

Hive is a sub-project of Apache Hadoop, which uses HDFS as the file storage
system. It parses and processes structured data with highly reliable underlying
storage supported by HDFS. All data files in the Hive database are stored in HDFS,
and all data operations on Hive are also performed using HDFS APIs.

Relationship Between Hive and MapReduce

Hive data computing depends on MapReduce. MapReduce is also a sub-project of
Apache Hadoop and is a parallel computing framework based on HDFS. During
data analysis, Hive parses HQL statements submitted by users into MapReduce
tasks and submits the tasks for MapReduce to execute.

Relationship Between Hive and Tez

Tez, an open-source project of Apache, is a distributed computing framework that
supports directed acyclic graphs (DAGs). When Hive uses the Tez engine to
analyze data, it parses HQL statements submitted by users into Tez tasks and
submits the tasks to Tez for execution.

Relationship Between Hive and DBService

MetaStore (metadata service) of Hive processes the structure and attribute
information of Hive metadata, such as Hive databases, tables, and partitions. The
information needs to be stored in a relational database and is managed and
processed by MetaStore. In the product, the metadata of Hive is stored and
maintained by the DBService component, and the metadata service is provided by
the Metadata component.

1.3.8.4 Enhanced Open Source Feature

Enhanced Open Source Feature: HDFS Colocation

HDFS Colocation is the data location control function provided by HDFS. The
HDFS Colocation API stores associated data or data on which associated
operations are performed on the same storage node.

Hive supports HDFS Colocation. When Hive tables are created, after the locator
information is set for table files, the data files of related tables are stored on the
same storage node. This ensures convenient and efficient data computing among
associated tables.

Enhanced Open Source Feature: Column Encryption

Hive supports encryption of one or more columns. The columns to be encrypted
and the encryption algorithm can be specified when a Hive table is created. When
data is inserted into the table using the INSERT statement, the related columns
are encrypted. The Hive column encryption does not support views and the Hive
over HBase scenario.

2025-11-25

74

MapReduce Service

User Guide

1 Overview

The Hive column encryption mechanism supports two encryption algorithms that
can be selected to meet site requirements during table creation:
e AES (the encryption class is org.apache.hadoop.hive.serde2. AESRewriter)

e SMS4 (the encryption class is
org.apache.hadoop.hive.serde2.SMS4Rewriter)

Enhanced Open Source Feature: HBase Deletion

Due to the limitations of underlying storage systems, Hive does not support the
ability to delete a single piece of table data. In Hive on HBase, Hive in the MRS
solution supports the ability to delete a single piece of HBase table data. Using a
specific syntax, Hive can delete one or more pieces of data from an HBase table.

Enhanced Open Source Feature: Row Delimiter

In most cases, a carriage return character is used as the row delimiter in Hive
tables stored in text files, that is, the carriage return character is used as the
terminator of a row during queries.

However, some data files are delimited by special characters, and not a carriage
return character.

MRS Hive allows you to specify different characters or character combinations as
row delimiters for Hive data in text files.

Enhanced Open Source Feature: HTTPS/HTTP-based REST API Switchover

WebHCat provides external REST APIs for Hive. By default, the open source
community version uses the HTTP protocol.

MRS Hive supports the HTTPS protocol that is more secure, and enables
switchover between the HTTP protocol and the HTTPS protocol.

Enhanced Open Source Feature: Transform Function

The Transform function is not allowed by Hive of the open source version. MRS
Hive supports the configuration of the Transform function. The function is disabled
by default, which is the same as that of the open source community version.

Users can modify configurations of the Transform function to enable the function.
However, security risks exist when the Transform function is enabled.

Enhanced Open Source Feature: Temporary Function Creation Without
ADMIN Permission

You must have ADMIN permission when creating temporary functions on Hive of
the open source community version. MRS Hive supports the configuration of the
function for creating temporary functions with ADMIN permission. The function is
disabled by default, which is the same as that of the open-source community
version.

You can modify configurations of this function. After the function is enabled, you
can create temporary functions without ADMIN permission.

2025-11-25

75

MapReduce Service
User Guide 1 Overview

Enhanced Open Source Feature: Database Authorization

In the Hive open source community version, only the database owner can create
tables in the database. You can be granted with the CREATE and SELECT
permissions on tables by MRS Hive in a database. After you are granted with the
permission to query data in the database, the system automatically associates the
query permission on all tables in the database.

Enhanced Open Source Feature: Column Authorization

The Hive open source community version supports only table-level permission
control. MRS Hive supports column-level permission control. You can be granted
with column-level permissions, such as SELECT, INSERT, and UPDATE.

1.3.8.5 Hudi

Hudi is a data lake table format that provides the ability to update and delete
data as well as consume new data on HDFS. It supports multiple compute engines
and provides insert, update, and delete (IUD) interfaces and streaming primitives,
including upsert and incremental pull, over datasets on HDFS.

(1 NOTE

To use Hudi, ensure that the Spark2x service has been installed in the MRS cluster.

Figure 1-61 Basic architecture of Hudi

Queries Pipelines

Spori? ":\%-;:“ n>HetuEngine SF"‘S'{‘\K aFlink f§i§"

Data Sources

"""" MoRavRls " T ;
it DeltaStreamer/CDC Incremental ETL 1
R sua Ml

= q‘r) ¢

Lake Storage

St @

ﬂ.

Feature

e The ACID transaction capability supports real-time data import to the lake
and batch data import to the data lake.

e Multiple view capabilities (read-optimized view/incremental view/real-time
view) enable quick data analysis.

e Multi-version concurrency control (MVCC) design supports data version
backtracking.

e Automatic management of file sizes and layouts optimizes query performance
and provides quasi-real-time data for queries.

2025-11-25 76

MapReduce Service
User Guide 1 Overview

e Concurrent read and write are supported. Data can be read when being
written based on snapshot isolation.

e Bootstrapping is supported to convert existing tables into Hudi datasets.

Key Technologies and Advantages

e Pluggable index mechanism: Hudi provides multiple index mechanisms to
quickly update and delete massive data.

e Ecosystem support: Hudi supports multiple data engines, including Hive,
Spark, HetuEngine, and Flink.

Two Types of Tables Supported by Hudi
e Copy On Write

Copy-on-write tables are also called COW tables. Parquet files are used to
store data, and internal update operations need to be performed by rewriting
the original Parquet files.

- Advantage: It is efficient because only one data file in the corresponding
partition needs to be read.

- Disadvantage: During data write, a previous copy needs to be copied and
then a new data file is generated based on the previous copy. This
process is time-consuming. Therefore, the data read by the read request
lags behind.

e Merge On Read

Merge-on-read tables are also called MOR tables. The combination of
columnar-based Parquet and row-based format Avro is used to store data.
Parquet files are used to store base data, and Avro files (also called log files)
are used to store incremental data.

- Advantage: Data is written to the delta log first, and the delta log size is
small. Therefore, the write cost is low.

- Disadvantage: Files need to be compacted periodically. Otherwise, there
are a large number of fragment files. The read performance is poor
because delta logs and old data files need to be merged.

Hudi Supporting Three Types Of Views for Read Capabilities in Different
Scenarios
e Snapshot View

Provides the latest snapshot data of the current Hudi table. That is, once the
latest data is written to the Hudi table, the newly written data can be queried
through this view.

Both COW and MOR tables support this view capability.
e Incremental View

Provides the incremental query capability. The incremental data after a
specified commit can be queried. This view can be used to quickly pull
incremental data.

COW tables support this view capability. MOR tables also support this view
capability, but the incremental view capability disappears once the compact
operation is performed.

2025-11-25 77

MapReduce Service

User Guide

1 Overview

1.3.9 Hue

Read Optimized View
Provides only the data stored in the latest Parquet file.
This view is different for COW and MOR tables.

For COW tables, the view capability is the same as the real-time view
capability. (COW tables use only Parquet files to store data.)

For MOR tables, only base files are accessed, and the data in the given file
slices since the last compact operation is provided. It can be simply
understood that this view provides only the data stored in Parquet files of
MOR tables, and the data in log files is ignored. The data provided by this
view may not be the latest. However, once the compact operation is
performed on MOR tables, the incremental log data is merged into the base
data. In this case, this view has the same capability as the real-time view.

1.3.9.1 Hue Basic Principles

Hue is a group of web applications that interact with MRS big data components. It
helps you browse HDFS, perform Hive query, and start MapReduce jobs. Hue bears
applications that interact with all MRS big data components.

Hue provides the file browser and query editor functions:

File browser allows you to directly browse and operate different HDFS
directories on the GUI.

Query editor can write simple SQL statements to query data stored on
Hadoop, for example, HDFS, HBase, and Hive. With the query editor, you can
easily create, manage, and execute SQL statements and download the
execution results as an Excel file.

On the WebUI provided by Hue, you can perform the following operations on the
components:

HDFS:
- View, create, manage, rename, move, and delete files or directories.
- File upload and download

- Search for files, directories, file owners, and user groups; change the
owners and permissions of the files and directories.

- Manually configure HDFS directory storage policies and dynamic storage
policies.

Hive:

- Edit and execute SQL/HQL statements. Save, copy, and edit the SQL/HQL
template. Explain SQL/HQL statements. Save the SQL/HQL statement
and query it.

- Database presentation and data table presentation
- Supporting different types of Hadoop storage

- Use MetaStore to add, delete, modify, and query databases, tables, and
views.

2025-11-25

78

MapReduce Service

User Guide 1 Overview
{110 NOTE
If Internet Explorer is used to access the Hue page to execute HiveSQL statements,
the execution fails, because the browser has functional problems. You are advised to
use a compatible browser, for example, Google Chrome.

e Impala:

- Edit and execute SQL/HQL statements. Save, copy, and edit the SQL/HQL
template. Explain SQL/HQL statements. Save the SQL/HQL statement
and query it.

- Database presentation and data table presentation

- Supporting different types of Hadoop storage

- Use MetaStore to add, delete, modify, and query databases, tables, and
views.

{10 NOTE

If Internet Explorer is used to access the Hue page to execute HiveSQL statements,
the execution fails, because the browser has functional problems. You are advised to
use a compatible browser, for example, Google Chrome.

e MapReduce: Check MapReduce tasks that are being executed or have been
finished in the clusters, including their status, start and end time, and run
logs.

e Oozie: Hue provides the Oozie job manager function, in this case, you can use
Oozie in GUI mode.

e ZooKeeper: Hue provides the ZooKeeper browser function for you to use
ZooKeeper in GUI mode.

For details about Hue, visit https://gethue.com/.

Architecture

Hue, adopting the MTV (Model-Template-View) design, is a web application
program running on Django Python. (Django Python is a web application
framework that uses open source codes.)

Hue consists of Supervisor Process and WebServer. Supervisor Process is the core
Hue process that manages application processes. Supervisor Process and
WebServer interact with applications on WebServer through Thrift/REST APIs, as
shown in Figure 1-62.

2025-11-25

79

http://gethue.com/

MapReduce Service
User Guide

1 Overview

Figure 1-62 Hue architecture

Auxiliary Servers
(Apps may run their
own helper
daemons.)

Core WebServer
(App plugins is
deployed using
Django’s URLs

and views)

Supervisor Process
(Manger auxiliary
processes)

Helper
Daemons

Supervisor starts the
WebServer.

Y

Hue WebServer
(Django +
Spawning/CherryPy)

——» Browser
D Installed App

4

Table 1-11 describes the components shown in Figure 1-62.

Table 1-11 Architecture description

Connection
Name

Description

Supervisor
Process

Manages processes of WebServer applications, such as
starting, stopping, and monitoring the processes.

Hue WebServer

Provides the following functions through the Django Python
web framework:

e Deploys applications.
e Provides the GUL.

e Connects to databases to store persistent data of
applications.

1.3.9.2 Relationship Between Hue and Other Components

Relationship Between Hue and Hadoop Clusters

Figure 1-63 shows how Hue interacts with Hadoop clusters.

2025-11-25

80

MapReduce Service
User Guide 1 Overview

Figure 1-63 Hue and Hadoop clusters

YARN/MapReduce ZooKeeper Impala

REST Hue Beeswax
Hue
WebServer
REST REST
Oozie Hive HDFS

Table 1-12 Relationship Between Hue and Other Components

Connection Description
Name
HDFS HDFS provides REST APIs to interact with Hue to query and

operate HDFS files.

Hue packages a user request into interface data, sends the
request to HDFS through REST APIs, and displays execution
results on the web Ul.

Hive Hive provides Thrift interfaces to interact with Hue, execute
Hive SQL statements, and query table metadata.

If you edit HQL statements on the Hue web Ul, then, Hue
submits the HQL statements to the Hive server through the
Thrift APIs and displays execution results on the web UL.

YARN/ MapReduce provides REST APIs to interact with Hue and
MapReduce qguery YARN job information.

If you go to the Hue web Ul, enter the filter parameters, the
Ul sends the parameters to the background, and Hue
invokes the REST APIs provided by MapReduce (MR1/MR2-
YARN) to obtain information such as the status of the task
running, the start/end time, the run log, and more.

Oozie Oozie provides REST APIs to interact with Hue, create
workflows, coordinators, and bundles, and manage and
monitor tasks.

A graphical workflow, coordinator, and bundle editor are
provided on the Hue web Ul. Hue invokes the REST APIs of
Oozie to create, modify, delete, submit, and monitor
workflows, coordinators, and bundles.

2025-11-25 81

MapReduce Service

User Guide

1 Overview

Connection Description

Name

ZooKeeper ZooKeeper provides REST APIs to interact with Hue and
query ZooKeeper node information.
ZooKeeper node information is displayed in the Hue web UL.
Hue invokes the REST APIs of ZooKeeper to obtain the node
information.

Impala Impala provides Hue Beeswax APIs to interact with Hue,

execute Hive SQL statements, and query table metadata.

If you edit HQL statements on the Hue web Ul, then, Hue
submits the HQL statements to the Hive server through the
Hue Beeswax APIs and displays execution results on the
web Ul

1.3.9.3 Hue Enhanced Open Source Features

Hue Enhanced Open Source Features

Storage policy: The number of HDFS file copies varies depending on the
storage media. This feature allows you to manually set an HDFS directory
storage policy or can automatically adjust the file storage policy, modify the
number of file copies, move the file directory, and delete files based on the
latest access time and modification time of HDFS files to fully utilize storage
capacity and improve storage performance.

MR engine: You can use the MapReduce engine to execute Hive SQL

statements.

Reliability enhancement: Hue is deployed in active/standby mode. When
interconnecting with HDFS, Oozie, Hive, and YARN, Hue can work in failover
or load balancing mode.

1.3.10 Impala

Impala

Impala provides fast, interactive SQL queries directly on your Apache Hadoop
data stored in HDFS, HBase, or the Object Storage Service (OBS). In addition to
using the same unified storage platform, Impala also uses the same metadata,
SQL syntax (Hive SQL), ODBC driver, and user interface (Impala query Ul in Hue)
as Apache Hive. This provides a familiar and unified platform for real-time or
batch-oriented queries. Impala is an addition to tools available for querying big
data. Impala does not replace the batch processing frameworks built on
MapReduce such as Hive. Hive and other frameworks built on MapReduce are best
suited for long running batch jobs.

Impala provides the following features:

Most common SQL-92 features of Hive Query Language (HiveQL) including
SELECT, JOIN, and aggregate functions

2025-11-25

82

https://impala.apache.org/

MapReduce Service

User Guide

1 Overview

e HDFS, HBase, and OBS storage, including:

- HDFS file formats: delimited text files, Parquet, Avro, SequenceFile, and
RCFile

- Compression codecs: Snappy, GZIP, Deflate, BZIP
e Common data access interfaces including:
- JDBC driver
- ODBCdriver
- Hue Beeswax and the Impala query Ul
e impala-shell command line interface
e Kerberos authentication
Impala applies to offline analysis (such as log and cluster status analysis) of real-

time data queries, large-scale data mining (such as user behavior analysis, interest
region analysis, and region display), and other scenarios.

For details about Impala, visit https://impala.apache.org/impala-docs.html.

Impala consists of three roles: Impala Daemon (Impalad), Impala StateStore, and
Impala Catalog Service.

Impala Daemon

The core Impala component is the Impala daemon, physically represented by the
impalad process.

A few of the key functions that an Impala daemon performs are:

e Runs on all data nodes.
e Reads and writes to data files.

e Accepts queries transmitted from the impala-shell command, Hue, JDBC, or
ODBC.

e Parallelizes the queries and transmits intermediate query results back to the
central coordinator.

e Invokes a node to return the query results to the client.

The Impala daemons are in constant communication with StateStore, to confirm
which daemons are healthy and can accept new work.

Impala StateStore

The Impala component known as the StateStore checks on the health of all
Impala daemons in a cluster, and continuously relays its findings to each of those
daemons. It is physically represented by a daemon process named statestored.
You only need such a process on one host in a cluster. If an Impala daemon goes
offline due to hardware failure, network error, software issue, or other reason, the
StateStore informs all the other Impala daemons so that future queries can avoid
making requests to the unreachable Impala daemon.

Impala Catalog Service

The Impala component known as the Catalog Service relays the metadata changes
from Impala SQL statements to all the Impala daemons in a cluster. It is physically

2025-11-25

83

https://impala.apache.org/impala-docs.html

MapReduce Service
User Guide 1 Overview

represented by a daemon process named catalogd. When you create a table, load
data, and so on through Hive, you do need to issue REFRESH or INVALIDATE
METADATA on an Impala daemon before executing a query there. The catalog
service avoids the need to issue REFRESH and INVALIDATE METADATA statements
when the metadata changes are performed by statements issued through Impala.

1.3.11 Kafka

1.3.11.1 Kafka Basic Principles

Kafka is an open source, distributed, partitioned, and replicated commit log
service. Kafka is publish-subscribe messaging, rethought as a distributed commit
log. It provides features similar to Java Message Service (JMS) but another design.
It features message endurance, high throughput, distributed methods, multi-client
support, and real time. It applies to both online and offline message consumption,
such as regular message collection, website activeness tracking, aggregation of
statistical system operation data (monitoring data), and log collection. These
scenarios engage large amounts of data collection for Internet services.

Kafka Structure

Producers publish data to topics, and consumers subscribe to the topics and
consume messages. A broker is a server in a Kafka cluster. For each topic, the
Kafka cluster maintains partitions for scalability, parallelism, and fault tolerance.
Each partition is an ordered, immutable sequence of messages that is continually
appended to - a commit log. Each message in a partition is assigned a sequential
ID, which is called offset.

Figure 1-64 Kafka architecture

Producer Producer Producer

Consumer Consumer Consumer

2025-11-25 84

https://kafka.apache.org/

MapReduce Service

User Guide

1 Overview

Table 1-13 Kafka a

rchitecture description

Name

Description

Broker

A broker is a server in a Kafka cluster.

Topic

A topic is a category or feed name to which messages are
published. A topic can be divided into multiple partitions,
which can act as a parallel unit.

Partition

A partition is an ordered, immutable sequence of messages
that is continually appended to - a commit log. The messages
in the partitions are each assigned a sequential ID number
called the offset that uniquely identifies each message within
the partition.

Producer

Producers publish messages to a Kafka topic.

Consumer

Consumers subscribe to topics and process the feed of
published messages.

Figure 1-65 shows the relationships between modules.

Figure 1-65 Relatio

Producer 1

nships between Kafka modules

Producer 2

—
- —
— —

/ Broker 1
/

X/ Broker 2\
-‘\-“

Topic Topic Topic Topic
Partition 1 Partition 3 Partition 2 Partition 4

- —

|Consumer1| |Consumer2| |Consumer3| |Consumer4‘ |Consumer5‘ |Consumer6‘

Consumer group 1

Consumer group 2

Consumers label themselves with a consumer group name, and each message
published to a topic is delivered to one consumer instance within each subscribing
consumer group. If all the consumer instances belong to the same consumer
group, loads are evenly distributed among the consumers. As shown in the
preceding figure, Consumer1 and Consumer2 work in load-sharing mode;
Consumer3, Consumer4, Consumer5, and Consumer6 work in load-sharing mode.
If all the consumer instances belong to different consumer groups, messages are

broadcast to all con

sumers. As shown in the preceding figure, the messages in

Topic 1 are broadcast to all consumers in Consumer Group1 and Consumer

Group?2.

2025-11-25

85

MapReduce Service

User Guide

1 Overview

Principle

For details about Kafka architecture and principles, see https://
kafka.apache.org/24/documentation.html.

Message Reliability

When a Kafka broker receives a message, it stores the message on a disk
persistently. Each partition of a topic has multiple replicas stored on different
broker nodes. If one node is faulty, the replicas on other nodes can be used.

High Throughput
Kafka provides high throughput in the following ways:

- Messages are written into disks instead of being cached in the memory,
fully utilizing the sequential read and write performance of disks.

- The use of zero-copy eliminates 1/O operations.
- Data is sent in batches, improving network utilization.

- Each topic is divided in to multiple partitions, which increases concurrent
processing. Concurrent read and write operations can be performed
between multiple producers and consumers. Producers send messages to
specified partitions based on the algorithm used.

Message Subscribe-Notify Mechanism

Consumers subscribe to interested topics and consume data in pull mode.
Consumers can choose the consumption mode, such as batch consumption,
repeated consumption, and consumption from the end, and control the
message pulling speed based on actual situation. Consumers need to
maintain the consumption records by themselves.

Scalability

When broker nodes are added to expand the Kafka cluster capacity, the newly
added brokers register with ZooKeeper. After the registration is successful,
procedures and consumers can sense the change in a timely manner and
make related adjustment.

Open Source Features

Reliability

Message processing methods such as At-Least Once, At-Most Once, and
Exactly Once are provided. The message processing status is maintained by
consumers. Kafka needs to work with the application layer to implement
Exactly Once.

High throughput

High throughput is provided for message publishing and subscription.
Persistence

Messages are stored on disks and can be used for batch consumption and

real-time application programs. Data persistence and replication prevent data
loss.

Distribution

A distributed system is easy to be expanded externally. All producers, brokers,
and consumers support the deployment of multiple distributed clusters.
Systems can be scaled without stopping the running of software or shutting
down the machines.

2025-11-25

86

https://kafka.apache.org/24/documentation.html
https://kafka.apache.org/24/documentation.html

MapReduce Service
User Guide 1 Overview

1.3.11.2 Relationship Between Kafka and Other Components

As a message publishing and subscription system, Kafka provides high-speed data
transmission methods for data transmission between different subsystems of the
Fusionlnsight platform.

It can receive external messages in a real-time manner and provides the messages
to the online and offline services for processing.

The following figure shows the relationship between Kafka and other components.

Figure 1-66 Relationship with Other Components

Flume External
Producer
S
Storm Flink
Spark Hadoop

1.3.11.3 Kafka Enhanced Open Source Features

Kafka Enhanced Open Source Features

e Monitors the following topic-level metrics:
- Topic Input Traffic
- Topic Output Traffic
- Topic Rejected Traffic
- Number of Failed Fetch Requests Per Second
- Number of Failed Produce Requests Per Second
- Number of Topic Input Messages Per Second
- Number of Fetch Requests Per Second
- Number of Produce Requests Per Second

e Queries the mapping between broker IDs and node IP addresses. On Linux
clients, kafka-broker-info.sh can be used to query the mapping between
broker IDs and node IP addresses.

1.3.12 KafkaManager

KafkaManager is a tool for managing Apache Kafka and provides GUI-based
metric monitoring and management of Kafka clusters.

2025-11-25 87

MapReduce Service

User Guide

1 Overview

KafkaManager supports the following operations:

Manage multiple Kafka clusters.

Easy inspection of cluster states (topics, consumers, offsets, partitions,
replicas, and nodes)

Run preferred replica election.
Generate partition assignments with option to select brokers to use.
Run reassignment of partition (based on generated assignments).

Create a topic with optional topic configurations (Multiple Kafka cluster
versions are supported).

Delete a topic (only supported on 0.8.2+ and delete.topic.enable=true is set
in broker configuration).

Batch generate partition assignments for multiple topics with option to select
brokers to use.

Batch run reassignment of partitions for multiple topics.

Add partitions to an existing topic.

Update configurations for an existing topic.

Optionally enable JMX polling for broker-level and topic-level metrics.

Optionally filter out consumers that do not have ids/ owner / & offsets/
directories in ZooKeeper.

1.3.13 KrbServer and LdapServer

1.3.13.1 KrbServer and LdapServer Principles

Overview

Architecture

To manage the access control permissions on data and resources in a cluster, it is
recommended that the cluster be installed in security mode. In security mode, a
client application must be authenticated and a secure session must be established
before the application accesses any resource in the cluster. MRS uses KrbServer to
provide Kerberos authentication for all components, implementing a reliable
authentication mechanism.

LdapServer supports Lightweight Directory Access Protocol (LDAP) and provides
the capability of storing user and user group data for Kerberos authentication.

The security authentication function for user login depends on Kerberos and LDAP.

2025-11-25

88

MapReduce Service

User Guide 1 Overview
Figure 1-67 Security authentication architecture
User CASServer ACS Kerberos 1
3. Authenticate. 3.1. Authenticate.
1. Log in to MRS 7. Authenticate.
Manager.
4. Obtain user groups.
Manager m ‘J LDAP 1
1 ‘ | Sync
5. Go to the componel & UID R D
WebUtI t ponent accesE,'Ke“ﬂ_lw,—_‘lw..J ‘
Component WebUI :_"@/
" 6. Request. ‘ 8. Obtain the user groups.
Eﬂernal ct-)mpcnemﬂ
Figure 1-67 includes three scenarios:
e Logging in to the MRS Manager Web Ul
The authentication architecture includes steps 1, 2, 3, and 4.
e Logging in to a component web Ul
The authentication architecture includes steps 5, 6, 7, and 8.
e Accessing between components
The authentication architecture includes step 9.
Table 1-14 Key modules
Connection | Description
Name
Manager Cluster Manager
Manager WS | WebBrowser
Kerberos1 KrbServer (management plane) service deployed in MRS
Manager, that is, OMS Kerberos
Kerberos2 KrbServer (service plane) service deployed in the cluster
LDAP1 LdapServer (management plane) service deployed in MRS
Manager, that is, OMS LDAP
LDAP2 LdapServer (service plane) service deployed in the cluster
Data operation mode of Kerberos1 in LDAP: The active and standby instances of
LDAP1 and the two standby instances of LDAP2 can be accessed in load balancing
mode. Data write operations can be performed only in the active LDAP1 instance.
Data read operations can be performed in LDAP1 or LDAP2.
2025-11-25 89

MapReduce Service

User Guide 1 Overview
Data operation mode of Kerberos2 in LDAP: Data read operations can be
performed in LDAP1 and LDAP2. Data write operations can be performed only in
the active LDAP1 instance.

Principle
Kerberos authentication
Figure 1-68 Authentication process

Authentication
server (AS)
Ticket granting
EERETIE) Database (bd2. Idap)
LDAP data read and write
Figure 1-69 Data modification process
User Permission
Kerberos LDAP Management Management
Data
read/write/modification
Data
read/write/modification
Data
read/write/modification
LDAP data synchronization
e OMS LDAP data synchronization before cluster installation
2025-11-25 90

MapReduce Service
User Guide

1 Overview

Figure 1-70 OMS LDAP data synchronization

OMS LDAP
(Active)

OMS LDAP
(Standby)

Data synchronization
direction

Data synchronization direction before cluster installation: Data is synchronized
from the active OMS LDAP to the standby OMS LDAP.

LDAP data synchronization after cluster installation

Figure 1-71 LDAP data synchronization

OMS LDAP OMS LDAP
(Standby) (Active)

Component Component
LDAP (Active) LDAP (Active)

Data synchronization
direction

Data synchronization

Data synchronization
direction

Data synchronization direction after cluster installation: Data is synchronized
from the active OMS LDAP to the standby OMS LDAP, standby component

LDAP, and standby component LDAP.

2025-11-25

91

MapReduce Service

User Guide

1 Overview

1.3.13.2 KrbServer and LdapServer Enhanced Open Source Features

Enhanced open-source features of KrbServer and LdapServer: intra-cluster
service authentication

In an MRS cluster that uses the security mode, mutual access between services is
implemented based on the Kerberos security architecture. When a service (such as
HDFS) in the cluster is to be started, the corresponding sessionkey (keytab, used
for identity authentication of the application) is obtained from Kerberos. If
another service (such as YARN) needs to access HDFS and add, delete, modify, or
query data in HDFS, the corresponding TGT and ST must be obtained for secure
access.

Enhanced Open-Source Features of KrbServer and LdapServer: Application
Development Authentication

MRS components provide application development interfaces for customers or
upper-layer service product clusters. During application development, a cluster in
security mode provides specified application development authentication
interfaces to implement application security authentication and access. For
example, the UserGrouplnformation class provided by the hadoop-common API
provides multiple security authentication APlIs.

e setConfiguration() is used to obtain related configuration and set
parameters such as global variables.

e loginUserFromKeytab(): is used to obtain TGT interfaces.

Enhanced Open-Source Features of KrbServer and LdapServer: Cross-System

Mutual Trust

MRS provides the mutual trust function between two Managers to implement
data read and write operations between systems.

1.3.14 Kudu

Kudu is a columnar storage manager developed for the Apache Hadoop platform.
Kudu shares the common technical properties of Hadoop ecosystem applications:
it runs on commodity hardware, is horizontally scalable, and supports highly
available operation.

Kudu's design has the following benefits:

e Fast processing of OLAP workloads
e Integration with MapReduce, Spark and other Hadoop ecosystem components

e Tight integration with Apache Impala, making it a good, mutable alternative
to using HDFS with Apache Parquet

e Strong but flexible consistency model, allowing you to choose consistency
requirements on a per-request basis, including the option for strict-serializable
consistency

e Strong performance for running sequential and random workloads
simultaneously

2025-11-25

92

https://kudu.apache.org/

MapReduce Service

User Guide

1 Overview

1.3.15 Loader

Easy to manage

High availability Tablet Servers and Masters use the Raft Consensus
Algorithm, which ensures that as long as more than half the total number of
replicas is available, the tablet is available for reads and writes. For example,
if 2 out of 3 replicas or 3 out of 5 replicas are available, the tablet is available.
Reads can be serviced by read-only follower tablets, even in the event of a
leader tablet failure.

Structured data model

By combining all of these properties, Kudu targets support for families of
applications that are difficult or impossible to implement on current generation
Hadoop storage technologies.

A few examples of applications for which Kudu is a great solution are:

Reporting applications where newly-arrived data needs to be immediately
available for end users

Time-series applications that must simultaneously support queries across
large amounts of historic data and granular queries about an individual entity
that must return very quickly

Applications that use predictive models to make real-time decisions with
periodic refreshes of the predictive model based on all historic data

1.3.15.1 Loader Basic Principles

Loader is developed based on the open source Sqoop component. It is used to
exchange data and files between MRS and relational databases and file systems.
Loader can import data from relational databases or file servers to the HDFS and
HBase components, or export data from HDFS and HBase to relational databases
or file servers.

A Loader model consists of Loader Client and Loader Server, as shown in Figure
1-72.

2025-11-25

93

https://sqoop.apache.org/

MapReduce Service
User Guide 1 Overview

Figure 1-72 Loader model

Loader External DataSource

Loader Client

WebU

A

kY ¥

._l Reduce Task

it
\

Loader Server

Table 1-15 describes the functions of each module shown in the preceding figure.

Table 1-15 Components of the Loader model

Module Description

Loader Loader client. It provides two interfaces: web Ul and CLI.

Client

Loader Loader server. It processes operation requests sent from the

Server client, manages connectors and metadata, submits MapReduce
jobs, and monitors MapReduce job status.

REST API It provides a Representational State Transfer (RESTful) APls
(HTTP + JSON) to process the operation requests sent from the
client.

Job Simple job scheduler. It periodically executes Loader jobs.

Scheduler

Transform Data transformation engine. It supports field combination, string

Engine cutting, and string reverse.

Execution Loader job execution engine. It executes Loader jobs in

Engine MapReduce manner.

Submission | Loader job submission engine. It submits Loader jobs to
Engine MapReduce.

Job Manager | It manages Loader jobs, including creating, querying, updating,
deleting, activating, deactivating, starting, and stopping jobs.

2025-11-25 94

MapReduce Service

User Guide

1 Overview

Module Description

Metadata Metadata repository. It stores and manages data about Loader
Repository connectors, transformation procedures, and jobs.

HA Manager | It manages the active/standby status of Loader Server processes.

The Loader Server has two nodes that are deployed in active/
standby mode.

Loader imports or exports jobs in parallel using MapReduce jobs. Some job import
or export may involve only the Map operations, while some may involve both Map
and Reduce operations.

Loader implements fault tolerance using MapReduce. Jobs can be rescheduled
upon a job execution failure.

Importing data to HBase

When the Map operation is performed for MapReduce jobs, Loader obtains
data from an external data source.

When a Reduce operation is performed for a MapReduce job, Loader enables
the same number of Reduce tasks based on the number of Regions. The
Reduce tasks receive data from Map tasks, generate HFiles by Region, and
store the HFiles in a temporary directory of HDFS.

When a MapReduce job is submitted, Loader migrates HFiles from the
temporary directory to the HBase directory.

Importing Data to HDFS

When a Map operation is performed for a MapReduce job, Loader obtains
data from an external data source and exports the data to a temporary
directory (named export directory-ldtmp).

When a MapReduce job is submitted, Loader migrates data from the
temporary directory to the output directory.

Exporting data to a relational database

When a Map operation is performed for a MapReduce job, Loader obtains
data from HDFS or HBase and inserts the data to a temporary table (Staging
Table) through the Java DataBase Connectivity (JDBC) API.

When a MapReduce job is submitted, Loader migrates data from the
temporary table to a formal table.

Exporting data to a file system

When a Map operation is performed for a MapReduce job, Loader obtains
data from HDFS or HBase and writes the data to a temporary directory of the
file server.

When a MapReduce job is submitted, Loader migrates data from the
temporary directory to a formal directory.

For details about the Loader architecture and principles, see https://
sqoop.apache.org/docs/1.99.3/index.html.

2025-11-25

95

https://sqoop.apache.org/docs/1.99.3/index.html
https://sqoop.apache.org/docs/1.99.3/index.html

MapReduce Service

User Guide

1 Overview

1.3.15.2 Relationship Between Loader and Other Components

The components that interact with Loader include HDFS, HBase, Hive, YARN,
MapReduce, and ZooKeeper.

Loader works as a client and uses certain functions of these components, such as
storing data to HDFS and HBase and reading data from HDFS and HBase tables.
In addition, Loader functions as a MapReduce client to import or export data.

Loader imports or exports jobs in parallel using MapReduce jobs. Some job import
or export may involve only the Map operations, while some may involve both Map
and Reduce operations.

1.3.15.3 Loader Enhanced Open Source Features

Loader Enhanced Open-Source Feature: Data Import and Export

Loader is developed based on Sqoop. In addition to the Sqoop functions, Loader
has the following enhanced features:

Provides data conversion functions.

Supports GUI-based configuration conversion.

Imports data from an SFTP/FTP server to HDFS/OBS.

Imports data from an SFTP/FTP server to an HBase table.
Imports data from an SFTP/FTP server to a Phoenix table.
Imports data from an SFTP/FTP server to a Hive table.

Exports data from HDFS/OBS to an SFTP/FTP server.

Exports data from an HBase table to an SFTP/FTP server.

Exports data from a Phoenix table to an SFTP/FTP server.
Imports data from a relational database to an HBase table.
Imports data from a relational database to a Phoenix table.
Imports data from a relational database to a Hive table.

Exports data from an HBase table to a relational database.
Exports data from a Phoenix table to a relational database.
Imports data from an Oracle partitioned table to HDFS/OBS.
Imports data from an Oracle partitioned table to an HBase table.
Imports data from an Oracle partitioned table to a Phoenix table.
Imports data from an Oracle partitioned table to a Hive table.
Exports data from HDFS/OBS to an Oracle partitioned table.
Exports data from HBase to an Oracle partitioned table.

Exports data from a Phoenix table to an Oracle partitioned table.

Imports data from HDFS to an HBase table, a Phoenix table, and a Hive table
in the same cluster.

Exports data from an HBase table and a Phoenix table to HDFS/OBS in the
same cluster.

Imports data to an HBase table and a Phoenix table by using bulkload or put
list.

2025-11-25

96

MapReduce Service
User Guide

1 Overview

Imports all types of files from an SFTP/FTP server to HDFS. The open source
component Sqoop can import only text files.

Exports all types of files from HDFS/OBS to an SFTP server. The open source
component Sqoop can export only text files and SequenceFile files.

Supports file coding format conversion during file import and export. The
supported coding formats include all formats supported by Java Development
Kit (JDK).

Retains the original directory structure and file names during file import and
export.

Supports file combination during file import and export. For example, if a
large number of files are to be imported, these files can be combined into n
files (7 can be configured).

Supports file filtering during file import and export. The filtering rules support
wildcards and regular expressions.

Supports batch import and export of ETL tasks.
Supports query by page and key word and group management of ETL tasks.
Provides floating IP addresses for external components.

1.3.16 Manager

1.3.16.1 Manager Basic Principles

Overview

Manager is the O&M management system of MRS and provides unified cluster
management capabilities for services deployed in clusters.

Manager provides functions such as performance monitoring, alarms, user
management, permission management, auditing, service management, health
check, and log collection.

Architecture

Figure 1-73 shows the overall logical architecture of Fusionlnsight Manager.

2025-11-25

97

MapReduce Service

User Guide

1 Overview

Figure 1-73 Manager logical architecture

Web Ul

e oo
ACS

QMM Agent Node Agent NTP Client

MRS Manager

Manager consists of OMS and OMA.

e OMS: serves as management node in the O&M system. There are two OMS
nodes deployed in active/standby mode.

e OMA: managed node in the O&M system. Generally, there are multiple OMA

nodes.

Figure 1-73 describes the modules shown in Table 1-16.

Table 1-16 Service module description

Module Description

Web Service | A web service deployed under Tomcat, providing HTTPS API of
Manager. It is used to access Manager through the web browser.
In addition, it provides the northbound access capability based
on the Syslog and SNMP protocols.

OMS Management node of the O&M system. Generally, there are two
OMS nodes that work in active/standby mode.

OMA Managed node in the O&M system. Generally, there are multiple

OMA nodes.

2025-11-25

98

MapReduce Service

User Guide

1 Overview

Module

Description

Controller

The control center of Manager. It can converge information
from all nodes in the cluster and display it to administrators, as
well as receive from administrators, and synchronize information
to all nodes in the cluster according to the operation instruction
range.

Control process of Manager. It implements various management
actions:

1. The web service delivers various management actions (such
as installation, service startup and stop, and configuration
modification) to Controller.

2. Controller decomposes the command and delivers the action
to each Node Agent, for example, starting a service involves
multiple roles and instances.

3. Controller is responsible for monitoring the implementation
of each action.

Node Agent

Node Agent exists on each cluster node and is an enabler of
Manager on a single node.

e Node Agent represents all the components deployed on the
node to interact with Controller, implementing convergence
from multiple nodes of a cluster to a single node.

e Node Agent enables Controller to perform all operations on
the components deployed on the node. It allows Controller
functions to be implemented.

Node Agent sends heartbeat messages to Controller at an
interval of 3 seconds. The interval cannot be configured.

IAM

Records audit logs. Each non-query operation on the Manager
Ul has a related audit log.

PMS

The performance monitoring module. It collects the
performance monitoring data on each OMA and provides the
query function.

CEP

Convergence function module. For example, the used disk space
of all OMA:s is collected as a performance indicator.

FMS

Alarm module. It collects and queries alarms on each OMA.

OMM Agent

Agent for performance monitoring and alarm reporting on the
OMA. It collects performance monitoring data and alarm data
on Agent Node.

CAS

Unified authentication center. When a user logs in to the web
service, CAS authenticates the login. The browser automatically
redirects the user to the CAS through URLs.

AOS

Permission management module. It manages the permissions of
users and user groups.

2025-11-25

99

MapReduce Service

User Guide

1 Overview

Module Description

ACS User and user group management module. It manages users
and user groups to which users belong.

Kerberos LDAP is deployed in OMS and a cluster, respectively.

e OMS Kerberos provides the single sign-on (SSO) and
authentication between Controller and Node Agent.

e Kerberos in the cluster provides the user security
authentication function for components. The service name is
KrbServer, which contains two role instances:

- KerberosServer: is an authentication server that provides
security authentication for MRS.

- KerberosAdmin: manages processes of Kerberos users.

Ldap LDAP is deployed in OMS and a cluster, respectively.
e OMS LDAP provides data storage for user authentication.

e The LDAP in the cluster functions as the backup of the OMS
LDAP. The service name is LdapServer and the role instance
is SlapdServer.

Database Manager database used to store logs and alarms.

HA HA management module that manages the active and standby
OMSs.

NTP Server It synchronizes the system clock of each node in the cluster.

NTP Client

1.3.16.2 Manager Key Features

Key Feature: Unified Alarm Monitoring

Manager provides the visualized and convenient alarm monitoring function. Users
can quickly obtain key cluster performance indicators, evaluate cluster health
status, customize performance indicator display, and convert indicators to alarms.
Manager can monitor the running status of all components and report alarms in
real time when faults occur. The online help on the GUI allows you to view
performance counters and alarm clearance methods to quickly rectify faults.

Key Feature: Unified User Permission Management

Manager provides permission management of components in a unified manner.

Manager introduces the concept of role and uses role-based access control (RBAC)
to manage system permissions. It centrally displays and manages scattered
permission functions of each component in the system and organizes the
permissions of each component in the form of permission sets (roles) to form a
unified system permission concept. By doing so, common users cannot obtain
internal permission management details, and permissions become easy for

2025-11-25

100

MapReduce Service

User Guide

1 Overview

administrators to manage, greatly facilitating permission management and
improving user experience.

Key Feature: SSO

Single sign-on (SSO) is provided between the Manager web Ul and component
web Ul as well as for integration between MRS and third-party systems.

This function centrally manages and authenticates Manager users and component
users. The entire system uses LDAP to manage users and uses Kerberos for
authentication. A set of Kerberos and LDAP management mechanisms are used
between the OMS and components. SSO (including single sign-on and single sign-
out) is implemented through CAS. With SSO, users can easily switch tasks between
the Manager web Ul, component web Uls, and third-party systems, without
switching to another user.

(11 NOTE

e To ensure security, the CAS Server can retain a ticket-granting ticket (TGT) used by a user
only for 20 minutes.

e If a user does not perform any operation on the page (including on the Manager web Ul and
component web Uls) within 20 minutes, the page is automatically locked.

Key Feature: Automatic Health Check and Inspection

Manager provides users with automatic inspection on system running
environments and helps users check and audit system running health by one click,
ensuring correct system running and lowering system operation and maintenance
costs. After viewing inspection results, you can export reports for archiving and
fault analysis.

Key Feature: Tenant Management

Manager introduces the multi-tenant concept. The CPU, memory, and disk
resources of a cluster can be integrated into a set. The set is called a tenant. A
mode involving different tenants is called multi-tenant mode.

Manager provides the multi-tenant function, supports a level-based tenant model
and allows tenants to be added and deleted dynamically, achieving resource
isolation. As a result, it can dynamically manage and configure the computing
resources and the storage resources of tenants.

e The computing resources indicate tenants' Yarn task queue resources. The
task queue quota can be modified, and the task queue usage status and
statistics can be viewed.

e The storage resources can be stored on HDFS. You can add and delete the
HDFS storage directories of tenants, and set the quotas of file quantity and
the storage space of the directories.

As a unified tenant management platform of MRS, MRS Manager allows users to
create and manage tenants in clusters based on service requirements.

e Roles, computing resources, and storage resources are automatically created
when tenants are created. By default, all permissions of the new computing
resources and storage resources are allocated to a tenant's roles.

2025-11-25

101

MapReduce Service
User Guide 1 Overview

e After you have modified the tenant's computing or storage resources,
permissions of the tenant's roles are automatically updated.

Manager also provides the multi-instance function so that users can use the
HBase, Hive, or Spark alone in the resource control and service isolation scenario.
The multi-instance function is disabled by default and can be manually enabled.

1.3.17 MapReduce

1.3.17.1 MapReduce Basic Principles

MapReduce is the core of Hadoop. As a software architecture proposed by Google,
MapReduce is used for parallel computing of large-scale datasets (larger than 1
TB). The concepts "Map" and "Reduce" and their main thoughts are borrowed
from functional programming language and also borrowed from the features of

vector programming language.

Current software implementation is as follows: Specify a Map function to map a
series of key-value pairs into a new series of key-value pairs, and specify a Reduce
function to ensure that all values in the mapped key-value pairs share the same

key.

Figure 1-74 Distributed batch processing engine

‘% ’ 6 Job status
\oft Job tracker
] o Asg,
M 5%,
| SeUN

JSON
Map

HDFS

- Ree roa blocks
— Data node ol
Reduce
—
—
Map Data node
,,_/"'_- Data node

Reduce ’—__'

Qutput
files

Local write

- . Map
- Data node

Split

Data node

MapReduce is a software framework for processing large datasets in parallel. The
root of MapReduce is the Map and Reduce functions in functional programming.
The Map function accepts a group of data and transforms it into a key-value pair
list. Each element in the input domain corresponds to a key-value pair. The Reduce
function accepts the list generated by the Map function, and then shrinks the key-
value pair list based on the keys. MapReduce divides a task into multiple parts and
allocates them to different devices for processing. In this way, the task can be
finished in a distributed environment instead of a single powerful server.

For more information, see MapReduce Tutorial.

MapReduce structure

As shown in Figure 1-75, MapReduce is integrated into YARN through the Client
and ApplicationMaster interfaces of YARN, and uses YARN to apply for computing
resources.

2025-11-25 102

https://hadoop.apache.org/docs/r3.1.1/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html

MapReduce Service
User Guide 1 Overview

Figure 1-75 Basic architecture of Apache YARN and MapReduce

.......................

Node
R anager
@

Active / \ Standby
RN Resource o + R Node Resource
Manager i Manager Manager

TaskAttempt Status ——p

i ResourceManager ! Application Submission ————— -
St.a.t.e.?.t?re ; TSI Node Status >
Resource Request
RM StateStore

operation

Leader Election ———

1.3.17.2 Relationship Between MapReduce and Other Components

Relationship Between MapReduce and HDFS

e HDFS features high fault tolerance and high throughput, and can be deployed
on low-cost hardware for storing data of applications with massive data sets.

e MapReduce is a programming model used for parallel computation of large
data sets (larger than 1 TB). Data computed by MapReduce comes from
multiple data sources, such as Local FileSystem, HDFS, and databases. Most
data comes from the HDFS. The high throughput of HDFS can be used to read
massive data. After being computed, data can be stored in HDFS.

Relationship Between MapReduce and Yarn

MapReduce is a computing framework running on Yarn, which is used for batch
processing. MRv1 is implemented based on MapReduce in Hadoop 1.0, which is
composed of programming models (new and old programming APIs), running
environment (JobTracker and TaskTracker), and data processing engine (MapTask
and ReduceTask). This framework is still weak in scalability, fault tolerance
(JobTracker SPOF), and compatibility with multiple frameworks. (Currently, only
the MapReduce computing framework is supported.) MRv2 is implemented based
on MapReduce in Hadoop 2.0. The source code reuses MRv1 programming models
and data processing engine implementation, and the running environment is
composed of ResourceManager and ApplicationMaster. ResourceManager is a
brand new resource manager system, and ApplicationMaster is responsible for
cutting MapReduce job data, assigning tasks, applying for resources, scheduling
tasks, and tolerating faults.

2025-11-25 103

MapReduce Service

User Guide

1 Overview

1.3.17.3 MapReduce Enhanced Open Source Features

MapReduce Enhanced Open-Source Feature: JobHistoryServer HA

JobHistoryServer (JHS) is the server used to view historical MapReduce task
information. Currently, the open source JHS supports only single-instance services.
JHS HA can solve the problem that an application fails to access the MapReduce
APl when SPOFs occur on the JHS, which causes the application fails to be
executed. This greatly improves the high availability of the MapReduce service.

Figure 1-76 Status transition of the JobHistoryServer HA active/standby
switchover

Before switchover
(normal running status)

Dasmon A Daemon B

After switchowver

Daemon A Daemon

JobHistoryServer High Availability

e ZooKeeper is used to implement active/standby election and switchover.
e JHS uses the floating IP address to provide services externally.

2025-11-25

104

MapReduce Service

User Guide

1 Overview

e Both the JHS single-instance and HA deployment modes are supported.

e Only one node starts the JHS process at a time point to prevent multiple JHS
operations from processing the same file.

e You can perform scale-out, scale-in, instance migration, upgrade, and health
check.

Enhanced Open Source Feature: Improving MapReduce Performance by
Optimizing the Merge/Sort Process in Specific Scenarios

The figure below shows the workflow of a MapReduce task.

Figure 1-77 MapReduce job

InputFormat Map Task |Sort/Spill Fetch Merge | Reduce Task QutputFormat
i
INputHDFS H Bt EETEEEEE B OutputHDFS
! |
A | ; Part 0
Split 0 - — | @
-‘ 1
_________ k) 1
Split 1 | |sortmerge | | ‘
i H
_________ o e m o e
1
Jl

Figure 1-78 MapReduce job execution flow

Copy phase Sort phase Reduce phase

Map task Partitions, sort Reduon ack
’ and spill to disk felch uce tas|

Buffer in
memory

Input :
split Quiput
Partitions

| J
Miure ofin-memory and on-disk dafa

Other maps Other reduces

The Reduce process is divided into three different steps: Copy, Sort (actually
supposed to be called Merge), and Reduce. In Copy phase, Reducer tries to fetch
the output of Maps from NodeManagers and store it on Reducer either in memory

2025-11-25

105

MapReduce Service

User Guide

1 Overview

or on disk. Shuffle (Sort and Merge) phase then begins. All the fetched map
outputs are being sorted, and segments from different map outputs are merged
before being sent to Reducer. When a job has a large number of maps to be
processed, the shuffle process is time-consuming. For specific tasks (for example,
SQL tasks such as hash join and hash aggregation), sorting is not mandatory
during the shuffle process. However, the sorting is required by default in the
shuffle process.

This feature is enhanced by using the MapReduce API, which can automatically
close the Sort process for such tasks. When the sorting is disabled, the API directly
merges the fetched Maps output data and sends the data to Reducer. This greatly
saves time, and significantly improves the efficiency of SQL tasks.

Enhanced Open Source Feature: Small Log File Problem Solved After
Optimization of MR History Server

After the job running on Yarn is executed, NodeManager uses
LogAggregationService to collect and send generated logs to HDFS and deletes
them from the local file system. After the logs are stored to HDFS, they are
managed by MR HistoryServer. LogAggregationService will merge local logs
generated by containers to a log file and upload it to the HDFS, reducing the
number of log files to some extent. However, in a large-scale and busy cluster,
there will be excessive log files on HDFS after long-term running.

For example, if there are 20 nodes, about 18 million log files are generated within
the default clean-up period (15 days), which occupy about 18 GB of the memory
of a NameNode and slow down the HDFS system response.

Only the reading and deletion are required for files stored on HDFS. Therefore,
Hadoop Archives can be used to periodically archive the directory of collected log
files.

Archiving Logs

The AggregatedLogArchiveService module is added to MR HistoryServer to
periodically check the number of files in the log directory. When the number of
files reaches the threshold, AggregatedLogArchiveService starts an archiving task
to archive log files. After archiving, it deletes the original log files to reduce log
files on HDFS.

Cleaning Archived Logs

Hadoop Archives does not support deletion in archived files. Therefore, the entire
archive log package must be deleted upon log clean-up. The latest log generation
time is obtained by modifying the AggregatedLogDeletionService module. If all log
files meet the clean-up requirements, the archive log package can be deleted.

Browsing Archived Logs

Hadoop Archives allows URI-based access to file content in the archive log
package. Therefore, if MR History Server detects that the original log files do not
exist during file browsing, it directly redirects the URI to the archive log package to
access the archived log file.

2025-11-25

106

MapReduce Service
User Guide

1 Overview

(11 NOTE

e This function invokes Hadoop Archives of HDFS for log archiving. Because the execution
of an archiving task by Hadoop Archives is to run an MR application. Therefore, after an

archiving task is executed, an MR execution record is added.

e This function of archiving logs is based on the log collection function. Therefore, this
function is valid only when the log collection function is enabled.

1.3.18 Oozie

1.3.18.1 Oozie Basic Principles

Introduction to Oozie

Oozie is an open-source workflow engine that is used to schedule and coordinate

Hadoop jobs.
Architecture
The Oozie engine is a web application integrated into Tomcat by default. Oozie
uses PostgreSQL databases.
Oozie provides an Ext-based web console, through which users can view and
monitor Oozie workflows. Oozie provides an external REST web service API for the
Oozie client to control workflows (such as starting and stopping operations), and
orchestrate and run Hadoop MapReduce tasks. For details, see Figure 1-79.
Figure 1-79 Oozie architecture
Console Client
QOozie engine
component
Tomcat
Table 1-17 describes the functions of each module shown in Figure 1-79.
Table 1-17 Architecture description
Connection Description
Name
Console Allows users to view and monitor Oozie workflows.
2025-11-25 107

http://oozie.apache.org/

MapReduce Service

User Guide 1 Overview

Connection Description

Name

Client Controls workflows, including submitting, starting, running,
planting, and restoring workflows, through APIs.

SDK Is short for software development kit. An SDK is a set of
development tools used by software engineers to establish
applications for particular software packages, software
frameworks, hardware platforms, and operating systems.

Database PostgreSQL database

WebApp Functions as the Oozie server. It can be deployed on a built-in

(Oozie) or an external Tomcat container. Information recorded by
WebApp (Oozie) including logs is stored in the PostgreSQL
database.

Tomcat A free open-source web application server

Hadoop Underlying components, such as MapReduce and Hive, that

components execute the workflows orchestrated by Oozie.

Principle

Oozie is a workflow engine server that runs MapReduce workflows. It is also a
Java web application running in a Tomcat container.

Oozie workflows are constructed using Hadoop Process Definition Language
(HPDL). HPDL is an XML-defined language, similar to JBoss jBPM Process
Definition Language (jPDL). An Oozie workflow consists of the Control Node and

Action Node.

e Control Node controls workflow orchestration, such as start, end, error,
decision, fork, and join.

e An Oozie workflow contains multiple Action Nodes, such as MapReduce and

Java.

All Action Nodes are deployed and run in Direct Acyclic Graph (DAG) mode.
Therefore, Action Nodes run in direction. That is, the next Action Node can
run only when the running of the previous Action Node ends. When one
Action Node ends, the remote server calls back the Oozie interface. Then
Oozie executes the next Action Node of workflow in the same manner until
all Action Nodes are executed (execution failures are counted).

Oozie workflows provide various types of Action Nodes, such as MapReduce,
Hadoop distributed file system (HDFS), Secure Shell (SSH), Java, and Oozie sub-
flows, to support a wide range of business requirements.

2025-11-25

108

MapReduce Service
User Guide 1 Overview

1.3.18.2 Oozie Enhanced Open Source Features

Enhanced Open Source Feature: Improved Security

Provides roles of administrator and common users to support Oozie permission
management.

Supports single sign-on and sign-out, HTTPS access, and audit logs.

1.3.19 OpenTSDB

OpenTSDB is a distributed, scalable time series database based on HBase.
OpenTSDB is designed to collect monitoring information of a large-scale cluster
and implement second-level data query, eliminating the limitations of querying
and storing massive amounts of monitoring data in common databases.

OpenTSDB consists of a Time Series Daemon (TSD) as well as a set of command
line utilities. Interaction with OpenTSDB is primarily implemented by running one
or more TSDs. Each TSD is independent. There is no master server and no shared
state, so you can run as many TSDs as required to handle any load you throw at it.
Each TSD uses HBase in a CloudTable cluster to store and retrieve time series data.
The data schema is highly optimized for fast aggregations of similar time series to
minimize storage space. TSD users never need to directly access the underlying
storage. You can communicate with the TSD through an HTTP API. All
communications happen on the same port (the TSD figures out the protocol of
the client by looking at the first few bytes it receives).

Figure 1-80 OpenTSDB architecture

Application Application Application

[}
|
HTTP | HTTP / HTTP

Application scenarios of OpenTSDB have the following features:

2025-11-25 109

MapReduce Service

User Guide

1 Overview

e The collected metrics have a unique value at a time point and do not have a
complex structure or relationship.

e Monitoring metrics change with time.
e Like HBase, OpenTSDB features high throughput and good scalability.

OpenTSDB provides an HTTP based application programming interface to enable
integration with external systems. Almost all OpenTSDB features are accessible via
the API such as querying time series data, managing metadata, and storing data
points. For details, visit https://opentsdb.net/docs/build/html/api_http/
index.html.

1.3.20 Presto

Presto is an open source SQL query engine for running interactive analytic queries
against data sources of all sizes. It applies to massive structured/semi-structured
data analysis, massive multi-dimensional data aggregation/report, ETL, ad-hoc
queries, and more scenarios.

Presto allows querying data where it lives, including HDFS, Hive, HBase,
Cassandra, relational databases or even proprietary data stores. A Presto query
can combine different data sources to perform data analysis across the data
sources.

Figure 1-81 Presto architecture

Presto
Metastore

Presto
CLI

Presto
Coordinator

Presto

Presto runs in a cluster in distributed mode and contains one coordinator and
multiple worker processes. Query requests are submitted from clients (for
example, CLI) to the coordinator. The coordinator parses SQL statements,
generates execution plans, and distributes the plans to multiple worker processes
for execution.

For details about Presto, visit https://prestodb.github.io/ or https://prestosql.io/.

Multiple Presto Instances

MRS supports the installation of multiple Presto instances for a large-scale cluster
by default. That is, multiple Worker instances, such as Worker1, Worker2, and

2025-11-25

110

https://opentsdb.net/docs/build/html/api_http/index.html
https://opentsdb.net/docs/build/html/api_http/index.html
https://prestodb.github.io/
https://prestosql.io/

MapReduce Service

User Guide

1 Overview

Worker3, are installed on a Core/Task node. Multiple Worker instances interact
with the Coordinator to execute computing tasks, greatly improving node resource
utilization and computing efficiency.

Presto multi-instance applies only to the Arm architecture. Currently, a single node
supports a maximum of four instances.

For more Presto deployment information, see https://prestodb.io/docs/current/
installation/deployment.html or https://trino.io/docs/current/installation/

deployment.html.

1.3.21 Ranger

1.3.21.1 Ranger Basic Principles

Apache Ranger offers a centralized security management framework and
supports unified authorization and auditing. It manages fine grained access
control over Hadoop and related components, such as Storm, HDFS, Hive, HBase,
and Kafka. You can use the front-end web Ul console provided by Ranger to
configure policies to control users' access to these components.

Figure 1-82 shows the Ranger architecture.

Figure 1-82 Ranger structure

TabSync

CRUD

——————————

—_———

store audit
Audit Store

(Local FS/ES)

Store policy

Y

Table 1-18 Architecture description

Connection Name

Description

RangerAdmin

Provides a WebUI and RESTful API to manage policies,
users, and auditing.

2025-11-25

111

https://prestodb.io/docs/current/installation/deployment.html
https://prestodb.io/docs/current/installation/deployment.html
https://trino.io/docs/current/installation/deployment.html
https://trino.io/docs/current/installation/deployment.html
https://ranger.apache.org/

MapReduce Service

User Guide

1 Overview

Connection Name Description

UserSync Periodically synchronizes user and user group

information from an external system and writes the
information to RangerAdmin.

TagSync Periodically synchronizes tag information from the

external Atlas service and writes the tag information to
RangerAdmin.

Ranger Principles

Ranger Plugins

Ranger provides policy-based access control (PBAC) plug-ins to replace the
original authentication plug-ins of the components. Ranger plug-ins are
developed based on the authentication interface of the components. Users set
permission policies for specified services on the Ranger web Ul. Ranger plug-
ins periodically update policies from the RangerAdmin and caches them in the
local file of the component. When a client request needs to be authenticated,
the Ranger plug-in matches the user carried in the request with the policy
and then returns an accept or reject message.

UserSync User Synchronization

UserSync periodically synchronizes data from LDAP/Unix to RangerAdmin. In
security mode, data is synchronized from LDAP. In non-security mode, data is
synchronized from Unix. By default, the incremental synchronization mode is
used. In each synchronization period, UserSync updates only new or modified
users and user groups. When a user or user group is deleted, UserSync does
not synchronize the change to RangerAdmin. That is, the user or user group is
not deleted from the RangerAdmin. To improve performance, UserSync does
not synchronize user groups to which no user belongs to RangerAdmin.

Unified auditing

Ranger plug-ins can record audit logs. Currently, audit logs can be stored in
local files.

High reliability

Ranger supports two RangerAdmins working in active/active mode. Two

RangerAdmins provide services at the same time. If either RangerAdmin is
faulty, Ranger continues to work.

High performance

Ranger provides the Load-Balance capability. When a user accesses Ranger
WebUI using a browser, the Load-Balance automatically selects the
RangerAdmin with the lightest load to provide services.

1.3.21.2 Relationship Between Ranger and Other Components

Ranger provides PABC-based authentication plug-ins for components to run on
their servers. Ranger currently supports authentication for the following
components like HDFS, YARN, Hive, HBase, Kafka, Storm, and Spark. More
components will be supported in the future.

Ranger provides policy-based access control (PBAC) plug-ins to replace the

original authentication plug-ins of the components. Ranger plug-ins are developed

2025-11-25

112

MapReduce Service

User Guide

1 Overview

based on the authentication interface of the components. Users set permission
policies for specified services on the Ranger web Ul. Ranger plug-ins periodically
update policies from the RangerAdmin and caches them in the local file of the
component. When a client request needs to be authenticated, the Ranger plug-in
matches the user carried in the request with the policy and then returns an accept
or reject message.

Each time a component is started, the system checks whether the default Ranger
service of the component exists. If the service does not exist, the system creates
the Ranger service and adds a default policy for it. If a service is deleted by
mistake, you can restart or restart the corresponding component service in rolling
mode to restore the service. If the default policy is deleted by mistake, you can
manually delete the service and then restart the component service.

Figure 1-83 Relationships between Ranger and other components

HDFS Ranger

Plugin \~. Access ,

9 oe, HOFS File/Fojge,

Tables
% ve
“a Access 2
v o
5 & ~ \,\%"’
\ ~ S
Hive Ranger ! \ \\\ P&c’eﬁ

Plugin = “>~-o N

e \\\ Plugins Download
S N Defined Palicies from
5 S Centralized Policy store

HBase W N aits
Rangler Ag=-§rmm-mmsmm--------------------25B Ranger Policy store
Plugin N N

Plugins Write to
Centralized Audit store

S Ranger Audit store

1.3.22 Spark

1.3.22.1 Basic Principles of Spark

Description

(11 NOTE

The Spark component applies to versions earlier than MRS 3.x.

Spark is an open source parallel data processing framework. It helps you easily
develop unified big data applications and perform offline processing, stream
processing, and interactive analysis on data.

Spark provides a framework featuring fast computing, write, and interactive query.
Spark has obvious advantages over Hadoop in terms of performance. Spark uses
the in-memory computing mode to avoid 1/O bottlenecks in scenarios where
multiple tasks in a MapReduce workflow process the same dataset. Spark is
implemented by using Scala programming language. Scala enables distributed

2025-11-25

113

https://spark.apache.org/

MapReduce Service

User Guide

1 Overview

datasets to be processed in a method that is the same as that of processing local
data. In addition to interactive data analysis, Spark supports interactive data
mining. Spark adopts in-memory computing, which facilitates iterative computing.
By coincidence, iterative computing of the same data is a general problem facing
data mining. In addition, Spark can run in Yarn clusters where Hadoop 2.0 is
installed. The reason why Spark cannot only retain various features like
MapReduce fault tolerance, data localization, and scalability but also ensure high
performance and avoid busy disk 1/Os is that a memory abstraction structure
called Resilient Distributed Dataset (RDD) is created for Spark.

Original distributed memory abstraction, for example, key-value store and
databases, supports small-granularity update of variable status. This requires
backup of data or log updates to ensure fault tolerance. Consequently, a large
amount of I/O consumption is brought about to data-intensive workflows. For the
RDD, it has only one set of restricted APIs and only supports large-granularity
update, for example, map and join. In this way, Spark only needs to record the
transformation operation logs generated during data establishment to ensure
fault tolerance without recording a complete dataset. This data transformation
link record is a source for tracing a data set. Generally, parallel applications apply
the same computing process for a large dataset. Therefore, the limit to the
mentioned large-granularity update is not large. As described in Spark theses, the
RDD can function as multiple different computing frameworks, for example,
programming models of MapReduce and Pregel. In addition, Spark allows you to
explicitly make a data transformation process be persistent on hard disks. Data
localization is implemented by allowing you to control data partitions based on
the key value of each record. (An obvious advantage of this method is that two
copies of data to be associated will be hashed in the same mode.) If memory
usage exceeds the physical limit, Spark writes relatively large partitions into hard
disks, thereby ensuring scalability.

Spark has the following features:

e Fast: The data processing speed of Spark is 10 to 100 times higher than that
of MapReduce.

e Easy-to-use: Java, Scala, and Python can be used to simply and quickly
compile parallel applications for processing massive amounts of data. Spark
provides over 80 operators to help you compile parallel applications.

e Universal: Spark provides many tools, for example, Spark SQL and Spark
Streaming. These tools can be combined flexibly in an application.

e Integration with Hadoop: Spark can directly run in a Hadoop cluster and read
existing Hadoop data.

The Spark component of MRS has the following advantages:

e The Spark Streaming component of MRS supports real-time data processing
rather than triggering as scheduled.

e The Spark component of MRS provides Structured Streaming and allows you
to build streaming applications using the Dataset API. Spark supports exactly-
once semantics and inner and outer joins for streams.

e The Spark component of MRS uses pandas_udf to replace the original user-
defined functions (UDFs) in PySpark to process data, which reduces the
processing duration by 60% to 90% (affected by specific operations).

e The Spark component of MRS also supports graph data processing and allows
modeling using graphs during graph computing.

2025-11-25

114

https://spark.apache.org/sql/
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/

MapReduce Service

User Guide 1 Overview
e Spark SQL of MRS is compatible with some Hive syntax (based on the 64 SQL
statements of the Hive-Test-benchmark test set) and standard SQL syntax
(based on the 99 SQL statements of the TPC-DS test set).
Architecture

Figure 1-84 describes the Spark architecture and Table 1-19 lists the Spark

modules.

Figure 1-84 Spark architecture

Worker Node
Executor Cache
|}
Task Task

Driver Program

SparkContext

Y

¥

Cluster Manager

\ Worker Node +

Executor Cache

Task Task

Table 1-19 Basic concepts

Module

Description

Cluster Manager

Cluster manager manages resources in the cluster. Spark
supports multiple cluster managers, including Mesos, Yarn,
and the Standalone cluster manager that is delivered with
Spark.

Application

Spark application. It consists of one Driver Program and
multiple executors.

Deploy Mode

Deployment in cluster or client mode. In cluster mode, the
driver runs on a node inside the cluster. In client mode, the
driver runs on the client (outside the cluster).

Driver Program

The main process of the Spark application. It runs the
main() function of an application and creates SparkContext.
It is used for parsing applications, generating stages, and
scheduling tasks to executors. Usually, SparkContext
represents Driver Program.

Executor

A process started on a Work Node. It is used to execute
tasks, and manage and process the data used in
applications. A Spark application usually contains multiple
executors. Each executor receives commands from the driver
and executes one or multiple tasks.

2025-11-25

115

MapReduce Service

User Guide

1 Overview

Module

Description

Worker Node

A node that starts and manages executors and resources in
a cluster.

Job A job consists of multiple concurrent tasks. One action
operator (for example, a collect operator) maps to one job.

Stage Each job consists of multiple stages. Each stage is a task set,
which is separated by Directed Acyclic Graph (DAG).

Task A task carries the computation unit of the service logics. It is

the minimum working unit that can be executed on the
Spark platform. An application can be divided into multiple
tasks based on the execution plan and computation
amount.

Spark Application Running Principle

Figure 1-85 shows the Spark application running architecture. The running

process is as follows:

1. An application is running in the cluster as a collection of processes. Driver
coordinates the running of the application.

2. To run an application, Driver connects to the cluster manager (such as
Standalone, Mesos, and Yarn) to apply for the executor resources, and start
ExecutorBackend. The cluster manager schedules resources between different
applications. Driver schedules DAGs, divides stages, and generates tasks for
the application at the same time.

3. Then, Spark sends the codes of the application (the codes transferred to
SparkContext, which is defined by JAR or Python) to an executor.

4. After all tasks are finished, the running of the user application is stopped.

Figure 1-85 Spark application running architecture

Your program

5¢ = hew SparkContext
f=sctextFile("._")
filter(...)

.count()

| Spark client (app master) Spark worker
RDD graph
Task threads
Task

Scheduler

Result
Block tracker
Block manager

Shuffle tracker

Cluster manager

Master

2025-11-25

116

MapReduce Service

User Guide

1 Overview

Figure 1-86 shows the Master and Worker modes adopted by Spark. A user
submits an application on the Spark client, and then the scheduler divides a job
into multiple tasks and sends the tasks to each Worker for execution. Each Worker
reports the computation results to Driver (Master), and then the Driver aggregates
and returns the results to the client.

Figure 1-86 Spark Master-Worker mode

RAM

Input Data

— | RAM

Worker I
Input Data

Driver

RAM

Worker

Input Data

Note the following about the architecture:

Applications are isolated from each other.

Each application has an independent executor process, and each executor
starts multiple threads to execute tasks in parallel. Whether in terms of
scheduling or task running on executors. Each driver independently schedules
its own tasks. Different application tasks run on different JVMs, that is,
different executors.

Different Spark applications do not share data, unless data is stored in the
external storage system such as HDFS.

You are advised to deploy the Driver program in a location that is close to the
Worker node because the Driver program schedules tasks in the cluster. For
example, deploy the Driver program on the network where the Worker node
is located.

Spark on YARN can be deployed in two modes:

In Yarn-cluster mode, the Spark driver runs inside an ApplicationMaster
process which is managed by Yarn in the cluster. After the ApplicationMaster
is started, the client can exit without interrupting service running.

In Yarn-client mode, the driver is started in the client process, and the
ApplicationMaster process is used only to apply for resources from the Yarn
cluster.

2025-11-25

117

MapReduce Service
User Guide

1 Overview

Spark Streaming Principle

Spark Streaming is a real-time computing framework built on the Spark, which
expands the capability for processing massive streaming data. Currently, Spark
supports the following data processing methods:

e Direct Streaming

In Direct Streaming approach, Direct API is used to process data. Take Kafka
Direct API as an example. Direct API provides offset location that each batch
range will read from, which is much simpler than starting a receiver to
continuously receive data from Kafka and written data to write-ahead logs
(WALs). Then, each batch job is running and the corresponding offset data is
ready in Kafka. These offset information can be securely stored in the
checkpoint file and read by applications that failed to start.

Figure 1-87 Data transmission through Direct Kafka API

Spark Streaming

New Direct Kafka integration w/o
Receivers and WALs

~— Query latest offsets and
~._ . decide offset ranges for batch

- .
.. e
. .
- b
~—

.
-
. .
e S
. .
— —
. .

Read data using offset rangé'é“"'“f

in jobs using Simple API
|

Driver T~
I‘f‘h\.\""‘«-\.
Launch jobs
using offset
ranges
Executor <

Kafka

After the failure, Spark Streaming can read data from Kafka again and
process the data segment. The processing result is the same no matter Spark
Streaming fails or not, because the semantic is processed only once.

Direct API does not need to use the WAL and Receivers, and ensures that each
Kafka record is received only once, which is more efficient. In this way, the
Spark Streaming and Kafka can be well integrated, making streaming
channels be featured with high fault-tolerance, high efficiency, and ease-of-
use. Therefore, you are advised to use Direct Streaming to process data.

e Receiver

When a Spark Streaming application starts (that is, when the driver starts),
the related StreamingContext (the basis of all streaming functions) uses
SparkContext to start the receiver to become a long-term running task. These
receivers receive and save streaming data to the Spark memory for
processing. Figure 1-88 shows the data transfer lifecycle.

2025-11-25

118

MapReduce Service

User Guide 1 Overview
Figure 1-88 Data transfer lifecycle
Application driver Executor
Input
Block metadata stream
StreamingContext Receiver
Computation
checkpointed Block data
written to log
Jobs
Block data
written to both
memory + log
Fault-
SparkContext Fault-
e P = [=
system

a. Receive data (blue arrow).

Receiver divides a data stream into a series of blocks and stores them in
the executor memory. In addition, after WAL is enabled, it writes data to
the WAL of the fault-tolerant file system.

b. Notify the driver (green arrow).

The metadata in the received block is sent to StreamingContext in the
driver. The metadata includes:

" Block reference ID used to locate the data position in the Executor
memory.

" Block data offset information in logs (if the WAL function is
enabled).

c. Process data (red arrow).

For each batch of data, StreamingContext uses block information to
generate resilient distributed datasets (RDDs) and jobs. StreamingContext
executes jobs by running tasks to process blocks in the executor memory.

d. Periodically set checkpoints (orange arrows).

For fault tolerance, StreamingContext periodically sets checkpoints and
saves them to external file systems.

Fault Tolerance

Spark and its RDD allow seamless processing of failures of any Worker node in the
cluster. Spark Streaming is built on top of Spark. Therefore, the Worker node of
Spark Streaming also has the same fault tolerance capability. However, Spark
Streaming needs to run properly in case of long-time running. Therefore, Spark
must be able to recover from faults through the driver process (main process that
coordinates all Workers). This poses challenges to the Spark driver fault-tolerance
because the Spark driver may be any user application implemented in any
computation mode. However, Spark Streaming has internal computation
architecture. That is, it periodically executes the same Spark computation in each
batch data. Such architecture allows it to periodically store checkpoints to reliable
storage space and recover them upon the restart of Driver.

For source data such as files, the Driver recovery mechanism can ensure zero data
loss because all data is stored in a fault-tolerant file system such as HDFS.
However, for other data sources such as Kafka and Flume, some received data is
cached only in memory and may be lost before being processed. This is caused by
the distribution operation mode of Spark applications. When the driver process

2025-11-25

119

MapReduce Service
User Guide 1 Overview

fails, all executors running in the Cluster Manager, together with all data in the
memory, are terminated. To avoid such data loss, the WAL function is added to
Spark Streaming.

WAL is often used in databases and file systems to ensure persistence of any data
operation. That is, first record an operation to a persistent log and perform this
operation on data. If the operation fails, the system is recovered by reading the log
and re-applying the preset operation. The following describes how to use WAL to
ensure persistence of received data:

Receiver is used to receive data from data sources such as Kafka. As a long-time
running task in Executor, Receiver receives data, and also confirms received data if
supported by data sources. Received data is stored in the Executor memory, and
Driver delivers a task to Executor for processing.

After WAL is enabled, all received data is stored to log files in the fault-tolerant
file system. Therefore, the received data does not lose even if Spark Streaming
fails. Besides, receiver checks correctness of received data only after the data is
pre-written into logs. Data that is cached but not stored can be sent again by data
sources after the driver restarts. These two mechanisms ensure zero data loss.
That is, all data is recovered from logs or re-sent by data sources.

To enable the WAL function, perform the following operations:

e Set streamingContext.checkpoint to configure the checkpoint directory,
which is an HDFS file path used to store streaming checkpoints and WALs.

e Set spark.streaming.receiver.writeAheadlLog.enable of SparkConf to true
(the default value is false).

After WAL is enabled, all receivers have the advantage of recovering from reliable
received data. You are advised to disable the multi-replica mechanism because the
fault-tolerant file system of WAL may also replicate the data.

(11 NOTE

The data receiving throughput is lowered after WAL is enabled. All data is written into the
fault-tolerant file system. As a result, the write throughput of the file system and the
network bandwidth for data replication may become the potential bottleneck. To solve this
problem, you are advised to create more receivers to increase the degree of data receiving
parallelism or use better hardware to improve the throughput of the fault-tolerant file
system.

Recovery Process

When a failed driver is restarted, restart it as follows:

2025-11-25 120

MapReduce Service
User Guide 1 Overview

Figure 1-89 Computing recovery process

Restarted Driver Restarted Executor | gosand
unbacked
Restarted St i daa
estarted Streaming
Restart Context Recover block Restarted Receiver <::|
Computation ‘ metadata from
from into in } log
checkpoints
Relaunch
Jobs Recover block

data from log ?

g Log
Fault- Restarted Spark Fault
folerant Context I:I I:l |:| lo\zlL’lar_lt

Filesystem
Filesystem

1. Recover computing. (Orange arrow)

Use checkpoint information to restart Driver, reconstruct SparkContext and
restart Receiver.

2. Recover metadata block. (Green arrow)

This operation ensures that all necessary metadata blocks are recovered to
continue the subsequent computing recovery.

3. Relaunch unfinished jobs. (Red arrow)

Recovered metadata is used to generate RDDs and corresponding jobs for
interrupted batch processing due to failures.

4. Read block data saved in logs. (Blue arrow)

Block data is directly read from WALs during execution of the preceding jobs,
and therefore all essential data reliably stored in logs is recovered.

5. Resend unconfirmed data. (Purple arrow)

Data that is cached but not stored to logs upon failures is re-sent by data
sources, because the receiver does not confirm the data.

Therefore, by using WALs and reliable Receiver, Spark Streaming can avoid input
data loss caused by Driver failures.

SparkSQL and DataSet Principle
SparkSQL

2025-11-25 121

MapReduce Service

User Guide

1 Overview

Figure 1-90 SparkSQL and DataSet

DataSet SQL Query

Spark SQL

Apache Spark

Spark SQL is a module for processing structured data. In Spark application, SQL
statements or DataSet APIs can be seamlessly used for querying structured data.

Spark SQL and DataSet also provide a universal method for accessing multiple
data sources such as Hive, CSV, Parquet, ORC, JSON, and JDBC. These data sources
also allow data interaction. Spark SQL reuses the Hive frontend processing logic
and metadata processing module. With the Spark SQL, you can directly query
existing Hive data.

In addition, Spark SQL also provides API, CLI, and JDBC APIs, allowing diverse
accesses to the client.

Spark SQL Native DDL/DML

In Spark 1.5, lots of Data Definition Language (DDL)/Data Manipulation Language
(DML) commands are pushed down to and run on the Hive, causing coupling with
the Hive and inflexibility such as unexpected error reports and results.

Spark 3.1.1 realizes command localization and replaces the Hive with Spark SQL
Native DDL/DML to run DDL/DML commands. Additionally, the decoupling from
the Hive is realized and commands can be customized.

DataSet

A DataSet is a strongly typed collection of domain-specific objects that can be
transformed in parallel using functional or relational operations. Each Dataset also
has an untyped view called a DataFrame, which is a Dataset of Row.

2025-11-25

122

MapReduce Service

User Guide 1 Overview
The DataFrame is a structured and distributed dataset consisting of multiple
columns. The DataFrame is equal to a table in the relationship database or the
DataFrame in the R/Python. The DataFrame is the most basic concept in the Spark
SQL, which can be created by using multiple methods, such as the structured
dataset, Hive table, external database or RDD.

Operations available on DataSets are divided into transformations and actions.
e A transformation operation can generate a new DataSet,
for example, map, filter, select, and aggregate (groupBy).
e An action operation can trigger computation and return results,
for example, count, show, or write data to the file system.
You can use either of the following methods to create a DataSet:
e The most common way is by pointing Spark to some files on storage systems,
using the read function available on a SparkSession.
val people = spark.read.parquet("...").as[Person] // Scala
DataSet<Person> people = spark.read().parquet("...").as(Encoders.bean(Person.class));//Java
e You can also create a DataSet using the transformation operation available on
an existing one.
For example, apply the map operation on an existing DataSet to create a
DataSet:
val names = people.map(_.name) // In Scala: names is Dataset.
Dataset<String> names = people.map((Person p) -> p.name, Encoders.STRING)); // Java
CLI and JDBCServer
In addition to programming APIs, Spark SQL also provides the CLI/JDBC APIs.
e Both spark-shell and spark-sql scripts can provide the CLI for debugging.
e IDBCServer provides JDBC APIs. External systems can directly send JDBC
requests to calculate and parse structured data.

SparkSession Principle
SparkSession is a unified API for Spark programming and can be regarded as a
unified entry for reading data. SparkSession provides a single entry point to
perform many operations that were previously scattered across multiple classes,
and also provides accessor methods to these older classes to maximize
compatibility.

A SparkSession can be created using a builder pattern. The builder will
automatically reuse the existing SparkSession if there is a SparkSession; or create
a SparkSession if it does not exist. During I/O transactions, the configuration item
settings in the builder are automatically synchronized to Spark and Hadoop.
import org.apache.spark.sql.SparkSession
val sparkSession = SparkSession.builder
.master("local")
.appName("my-spark-app")
.config("spark.some.config.option”, "config-value")
.getOrCreate()
e SparkSession can be used to execute SQL queries on data and return results
as DataFrame.
sparkSession.sql("select * from person").show
2025-11-25 123

MapReduce Service

User Guide

1 Overview

e SparkSession can be used to set configuration items during running. These
configuration items can be replaced with variables in SQL statements.
sparkSession.conf.set("spark.some.config", "abcd")
sparkSession.conf.get("spark.some.config")
sparkSession.sql("select ${spark.some.config}")

e SparkSession also includes a "catalog" method that contains methods to work
with Metastore (data catalog). After this method is used, a dataset is
returned, which can be run using the same Dataset API.

val tables = sparkSession.catalog.listTables()
val columns = sparkSession.catalog.listColumns("myTable")

e Underlying SparkContext can be accessed by SparkContext API of

SparkSession.
val sparkContext = sparkSession.sparkContext

Structured Streaming Principle

Structured Streaming is a stream processing engine built on the Spark SQL engine.
You can use the Dataset/DataFrame API in Scala, Java, Python, or R to express
streaming aggregations, event-time windows, and stream-stream joins. If
streaming data is incrementally and continuously produced, Spark SQL will
continue to process the data and synchronize the result to the result set. In
addition, the system ensures end-to-end exactly-once fault-tolerance guarantees
through checkpoints and WALs.

The core of Structured Streaming is to take streaming data as an incremental
database table. Similar to the data block processing model, the streaming data
processing model applies query operations on a static database table to streaming
computing, and Spark uses standard SQL statements for query, to obtain data
from the incremental and unbounded table.

Figure 1-91 Unbounded table of Structured Streaming

Data stream Unbounded table

New data in the data

stream

New rows appended

to a unbounded table

Treat data stream as an unbounded table.

Each query operation will generate a result table. At each trigger interval, updated
data will be synchronized to the result table. Whenever the result table is updated,
the updated result will be written into an external storage system.

2025-11-25

124

MapReduce Service
User Guide 1 Overview

Figure 1-92 Structured Streaming data processing model

— Trigger: every 1 sec

Time 1 2 3

I I
¢ ¢ ¢

data up to data up to data up to
Input t=1 t=2 =3

L J

result up result up result up
Result to t=1 to t=2 to t=3

OQutput
Complete mode

Programming Model for Structured Streaming

Storage modes of Structured Streaming at the output phase are as follows:

e Complete Mode: The updated result sets are written into the external storage
system. The write operation is performed by a connector of the external
storage system.

e Append Mode: If an interval is triggered, only added data in the result table
will be written into an external system. This is applicable only on the queries
where existing rows in the result table are not expected to change.

e Update Mode: If an interval is triggered, only updated data in the result table
will be written into an external system, which is the difference between the
Complete Mode and Update Mode.

Basic Concepts
e RDD

Resilient Distributed Dataset (RDD) is a core concept of Spark. It indicates a
read-only and partitioned distributed dataset. Partial or all data of this
dataset can be cached in the memory and reused between computations.

RDD Creation

- An RDD can be created from the input of HDFS or other storage systems
that are compatible with Hadoop.

- A new RDD can be converted from a parent RDD.
- An RDD can be converted from a collection of datasets through encoding.
RDD Storage

- You can select different storage levels to store an RDD for reuse. (There
are 11 storage levels to store an RDD.)

- By default, the RDD is stored in the memory. When the memory is
insufficient, the RDD overflows to the disk.

2025-11-25 125

MapReduce Service
User Guide 1 Overview

e RDD Dependency
The RDD dependency includes the narrow dependency and wide dependency.

Figure 1-93 RDD dependency

“Narrow” deps: “Wide” (shuffle) deps:

"

map, filter groupByKey

"

J
\
1

|

join with inputs co-
union partitioned

join with inputs not co-
partitioned

- Narrow dependency: Each partition of the parent RDD is used by at
most one partition of the child RDD.

- Wide dependency: Partitions of the child RDD depend on all partitions of
the parent RDD.

The narrow dependency facilitates the optimization. Logically, each RDD
operator is a fork/join (the join is not the join operator mentioned above but
the barrier used to synchronize multiple concurrent tasks); fork the RDD to
each partition, and then perform the computation. After the computation, join
the results, and then perform the fork/join operation on the next RDD
operator. It is uneconomical to directly translate the RDD into physical
implementation. The first is that every RDD (even intermediate result) needs
to be physicalized into memory or storage, which is time-consuming and
occupies much space. The second is that as a global barrier, the join operation
is very expensive and the entire join process will be slowed down by the
slowest node. If the partitions of the child RDD narrowly depend on that of
the parent RDD, the two fork/join processes can be combined to implement
classic fusion optimization. If the relationship in the continuous operator
sequence is narrow dependency, multiple fork/join processes can be combined
to reduce a large number of global barriers and eliminate the physicalization
of many RDD intermediate results, which greatly improves the performance.
This is called pipeline optimization in Spark.

e Transformation and Action (RDD Operations)

Operations on RDD include transformation (the return value is an RDD) and
action (the return value is not an RDD). Figure 1-94 shows the RDD
operation process. The transformation is lazy, which indicates that the
transformation from one RDD to another RDD is not immediately executed.
Spark only records the transformation but does not execute it immediately.
The real computation is started only when the action is started. The action

2025-11-25 126

MapReduce Service

User Guide 1 Overview
returns results or writes the RDD data into the storage system. The action is
the driving force for Spark to start the computation.

Figure 1-94 RDD operation
Native data space
FCT T T T T TS \
@ | I
| 1
l‘_ ___________ 1
Restore Scala collection Scalar type
(HDFS) ~ .
Input _—
Transformation ~ ---------------- -
Action e -
Cache I
Spark RDD space
The data and operation model of RDD are quite different from those of Scala.
val file = sc.textFile("hdfs://...")
val errors = file.filter(_.contains("ERROR"))
errors.cache()
errors.count()
a. The textFile operator reads log files from the HDFS and returns files (as
an RDD).
b. The filter operator filters rows with ERROR and assigns them to errors (a
new RDD). The filter operator is a transformation.
¢. The cache operator caches errors for future use.
d. The count operator returns the number of rows of errors. The count
operator is an action.
Transformation includes the following types:
- The RDD elements are regarded as simple elements.
The input and output has the one-to-one relationship, and the partition
structure of the result RDD remains unchanged, for example, map.
The input and output has the one-to-many relationship, and the partition
structure of the result RDD remains unchanged, for example, flatMap
(one element becomes a sequence containing multiple elements after
map and then flattens to multiple elements).
The input and output has the one-to-one relationship, but the partition
structure of the result RDD changes, for example, union (two RDDs
2025-11-25 127

MapReduce Service
User Guide

1 Overview

integrates to one RDD, and the number of partitions becomes the sum of
the number of partitions of two RDDs) and coalesce (partitions are
reduced).

Operators of some elements are selected from the input, such as filter,
distinct (duplicate elements are deleted), subtract (elements only exist in
this RDD are retained), and sample (samples are taken).

The RDD elements are regarded as key-value pairs.

Perform the one-to-one calculation on the single RDD, such as
mapValues (the partition mode of the source RDD is retained, which is
different from map).

Sort the single RDD, such as sort and partitionBy (partitioning with
consistency, which is important to the local optimization).

Restructure and reduce the single RDD based on key, such as groupByKey
and reduceByKey.

Join and restructure two RDDs based on the key, such as join and
cogroup.

(11 NOTE

The later three operations involving sorting are called shuffle operations.

Action includes the following types:

Generate scalar configuration items, such as count (the number of
elements in the returned RDD), reduce, fold/aggregate (the number of
scalar configuration items that are returned), and take (the number of
elements before the return).

Generate the Scala collection, such as collect (import all elements in the
RDD to the Scala collection) and lookup (look up all values corresponds
to the key).

Write data to the storage, such as saveAsTextFile (which corresponds to
the preceding textFile).

Check points, such as the checkpoint operator. When Lineage is quite
long (which occurs frequently in graphics computation), it takes a long
period of time to execute the whole sequence again when a fault occurs.
In this case, checkpoint is used as the check point to write the current
data to stable storage.

Shuffle

Shuffle is a specific phase in the MapReduce framework, which is located
between the Map phase and the Reduce phase. If the output results of Map
are to be used by Reduce, the output results must be hashed based on a key
and distributed to each Reducer. This process is called Shuffle. Shuffle involves
the read and write of the disk and the transmission of the network, so that
the performance of Shuffle directly affects the operation efficiency of the
entire program.

The figure below shows the entire process of the MapReduce algorithm.

2025-11-25

128

MapReduce Service
User Guide

1 Overview

Figure 1-95 Algorithm process

Map stage Reduce stage

Worker 1
/l [} @ Fartition j‘\
/.I 1 @ Partiion) I)/

L] (oo

\
.
\
\
: @ Output
/
Worker N Worker N !

NG ETECEE TN
- Ny |

,
,
,
|
/
,
/
e

Shuffle is a bridge to connect data. The following describes the
implementation of shuffle in Spark.

Shuffle divides a job of Spark into multiple stages. The former stages contain
one or more ShuffleMapTasks, and the last stage contains one or more
ResultTasks.
Spark Application Structure
The Spark application structure includes the initialized SparkContext and the
main program.
- Initialized SparkContext: constructs the operating environment of the
Spark Application.
Constructs the SparkContext object. The following is an example:
new SparkContext(master, appName, [SparkHome], [jars])
Parameter description:
master: indicates the link string. The link modes include local, Yarn-
cluster, and Yarn-client.
appName: indicates the application name.
SparkHome: indicates the directory where Spark is installed in the cluster.
jars: indicates the code and dependency package of an application.
- Main program: processes data.

For details about how to submit an application, visit https://
archive.apache.org/dist/spark/docs/3.1.1/submitting-
applications.html.

Spark Shell Commands

The basic Spark shell commands support the submission of Spark
applications. The Spark shell commands are as follows:
./bin/spark-submit \

--class <main-class>\

--master <master-url>\

... # other options

<application-jar>\

[application-arguments]

Parameter description:
--class: indicates the name of the class of a Spark application.

--master: indicates the master to which the Spark application links, such as
Yarn-client and Yarn-cluster.

2025-11-25

129

https://archive.apache.org/dist/spark/docs/3.1.1/submitting-applications.html
https://archive.apache.org/dist/spark/docs/3.1.1/submitting-applications.html
https://archive.apache.org/dist/spark/docs/3.1.1/submitting-applications.html

MapReduce Service

User Guide

1 Overview

application-jar: indicates the path of the JAR file of the Spark application.

application-arguments: indicates the parameter required to submit the Spark
application. This parameter can be left blank.

Spark JobHistory Server

The Spark web Ul is used to monitor the details in each phase of the Spark
framework of a running or historical Spark job and provide the log display,
which helps users to develop, configure, and optimize the job in more fine-
grained units.

1.3.22.2 Spark HA Solution

Spark Multi-Active Instance HA Principles and Implementation Solution

Based on existing JDBCServer in the community, multi-active-instance mode is
used to achieve HA. In this mode, multiple JDBCServers coexist in the cluster and
the client can randomly connect any JDBCServer to perform service operations.
When one or multiple JDBCServers stop working, a client can connect to another
normal JDBCServer.

Compared with active/standby HA mode, multi-active instance mode has
following advantages:

In active/standby HA, when the active/standby switchover occurs, the
unavailable period cannot be controlled by JDBCServer, but it depends on Yarn
service resources.

In Spark, the Thrift JDBC similar to HiveServer2 provides services and users
access services through Beeline and JDBC API. Therefore, the processing
capability of the JDBCServer cluster depends on the single-point capability of
the primary server, and the scalability is insufficient.

The multi-active instance HA mode not only can prevent service interruption
caused by switchover, but also enables cluster scale-out to improve high
concurrency.

Implementation

The following figure shows the basic principle of multi-active instance HA of
Spark JDBCServer.

2025-11-25

130

MapReduce Service

User Guide

1 Overview

3.
4.

Figure 1-96 Spark JDBCServer HA

CONC N C

2. Ust<Thrift Server URL>

JDBC Server-1

AR T AR AR EERIN T

NodeManager NodeManager NodeManager NodeManager NodeManager

When a JDBCServer is started, it registers with ZooKeeper by writing node
information in a specified directory. Node information includes the instance IP
address, port number, version, and serial number.

To connect to JDBCServer, the client must specify the namespace, which is the
directory of JDBCServer instances in ZooKeeper. During the connection, a
JDBCServer instance is randomly selected from the specified namespace.

After the connection succeeds, the client sends SQL statements to JDBCServer.
JDBCServer executes received SQL statements and returns results to the client.

If multi-active instance HA of Spark JDBCServer is enabled, all JDBCServer
instances are independent and equivalent. When one JDBCServer instance is
interrupted during upgrade, other JDBCServer instances can accept the connection
request from the client.

The rules below must be followed in the multi-active instance HA of Spark
JDBCServer.

If a JDBCServer instance exits abnormally, no other instance will take over the
sessions and services running on the abnormal instance.

When the JDBCServer process is stopped, corresponding nodes are deleted
from ZooKeeper.

The client randomly selects the server, which may result in uneven session
allocation caused by random distribution of policy results, and finally result in
load imbalance of instances.

After the instance enters the maintenance mode (in which no new connection
requests from clients are accepted), services running on the instance may fail
when the decommissioning times out.

URL Connection

- Multi-active instance mode

2025-11-25

131

MapReduce Service
User Guide

1 Overview

In multi-active instance mode, the client reads content from the
ZooKeeper node and connects to JDBCServer. The connection strings are
list below.

Security mode:

If Kinit authentication is enabled, the JDBCURL is as follows:
jdbc:hive2://
<zkNode1_IP>.<zkNode1_Port>,<zkNode2_|P>:<zkNode2_Port>,<zkNode3_IP>:<zkNode3_P
ort>[;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=sparkthriftserver2x;sasl
Qop=auth-conf;auth=KERBEROS;principal=spark/hadoop. <System domain
name>@<System domain name>,

(10 NOTE

e In the above JDBCURL, <zkNode_IP>:<zkNode_Port> indicates the
ZooKeeper URL. Use commas (,) to separate multiple URLs,

Example: 192.168.81.37:2181,192.168.195.232:2181,192.168.169.84:2181.

e sparkthriftserver2x indicates the ZooKeeper directory, where a random
JDBCServer instance is connected to the client.

For example, when you use Beeline client to connect JDBCServer, run
the following command:

sh CLIENT_HOME/spark/bin/beeline -u "jdbc:hive2://
<zkNodel_IP>:<zkNodel_Port>,<zkNode2 [P>:<zkNode2 Port>,<zkIN
ode3_IP>:<zkNode3_Port>[;serviceDiscoveryMode=zooKeeper;zooK
eeperNamespace=sparkthriftserver2x;saslQop=auth-
conf;auth=KERBEROS;principal=spark/hadoop.<System domain
name>@ <System domain name>;"

If Keytab authentication is enabled, the JDBCURL is as follows:
jdbc:hive2://
<zkNode1_IP>:<zkNode_Port>,<zkNode2_|P>:<zkNode2_Port>,<zkNode3_IP>.<zkNode3_P
ort>/serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=sparkthriftserver2x;sasl
Qop=auth-conf;auth=KERBEROS;principal=spark/hadoop. <System domain

name>@ <System domain
name>;user.principal=<principal_name>,user.keytab=<path_to_keytab>

In the above URL, <principal_ name> indicates the principal of the
Kerberos user, for example, test@ <Systerm domain name>,
<path_to_keytab> indicates the Keytab file path corresponding to

<principal_name>, for example, /opt/auth/test/user.keytab.

Common mode:

jdbc:hive2://
<zkNodel_IP>:<zkNodel_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkNode3_IP>:<zkNode3_P
ort>[;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=sparkthriftserver2x;
For example, when you use Beeline client, in normal mode, for
connection, run the following command:

sh CLIENT_HOME/spark/bin/beeline -u "jdbc:hive2://
<zkNode1_IP>:<zkNodel_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkN
ode3_IP>:<zkNode3_Port>[;serviceDiscoveryMode=zooKeeper;zooK
eeperNamespace=sparkthriftserver2x;"

Non-multi-active instance mode

In this mode, a client connects to a specified JDBCServer node. Compared

with multi-active instance mode, the connection string in this mode does

not contain serviceDiscoveryMode and zooKeeperNamespace
parameters about ZooKeeper.

2025-11-25

132

MapReduce Service

User Guide

1 Overview

For example, when you use Beeline client, in security mode, to connect
JDBCServer in non-multi-active instance mode, run the following
command:

sh CLIENT_HOME][spark/bin/beeline -u "jdbc:hive2://
<server_IP>:<server_Port>[;user.principal=spark/hadoop.<System
domain name>@<System domain name>;saslQop=auth-
conf;auth=KERBEROS;principal=spark/hadoop.<System domain
name>@<System domain name>;"

(11 NOTE

e In the above command, <server_IP>:<server_Port> indicates the URL of the
specified JDBCServer node.

e CLIENT_HOME indicates the client path.

Except the connection method, other operations of JDBCServer API in the
two modes are the same. Spark JDBCServer is another implementation of
HiveServer2 in Hive. For details about how to use Spark JDBCServer, see
https://cwiki.apache.org/confluence/display/Hive/
HiveServer2+Clients.

Spark Multi-Tenant HA

In the JDBCServer multi-active instance solution, JDBCServer uses the Yarn-client
mode, but there is only one Yarn resource queue available. To solve this resource
limitation problem, the multi-tenant mode is introduced.

In multi-tenant mode, JDBCServers are bound with tenants. Each tenant
corresponds to one or more JDBCServers, and a JDBCServer provides services for
only one tenant. Different tenants can be configured with different Yarn queues to
implement resource isolation. In addition, JDBCServer can be dynamically started
as required to avoid resource waste.

¢ Implementation
Figure 1-97 shows the HA solution of the multi-tenant mode.

2025-11-25

133

https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients

MapReduce Service

User Guide

1 Overview

Figure 1-97 Multi-tenant mode of Spark JDBCServer

Beeline

Beeline

Beeline

2. Ust<Thrift Server URL=>

3. sQL 4. Result
4

rd
-7 1. Registered
P

Fa
ProxyServer-1 v o
> ProxyServer-2 ProxyServer-3
4. Result 2. App startup.
3.8aL
h
Yarn app1
2. Registered
JDBC
Server
AM
NodelManager NodeManager

When ProxyServer is started, it registers with ZooKeeper by writing node
information in a specified directory. Node information includes the
instance IP address, port number, version, and serial number.

(11 NOTE

In multi-tenant mode, the JDBCServer instance refers to the ProxyServer
(JDBCServer proxy).

To connect to ProxyServer, the client must specify a namespace, which is
the directory of the ProxyServer instance where you want to access
ZooKeeper. When the client connects to the ProxyServer, a random
instance under the namespace is selected for connection. For details
about the URL, see URL Connection Overview.

After the client successfully connects to the ProxyServer, which first
checks whether the JDBCServer of a tenant exists. If yes, Beeline connects
the JDBCServer. If no, a new JDBCServer is started in Yarn-cluster mode.
After the startup of JDBCServer, ProxyServer obtains the IP address of the
JDBCServer and establishes the connection between Beeline and
JDBCServer.

2025-11-25

134

MapReduce Service
User Guide

1 Overview

d.

The client sends SQL statements to ProxyServer, which forwards

statements to the connected JDBCServer. JDBCServer returns the results
to ProxyServer, which then returns the results to the client.

In the multi-active instance HA mode, all instances are independent and
equivalent. If one instance is interrupted during upgrade, other instances can
accept the connection request from the client.

URL Connection Overview

Multi-tenant mode

In multi-tenant mode, the client reads content from the ZooKeeper node
and connects to ProxyServer. The connection strings are list below.

Security mode:

If Kinit authentication is enabled, the client URL is as follows:
jdbc:hive2://
<zkNodel_IP>:<zkNodel_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkNode3_IP>:<zkNode3_P
ort>[;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=sparkthriftserver2x;sasl
Qop=auth-conf;auth=KERBEROS;principal=spark/hadoop. <System domain

name>@ <System domain name>;

(1 NOTE

e In the above URL, <zkNode_IP>:<zkNode_Port> indicates the ZooKeeper
URL. Use commas (,) to separate multiple URLs,

Example:
192.168.81.37:2181,192.168.195.232:2181,192.168.169.84:2181.

e sparkthriftserver2x indicates the ZooKeeper directory, where a random
JDBCServer instance is connected to the client.
For example, when you use Beeline client for connection, run the
following command:

sh CLIENT_HOME/spark/bin/beeline -u "jdbc:hive2://
<zkNodel_IP>:<zkNodel_Port>,<zkNode2 IP>:<zkNode2 Port>,<zkN
ode3_IP>:<zkNode3_Port>[;serviceDiscoveryMode=zooKeeper;zooK
eeperNamespace=sparkthriftserver2x;saslQop=auth-
conf;auth=KERBEROS;principal=spark/hadoop.<System domain
name>@ <System domain name>;"

If Keytab authentication is enabled, the URL is as follows:

jdbc:hive2://
<zkNodel_IP>:<zkNodel_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkNode3_IP>:<zkNode3_P
ort>/serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=sparkthriftserver2x;sasl
Qop=auth-conf;auth=KERBEROS;principal=spark/hadoop. <System domain
name>@<System domain
name>;user.principal=<principal_name>,user.keytab=<path_to_keytab>

In the above URL, <principal_ name> indicates the principal of the
Kerberos user, for example, test@ <System domain name>;
<path_to_keytab> indicates the Keytab file path corresponding to
<principal_name>, for example, /opt/auth/test/user.keytab.

Common mode:

jdbc:hive2://
<zkNodel_IP>.<zkNode1_Port>,<zkNode2_|P>:<zkNode2_Port>,<zkNode3_IP>:<zkNode3_P
ort>[;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=sparkthriftserver2x;

For example, run the following command when you use Beeline

client for connection in normal mode:

sh CLIENT_HOME[spark/bin/beeline -u "jdbc:hive2://
<zkNode1_IP>:<zkNodel_Port>,<zkNode2_IP>:<zkNode2_Port>,<zkN

2025-11-25

135

MapReduce Service
User Guide

1 Overview

ode3_IP>:<zkNode3_Port>[;serviceDiscoveryMode=zooKeeper;zooK
eeperNamespace=sparkthriftserver2x;"

Non-multi-tenant mode

In non-multi-tenant mode, a client connects to a specified JDBCServer
node. Compared with multi-tenant instance mode, the connection string
in this mode does not contain serviceDiscoveryMode and
zooKeeperNamespace parameters about ZooKeeper.

For example, when you use Beeline client to connect JDBCServer in non-
multi-tenant instance mode, run the following command:

sh CLIENT_HOME/spark/bin/beeline -u "jdbc:hive2://
<server_IP>:<server_Port>[;user.principal=spark/hadoop.<System
domain name>@<System domain name>;saslQop=auth-
conf;auth=KERBEROS;principal=spark/hadoop.<System domain
name>@<System domain name>;"

{11 NOTE

e In the above command, <server_IP>:<server_Port> indicates the URL of the
specified JDBCServer node.

e CLIENT_HOME indicates the client path.

Except the connection method, other operations of JDBCServer API in
multi-tenant mode and non-multi-tenant mode are the same. Spark
JDBCServer is another implementation of HiveServer2 in Hive. For details
about how to use Spark JDBCServer, go to the official Hive website at
https://cwiki.apache.org/confluence/display/Hive/
HiveServer2+Clients.

Specifying a Tenant

Generally, the client submitted by a user connects to the default
JDBCServer of the tenant to which the user belongs. If you want to
connect the client to the JDBCServer of a specified tenant, add the --
hiveconf mapreduce.job.queuename parameter.

If you use Beeline client for connection, run the following command (aaa
is the tenant name):

beeline --hiveconf mapreduce.job.queuename=aaa -u
'jdbc:hive2://192.168.39.30:2181,192.168.40.210:2181,192.168.215.97:2
181;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=sparkthr
iftserver2x;saslQop=auth-conf;auth=KERBEROS;principal=spark/
hadoop.<System domain name>@ <System domain name>;'

1.3.22.3 Relationship Among Spark, HDFS, and Yarn

Relationship Between Spark and HDFS

Data computed by Spark comes from multiple data sources, such as local files and
HDFS. Most data computed by Spark comes from the HDFS. The HDFS can read
data in large scale for parallel computing. After being computed, data can be
stored in the HDFS.

Spark involves Driver and Executor. Driver schedules tasks and Executor runs tasks.

Figure 1-98 shows the process of reading a file.

2025-11-25

136

https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients

MapReduce Service

User Guide 1 Overview
Figure 1-98 File reading process
3. Launch tasks.
3. Launch tasks
v Executor Executor
Task 1 Task 2 Task 3 Task 4
1.Get File A
Stalus 2. Return four blocks
4 Read 4. Read, 4 Read | 4. Read.
HDFS
File A Block1 Block2 Block3 Block4
The file reading process is as follows:
1. Driver interconnects with the HDFS to obtain the information of File A.
2. The HDFS returns the detailed block information about this file.
3. Driver sets a parallel degree based on the block data amount, and creates
multiple tasks to read the blocks of this file.
4. Executor runs the tasks and reads the detailed blocks as part of the Resilient
Distributed Dataset (RDD).
Figure 1-99 shows the process of writing data to a file.
Figure 1-99 File writing process
Map stage Reduce stage
Worker 1 Worker 1
/II @ Partifion .‘ 7" “
/II @ Pariition . ?.ll / \\\
Input @ Output
Worker N Worker N ﬂ/
!
\II @ Parfiion Sll jl\ /
\II @ Partiton J &I j}/
The file writing process is as follows:
2025-11-25 137

MapReduce Service

User Guide

1 Overview

Driver creates a directory where the file is to be written.

2. Based on the RDD distribution status, the number of tasks related to data
writing is computed, and these tasks are sent to Executor.

3. Executor runs these tasks, and writes the RDD data to the directory created in
1.

Relationship Between Spark and Yarn

The Spark computing and scheduling can be implemented using Yarn mode. Spark
enjoys the computing resources provided by Yarn clusters and runs tasks in a
distributed way. Spark on Yarn has two modes: Yarn-cluster and Yarn-client.

e Yarn-cluster mode
Figure 1-100 shows the running framework of Spark on Yarn-cluster.

Figure 1-100 Spark on Yarn-cluster operation framework

NodeManager

Container
Executor

4 Distribute tasks. Cache
5 Report Task
the task
Spark Yarn client status.

1.Submit an
application.
NodeManager
2 Apply for
resource for]]
the application. Container Container
Application Master Executor

ResourceManager (Contains Driver)
| DAGScheduler |
Task
lel ||
I | YarnClusterScheduler ‘

3.Apply for Executor
from RM

Spark on Yarn-cluster implementation process:

a. The client generates the application information, and then sends the
information to ResourceManager.

b. ResourceManager allocates the first container (ApplicationMaster) to
SparkApplication and starts driver on the container.

c. ApplicationMaster applies for resources from ResourceManager to run
the container.

ResourceManager allocates the container to ApplicationMaster, which
communicates with NodeManager, and starts the executor in the
obtained container. After the executor is started, it registers with the
driver and applies for tasks.

2025-11-25

138

MapReduce Service
User Guide

1 Overview

d. The driver allocates tasks to the executor.

e. The executor runs tasks and reports the operating status to the driver.
Yarn-client mode

Figure 1-101 shows the running framework of Spark on Yarn-cluster.

Figure 1-101 Spark on Yarn-client operation framework

Driver — ResourceManager
1.Submit an

application.
Spark on Yam-client

| YarnClientShedulerBackend |
h

ApplicationMaster

5.Schedule
tasks

3. Apply for 2.Submit an
NodeManager a container ApplicationMaster.

¥

NodeManager

Container

Executor
4 Start the
container

Task

ExecutorLauncher

Spark on Yarn-client implementation process:
(110 NOTE

In Yarn-client mode, Driver is deployed on the client and started on the client. In Yarn-
client mode, the client of the earlier version is incompatible. You are advised to use
the Yarn-cluster mode.

a. The client sends the Spark application request to ResourceManager, then
ResourceManager returns the results. The results include information
such as Application ID and the maximum and minimum available
resources. The client packages all information required to start
ApplicationMaster, and sends the information to ResourceManager.

b. After receiving the request, ResourceManager finds a proper node for
ApplicationMaster and starts it on this node. ApplicationMaster is a role
in Yarn, and the process name in Spark is ExecutorLauncher.

c. Based on the resource requirements of each task, ApplicationMaster can
apply for a series of Containers to run tasks from ResourceManager.

d. After receiving the newly allocated container list (from
ResourceManager), ApplicationMaster sends information to the related
NodeManagers to start the containers.

ResourceManager allocates the containers to ApplicationMaster, which
communicates with the related NodeManagers, and starts the executors
in the obtained containers. After the executors are started, it registers
with drivers and applies for tasks.

2025-11-25

139

MapReduce Service
User Guide 1 Overview

{11 NOTE

Running containers are not suspended and resources are not released.

e. The drivers allocate tasks to the executors. The executor executes tasks
and reports the operating status to the driver.

1.3.22.4 Spark Enhanced Open Source Feature: Optimized SQL Query of
Cross-Source Data

Scenario

Enterprises usually store massive data, such as from various databases and
warehouses, for management and information collection. However, diversified
data sources, hybrid dataset structures, and scattered data storage lower query
efficiency.

The open source Spark only supports simple filter pushdown during querying of
multi-source data. The SQL engine performance is deteriorated due of a large
amount of unnecessary data transmission. The pushdown function is enhanced, so
that aggregate, complex projection, and complex predicate can be pushed to
data sources, reducing unnecessary data transmission and improving query
performance.

Only the JDBC data source supports pushdown of query operations, such as
aggregate, projection, predicate, aggregate over inner join, and aggregate
over union all. All pushdown operations can be enabled based on your
requirements.

2025-11-25 140

MapReduce Service

User Guide

1 Overview

Table 1-20 Enhanced query of cross-source query

Module

Before
Enhancement

After Enhancement

aggregate

The pushdown
of aggregate is
not supported.

Aggregation functions including sum,
avg, max, min, and count are
supported.

Example: select count(*) from table

Internal expressions of aggregation
functions are supported.
Example: select sum(a+b) from table

Calculation of aggregation functions
is supported. Example: select avg(a) +
max(b) from table

Pushdown of having is supported.
Example: select sum(a) from table
where a>0 group by b having
sum(a)>10

Pushdown of some functions is
supported.

Pushdown of lines in mathematics,
time, and string functions, such as
abs(), month(), and length() are
supported. In addition to the
preceding built-in functions, you can
run the SET command to add
functions supported by data sources.

Example: select sum(abs(a)) from
table

Pushdown of limit and order by after
aggregate is supported. However, the
pushdown is not supported in Oracle,
because Oracle does not support
limit.

Example: select sum(a) from table
where a>0 group by b order by
sum(a) limit 5

projection

Only pushdown
of simple
projection is
supported.
Example: select
a, b from table

Complex expressions can be pushed
down.
Example: select (a+b)*c from table

Some functions can be pushed down.
For details, see the description below
the table.

Example: select length(a)+abs(b)
from table

Pushdown of limit and order by after
projection is supported.

Example: select a, b+c from table
order by a limit 3

2025-11-25

141

MapReduce Service
User Guide

1 Overview

Module Before After Enhancement
Enhancement

predicate Only simple e Complex expression pushdown is
filtering with supported.
the column Example: select * from table where a
name on the +b>c*d or a/cin (1, 2, 3)
left of the

operator and
values on the
right is
supported.
Example:

select * from
table where
a>0orbin
("aaa", "bbb")

e Some functions can be pushed down.
For details, see the description below
the table.

Example: select * from table where
length(a)>5

aggregate over
inner join

Related data
from the two
tables must be
loaded to
Spark. The join
operation must
be performed
before the
aggregate
operation.

The following functions are supported:

e Aggregation functions including sum,
avg, max, min, and count are
supported.

e All aggregate operations can be
performed in a same table. The
group by operations can be
performed on one or two tables and
only inner join is supported.

The following scenarios are not
supported:

e aggregate cannot be pushed down
from both the left- and right-join
tables.

e aggregate contains operations, for
example, sum(a+b).

e aggregate operations, for example,
sum(a)+min(b).

aggregate over
union all

Related data
from the two
tables must be
loaded to
Spark. union
must be
performed
before
aggregate.

Supported scenarios:

Aggregation functions including sum,
avg, max, min, and count are
supported.

Unsupported scenarios:

e aggregate contains operations, for
example, sum(a+b).

e aggregate operations, for example,
sum(a)+min(b).

2025-11-25

142

MapReduce Service
User Guide 1 Overview

Precautions

e If external data source is Hive, query operation cannot be performed on
foreign tables created by Spark.

e Only MySQL and MPPDB data sources are supported.

1.3.23 Spark2x

1.3.23.1 Basic Principles of Spark2x
(11 NOTE

The Spark2x component applies to MRS 3.x and later versions.

Description

Spark is a memory-based distributed computing framework. In iterative
computation scenarios, the computing capability of Spark is 10 to 100 times
higher than MapReduce, because data is stored in memory when being processed.
Spark can use HDFS as the underlying storage system, enabling users to quickly
switch to Spark from MapReduce. Spark provides one-stop data analysis
capabilities, such as the streaming processing in small batches, offline batch
processing, SQL query, and data mining. Users can seamlessly use these functions
in a same application. For details about the new open-source features of Spark2x,
see Spark2x Open Source New Features.

Features of Spark are as follows:

e Improves the data processing capability through distributed memory
computing and directed acyclic graph (DAG) execution engine. The delivered
performance is 10 to 100 times higher than that of MapReduce.

e Supports multiple development languages (Scala/Java/Python) and dozens of
highly abstract operators to facilitate the construction of distributed data
processing applications.

e Builds data processing stacks using SQL, Streaming, MLLlib, and GraphX to
provide one-stop data processing capabilities.

e Fits into the Hadoop ecosystem, allowing Spark applications to run on
Standalone, Mesos, or Yarn, enabling access of multiple data sources such as
HDFS, HBase, and Hive, and supporting smooth migration of the MapReduce
application to Spark.

Architecture

Figure 1-102 describes the Spark architecture and Table 1-21 lists the Spark
modules.

2025-11-25 143

https://spark.apache.org/sql/
https://spark.apache.org/streaming/

MapReduce Service

User Guide 1 Overview
Figure 1-102 Spark architecture
Worker Node
Executor Cache
-4
Task Task
Driver Program /
SparkContext » Cluster Manager
\ Worker Node v
Executor Cache
[
Task Task

Table 1-21 Basic concepts

Module

Description

Cluster Manager

Cluster manager manages resources in the cluster. Spark
supports multiple cluster managers, including Mesos, Yarn,
and the Standalone cluster manager that is delivered with
Spark. By default, Spark clusters adopt the Yarn cluster
manager.

Application

Spark application. It consists of one Driver Program and
multiple executors.

Deploy Mode

Deployment in cluster or client mode. In cluster mode, the
driver runs on a node inside the cluster. In client mode, the
driver runs on the client (outside the cluster).

Driver Program

The main process of the Spark application. It runs the
main() function of an application and creates SparkContext.
It is used for parsing applications, generating stages, and
scheduling tasks to executors. Usually, SparkContext
represents Driver Program.

Executor

A process started on a Work Node. It is used to execute
tasks, and manage and process the data used in
applications. A Spark application usually contains multiple
executors. Each executor receives commands from the driver
and executes one or multiple tasks.

Worker Node

A node that starts and manages executors and resources in
a cluster.

Job A job consists of multiple concurrent tasks. One action
operator (for example, a collect operator) maps to one job.
Stage Each job consists of multiple stages. Each stage is a task set,

which is separated by Directed Acyclic Graph (DAG).

2025-11-25

144

MapReduce Service
User Guide

1 Overview

Module

Description

Task

A task carries the computation unit of the service logics. It is
the minimum working unit that can be executed on the
Spark platform. An application can be divided into multiple
tasks based on the execution plan and computation

Spark Principle

Figure 1-103 describes the application running architecture of Spark.

1.

An application is running in the cluster as a collection of processes. Driver
coordinates the running of the application.

To run an application, Driver connects to the cluster manager (such as

Standalone, Mesos, and Yarn) to apply for the executor resources, and start
ExecutorBackend. The cluster manager schedules resources between different
applications. Driver schedules DAGs, divides stages, and generates tasks for
the application at the same time.

Then, Spark sends the codes of the application (the codes transferred to

SparkContext, which is defined by JAR or Python) to an executor.

Figure 1-103 Spark application running architecture

Your program

sc = new SparkContext
f=sc.textFile(“...")
ffilter(..)

count()

| Spark client (app master)

RDD graph

Scheduler

Block tracker

Shuffle tracker

Task

After all tasks are finished, the running of the user application is stopped.

I

Result

Spark worker

Task threads

Block manager

Master

Cluster manager

Spark uses Master and Worker modes, as shown in Figure 1-104. A user submits
an application on the Spark client, and then the scheduler divides a job into
multiple tasks and sends the tasks to each Worker for execution. Each Worker
reports the computation results to Driver (Master), and then the Driver aggregates
and returns the results to the client.

2025-11-25

145

MapReduce Service

User Guide 1 Overview
Figure 1-104 Spark Master-Worker mode
RAM
Worker
Input Data
| RAM

Driver

Results Input Data

RAM

Tasks

Input Data

Note the following about the architecture:

e Applications are isolated from each other.

Each application has an independent executor process, and each executor
starts multiple threads to execute tasks in parallel. Each driver schedules its
own tasks, and different application tasks run on different JVMs, that is,
different executors.

e Different Spark applications do not share data, unless data is stored in the
external storage system such as HDFS.

e You are advised to deploy the Driver program in a location that is close to the
Worker node because the Driver program schedules tasks in the cluster. For
example, deploy the Driver program on the network where the Worker node
is located.

Spark on YARN can be deployed in two modes:

e In Yarn-cluster mode, the Spark driver runs inside an ApplicationMaster
process which is managed by Yarn in the cluster. After the ApplicationMaster
is started, the client can exit without interrupting service running.

e In Yarn-client mode, Driver runs in the client process, and the
ApplicationMaster process is used only to apply for requesting resources from
Yarn.

Spark Streaming Principle

Spark Streaming is a real-time computing framework built on the Spark, which
expands the capability for processing massive streaming data. Spark supports two
data processing approaches: Direct Streaming and Receiver.

Direct Streaming computing process

In Direct Streaming approach, Direct API is used to process data. Take Kafka Direct
APl as an example. Direct API provides offset location that each batch range will

2025-11-25

146

MapReduce Service

User Guide

1 Overview

read from, which is much simpler than starting a receiver to continuously receive
data from Kafka and written data to write-ahead logs (WALs). Then, each batch
job is running and the corresponding offset data is ready in Kafka. These offset
information can be securely stored in the checkpoint file and read by applications
that failed to start.

Figure 1-105 Data transmission through Direct Kafka API

Spark Streaming New Direct Kafka integration w/o

Receivers and WALSs

Driver L~
~ Query latest offsets and
~__ . decide offset ranges for batch

Launch jobs S~
using offset ~
ranges ~

Read data using offset rangeé\"""
< in jobs using Simple API

Executor

Kafka

After the failure, Spark Streaming can read data from Kafka again and process the
data segment. The processing result is the same no matter Spark Streaming fails
or not, because the semantic is processed only once.

Direct APl does not need to use the WAL and Receivers, and ensures that each
Kafka record is received only once, which is more efficient. In this way, the Spark
Streaming and Kafka can be well integrated, making streaming channels be
featured with high fault-tolerance, high efficiency, and ease-of-use. Therefore, you
are advised to use Direct Streaming to process data.

Receiver computing process

When a Spark Streaming application starts (that is, when the driver starts), the
related StreamingContext (the basis of all streaming functions) uses SparkContext
to start the receiver to become a long-term running task. These receivers receive
and save streaming data to the Spark memory for processing. Figure 1-106 shows
the data transfer lifecycle.

Figure 1-106 Data transfer lifecycle

Application driver Executor
Input
Block metadata stream

StreamingContext Receiver

Block data
written to log

Computation
checkpointed

Jobs
Block data

written to both
memory + log

Fault-
folerant file SparkContext |:| I:I |:| Fauli-
tolerant file

system
system

2025-11-25

147

MapReduce Service

User Guide

1 Overview

1. Receive data (blue arrow).

Receiver divides a data stream into a series of blocks and stores them in the
executor memory. In addition, after WAL is enabled, it writes data to the WAL
of the fault-tolerant file system.

2. Notify the driver (green arrow).

The metadata in the received block is sent to StreamingContext in the driver.
The metadata includes:

- Block reference ID used to locate the data position in the Executor
memory.

- Block data offset information in logs (if the WAL function is enabled).
3. Process data (red arrow).

For each batch of data, StreamingContext uses block information to generate
resilient distributed datasets (RDDs) and jobs. StreamingContext executes jobs
by running tasks to process blocks in the executor memory.

4. Periodically set checkpoints (orange arrows).

5. For fault tolerance, StreamingContext periodically sets checkpoints and saves
them to external file systems.

Fault Tolerance

Spark and its RDD allow seamless processing of failures of any Worker node in the
cluster. Spark Streaming is built on top of Spark. Therefore, the Worker node of
Spark Streaming also has the same fault tolerance capability. However, Spark
Streaming needs to run properly in case of long-time running. Therefore, Spark
must be able to recover from faults through the driver process (main process that
coordinates all Workers). This poses challenges to the Spark driver fault-tolerance
because the Spark driver may be any user application implemented in any
computation mode. However, Spark Streaming has internal computation
architecture. That is, it periodically executes the same Spark computation in each
batch data. Such architecture allows it to periodically store checkpoints to reliable
storage space and recover them upon the restart of Driver.

For source data such as files, the Driver recovery mechanism can ensure zero data
loss because all data is stored in a fault-tolerant file system such as HDFS.
However, for other data sources such as Kafka and Flume, some received data is
cached only in memory and may be lost before being processed. This is caused by
the distribution operation mode of Spark applications. When the driver process
fails, all executors running in the Cluster Manager, together with all data in the
memory, are terminated. To avoid such data loss, the WAL function is added to
Spark Streaming.

WAL is often used in databases and file systems to ensure persistence of any data
operation. That is, first record an operation to a persistent log and perform this
operation on data. If the operation fails, the system is recovered by reading the log
and re-applying the preset operation. The following describes how to use WAL to
ensure persistence of received data:

Receiver is used to receive data from data sources such as Kafka. As a long-time
running task in Executor, Receiver receives data, and also confirms received data if
supported by data sources. Received data is stored in the Executor memory, and
Driver delivers a task to Executor for processing.

After WAL is enabled, all received data is stored to log files in the fault-tolerant
file system. Therefore, the received data does not lose even if Spark Streaming

2025-11-25

148

MapReduce Service

User Guide

1 Overview

fails. Besides, receiver checks correctness of received data only after the data is
pre-written into logs. Data that is cached but not stored can be sent again by data
sources after the driver restarts. These two mechanisms ensure zero data loss.
That is, all data is recovered from logs or re-sent by data sources.

To enable the WAL function, perform the following operations:

e Set streamingContext.checkpoint (path-to-directory) to configure the
checkpoint directory, which is an HDFS file path used to store streaming
checkpoints and WALs.

e Set spark.streaming.receiver.writeAheadlLog.enable of SparkConf to true
(the default value is false).

After WAL is enabled, all receivers have the advantage of recovering from reliable
received data. You are advised to disable the multi-replica mechanism because the
fault-tolerant file system of WAL may also replicate the data.

(11 NOTE

The data receiving throughput is lowered after WAL is enabled. All data is written into the
fault-tolerant file system. As a result, the write throughput of the file system and the
network bandwidth for data replication may become the potential bottleneck. To solve this
problem, you are advised to create more receivers to increase the degree of data receiving
parallelism or use better hardware to improve the throughput of the fault-tolerant file
system.

Recovery Process

When a failed driver is restarted, restart it as follows:

Figure 1