Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Situation Awareness
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive

Planning CIDR Blocks for a Cluster

Updated on 2023-12-07 GMT+08:00

Before creating a cluster on CCE, determine the number of VPCs, number of subnets, container CIDR blocks, and Services for access based on service requirements.

This topic describes the addresses in a CCE cluster in a VPC and how to plan CIDR blocks.

Constraints

To access a CCE cluster through a VPN, ensure that the VPN does not conflict with the VPC CIDR block where the cluster resides and the container CIDR block.

Basic Concepts

  • VPC CIDR Block

    Virtual Private Cloud (VPC) enables you to provision logically isolated, configurable, and manageable virtual networks for cloud servers, cloud containers, and cloud databases. You have complete control over your virtual network, including selecting your own CIDR block, creating subnets, and configuring security groups. You can also assign EIPs and allocate bandwidth in your VPC for secure and easy access to your business system.

  • Subnet CIDR Block
    A subnet is a network that manages ECS network planes. It supports IP address management and DNS. The IP addresses of all ECSs in a subnet belong to the subnet.
    Figure 1 VPC CIDR block architecture

    By default, ECSs in all subnets of the same VPC can communicate with one another, while ECSs in different VPCs cannot communicate with each other.

    You can create a peering connection on VPC to enable ECSs in different VPCs to communicate with each other.

  • Container (Pod) CIDR Block

    Pod is a Kubernetes concept. Each pod has an IP address.

    When creating a cluster on CCE, you can specify the pod (container) CIDR block, which cannot overlap with the subnet CIDR block. For example, if the subnet CIDR block is 192.168.0.0/16, the container CIDR block cannot be 192.168.0.0/18 or 192.168.1.0/18, because these addresses are included in 192.168.0.0/16.

  • Container Subnet (Only for CCE Turbo Clusters)

    In a CCE Turbo cluster, a container is assigned an IP address from the CIDR block of a VPC. The container subnet can overlap with the subnet CIDR block. Note that the subnet you select determines the maximum number of pods in the cluster. After a cluster is created, you can only add container subnets but cannot delete them.

  • Service CIDR Block

    Service is also a Kubernetes concept. Each Service has an address. When creating a cluster on CCE, you can specify the Service CIDR block. Similarly, the Service CIDR block cannot overlap with the subnet CIDR block or the container CIDR block. The Service CIDR block can be used only within a cluster.

Single-VPC Single-Cluster Scenarios

CCE Clusters: include clusters in VPC network model and container tunnel network model. Figure 2 shows the CIDR block planning of a cluster.
  • VPC CIDR Block: specifies the VPC CIDR block where the cluster resides. The size of this CIDR block affects the maximum number of nodes that can be created in the cluster.
  • Subnet CIDR Block: specifies the subnet CIDR block where the node in the cluster resides. The subnet CIDR block is included in the VPC CIDR block. Different nodes in the same cluster can be allocated to different subnet CIDR blocks.
  • Container CIDR Block: cannot overlap with the subnet CIDR block.
  • Service CIDR Block: cannot overlap with the subnet CIDR block or the container CIDR block.
Figure 2 Network CIDR block planning in single-VPC single-cluster scenarios (CCE cluster)
Figure 3 shows the CIDR block planning for a CCE Turbo cluster (Cloud Native Network 2.0).
  • VPC CIDR Block: specifies the VPC CIDR block where the cluster resides. The size of this CIDR block affects the maximum number of nodes that can be created in the cluster.
  • Subnet CIDR Block: specifies the subnet CIDR block where the node in the cluster resides. The subnet CIDR block is included in the VPC CIDR block. Different nodes in the same cluster can be allocated to different subnet CIDR blocks.
  • Container Subnet CIDR Block: The container subnet is included in the VPC CIDR block and can overlap with the subnet CIDR block or even be the same as the subnet CIDR block. Note that the container subnet size determines the maximum number of containers in the cluster because IP addresses in the VPC are directly allocated to containers. After a cluster is created, you can only add container subnets but cannot delete them. Set a larger IP address segment for the container subnet to prevent insufficient container IP addresses.
  • Service CIDR Block: cannot overlap with the subnet CIDR block or the container CIDR block.
Figure 3 Network CIDR block planning in single-VPC single-cluster scenarios (CCE Turbo Clusters)

Single-VPC Multi-Cluster Scenarios

VPC network model

Pod packets are forwarded through VPC routes. CCE automatically configures a routing table on the VPC routes to each container CIDR block. The network scale is limited by the VPC route table. Figure 4 shows the CIDR block planning of the cluster.
  • VPC CIDR Block: specifies the VPC CIDR block where the cluster resides. The size of this CIDR block affects the maximum number of nodes that can be created in the cluster.
  • Subnet CIDR Block: The subnet CIDR block in each cluster cannot overlap with the container CIDR block.
  • Container CIDR Block: If multiple VPC network model clusters exist in a single VPC, the container CIDR blocks of all clusters cannot overlap because the clusters use the same routing table. In this case, CCE clusters are partially interconnected. A pod of a cluster can directly access the pods of another cluster, but cannot access the Services of the cluster.
  • Service CIDR Block: can be used only in clusters. Therefore, the Service CIDR blocks of different clusters can overlap, but cannot overlap with the subnet CIDR block and container CIDR block of the cluster.
Figure 4 VPC network - multi-cluster scenario

Tunnel network model

Though at some cost of performance, the tunnel encapsulation enables higher interoperability and compatibility with advanced features (such as network policy-based isolation), meeting the requirements of most applications. Figure 5 shows the CIDR block planning of the cluster.
  • VPC CIDR Block: specifies the VPC CIDR block where the cluster resides. The size of this CIDR block affects the maximum number of nodes that can be created in the cluster.
  • Subnet CIDR Block: The subnet CIDR block in each cluster cannot overlap with the container CIDR block.
  • Container CIDR Block: The container CIDR blocks of all clusters can overlap. In this case, pods in different clusters cannot be directly accessed using IP addresses. It is recommended that ELB be used for the cross-cluster access between containers.
  • Service CIDR Block: can be used only in clusters. Therefore, the Service CIDR blocks of different clusters can overlap, but cannot overlap with the subnet CIDR block and container CIDR block of the cluster.
Figure 5 Tunnel network - multi-cluster scenario

Cloud Native Network 2.0 Model (CCE Turbo Clusters)

In this mode, container IP addresses are allocated from the VPC CIDR block. ELB passthrough networking is supported to direct access requests to containers. Security groups and multiple types of VPC networks can be bound to deliver high performance.
  • VPC CIDR Block: specifies the VPC CIDR block where the cluster resides. In a CCE Turbo cluster, the CIDR block size affects the total number of nodes and containers that can be created in the cluster.
  • Subnet CIDR Block: There is no special restriction on the subnet CIDR blocks in CCE Turbo clusters.
  • Container Subnet: The CIDR block of the container subnet is included in the VPC CIDR block. Container subnets in different clusters can overlap with each other or overlap with the subnet CIDR block. However, you are advised to stagger the container CIDR blocks of different clusters and ensure that the container subnet CIDR blocks have sufficient IP addresses. In this case, pods in different clusters can directly access each other through IP addresses.
  • Service CIDR Block: can be used only in clusters. Therefore, the Service CIDR blocks of different clusters can overlap, but cannot overlap with the subnet CIDR block and container subnet CIDR block of the cluster.
Figure 6 Cloud Native Network 2.0 - multi-cluster scenario

Coexistence of Clusters in Multi-Network

When a VPC contains clusters created with different network models, comply with the following rules when creating a cluster:

  • VPC CIDR Block: In this scenario, all clusters are located in the same VPC CIDR block. Ensure that there are sufficient available IP addresses in the VPC.
  • Subnet CIDR Block: Ensure that the subnet CIDR block does not overlap with the container CIDR block. Even in some scenarios (for example, coexistence with CCE Turbo clusters), the subnet CIDR block can overlap with the container (subnet) CIDR block. However, this is not recommended.
  • Container CIDR Block: Ensure that the container CIDR blocks of clusters in VPC network model do not overlap.
  • Service CIDR Block: The Service CIDR blocks of all clusters can overlap, but cannot overlap with the subnet CIDR block and container CIDR block of the cluster.

Cross-VPC Cluster Interconnection

When two VPC networks are interconnected, you can configure the packets to be sent to the peer VPC in the route table.

In the VPC network model, after creating a peering connection, add routes for the peering connection to enable communication between the two VPCs.

Figure 7 VPC network - VPC interconnection scenario

When creating a VPC peering connection between containers across VPCs, pay attention to the following points:

  • The VPC to which the clusters belong must not overlap. In each cluster, the subnet CIDR block cannot overlap with the container CIDR block.
  • The container CIDR blocks of clusters at both ends cannot overlap, but the Service CIDR blocks can.
  • Add not only the peer VPC CIDR block but also the peer container CIDR block to the VPC routing tables at both ends. Note that this operation must be performed in the VPC route tables of the clusters.

In the Tunnel network model, after creating a peering connection, add routes for the peering connection to enable communication between the two VPCs.

Figure 8 Tunnel network - VPC interconnection scenario

Pay attention to the following:

  • The VPCs of the clusters must not overlap.
  • The container CIDR blocks of all clusters can overlap, so do the Service CIDR blocks.
  • Add the peer subnet CIDR block to the route table of the VPC peering connection.

In Cloud Native Network 2.0 mode, after creating a VPC peering connection, you only need to add routes for the VPC peering connection to enable communication between the two VPCs. Ensure that the VPCs of the clusters do not overlap.

VPC-IDC Scenarios

Similar to the VPC interconnection scenario, some CIDR blocks in the VPC are routed to the IDC. The pod IP addresses of CCE clusters cannot overlap with the addresses within these CIDR blocks. To access the pod IP addresses in the cluster in the IDC, configure the route table to the private line VBR on the IDC.

We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out more

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback