Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Situation Awareness
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive

Cloud Native 2.0 Network

Updated on 2024-01-26 GMT+08:00

Model Definition

Developed by CCE, Cloud Native 2.0 network deeply integrates Elastic Network Interfaces (ENIs) and sub-ENIs of Virtual Private Cloud (VPC). Container IP addresses are allocated from the VPC CIDR block. ELB passthrough networking is supported to direct access requests to containers. Security groups and elastic IPs (EIPs) are bound to deliver high performance.

Figure 1 Cloud Native 2.0 network model

Pod-to-pod communication

  • On the same node: Packets are forwarded through the VPC ENI or sub-ENI.
  • Across nodes: Packets are forwarded through the VPC ENI or sub-ENI.

Advantages and Disadvantages

Advantages

  • As the container network directly uses VPC, it is easy to locate network problems and provide the highest performance.
  • External networks in a VPC can be directly connected to container IP addresses.
  • The load balancing, security group, and EIP capabilities provided by VPC can be directly used by pods.

Disadvantages

The container network directly uses VPC, which occupies the VPC address space. Therefore, you must properly plan the container CIDR block before creating a cluster.

Application Scenarios

  • High performance requirements and use of other VPC network capabilities: Cloud Native Network 2.0 directly uses VPC, which delivers almost the same performance as the VPC network. Therefore, it applies to scenarios that have high requirements on bandwidth and latency.
  • Large-scale networking: Cloud Native Network 2.0 supports a maximum of 2000 ECS nodes and 100,000 containers.

Recommendation for CIDR Block Planning

As described in Cluster Network Structure, network addresses in a cluster can be divided into three parts: node network, container network, and service network. When planning network addresses, consider the following aspects:

  • The three CIDR blocks cannot overlap. Otherwise, a conflict occurs. All subnets (including those created from the secondary CIDR block) in the VPC where the cluster resides cannot conflict with the container and Service CIDR blocks.
  • Ensure that each CIDR block has sufficient IP addresses.
    • The IP addresses in the node CIDR block must match the cluster scale. Otherwise, nodes cannot be created due to insufficient IP addresses.
    • The IP addresses in the container CIDR block must match the service scale. Otherwise, pods cannot be created due to insufficient IP addresses.

In the Cloud Native Network 2.0 model, the container CIDR block and node CIDR block share the network addresses in a VPC. It is recommended that the container subnet and node subnet not use the same subnet. Otherwise, containers or nodes may fail to be created due to insufficient IP resources.

In addition, a subnet can be added to the container CIDR block after a cluster is created to increase the number of available IP addresses. In this case, ensure that the added subnet does not conflict with other subnets in the container CIDR block.

Example of Cloud Native 2.0 Network Access

Create a CCE Turbo cluster, which contains three ECS nodes.

Access the details page of one node. You can see that the node has one primary ENI and one extended ENI, and both of them are ENIs. The extended ENI belongs to the container CIDR block and is used to mount a sub-ENI to the pod.

Create a Deployment in the cluster.

kind: Deployment
apiVersion: apps/v1
metadata:
  name: example
  namespace: default
spec:
  replicas: 6
  selector:
    matchLabels:
      app: example
  template:
    metadata:
      labels:
        app: example
    spec:
      containers:
        - name: container-0
          image: 'nginx:perl'
          resources:
            limits:
              cpu: 250m
              memory: 512Mi
            requests:
              cpu: 250m
              memory: 512Mi
      imagePullSecrets:
        - name: default-secret

View the created pod.

$ kubectl get pod -owide
NAME                       READY   STATUS    RESTARTS   AGE   IP            NODE         NOMINATED NODE   READINESS GATES
example-5bdc5699b7-54v7g   1/1     Running   0          7s    10.1.18.2     10.1.0.167   <none>           <none>
example-5bdc5699b7-6dzx5   1/1     Running   0          7s    10.1.18.216   10.1.0.186   <none>           <none>
example-5bdc5699b7-gq7xs   1/1     Running   0          7s    10.1.16.63    10.1.0.144   <none>           <none>
example-5bdc5699b7-h9rvb   1/1     Running   0          7s    10.1.16.125   10.1.0.167   <none>           <none>
example-5bdc5699b7-s9fts   1/1     Running   0          7s    10.1.16.89    10.1.0.144   <none>           <none>
example-5bdc5699b7-swq6q   1/1     Running   0          7s    10.1.17.111   10.1.0.167   <none>           <none>

The IP addresses of all pods are sub-ENIs, which are mounted to the ENI (extended ENI) of the node.

For example, the extended ENI of node 10.1.0.167 is 10.1.17.172. On the Network Interfaces page of the Network Console, you can see that three sub-ENIs are mounted to the extended ENI 10.1.17.172, which is the IP address of the pod.

In the VPC, the IP address of the pod can be successfully accessed.

We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out more

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback