- What's New
- Function Overview
-
Product Bulletin
- Latest Notices
-
Product Change Notices
- EOM of CentOS
- Billing Changes for Huawei Cloud CCE Autopilot Data Plane
- CCE Autopilot for Commercial Use on September 30, 2024, 00:00 GMT+08:00
- Reliability Hardening for Cluster Networks and Storage Functions
- Support for Docker
- Service Account Token Security Improvement
- Upgrade of Helm v2 to Helm v3
- Problems Caused by conn_reuse_mode Settings in the IPVS Forwarding Mode of CCE Clusters
- Optimized Key Authentication of the everest Add-on
-
Cluster Version Release Notes
- End of Maintenance for Clusters 1.25
- End of Maintenance for Clusters 1.23
- End of Maintenance for Clusters 1.21
- End of Maintenance for Clusters 1.19
- End of Maintenance for Clusters 1.17
- End of Maintenance for Clusters 1.15
- End of Maintenance for Clusters 1.13
- Creation of CCE Clusters 1.13 and Earlier Not Supported
- Upgrade for Kubernetes Clusters 1.9
-
Vulnerability Notices
- Vulnerability Fixing Policies
- Notice of Kubernetes Security Vulnerability (CVE-2024-10220)
- Notice of Kubernetes Security Vulnerabilities (CVE-2024-9486 and CVE-2024-9594)
- Notice of Container Escape Vulnerability in NVIDIA Container Toolkit (CVE-2024-0132)
- Notice of Linux Remote Code Execution Vulnerability in CUPS (CVE-2024-47076, CVE-2024-47175, CVE-2024-47176, and CVE-2024-47177)
- Notice of the NGINX Ingress Controller Vulnerability That Allows Attackers to Bypass Annotation Validation (CVE-2024-7646)
- Notice of Docker Engine Vulnerability That Allows Attackers to Bypass AuthZ (CVE-2024-41110)
- Notice of Linux Kernel Privilege Escalation Vulnerability (CVE-2024-1086)
- Notice of OpenSSH Remote Code Execution Vulnerability (CVE-2024-6387)
- Notice of Fluent Bit Memory Corruption Vulnerability (CVE-2024-4323)
- Notice of runC systemd Attribute Injection Vulnerability (CVE-2024-3154)
- Notice of the Impact of runC Vulnerability (CVE-2024-21626)
- Notice of Kubernetes Security Vulnerability (CVE-2022-3172)
- Notice of Privilege Escalation Vulnerability in Linux Kernel openvswitch Module (CVE-2022-2639)
- Notice of nginx-ingress Add-on Security Vulnerability (CVE-2021-25748)
- Notice of nginx-ingress Security Vulnerabilities (CVE-2021-25745 and CVE-2021-25746)
- Notice of containerd Process Privilege Escalation Vulnerability (CVE-2022-24769)
- Notice of CRI-O Container Runtime Engine Arbitrary Code Execution Vulnerability (CVE-2022-0811)
- Notice of Container Escape Vulnerability Caused by the Linux Kernel (CVE-2022-0492)
- Notice of Non-Security Handling Vulnerability of containerd Image Volumes (CVE-2022-23648)
- Notice of Linux Kernel Integer Overflow Vulnerability (CVE-2022-0185)
- Notice of Linux Polkit Privilege Escalation Vulnerability (CVE-2021-4034)
- Notice of Vulnerability of Kubernetes subPath Symlink Exchange (CVE-2021-25741)
- Notice of runC Vulnerability That Allows a Container Filesystem Breakout via Directory Traversal (CVE-2021-30465)
- Notice of Docker Resource Management Vulnerability (CVE-2021-21285)
- Notice of NVIDIA GPU Driver Vulnerability (CVE-2021-1056)
- Notice of the Sudo Buffer Vulnerability (CVE-2021-3156)
- Notice of the Kubernetes Security Vulnerability (CVE-2020-8554)
- Notice of Apache containerd Security Vulnerability (CVE-2020-15257)
- Notice of Docker Engine Input Verification Vulnerability (CVE-2020-13401)
- Notice of Kubernetes kube-apiserver Input Verification Vulnerability (CVE-2020-8559)
- Notice of Kubernetes kubelet Resource Management Vulnerability (CVE-2020-8557)
- Notice of Kubernetes kubelet and kube-proxy Authorization Vulnerability (CVE-2020-8558)
- Notice of Fixing the Kubernetes HTTP/2 Vulnerability
- Notice of Fixing the Linux Kernel SACK Vulnerabilities
- Notice of Fixing the Docker Command Injection Vulnerability (CVE-2019-5736)
- Notice of Fixing the Kubernetes Permission and Access Control Vulnerability (CVE-2018-1002105)
- Notice of Fixing the Kubernetes Dashboard Security Vulnerability (CVE-2018-18264)
-
Product Release Notes
-
Cluster Versions
- Kubernetes Version Policy
-
Kubernetes Version Release Notes
- Kubernetes 1.31 Release Notes
- Kubernetes 1.30 Release Notes
- Kubernetes 1.29 Release Notes
- Kubernetes 1.28 Release Notes
- Kubernetes 1.27 Release Notes
- Kubernetes 1.25 Release Notes
- Kubernetes 1.23 Release Notes
- Kubernetes 1.21 (EOM) Release Notes
- Kubernetes 1.19 (EOM) Release Notes
- Kubernetes 1.17 (EOM) Release Notes
- Kubernetes 1.15 (EOM) Release Notes
- Kubernetes 1.13 (EOM) Release Notes
- Kubernetes 1.11 (EOM) Release Notes
- Kubernetes 1.9 (EOM) and Earlier Versions Release Notes
- Patch Versions
- OS Images
-
Add-on Versions
- CoreDNS Release History
- CCE Container Storage (Everest) Release History
- CCE Node Problem Detector Release History
- Kubernetes Dashboard Release History
- CCE Cluster Autoscaler Release History
- NGINX Ingress Controller Release History
- Kubernetes Metrics Server Release History
- CCE Advanced HPA Release History
- CCE Cloud Bursting Engine for CCI Release History
- CCE AI Suite (NVIDIA GPU) Release History
- CCE AI Suite (Ascend NPU) Release History
- Volcano Scheduler Release History
- CCE Secrets Manager for DEW Release History
- CCE Network Metrics Exporter Release History
- NodeLocal DNSCache Release History
- Cloud Native Cluster Monitoring Release History
- Cloud Native Log Collection Release History
- Container Image Signature Verification Release History
- Grafana Release History
- OpenKruise Release History
- Gatekeeper Release History
- Vertical Pod Autoscaler Release History
- CCE Cluster Backup & Recovery (End of Maintenance) Release History
- Kubernetes Web Terminal (End of Maintenance) Release History
- Prometheus (End of Maintenance) Release History
-
Cluster Versions
- Service Overview
- Billing
- Kubernetes Basics
- Getting Started
-
User Guide
- High-Risk Operations
-
Clusters
- Basic Cluster Information
-
Cluster Version Release Notes
-
Kubernetes Version Release Notes
- Kubernetes 1.31 Release Notes
- Kubernetes 1.30 Release Notes
- Kubernetes 1.29 Release Notes
- Kubernetes 1.28 Release Notes
- Kubernetes 1.27 Release Notes
- Kubernetes 1.25 Release Notes
- Kubernetes 1.23 Release Notes
- Kubernetes 1.21 (EOM) Release Notes
- Kubernetes 1.19 (EOM) Release Notes
- Kubernetes 1.17 (EOM) Release Notes
- Kubernetes 1.15 (EOM) Release Notes
- Kubernetes 1.13 (EOM) Release Notes
- Kubernetes 1.11 (EOM) Release Notes
- Release Notes for Kubernetes 1.9 (EOM) and Earlier Versions
- Patch Version Release Notes
-
Kubernetes Version Release Notes
- Buying a Cluster
- Connecting to a Cluster
-
Managing a Cluster
- Modifying Cluster Configurations
- Enabling Overload Control for a Cluster
- Changing Cluster Scale
- Changing the Default Security Group of a Node
- Deleting a Cluster
- Hibernating or Waking Up a Pay-per-Use Cluster
- Renewing a Yearly/Monthly Cluster
- Changing the Billing Mode of a Cluster from Pay-per-Use to Yearly/Monthly
-
Upgrading a Cluster
- Process and Method of Upgrading a Cluster
- Before You Start
- Performing Post-Upgrade Verification
- Migrating Services Across Clusters of Different Versions
-
Troubleshooting for Pre-upgrade Check Exceptions
- Pre-upgrade Check
- Node Restrictions
- Upgrade Management
- Add-ons
- Helm Charts
- SSH Connectivity of Master Nodes
- Node Pools
- Security Groups
- Residual Nodes
- Discarded Kubernetes Resources
- Compatibility Risks
- CCE Agent Versions
- Node CPU Usage
- CRDs
- Node Disks
- Node DNS
- Node Key Directory File Permissions
- kubelet
- Node Memory
- Node Clock Synchronization Server
- Node OS
- Node CPU Cores
- Node Python Commands
- ASM Version
- Node Readiness
- Node journald
- containerd.sock
- Internal Error
- Node Mount Points
- Kubernetes Node Taints
- Everest Restrictions
- cce-hpa-controller Limitations
- Enhanced CPU Policies
- Health of Worker Node Components
- Health of Master Node Components
- Memory Resource Limit of Kubernetes Components
- Discarded Kubernetes APIs
- NetworkManager
- Node ID File
- Node Configuration Consistency
- Node Configuration File
- CoreDNS Configuration Consistency
- sudo
- Key Node Commands
- Mounting of a Sock File on a Node
- HTTPS Load Balancer Certificate Consistency
- Node Mounting
- Login Permissions of User paas on a Node
- Private IPv4 Addresses of Load Balancers
- Historical Upgrade Records
- CIDR Block of the Cluster Management Plane
- GPU Add-on
- Nodes' System Parameters
- Residual Package Version Data
- Node Commands
- Node Swap
- NGINX Ingress Controller
- Upgrade of Cloud Native Cluster Monitoring
- containerd Pod Restart Risks
- Key GPU Add-on Parameters
- GPU or NPU Pod Rebuild Risks
- ELB Listener Access Control
- Master Node Flavor
- Subnet Quota of Master Nodes
- Node Runtime
- Node Pool Runtime
- Number of Node Images
- OpenKruise Compatibility Check
- Compatibility Check of Secret Encryption
- Compatibility Between the Ubuntu Kernel and GPU Driver
- Drainage Tasks
- Image Layers on a Node
- Cluster Rolling Upgrade
- Rotation Certificates
- Ingress and ELB Configuration Consistency
- Network Policies of Cluster Network Components
- Cluster and Node Pool Configurations
- Time Zone of Master Nodes
-
Nodes
- Node Overview
- Container Engines
- Node OSs
- Node Specifications
- Creating a Node
- Accepting Nodes for Management
- Logging In to a Node
-
Management Nodes
- Managing Node Labels
- Managing Node Taints
- Resetting a Node
- Removing a Node
- Synchronizing the Data of Cloud Servers
- Draining a Node
- Deleting or Unsubscribing from a Node
- Changing the Billing Mode of a Node to Yearly/Monthly
- Modifying the Auto-Renewal Configuration of a Yearly/Monthly Node
- Stopping a Node
- Performing Rolling Upgrade for Nodes
-
Node O&M
- Node Resource Reservation Policy
- Space Allocation of a Data Disk
- Maximum Number of Pods That Can Be Created on a Node
- Differences in kubelet and Runtime Component Configurations Between CCE and the Native Community
- Migrating Nodes from Docker to containerd
- Optimizing Node System Parameters
- Configuring Node Fault Detection Policies
- Executing the Pre- or Post-installation Commands During Node Creation
- ECS Event Handling Suggestions
- Node Pools
-
Workloads
- Overview
- Creating a Workload
-
Configuring a Workload
- Secure Runtime and Common Runtime
- Configuring Time Zone Synchronization
- Configuring an Image Pull Policy
- Using Third-Party Images
- Configuring Container Specifications
- Configuring Container Lifecycle Parameters
- Configuring Container Health Check
- Configuring Environment Variables
- Configuring APM
- Configuring Workload Upgrade Policies
- Configuring Tolerance Policies
- Configuring Labels and Annotations
- Scheduling a Workload
- Logging In to a Container
- Managing Workloads
- Managing Custom Resources
- Pod Security
-
Scheduling
- Overview
- CPU Scheduling
- GPU Scheduling
- NPU Scheduling
- Volcano Scheduling
- Cloud Native Hybrid Deployment
-
Network
- Overview
-
Container Network
- Overview
-
Cloud Native Network 2.0 Settings
- Cloud Native Network 2.0
- Configuring a Default Container Subnet for a CCE Turbo Cluster
- Binding a Security Group to a Pod Using an Annotation
- Binding a Security Group to a Workload Using a Security Group Policy
- Binding a Subnet and Security Group to a Namespace or Workload Using a Container Network Configuration
- Configuring a Static IP Address for a Pod
- Configuring an EIP for a Pod
- Configuring a Static EIP for a Pod
- Configuring Shared Bandwidth for a Pod with IPv6 Dual-Stack ENIs
- VPC Network Settings
- Tunnel Network Settings
- Pod Network Settings
-
Service
- Overview
- ClusterIP
- NodePort
-
LoadBalancer
- Creating a LoadBalancer Service
- Configuring LoadBalancer Services Using Annotations
- Configuring HTTP/HTTPS for a LoadBalancer Service
- Configuring SNI for a LoadBalancer Service
- Configuring HTTP/2 for a LoadBalancer Service
- Configuring an HTTP/HTTPS Header for a LoadBalancer Service
- Configuring Timeout for a LoadBalancer Service
- Configuring TLS for a LoadBalancer Service
- Configuring GZIP Data Compression for a LoadBalancer Service
- Configuring a Blocklist/Trustlist Access Policy for a LoadBalancer Service
- Configuring Health Check on Multiple Ports of a LoadBalancer Service
- Configuring Passthrough Networking for a LoadBalancer Service
- Enabling a LoadBalancer Service to Obtain the Client IP Address
- Configuring a Custom EIP for a LoadBalancer Service
- Configuring a Range of Listening Ports for LoadBalancer Services
- Setting the Pod Ready Status Through the ELB Health Check
- Enabling ICMP Security Group Rules
- DNAT
- Headless Services
-
Ingresses
- Overview
- Comparison Between ELB Ingress and Nginx Ingress
-
LoadBalancer Ingresses
- Creating a LoadBalancer Ingress on the Console
- Creating a LoadBalancer Ingress Using kubectl
- Annotations for Configuring LoadBalancer Ingresses
-
Advanced Setting Examples of LoadBalancer Ingresses
- Configuring an HTTPS Certificate for a LoadBalancer Ingress
- Updating the HTTPS Certificate for a LoadBalancer Ingress
- Configuring SNI for a LoadBalancer Ingress
- Configuring Multiple Forwarding Policies for a LoadBalancer Ingress
- Configuring HTTP/2 for a LoadBalancer Ingress
- Configuring HTTPS Backend Services for a LoadBalancer Ingress
- Configuring gRPC Backend Services for a LoadBalancer Ingress
- Configuring Timeout for a LoadBalancer Ingress
- Configuring a Slow Start for a LoadBalancer Ingress
- Configuring Grayscale Release for a LoadBalancer Ingress
- Configuring a Blocklist/Trustlist Access Policy for a LoadBalancer Ingress
- Configuring a Range of Listening Ports for a LoadBalancer Ingress
- Configuring an HTTP/HTTPS Header for a LoadBalancer Ingress
- Configuring GZIP Data Compression for a LoadBalancer Ingress
- Configuring URL Redirection for a LoadBalancer Ingress
- Configuring URL Rewriting for a LoadBalancer Ingress
- Redirecting HTTP to HTTPS for a LoadBalancer Ingress
- Configuring the Priorities of Forwarding Rules for LoadBalancer Ingresses
- Configuring a Custom Header Forwarding Policy for a LoadBalancer Ingress
- Configuring a Custom EIP for a LoadBalancer Ingress
- Configuring Cross-Origin Access for LoadBalancer Ingresses
- Configuring Advanced Forwarding Rules for a LoadBalancer Ingress
- Configuring Advanced Forwarding Actions for a LoadBalancer Ingress
- Forwarding Policy Priorities of LoadBalancer Ingresses
- Configuring Multiple Ingresses to Use the Same External ELB Port
-
Nginx Ingresses
- Creating an Nginx Ingress on the Console
- Creating an Nginx Ingress Using kubectl
- Annotations for Configuring Nginx Ingresses
-
Advanced Setting Examples of Nginx Ingresses
- Configuring an HTTPS Certificate for an Nginx Ingress
- Configuring Redirection Rules for an Nginx Ingress
- Configuring URL Rewriting Rules for an Nginx Ingress
- Configuring HTTPS Backend Services for an Nginx Ingress
- Configuring gRPC Backend Services for an Nginx Ingress
- Configuring Consistent Hashing for Load Balancing of an Nginx Ingress
- Configuring Application Traffic Mirroring for an Nginx Ingress
- Configuring Cross-Origin Access for Nginx Ingresses
- Nginx Ingress Usage Suggestions
- Optimizing NGINX Ingress Controller in High-Traffic Scenarios
- Configuring an ELB Certificate for NGINX Ingress Controller
- Migrating Data from a Bring-Your-Own Nginx Ingress to a LoadBalancer Ingress
- DNS
- Cluster Network Settings
- Configuring Intra-VPC Access
- Accessing the Internet from a Container
- Storage
- Auto Scaling
-
O&M
- Overview
- Agency Permissions
- Health Center
- Monitoring Center
- Logging
- Alarm Center
- Log Auditing
- O&M FAQ
-
O&M Best Practices
- Cloud Native Cluster Monitoring Is Compatible with Self-Built Prometheus
- Monitoring Custom Metrics Using Cloud Native Cluster Monitoring
- Monitoring Custom Metrics on AOM
- Monitoring Metrics of Master Node Components Using Prometheus
- Monitoring Metrics of NGINX Ingress Controller
- Monitoring Container Network Metrics of CCE Turbo Clusters
- Cloud Native Cost Governance
- Namespaces
- ConfigMaps and Secrets
- Add-ons
- Helm Chart
- Permissions
- Settings
- Storage Management: FlexVolume (Deprecated)
-
Best Practices
- Checklist for Deploying Containerized Applications in the Cloud
- Containerization
- Migration
- DevOps
- Disaster Recovery
-
Security
- Overview
- Configuration Suggestions on CCE Cluster Security
- Configuration Suggestions on CCE Node Security
- Configuration Suggestions on CCE Container Runtime Security
- Configuration Suggestions on CCE Container Security
- Configuration Suggestions on CCE Container Image Security
- Configuration Suggestions on CCE Secret Security
- Configuration Suggestions on CCE Workload Identity Security
- Auto Scaling
- Monitoring
-
Cluster
- Suggestions on CCE Cluster Selection
- Creating an IPv4/IPv6 Dual-Stack Cluster in CCE
- Creating a Custom CCE Node Image
- Executing the Pre- or Post-installation Commands During Node Creation
- Using OBS Buckets to Implement Custom Script Injection During Node Creation
- Connecting to Multiple Clusters Using kubectl
- Selecting a Data Disk for the Node
- Implementing Cost Visualization for a CCE Cluster
- Creating a CCE Turbo Cluster Using a Shared VPC
- Protecting a CCE Cluster Against Overload
- Managing Costs for a Cluster
-
Networking
- Planning CIDR Blocks for a Cluster
- Selecting a Network Model
- Enabling Cross-VPC Network Communications Between CCE Clusters
- Implementing Network Communications Between Containers and IDCs Using VPC and Direct Connect
- Enabling a CCE Cluster to Resolve Domain Names on Both On-Premises IDCs and HUAWEI CLOUD
- Implementing Sticky Session Through Load Balancing
- Obtaining the Client Source IP Address for a Container
- Increasing the Listening Queue Length by Configuring Container Kernel Parameters
- Configuring Passthrough Networking for a LoadBalancer Service
- Accessing an External Network from a Pod
- Deploying Nginx Ingress Controllers Using a Chart
- CoreDNS Configuration Optimization
- Pre-Binding Container ENI for CCE Turbo Clusters
- Connecting a Cluster to the Peer VPC Through an Enterprise Router
- Accessing an IP Address Outside a Cluster That Uses a VPC Network Using Source Pod IP Addresses in the Cluster
-
Storage
- Expanding the Storage Space
- Mounting Object Storage Across Accounts
- Dynamically Creating an SFS Turbo Subdirectory Using StorageClass
- Changing the Storage Class Used by a Cluster of v1.15 from FlexVolume to CSI Everest
- Using Custom Storage Classes
- Scheduling EVS Disks Across AZs Using csi-disk-topology
- Automatically Collecting JVM Dump Files That Exit Unexpectedly Using SFS 3.0
- Deploying Storage Volumes in Multiple AZs
-
Container
- Recommended Configurations for Workloads
- Properly Allocating Container Computing Resources
- Upgrading Pods Without Interrupting Services
- Modifying Kernel Parameters Using a Privileged Container
- Using Init Containers to Initialize an Application
- Setting Time Zone Synchronization
- Configuration Suggestions on Container Network Bandwidth Limit
- Configuring the /etc/hosts File of a Pod Using hostAliases
- Configuring Domain Name Resolution for CCE Containers
- Using Dual-Architecture Images (x86 and Arm) in CCE
- Locating Container Faults Using the Core Dump File
- Configuring Parameters to Delay the Pod Startup in a CCE Turbo Cluster
- Automatically Updating a Workload Version Using SWR Triggers
- Permission
- Release
- Batch Computing
-
API Reference
- Before You Start
- API Overview
- Calling APIs
-
APIs
- API URL
-
Cluster Management
- Creating a Cluster
- Reading a Specified Cluster
- Listing Clusters in a Specified Project
- Updating a Specified Cluster
- Deleting a Cluster
- Hibernating a Cluster
- Waking Up a Cluster
- Obtaining a Cluster Certificate
- Revoking a Cluster Certificate of a User
- Modifying Cluster Specifications
- Querying a Job
- Binding/Unbinding Public API Server Address
- Obtaining Cluster Access Address
- Obtaining a Cluster's Logging Configurations
- Configuring Cluster Logs
- Obtaining the Partition List
- Creating a Partition
- Obtaining Partition Details
- Updating a Partition
-
Node Management
- Creating a Node
- Reading a Specified Node
- Listing All Nodes in a Cluster
- Updating a Specified Node
- Deleting a Node
- Enabling Scale-In Protection for a Node
- Disabling Scale-In Protection for a Node
- Synchronizing Nodes
- Synchronizing Nodes in Batches
- Accepting a Node
- Managing a Node in a Customized Node Pool
- Resetting a Node
- Removing a Node
- Migrating a Node
- Migrating a Node to a Custom Node Pool
- Node Pool Management
- Storage Management
- Add-on Management
-
Cluster Upgrade
- Upgrading a Cluster
- Obtaining Cluster Upgrade Task Details
- Retrying a Cluster Upgrade Task
- Suspending a Cluster Upgrade Task (Deprecated)
- Continuing to Execute a Cluster Upgrade Task (Deprecated)
- Obtaining a List of Cluster Upgrade Task Details
- Pre-upgrade Check
- Obtaining Details About a Pre-upgrade Check Task of a Cluster
- Obtaining a List of Pre-upgrade Check Tasks of a Cluster
- Post-upgrade Check
- Cluster Backup
- Obtaining a List of Cluster Backup Task Details
- Obtaining the Cluster Upgrade Information
- Obtaining a Cluster Upgrade Path
- Obtaining the Configuration of Cluster Upgrade Feature Gates
- Enabling the Cluster Upgrade Process Booting Task
- Obtaining a List of Upgrade Workflows
- Obtaining Details About a Specified Cluster Upgrade Task
- Updating the Status of a Specified Cluster Upgrade Booting Task
- Quota Management
- API Versions
- Tag Management
- Configuration Management
-
Chart Management
- Uploading a Chart
- Obtaining a Chart List
- Obtaining a Release List
- Updating a Chart
- Creating a Release
- Deleting a Chart
- Updating a Release
- Obtaining a Chart
- Deleting a Release
- Downloading a Chart
- Obtaining a Release
- Obtaining Chart Values
- Obtaining Historical Records of a Release
- Obtaining the Quota of a User Chart
-
Add-on Instance Parameters
- CoreDNS
- CCE Container Storage (Everest)
- CCE Node Problem Detector
- Kubernetes Dashboard
- CCE Cluster Autoscaler
- NGINX Ingress Controller
- Kubernetes Metrics Server
- CCE Advanced HPA
- CCE Cloud Bursting Engine for CCI
- CCE AI Suite (NVIDIA GPU)
- CCE AI Suite (Ascend NPU)
- Volcano Scheduler
- CCE Secrets Manager for DEW
- CCE Network Metrics Exporter
- NodeLocal DNSCache
- Cloud Native Cluster Monitoring
- Cloud Native Logging
- Kubernetes APIs
- Out-of-Date APIs
- Permissions and Supported Actions
-
Appendix
- Status Code
- Error Codes
- Obtaining a Project ID
- Obtaining an Account ID
- Specifying Add-ons to Be Installed During Cluster Creation
- How to Obtain Parameters in the API URI
- Creating a VPC and Subnet
- Creating a Key Pair
- Node Flavor Description
- Adding a Salt in the password Field When Creating a Node
- Maximum Number of Pods That Can Be Created on a Node
- Node OS
- Space Allocation of a Data Disk
- Attaching Disks to a Node
- SDK Reference
-
FAQs
- Common FAQ
-
Billing
- How Is CCE Billed?
- How Do I Change the Billing Mode of a CCE Cluster from Pay-per-Use to Yearly/Monthly?
- Can I Change the Billing Mode of CCE Nodes from Pay-per-Use to Yearly/Monthly?
- Which Invoice Modes Are Supported by Huawei Cloud?
- Will I Be Notified When My Balance Is Insufficient?
- Will I Be Notified When My Account Balance Changes?
- Can I Delete a Yearly/Monthly-Billed CCE Cluster Directly When It Expires?
- How Do I Unsubscribe From CCE?
-
Cluster
- Cluster Creation
-
Cluster Running
- How Do I Locate the Fault When a Cluster Is Unavailable?
- How Do I Reset or Reinstall a CCE Cluster?
- How Do I Check Whether a Cluster Is in Multi-Master Mode?
- Can I Directly Connect to the Master Node of a CCE Cluster?
- How Do I Retrieve Data After a CCE Cluster Is Deleted?
- Why Does CCE Display Node Disk Usage Inconsistently with Cloud Eye?
- How Do I Change the Name of a CCE Cluster?
- Cluster Deletion
- Cluster Upgrade
-
Node
- Node Creation
-
Node Running
- What Should I Do If a Cluster Is Available But Some Nodes Are Unavailable?
- How Do I Troubleshoot the Failure to Remotely Log In to a Node in a CCE Cluster?
- How Do I Log In to a Node Using a Password and Reset the Password?
- How Do I Collect Logs of Nodes in a CCE Cluster?
- What Can I Do If the Container Network Becomes Unavailable After yum update Is Used to Upgrade the OS?
- What Should I Do If the vdb Disk of a Node Is Damaged and the Node Cannot Be Recovered After Reset?
- Which Ports Are Used to Install kubelet on CCE Cluster Nodes?
- How Do I Configure a Pod to Use the Acceleration Capability of a GPU Node?
- What Should I Do If I/O Suspension Occasionally Occurs When SCSI EVS Disks Are Used?
- What Should I Do If Excessive Docker Audit Logs Affect the Disk I/O?
- How Do I Fix an Abnormal Container or Node Due to No Thin Pool Disk Space?
- Where Can I Get the Listening Ports of CCE Worker Nodes?
- How Do I Rectify Failures When the NVIDIA Driver Is Used to Start Containers on GPU Nodes?
- What Can I Do If the Time of CCE Nodes Is Not Synchronized with the NTP Server?
- What Should I Do If the Data Disk Usage Is High Because a Large Volume of Data Is Written Into the Log File?
- Why Does My Node Memory Usage Obtained by Running the kubelet top node Command Exceed 100%?
- What Should I Do If "Failed to reclaim image" Is Displayed in the Node Events?
- Specification Change
-
OSs
- What Can I Do If cgroup kmem Leakage Occasionally Occurs When an Application Is Repeatedly Created or Deleted on a Node Running CentOS with an Earlier Kernel Version?
- What Should I Do If There Is a Service Access Failure After a Backend Service Upgrade or a 1-Second Latency When a Service Accesses a CCE Cluster?
- Why Are Pods Evicted by kubelet Due to Abnormal cgroup Statistics?
- When Container OOM Occurs on the CentOS Node with an Earlier Kernel Version, the Ext4 File System Is Occasionally Suspended
- What Should I Do If a DNS Resolution Failure Occurs Due to a Defect in IPVS?
- What Should I Do If the Number of ARP Entries Exceeds the Upper Limit?
- What Should I Do If a VM Is Suspended Due to an EulerOS 2.9 Kernel Defect?
-
Node Pool
- What Should I Do If a Node Pool Is Abnormal?
- What Should I Do If No Node Creation Record Is Displayed When the Node Pool Is Being Expanding?
- What Should I Do If a Node Pool Scale-Out Fails?
- What Should I Do If Some Kubernetes Events Fail to Display After Nodes Were Added to or Deleted from a Node Pool in Batches?
- How Do I Modify ECS Configurations When an ECS Cannot Be Managed by a Node Pool?
-
Workload
-
Workload Exception Troubleshooting
- How Can I Find the Fault for an Abnormal Workload?
- What Should I Do If Pod Scheduling Fails?
- What Should I Do If a Pod Fails to Pull the Image?
- What Should I Do If Container Startup Fails?
- What Should I Do If a Pod Fails to Be Evicted?
- What Should I Do If a Storage Volume Cannot Be Mounted or the Mounting Times Out?
- What Should I Do If a Workload Remains in the Creating State?
- What Should I Do If a Pod Remains in the Terminating State?
- What Should I Do If a Workload Is Stopped Caused by Pod Deletion?
- What Should I Do If an Error Occurs When I Deploy a Service on the GPU Node?
- What Should I Do If a Workload Exception Occurs Due to a Storage Volume Mount Failure?
- Why Does Pod Fail to Write Data?
- Why Is Pod Creation or Deletion Suspended on a Node Where File Storage Is Mounted?
- How Can I Locate Faults Using an Exit Code?
- Container Configuration
- Monitoring Log
-
Scheduling Policies
- How Do I Evenly Distribute Multiple Pods to Each Node?
- How Do I Prevent a Container on a Node from Being Evicted?
- Why Are Pods Not Evenly Distributed on Nodes?
- How Do I Evict All Pods on a Node?
- How Do I Check Whether a Pod Is Bound with vCPUs?
- What Should I Do If Pods Cannot Be Rescheduled After the Node Is Stopped?
- How Do I Prevent a Non-GPU or Non-NPU Workload from Being Scheduled to a GPU or NPU Node?
- Why Cannot a Pod Be Scheduled to a Node?
-
Others
- What Should I Do If a Cron Job Cannot Be Restarted After Being Stopped for a Period of Time?
- What Is a Headless Service When I Create a StatefulSet?
- What Should I Do If Error Message "Auth is empty" Is Displayed When a Private Image Is Pulled?
- What Is the Image Pull Policy for Containers in a CCE Cluster?
- Why Is the Mount Point of a Docker Container in the Kunpeng Cluster Uninstalled?
- What Can I Do If a Layer Is Missing During Image Pull?
- Why the File Permission and User in the Container Are Question Marks?
-
Workload Exception Troubleshooting
-
Networking
-
Network Exception Troubleshooting
- How Do I Locate a Workload Networking Fault?
- Why the ELB Address Cannot Be used to Access Workloads in a Cluster?
- Why the Ingress Cannot Be Accessed Outside the Cluster?
- Why Does the Browser Return Error Code 404 When I Access a Deployed Application?
- What Should I Do If a Container Fails to Access the Internet?
- What Can I Do If a VPC Subnet Cannot Be Deleted?
- How Do I Restore a Faulty Container NIC?
- What Should I Do If a Node Fails to Connect to the Internet (Public Network)?
- How Do I Resolve a Conflict Between the VPC CIDR Block and the Container CIDR Block?
- What Should I Do If the Java Error "Connection reset by peer" Is Reported During Layer-4 ELB Health Check
- How Do I Locate the Service Event Indicating That No Node Is Available for Binding?
- Why Does "Dead loop on virtual device gw_11cbf51a, fix it urgently" Intermittently Occur When I Log In to a VM using VNC?
- Why Does a Panic Occasionally Occur When I Use Network Policies on a Cluster Node?
- Why Are Lots of source ip_type Logs Generated on the VNC?
- What Should I Do If Status Code 308 Is Displayed When the Nginx Ingress Controller Is Accessed Using the Internet Explorer?
- What Should I Do If Nginx Ingress Access in the Cluster Is Abnormal After the NGINX Ingress Controller Add-on Is Upgraded?
- What Should I Do If An Error Occurred During a LoadBalancer Update?
- What Could Cause Access Exceptions After Configuring an HTTPS Certificate for a LoadBalancer Ingress?
-
Network Planning
- What Is the Relationship Between Clusters, VPCs, and Subnets?
- How Do I View the VPC CIDR Block?
- How Do I Set the VPC CIDR Block and Subnet CIDR Block for a CCE Cluster?
- How Do I Set a Container CIDR Block for a CCE Cluster?
- When Should I Use Cloud Native Network 2.0?
- What Is an ENI?
- How Can I Configure a Security Group Rule in a Cluster?
- How Do I Configure the IPv6 Service CIDR Block When Creating a CCE Turbo Cluster?
- Can Multiple NICs Be Bound to a Node in a CCE Cluster?
- Security Hardening
-
Network Configuration
- How Does CCE Communicate with Other Huawei Cloud Services over an Intranet?
- How Do I Set the Port When Configuring the Workload Access Mode on CCE?
- How Can I Achieve Compatibility Between Ingress's property and Kubernetes client-go?
- How Do I Obtain the Actual Source IP Address of a Client After a Service Is Added into Istio?
- Why Cannot an Ingress Be Created After the Namespace Is Changed?
- Why Is the Backend Server Group of an ELB Automatically Deleted After a Service Is Published to the ELB?
- How Can Container IP Addresses Survive a Container Restart?
- How Can I Check Whether an ENI Is Used by a Cluster?
- How Can I Delete a Security Group Rule Associated with a Deleted Subnet?
- How Can I Synchronize Certificates When Multiple Ingresses in Different Namespaces Share a Listener?
- How Can I Determine Which Ingress the Listener Settings Have Been Applied To?
-
Network Exception Troubleshooting
-
Storage
- How Do I Expand the Storage Capacity of a Container?
- What Are the Differences Among CCE Storage Classes in Terms of Persistent Storage and Multi-Node Mounting?
- Can I Create a CCE Node Without Adding a Data Disk to the Node?
- Can EVS Volumes in a CCE Cluster Be Restored After They Are Deleted or Expired?
- What Should I Do If the Host Cannot Be Found When Files Need to Be Uploaded to OBS During the Access to the CCE Service from a Public Network?
- How Can I Achieve Compatibility Between ExtendPathMode and Kubernetes client-go?
- What Can I Do If a Storage Volume Fails to Be Created?
- Can CCE PVCs Detect Underlying Storage Faults?
- An Error Is Reported When the Owner Group and Permissions of the Mount Point of the SFS 3.0 File System in the OS Are Modified
- Why Cannot I Delete a PV or PVC Using the kubectl delete Command?
- What Should I Do If "target is busy" Is Displayed When a Pod with Cloud Storage Mounted Is Being Deleted?
- What Should I Do If a Yearly/Monthly EVS Disk Cannot Be Automatically Created?
- Namespace
-
Chart and Add-on
- What Should I Do If the nginx-ingress Add-on Fails to Be Installed on a Cluster and Remains in the Creating State?
- What Should I Do If Residual Process Resources Exist Due to an Earlier npd Add-on Version?
- What Should I Do If a Chart Release Cannot Be Deleted Because the Chart Format Is Incorrect?
- Does CCE Support nginx-ingress?
- What Should I Do If Installation of an Add-on Fails and "The release name is already exist" Is Displayed?
- What Should I Do If a Release Creation or Upgrade Fails and "rendered manifests contain a resource that already exists" Is Displayed?
- What Can I Do If the kube-prometheus-stack Add-on Instance Fails to Be Scheduled?
- What Can I Do If a Chart Fails to Be Uploaded?
- How Do I Configure the Add-on Resource Quotas Based on Cluster Scale?
- How Can I Clean Up Residual Resources After the NGINX Ingress Controller Add-on in the Unknown State Is Deleted?
- Why TLS v1.0 and v1.1 Cannot Be Used After the NGINX Ingress Controller Add-on Is Upgraded?
-
API & kubectl FAQs
- How Can I Access a Cluster API Server?
- Can the Resources Created Using APIs or kubectl Be Displayed on the CCE Console?
- How Do I Download kubeconfig for Connecting to a Cluster Using kubectl?
- How Do I Rectify the Error Reported When Running the kubectl top node Command?
- Why Is "Error from server (Forbidden)" Displayed When I Use kubectl?
-
DNS FAQs
- What Should I Do If Domain Name Resolution Fails in a CCE Cluster?
- Why Does a Container in a CCE Cluster Fail to Perform DNS Resolution?
- Why Cannot the Domain Name of the Tenant Zone Be Resolved After the Subnet DNS Configuration Is Modified?
- How Do I Optimize the Configuration If the External Domain Name Resolution Is Slow or Times Out?
- How Do I Configure a DNS Policy for a Container?
- Image Repository FAQs
- Permissions
- Related Services
- Videos
-
More Documents
-
User Guide (ME-Abu Dhabi Region)
- Service Overview
- Getting Started
- High-Risk Operations and Solutions
-
Clusters
- Cluster Overview
- Buying a Cluster
- Connecting to a Cluster
-
Upgrading a Cluster
- Upgrade Overview
- Before You Start
- Performing an In-place Upgrade
- Performing Post-Upgrade Verification
- Migrating Services Across Clusters of Different Versions
-
Troubleshooting for Pre-upgrade Check Exceptions
- Pre-upgrade Check
- Node Restrictions
- Upgrade Management
- Add-ons
- Helm Charts
- SSH Connectivity of Master Nodes
- Node Pools
- Security Groups
- Arm Node Restrictions
- To-Be-Migrated Nodes
- Discarded Kubernetes Resources
- Compatibility Risks
- Node CCE Agent Versions
- Node CPU Usage
- CRDs
- Node Disks
- Node DNS
- Node Key Directory File Permissions
- Kubelet
- Node Memory
- Node Clock Synchronization Server
- Node OS
- Node CPUs
- Node Python Commands
- ASM Version
- Node Readiness
- Node journald
- containerd.sock
- Internal Errors
- Node Mount Points
- Kubernetes Node Taints
- Everest Restrictions
- cce-hpa-controller Restrictions
- Enhanced CPU Policies
- Health of Worker Node Components
- Health of Master Node Components
- Memory Resource Limit of Kubernetes Components
- Discarded Kubernetes APIs
- IPv6 Capabilities of a CCE Turbo Cluster
- Node NetworkManager
- Node ID File
- Node Configuration Consistency
- Node Configuration File
- CoreDNS Configuration Consistency
- sudo Commands of a Node
- Key Commands of Nodes
- Mounting of a Sock File on a Node
- HTTPS Load Balancer Certificate Consistency
- Node Mounting
- Login Permissions of User paas on a Node
- Private IPv4 Addresses of Load Balancers
- Historical Upgrade Records
- CIDR Block of the Cluster Management Plane
- GPU Add-on
- Nodes' System Parameter Settings
- Residual Package Versions
- Node Commands
- Node Swap
- nginx-ingress Upgrade
- Managing a Cluster
- Nodes
- Node Pools
-
Workloads
- Overview
- Creating a Workload
-
Configuring a Container
- Configuring Time Zone Synchronization
- Configuring an Image Pull Policy
- Using Third-Party Images
- Configuring Container Specifications
- Configuring Container Lifecycle Parameters
- Configuring Container Health Check
- Configuring Environment Variables
- Configuring APM Settings for Performance Bottleneck Analysis
- Workload Upgrade Policies
- Scheduling Policies (Affinity/Anti-affinity)
- Taints and Tolerations
- Labels and Annotations
- Accessing a Container
- Managing Workloads and Jobs
- Kata Runtime and Common Runtime
- Scheduling
-
Network
- Overview
- Container Network Models
-
Service
- Overview
- ClusterIP
- NodePort
-
LoadBalancer
- Creating a LoadBalancer Service
- Using Annotations to Configure Load Balancing
- Service Using HTTP or HTTPS
- Configuring Health Check for Multiple Ports
- Setting the Pod Ready Status Through the ELB Health Check
- Configuring Timeout for a LoadBalancer Service
- Enabling Passthrough Networking for LoadBalancer Services
- Enabling ICMP Security Group Rules
- DNAT
- Headless Service
-
Ingresses
- Overview
-
ELB Ingresses
- Creating an ELB Ingress on the Console
- Using kubectl to Create an ELB Ingress
- Configuring ELB Ingresses Using Annotations
- Configuring HTTPS Certificates for ELB Ingresses
- Configuring the Server Name Indication (SNI) for ELB Ingresses
- ELB Ingresses Routing to Multiple Services
- ELB Ingresses Using HTTP/2
- Interconnecting ELB Ingresses with HTTPS Backend Services
- Configuring Timeout for an ELB Ingress
-
Nginx Ingresses
- Creating Nginx Ingresses on the Console
- Using kubectl to Create an Nginx Ingress
- Configuring Nginx Ingresses Using Annotations
- Configuring HTTPS Certificates for Nginx Ingresses
- Configuring URL Rewriting Rules for Nginx Ingresses
- Interconnecting Nginx Ingresses with HTTPS Backend Services
- Nginx Ingresses Using Consistent Hashing for Load Balancing
- DNS
- Container Network Settings
- Cluster Network Settings
- Configuring Intra-VPC Access
- Accessing Public Networks from a Container
- Storage
- Observability
- Namespaces
- ConfigMaps and Secrets
- Auto Scaling
-
Add-ons
- Overview
- CoreDNS
- CCE Container Storage (Everest)
- CCE Node Problem Detector
- Kubernetes Dashboard
- CCE Cluster Autoscaler
- Nginx Ingress Controller
- Kubernetes Metrics Server
- CCE Advanced HPA
- CCE AI Suite (NVIDIA GPU)
- CCE AI Suite (Ascend NPU)
- Volcano Scheduler
- CCE Secrets Manager for DEW
- CCE Network Metrics Exporter
- NodeLocal DNSCache
- Prometheus
- Helm Chart
- Permissions
-
Best Practices
- Checklist for Deploying Containerized Applications in the Cloud
- Containerization
- Disaster Recovery
- Security
- Auto Scaling
- Monitoring
- Cluster
- Networking
- Storage
- Container
- Permission
- Release
-
FAQs
- Common Questions
- Cluster
-
Node
- Node Creation
-
Node Running
- What Should I Do If a Cluster Is Available But Some Nodes Are Unavailable?
- How Do I Log In to a Node Using a Password and Reset the Password?
- How Do I Collect Logs of Nodes in a CCE Cluster?
- What Should I Do If the vdb Disk of a Node Is Damaged and the Node Cannot Be Recovered After Reset?
- What Should I Do If I/O Suspension Occasionally Occurs When SCSI EVS Disks Are Used?
- How Do I Fix an Abnormal Container or Node Due to No Thin Pool Disk Space?
- How Do I Rectify Failures When the NVIDIA Driver Is Used to Start Containers on GPU Nodes?
- Specification Change
- Node Pool
-
Workload
-
Workload Abnormalities
- How Do I Use Events to Fix Abnormal Workloads?
- What Should I Do If Pod Scheduling Fails?
- What Should I Do If a Pod Fails to Pull the Image?
- What Should I Do If Container Startup Fails?
- What Should I Do If a Pod Fails to Be Evicted?
- What Should I Do If a Storage Volume Cannot Be Mounted or the Mounting Times Out?
- What Should I Do If a Workload Remains in the Creating State?
- What Should I Do If Pods in the Terminating State Cannot Be Deleted?
- What Should I Do If a Workload Is Stopped Caused by Pod Deletion?
- What Should I Do If an Error Occurs When Deploying a Service on the GPU Node?
-
Container Configuration
- When Is Pre-stop Processing Used?
- How Do I Set an FQDN for Accessing a Specified Container in the Same Namespace?
- What Should I Do If Health Check Probes Occasionally Fail?
- How Do I Set the umask Value for a Container?
- What Can I Do If an Error Is Reported When a Deployed Container Is Started After the JVM Startup Heap Memory Parameter Is Specified for ENTRYPOINT in Dockerfile?
- What Is the Retry Mechanism When CCE Fails to Start a Pod?
- Scheduling Policies
-
Others
- What Should I Do If a Scheduled Task Cannot Be Restarted After Being Stopped for a Period of Time?
- What Is a Headless Service When I Create a StatefulSet?
- What Should I Do If Error Message "Auth is empty" Is Displayed When a Private Image Is Pulled?
- Why Cannot a Pod Be Scheduled to a Node?
- What Is the Image Pull Policy for Containers in a CCE Cluster?
- What Can I Do If a Layer Is Missing During Image Pull?
-
Workload Abnormalities
- Networking
-
Storage
- What Are the Differences Among CCE Storage Classes in Terms of Persistent Storage and Multi-node Mounting?
- Can I Add a Node Without a Data Disk?
- What Should I Do If the Host Cannot Be Found When Files Need to Be Uploaded to OBS During the Access to the CCE Service from a Public Network?
- How Can I Achieve Compatibility Between ExtendPathMode and Kubernetes client-go?
- Can CCE PVCs Detect Underlying Storage Faults?
- Namespace
- Chart and Add-on
-
API & kubectl FAQs
- How Can I Access a CCE Cluster?
- Can the Resources Created Using APIs or kubectl Be Displayed on the CCE Console?
- How Do I Download kubeconfig for Connecting to a Cluster Using kubectl?
- How Do I Rectify the Error Reported When Running the kubectl top node Command?
- Why Is "Error from server (Forbidden)" Displayed When I Use kubectl?
- DNS FAQs
- Image Repository FAQs
- Permissions
- Reference
-
API Reference (ME-Abu Dhabi Region)
- Before You Start
- API Overview
- Calling APIs
-
APIs
- API URL
-
Cluster Management
- Creating a Cluster
- Reading a Specified Cluster
- Listing Clusters in a Specified Project
- Updating a Specified Cluster
- Deleting a Cluster
- Hibernating a Cluster
- Waking Up a Cluster
- Obtaining a Cluster Certificate
- Querying a Job
- Binding/Unbinding Public API Server Address
- Obtaining Cluster Access Address
- Node Management
- Node Pool Management
- Storage Management
- Add-on Management
- Quota Management
- API Versions
- Kubernetes APIs
- Permissions Policies and Supported Actions
-
Appendix
- Status Code
- Error Codes
- Obtaining a Project ID
- Obtaining the Account ID
- Specifying Add-ons to Be Installed During Cluster Creation
- How to Obtain Parameters in the API URI
- Creating a VPC and Subnet
- Creating a Key Pair
- Node Flavor Description
- Adding a Salt in the password Field When Creating a Node
- Maximum Number of Pods That Can Be Created on a Node
- Node OS
- Data Disk Space Allocation
- Attaching Disks to a Node
- Change History
-
User Guide (Paris Regions)
- Service Overview
-
Product Bulletin
- Risky Operations on Cluster Nodes
- CCE Security Guide
- Cluster Node OS Patch Notes
-
Vulnerability Notice
- Notice on the Kubernetes Security Vulnerability (CVE-2022-3172)
- Privilege Escalation Vulnerability in Linux openvswitch Kernel Module (CVE-2022-2639)
- Notice on CRI-O Container Runtime Engine Arbitrary Code Execution Vulnerability (CVE-2022-0811)
- Notice on the Container Escape Vulnerability Caused by the Linux Kernel (CVE-2022-0492)
- Linux Kernel Integer Overflow Vulnerability (CVE-2022-0185)
- Kubernetes Basics
- Getting Started
- High-Risk Operations and Solutions
-
Clusters
- Cluster Overview
- Creating a Cluster
- Connecting to a Cluster
-
Upgrading a Cluster
- Upgrade Overview
- Before You Start
- Performing In-place Upgrade
- Performing Post-Upgrade Verification
- Migrating Services Across Clusters of Different Versions
-
Troubleshooting for Pre-upgrade Check Exceptions
- Pre-upgrade Check
- Node Restrictions
- Upgrade Management
- Add-ons
- Helm Charts
- SSH Connectivity of Master Nodes
- Node Pools
- Security Groups
- Arm Node Restrictions
- To-Be-Migrated Nodes
- Discarded Kubernetes Resources
- Compatibility Risks
- Node CCE Agent Versions
- Node CPU Usage
- CRDs
- Node Disks
- Node DNS
- Node Key Directory File Permissions
- Kubelet
- Node Memory
- Node Clock Synchronization Server
- Node OS
- Node CPUs
- Node Python Commands
- ASM Version
- Node Readiness
- Node journald
- containerd.sock
- Internal Errors
- Node Mount Points
- Kubernetes Node Taints
- everest Restrictions
- cce-hpa-controller Restrictions
- Enhanced CPU Policies
- Health of Worker Node Components
- Health of Master Node Components
- Memory Resource Limit of Kubernetes Components
- Discarded Kubernetes APIs
- IPv6 Capabilities of a CCE Turbo Cluster
- Node NetworkManager
- Node ID File
- Node Configuration Consistency
- Node Configuration File
- CoreDNS Configuration Consistency
- sudo Commands of a Node
- Key Commands of Nodes
- Mounting of a Sock File on a Node
- HTTPS Load Balancer Certificate Consistency
- Node Mounting
- Login Permissions of User paas on a Node
- Private IPv4 Addresses of Load Balancers
- Historical Upgrade Records
- CIDR Block of the Cluster Management Plane
- GPU Add-on
- Nodes' System Parameter Settings
- Residual Package Versions
- Node Commands
- Node Swap
- nginx-ingress Upgrade
- Managing a Cluster
- Nodes
- Node Pools
-
Workloads
- Overview
- Creating a Workload
-
Configuring a Container
- Configuring Time Zone Synchronization
- Configuring an Image Pull Policy
- Using Third-Party Images
- Setting Container Specifications
- Setting Container Lifecycle Parameters
- Setting Health Check for a Container
- Setting an Environment Variable
- Configuring the Workload Upgrade Policy
- Scheduling Policy (Affinity/Anti-affinity)
- Taints and Tolerations
- Labels and Annotations
- Accessing a Container
- Managing Workloads and Jobs
- Scheduling
-
Network
- Overview
- Container Network Models
- Service
-
Ingresses
- Overview
-
ELB Ingresses
- Creating an ELB Ingress on the Console
- Using kubectl to Create an ELB Ingress
- Configuring ELB Ingresses Using Annotations
- Configuring HTTPS Certificates for ELB Ingresses
- Configuring the Server Name Indication (SNI) for ELB Ingresses
- ELB Ingresses Routing to Multiple Services
- ELB Ingresses Using HTTP/2
- Interconnecting ELB Ingresses with HTTPS Backend Services
- Configuring Timeout for an ELB Ingress
-
Nginx Ingresses
- Creating Nginx Ingresses on the Console
- Using kubectl to Create an Nginx Ingress
- Configuring HTTPS Certificates for Nginx Ingresses
- Configuring URL Rewriting Rules for Nginx Ingresses
- Interconnecting Nginx Ingresses with HTTPS Backend Services
- Nginx Ingresses Using Consistent Hashing for Load Balancing
- Configuring Nginx Ingresses Using Annotations
- DNS
- Container Network Settings
- Cluster Network Settings
- Configuring Intra-VPC Access
- Accessing Public Networks from a Container
- Storage
- Observability
- Namespaces
- ConfigMaps and Secrets
- Auto Scaling
- Add-ons
- Helm Chart
- Permissions
-
FAQs
- Common Questions
- Billing
- Cluster
-
Node
- Node Creation
-
Node Running
- What Should I Do If a Cluster Is Available But Some Nodes Are Unavailable?
- How Do I Log In to a Node Using a Password and Reset the Password?
- How Do I Collect Logs of Nodes in a CCE Cluster?
- What Should I Do If the vdb Disk of a Node Is Damaged and the Node Cannot Be Recovered After Reset?
- What Should I Do If I/O Suspension Occasionally Occurs When SCSI EVS Disks Are Used?
- How Do I Fix an Abnormal Container or Node Due to No Thin Pool Disk Space?
- How Do I Rectify Failures When the NVIDIA Driver Is Used to Start Containers on GPU Nodes?
- Specification Change
- Node Pool
-
Workload
-
Workload Abnormalities
- How Do I Use Events to Fix Abnormal Workloads?
- What Should I Do If Pod Scheduling Fails?
- What Should I Do If a Pod Fails to Pull the Image?
- What Should I Do If Container Startup Fails?
- What Should I Do If a Pod Fails to Be Evicted?
- What Should I Do If a Storage Volume Cannot Be Mounted or the Mounting Times Out?
- What Should I Do If a Workload Remains in the Creating State?
- What Should I Do If Pods in the Terminating State Cannot Be Deleted?
- What Should I Do If a Workload Is Stopped Caused by Pod Deletion?
- What Should I Do If an Error Occurs When Deploying a Service on the GPU Node?
- What Should I Do If Sandbox-Related Errors Are Reported When the Pod Remains in the Creating State?
-
Container Configuration
- When Is Pre-stop Processing Used?
- How Do I Set an FQDN for Accessing a Specified Container in the Same Namespace?
- What Should I Do If Health Check Probes Occasionally Fail?
- How Do I Set the umask Value for a Container?
- What Can I Do If an Error Is Reported When a Deployed Container Is Started After the JVM Startup Heap Memory Parameter Is Specified for ENTRYPOINT in Dockerfile?
- What Is the Retry Mechanism When CCE Fails to Start a Pod?
- Scheduling Policies
-
Others
- What Should I Do If a Scheduled Task Cannot Be Restarted After Being Stopped for a Period of Time?
- What Is a Headless Service When I Create a StatefulSet?
- What Should I Do If Error Message "Auth is empty" Is Displayed When a Private Image Is Pulled?
- Why Cannot a Pod Be Scheduled to a Node?
- What Is the Image Pull Policy for Containers in a CCE Cluster?
- What Can I Do If a Layer Is Missing During Image Pull?
-
Workload Abnormalities
-
Networking
- Network Planning
-
Network Fault
- How Do I Locate a Workload Networking Fault?
- Why Does the Browser Return Error Code 404 When I Access a Deployed Application?
- What Should I Do If a Container Fails to Access the Internet?
- What Should I Do If a Node Fails to Connect to the Internet (Public Network)?
- What Should I Do If an Nginx Ingress Access in the Cluster Is Abnormal After the Add-on Is Upgraded?
-
Storage
- What Are the Differences Among CCE Storage Classes in Terms of Persistent Storage and Multi-node Mounting?
- Can I Add a Node Without a Data Disk?
- What Should I Do If the Host Cannot Be Found When Files Need to Be Uploaded to OBS During the Access to the CCE Service from a Public Network?
- How Can I Achieve Compatibility Between ExtendPathMode and Kubernetes client-go?
- Can CCE PVCs Detect Underlying Storage Faults?
- Namespace
- Chart and Add-on
-
API & kubectl FAQs
- How Can I Access a Cluster API Server?
- Can the Resources Created Using APIs or kubectl Be Displayed on the CCE Console?
- How Do I Download kubeconfig for Connecting to a Cluster Using kubectl?
- How Do I Rectify the Error Reported When Running the kubectl top node Command?
- Why Is "Error from server (Forbidden)" Displayed When I Use kubectl?
- DNS FAQs
- Image Repository FAQs
- Permissions
- Reference
-
Best Practices
- Checklist for Deploying Containerized Applications in the Cloud
- Containerization
- Disaster Recovery
- Security
- Auto Scaling
- Monitoring
- Cluster
- Networking
-
Storage
- Expanding the Storage Space
- Mounting an Object Storage Bucket of a Third-Party Tenant
- Dynamically Creating and Mounting Subdirectories of an SFS Turbo File System
- How Do I Change the Storage Class Used by a Cluster of v1.15 from FlexVolume to CSI Everest?
- Custom Storage Classes
- Enabling Automatic Topology for EVS Disks When Nodes Are Deployed in Different AZs (csi-disk-topology)
- Container
- Permission
- Release
- Migrating Data from CCE 1.0 to CCE 2.0
-
API Reference (Paris Regions)
- Before You Start
- API Overview
- Calling APIs
-
APIs
- API URL
-
Cluster Management
- Creating a Cluster
- Reading a Specified Cluster
- Listing Clusters in a Specified Project
- Updating a Specified Cluster
- Deleting a Cluster
- Hibernating a Cluster
- Waking Up a Cluster
- Obtaining a Cluster Certificate
- Querying a Job
- Binding/Unbinding Public API Server Address
- Obtaining Cluster Access Address
- Node Management
- Node Pool Management
- Add-on Management
- Quota Management
- API Versions
- Kubernetes APIs
- Permissions Policies and Supported Actions
-
Appendix
- Status Code
- Error Codes
- Obtaining a Project ID
- Obtaining the Account ID
- Specifying Add-ons to Be Installed During Cluster Creation
- How to Obtain Parameters in the API URI
- Creating a VPC and Subnet
- Creating a Key Pair
- Node Flavor Description
- Adding a Salt in the password Field When Creating a Node
- Maximum Number of Pods That Can Be Created on a Node
- Node OS
- Data Disk Space Allocation
- Attaching Disks to a Node
- Change History
-
User Guide (Kuala Lumpur Region)
- Service Overview
- CCE Console Upgrade
- Getting Started
- High-Risk Operations
-
Clusters
- Cluster Overview
- Buying a Cluster
- Connecting to a Cluster
- Managing a Cluster
-
Upgrading a Cluster
- Process and Method of Upgrading a Cluster
- Before You Start
- Performing Post-Upgrade Verification
- Migrating Services Across Clusters of Different Versions
-
Troubleshooting for Pre-upgrade Check Exceptions
- Pre-upgrade Check
- Node Restrictions
- Upgrade Management
- Add-ons
- Helm Charts
- SSH Connectivity of Master Nodes
- Node Pools
- Security Groups
- Arm Node Restrictions
- Residual Nodes
- Discarded Kubernetes Resources
- Compatibility Risks
- CCE Agent Versions
- Node CPU Usage
- CRDs
- Node Disks
- Node DNS
- Node Key Directory File Permissions
- kubelet
- Node Memory
- Node Clock Synchronization Server
- Node OS
- Node CPUs
- Node Python Commands
- ASM Version
- Node Readiness
- Node journald
- containerd.sock
- Internal Errors
- Node Mount Points
- Kubernetes Node Taints
- Everest Restrictions
- cce-hpa-controller Restrictions
- Enhanced CPU Policies
- Health of Worker Node Components
- Health of Master Node Components
- Memory Resource Limit of Kubernetes Components
- Discarded Kubernetes APIs
- NetworkManager
- Node ID File
- Node Configuration Consistency
- Node Configuration File
- CoreDNS Configuration Consistency
- sudo
- Key Node Commands
- Mounting of a Sock File on a Node
- HTTPS Load Balancer Certificate Consistency
- Node Mounting
- Login Permissions of User paas on a Node
- Private IPv4 Addresses of Load Balancers
- Historical Upgrade Records
- CIDR Block of the Cluster Management Plane
- GPU Add-on
- Nodes' System Parameters
- Residual Package Version Data
- Node Commands
- Node Swap
- nginx-ingress Upgrade
- Upgrade of Cloud Native Cluster Monitoring
- containerd Pod Restart Risks
- Key GPU Add-on Parameters
- GPU or NPU Pod Rebuild Risks
- ELB Listener Access Control
- Master Node Flavor
- Subnet Quota of Master Nodes
- Node Runtime
- Node Pool Runtime
- Number of Node Images
- Nodes
- Node Pools
-
Workloads
- Overview
- Creating a Workload
-
Configuring a Workload
- Configuring Time Zone Synchronization
- Configuring an Image Pull Policy
- Using Third-Party Images
- Configuring Container Specifications
- Configuring Container Lifecycle Parameters
- Configuring Container Health Check
- Configuring Environment Variables
- Configuring Workload Upgrade Policies
- Scheduling Policies (Affinity/Anti-affinity)
- Configuring Tolerance Policies
- Configuring Labels and Annotations
- Logging In to a Container
- Managing Workloads
- Managing Custom Resources
- Pod Security
- Scheduling
-
Network
- Overview
- Container Network
-
Service
- Overview
- ClusterIP
- NodePort
-
LoadBalancer
- Creating a LoadBalancer Service
- Using Annotations to Balance Load
- Configuring HTTP/HTTPS for a LoadBalancer Service
- Configuring SNI for a LoadBalancer Service
- Configuring HTTP/2 for a LoadBalancer Service
- Configuring Timeout for a LoadBalancer Service
- Configuring Health Check on Multiple Ports of a LoadBalancer Service
- Configuring Passthrough Networking for a LoadBalancer Service
- Enabling ICMP Security Group Rules
- DNAT
- Headless Services
-
Ingresses
- Overview
-
LoadBalancer Ingresses
- Creating a LoadBalancer Ingress on the Console
- Using kubectl to Create a LoadBalancer Ingress
- Configuring a LoadBalancer Ingress Using Annotations
- Configuring an HTTPS Certificate for a LoadBalancer Ingress
- Configuring SNI for a LoadBalancer Ingress
- Routing a LoadBalancer Ingress to Multiple Services
- Configuring HTTP/2 for a LoadBalancer Ingress
- Configuring HTTPS Backend Services for a LoadBalancer Ingress
- Configuring Timeout for a LoadBalancer Ingress
-
Nginx Ingresses
- Creating Nginx Ingresses on the Console
- Using kubectl to Create an Nginx Ingress
- Configuring Nginx Ingresses Using Annotations
- Configuring an HTTPS Certificate for an Nginx Ingress
- Configuring HTTPS Backend Services for an Nginx Ingress
- Configuring Consistent Hashing for Load Balancing of an Nginx Ingress
- DNS
- Configuring Intra-VPC Access
- Accessing the Internet from a Container
- Storage
- Observability
- Auto Scaling
- Namespaces
- ConfigMaps and Secrets
- Add-ons
- Helm Chart
- Permissions
-
Best Practices
- Checklist for Deploying Containerized Applications in the Cloud
- Containerization
- Disaster Recovery
- Security
- Auto Scaling
- Monitoring
- Cluster
- Networking
- Storage
- Container
- Permission
- Release
-
FAQs
- Common Questions
- Cluster
-
Node
- Node Creation
-
Node Running
- What Should I Do If a Cluster Is Available But Some Nodes Are Unavailable?
- How Do I Log In to a Node Using a Password and Reset the Password?
- How Do I Collect Logs of Nodes in a CCE Cluster?
- What Should I Do If the vdb Disk of a Node Is Damaged and the Node Cannot Be Recovered After Reset?
- What Should I Do If I/O Suspension Occasionally Occurs When SCSI EVS Disks Are Used?
- How Do I Fix an Abnormal Container or Node Due to No Thin Pool Disk Space?
- How Do I Rectify Failures When the NVIDIA Driver Is Used to Start Containers on GPU Nodes?
- Specification Change
- OSs
- Node Pool
-
Workload
-
Workload Abnormalities
- How Do I Use Events to Fix Abnormal Workloads?
- What Should I Do If Pod Scheduling Fails?
- What Should I Do If a Pod Fails to Pull the Image?
- What Should I Do If Container Startup Fails?
- What Should I Do If a Pod Fails to Be Evicted?
- What Should I Do If a Storage Volume Cannot Be Mounted or the Mounting Times Out?
- What Should I Do If a Workload Remains in the Creating State?
- What Should I Do If Pods in the Terminating State Cannot Be Deleted?
- What Should I Do If a Workload Is Stopped Caused by Pod Deletion?
- What Should I Do If an Error Occurs When Deploying a Service on the GPU Node?
- Container Configuration
- Scheduling Policies
-
Others
- What Should I Do If a Scheduled Task Cannot Be Restarted After Being Stopped for a Period of Time?
- What Is a Headless Service When I Create a StatefulSet?
- What Should I Do If Error Message "Auth is empty" Is Displayed When a Private Image Is Pulled?
- What Is the Image Pull Policy for Containers in a CCE Cluster?
- What Can I Do If a Layer Is Missing During Image Pull?
-
Workload Abnormalities
-
Networking
- Network Planning
-
Network Fault
- How Do I Locate a Workload Networking Fault?
- Why Does the Browser Return Error Code 404 When I Access a Deployed Application?
- What Should I Do If a Container Fails to Access the Internet?
- What Should I Do If a Node Fails to Connect to the Internet (Public Network)?
- What Should I Do If an Nginx Ingress Access in the Cluster Is Abnormal After the Add-on Is Upgraded?
- Security Hardening
- Network Configuration
-
Storage
- How Do I Expand the Storage Capacity of a Container?
- What Are the Differences Among CCE Storage Classes in Terms of Persistent Storage and Multi-node Mounting?
- Can I Create a CCE Node Without Adding a Data Disk to the Node?
- What Should I Do If the Host Cannot Be Found When Files Need to Be Uploaded to OBS During the Access to the CCE Service from a Public Network?
- How Can I Achieve Compatibility Between ExtendPathMode and Kubernetes client-go?
- Can CCE PVCs Detect Underlying Storage Faults?
- Namespace
-
Chart and Add-on
- What Should I Do If Installation of an Add-on Fails and "The release name is already exist" Is Displayed?
- How Do I Configure the Add-on Resource Quotas Based on Cluster Scale?
- How Can I Clean Up Residual Resources After the NGINX Ingress Controller Add-on in the Unknown State Is Deleted?
- Why TLS v1.0 and v1.1 Cannot Be Used After the NGINX Ingress Controller Add-on Is Upgraded?
-
API & kubectl FAQs
- How Can I Access a Cluster API Server?
- Can the Resources Created Using APIs or kubectl Be Displayed on the CCE Console?
- How Do I Download kubeconfig for Connecting to a Cluster Using kubectl?
- How Do I Rectify the Error Reported When Running the kubectl top node Command?
- Why Is "Error from server (Forbidden)" Displayed When I Use kubectl?
- DNS FAQs
- Image Repository FAQs
- Permissions
-
API Reference (Kuala Lumpur Region)
- Before You Start
- API Overview
- Calling APIs
-
APIs
- API URL
-
Cluster Management
- Creating a Cluster
- Reading a Specified Cluster
- Listing Clusters in a Specified Project
- Updating a Specified Cluster
- Deleting a Cluster
- Hibernating a Cluster
- Waking Up a Cluster
- Obtaining a Cluster Certificate
- Modifying Cluster Specifications
- Querying a Job
- Binding/Unbinding Public API Server Address
- Node Management
- Node Pool Management
- Storage Management
- Add-on Management
- Tag Management
- Configuration Management
-
Chart Management
- Uploading a Chart
- Obtaining a Chart List
- Obtaining a Release List
- Updating a Chart
- Creating a Release
- Deleting a Chart
- Updating a Release
- Obtaining a Chart
- Deleting a Release
- Downloading a Chart
- Obtaining a Release
- Obtaining Chart Values
- Obtaining Historical Records of a Release
- Obtaining the Quota of a User Chart
- Kubernetes APIs
- Permissions Policies and Supported Actions
-
Appendix
- Status Code
- Error Codes
- Obtaining a Project ID
- Obtaining a Domain ID
- Specifying Add-ons to Be Installed During Cluster Creation
- How to Obtain Parameters in the API URI
- Creating a VPC and Subnet
- Creating a Key Pair
- Node Flavor Description
- Adding a Salt in the password Field When Creating a Node
- Maximum Number of Pods That Can Be Created on a Node
- Node OS
- Data Disk Space Allocation
- Attaching Disks to a Node
-
User Guide (Ankara Region)
- Service Overview
- Product Bulletin
- Getting Started
- High-Risk Operations and Solutions
-
Clusters
- Cluster Overview
- Creating a Cluster
- Connecting to a Cluster
-
Upgrading a Cluster
- Upgrade Overview
- Before You Start
- Performing Post-Upgrade Verification
- Migrating Services Across Clusters of Different Versions
-
Troubleshooting for Pre-upgrade Check Exceptions
- Pre-upgrade Check
- Node Restrictions
- Upgrade Management
- Add-ons
- Helm Charts
- SSH Connectivity of Master Nodes
- Node Pools
- Security Groups
- Arm Node Restrictions
- To-Be-Migrated Nodes
- Discarded Kubernetes Resources
- Compatibility Risks
- CCE Agent Versions
- Node CPU Usage
- CRDs
- Node Disks
- Node DNS
- Node Key Directory File Permissions
- Kubelet
- Node Memory
- Node Clock Synchronization Server
- Node OS
- Node CPU Cores
- Node Python Commands
- ASM Version
- Node Readiness
- Node journald
- containerd.sock
- Internal Error
- Node Mount Points
- Kubernetes Node Taints
- Everest Restrictions
- cce-hpa-controller Limitations
- Enhanced CPU Policies
- Health of Worker Node Components
- Health of Master Node Components
- Memory Resource Limit of Kubernetes Components
- Discarded Kubernetes APIs
- Node NetworkManager
- Node ID File
- Node Configuration Consistency
- Node Configuration File
- CoreDNS Configuration Consistency
- sudo Commands of a Node
- Key Commands of Nodes
- Mounting of a Sock File on a Node
- HTTPS Load Balancer Certificate Consistency
- Node Mounting
- Login Permissions of User paas on a Node
- Private IPv4 Addresses of Load Balancers
- Historical Upgrade Records
- CIDR Block of the Cluster Management Plane
- GPU Add-on
- Nodes' System Parameters
- Residual Package Versions
- Node Commands
- Node Swap
- nginx-ingress Upgrade
- Upgrade of Cloud Native Cluster Monitoring
- containerd Pod Restart Risks
- Key GPU Add-on Parameters
- GPU or NPU Pod Rebuild Risks
- ELB Listener Access Control
- Master Node Flavor
- Subnet Quota of Master Nodes
- Node Runtime
- Node Pool Runtime
- Number of Node Images
- Managing a Cluster
- Nodes
- Node Pools
-
Workloads
- Overview
- Creating a Workload
-
Configuring a Container
- Configuring Time Zone Synchronization
- Configuring an Image Pull Policy
- Using Third-Party Images
- Configuring Container Specifications
- Configuring Container Lifecycle Parameters
- Configuring Container Health Check
- Configuring Environment Variables
- Workload Upgrade Policies
- Scheduling Policies (Affinity/Anti-affinity)
- Taints and Tolerations
- Labels and Annotations
- Accessing a Container
- Managing Workloads and Jobs
- Managing Custom Resources
- Scheduling
-
Network
- Overview
- Container Network Models
-
Service
- Overview
- ClusterIP
- NodePort
-
LoadBalancer
- Creating a LoadBalancer Service
- Using Annotations to Balance Load
- Configuring an HTTP or HTTPS Service
- Configuring SNI for a Service
- Configuring HTTP/2 for a Service
- Configuring Timeout for a Service
- Configuring Health Check on Multiple Service Ports
- Enabling Passthrough Networking for LoadBalancer Services
- Enabling ICMP Security Group Rules
- Headless Services
-
Ingresses
- Overview
-
LoadBalancer Ingresses
- Creating a LoadBalancer Ingress on the Console
- Using kubectl to Create a LoadBalancer Ingress
- Configuring a LoadBalancer Ingress Using Annotations
- Configuring an HTTPS Certificate for a LoadBalancer Ingress
- Configuring SNI for a LoadBalancer Ingress
- LoadBalancer Ingresses to Multiple Services
- Configuring HTTP/2 for a LoadBalancer Ingress
- Configuring URL Redirection for a LoadBalancer Ingress
- Configuring URL Rewriting for a LoadBalancer Ingress
- Configuring Timeout for a LoadBalancer Ingress
- Configuring a Custom Header Forwarding Policy for a LoadBalancer Ingress
-
Nginx Ingresses
- Creating Nginx Ingresses on the Console
- Using kubectl to Create an Nginx Ingress
- Configuring Nginx Ingresses Using Annotations
- Configuring HTTPS Certificates for Nginx Ingresses
- Configuring Redirection Rules for an Nginx Ingress
- Configuring URL Rewriting Rules for Nginx Ingresses
- Nginx Ingresses Using Consistent Hashing for Load Balancing
- DNS
- Container Network Settings
- Cluster Network Settings
- Configuring Intra-VPC Access
- Accessing the Internet from a Container
- Storage
- Observability
- Namespaces
- ConfigMaps and Secrets
- Auto Scaling
-
Add-ons
- Overview
- CoreDNS
- CCE Container Storage (Everest)
- CCE Node Problem Detector
- Kubernetes Dashboard
- CCE Cluster Autoscaler
- Nginx Ingress Controller
- Kubernetes Metrics Server
- CCE Advanced HPA
- CCE AI Suite (NVIDIA GPU)
- CCE AI Suite (Ascend NPU)
- Volcano Scheduler
- NodeLocal DNSCache
- Cloud Native Cluster Monitoring
- Cloud Native Logging
- Grafana
- Prometheus
- Helm Chart
- Permissions
-
FAQs
- Common Questions
- Cluster
-
Node
- Node Creation
-
Node Running
- What Should I Do If a Cluster Is Available But Some Nodes Are Unavailable?
- How Do I Log In to a Node Using a Password and Reset the Password?
- How Do I Collect Logs of Nodes in a CCE Cluster?
- What Should I Do If the vdb Disk of a Node Is Damaged and the Node Cannot Be Recovered After Reset?
- What Should I Do If I/O Suspension Occasionally Occurs When SCSI EVS Disks Are Used?
- How Do I Fix an Abnormal Container or Node Due to No Thin Pool Disk Space?
- How Do I Rectify Failures When the NVIDIA Driver Is Used to Start Containers on GPU Nodes?
- Specification Change
- OSs
- Node Pool
-
Workload
-
Workload Abnormalities
- How Do I Use Events to Fix Abnormal Workloads?
- What Should I Do If Pod Scheduling Fails?
- What Should I Do If a Pod Fails to Pull the Image?
- What Should I Do If Container Startup Fails?
- What Should I Do If a Pod Fails to Be Evicted?
- What Should I Do If a Storage Volume Cannot Be Mounted or the Mounting Times Out?
- What Should I Do If a Workload Remains in the Creating State?
- What Should I Do If Pods in the Terminating State Cannot Be Deleted?
- What Should I Do If a Workload Is Stopped Caused by Pod Deletion?
- What Should I Do If an Error Occurs When Deploying a Service on the GPU Node?
- Container Configuration
- Scheduling Policies
-
Others
- What Should I Do If a Scheduled Task Cannot Be Restarted After Being Stopped for a Period of Time?
- What Is a Headless Service When I Create a StatefulSet?
- What Should I Do If Error Message "Auth is empty" Is Displayed When a Private Image Is Pulled?
- Why Cannot a Pod Be Scheduled to a Node?
- What Is the Image Pull Policy for Containers in a CCE Cluster?
- What Can I Do If a Layer Is Missing During Image Pull?
-
Workload Abnormalities
-
Networking
- Network Planning
-
Network Fault
- How Do I Locate a Workload Networking Fault?
- Why Does the Browser Return Error Code 404 When I Access a Deployed Application?
- What Should I Do If a Container Fails to Access the Internet?
- What Should I Do If a Node Fails to Connect to the Internet (Public Network)?
- What Should I Do If an Nginx Ingress Access in the Cluster Is Abnormal After the Add-on Is Upgraded?
- Security Hardening
- Others
-
Storage
- What Are the Differences Among CCE Storage Classes in Terms of Persistent Storage and Multi-node Mounting?
- Can I Add a Node Without a Data Disk?
- What Should I Do If the Host Cannot Be Found When Files Need to Be Uploaded to OBS During the Access to the CCE Service from a Public Network?
- How Can I Achieve Compatibility Between ExtendPathMode and Kubernetes client-go?
- Can CCE PVCs Detect Underlying Storage Faults?
- Namespace
-
Chart and Add-on
- Why Does Add-on Installation Fail and Prompt "The release name is already exist"?
- How Do I Configure the Add-on Resource Quotas Based on Cluster Scale?
- What Should I Do If the Helm Chart Uploaded Before the Tenant Account Name Is Changed Is Abnormal?
- How Can I Clean Up Residual Resources After the NGINX Ingress Controller Add-on in the Unknown State Is Deleted?
- Why TLS v1.0 and v1.1 Cannot Be Used After the NGINX Ingress Controller Add-on Is Upgraded?
-
API & kubectl FAQs
- How Can I Access a Cluster API Server?
- Can the Resources Created Using APIs or kubectl Be Displayed on the CCE Console?
- How Do I Download kubeconfig for Connecting to a Cluster Using kubectl?
- How Do I Rectify the Error Reported When Running the kubectl top node Command?
- Why Is "Error from server (Forbidden)" Displayed When I Use kubectl?
- DNS FAQs
- Permissions
- Reference
-
Best Practices
- Checklist for Deploying Containerized Applications in the Cloud
- Containerization
- Disaster Recovery
- Security
- Auto Scaling
- Monitoring
- Cluster
- Networking
- Storage
- Container
- Permission
- Release
-
API Reference (Ankara Region)
- Before You Start
- API Overview
- Calling APIs
-
APIs
- API URL
-
Cluster Management
- Creating a Cluster
- Reading a Specified Cluster
- Listing Clusters in a Specified Project
- Updating a Specified Cluster
- Deleting a Cluster
- Hibernating a Cluster
- Waking Up a Cluster
- Obtaining a Cluster Certificate
- Modifying Cluster Specifications
- Querying a Job
- Binding/Unbinding Public API Server Address
- Obtaining Cluster Access Address
- Node Management
- Node Pool Management
- Storage Management
- Add-on Management
- Quota Management
- API Versions
- Tag Management
- Configuration Management
-
Chart Management
- Uploading a Chart
- Obtaining a Chart List
- Obtaining a Release List
- Updating a Chart
- Creating a Release
- Deleting a Chart
- Updating a Release
- Obtaining a Chart
- Deleting a Release
- Downloading a Chart
- Obtaining a Release
- Obtaining Chart Values
- Obtaining Historical Records of a Release
- Obtaining the Quota of a User Chart
- Kubernetes APIs
- Permissions and Supported Actions
-
Appendix
- Status Code
- Error Codes
- Obtaining a Project ID
- Obtaining an Account ID
- Specifying Add-ons to Be Installed During Cluster Creation
- How to Obtain Parameters in the API URI
- Creating a VPC and Subnet
- Creating a Key Pair
- Node Flavor Description
- Adding a Salt in the password Field When Creating a Node
- Maximum Number of Pods That Can Be Created on a Node
- Node OS
- Data Disk Space Allocation
- Attaching Disks to a Node
-
User Guide (ME-Abu Dhabi Region)
- General Reference
Copied.
Volcano Scheduler
Introduction
Volcano is a batch processing platform based on Kubernetes. It provides a series of features required by machine learning, deep learning, bioinformatics, genomics, and other big data applications, as a powerful supplement to Kubernetes capabilities.
Volcano provides general-purpose, high-performance computing capabilities, such as job scheduling, heterogeneous chip management, and job running management, serving end users through computing frameworks for different industries, such as AI, big data, gene sequencing, and rendering.
Volcano provides job scheduling, job management, and queue management for computing applications. Its main features are as follows:
- Diverse computing frameworks, such as TensorFlow, MPI, and Spark, can run on Kubernetes in containers. Common APIs for batch computing jobs through CRD, various plug-ins, and advanced job lifecycle management are provided.
- Advanced scheduling capabilities are provided for batch computing and high-performance computing scenarios, including group scheduling, preemptive priority scheduling, packing, resource reservation, and task topology.
- Queues can be effectively managed for scheduling jobs. Complex job scheduling capabilities such as queue priority and multi-level queues are supported.
Volcano has been open-sourced in GitHub at https://github.com/volcano-sh/volcano.
Install and configure the Volcano add-on in CCE clusters. For details, see Volcano Scheduling.
When using Volcano as a scheduler, use it to schedule all workloads in the cluster. This prevents resource scheduling conflicts caused by simultaneous working of multiple schedulers.
Installing the Add-on
- Log in to the CCE console and click the cluster name to access the cluster console. Choose Add-ons in the navigation pane, locate Volcano Scheduler on the right, and click Install.
- On the Install Add-on page, configure the specifications.
Table 1 Add-on configuration Parameter
Description
Add-on Specifications
Select Standalone, HA, or Custom for Add-on Specifications.
Pods
Number of pods that will be created to match the selected add-on specifications.
If you select Custom, you can adjust the number of pods as required.
Multi-AZ
- Preferred: Deployment pods of the add-on will be preferentially scheduled to nodes in different AZs. If all the nodes in the cluster are deployed in the same AZ, the pods will be scheduled to that AZ.
- Required: Deployment pods of the add-on will be forcibly scheduled to nodes in different AZs. If there are fewer AZs than pods, the extra pods will fail to run.
Containers
CPU and memory quotas of the container allowed for the selected add-on specifications.
If you select Custom, the recommended values for volcano-controller and volcano-scheduler are as follows:
- If the number of nodes is less than 100, retain the default configuration. The requested CPU is 500 m, and the limit is 2000 m. The requested memory is 500 MiB, and the limit is 2000 MiB.
- If the number of nodes is greater than 100, increase the requested CPU by 500 m and the requested memory by 1000 MiB each time 100 nodes (10,000 pods) are added. Increase the CPU limit by 1500 m and the memory limit by 1000 MiB.
NOTE:
Recommended formula for calculating the request value:
- CPU request value: Calculate the number of target nodes multiplied by the number of target pods, perform interpolation search based on the number of nodes in the cluster multiplied by the number of target pods in Table 2, and round up the request value and limit value that are closest to the specifications.
For example, for 2000 nodes and 20,000 pods, Number of target nodes x Number of target pods = 40 million, which is close to the specification of 700/70,000 (Number of cluster nodes x Number of pods = 49 million). According to the following table, set the requested vCPUs to 4000m and the limit value to 5500m.
- Memory request value: It is recommended that 2.4 GiB memory be allocated to every 1000 nodes and 1 GiB memory be allocated to every 10,000 pods. The memory request value is the sum of these two values. (The obtained value may be different from the recommended value in Table 2. You can use either of them.)
Memory request = Number of target nodes/1000 x 2.4 GiB + Number of target pods/10000 x 1 GiB
For example, for 2000 nodes and 20,000 pods, the memory request value is 6.8 GiB, that is, 2000/1000 x 2.4 GiB + 20000/10000 x 1 GiB.
- CPU request value: Calculate the number of target nodes multiplied by the number of target pods, perform interpolation search based on the number of nodes in the cluster multiplied by the number of target pods in Table 2, and round up the request value and limit value that are closest to the specifications.
Table 2 Recommended values for volcano-controller and volcano-scheduler Nodes/Pods in a Cluster
CPU Request (m)
CPU Limit (m)
Memory Request (MiB)
Memory Limit (MiB)
50/5,000
500
2000
500
2000
100/10,000
1000
2500
1500
2500
200/20,000
1500
3000
2500
3500
300/30,000
2000
3500
3500
4500
400/40,000
2500
4000
4500
5500
500/50,000
3000
4500
5500
6500
600/60,000
3500
5000
6500
7500
700/70,000
4000
5500
7500
8500
- Configure the add-on parameters.
Configure parameters of the default volcano scheduler. For details, see Table 4.
colocation_enable: '' default_scheduler_conf: actions: 'allocate, backfill' tiers: - plugins: - name: 'priority' - name: 'gang' - name: 'conformance' - name: 'lifecycle' arguments: lifecycle.MaxGrade: 10 lifecycle.MaxScore: 200.0 lifecycle.SaturatedTresh: 1.0 lifecycle.WindowSize: 10 - plugins: - name: 'drf' - name: 'predicates' - name: 'nodeorder' - plugins: - name: 'cce-gpu-topology-predicate' - name: 'cce-gpu-topology-priority' - name: 'cce-gpu' - plugins: - name: 'nodelocalvolume' - name: 'nodeemptydirvolume' - name: 'nodeCSIscheduling' - name: 'networkresource' tolerations: - effect: NoExecute key: node.kubernetes.io/not-ready operator: Exists tolerationSeconds: 60 - effect: NoExecute key: node.kubernetes.io/unreachable operator: Exists tolerationSeconds: 60
Table 3 Advanced Volcano configuration parameters Plug-in
Function
Description
Demonstration
default_scheduler_conf
Used to schedule pods. It consists of a series of actions and plug-ins and features high scalability. You can specify and implement actions and plug-ins based on your requirements.
It consists of actions and tiers.
- actions: defines the types and sequence of actions to be executed by the scheduler.
- tiers: configures the plug-in list.
None
actions
Actions to be executed in each scheduling phase. The configured action sequence is the scheduler execution sequence. For details, see Actions.
The scheduler traverses all jobs to be scheduled and performs actions such as enqueue, allocate, preempt, and backfill in the configured sequence to find the most appropriate node for each job.
The following options are supported:
- enqueue: uses a series of filtering algorithms to filter out tasks to be scheduled and sends them to the queue to wait for scheduling. After this action, the task status changes from pending to inqueue.
- allocate: selects the most suitable node based on a series of pre-selection and selection algorithms.
- preempt: performs preemption scheduling for tasks with higher priorities in the same queue based on priority rules.
- backfill: schedules pending tasks as much as possible to maximize the utilization of node resources.
actions: 'allocate, backfill'
NOTE:
When configuring actions, use either preempt or enqueue.
plugins
Implementation details of algorithms in actions based on different scenarios. For details, see Plugins.
For details, see Table 4.
None
tolerations
Tolerance of the add-on to node taints.
By default, the add-on can run on nodes with the node.kubernetes.io/not-ready or node.kubernetes.io/unreachable taint and the taint effect value is NoExecute, but it'll be evicted in 60 seconds.
tolerations: - effect: NoExecute key: node.kubernetes.io/not-ready operator: Exists tolerationSeconds: 60 - effect: NoExecute key: node.kubernetes.io/unreachable operator: Exists tolerationSeconds: 60
Table 4 Supported plug-ins Plug-in
Function
Description
Demonstration
binpack
Schedule pods to nodes with high resource usage (not allocating pods to light-loaded nodes) to reduce resource fragments.
arguments:
- binpack.weight: weight of the binpack plug-in.
- binpack.cpu: ratio of CPUs to all resources. The parameter value defaults to 1.
- binpack.memory: ratio of memory resources to all resources. The parameter value defaults to 1.
- binpack.resources: other custom resource types requested by the pod, for example, nvidia.com/gpu. Multiple types can be configured and be separated by commas (,).
- binpack.resources.<your_resource>: weight of your custom resource in all resources. Multiple types of resources can be added. <your_resource> indicates the resource type defined in binpack.resources, for example, binpack.resources.nvidia.com/gpu.
- plugins: - name: binpack arguments: binpack.weight: 10 binpack.cpu: 1 binpack.memory: 1 binpack.resources: nvidia.com/gpu, example.com/foo binpack.resources.nvidia.com/gpu: 2 binpack.resources.example.com/foo: 3
conformance
Prevent key pods, such as the pods in the kube-system namespace from being preempted.
None
- plugins: - name: 'priority' - name: 'gang' enablePreemptable: false - name: 'conformance'
lifecycle
By collecting statistics on service scaling rules, pods with similar lifecycles are preferentially scheduled to the same node. With the horizontal scaling capability of the autoscaler, resources can be quickly scaled in and released, reducing costs and improving resource utilization.
1. Collects statistics on the lifecycle of pods in the service load and schedules pods with similar lifecycles to the same node.
2. For a cluster configured with an automatic scaling policy, adjust the scale-in annotation of the node to preferentially scale in the node with low usage.
arguments:- lifecycle.WindowSize: The value is an integer greater than or equal to 1 and defaults to 10.
Record the number of times that the number of replicas changes. If the load changes regularly and periodically, decrease the value. If the load changes irregularly and the number of replicas changes frequently, increase the value. If the value is too large, the learning period is prolonged and too many events are recorded.
- lifecycle.MaxGrade: The value is an integer greater than or equal to 3 and defaults to 3.
It indicates levels of replicas. For example, if the value is set to 3, the replicas are classified into three levels. If the load changes regularly and periodically, decrease the value. If the load changes irregularly, increase the value. Setting an excessively small value may result in inaccurate lifecycle forecasts.
- lifecycle.MaxScore: float64 floating point number. The value must be greater than or equal to 50.0. The default value is 200.0.
Maximum score (equivalent to the weight) of the lifecycle plugin.
- lifecycle.SaturatedTresh: float64 floating point number. If the value is less than 0.5, use 0.5. If the value is greater than 1, use 1. The default value is 0.8.
Threshold for determining whether the node usage is too high. If the node usage exceeds the threshold, the scheduler preferentially schedules jobs to other nodes.
- plugins: - name: priority - name: gang enablePreemptable: false - name: conformance - name: lifecycle arguments: lifecycle.MaxGrade: 10 lifecycle.MaxScore: 200.0 lifecycle.SaturatedTresh: 1.0 lifecycle.WindowSize: 10
NOTE:
- For nodes that do not want to be scaled in, manually mark them as long-period nodes and add the annotation volcano.sh/long-lifecycle-node: true to them. For an unmarked node, the lifecycle plugin automatically marks the node based on the lifecycle of the load on the node.
- The default value of MaxScore is 200.0, which is twice the weight of other plugins. When the lifecycle plugin does not have obvious effect or conflicts with other plugins, disable other plugins or increase the value of MaxScore.
- After the scheduler is restarted, the lifecycle plugin needs to re-record the load change. The optimal scheduling effect can be achieved only after several periods of statistics are collected.
gang
Consider a group of pods as a whole for resource allocation. This plug-in checks whether the number of scheduled pods in a job meets the minimum requirements for running the job. If yes, all pods in the job will be scheduled. If no, the pods will not be scheduled.
NOTE:
If a gang scheduling policy is used, if the remaining resources in the cluster are greater than or equal to half of the minimum number of resources for running a job but less than the minimum of resources for running the job, autoscaler scale-outs will not be triggered.
- enablePreemptable:
- true: Preemption enabled
- false: Preemption not enabled
- enableJobStarving:
- true: Resources are preempted based on the minAvailable setting of jobs.
- false: Resources are preempted based on job replicas.
NOTE:
- The default value of minAvailable for Kubernetes-native workloads (such as Deployments) is 1. It is a good practice to set enableJobStarving to false.
- In AI and big data scenarios, you can specify the minAvailable value when creating a vcjob. It is a good practice to set enableJobStarving to true.
- In Volcano versions earlier than v1.11.5, enableJobStarving is set to true by default. In Volcano versions later than v1.11.5, enableJobStarving is set to false by default.
- plugins: - name: priority - name: gang enablePreemptable: false enableJobStarving: false - name: conformance
priority
Schedule based on custom load priorities.
None
- plugins: - name: priority - name: gang enablePreemptable: false - name: conformance
overcommit
Resources in a cluster are scheduled after being accumulated in a certain multiple to improve the workload enqueuing efficiency. If all workloads are Deployments, remove this plugin or set the raising factor to 2.0.
NOTE:
This plug-in is supported in Volcano 1.6.5 and later versions.
arguments:
- overcommit-factor: inflation factor, which defaults to 1.2.
- plugins: - name: overcommit arguments: overcommit-factor: 2.0
drf
The Dominant Resource Fairness (DRF) scheduling algorithm, which schedules jobs based on their dominant resource share. Jobs with a smaller resource share will be scheduled with a higher priority.
None
- plugins: - name: 'drf' - name: 'predicates' - name: 'nodeorder'
predicates
Determine whether a task is bound to a node by using a series of evaluation algorithms, such as node/pod affinity, taint tolerance, node repetition, volume limits, and volume zone matching.
None
- plugins: - name: 'drf' - name: 'predicates' - name: 'nodeorder'
nodeorder
A common algorithm for selecting nodes. Nodes are scored in simulated resource allocation to find the most suitable node for the current job.
Scoring parameters:
- nodeaffinity.weight: Pods are scheduled based on node affinity. This parameter defaults to 1.
- podaffinity.weight: Pods are scheduled based on pod affinity. This parameter defaults to 1.
- leastrequested.weight: Pods are scheduled to the node with the least requested resources. This parameter defaults to 1.
- balancedresource.weight: Pods are scheduled to the node with balanced resource allocation. This parameter defaults to 1.
- mostrequested.weight: Pods are scheduled to the node with the most requested resources. This parameter defaults to 0.
- tainttoleration.weight: Pods are scheduled to the node with a high taint tolerance. This parameter defaults to 1.
- imagelocality.weight: Pods are scheduled to the node where the required images exist. This parameter defaults to 1.
- selectorspread.weight: Pods are evenly scheduled to different nodes. This parameter defaults to 0.
- podtopologyspread.weight: Pods are scheduled based on the pod topology. This parameter defaults to 2.
- plugins: - name: nodeorder arguments: leastrequested.weight: 1 mostrequested.weight: 0 nodeaffinity.weight: 1 podaffinity.weight: 1 balancedresource.weight: 1 tainttoleration.weight: 1 imagelocality.weight: 1 volumebinding.weight: 1 podtopologyspread.weight: 2
cce-gpu-topology-predicate
GPU-topology scheduling preselection algorithm
None
- plugins: - name: 'cce-gpu-topology-predicate' - name: 'cce-gpu-topology-priority' - name: 'cce-gpu'
cce-gpu-topology-priority
GPU-topology scheduling priority algorithm
None
- plugins: - name: 'cce-gpu-topology-predicate' - name: 'cce-gpu-topology-priority' - name: 'cce-gpu'
cce-gpu
GPU resource allocation that supports decimal GPU configurations by working with the gpu add-on.
None
- plugins: - name: 'cce-gpu-topology-predicate' - name: 'cce-gpu-topology-priority' - name: 'cce-gpu'
numa-aware
NUMA affinity scheduling.
arguments:
- weight: weight of the numa-aware plug-in
- plugins: - name: 'nodelocalvolume' - name: 'nodeemptydirvolume' - name: 'nodeCSIscheduling' - name: 'networkresource' arguments: NetworkType: vpc-router - name: numa-aware arguments: weight: 10
networkresource
The ENI requirement node can be preselected and filtered. The parameters are transferred by CCE and do not need to be manually configured.
arguments:
- NetworkType: network type (eni or vpc-router)
- plugins: - name: 'nodelocalvolume' - name: 'nodeemptydirvolume' - name: 'nodeCSIscheduling' - name: 'networkresource' arguments: NetworkType: vpc-router
nodelocalvolume
Filter out nodes that do not meet local volume requirements.
None
- plugins: - name: 'nodelocalvolume' - name: 'nodeemptydirvolume' - name: 'nodeCSIscheduling' - name: 'networkresource'
nodeemptydirvolume
Filter out nodes that do not meet the emptyDir requirements.
None
- plugins: - name: 'nodelocalvolume' - name: 'nodeemptydirvolume' - name: 'nodeCSIscheduling' - name: 'networkresource'
nodeCSIscheduling
Filter out nodes with malfunctional everest.
None
- plugins: - name: 'nodelocalvolume' - name: 'nodeemptydirvolume' - name: 'nodeCSIscheduling' - name: 'networkresource'
- Click Install.
Components
Container Component |
Description |
Resource Type |
---|---|---|
volcano-scheduler |
Schedule pods. |
Deployment |
volcano-controller |
Synchronize CRDs. |
Deployment |
volcano-admission |
Webhook server, which verifies and modifies resources such as pods and jobs |
Deployment |
volcano-agent |
Cloud native hybrid agent, which is used for node QoS assurance, CPU burst, and dynamic resource oversubscription |
DaemonSet |
resource-exporter |
Report the NUMA topology information of nodes. |
DaemonSet |
Modifying the volcano-scheduler Configurations Using the Console
Volcano scheduler is the component responsible for pod scheduling. It consists of a series of actions and plug-ins. Actions should be executed in every step. Plugins provide the action algorithm details in different scenarios. volcano-scheduler is highly scalable. You can specify and implement actions and plug-ins based on your requirements.
Volcano allows you to configure the scheduler during installation, upgrade, and editing. The configuration will be synchronized to volcano-scheduler-configmap.
This section describes how to configure volcano-scheduler.
Only Volcano of v1.7.1 and later support this function. On the new plugin page, options such as plugins.eas_service and resource_exporter_enable are replaced by default_scheduler_conf.
Log in to the CCE console and access the cluster console. Choose Add-ons in the navigation pane. On the right of the page, locate volcano and click Install or Upgrade. In the Parameters area, configure the volcano-scheduler parameters.
- Using resource_exporter:
{ "ca_cert": "", "default_scheduler_conf": { "actions": "allocate, backfill", "tiers": [ { "plugins": [ { "name": "priority" }, { "name": "gang" }, { "name": "conformance" } ] }, { "plugins": [ { "name": "drf" }, { "name": "predicates" }, { "name": "nodeorder" } ] }, { "plugins": [ { "name": "cce-gpu-topology-predicate" }, { "name": "cce-gpu-topology-priority" }, { "name": "cce-gpu" }, { "name": "numa-aware" # add this also enable resource_exporter } ] }, { "plugins": [ { "name": "nodelocalvolume" }, { "name": "nodeemptydirvolume" }, { "name": "nodeCSIscheduling" }, { "name": "networkresource" } ] } ] }, "server_cert": "", "server_key": "" }
After this function is enabled, you can use the functions of the numa-aware plugin and resource_exporter at the same time.
- Using eas_service:
{ "ca_cert": "", "default_scheduler_conf": { "actions": "allocate, backfill", "tiers": [ { "plugins": [ { "name": "priority" }, { "name": "gang" }, { "name": "conformance" } ] }, { "plugins": [ { "name": "drf" }, { "name": "predicates" }, { "name": "nodeorder" } ] }, { "plugins": [ { "name": "cce-gpu-topology-predicate" }, { "name": "cce-gpu-topology-priority" }, { "name": "cce-gpu" }, { "name": "eas", "custom": { "availability_zone_id": "", "driver_id": "", "endpoint": "", "flavor_id": "", "network_type": "", "network_virtual_subnet_id": "", "pool_id": "", "project_id": "", "secret_name": "eas-service-secret" } } ] }, { "plugins": [ { "name": "nodelocalvolume" }, { "name": "nodeemptydirvolume" }, { "name": "nodeCSIscheduling" }, { "name": "networkresource" } ] } ] }, "server_cert": "", "server_key": "" }
- Using ief:
{ "ca_cert": "", "default_scheduler_conf": { "actions": "allocate, backfill", "tiers": [ { "plugins": [ { "name": "priority" }, { "name": "gang" }, { "name": "conformance" } ] }, { "plugins": [ { "name": "drf" }, { "name": "predicates" }, { "name": "nodeorder" } ] }, { "plugins": [ { "name": "cce-gpu-topology-predicate" }, { "name": "cce-gpu-topology-priority" }, { "name": "cce-gpu" }, { "name": "ief", "enableBestNode": true } ] }, { "plugins": [ { "name": "nodelocalvolume" }, { "name": "nodeemptydirvolume" }, { "name": "nodeCSIscheduling" }, { "name": "networkresource" } ] } ] }, "server_cert": "", "server_key": "" }
Retaining the Original volcano-scheduler-configmap Configurations
If you want to use the original configuration after the plug-in is upgraded, perform the following steps:
- Check and back up the original volcano-scheduler-configmap configuration.
Example:
# kubectl edit cm volcano-scheduler-configmap -n kube-system apiVersion: v1 data: default-scheduler.conf: |- actions: "enqueue, allocate, backfill" tiers: - plugins: - name: priority - name: gang - name: conformance - plugins: - name: drf - name: predicates - name: nodeorder - name: binpack arguments: binpack.cpu: 100 binpack.weight: 10 binpack.resources: nvidia.com/gpu binpack.resources.nvidia.com/gpu: 10000 - plugins: - name: cce-gpu-topology-predicate - name: cce-gpu-topology-priority - name: cce-gpu - plugins: - name: nodelocalvolume - name: nodeemptydirvolume - name: nodeCSIscheduling - name: networkresource
- Enter the customized content in the Parameters area on the console.
{ "ca_cert": "", "default_scheduler_conf": { "actions": "enqueue, allocate, backfill", "tiers": [ { "plugins": [ { "name": "priority" }, { "name": "gang" }, { "name": "conformance" } ] }, { "plugins": [ { "name": "drf" }, { "name": "predicates" }, { "name": "nodeorder" }, { "name": "binpack", "arguments": { "binpack.cpu": 100, "binpack.weight": 10, "binpack.resources": "nvidia.com/gpu", "binpack.resources.nvidia.com/gpu": 10000 } } ] }, { "plugins": [ { "name": "cce-gpu-topology-predicate" }, { "name": "cce-gpu-topology-priority" }, { "name": "cce-gpu" } ] }, { "plugins": [ { "name": "nodelocalvolume" }, { "name": "nodeemptydirvolume" }, { "name": "nodeCSIscheduling" }, { "name": "networkresource" } ] } ] }, "server_cert": "", "server_key": "" }
NOTE:
When this function is used, the original content in volcano-scheduler-configmap will be overwritten. Therefore, you must check whether volcano-scheduler-configmap has been modified during the upgrade. If yes, synchronize the modification to the upgrade page.
Uninstalling the Volcano Add-on
After the add-on is uninstalled, all custom Volcano resources (Table 6) will be deleted, including the created resources. Reinstalling the add-on will not inherit or restore the tasks before the uninstallation. It is a good practice to uninstall the Volcano add-on only when no custom Volcano resources are being used in the cluster.
Item |
API Group |
API Version |
Resource Level |
---|---|---|---|
Command |
bus.volcano.sh |
v1alpha1 |
Namespaced |
Job |
batch.volcano.sh |
v1alpha1 |
Namespaced |
Numatopology |
nodeinfo.volcano.sh |
v1alpha1 |
Cluster |
PodGroup |
scheduling.volcano.sh |
v1beta1 |
Namespaced |
Queue |
scheduling.volcano.sh |
v1beta1 |
Cluster |
Feedback
Was this page helpful?
Provide feedbackThank you very much for your feedback. We will continue working to improve the documentation.See the reply and handling status in My Cloud VOC.
For any further questions, feel free to contact us through the chatbot.
Chatbot