Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive

Performing Post-Expansion Operations for a System Disk in Linux (fdisk)

Updated on 2022-02-21 GMT+08:00

Scenarios

In Linux, after the capacity expansion succeeded, the additional disk space needs to be allocated to an existing partition or a new partition.

This topic uses CentOS 7.4 64bit to describe how to allocate the additional system disk space to a partition using fdisk.

This document also describes how to create new partitions for system disks. See the following topics for more information:

Currently, a disk has been attached to a server, and the original disk capacity is 40 GB. In addition, a 40-GB space has been added to the disk on the management console, and the total disk capacity should be 80 GB. The following operations guide you to use the additional space and extend the partition.

The method for allocating the additional space varies depending on the server OS. This document is used for reference only. For the detailed operations and differences, see the corresponding OS documents.

Based on your service requirements and disk condition, you can choose either of the following ways to allocate the additional disk space:
  • Create a new partition (services will not be interrupted).

    Creating a new partition after expansion does not require the original partitions to be unmounted. Therefore, the impacts on services are minor than expanding an existing partition. This method is recommended for system disks or disks carrying services that cannot be interrupted.

    If the MBR partition style is used, ensure that the disk capacity does not exceed 2 TB and the number of partitions does not reach the upper limit after the expansion.

  • Expand an existing partition (services will be interrupted).

    If the MBR partition style is used and the number of partitions has reached the upper limit, you can only allocate the additional space to an existing partition. Expanding an existing partition does not delete its data, but requires the partition to unmount. Therefore, services will be interrupted.

    If the MBR partition style is used and the disk capacity after expansion will exceed 2 TB, the space exceeding 2 TB cannot be used. To make use of that space, change the disk partition style from MBR to GPT. Data on the disk will be cleared during such a change. Therefore, back up the disk data before changing the partition style.

    NOTICE:

    Performing the expansion operations with caution. Misoperation may lead to data loss or exceptions. Therefore, you are advised to use CBR to back up the disk data before expansion. For details, see Managing a Backup.

Prerequisites

  • You have logged in to the server.
    • For how to log in to an ECS, see the Elastic Cloud Server User Guide.
    • For how to log in to a BMS, see the Bare Metal Server User Guide.
  • You have attached the disk to the server, and the additional space has not been allocated.

Creating a New Partition

The following example shows you how to make use of the additional capacity of a system disk attached to a server by creating a new partition. The system disk already has the /dev/vda1 partition, which is mounted on /. In the following operations, new partition /dev/vda2 will be created and mounted on /opt. During this process, services are not interrupted.

  1. Run the following command to view the disk partition information:

    fdisk -l

    Information similar to the following is displayed:
    [root@ecs-2220 ~]# fdisk -l
    
    Disk /dev/vda: 85.9 GB, 85899345920 bytes, 167772160 sectors
    Units = sectors of 1 * 512 = 512 bytes
    Sector size (logical/physical): 512 bytes / 512 bytes
    I/O size (minimum/optimal): 512 bytes / 512 bytes
    Disk label type: dos
    Disk identifier: 0x0008d18f
    
       Device Boot      Start         End      Blocks   Id  System
    /dev/vda1   *        2048    83886079    41942016   83  Linux

    In the command output, the capacity of the dev/vda system disk is 80 GB, in which the in-use dev/vda1 partition takes 40 GB and the additional 40 GB has not been allocated.

  2. Run the following command to enter fdisk:

    fdisk /dev/vda

    Information similar to the following is displayed:
    [root@ecs-2220 ~]# fdisk /dev/vda
    Welcome to fdisk (util-linux 2.23.2).
    
    Changes will remain in memory only, until you decide to write them.
    Be careful before using the write command.
    
    
    Command (m for help): 

  3. Enter n and press Enter to create a new partition.

    Information similar to the following is displayed:
    Command (m for help): n
    Partition type:
       p   primary (1 primary, 0 extended, 3 free)
       e   extended
    There are two types of disk partitions:
    • Choosing p creates a primary partition.
    • Choosing e creates an extended partition.

  4. In this example, a primary partition is created. Therefore, enter p and press Enter to create a primary partition.

    Information similar to the following is displayed:
    Select (default p): p
    Partition number (2-4, default 2): 

  5. Enter the serial number of the primary partition and press Enter. Partition number 2 is used in this example. Therefore, enter 2 and press Enter.

    Information similar to the following is displayed:
    Partition number (2-4, default 2): 2
    First sector (83886080-167772159, default 83886080):

  6. Enter the new partition's start sector, for example the default value, and press Enter.

    The default start sector is used in this example.

    Information similar to the following is displayed:
    First sector (83886080-167772159, default 83886080):
    Using default value 83886080
    Last sector, +sectors or +size{K,M,G} (83886080-167772159,default 167772159):

  7. Enter the new partition's end sector and press Enter.

    The default end sector is used in this example.

    Information similar to the following is displayed:
    Last sector, +sectors or +size{K,M,G} (83886080-167772159,
    default 167772159):
    Using default value 167772159
    Partition 2 of type Linux and of size 40 GiB is set
    
    Command (m for help): 

  8. Enter p and press Enter to view the new partition.

    Information similar to the following is displayed:
    Command (m for help): p
    
    Disk /dev/vda: 85.9 GB, 85899345920 bytes, 167772160 sectors
    Units = sectors of 1 * 512 = 512 bytes
    Sector size (logical/physical): 512 bytes / 512 bytes
    I/O size (minimum/optimal): 512 bytes / 512 bytes
    Disk label type: dos
    Disk identifier: 0x0008d18f
    
       Device Boot      Start         End      Blocks   Id  System
    /dev/vda1   *        2048    83886079    41942016   83  Linux
    /dev/vda2        83886080   167772159    41943040   83  Linux
    Command (m for help): 

  9. Enter w and press Enter to write the changes to the partition table.

    Information similar to the following is displayed:
    Command (m for help): w
    The partition table has been altered!
    
    Calling ioctl() to re-read partition table.
    
    WARNING: Re-reading the partition table failed with error 16: Device or resource busy.
    The kernel still uses the old table. The new table will be used at
    the next reboot or after you run partprobe(8) or kpartx(8)
    Syncing disks.

    The partition is created.

    NOTE:

    In case that you want to discard the changes made before, you can exit fdisk by entering q.

  10. Run the following command to synchronize the new partition table to the OS:

    partprobe

  11. Run the following command to set the file system format for the new partition:

    (The ext4 file system is used in this example.)

    mkfs -t ext4 /dev/vda2

    NOTE:

    The procedure for setting the xfs file system is the same as that for the ext3 or ext4 file system. The command for creating the xfs file system is mkfs -t xfs /dev/vda2.

    Information similar to the following is displayed:
    [root@ecs-2220 ~]# mkfs -t ext4 /dev/vda2
    mke2fs 1.42.9 (28-Dec-2013)
    Filesystem label=
    OS type: Linux
    Block size=4096 (log=2)
    Fragment size=4096 (log=2)
    Stride=0 blocks, Stripe width=0 blocks
    2621440 inodes, 10485760 blocks
    524288 blocks (5.00%) reserved for the super user
    First data block=0
    Maximum filesystem blocks=2157969408
    320 block groups
    32768 blocks per group, 32768 fragments per group
    8192 inodes per group
    Superblock backups stored on blocks:
            32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,
            4096000, 7962624
    
    Allocating group tables: done
    Writing inode tables: done
    Creating journal (32768 blocks): done
    Writing superblocks and filesystem accounting information: done

    The formatting takes a while, and you need to observe the system running status. Once done is displayed in the command output, the formatting is complete.

  12. Run the following command to mount the new partition on a space-demanding directory, for example /opt:

    mount /dev/vda2 /opt

    Information similar to the following is displayed:
    [root@ecs-bab9 test]# mount /dev/vda2 /opt
    [root@ecs-bab9 test]#
    NOTE:

    If the new partition is mounted on a directory that is not empty, the subdirectories and files in the directory will be hidden. Therefore, you are advised to mount the new partition on an empty directory or a new directory. If the new partition must be mounted on a directory that is not empty, move the subdirectories and files in this directory to another directory temporarily. After the partition is successfully mounted, move the subdirectories and files back.

  13. Run the following command to view the mount result:

    df -TH

    Information similar to the following is displayed:
    [root@ecs-2220 ~]# df -TH
    Filesystem     Type      Size  Used Avail Use% Mounted on
    /dev/vda1      ext4       43G  2.0G   39G   5% /
    devtmpfs       devtmpfs  509M     0  509M   0% /dev
    tmpfs          tmpfs     520M     0  520M   0% /dev/shm
    tmpfs          tmpfs     520M  7.2M  513M   2% /run
    tmpfs          tmpfs     520M     0  520M   0% /sys/fs/cgroup
    tmpfs          tmpfs     104M     0  104M   0% /run/user/0
    /dev/vda2      ext4       43G   51M   40G   1% /opt

Setting Automatic Mounting at System Start

To automatically mount partitions at system starts, do not specify partitions, for example, /dev/xvdb1, in /etc/fstab because the sequence of cloud devices, and therefore their names may change during the server stop or start. You are advised to use the UUID in /etc/fstab to set automatic mounting at system start.

NOTE:

UUID is the unique character string for disk partitions in a Linux system.

  1. Run the following command to query the partition UUID:

    blkid Disk partition

    For example, run the following command to query the UUID of the /dev/xvdb1 partition:

    blkid /dev/xvdb1

    Information similar to the following is displayed:

    [root@ecs-b656 test]# blkid /dev/xvdb1
    /dev/xvdb1: UUID="1851e23f-1c57-40ab-86bb-5fc5fc606ffa" TYPE="ext4"

    The UUID of the /dev/xvdb1 partition is displayed.

  2. Run the following command to open the fstab file using the vi editor:

    vi /etc/fstab

  3. Press i to enter the editing mode.
  4. Move the cursor to the end of the file and press Enter. Then, add the following information:

    UUID=1851e23f-1c57-40ab-86bb-5fc5fc606ffa /mnt/sdc      ext3 defaults     0   2
    UUID=1851e23f-1c57-40ab-86bb-5fc5fc606ffa /mnt/sdc      ext4 defaults     0   2

  5. Press Esc, enter :wq, and press Enter.

    The system saves the configurations and exits the vi editor.

We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out more

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback