
Data Warehouse Service

SQL Syntax

Issue 01

Date 2022-07-29

HUAWEI TECHNOLOGIES CO., LTD.



 
 
Copyright © Huawei Technologies Co., Ltd. 2022. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.
 
Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.
 
Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.
  
 
 
 
 
 

Huawei Technologies Co., Ltd.
Address: Huawei Industrial Base

Bantian, Longgang
Shenzhen 518129
People's Republic of China

Website: https://www.huawei.com

Email: support@huawei.com

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. i

https://www.huawei.com
mailto:support@huawei.com


Contents

1 GaussDB(DWS) SQL................................................................................................................ 1

2 Differences Between GaussDB(DWS) and PostgreSQL.................................................. 2
2.1 GaussDB(DWS) gsql, PostgreSQL psql, and libpq........................................................................................................2
2.2 Data Type Differences............................................................................................................................................................3
2.3 Function Differences.............................................................................................................................................................. 3
2.4 PostgreSQL Features Unsupported by GaussDB(DWS)............................................................................................. 3

3 Keyword..................................................................................................................................... 5

4 Data Types...............................................................................................................................34
4.1 Numeric Types....................................................................................................................................................................... 34
4.2 Monetary Types..................................................................................................................................................................... 39
4.3 Boolean Type.......................................................................................................................................................................... 40
4.4 Character Types..................................................................................................................................................................... 41
4.5 Binary Data Types................................................................................................................................................................. 43
4.6 Date/Time Types................................................................................................................................................................... 44
4.7 Geometric Types.................................................................................................................................................................... 51
4.8 Network Address Types...................................................................................................................................................... 54
4.9 Bit String Types...................................................................................................................................................................... 56
4.10 Text Search Types............................................................................................................................................................... 56
4.11 UUID Type............................................................................................................................................................................. 59
4.12 JSON Types........................................................................................................................................................................... 60
4.13 HLL Data Types................................................................................................................................................................... 60
4.14 Object Identifier Types...................................................................................................................................................... 63
4.15 Pseudo-Types........................................................................................................................................................................ 65
4.16 Data Types Supported by Column-Store Tables...................................................................................................... 66
4.17 XML......................................................................................................................................................................................... 68

5 Constant and Macro............................................................................................................. 70

6 Functions and Operators..................................................................................................... 72
6.1 Logical Operators..................................................................................................................................................................72
6.2 Comparison Operators........................................................................................................................................................ 72
6.3 Character Processing Functions and Operators..........................................................................................................73
6.4 Binary String Functions and Operators......................................................................................................................... 93

Data Warehouse Service
SQL Syntax Contents

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. ii



6.5 Bit String Functions and Operators................................................................................................................................ 96
6.6 Pattern Matching Operators............................................................................................................................................. 97
6.7 Mathematical Functions and Operators.....................................................................................................................102
6.8 Date and Time Processing Functions and Operators.............................................................................................112
6.9 Type Conversion Functions..............................................................................................................................................128
6.10 Geometric Functions and Operators......................................................................................................................... 135
6.11 Network Address Functions and Operators............................................................................................................ 145
6.12 Text Search Functions and Operators....................................................................................................................... 151
6.13 UUID Functions................................................................................................................................................................. 157
6.14 JSON Functions................................................................................................................................................................. 158
6.15 HLL Functions and Operators...................................................................................................................................... 158
6.16 SEQUENCE Functions......................................................................................................................................................169
6.17 Array Functions and Operators................................................................................................................................... 171
6.18 Range Functions and Operators................................................................................................................................. 175
6.19 Aggregate Functions....................................................................................................................................................... 180
6.20 Window Functions........................................................................................................................................................... 191
6.21 Security Functions............................................................................................................................................................ 201
6.22 Set Returning Functions.................................................................................................................................................206
6.23 Conditional Expression Functions............................................................................................................................... 208
6.24 System Information Functions.....................................................................................................................................212
6.25 System Administration Functions............................................................................................................................... 227
6.25.1 Configuration Settings Functions............................................................................................................................ 227
6.25.2 Universal File Access Functions............................................................................................................................... 227
6.25.3 Server Signaling Functions........................................................................................................................................ 229
6.25.4 Backup and Restoration Control Functions......................................................................................................... 230
6.25.5 Snapshot Synchronization Functions..................................................................................................................... 237
6.25.6 Database Object Functions....................................................................................................................................... 237
6.25.7 Advisory Lock Functions............................................................................................................................................. 240
6.25.8 Residual File Management Functions................................................................................................................... 242
6.25.9 Replication Functions.................................................................................................................................................. 251
6.25.10 Other Functions.......................................................................................................................................................... 259
6.25.11 Resource Management Functions........................................................................................................................ 267
6.26 Data Redaction Functions............................................................................................................................................. 274
6.27 Statistics Information Functions................................................................................................................................. 276
6.28 Trigger Functions..............................................................................................................................................................291
6.29 XML Functions...................................................................................................................................................................291
6.30 Call Stack Recording Functions................................................................................................................................... 299

7 Expressions............................................................................................................................302
7.1 Simple Expressions............................................................................................................................................................. 302
7.2 Conditional Expressions.................................................................................................................................................... 303
7.3 Subquery Expressions........................................................................................................................................................ 308
7.4 Array Expressions................................................................................................................................................................ 311

Data Warehouse Service
SQL Syntax Contents

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. iii



7.5 Row Expressions.................................................................................................................................................................. 312

8 Type Conversion.................................................................................................................. 314
8.1 Overview................................................................................................................................................................................314
8.2 Operators.............................................................................................................................................................................. 316
8.3 Functions............................................................................................................................................................................... 318
8.4 Value Storage.......................................................................................................................................................................320
8.5 UNION, CASE, and Related Constructs....................................................................................................................... 321

9 Full Text Search................................................................................................................... 324
9.1 Introduction.......................................................................................................................................................................... 324
9.1.1 Full-Text Retrieval............................................................................................................................................................324
9.1.2 What Is a Document?.................................................................................................................................................... 325
9.1.3 Basic Text Matching....................................................................................................................................................... 326
9.1.4 Configurations.................................................................................................................................................................. 327
9.2 Table and index................................................................................................................................................................... 327
9.2.1 Searching a Table............................................................................................................................................................ 328
9.2.2 Creating an Index............................................................................................................................................................ 329
9.2.3 Constraints on Index Use..............................................................................................................................................330
9.3 Controlling Text Search.................................................................................................................................................... 331
9.3.1 Parsing Documents.........................................................................................................................................................331
9.3.2 Parsing Queries................................................................................................................................................................ 332
9.3.3 Ranking Search Results................................................................................................................................................. 333
9.3.4 Highlighting Results....................................................................................................................................................... 335
9.4 Additional Features............................................................................................................................................................ 337
9.4.1 Manipulating tsvector................................................................................................................................................... 337
9.4.2 Manipulating Queries.................................................................................................................................................... 338
9.4.3 Rewriting Queries........................................................................................................................................................... 338
9.4.4 Gathering Document Statistics.................................................................................................................................. 339
9.5 Parsers................................................................................................................................................................................... 340
9.6 Dictionaries........................................................................................................................................................................... 344
9.6.1 Overview............................................................................................................................................................................ 344
9.6.2 Stop Words........................................................................................................................................................................ 345
9.6.3 Simple Dictionary............................................................................................................................................................ 346
9.6.4 Synonym Dictionary....................................................................................................................................................... 347
9.6.5 Thesaurus Dictionary..................................................................................................................................................... 349
9.6.6 Ispell Dictionary............................................................................................................................................................... 350
9.6.7 Snowball Dictionary....................................................................................................................................................... 351
9.7 Configuration Examples................................................................................................................................................... 351
9.8 Testing and Debugging Text Search.............................................................................................................................353
9.8.1 Testing a Configuration.................................................................................................................................................353
9.8.2 Testing a Parser............................................................................................................................................................... 354
9.8.3 Testing a Dictionary....................................................................................................................................................... 355
9.9 Limitations............................................................................................................................................................................ 355

Data Warehouse Service
SQL Syntax Contents

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. iv



10 System Operation............................................................................................................. 357

11 Controlling Transactions................................................................................................. 358

12 DDL Syntax......................................................................................................................... 359
12.1 DDL Syntax Overview..................................................................................................................................................... 359
12.2 ALTER DATABASE............................................................................................................................................................. 366
12.3 ALTER FOREIGN TABLE (for GDS).............................................................................................................................. 368
12.4 ALTER FOREIGN TABLE (for HDFS or OBS)............................................................................................................ 369
12.5 ALTER FUNCTION............................................................................................................................................................ 371
12.6 ALTER GROUP................................................................................................................................................................... 374
12.7 ALTER INDEX......................................................................................................................................................................374
12.8 ALTER LARGE OBJECT..................................................................................................................................................... 376
12.9 ALTER REDACTION POLICY.......................................................................................................................................... 377
12.10 ALTER RESOURCE POOL............................................................................................................................................. 379
12.11 ALTER ROLE..................................................................................................................................................................... 380
12.12 ALTER ROW LEVEL SECURITY POLICY.................................................................................................................... 382
12.13 ALTER SCHEMA.............................................................................................................................................................. 383
12.14 ALTER SEQUENCE.......................................................................................................................................................... 385
12.15 ALTER SERVER................................................................................................................................................................. 386
12.16 ALTER SESSION...............................................................................................................................................................389
12.17 ALTER SYNONYM...........................................................................................................................................................390
12.18 ALTER SYSTEM KILL SESSION....................................................................................................................................391
12.19 ALTER TABLE....................................................................................................................................................................392
12.20 ALTER TABLE PARTITION............................................................................................................................................ 404
12.21 ALTER TEXT SEARCH CONFIGURATION................................................................................................................ 409
12.22 ALTER TEXT SEARCH DICTIONARY.......................................................................................................................... 412
12.23 ALTER TRIGGER.............................................................................................................................................................. 413
12.24 ALTER TYPE...................................................................................................................................................................... 414
12.25 ALTER USER..................................................................................................................................................................... 417
12.26 ALTER VIEW..................................................................................................................................................................... 419
12.27 CLEAN CONNECTION.................................................................................................................................................. 421
12.28 CLOSE................................................................................................................................................................................ 422
12.29 CLUSTER............................................................................................................................................................................423
12.30 COMMENT....................................................................................................................................................................... 425
12.31 CREATE BARRIER............................................................................................................................................................427
12.32 CREATE DATABASE....................................................................................................................................................... 428
12.33 CREATE FOREIGN TABLE (for GDS Import and Export)...................................................................................431
12.34 CREATE FOREIGN TABLE (SQL on OBS or Hadoop )........................................................................................ 445
12.35 CREATE FOREIGN TABLE (for OBS Import and Export)................................................................................... 459
12.36 CREATE FUNCTION.......................................................................................................................................................470
12.37 CREATE GROUP.............................................................................................................................................................. 477
12.38 CREATE INDEX................................................................................................................................................................ 478
12.39 CREATE REDACTION POLICY..................................................................................................................................... 483

Data Warehouse Service
SQL Syntax Contents

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. v



12.40 CREATE ROW LEVEL SECURITY POLICY.................................................................................................................485
12.41 CREATE PROCEDURE....................................................................................................................................................489
12.42 CREATE RESOURCE POOL.......................................................................................................................................... 492
12.43 CREATE ROLE.................................................................................................................................................................. 494
12.44 CREATE SCHEMA........................................................................................................................................................... 500
12.45 CREATE SEQUENCE.......................................................................................................................................................501
12.46 CREATE SERVER............................................................................................................................................................. 504
12.47 CREATE SYNONYM....................................................................................................................................................... 507
12.48 CREATE TABLE................................................................................................................................................................ 509
12.49 CREATE TABLE AS.......................................................................................................................................................... 528
12.50 CREATE TABLE PARTITION......................................................................................................................................... 532
12.51 CREATE TABLESPACE.................................................................................................................................................... 545
12.52 CREATE TEXT SEARCH CONFIGURATION............................................................................................................. 547
12.53 CREATE TEXT SEARCH DICTIONARY.......................................................................................................................550
12.54 CREATE TRIGGER........................................................................................................................................................... 555
12.55 CREATE TYPE................................................................................................................................................................... 560
12.56 CREATE USER.................................................................................................................................................................. 568
12.57 CREATE VIEW.................................................................................................................................................................. 569
12.58 CURSOR............................................................................................................................................................................ 572
12.59 DROP DATABASE........................................................................................................................................................... 574
12.60 DROP FOREIGN TABLE................................................................................................................................................ 575
12.61 DROP FUNCTION.......................................................................................................................................................... 576
12.62 DROP GROUP................................................................................................................................................................. 577
12.63 DROP INDEX....................................................................................................................................................................577
12.64 DROP OWNED................................................................................................................................................................ 578
12.65 DROP REDACTION POLICY........................................................................................................................................ 578
12.66 DROP ROW LEVEL SECURITY POLICY.................................................................................................................... 579
12.67 DROP PROCEDURE....................................................................................................................................................... 580
12.68 DROP RESOURCE POOL.............................................................................................................................................. 581
12.69 DROP ROLE......................................................................................................................................................................581
12.70 DROP SCHEMA............................................................................................................................................................... 582
12.71 DROP SEQUENCE.......................................................................................................................................................... 583
12.72 DROP SERVER................................................................................................................................................................. 584
12.73 DROP SYNONYM........................................................................................................................................................... 584
12.74 DROP TABLE.................................................................................................................................................................... 585
12.75 DROP TABLESPACE........................................................................................................................................................586
12.76 DROP TEXT SEARCH CONFIGURATION.................................................................................................................587
12.77 DROP TEXT SEARCH DICTIONARY.......................................................................................................................... 588
12.78 DROP TRIGGER............................................................................................................................................................... 589
12.79 DROP TYPE...................................................................................................................................................................... 590
12.80 DROP USER...................................................................................................................................................................... 590
12.81 DROP VIEW...................................................................................................................................................................... 592

Data Warehouse Service
SQL Syntax Contents

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. vi



12.82 FETCH................................................................................................................................................................................ 592
12.83 MOVE................................................................................................................................................................................. 596
12.84 REINDEX............................................................................................................................................................................597
12.85 RESET................................................................................................................................................................................. 598
12.86 SET...................................................................................................................................................................................... 599
12.87 SET CONSTRAINTS........................................................................................................................................................ 601
12.88 SET ROLE.......................................................................................................................................................................... 602
12.89 SET SESSION AUTHORIZATION............................................................................................................................... 603
12.90 SHOW................................................................................................................................................................................ 605
12.91 TRUNCATE....................................................................................................................................................................... 605
12.92 VACUUM........................................................................................................................................................................... 607

13 DML Syntax........................................................................................................................ 612
13.1 DML Syntax Overview.................................................................................................................................................... 612
13.2 CALL...................................................................................................................................................................................... 613
13.3 COPY..................................................................................................................................................................................... 614
13.4 DELETE................................................................................................................................................................................. 628
13.5 EXPLAIN............................................................................................................................................................................... 630
13.6 EXPLAIN PLAN...................................................................................................................................................................634
13.7 LOCK..................................................................................................................................................................................... 636
13.8 MERGE INTO......................................................................................................................................................................640
13.9 INSERT and UPSERT........................................................................................................................................................ 642
13.9.1 INSERT.............................................................................................................................................................................. 643
13.9.2 UPSERT............................................................................................................................................................................. 647
13.10 UPDATE............................................................................................................................................................................. 651
13.11 VALUES.............................................................................................................................................................................. 654

14 DCL Syntax..........................................................................................................................656
14.1 DCL Syntax Overview..................................................................................................................................................... 656
14.2 ALTER DEFAULT PRIVILEGES........................................................................................................................................ 656
14.3 ANALYZE | ANALYSE........................................................................................................................................................ 659
14.4 DEALLOCATE..................................................................................................................................................................... 662
14.5 DO......................................................................................................................................................................................... 662
14.6 EXECUTE.............................................................................................................................................................................. 663
14.7 EXECUTE DIRECT.............................................................................................................................................................. 664
14.8 GRANT................................................................................................................................................................................. 665
14.9 PREPARE.............................................................................................................................................................................. 671
14.10 REASSIGN OWNED....................................................................................................................................................... 671
14.11 REVOKE............................................................................................................................................................................. 672

15 DQL Syntax......................................................................................................................... 676
15.1 DQL Syntax Overview.....................................................................................................................................................676
15.2 SELECT................................................................................................................................................................................. 676
15.3 SELECT INTO...................................................................................................................................................................... 689

Data Warehouse Service
SQL Syntax Contents

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. vii



16 TCL Syntax.......................................................................................................................... 691
16.1 TCL Syntax Overview...................................................................................................................................................... 691
16.2 ABORT.................................................................................................................................................................................. 691
16.3 BEGIN................................................................................................................................................................................... 692
16.4 CHECKPOINT..................................................................................................................................................................... 693
16.5 COMMIT | END................................................................................................................................................................. 694
16.6 COMMIT PREPARED........................................................................................................................................................ 694
16.7 PREPARE TRANSACTION............................................................................................................................................... 695
16.8 SAVEPOINT.........................................................................................................................................................................696
16.9 SET TRANSACTION.......................................................................................................................................................... 697
16.10 START TRANSACTION.................................................................................................................................................. 698
16.11 ROLLBACK........................................................................................................................................................................ 700
16.12 RELEASE SAVEPOINT....................................................................................................................................................700
16.13 ROLLBACK PREPARED.................................................................................................................................................. 701
16.14 ROLLBACK TO SAVEPOINT........................................................................................................................................ 702

17 GIN Indexes........................................................................................................................ 704
17.1 Introduction........................................................................................................................................................................704
17.2 Scalability............................................................................................................................................................................ 704
17.3 Implementation................................................................................................................................................................ 707
17.4 GIN Tips and Tricks.......................................................................................................................................................... 708

Data Warehouse Service
SQL Syntax Contents

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. viii



1 GaussDB(DWS) SQL

What Is SQL?

SQL is a standard computer language used to control the access to databases and
manage data in databases.

SQL provides different statements to enable you to:

● Query data.

● Insert, update, and delete rows.

● Create, replace, modify, and delete objects.

● Control the access to a database and its objects.

● Maintain the consistency and integrity of a database.

SQL consists of commands and functions that are used to manage databases and
database objects. SQL can also forcibly implement the rules for data types,
expressions, and texts. Therefore, section "SQL Reference" describes data types,
expressions, functions, and operators in addition to SQL syntax.

Development of SQL Standards

Released SQL standards are as follows:

● 1986: ANSI X3.135-1986, ISO/IEC 9075:1986, SQL-86

● 1989: ANSI X3.135-1989, ISO/IEC 9075:1989, SQL-89

● 1992: ANSI X3.135-1992, ISO/IEC 9075:1992, SQL-92 (SQL2)

● 1999: ISO/IEC 9075:1999, SQL:1999 (SQL3)

● 2003: ISO/IEC 9075:2003, SQL:2003 (SQL4)

● 2011: ISO/IEC 9075:200N, SQL:2011 (SQL5)

Supported SQL Standards

GaussDB(DWS) is compatible with Postgres-XC features and supports the major
features of SQL2, SQL3, and SQL4 by default.

Data Warehouse Service
SQL Syntax 1 GaussDB(DWS) SQL

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 1



2 Differences Between GaussDB(DWS)
and PostgreSQL

2.1 GaussDB(DWS) gsql, PostgreSQL psql, and libpq

GaussDB(DWS) gsql and PostgreSQL psql
GaussDB(DWS) gsql differs from PostgreSQL psql in that the former has made the
following changes to enhance security:

● User passwords cannot be set by running the \password meta-command.
● The \i+, \ir+, and \include_relative+ meta-commands and the input and

output parameter -k are added to encrypt imported and exported files.
● Historical command lines cannot be printed to files using the \s meta-

command.
● SQL statements related to sensitive operations, such as those containing

passwords, are not recorded. Users cannot see such records when they turn
pages or press up or down arrow keys to view the SQL history.

● After a connection is set up, a message is displayed to inform users of
password expiration and to show version information.

gsql provides the following additional functions based on psql:

● The output format parameter -r is added to allow you to adjust the focus by
pressing the Tab key or arrow keys when entering commands.

● The \parallel meta-command is added to improve execution performance.
● The \set RETRY meta-command is added to support retry upon statement

errors.
● Slashes (/) are used as the default terminator at the end of PL/SQL

statements CREATE OR REPLACE FUNCTION/PROCEDURE.

libpq
During the development of certain GaussDB(DWS) functions such as the gsql
client connection tool, PostgreSQL libpq is greatly modified. However, the libpq

Data Warehouse Service
SQL Syntax

2 Differences Between GaussDB(DWS) and
PostgreSQL

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 2



interface is not verified in application development. You are not advised to use this
set of APIs for application development, because underlying risks probably exist.
You can use the ODBC or JDBC APIs instead.

2.2 Data Type Differences
For details about supported data types by GaussDB(DWS), see Data Types.

The following PostgreSQL data type is not supported:

● Lines, a geometric type
● pg_node_tree

2.3 Function Differences
For details about the functions supported by GaussDB(DWS), see Functions and
Operators.

The following PostgreSQL functions are not supported:

● Enum support functions
● Access privilege inquiry functions

– has_sequence_privilege(user, sequence, privilege)
– has_sequence_privilege(sequence, privilege)

● System catalog information functions
– pg_get_triggerdef(trigger_oid)
– pg_get_triggerdef(trigger_oid, pretty_bool)

● Line functions
● pg_node_tree

2.4 PostgreSQL Features Unsupported by
GaussDB(DWS)

● Table inheritance
● Table creation features:

– Use REFERENCES reftable [ (refcolumn) ] [ MATCH FULL | MATCH
PARTIAL | MATCH SIMPLE ] [ ON DELETE action ] [ ON UPDATE
action ] to create a foreign key constraint for a table.

– Use EXCLUDE [ USING index_method ] ( exclude_element WITH
operator [, ... ] ) to create exclusion constraints for a table.

● Define or change the security tag of an object.
● User-defined C functions
● Create, modify, and delete operators.
● Create, modify, and delete operator classes.
● Create, modify, and delete operator families.

Data Warehouse Service
SQL Syntax

2 Differences Between GaussDB(DWS) and
PostgreSQL

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 3



● Create, modify, and delete text search parsers.
● Create, modify, and delete text search templates.
● Create, modify, and delete collations.
● Create and delete rules.
● Register, modify, and delete languages.
● Create, modify, and delete domains.
● Define, modify, and delete the conversion of character set encoding.
● Define and delete casts.
● Define, modify, and delete user mapping.
● Generate a notification.
● Listen to a notification.
● Stop listening to a notification.
● Load or reload a shared library file.
● Release the session resources of a database.
● Move a cursor backward.

The following features are disabled in GaussDB(DWS) for separation of rights:
● TO PUBLIC of GRANT
● COPY FROM FILE and COPY TO FILE of COPY

Data Warehouse Service
SQL Syntax

2 Differences Between GaussDB(DWS) and
PostgreSQL

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 4



3 Keyword

The SQL contains reserved and non-reserved words. Standards require that
reserved keywords not be used as other identifiers. Non-reserved keywords have
special meanings only in a specific environment and can be used as identifiers in
other environments.

Table 3-1 SQL keywords

Keyword GaussDB(DWS) SQL:1999 SQL-92

ABORT Non-reserved - -

ABS - Non-
reserved

-

ABSOLUTE Non-reserved Reserved Reserved

ACCESS Non-reserved - -

ACCOUNT Non-reserved - -

ACTION Non-reserved Reserved Reserved

ADA - Non-
reserved

Non-
reserved

ADD Non-reserved Reserved Reserved

ADMIN Non-reserved Reserved -

AFTER Non-reserved Reserved -

AGGREGATE Non-reserved Reserved -

ALIAS - Reserved -

ALL Reserved Reserved Reserved

ALLOCATE - Reserved Reserved

ALSO Non-reserved - -

ALTER Non-reserved Reserved Reserved

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 5



Keyword GaussDB(DWS) SQL:1999 SQL-92

ALWAYS Non-reserved - -

ANALYSE Reserved - -

ANALYZE Reserved - -

AND Reserved Reserved Reserved

ANY Reserved Reserved Reserved

APP Non-reserved - -

ARE - Reserved Reserved

ARRAY Reserved Reserved -

AS Reserved Reserved Reserved

ASC Reserved Reserved Reserved

ASENSITIVE - Non-
reserved

-

ASSERTION Non-reserved Reserved Reserved

ASSIGNMENT Non-reserved Non-
reserved

-

ASYMMETRIC Reserved Non-
reserved

-

AT Non-reserved Reserved Reserved

ATOMIC - Non-
reserved

-

ATTRIBUTE Non-reserved - -

AUTHID Reserved - -

AUTHINFO Non-reserved - -

AUTHORIZATION Reserved (functions and types
allowed)

Reserved Reserved

AUTOEXTEND Non-reserved - -

AUTOMAPPED Non-reserved - -

AVG - Non-
reserved

Reserved

BACKWARD Non-reserved - -

BARRIER Non-reserved - -

BEFORE Non-reserved Reserved -

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 6



Keyword GaussDB(DWS) SQL:1999 SQL-92

BEGIN Non-reserved Reserved Reserved

BETWEEN Non-reserved (excluding
functions and types)

Non-
reserved

Reserved

BIGINT Non-reserved (excluding
functions and types)

- -

BINARY Reserved (functions and types
allowed)

Reserved -

BINARY_DOUBLE Non-reserved (excluding
functions and types)

- -

BINARY_INTEGER Non-reserved (excluding
functions and types)

- -

BIT Non-reserved (excluding
functions and types)

Reserved Reserved

BITVAR - Non-
reserved

-

BIT_LENGTH - Non-
reserved

Reserved

BLOB Non-reserved Reserved -

BOOLEAN Non-reserved (excluding
functions and types)

Reserved -

BOTH Reserved Reserved Reserved

BUCKETS Reserved - -

BREADTH - Reserved -

BY Non-reserved Reserved Reserved

C - Non-
reserved

Non-
reserved

CACHE Non-reserved - -

CALL Non-reserved Reserved -

CALLED Non-reserved Non-
reserved

-

CARDINALITY - Non-
reserved

-

CASCADE Non-reserved Reserved Reserved

CASCADED Non-reserved Reserved Reserved

CASE Reserved Reserved Reserved

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 7



Keyword GaussDB(DWS) SQL:1999 SQL-92

CAST Reserved Reserved Reserved

CATALOG Non-reserved Reserved Reserved

CATALOG_NAME - Non-
reserved

Non-
reserved

CHAIN Non-reserved Non-
reserved

-

CHAR Non-reserved (excluding
functions and types)

Reserved Reserved

CHARACTER Non-reserved (excluding
functions and types)

Reserved Reserved

CHARACTERISTICS Non-reserved - -

CHARACTER_LENGTH - Non-
reserved

Reserved

CHARACTER_SET_CAT
ALOG

- Non-
reserved

Non-
reserved

CHARACTER_SET_NA
ME

- Non-
reserved

Non-
reserved

CHARACTER_SET_SCH
EMA

- Non-
reserved

Non-
reserved

CHAR_LENGTH - Non-
reserved

Reserved

CHECK Reserved Reserved Reserved

CHECKED - Non-
reserved

-

CHECKPOINT Non-reserved - -

CLASS Non-reserved Reserved -

CLEAN Non-reserved - -

CLASS_ORIGIN - Non-
reserved

Non-
reserved

CLOB Non-reserved Reserved -

CLOSE Non-reserved Reserved Reserved

CLUSTER Non-reserved - -

COALESCE Non-reserved (excluding
functions and types)

Non-
reserved

Reserved

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 8



Keyword GaussDB(DWS) SQL:1999 SQL-92

COBOL - Non-
reserved

Non-
reserved

COLLATE Reserved Reserved Reserved

COLLATION Reserved (functions and types
allowed)

Reserved Reserved

COLLATION_CATALOG - Non-
reserved

Non-
reserved

COLLATION_NAME - Non-
reserved

Non-
reserved

COLLATION_SCHEMA - Non-
reserved

Non-
reserved

COLUMN Reserved Reserved Reserved

COLUMNS Non-reserved - -

COLUMN_NAME - Non-
reserved

Non-
reserved

COMMAND_FUNCTIO
N

- Non-
reserved

Non-
reserved

COMMAND_FUNCTIO
N_CODE

- Non-
reserved

-

COMMENT Non-reserved - -

COMMENTS Non-reserved - -

COMMIT Non-reserved Reserved Reserved

COMMITTED Non-reserved Non-
reserved

Non-
reserved

COMPATIBLE_ILLEGAL
_CHARS

Non-reserved - -

COMPLETE Non-reserved - -

COMPRESS Non-reserved - -

COMPLETION - Reserved -

CONCURRENTLY Reserved (functions and types
allowed)

- -

CONDITION - - -

CONDITION_NUMBER - Non-
reserved

Non-
reserved

CONFIGURATION Non-reserved - -

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 9



Keyword GaussDB(DWS) SQL:1999 SQL-92

CONNECT - Reserved Reserved

CONNECTION Non-reserved Reserved Reserved

CONNECTION_NAME - Non-
reserved

Non-
reserved

CONSTRAINT Reserved Reserved Reserved

CONSTRAINTS Non-reserved Reserved Reserved

CONSTRAINT_CATALO
G

- Non-
reserved

Non-
reserved

CONSTRAINT_NAME - Non-
reserved

Non-
reserved

CONSTRAINT_SCHEM
A

- Non-
reserved

Non-
reserved

CONSTRUCTOR - Reserved -

CONTAINS - Non-
reserved

-

CONTENT Non-reserved - -

CONTINUE Non-reserved Reserved Reserved

CONVERSION Non-reserved - -

CONVERT - Non-
reserved

Reserved

COORDINATOR Non-reserved - -

COPY Non-reserved - -

CORRESPONDING - Reserved Reserved

COST Non-reserved - -

COUNT - Non-
reserved

Reserved

CREATE Reserved Reserved Reserved

CROSS Reserved (functions and types
allowed)

Reserved Reserved

CSV Non-reserved - -

CUBE - Reserved -

CURRENT Non-reserved Reserved Reserved

CURRENT_CATALOG Reserved - -

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 10



Keyword GaussDB(DWS) SQL:1999 SQL-92

CURRENT_DATE Reserved Reserved Reserved

CURRENT_PATH - Reserved -

CURRENT_ROLE Reserved Reserved -

CURRENT_SCHEMA Reserved (functions and types
allowed)

- -

CURRENT_TIME Reserved Reserved Reserved

CURRENT_TIMESTAM
P

Reserved Reserved Reserved

CURRENT_USER Reserved Reserved Reserved

CURSOR Non-reserved Reserved Reserved

CURSOR_NAME - Non-
reserved

Non-
reserved

CYCLE Non-reserved Reserved -

DATA Non-reserved Reserved Non-
reserved

DATE_FORMAT Non-reserved - -

DATABASE Non-reserved - -

DATAFILE Non-reserved - -

DATE Non-reserved (excluding
functions and types)

Reserved Reserved

DATETIME_INTERVAL_
CODE

- Non-
reserved

Non-
reserved

DATETIME_INTERVAL_
PRECISION

- Non-
reserved

Non-
reserved

DAY Non-reserved Reserved Reserved

DBCOMPATIBILITY Non-reserved - -

DEALLOCATE Non-reserved Reserved Reserved

DEC Non-reserved (excluding
functions and types)

Reserved Reserved

DECIMAL Non-reserved (excluding
functions and types)

Reserved Reserved

DECLARE Non-reserved Reserved Reserved

DECODE Non-reserved (excluding
functions and types)

- -

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 11



Keyword GaussDB(DWS) SQL:1999 SQL-92

DEFAULT Reserved Reserved Reserved

DEFAULTS Non-reserved - -

DEFERRABLE Reserved Reserved Reserved

DEFERRED Non-reserved Reserved Reserved

DEFINED - Non-
reserved

-

DEFINER Non-reserved Non-
reserved

-

DELETE Non-reserved Reserved Reserved

DELIMITER Non-reserved - -

DELIMITERS Non-reserved - -

DELTA Non-reserved - -

DEPTH - Reserved -

DEREF - Reserved -

DESC Reserved Reserved Reserved

DESCRIBE - Reserved Reserved

DESCRIPTOR - Reserved Reserved

DESTROY - Reserved -

DESTRUCTOR - Reserved -

DETERMINISTIC Non-reserved Reserved -

DIAGNOSTICS - Reserved Reserved

DICTIONARY Non-reserved Reserved -

DIRECT Non-reserved - -

DIRECTORY Non-reserved - -

DISABLE Non-reserved - -

DISCARD Non-reserved - -

DISCONNECT - Reserved Reserved

DISPATCH - Non-
reserved

-

DISTINCT Reserved Reserved Reserved

DISTRIBUTE Non-reserved - -

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 12



Keyword GaussDB(DWS) SQL:1999 SQL-92

DISTRIBUTION Non-reserved - -

DO Reserved - -

DOCUMENT Non-reserved - -

DOMAIN Non-reserved Reserved Reserved

DOUBLE Non-reserved Reserved Reserved

DROP Non-reserved Reserved Reserved

DYNAMIC - Reserved -

DYNAMIC_FUNCTION - Non-
reserved

Non-
reserved

DYNAMIC_FUNCTION
_CODE

- Non-
reserved

-

EACH Non-reserved Reserved -

ELASTIC Non-reserved - -

ELSE Reserved Reserved Reserved

ENABLE Non-reserved - -

ENCODING Non-reserved - -

ENCRYPTED Non-reserved - -

END Reserved Reserved Reserved

END-EXEC - Reserved Reserved

ENFORCED Non-reserved - -

ENUM Non-reserved - -

EOL Non-reserved - -

EQUALS - Reserved -

ERRORS Non-reserved - -

ESCAPE Non-reserved Reserved Reserved

ESCAPING Non-reserved - -

EVERY Non-reserved Reserved -

EXCEPT Reserved Reserved Reserved

EXCEPTION - Reserved Reserved

EXCHANGE Non-reserved - -

EXCLUDE Non-reserved - -

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 13



Keyword GaussDB(DWS) SQL:1999 SQL-92

EXCLUDING Non-reserved - -

EXCLUSIVE Non-reserved - -

EXEC - Reserved Reserved

EXECUTE Non-reserved Reserved Reserved

EXISTING - Non-
reserved

-

EXISTS Non-reserved (excluding
functions and types)

Non-
reserved

Reserved

EXPIRATION Non-reserved - -

EXPLAIN Non-reserved - -

EXTENSION Non-reserved - -

EXTERNAL Non-reserved Reserved Reserved

EXTRACT Non-reserved (excluding
functions and types)

Non-
reserved

Reserved

FALSE Reserved Reserved Reserved

FAMILY Non-reserved - -

FAST Non-reserved - -

FENCED Non-reserved - -

FETCH Reserved Reserved Reserved

FILEHEADER Non-reserved - -

FILL_MISSING_FIELDS Non-reserved - -

FINAL - Non-
reserved

-

FIRST Non-reserved Reserved Reserved

FIXED Non-reserved Reserved Reserved

FLOAT Non-reserved (excluding
functions and types)

Reserved Reserved

FOLLOWING Non-reserved - -

FOR Reserved Reserved Reserved

FORCE Non-reserved - -

FOREIGN Reserved Reserved Reserved

FORMATTER Non-reserved - -

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 14



Keyword GaussDB(DWS) SQL:1999 SQL-92

FORTRAN - Non-
reserved

Non-
reserved

FORWARD Non-reserved - -

FOUND - Reserved Reserved

FREE - Reserved -

FREEZE Reserved (functions and types
allowed)

- -

FROM Reserved Reserved Reserved

FULL Reserved (functions and types
allowed)

Reserved Reserved

FUNCTION Non-reserved Reserved -

FUNCTIONS Non-reserved - -

G - Non-
reserved

-

GENERAL - Reserved -

GENERATED - Non-
reserved

-

GET - Reserved Reserved

GLOBAL Non-reserved Reserved Reserved

GO - Reserved Reserved

GOTO - Reserved Reserved

GRANT Reserved Reserved Reserved

GRANTED Non-reserved Non-
reserved

-

GREATEST Non-reserved (excluding
functions and types)

- -

GROUP Reserved Reserved Reserved

GROUPING - Reserved -

HANDLER Non-reserved - -

HAVING Reserved Reserved Reserved

HEADER Non-reserved - -

HIERARCHY - Non-
reserved

-

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 15



Keyword GaussDB(DWS) SQL:1999 SQL-92

HOLD Non-reserved Non-
reserved

-

HOST - Reserved -

HOUR Non-reserved Reserved Reserved

IDENTIFIED Non-reserved - -

IDENTITY Non-reserved Reserved Reserved

IF Non-reserved (excluding
functions and types)

- -

IFNULL Non-reserved (excluding
functions and types)

- -

IGNORE - Reserved -

IGNORE_EXTRA_DATA Non-reserved - -

ILIKE Reserved (functions and types
allowed)

- -

IMMEDIATE Non-reserved Reserved Reserved

IMMUTABLE Non-reserved - -

IMPLEMENTATION - Non-
reserved

-

IMPLICIT Non-reserved - -

IN Reserved Reserved Reserved

INCLUDING Non-reserved - -

INCREMENT Non-reserved - -

INDEX Non-reserved - -

INDEXES Non-reserved - -

INDICATOR - Reserved Reserved

INFIX - Non-
reserved

-

INHERIT Non-reserved - -

INHERITS Non-reserved - -

INITIAL Non-reserved - -

INITIALIZE - Reserved -

INITIALLY Reserved Reserved Reserved

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 16



Keyword GaussDB(DWS) SQL:1999 SQL-92

INITRANS Non-reserved - -

INLINE Non-reserved - -

INNER Reserved (functions and types
allowed)

Reserved Reserved

INOUT Non-reserved (excluding
functions and types)

Reserved -

INPUT Non-reserved Reserved Reserved

INSENSITIVE Non-reserved Non-
reserved

Reserved

INSERT Non-reserved Reserved Reserved

INSTANCE - Non-
reserved

-

INSTANTIABLE - Non-
reserved

-

INSTEAD Non-reserved - -

INT Non-reserved (excluding
functions and types)

Reserved Reserved

INTEGER Non-reserved (excluding
functions and types)

Reserved Reserved

INTERNAL Reserved - -

INTERSECT Reserved Reserved Reserved

INTERVAL Non-reserved (excluding
functions and types)

Reserved Reserved

INTO Reserved Reserved Reserved

INVOKER Non-reserved Non-
reserved

-

IS Reserved Reserved Reserved

ISNULL Non-reserved (excluding
functions and types)

- -

ISOLATION Non-reserved Reserved Reserved

ITERATE - Reserved -

JOIN Reserved (functions and types
allowed)

Reserved Reserved

K - Non-
reserved

-

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 17



Keyword GaussDB(DWS) SQL:1999 SQL-92

KEY Non-reserved Reserved Reserved

KEY_MEMBER - Non-
reserved

-

KEY_TYPE - Non-
reserved

-

LABEL Non-reserved - -

LANGUAGE Non-reserved Reserved Reserved

LARGE Non-reserved Reserved -

LAST Non-reserved Reserved Reserved

LATERAL - Reserved -

LC_COLLATE Non-reserved - -

LC_CTYPE Non-reserved - -

LEADING Reserved Reserved Reserved

LEAKPROOF Non-reserved - -

LEAST Non-reserved (excluding
functions and types)

- -

LEFT Reserved (functions and types
allowed)

Reserved Reserved

LENGTH - Non-
reserved

Non-
reserved

LESS Reserved Reserved -

LEVEL Non-reserved Reserved Reserved

LIKE Reserved (functions and types
allowed)

Reserved Reserved

LIMIT Reserved Reserved -

LISTEN Non-reserved - -

LOAD Non-reserved - -

LOCAL Non-reserved Reserved Reserved

LOCALTIME Reserved Reserved -

LOCALTIMESTAMP Reserved Reserved -

LOCATION Non-reserved - -

LOCATOR - Reserved -

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 18



Keyword GaussDB(DWS) SQL:1999 SQL-92

LOCK Non-reserved - -

LOG Non-reserved - -

LOGGING Non-reserved - -

LOGIN Non-reserved - -

LOOP Non-reserved - -

LOWER - Non-
reserved

Reserved

M - Non-
reserved

-

MAP - Reserved -

MAPPING Non-reserved - -

MATCH Non-reserved Reserved Reserved

MATCHED Non-reserved - -

MAX - Non-
reserved

Reserved

MAXEXTENTS Non-reserved - -

MAXSIZE Non-reserved - -

MAXTRANS Non-reserved - -

MAXVALUE Reserved - -

MERGE Non-reserved - -

MESSAGE_LENGTH - Non-
reserved

Non-
reserved

MESSAGE_OCTET_LEN
GTH

- Non-
reserved

Non-
reserved

MESSAGE_TEXT - Non-
reserved

Non-
reserved

METHOD - Non-
reserved

-

MIN - Non-
reserved

Reserved

MINEXTENTS Non-reserved - -

MINUS Reserved - -

MINUTE Non-reserved Reserved Reserved

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 19



Keyword GaussDB(DWS) SQL:1999 SQL-92

MINVALUE Non-reserved - -

MOD - Non-
reserved

-

MODE Non-reserved - -

MODIFIES - Reserved -

MODIFY Reserved Reserved -

MODULE - Reserved Reserved

MONTH Non-reserved Reserved Reserved

MORE - Non-
reserved

Non-
reserved

MOVE Non-reserved - -

MOVEMENT Non-reserved - -

MUMPS - Non-
reserved

Non-
reserved

NAME Non-reserved Non-
reserved

Non-
reserved

NAMES Non-reserved Reserved Reserved

NATIONAL Non-reserved (excluding
functions and types)

Reserved Reserved

NATURAL Reserved (functions and types
allowed)

Reserved Reserved

NCHAR Non-reserved (excluding
functions and types)

Reserved Reserved

NCLOB - Reserved -

NEW - Reserved -

NEXT Non-reserved Reserved Reserved

NLSSORT Reserved - -

NO Non-reserved Reserved Reserved

NOCOMPRESS Non-reserved - -

NOCYCLE Non-reserved - -

NODE Non-reserved - -

NOLOGGING Non-reserved - -

NOLOGIN Non-reserved - -

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 20



Keyword GaussDB(DWS) SQL:1999 SQL-92

NOMAXVALUE Non-reserved - -

NOMINVALUE Non-reserved - -

NONE Non-reserved (excluding
functions and types)

Reserved -

NOT Reserved Reserved Reserved

NOTHING Non-reserved - -

NOTIFY Non-reserved - -

NOTNULL Reserved (functions and types
allowed)

- -

NOWAIT Non-reserved - -

NULL Reserved Reserved Reserved

NULLABLE - Non-
reserved

Non-
reserved

NULLIF Non-reserved (excluding
functions and types)

Non-
reserved

Reserved

NULLS Non-reserved - -

NUMBER Non-reserved (excluding
functions and types)

Non-
reserved

Non-
reserved

NUMERIC Non-reserved (excluding
functions and types)

Reserved Reserved

NUMSTR Non-reserved - -

NVARCHAR2 Non-reserved (excluding
functions and types)

- -

NVL Non-reserved (excluding
functions and types)

- -

OBJECT Non-reserved Reserved -

OCTET_LENGTH - Non-
reserved

Reserved

OF Non-reserved Reserved Reserved

OFF Non-reserved Reserved -

OFFSET Reserved - -

OIDS Non-reserved - -

OLD - Reserved -

ON Reserved Reserved Reserved

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 21



Keyword GaussDB(DWS) SQL:1999 SQL-92

ONLY Reserved Reserved Reserved

OPEN - Reserved Reserved

OPERATION - Reserved -

OPERATOR Non-reserved - -

OPTIMIZATION Non-reserved - -

OPTION Non-reserved Reserved Reserved

OPTIONS Non-reserved Non-
reserved

-

OR Reserved Reserved Reserved

ORDER Reserved Reserved Reserved

ORDINALITY - Reserved -

OUT Non-reserved (excluding
functions and types)

Reserved -

OUTER Reserved (functions and types
allowed)

Reserved Reserved

OUTPUT - Reserved Reserved

OVER Non-reserved - -

OVERLAPS Reserved (functions and types
allowed)

Non-
reserved

Reserved

OVERLAY Non-reserved (excluding
functions and types)

Non-
reserved

-

OVERRIDING - Non-
reserved

-

OWNED Non-reserved - -

OWNER Non-reserved - -

PACKAGE Non-reserved - -

PAD - Reserved Reserved

PARAMETER - Reserved -

PARAMETERS - Reserved -

PARAMETER_MODE - Non-
reserved

-

PARAMETER_NAME - Non-
reserved

-

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 22



Keyword GaussDB(DWS) SQL:1999 SQL-92

PARAMETER_ORDINA
L_POSITION

- Non-
reserved

-

PARAMETER_SPECIFIC
_CATALOG

- Non-
reserved

-

PARAMETER_SPECIFIC
_NAME

- Non-
reserved

-

PARAMETER_SPECIFIC
_SCHEMA

- Non-
reserved

-

PARSER Non-reserved - -

PARTIAL Non-reserved Reserved Reserved

PARTITION Non-reserved - -

PARTITIONS Non-reserved - -

PASCAL - Non-
reserved

Non-
reserved

PASSING Non-reserved - -

PASSWORD Non-reserved - -

PATH - Reserved -

PCTFREE Non-reserved - -

PER Non-reserved - -

PERM Non-reserved - -

PERCENT Non-reserved - -

PERFORMANCE Reserved - -

PLACING Reserved - -

PLAN Reserved - -

PLANS Non-reserved - -

PLI - Non-
reserved

Non-
reserved

POLICY Non-reserved - -

POOL Non-reserved - -

POSITION Non-reserved (excluding
functions and types)

Non-
reserved

Reserved

POSTFIX - Reserved -

PRECEDING Non-reserved - -

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 23



Keyword GaussDB(DWS) SQL:1999 SQL-92

PRECISION Non-reserved (excluding
functions and types)

Reserved Reserved

PREFERRED Non-reserved - -

PREFIX Non-reserved Reserved -

PREORDER - Reserved -

PREPARE Non-reserved Reserved Reserved

PREPARED Non-reserved - -

PRESERVE Non-reserved Reserved Reserved

PRIMARY Reserved Reserved Reserved

PRIOR Non-reserved Reserved Reserved

PRIVATE Non-reserved - -

PRIVILEGE Non-reserved - -

PRIVILEGES Non-reserved Reserved Reserved

PROCEDURAL Non-reserved - -

PROCEDURE Reserved Reserved Reserved

PROFILE Non-reserved - -

PUBLIC - Reserved Reserved

QUERY Non-reserved - -

QUOTE Non-reserved - -

RANGE Non-reserved - -

RAW Non-reserved - -

READ Non-reserved Reserved Reserved

READS - Reserved -

REAL Non-reserved (excluding
functions and types)

Reserved Reserved

REASSIGN Non-reserved - -

REBUILD Non-reserved - -

RECHECK Non-reserved - -

RECURSIVE Non-reserved Reserved -

REF Non-reserved Reserved -

REFRESH Non-reserved - -

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 24



Keyword GaussDB(DWS) SQL:1999 SQL-92

REFERENCES Reserved Reserved Reserved

REFERENCING - Reserved -

REINDEX Non-reserved - -

REJECT Reserved - -

RELATIVE Non-reserved Reserved Reserved

RELEASE Non-reserved - -

RELOPTIONS Non-reserved - -

REMOTE Non-reserved - -

RENAME Non-reserved - -

REPEATABLE Non-reserved Non-
reserved

Non-
reserved

REPLACE Non-reserved - -

REPLICA Non-reserved - -

RESET Non-reserved - -

RESIZE Non-reserved - -

RESOURCE Non-reserved - -

RESTART Non-reserved - -

RESTRICT Non-reserved Reserved Reserved

RESULT - Reserved -

RETURN Non-reserved Reserved -

RETURNED_LENGTH - Non-
reserved

Non-
reserved

RETURNED_OCTET_LE
NGTH

- Non-
reserved

Non-
reserved

RETURNED_SQLSTATE - Non-
reserved

Non-
reserved

RETURNING Reserved - -

RETURNS Non-reserved Reserved -

REUSE Non-reserved - -

REVOKE Non-reserved Reserved Reserved

RIGHT Reserved (functions and types
allowed)

Reserved Reserved

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 25



Keyword GaussDB(DWS) SQL:1999 SQL-92

ROLE Non-reserved Reserved -

ROLLBACK Non-reserved Reserved Reserved

ROLLUP - Reserved -

ROUTINE - Reserved -

ROUTINE_CATALOG - Non-
reserved

-

ROUTINE_NAME - Non-
reserved

-

ROUTINE_SCHEMA - Non-
reserved

-

ROW Non-reserved (excluding
functions and types)

Reserved -

ROWS Non-reserved Reserved Reserved

ROW_COUNT - Non-
reserved

Non-
reserved

RULE Non-reserved - -

SAVEPOINT Non-reserved Reserved -

SCALE - Non-
reserved

Non-
reserved

SCHEMA Non-reserved Reserved Reserved

SCHEMA_NAME - Non-
reserved

Non-
reserved

SCOPE - Reserved -

SCROLL Non-reserved Reserved Reserved

SEARCH Non-reserved Reserved -

SECOND Non-reserved Reserved Reserved

SECTION - Reserved Reserved

SECURITY Non-reserved Non-
reserved

-

SELECT Reserved Reserved Reserved

SELF - Non-
reserved

-

SENSITIVE - Non-
reserved

-

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 26



Keyword GaussDB(DWS) SQL:1999 SQL-92

SEQUENCE Non-reserved Reserved -

SEQUENCES Non-reserved - -

SERIALIZABLE Non-reserved Non-
reserved

Non-
reserved

SERVER Non-reserved - -

SERVER_NAME - Non-
reserved

Non-
reserved

SESSION Non-reserved Reserved Reserved

SESSION_USER Reserved Reserved Reserved

SET Non-reserved Reserved Reserved

SETOF Non-reserved (excluding
functions and types)

- -

SETS - Reserved -

SHARE Non-reserved - -

SHIPPABLE Non-reserved - -

SHOW Non-reserved - -

SIMILAR Reserved (functions and types
allowed)

Non-
reserved

-

SIMPLE Non-reserved Non-
reserved

-

SIZE Non-reserved Reserved Reserved

SMALLDATETIME Non-reserved (excluding
functions and types)

- -

SMALLDATETIME_FOR
MAT

Non-reserved - -

SMALLINT Non-reserved (excluding
functions and types)

Reserved Reserved

SNAPSHOT Non-reserved - -

SOME Reserved Reserved Reserved

SOURCE Non-reserved Non-
reserved

-

SPACE - Reserved Reserved

SPECIFIC - Reserved -

SPECIFICTYPE - Reserved -

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 27



Keyword GaussDB(DWS) SQL:1999 SQL-92

SPECIFIC_NAME - Non-
reserved

-

SPILL Non-reserved - -

SPLIT Non-reserved - -

SQL - Reserved Reserved

SQLCODE - - Reserved

SQLERROR - - Reserved

SQLEXCEPTION - Reserved -

SQLSTATE - Reserved Reserved

SQLWARNING - Reserved -

STABLE Non-reserved - -

STANDALONE Non-reserved - -

START Non-reserved Reserved -

STATE - Reserved -

STATEMENT Non-reserved Reserved -

STATEMENT_ID Non-reserved - -

STATIC - Reserved -

STATISTICS Non-reserved - -

STDIN Non-reserved - -

STDOUT Non-reserved - -

STORAGE Non-reserved - -

STORE Non-reserved - -

STRICT Non-reserved - -

STRIP Non-reserved - -

STRUCTURE - Reserved -

STYLE - Non-
reserved

-

SUBCLASS_ORIGIN - Non-
reserved

Non-
reserved

SUBLIST - Non-
reserved

-

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 28



Keyword GaussDB(DWS) SQL:1999 SQL-92

SUBSTRING Non-reserved (excluding
functions and types)

Non-
reserved

Reserved

SUM - Non-
reserved

Reserved

SUPERUSER Non-reserved - -

SYMMETRIC Reserved Non-
reserved

-

SYNONYM Non-reserved - -

SYS_REFCURSOR Non-reserved - -

SYSDATE Reserved - -

SYSID Non-reserved - -

SYSTEM Non-reserved Non-
reserved

-

SYSTEM_USER - Reserved Reserved

TABLE Reserved Reserved Reserved

TABLES Non-reserved - -

TABLE_NAME - Non-
reserved

Non-
reserved

TEMP Non-reserved - -

TEMPLATE Non-reserved - -

TEMPORARY Non-reserved Reserved Reserved

TERMINATE - Reserved -

TEXT Non-reserved - -

THAN Non-reserved Reserved -

THEN Reserved Reserved Reserved

TIME Non-reserved (excluding
functions and types)

Reserved Reserved

TIME_FORMAT Non-reserved - -

TIMESTAMP Non-reserved (excluding
functions and types)

Reserved Reserved

TIMESTAMPDIFF Non-reserved (excluding
functions and types)

- -

TIMESTAMP_FORMAT Non-reserved - -

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 29



Keyword GaussDB(DWS) SQL:1999 SQL-92

TIMEZONE_HOUR - Reserved Reserved

TIMEZONE_MINUTE - Reserved Reserved

TINYINT Non-reserved (excluding
functions and types)

- -

TO Reserved Reserved Reserved

TRAILING Reserved Reserved Reserved

TRANSACTION Non-reserved Reserved Reserved

TRANSACTIONS_COM
MITTED

- Non-
reserved

-

TRANSACTIONS_ROLL
ED_BACK

- Non-
reserved

-

TRANSACTION_ACTIV
E

- Non-
reserved

-

TRANSFORM - Non-
reserved

-

TRANSFORMS - Non-
reserved

-

TRANSLATE - Non-
reserved

Reserved

TRANSLATION - Reserved Reserved

TREAT Non-reserved (excluding
functions and types)

Reserved -

TRIGGER Non-reserved Reserved -

TRIGGER_CATALOG - Non-
reserved

-

TRIGGER_NAME - Non-
reserved

-

TRIGGER_SCHEMA - Non-
reserved

-

TRIM Non-reserved (excluding
functions and types)

Non-
reserved

Reserved

TRUE Reserved Reserved Reserved

TRUNCATE Non-reserved - -

TRUSTED Non-reserved - -

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 30



Keyword GaussDB(DWS) SQL:1999 SQL-92

TYPE Non-reserved Non-
reserved

Non-
reserved

TYPES Non-reserved - -

UESCAPE - - -

UNBOUNDED Non-reserved - -

UNCOMMITTED Non-reserved Non-
reserved

Non-
reserved

UNDER - Reserved -

UNENCRYPTED Non-reserved - -

UNION Reserved Reserved Reserved

UNIQUE Reserved Reserved Reserved

UNKNOWN Non-reserved Reserved Reserved

UNLIMITED Non-reserved - -

UNLISTEN Non-reserved - -

UNLOCK Non-reserved - -

UNLOGGED Non-reserved - -

UNNAMED - Non-
reserved

Non-
reserved

UNNEST - Reserved -

UNTIL Non-reserved - -

UNUSABLE Non-reserved - -

UPDATE Non-reserved Reserved Reserved

UPPER - Non-
reserved

Reserved

USAGE - Reserved Reserved

USER Reserved Reserved Reserved

USER_DEFINED_TYPE_
CATALOG

- Non-
reserved

-

USER_DEFINED_TYPE_
NAME

- Non-
reserved

-

USER_DEFINED_TYPE_
SCHEMA

- Non-
reserved

-

USING Reserved Reserved Reserved

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 31



Keyword GaussDB(DWS) SQL:1999 SQL-92

VACUUM Non-reserved - -

VALID Non-reserved - -

VALIDATE Non-reserved - -

VALIDATION Non-reserved - -

VALIDATOR Non-reserved - -

VALUE Non-reserved Reserved Reserved

VALUES Non-reserved (excluding
functions and types)

Reserved Reserved

VARCHAR Non-reserved (excluding
functions and types)

Reserved Reserved

VARCHAR2 Non-reserved (excluding
functions and types)

- -

VARIABLE - Reserved -

VARIADIC Reserved - -

VARYING Non-reserved Reserved Reserved

VCGROUP Non-reserved - -

VERBOSE Reserved (functions and types
allowed)

- -

VERIFY Non-reserved - -

VERSION Non-reserved - -

VIEW Non-reserved Reserved Reserved

VOLATILE Non-reserved - -

WHEN Reserved Reserved Reserved

WHENEVER - Reserved Reserved

WHERE Reserved Reserved Reserved

WHITESPACE Non-reserved - -

WINDOW Reserved - -

WITH Reserved Reserved Reserved

WITHIN Non-reserved - -

WITHOUT Non-reserved Reserved -

WORK Non-reserved Reserved Reserved

WORKLOAD Non-reserved - -

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 32



Keyword GaussDB(DWS) SQL:1999 SQL-92

WRAPPER Non-reserved - -

WRITE Non-reserved Reserved Reserved

XML Non-reserved - -

XMLATTRIBUTES Non-reserved (excluding
functions and types)

- -

XMLCONCAT Non-reserved (excluding
functions and types)

- -

XMLELEMENT Non-reserved (excluding
functions and types)

- -

XMLEXISTS Non-reserved (excluding
functions and types)

- -

XMLFOREST Non-reserved (excluding
functions and types)

- -

XMLNAMESPACES Non-reserved (excluding
functions and types)

- -

XMLPARSE Non-reserved (excluding
functions and types)

- -

XMLPI Non-reserved (excluding
functions and types)

- -

XMLROOT Non-reserved (excluding
functions and types)

- -

XMLSERIALIZE Non-reserved (excluding
functions and types)

- -

XMLTABLE Non-reserved (excluding
functions and types)

- -

YEAR Non-reserved Reserved Reserved

YES Non-reserved - -

ZONE Non-reserved Reserved Reserved

Data Warehouse Service
SQL Syntax 3 Keyword

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 33



4 Data Types

4.1 Numeric Types
Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte
floating-point numbers, and selectable-precision decimals.

For details about numeric operators and functions, see Mathematical Functions
and Operators.

GaussDB(DWS) supports integers, arbitrary precision numbers, floating point
types, and serial integers.

Integer Types
The types TINYINT, SMALLINT, INTEGER, BINARY_INTEGER, and BIGINT store
whole numbers, that is, numbers without fractional components, of various
ranges. Saving a number with a decimal in any of the data types will result in
errors.

The type INTEGER is the common choice. Generally, use the SMALLINT type only if
you are sure that the value range is within the SMALLINT value range. The storage
speed of INTEGER is much faster. BIGINT is used only when the range of INTEGER
is not large enough.

Table 4-1 Integer types

Column Description Storag
e
Space

Range

TINYINT Tiny integer, also
called INT1

1 byte 0 ~ 255

SMALLINT Small integer, also
called INT2

2 bytes -32,768 ~ +32,767

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 34



Column Description Storag
e
Space

Range

INTEGER Typical choice for
integer, also called
INT4

4 bytes -2,147,483,648 ~ +2,147,483,647

BINARY_IN
TEGER

INTEGER alias,
compatible with
Oracle

4 bytes -2,147,483,648 ~ +2,147,483,647

BIGINT Big integer, also
called INT8

8 bytes -9,223,372,036,854,775,808 ~
9,223,372,036,854,775,807

 

Examples:

Create a table containing TINYINT, INTEGER, and BIGINT data.
CREATE TABLE int_type_t1 
(
    a TINYINT, 
    b TINYINT,
    c INTEGER,
    d BIGINT
);

Insert data.

INSERT INTO int_type_t1 VALUES(100, 10, 1000, 10000);

View data.

SELECT * FROM int_type_t1;
  a  | b  |  c   |   d   
-----+----+------+-------
 100 | 10 | 1000 | 10000
(1 row)

Arbitrary Precision Types

The type NUMBER can store numbers with a very large number of digits. It is
especially recommended for storing monetary amounts and other quantities
where exactness is required. The arbitrary precision numbers require larger storage
space and have lower storage efficiency, operation efficiency, and poorer
compression ratio results than integer types.

The scale of a NUMBER value is the count of decimal digits in the fractional part,
to the right of the decimal point. The precision of a NUMBER value is the total
count of significant digits in the whole number, that is, the number of digits to
both sides of the decimal point. So the number 23.5141 has a precision of 6 and a
scale of 4. Integers can be considered to have a scale of zero.

To configure a numeric or decimal column, you are advised to specify both the
maximum precision (p) and the maximum scale (s) of the column.

If the precision or scale of a value is greater than the declared scale of the
column, the system will round the value to the specified number of fractional

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 35



digits. Then, if the number of digits to the left of the decimal point exceeds the
declared precision minus the declared scale, an error will be reported.

Table 4-2 Any-precision types

Column Description Storage Space Range

NUMERIC[
(p[,s])],
DECIMAL[(
p[,s])]

The value range
of p (precision) is
[1,1000], and the
value range of s
(standard) is
[0,p].

The precision is
specified by users.
Every four decimal
digits occupy two
bytes, and an extra
eight-byte overhead
is added to the
entire data.

Up to 131,072 digits
before the decimal
point; and up to 16,383
digits after the decimal
point when no
precision is specified

NUMBER[(
p[,s])]

Alias for type
NUMERIC,
compatible with
Oracle

The precision is
specified by users.
Every four decimal
digits occupy two
bytes, and an extra
eight-byte overhead
is added to the
entire data.

Up to 131,072 digits
before the decimal
point; and up to 16,383
digits after the decimal
point when no
precision is specified

 

Examples:

Create a table with DECIMAL values.

CREATE TABLE decimal_type_t1 (DT_COL1 DECIMAL(10,4));

Insert data.

INSERT INTO decimal_type_t1 VALUES(123456.122331);

View data.

SELECT * FROM decimal_type_t1;
   dt_col1   
-------------
 123456.1223
(1 row)

Floating-Point Types
The floating-point type is an inexact, variable-precision numeric type. This types is
an implementation of IEEE Standard 754 for Binary Floating-Point Arithmetic
(single and double precision, respectively), to the extent that the underlying
processor, OS, and compiler support it.

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 36



Table 4-3 Floating point types

Column Description Storage Space Range

REAL,
FLOAT4

Single precision
floating points,
inexact

4 bytes Six bytes of decimal
digits

DOUBLE
PRECISION
,
FLOAT8

Double precision
floating points,
inexact

8 bytes 1E-307~1E+308,
15 bytes of decimal
digits

FLOAT[(p)
]

Floating points,
inexact. The value
range of precision
(p) is [1,53].
NOTE

p is the precision,
indicating the total
decimal digits.

4 or 8 bytes REAL or DOUBLE
PRECISION is selected
as an internal identifier
based on different
precision (p). If no
precision is specified,
DOUBLE PRECISION is
used as the internal
identifier.

BINARY_D
OUBLE

DOUBLE
PRECISION alias,
compatible with
Oracle

8 bytes 1E-307~1E+308,
15 bytes of decimal
digits

DEC[(p[,s])
]

The value range
of p (precision) is
[1,1000], and the
value range of s
(standard) is
[0,p].
NOTE

p indicates the
total digits, and s
indicates the
decimal digit.

The precision is
specified by users.
Every four decimal
digits occupy two
bytes, and an extra
eight-byte overhead
is added to the
entire data.

Up to 131,072 digits
before the decimal
point; and up to 16,383
digits after the decimal
point when no
precision is specified

INTEGER[(
p[,s])]

The value range
of p (precision) is
[1,1000], and the
value range of s
(standard) is
[0,p].

The precision is
specified by users.
Every four decimal
digits occupy two
bytes, and an extra
eight-byte overhead
is added to the
entire data.

Up to 131,072 digits
before the decimal
point; and up to 16,383
digits after the decimal
point when no
precision is specified

 

Examples:

Create a table with floating-point values.

CREATE TABLE float_type_t2 
(

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 37



    FT_COL1 INTEGER,
    FT_COL2 FLOAT4,
    FT_COL3 FLOAT8,
    FT_COL4 FLOAT(3),
    FT_COL5 BINARY_DOUBLE,
    FT_COL6 DECIMAL(10,4),
    FT_COL7 INTEGER(6,3)
) DISTRIBUTE BY HASH ( ft_col1);

Insert data.

INSERT INTO float_type_t2 VALUES(10,10.365456,123456.1234,10.3214, 321.321, 123.123654, 123.123654);

View data.

SELECT * FROM float_type_t2;
 ft_col1 | ft_col2 |   ft_col3   | ft_col4 | ft_col5 | ft_col6  | ft_col7 
---------+---------+-------------+---------+---------+----------+---------
      10 | 10.3655 | 123456.1234 | 10.3214 | 321.321 | 123.1237 | 123.124
(1 row)

Serial Integers
SMALLSERIAL, SERIAL, and BIGSERIAL are not true types, but merely a notational
convenience for creating unique identifier columns. Therefore, an integer column
is created and its default value plans to be read from a sequencer. A NOT NULL
constraint is used to ensure NULL is not inserted. In most cases you would also
want to attach a UNIQUE or PRIMARY KEY constraint to prevent duplicate values
from being inserted unexpectedly. Lastly, the sequence is marked as "owned by"
the column, so that it will be dropped if the column or table is dropped. Currently,
the SERIAL column can be specified only when you create a table. You cannot add
the SERIAL column in an existing table. In addition, SERIAL columns cannot be
created in temporary tables. Because SERIAL is not a data type, columns cannot be
converted to this type.

Table 4-4 Sequence integer

Column Description Storage
Space

Range

SMALLSERIAL Two-byte auto-
incrementing
integer

2 bytes 1 ~ 32,767

SERIAL Four-byte auto-
incrementing
integer

4 bytes 1 ~ 2,147,483,647

BIGSERIAL Eight-byte auto-
incrementing
integer

8 bytes 1 ~
9,223,372,036,854,775,807

 

Examples:

Create a table with serial values.

CREATE TABLE smallserial_type_tab(a SMALLSERIAL);

Insert data.

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 38



INSERT INTO smallserial_type_tab VALUES(default);

Insert data again.

INSERT INTO smallserial_type_tab VALUES(default);

View data.

SELECT * FROM smallserial_type_tab;  
 a 
---
 1
 2
(2 rows)

4.2 Monetary Types
The money type stores a currency amount with fixed fractional precision. The
range shown in Table 4-5 assumes there are two fractional digits. Input is
accepted in a variety of formats, including integer and floating-point literals, as
well as typical currency formatting, such as $1,000.00. Output is generally in the
latter form but depends on the locale.

Table 4-5 Monetary types

Name Storage Size Descriptio
n

Range

money 8 bytes Currency
amount

-92233720368547758.08 to
+92233720368547758.07

 

Values of the numeric, int, and bigint data types can be cast to money.
Conversion from the real and double precision data types can be done by casting
to numeric first, for example:

SELECT '12.34'::float8::numeric::money;

However, this is not recommended. Floating point numbers should not be used to
handle money due to the potential for rounding errors.

A money value can be cast to numeric without loss of precision. Conversion to
other types could potentially lose precision, and must also be done in two stages:

SELECT '52093.89'::money::numeric::float8;

When a money value is divided by another money value, the result is double
precision (that is, a pure number, not money); the currency units cancel each
other out in the division.

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 39



4.3 Boolean Type

Table 4-6 Boolean type

Name Description Storage
Space

Value

BOOLEAN Boolean type 1 byte ● true
● false
● null (unknown)

 

Valid literal values for the "true" state are:

TRUE, 't', 'true', 'y', 'yes', '1'

Valid literal values for the "false" state include:

FALSE, 'f', 'false', 'n', 'no', '0'

TRUE and FALSE are standard expressions, compatible with SQL statements.

Examples
Data type boolean is displayed with letters t and f.

-- Create a table:
CREATE TABLE bool_type_t1  
(
    BT_COL1 BOOLEAN,
    BT_COL2 TEXT
) DISTRIBUTE BY HASH(BT_COL2);

--Insert data:
INSERT INTO bool_type_t1 VALUES (TRUE, 'sic est');

INSERT INTO bool_type_t1 VALUES (FALSE, 'non est');

-- View data:
SELECT * FROM bool_type_t1;
 bt_col1 | bt_col2 
---------+---------
 t       | sic est
 f       | non est
(2 rows)

SELECT * FROM bool_type_t1 WHERE bt_col1 = 't';
 bt_col1 | bt_col2 
---------+---------
 t       | sic est
(1 row)

-- Delete the tables:
DROP TABLE bool_type_t1;

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 40



4.4 Character Types
Table 4-7 lists the character types that can be used in GaussDB(DWS). For string
operators and related built-in functions, see Character Processing Functions and
Operators.

Table 4-7 Character types

Name Description Storage Space

CHAR(n)
CHARACTER(n)
NCHAR(n)

Fixed-length string, blank padded. n
indicates the string length. If it is not
specified, the default precision 1 is used.
The value of n is less than 10485761.

The maximum
size is 10 MB.

VARCHAR(n)
CHARACTER
VARYING(n)

Variable-length string. n indicates the
byte length. The value of n is less than
10485761.

The maximum
size is 10 MB.

VARCHAR2(n) Variable-length string. It is an alias for
VARCHAR(n) type, compatible with
Oracle. n indicates the byte length. The
value of n is less than 10485761.

The maximum
size is 10 MB.

NVARCHAR2(n) Variable-length string. n indicates the
string length. The value of n is less than
10485761.

The maximum
size is 10 MB.

CLOB A big text object. It is an alias for TEXT
type, compatible with Oracle.

The maximum
size is
10,7373,3621
bytes (1 GB -
8203 bytes).

TEXT Variable-length string. The maximum
size is
10,7373,3621
bytes (1 GB -
8203 bytes).

 

NO TE

In addition to the size limitation on each column, the total size of each tuple is
1,073,733,621 bytes (1 GB – 8023 bytes).

GaussDB(DWS) has two other fixed-length character types, as listed in Table 4-8.

The name type is used only in the internal system catalog as the storage identifier.
The length of this type is 64 bytes (63 characters plus the terminator). This data
type is not recommended for common users. When the name type is aligned with
other data types (for example, in multiple branches of case when, one branch
returns the name type and other branches return the text type), the name type

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 41



may be aligned but characters may be truncated. If you do not want to have 64-
bit truncated characters, you need to forcibly convert the name type to the text
type.

The type "char" only uses one byte of storage. It is internally used in the system
catalogs as a simplistic enumeration type.

Table 4-8 Special character types

Name Description Storage Space

name Internal type for object names 64 bytes

"char" Single-byte internal type 1 byte

 

Examples
-- Create a table:
CREATE TABLE char_type_t1 
(
    CT_COL1 CHARACTER(4)
) DISTRIBUTE BY HASH (CT_COL1);

--Insert data:
INSERT INTO char_type_t1 VALUES ('ok');

-- Query data in the table:
SELECT ct_col1, char_length(ct_col1) FROM char_type_t1;
 ct_col1 | char_length 
---------+-------------
 ok      |           4
(1 row)

-- Delete the tables:
DROP TABLE char_type_t1;
-- Create a table:
CREATE TABLE char_type_t2  
(
    CT_COL1 VARCHAR(5)
)  DISTRIBUTE BY HASH (CT_COL1);

--Insert data:
INSERT INTO char_type_t2 VALUES ('ok');

INSERT INTO char_type_t2 VALUES ('good');

-- Specify the type length. An error is reported if an inserted string exceeds this length.
INSERT INTO char_type_t2 VALUES ('too long');
ERROR:  value too long for type character varying(5)
CONTEXT:  referenced column: ct_col1

-- Specify the type length. A string exceeding this length is truncated.
INSERT INTO char_type_t2 VALUES ('too long'::varchar(5));

-- Query data:
SELECT ct_col1, char_length(ct_col1) FROM char_type_t2;
 ct_col1 | char_length 
---------+-------------
 good    |           4
 ok      |           2
 too l   |           5
(3 rows)

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 42



-- Delete data:
DROP TABLE char_type_t2;

4.5 Binary Data Types
Table 4-9 lists the binary data types that can be used in GaussDB(DWS).

Table 4-9 Binary Data Types

Nam
e

Description Storage Space

BLOB Binary large object.
Currently, BLOB only supports
the following external access
interfaces:
● DBMS_LOB.GETLENGTH
● DBMS_LOB.READ
● DBMS_LOB.WRITE
● DBMS_LOB.WRITEAPPEND
● DBMS_LOB.COPY
● DBMS_LOB.ERASE
For details about the interfaces,
see DBMS_LOB.
NOTE

Column storage cannot be used for
the BLOB type.

The maximum size is 10,7373,3621
bytes (1 GB - 8203 bytes).

RAW Variable-length hexadecimal
string
NOTE

Column storage cannot be used for
the raw type.

4 bytes plus the actual hexadecimal
string. The maximum size is
10,7373,3621 bytes (1 GB - 8203
bytes).

BYTE
A

Variable-length binary string 4 bytes plus the actual binary string.
The maximum size is 10,7373,3621
bytes (1 GB - 8203 bytes).

 

NO TE

In addition to the size limitation on each column, the total size of each tuple is 8203 bytes
less than 1 GB.

Examples

-- Create a table:
CREATE TABLE blob_type_t1 
(
    BT_COL1 INTEGER,
    BT_COL2 BLOB,
    BT_COL3 RAW,
    BT_COL4 BYTEA

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 43



) DISTRIBUTE BY REPLICATION;

--Insert data:
INSERT INTO blob_type_t1 VALUES(10,empty_blob(),
HEXTORAW('DEADBEEF'),E'\\xDEADBEEF');

-- Query data in the table:
SELECT * FROM blob_type_t1;
 bt_col1 | bt_col2 | bt_col3  |  bt_col4   
---------+---------+----------+------------
      10 |         | DEADBEEF | \xdeadbeef
(1 row)

-- Delete the tables:
DROP TABLE blob_type_t1;

4.6 Date/Time Types
Table 4-10 lists date and time types supported by GaussDB(DWS). For the
operators and built-in functions of the types, see Date and Time Processing
Functions and Operators.

NO TE

If the time format of another database is different from that of GaussDB(DWS), modify the
value of the DateStyle parameter to keep them consistent.

Table 4-10 Date/Time types

Name Description Storage Space

DATE In Oracle compatibility mode, it is
equivalent to timestamp(0) and
records the date and time.
In other modes, it records the date.

In Oracle
compatibility
mode, it occupies 8
bytes.
In Oracle
compatibility
mode, it occupies 4
bytes.

TIME [(p)]
[WITHOUT TIME
ZONE]

Specifies the time of day (no date).
p indicates the precision after the
decimal point. The value ranges
from 0 to 6.

8 bytes

TIME [(p)] [WITH
TIME ZONE]

Specifies time within one day (with
time zone).
p indicates the precision after the
decimal point. The value ranges
from 0 to 6.

12 bytes

TIMESTAMP[(p)]
[WITHOUT TIME
ZONE]

Specifies the date and time.
p indicates the precision after the
decimal point. The value ranges
from 0 to 6.

8 bytes

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 44



Name Description Storage Space

TIMESTAMP[(p)]
[WITH TIME ZONE]

Specifies the date and time (with
time zone). TIMESTAMP is also
called TIMESTAMPTZ.
p indicates the precision after the
decimal point. The value ranges
from 0 to 6.

8 bytes

SMALLDATETIME Specifies the date and time
(without time zone).
The precision level is minute. 31s to
59s are rounded into 1 minute.

8 bytes

INTERVAL DAY (l)
TO SECOND (p)

Specifies the time interval (X days
X hours X minutes X seconds).
● l: indicates the precision of days.

The value ranges from 0 to 6. To
adapt to Oracle syntax, the
precision functions are not
supported.

● p: indicates the precision of
seconds. The value ranges from
0 to 6. The digit 0 at the end of
a decimal number is not
displayed.

16 bytes

INTERVAL [FIELDS]
[ (p) ]

Specifies the time interval.
● fields: YEAR, MONTH, DAY,

HOUR, MINUTE, SECOND, DAY
TO HOUR, DAY TO MINUTE,
DAY TO SECOND, HOUR TO
MINUTE, HOUR TO SECOND,
and MINUTE TO SECOND.

● p: indicates the precision of
seconds. The value ranges from
0 to 6. p takes effect only when
fields are SECOND, DAY TO
SECOND, HOUR TO SECOND,
or MINUTE TO SECOND. The
digit 0 at the end of a decimal
number is not displayed.

12 bytes

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 45



Name Description Storage Space

reltime Relative time interval. The format
is:
X years X months X days XX:XX:XX
● The Julian calendar is used. It

specifies that a year has 365.25
days and a month has 30 days.
The relative time interval needs
to be calculated based on the
input value. The output format
is POSTGRES.

4 bytes

 

For example:

--Create a table:
CREATE TABLE date_type_tab(coll date);

--Insert data:
INSERT INTO date_type_tab VALUES (date '12-10-2010');

-- View data:
SELECT * FROM date_type_tab;
        coll         
---------------------
 2010-12-10 00:00:00
(1 row)

-- Delete the tables:
DROP TABLE date_type_tab;

--Create a table:
CREATE TABLE time_type_tab (da time without time zone ,dai time with time zone,dfgh timestamp without 
time zone,dfga timestamp with time zone, vbg smalldatetime);

--Insert data:
INSERT INTO time_type_tab VALUES ('21:21:21','21:21:21 pst','2010-12-12','2013-12-11 pst','2003-04-12 
04:05:06');

-- View data:
SELECT * FROM time_type_tab;
    da    |     dai     |        dfgh         |          dfga          |         vbg         
----------+-------------+---------------------+------------------------+---------------------
 21:21:21 | 21:21:21-08 | 2010-12-12 00:00:00 | 2013-12-11 16:00:00+08 | 2003-04-12 04:05:00
(1 row)

-- Delete the tables:
DROP TABLE time_type_tab;

--Create a table:
CREATE TABLE day_type_tab (a int,b INTERVAL DAY(3) TO SECOND (4)); 

--Insert data:
INSERT INTO day_type_tab VALUES (1, INTERVAL '3' DAY);

-- View data:
SELECT * FROM day_type_tab;
 a |   b    
---+--------
 1 | 3 days
(1 row)

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 46



-- Delete the tables:
DROP TABLE day_type_tab;

--Create a table:
CREATE TABLE year_type_tab(a int, b interval year (6));

--Insert data:
INSERT INTO year_type_tab VALUES(1,interval '2' year);

-- View data:
SELECT * FROM year_type_tab;
 a |    b    
---+---------
 1 | 2 years
(1 row)

-- Delete the tables:
DROP TABLE year_type_tab;

Date Input

Date and time input is accepted in almost any reasonable formats, including ISO
8601, SQL-compatible, and traditional POSTGRES. The system allows you to
customize the sequence of day, month, and year in the date input. Set the
DateStyle parameter to MDY to select month-day-year interpretation, DMY to
select day-month-year interpretation, or YMD to select year-month-day
interpretation.

Remember that any date or time literal input needs to be enclosed with single
quotes, and the syntax is as follows:

type [ ( p ) ] 'value'

The p that can be selected in the precision statement is an integer, indicating the
number of fractional digits in the seconds column. Table 4-11 shows some
possible inputs for the date type.

Table 4-11 Date input

Example Description

1999-01-08 ISO 8601 (recommended format). January 8, 1999 in any
mode

January 8, 1999 Unambiguous in any date input mode

1/8/1999 January 8 in MDY mode. August 1 in DMY mode

1/18/1999 January 18 in MDY mode, rejected in other modes

01/02/03 ● January 2, 2003 in MDY mode
● February 1, 2003 in DMY mode
● February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 47



Example Description

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YMD mode

Jan-08-99 January 8, except error in YMD mode

19990108 ISO 8601. January 8, 1999 in any mode

990108 ISO 8601. January 8, 1999 in any mode

1999.008 Year and day of year

J2451187 Julian date

January 8, 99 BC Year 99 BC

 

For example:

--Create a table:
CREATE TABLE date_type_tab(coll date);

--Insert data:
INSERT INTO date_type_tab VALUES (date '12-10-2010');

-- View data:
SELECT * FROM date_type_tab;
        coll         
---------------------
 2010-12-10 00:00:00
(1 row)

-- View the date format:
SHOW datestyle;
 DateStyle 
-----------
 ISO, MDY
(1 row)

-- Configure the date format:
SET datestyle='YMD';
SET

-- Insert data:
INSERT INTO date_type_tab VALUES(date '2010-12-11');

-- View data:
SELECT * FROM date_type_tab;
        coll         
---------------------
 2010-12-10 00:00:00
 2010-12-11 00:00:00
(2 rows)

-- Delete the tables:
DROP TABLE date_type_tab;

Times

The time-of-day types are TIME [(p)] [WITHOUT TIME ZONE] and TIME [(p)]
[WITH TIME ZONE]. TIME alone is equivalent to TIME WITHOUT TIME ZONE.

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 48



If a time zone is specified in the input for TIME WITHOUT TIME ZONE, it is
silently ignored.

For details about the time input types, see Table 4-12. For details about time zone
input types, see Table 4-13.

Table 4-12 Time input

Example Description

05:06.8 ISO 8601

4:05:06 ISO 8601

4:05 ISO 8601

40506 ISO 8601

4:05 AM Same as 04:05. AM does not affect
value

4:05 PM Same as 16:05. Input hour must be <=
12

04:05:06.789-8 ISO 8601

04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

04:05:06 PST Time zone specified by abbreviation

2003-04-12 04:05:06 America/
New_York

Time zone specified by full name

 

Table 4-13 Time zone input

Example Description

PST Abbreviation (for Pacific Standard Time)

America/New_York Full time zone name

-8:00 ISO-8601 offset for PST

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

 

For example:

SELECT time '04:05:06';
   time   
----------

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 49



 04:05:06
(1 row)

SELECT time '04:05:06 PST';
   time   
----------
 04:05:06
(1 row)

SELECT time with time zone '04:05:06 PST';
   timetz    
-------------
 04:05:06-08
(1 row)

Special Values

The special values supported by GaussDB(DWS) are converted to common date/
time values when being read. For details, see Table 4-14.

Table 4-14 Special Values

Input
String

Applicable Type Description

epoch date, timestamp 1970-01-01 00:00:00+00 (Unix system
time zero)

infinity timestamp Later than any other timestamps

-infinity timestamp Earlier than any other timestamps

now date, time, timestamp Start time of the current transaction

today date, timestamp Today midnight

tomorrow date, timestamp Tomorrow midnight

yesterday date, timestamp Yesterday midnight

allballs time 00:00:00.00 UTC

 

Interval Input

The input of reltime can be any valid interval in TEXT format. It can be a number
(negative numbers and decimals are also allowed) or a specific time, which must
be in SQL standard format, ISO-8601 format, or POSTGRES format. In addition,
the text input needs to be enclosed with single quotation marks ('').

For details, see Table 4-15.

Table 4-15 Interval input

Input Output Description

60 2 mons Numbers are used to indicate
intervals. The default unit is

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 50



Input Output Description

31.25 day. Decimals and negative
numbers are also allowed.
Particularly, a negative
interval syntactically means
how long before.

1 mons 1 days 06:00:00

-365 -12 mons -5 days

1 years 1 mons 8 days
12:00:00

1 years 1 mons 8 days
12:00:00

Intervals are in POSTGRES
format. They can contain
both positive and negative
numbers and are case-
insensitive. Output is a
simplified POSTGRES interval
converted from the input.

-13 months -10 hours -1 years -25 days
-04:00:00

-2 YEARS +5 MONTHS
10 DAYS

-1 years -6 mons -25
days -06:00:00

P-1.1Y10M -3 mons -5 days
-06:00:00

Intervals are in ISO-8601
format. They can contain
both positive and negative
numbers and are case-
insensitive. Output is a
simplified POSTGRES interval
converted from the input.

-12H -12:00:00

 

For example:

-- Create a table.
CREATE TABLE reltime_type_tab(col1 character(30), col2 reltime);

-- Insert data.
INSERT INTO reltime_type_tab VALUES ('90', '90');
INSERT INTO reltime_type_tab VALUES ('-366', '-366');
INSERT INTO reltime_type_tab VALUES ('1975.25', '1975.25');
INSERT INTO reltime_type_tab VALUES ('-2 YEARS +5 MONTHS 10 DAYS', '-2 YEARS +5 MONTHS 10 DAYS');
INSERT INTO reltime_type_tab VALUES ('30 DAYS 12:00:00', '30 DAYS 12:00:00');
INSERT INTO reltime_type_tab VALUES ('P-1.1Y10M', 'P-1.1Y10M');

-- View data.
SELECT * FROM reltime_type_tab;
              col1              |                col2                 
--------------------------------+-------------------------------------
 1975.25                        | 5 years 4 mons 29 days
 -2 YEARS +5 MONTHS 10 DAYS     | -1 years -6 mons -25 days -06:00:00
 P-1.1Y10M                      | -3 mons -5 days -06:00:00
 -366                           | -1 years -18:00:00
 90                             | 3 mons
 30 DAYS 12:00:00               | 1 mon 12:00:00
(6 rows)

-- Delete tables.
DROP TABLE reltime_type_tab;

4.7 Geometric Types
Table 4-16 lists the geometric types that can be used in GaussDB(DWS). The most
fundamental type, the point, forms the basis for all of the other types.

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 51



Table 4-16 Geometric Type

Name Storage
Space

Description Representation

point 16 bytes Point on a plane (x,y)

lseg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular Box ((x1,y1),(x2,y2))

path 16+16n
bytes

Closed path (similar to
polygon)

((x1,y1),...)

path 16+16n
bytes

Open path [(x1,y1),...]

polygon 40+16n
bytes

Polygon (similar to closed
path)

((x1,y1),...)

circle 24 bytes Circle <(x,y),r> (center point
and radius)

 

A rich set of functions and operators is available in GaussDB(DWS) to perform
various geometric operations, such as scaling, translation, rotation, and
determining intersections. For details, see Geometric Functions and Operators.

Points
Points are the fundamental two-dimensional building block for geometric types.
Values of the point type are specified using either of the following syntaxes:

( x , y )
x , y

where x and y are the respective coordinates, as floating-point numbers.

Points are output using the first syntax.

Line Segments
Line segments (lseg) are represented by pairs of points. Values of the lseg type
are specified using any of the following syntaxes:

[ ( x1 , y1 ) , ( x2 , y2 ) ]
( ( x1 , y1 ) , ( x2 , y2 ) )
( x1 , y1 ) , ( x2 , y2 )
x1 , y1   ,   x2 , y2

where (x1,y1) and (x2,y2) are the end points of the line segment.

Line segments are output using the first syntax.

Rectangular Box
Boxes are represented by pairs of points that are opposite corners of the box.
Values of the box type are specified using any of the following syntaxes:

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 52



( ( x1 , y1 ) , ( x2 , y2 ) )
( x1 , y1 ) , ( x2 , y2 )
x1 , y1   ,   x2 , y2

where (x1,y1) and (x2,y2) are any two opposite corners of the box.

Boxes are output using the second syntax.

Any two opposite corners can be supplied on input, but in this order, the values
will be reordered as needed to store the upper right and lower left corners.

Path
Paths are represented by lists of connected points. Paths can be open, where the
first and last points in the list are considered not connected, or closed, where the
first and last points are considered connected.

Values of the path type are specified using any of the following syntaxes:

[ ( x1 , y1 ) , ... , ( xn , yn ) ]
( ( x1 , y1 ) , ... , ( xn , yn ) )
( x1 , y1 ) , ... , ( xn , yn )
( x1 , y1   , ... ,   xn , yn )
x1 , y1   , ... ,   xn , yn

where the points are the end points of the line segments comprising the path.
Square brackets ([]) indicate an open path, while parentheses (()) indicate a
closed path. When the outermost parentheses are omitted, as in the third through
fifth syntaxes, a closed path is assumed.

Paths are output using the first or second syntax.

Polygons
Polygons are represented by lists of points (the vertexes of the polygon). Polygons
are very similar to closed paths, but are stored differently and have their own set
of support functions.

Values of the polygon type are specified using any of the following syntaxes:

( ( x1 , y1 ) , ... , ( xn , yn ) )
( x1 , y1 ) , ... , ( xn , yn )
( x1 , y1   , ... ,   xn , yn )
x1 , y1   , ... ,   xn , yn

where the points are the end points of the line segments comprising the boundary
of the polygon.

Polygons are output using the first syntax.

Circle
Circles are represented by a center point and radius. Values of the circle type are
specified using any of the following syntaxes:

< ( x , y ) , r >
( ( x , y ) , r )
( x , y ) , r
x , y   , r

where (x,y) is the center point and r is the radius of the circle.

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 53



Circles are output using the first syntax.

4.8 Network Address Types
GaussDB(DWS) offers data types to store IPv4, IPv6, and MAC addresses.

It is better to use network address types instead of plaintext types to store IPv4,
IPv6, and MAC addresses, because these types offer input error checking and
specialized operators and functions. For details, see Network Address Functions
and Operators.

Table 4-17 Network Address Types

Name Storage Space Description

cidr 7 or 19 bytes IPv4 or IPv6 networks

inet 7 or 19 bytes IPv4 or IPv6 hosts and networks

macaddr 6 bytes MAC addresses

 

When sorting inet or cidr data types, IPv4 addresses will always sort before IPv6
addresses, including IPv4 addresses encapsulated or mapped to IPv6 addresses,
such as ::10.2.3.4 or ::ffff:10.4.3.2.

cidr
The cidr type (Classless Inter-Domain Routing) holds an IPv4 or IPv6 network
specification. The format for specifying networks is address/y where address is
the network represented as an IPv4 or IPv6 address, and y is the number of bits in
the netmask. If y is omitted, it is calculated using assumptions from the older
classful network numbering system, except it will be at least large enough to
include all of the octets written in the input.

● Example 1: Convert a value in the CIDR format to an IP address segment.
For example, 10.0.0.0/8 is converted into a 32-bit binary address
00001010.00000000.00000000.00000000. /8 indicates an 8-bit network ID.
The first eight bits of the 32-bit binary address are fixed. The corresponding
network segment is
00001010.00000000.00000000.00000000-00001010.11111111.11111111.1111
1111. 10.0.0.0/8 indicates that the subnet mask is 255.0.0.0 and the
corresponding network segment is 10.0.0.0-10.255.255.255.

● Example 2: Convert an IP address segment to the CIDR format.
For the IP address segment 192.168.0.0–192.168.31.255, the last two
segments can be converted into a binary address
00000000.00000000-00011111.11111111. The first 19 bits (8 x 2 + 3) are
fixed. Therefore, the binary address is 192.168.0.0/19.

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 54



Table 4-18 cidr type input examples

cidr Input cidr Output abbrev (cidr)

192.168.100.128/25 192.168.100.128/25 192.168.100.128/25

192.168/24 192.168.0.0/24 192.168.0/24

192.168/25 192.168.0.0/25 192.168.0.0/25

192.168.1 192.168.1.0/24 192.168.1/24

192.168 192.168.0.0/24 192.168.0/24

10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

10.1.2.3/32 10.1.2.3/32 10.1.2.3/32

2001:4f8:3:ba::/64 2001:4f8:3:ba::/64 2001:4f8:3:ba::/64

2001:4f8:3:ba:
2e0:81ff:fe22:d1f1/128

2001:4f8:3:ba:
2e0:81ff:fe22:d1f1/128

2001:4f8:3:ba:
2e0:81ff:fe22:d1f1

::ffff:1.2.3.0/120 ::ffff:1.2.3.0/120 ::ffff:1.2.3/120

::ffff:1.2.3.0/128 ::ffff:1.2.3.0/128 ::ffff:1.2.3.0/128

 

inet
The inet type holds an IPv4 or IPv6 host address, and optionally its subnet, all in
one field. The subnet is represented by the number of network address bits
present in the host address (the "netmask"). If the netmask is 32 and the address
is IPv4, then the value does not indicate a subnet, only a single host. In IPv6, the
address length is 128 bits, so 128 bits specify a unique host address.

The input format for this type is address/y where address is an IPv4 or IPv6
address and y is the number of bits in the netmask. If the /y portion is missing,
the netmask is 32 for IPv4 and 128 for IPv6, so the value represents just a single
host. On display, the /y portion is suppressed if the netmask specifies a single
host.

The essential difference between the inet and cidr data types is that inet accepts
values with nonzero bits to the right of the netmask, whereas cidr does not.

macaddr
The macaddr type stores MAC addresses, known for example from Ethernet card
hardware addresses (although MAC addresses are used for other purposes as
well). Input is accepted in the following formats:

'08:00:2b:01:02:03'
'08-00-2b-01-02-03'
'08002b:010203'
'08002b-010203'

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 55



'0800.2b01.0203'
'08002b010203'

These examples would all specify the same address. Upper and lower cases are
accepted for the digits a through f. Output is always in the first of the forms
shown.

4.9 Bit String Types
Bit strings are strings of 1's and 0's. They can be used to store bit masks.

GaussDB(DWS) supports two SQL bit types: bit(n) and bit varying(n), where n is
a positive integer.

The bit type data must match the length n exactly. It is an error to attempt to
store shorter or longer bit strings. The bit varying data is of variable length up to
the maximum length n; longer strings will be rejected. Writing bit without a
length is equivalent to bit(1), while bit varying without a length specification
means unlimited length.

NO TE

If one explicitly casts a bit-string value to bit(n), it will be truncated or zero-padded on the
right to be exactly n bits, without raising an error.
Similarly, if one explicitly casts a bit-string value to bit varying(n), it will be truncated on
the right if it is more than n bits.

-- Create a table:
CREATE TABLE bit_type_t1 
(
    BT_COL1 INTEGER,
    BT_COL2 BIT(3),
    BT_COL3 BIT VARYING(5)
) DISTRIBUTE BY REPLICATION;

--Insert data:
INSERT INTO bit_type_t1 VALUES(1, B'101', B'00');

-- Specify the type length. An error is reported if an inserted string exceeds this length.
INSERT INTO bit_type_t1 VALUES(2, B'10', B'101');
ERROR:  bit string length 2 does not match type bit(3)
CONTEXT:  referenced column: bt_col2

-- Specify the type length. Data is converted if it exceeds this length.
INSERT INTO bit_type_t1 VALUES(2, B'10'::bit(3), B'101');

-- View data:
SELECT * FROM bit_type_t1;
 bt_col1 | bt_col2 | bt_col3 
---------+---------+---------
       1 | 101     | 00
       2 | 100     | 101
(2 rows)

-- Delete the tables:
DROP TABLE bit_type_t1;

4.10 Text Search Types
GaussDB(DWS) offers two data types that are designed to support full text search.
The tsvector type represents a document in a form optimized for text search. The
tsquery type similarly represents a text query.

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 56



tsvector

The tsvector type represents a retrieval unit, usually a textual column within a
row of a database table, or a combination of such columns. A tsvector value is a
sorted list of distinct lexemes, which are words that have been normalized to
merge different variants of the same word. Sorting and deduplication are done
automatically during input. The to_tsvector function is used to parse and
normalize a document string. The to_tsvector function is used to parse and
normalize a document string.

A tsvector value is a sorted list of distinct lexemes, which are words that have
been formatted different entries. During segmentation, tsvector automatically
performs duplicate-elimination to the entries for input in a certain order. For
example:

SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector;
                      tsvector                      
----------------------------------------------------
 'a' 'and' 'ate' 'cat' 'fat' 'mat' 'on' 'rat' 'sat'
(1 row)

It can be seen from the preceding example that tsvector segments a string by
spaces, and segmented lexemes are sorted based on their length and alphabetical
order. To represent lexemes containing whitespace or punctuation, surround them
with quotes:

SELECT $$the lexeme '    ' contains spaces$$::tsvector;
                 tsvector                  
-------------------------------------------
 '    ' 'contains' 'lexeme' 'spaces' 'the'
(1 row)

Use double dollar signs ($$) to mark entries containing single quotation marks (').

SELECT $$the lexeme 'Joe''s' contains a quote$$::tsvector;
                    tsvector                    
------------------------------------------------
 'Joe''s' 'a' 'contains' 'lexeme' 'quote' 'the'
(1 row)

Optionally, integer positions can be attached to lexemes:

SELECT 'a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11 rat:12'::tsvector;
                                   tsvector                                    
-------------------------------------------------------------------------------
 'a':1,6,10 'and':8 'ate':9 'cat':3 'fat':2,11 'mat':7 'on':5 'rat':12 'sat':4
(1 row)

A position normally indicates the source word's location in the document.
Positional information can be used for proximity ranking. Position values range
from 1 to 16383. The default maximum value is 16383. Duplicate positions for the
same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can be A,
B, C, or D. D is the default and hence is not shown on output:

SELECT 'a:1A fat:2B,4C cat:5D'::tsvector;
          tsvector          
----------------------------
 'a':1A 'cat':5 'fat':2B,4C
(1 row)

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 57



Weights are typically used to reflect document structure, for example, by marking
title words differently from body words. Text search ranking functions can assign
different priorities to the different weight markers.

The following example is the standard usage of the tsvector type. For example:

SELECT 'The Fat Rats'::tsvector;
      tsvector      
--------------------
 'Fat' 'Rats' 'The'
(1 row)

For most English-text-searching applications the above words would be considered
non-normalized, which should usually be passed through to_tsvector to normalize
the words appropriately for searching:

SELECT to_tsvector('english', 'The Fat Rats');
   to_tsvector   
-----------------
 'fat':2 'rat':3
(1 row)

tsquery
The tsquery type represents a retrieval condition. A tsquery value stores lexemes
that are to be searched for, and combines them honoring the Boolean operators &
(AND), | (OR), and ! (NOT). Parentheses can be used to enforce grouping of the
operators. The to_tsquery and plainto_tsquery functions will normalize lexemes
before the lexemes are converted to the tsquery type.

SELECT 'fat & rat'::tsquery;
    tsquery    
---------------
 'fat' & 'rat'
(1 row)

SELECT 'fat & (rat | cat)'::tsquery;
          tsquery          
---------------------------
 'fat' & ( 'rat' | 'cat' )
(1 row)

SELECT 'fat & rat & ! cat'::tsquery;
        tsquery         
------------------------
 'fat' & 'rat' & !'cat'
(1 row)

In the absence of parentheses, ! (NOT) binds most tightly, and & (AND) binds
more tightly than | (OR).

Lexemes in a tsquery can be labeled with one or more weight letters, which
restrict them to match only tsvector lexemes with matching weights:

SELECT 'fat:ab & cat'::tsquery;
     tsquery      
------------------
 'fat':AB & 'cat'
(1 row)

Also, lexemes in a tsquery can be labeled with * to specify prefix matching:

SELECT 'super:*'::tsquery;
  tsquery  
-----------

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 58



 'super':*
(1 row)

This query will match any word in a tsvector that begins with "super".

Note that prefixes are first processed by text search configurations, which means
the following example returns true:

SELECT to_tsvector( 'postgraduate' ) @@ to_tsquery( 'postgres:*' ) AS RESULT;
  result  
----------
 t
(1 row)

because postgres gets stemmed to postgr:

SELECT to_tsquery('postgres:*');
 to_tsquery 
------------
 'postgr':*
(1 row)

which then matches postgraduate.

'Fat:ab & Cats' is normalized to the tsquery type as follows:

SELECT to_tsquery('Fat:ab & Cats');
    to_tsquery    
------------------
 'fat':AB & 'cat'
(1 row)

4.11 UUID Type
The data type UUID stores Universally Unique Identifiers (UUID) as defined by
RFC 4122, ISO/IEF 9834-8:2005, and related standards. This identifier is a 128-bit
quantity that is generated by an algorithm chosen to make it very unlikely that
the same identifier will be generated by anyone else in the known universe using
the same algorithm.

Therefore, for distributed systems, these identifiers provide a better uniqueness
guarantee than sequence generators, which are only unique within a single
database.

A UUID is written as a sequence of lower-case hexadecimal digits, in several
groups separated by hyphens, specifically a group of 8 digits followed by three
groups of 4 digits followed by a group of 12 digits, for a total of 32 digits
representing the 128 bits. An example of a UUID in this standard form is:

a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11

GaussDB(DWS) also accepts the following alternative forms for input: use of
upper-case letters and digits, the standard format surrounded by braces, omitting
some or all hyphens, and adding a hyphen after any group of four digits.
Examples

A0EEBC99-9C0B-4EF8-BB6D-6BB9BD380A11
{a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11}
a0eebc999c0b4ef8bb6d6bb9bd380a11
a0ee-bc99-9c0b-4ef8-bb6d-6bb9-bd38-0a11

Output is always in the standard form.

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 59



4.12 JSON Types
JSON data types are for storing JavaScript Object Notation (JSON) data. Such data
can also be stored as TEXT, but the JSON data type has the advantage of checking
that each stored value is a valid JSON value.

For functions that support the JSON data type, see JSON Functions.

4.13 HLL Data Types
HyperLoglog (HLL) is an approximation algorithm for efficiently counting the
number of distinct values in a data set. It features faster computing and lower
space usage. You only need to store HLL data structures, instead of data sets.
When new data is added to a data set, make hash calculation on the data and
insert the result to an HLL. Then, you can obtain the final result based on the HLL.

Table 4-19 compares HLL with other algorithms.

Table 4-19 Comparison between HLL and other algorithms

Item Sorting
Algorithm

Hash Algorithm HLL

Time complexity O(nlogn) O(n) O(n)

Space complexity O(n) O(n) 1280 bytes

Error rate 0 0 ≈2%

Storage space
requirement

Size of raw data Size of raw data 1280 bytes

 

HLL has advantages over others in the computing speed and storage space
requirement. In terms of time complexity, the sorting algorithm needs O(nlogn)
time for sorting, and the hash algorithm and HLL need O(n) time for full table
scanning. In terms of storage space requirements, the sorting algorithm and hash
algorithm need to store raw data before collecting statistics, whereas the HLL
algorithm needs to store only the HLL data structures rather than the raw data,
and thereby occupying a fixed space of only 1280 bytes.

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 60



NO TICE

● In default specifications, the maximum number of distinct values is 1.6e plus
12, and the maximum error rate is only 2.3%. If a calculation result exceeds the
maximum number, the error rate of the calculation result will increase, or the
calculation will fail and an error will be reported.

● When using this feature for the first time, you need to evaluate the distinct
values of the service, properly select configuration parameters, and perform
verification to ensure that the accuracy meets requirements.
● When default parameter configuration is used, the calculated number of

distinct values is 1.6e plus 12. If the calculated result is NaN, you need to
adjust log2m and regwidth to accommodate more distinct values.

● The hash algorithm has an extremely low probability of collision. However,
you are still advised to select 2 or 3 hash seeds for verification when using
the hash algorithm for the first time. If there is only a small difference
between the distinct values, you can select any one of the seeds as the
hash seed.

Table 4-20 describes main HLL data structures.

Table 4-20 Main HLL data structures

Data Type Description

hll Its size is always 1280 bytes, which can be directly used to
calculate the number of distinct values.

 

The following describes HLL application scenarios.

● Scenario 1: "Hello World"
The following example shows how to use the HLL data type:
-- Create a table with the HLL data type:
create table helloworld (id integer, set hll);
 
-- Insert an empty HLL to the table:
insert into helloworld(id, set) values (1, hll_empty());
 
-- Add a hashed integer to the HLL:
update helloworld set set = hll_add(set, hll_hash_integer(12345)) where id = 1;

-- Add a hashed string to the HLL:
update helloworld set set = hll_add(set, hll_hash_text('hello world')) where id = 1;
 
-- Obtain the number of distinct values of the HLL:
select hll_cardinality(set) from helloworld where id = 1;
 hll_cardinality 
-----------------
               2
(1 row)

● Scenario 2: Collect statistics about website visitors.
The following example shows how an HLL collects statistics on the number of
users visiting a website within a period of time:
-- Create a raw data table to show that a user has visited the website at a certain time:
create table facts (

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 61



         date            date,
         user_id         integer
);
 
-- Construct data to show the users who have visited the website in a day:
insert into facts values ('2019-02-20', generate_series(1,100));
insert into facts values ('2019-02-21', generate_series(1,200));
insert into facts values ('2019-02-22', generate_series(1,300));
insert into facts values ('2019-02-23', generate_series(1,400));
insert into facts values ('2019-02-24', generate_series(1,500));
insert into facts values ('2019-02-25', generate_series(1,600));
insert into facts values ('2019-02-26', generate_series(1,700));
insert into facts values ('2019-02-27', generate_series(1,800));
 
-- Create another table and specify an HLL column:
create table daily_uniques (
    date            date UNIQUE,
    users           hll
);
 
-- Group data by date and insert the data into the HLL:
insert into daily_uniques(date, users)
    select date, hll_add_agg(hll_hash_integer(user_id))
    from facts
    group by 1;
 
-- Calculate the numbers of users visiting the website every day:
select date, hll_cardinality(users) from daily_uniques order by date;
        date         | hll_cardinality  
---------------------+------------------
 2019-02-20 00:00:00 |              100
 2019-02-21 00:00:00 | 203.813355588808
 2019-02-22 00:00:00 | 308.048239950384
 2019-02-23 00:00:00 | 410.529188080374
 2019-02-24 00:00:00 | 513.263875705319
 2019-02-25 00:00:00 | 609.271181107416
 2019-02-26 00:00:00 | 702.941844662509
 2019-02-27 00:00:00 | 792.249946595237
(8 rows)
 
-- Calculate the number of users who had visited the website in the week from February 20, 2019 to 
February 26, 2019:
select hll_cardinality(hll_union_agg(users)) from daily_uniques where date >= '2019-02-20'::date and 
date <= '2019-02-26'::date;
 hll_cardinality  
------------------
 702.941844662509
(1 row)
 
-- Calculate the number of users who had visited the website yesterday but have not visited the 
website today:
SELECT date, (#hll_union_agg(users) OVER two_days) - #users AS lost_uniques FROM daily_uniques 
WINDOW two_days AS (ORDER BY date ASC ROWS 1 
PRECEDING);                                                                                                             
        date         | lost_uniques 
---------------------+--------------
 2019-02-20 00:00:00 |            0
 2019-02-21 00:00:00 |            0
 2019-02-22 00:00:00 |            0
 2019-02-23 00:00:00 |            0
 2019-02-24 00:00:00 |            0
 2019-02-25 00:00:00 |            0
 2019-02-26 00:00:00 |            0
 2019-02-27 00:00:00 |            0
(8 rows)

● Scenario 3: The data to be inserted does not meet the requirements of the
HLL data structure.

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 62



When inserting data into a column of the HLL type, ensure that the data
meets the requirements of the HLL data structure. If the data does not meet
the requirements after being parsed, an error will be reported. In the
following example, E\\1234 to be inserted does not meet the requirements of
the HLL data structure after being parsed. As a result, an error is reported.
create table test(id integer, set hll);
insert into test values(1, 'E\\1234');
ERROR:  unknown schema version 4

4.14 Object Identifier Types
Object identifiers (OIDs) are used internally by GaussDB(DWS) as primary keys for
various system catalogs. OIDs are not added to user-created tables by the system.
The OID type represents an object identifier.

The OID type is currently implemented as an unsigned four-byte integer. So, using
a user-created table's OID column as a primary key is discouraged.

Table 4-21 Object identifier types

Name Referenc
e

Description Examples

OID - Numeric object identifier 564182

CID - A command identifier. This
is the data type of the
system columns cmin and
cmax. Command identifiers
are 32-bit quantities.

-

XID - A transaction identifier. This
is the data type of the
system columns xmin and
xmax. Transaction
identifiers are also 32-bit
quantities.

-

TID - A row identifier. This is the
data type of the system
column ctid. A row ID is a
pair (block number, tuple
index within block) that
identifies the physical
location of the row within
its table.

-

REGCONFI
G

pg_ts_conf
ig

Text search configuration english

REGDICTIO
NARY

pg_ts_dict Text search dictionary simple

REGOPER pg_operat
or

Operator name +

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 63



Name Referenc
e

Description Examples

REGOPERA
TOR

pg_operat
or

Operator with argument
types

*(integer,integer) or -
(NONE,integer)

REGPROC pg_proc Indicates the name of the
function.

sum

REGPROCE
DURE

pg_proc Function with argument
types

sum(int4)

REGCLASS pg_class Relation name pg_type

REGTYPE pg_type Data type name integer

 

The OID type is used for a column in the database system catalog.

For example:

SELECT oid FROM pg_class WHERE relname = 'pg_type';
 oid  
------
 1247
(1 row)

The alias type for OID is REGCLASS which allows simplified search for OID values.

For example:

SELECT attrelid,attname,atttypid,attstattarget FROM pg_attribute WHERE attrelid = 'pg_type'::REGCLASS;
 attrelid |  attname   | atttypid | attstattarget 
----------+------------+----------+---------------
     1247 | xc_node_id     |       23 |             0
     1247 | tableoid       |       26 |             0
     1247 | cmax           |       29 |             0
     1247 | xmax           |       28 |             0
     1247 | cmin           |       29 |             0
     1247 | xmin           |       28 |             0
     1247 | oid            |       26 |             0
     1247 | ctid           |       27 |             0
     1247 | typname        |       19 |            -1
     1247 | typnamespace   |       26 |            -1
     1247 | typowner       |       26 |            -1
     1247 | typlen         |       21 |            -1
     1247 | typbyval       |       16 |            -1
     1247 | typtype        |       18 |            -1
     1247 | typcategory    |       18 |            -1
     1247 | typispreferred |       16 |            -1
     1247 | typisdefined   |       16 |            -1
     1247 | typdelim       |       18 |            -1
     1247 | typrelid       |       26 |            -1
     1247 | typelem        |       26 |            -1
     1247 | typarray       |       26 |            -1
     1247 | typinput       |       24 |            -1
     1247 | typoutput      |       24 |            -1
     1247 | typreceive     |       24 |            -1
     1247 | typsend        |       24 |            -1
     1247 | typmodin       |       24 |            -1
     1247 | typmodout      |       24 |            -1
     1247 | typanalyze     |       24 |            -1
     1247 | typalign       |       18 |            -1
     1247 | typstorage     |       18 |            -1

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 64



     1247 | typnotnull     |       16 |            -1
     1247 | typbasetype    |       26 |            -1
     1247 | typtypmod      |       23 |            -1
     1247 | typndims       |       23 |            -1
     1247 | typcollation   |       26 |            -1
     1247 | typdefaultbin  |      194 |            -1
     1247 | typdefault     |       25 |            -1
     1247 | typacl         |     1034 |            -1
(38 rows)

4.15 Pseudo-Types
GaussDB(DWS) has a number of special-purpose entries that are collectively
called pseudo-types. A pseudo-type cannot be used as a column data type, but it
can be used to declare a function's argument or result type.

Each of the available pseudo-types is useful in situations where a function's
behavior does not correspond to simply taking or returning a value of a specific
SQL data type. Table 4-22 lists all pseudo-types.

Table 4-22 Pseudo-Types

Name Description

any Indicates that a function accepts any input data type.

anyelement Indicates that a function accepts any data type.

anyarray Indicates that a function accepts any array data type.

anynonarray Indicates that a function accepts any non-array data type.

anyenum Indicates that a function accepts any enum data type.

anyrange Indicates that a function accepts any range data type.

cstring Indicates that a function accepts or returns a null-
terminated C string.

internal Indicates that a function accepts or returns a server-
internal data type.

language_handler Indicates that a procedural language call handler is
declared to return language_handler.

fdw_handler Indicates that a foreign-data wrapper handler is declared
to return fdw_handler.

record Identifies a function returning an unspecified row type.

trigger Indicates that a trigger function is declared to return
trigger.

void Indicates that a function returns no value.

opaque Indicates an obsolete type name that formerly served all
the above purposes.

 

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 65



Functions coded in C (whether built in or dynamically loaded) can be declared to
accept or return any of these pseudo data types. It is up to the function author to
ensure that the function will behave safely when a pseudo-type is used as an
argument type.

Functions coded in procedural languages can use pseudo-types only as allowed by
their implementation languages. At present the procedural languages all forbid
use of a pseudo-type as argument type, and allow only void and record as a
result type. Some also support polymorphic functions using the anyelement,
anyarray, anynonarray, anyenum, and anyrange types.

The internal pseudo-type is used to declare functions that are meant only to be
called internally by the database system, and not by direct call in an SQL query. If
a function has at least one internal-type argument, it cannot be called from SQL.
You are not advised to create any function that is declared to return internal
unless the function has at least one internal argument.

For example:

-- Create or replace the showall() function:
CREATE OR REPLACE FUNCTION showall() RETURNS SETOF record
AS $$ SELECT count(*) from tpcds.store_sales where ss_customer_sk = 9692; $$
LANGUAGE SQL;

-- Invoke the showall() function:
SELECT showall();
 showall 
---------
 (35)
(1 row)

-- Delete the function:
DROP FUNCTION showall();

4.16 Data Types Supported by Column-Store Tables
Table 4-23 lists the data types supported by column-store tables.

Table 4-23 Data types supported by column-store tables

Category Data Type Length Suppo
rted

Numeric types smallint 2 Yes

integer 4 Yes

bigint 8 Yes

decimal Variabl
e
length

Yes

numeric Variabl
e
length

Yes

real 4 Yes

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 66



Category Data Type Length Suppo
rted

double precision 8 Yes

smallserial 2 Yes

serial 4 Yes

bigserial 8 Yes

Monetary types money 8 Yes

Character types character varying(n), varchar(n) Variabl
e
length

Yes

character(n), char(n) n Yes

character, char 1 Yes

text Variabl
e
length

Yes

nvarchar2 Variabl
e
length

Yes

name 64 No

Date/time types timestamp with time zone 8 Yes

timestamp without time zone 8 Yes

date 4 Yes

time without time zone 8 Yes

time with time zone 12 Yes

interval 16 Yes

Large objects clob Variabl
e
length

Yes

blob Variabl
e
length

No

Others ... ... No

 

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 67



4.17 XML
XML data type stores Extensible Markup Language (XML) formatted data. Such
data can also be stored as text, but the advantage of the XML data type is that it
checks whether each stored value is a well-formed XML value. XML can store well-
formed documents and content fragments defined by XML standards. A content
fragment can have multiple top-level elements or character nodes.

For functions that support the XML data type, see XML Functions.

Configuring XML Parameters
The syntax is as follows:

SET XML OPTION { DOCUMENT | CONTENT };
SET xmloption TO { DOCUMENT | CONTENT };

If a string value is not converted to XML using the XMLPARSE or XMLSERIALIZE
function, the XML OPTION session parameter determines the value, DOCUMENT
or CONTENT.

The default value is CONTENT, indicating that all types of XML data are allowed.

Example:

SET XML OPTION DOCUMENT;
SET
SET xmloption TO DOCUMENT;
SET

Configuring Binary Data Encoding Format
Syntax:

SET xmlbinary TO { base64 | hex};

Example:

SET xmlbinary TO base64;
SET

SELECT xmlelement(name foo, bytea 'bar');
xmlelement
-----------------
<foo>YmFy</foo>
(1 row)

SET xmlbinary TO hex;
SET

SELECT xmlelement(name foo, bytea 'bar');
xmlelement
-------------------
<foo>626172</foo>
(1 row)

Accessing XML Value
The XML data type is special, and it does not provide any comparison operators,
because there is no general comparison algorithm for XML data, so you cannot

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 68



retrieve data rows by comparing an XML value with a search value. An XML data
entry is typically accompanied by an ID for retrieving. Alternatively, you can
convert XML values into character strings. However, this is not widely applicable to
common scenarios of XML value comparison.

Data Warehouse Service
SQL Syntax 4 Data Types

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 69



5 Constant and Macro

Table 5-1 lists the constants and macros that can be used in GaussDB(DWS).

Table 5-1 Constants and macros

Parameter Description Examples

CURRENT_CA
TALOG

Specifies the current
database.

SELECT CURRENT_CATALOG;
current_database
------------------
gaussdb
(1 row)

CURRENT_RO
LE

Current role SELECT CURRENT_ROLE;
current_user
--------------
(1 row)

CURRENT_SC
HEMA

Current database model SELECT CURRENT_SCHEMA;
current_schema
----------------
public
(1 row)

CURRENT_US
ER

Current user SELECT CURRENT_USER;
current_user
--------------
(1 row)

LOCALTIMEST
AMP

Current session time
(without time zone)

SELECT LOCALTIMESTAMP;
         timestamp
----------------------------
2015-10-10 15:37:30.968538
(1 row)

NULL This parameter is left
blank.

-

SESSION_USE
R

Current system user SELECT SESSION_USER;
session_user
--------------
(1 row)

SYSDATE Current system date SELECT SYSDATE;
sysdate
---------------------
2015-10-10 15:48:53
(1 row)

Data Warehouse Service
SQL Syntax 5 Constant and Macro

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 70



Parameter Description Examples

USER Current user, also called
CURRENT_USER

SELECT USER;
current_user
--------------
(1 row)

Data Warehouse Service
SQL Syntax 5 Constant and Macro

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 71



6 Functions and Operators

6.1 Logical Operators
The usual logical operators include AND, OR, and NOT. SQL uses a three-valued
logical system with true, false, and null, which represents "unknown". Their
priorities are NOT > AND > OR.

Table 6-1 lists operation rules, where a and b represent logical expressions.

Table 6-1 Operation rules

a b a AND b Result a OR b Result NOT a
Result

TRUE TRUE TRUE TRUE FALSE

TRUE FALSE FALSE TRUE FALSE

TRUE NULL NULL TRUE FALSE

FALSE FALSE FALSE FALSE TRUE

FALSE NULL FALSE NULL TRUE

NULL NULL NULL NULL NULL

 

NO TE

The operators AND and OR are commutative, that is, you can switch the left and right
operand without affecting the result.

6.2 Comparison Operators
Comparison operators are available for all data types and return Boolean values.

All comparison operators are binary operators. Only data types that are the same
or can be implicitly converted can be compared using comparison operators.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 72



Table 6-2 describes comparison operators provided by GaussDB(DWS).

Table 6-2 Comparison operators

Operators Description

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

= Equality

<> or != Inequality

 

Comparison operators are available for all relevant data types. All comparison
operators are binary operators that returned values of Boolean type. Expressions
like 1 < 2 < 3 are invalid. (Because there is no comparison operator to compare a
Boolean value with 3.)

6.3 Character Processing Functions and Operators
String functions and operators provided by GaussDB(DWS) are for concatenating
strings with each other, concatenating strings with non-strings, and matching the
patterns of strings.

● bit_length(string)
Description: Specifies the number of bits occupied by a string.
Return type: int
For example:
SELECT bit_length('world');
 bit_length
------------
         40
(1 row)

● btrim(string text [, characters text])
Description: Removes the longest string consisting only of characters in
characters (a space by default) from the start and end of string.
Return type: text
For example:
SELECT btrim('sring' , 'ing');
 btrim
-------
 sr
(1 row)

● char_length(string) or character_length(string)
Description: Number of characters in a string
Return type: int

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 73



For example:
SELECT char_length('hello');
 char_length
-------------
           5
(1 row)

● instr(text,text,int,int)

Description: FROM int indicates the start position of the replacement in the
first string. for int indicates the number of characters replaced in the first
string.

Return type: int

For example:
SELECT instr( 'abcdabcdabcd', 'bcd', 2, 2 );
 instr
-------
     6
(1 row)

● lengthb(text/bpchar)

Description: Obtains the number of bytes of a specified string.

Return type: int

For example:
SELECT lengthb('hello');
 lengthb
---------
       5
(1 row)

● left(str text, n int)

Description: Returns first n characters in the string.

– In the ORA- or TD-compatible mode, all but the last |n| characters are
returned if n is negative.

– In the MySQL-compatible mode, an empty string is returned if n is
negative.

Return type: text

For example:
SELECT left('abcde', 2);
 left
------
 ab
(1 row)

● length(string bytea, encoding name )

Description: Number of characters in string in the given encoding. The string
must be valid in this encoding.

Return type: int

For example:
SELECT length('jose', 'UTF8');
 length
--------
      4
(1 row)

● lpad(string text, length int [, fill text])

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 74



Description: Fills up the string to the specified length by appending the
characters fill (a space by default). If the string is already longer than length
then it is truncated (on the right).
Return type: text
For example:
SELECT lpad('hi', 5, 'xyza');
 lpad  
-------
 xyzhi
(1 row)

● octet_length(string)
Description: Number of bytes in a string
Return type: int
For example:
SELECT octet_length('jose');
 octet_length
--------------
            4
(1 row)

● overlay(string placing string FROM int [for int])
Description: Replaces substring. FROM int indicates the start position of the
replacement in the first string. for int indicates the number of characters
replaced in the first string.
Return type: text
For example:
SELECT overlay('hello' placing 'world' from 2 for 3 );
 overlay 
---------
 hworldo
(1 row)

● position(substring in string)
Description: Location of specified substring
Return type: int
For example:
SELECT position('ing' in 'string');
 position
----------
        4
(1 row)

● pg_client_encoding()
Description: Current client encoding name
Return type: name
For example:
SELECT pg_client_encoding();
 pg_client_encoding
--------------------
 UTF8
(1 row)

● quote_ident(string text)
Description: Returns the given string suitably quoted to be used as an
identifier in an SQL statement string (quotation marks are used as required).

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 75



Quotes are added only if necessary (that is, if the string contains non-
identifier characters or would be case-folded). Embedded quotes are properly
doubled.
Return type: text
For example:
SELECT quote_ident('hello world');
 quote_ident
--------------
 "hello world"
(1 row)

● quote_literal(string text)
Description: Returns the given string suitably quoted to be used as a string
literal in an SQL statement string (quotation marks are used as required).
Return type: text
For example:
SELECT quote_literal('hello');
 quote_literal 
---------------
 'hello'
(1 row)

If command similar to the following exists, text will be escaped.
SELECT quote_literal(E'O\'hello');
 quote_literal
---------------
 'O''hello'
(1 row)

If command similar to the following exists, backslash will be properly doubled.
SELECT quote_literal('O\hello');
 quote_literal 
---------------
 E'O\\hello'
(1 row)

If the parameter is null, return NULL. If the parameter may be null, you are
advised to use quote_nullable.
SELECT quote_literal(NULL);
 quote_literal 
---------------

(1 row)

● quote_literal(value anyelement)
Description: Coerces the given value to text and then quotes it as a literal.
Return type: text
For example:
SELECT quote_literal(42.5);
 quote_literal 
---------------
 '42.5'
(1 row)

If command similar to the following exists, the given value will be escaped.
SELECT quote_literal(E'O\'42.5');
 quote_literal
---------------
 '0''42.5'
(1 row)

If command similar to the following exists, backslash will be properly doubled.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 76



SELECT quote_literal('O\42.5');
 quote_literal 
---------------
 E'O\\42.5'
(1 row)

● quote_nullable(string text)
Description: Returns the given string suitably quoted to be used as a string
literal in an SQL statement string (quotation marks are used as required).
Return type: text
For example:
SELECT quote_nullable('hello');
 quote_nullable 
----------------
 'hello'
(1 row)

If command similar to the following exists, text will be escaped.
SELECT quote_nullable(E'O\'hello');
 quote_nullable
----------------
 'O''hello'
(1 row)

If command similar to the following exists, backslash will be properly doubled.
SELECT quote_nullable('O\hello');
 quote_nullable
----------------
 E'O\\hello'
(1 row)

If the parameter is null, return NULL.
SELECT quote_nullable(NULL);
 quote_nullable
----------------
 NULL
(1 row)

● quote_nullable(value anyelement)
Description: Converts the given value to text and then quotes it as a literal.
Return type: text
For example:
SELECT quote_nullable(42.5);
 quote_nullable
----------------
 '42.5'
(1 row)

If command similar to the following exists, the given value will be escaped.
SELECT quote_nullable(E'O\'42.5');
 quote_nullable 
----------------
 'O''42.5'
(1 row)

If command similar to the following exists, backslash will be properly doubled.
SELECT quote_nullable('O\42.5');
 quote_nullable
----------------
 E'O\\42.5'
(1 row)

If the parameter is null, return NULL.
SELECT quote_nullable(NULL);
 quote_nullable

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 77



----------------
 NULL
(1 row)

● substring(string [from int] [for int])
Description: Extracts a substring. from int indicates the start position of the
truncation. for int indicates the number of characters truncated.
Return type: text
For example:
SELECT substring('Thomas' from 2 for 3);
 substring
-----------
 hom
(1 row)

● substring(string from pattern)
Description: Extracts substring matching POSIX regular expression. It returns
the text that matches the pattern. If no match record is found, a null value is
returned.
Return type: text
For example:
SELECT substring('Thomas' from '...$');
 substring
-----------
 mas
(1 row)
SELECT substring('foobar' from 'o(.)b');
 result 
--------
 o
(1 row)
SELECT substring('foobar' from '(o(.)b)');
 result 
--------
 oob
(1 row)

NO TE

If the POSIX pattern contains any parentheses, the portion of the text that matched
the first parenthesized sub-expression (the one whose left parenthesis comes first) is
returned. You can put parentheses around the whole expression if you want to use
parentheses within it without triggering this exception.

● substring(string from pattern for escape)
Description: Extracts substring matching SQL regular expression. The specified
pattern must match the entire data string, or else the function fails and
returns null. To indicate the part of the pattern that should be returned on
success, the pattern must contain two occurrences of the escape character
followed by a double quote ("). The text matching the portion of the pattern
between these markers is returned.
Return type: text
For example:
SELECT substring('Thomas' from '%#"o_a#"_' for '#');
 substring
-----------
 oma
(1 row)

● rawcat(raw,raw)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 78



Description: Indicates the string concatenation functions.
Return type: raw
For example:
SELECT rawcat('ab','cd');
 rawcat
--------
 ABCD
(1 row)

● regexp_like(text,text,text)
Description: Indicates the mode matching function of a regular expression.
Return type: bool
For example:
SELECT regexp_like('str','[ac]');
 regexp_like
-------------
 f
(1 row)

● regexp_substr(text,text)
Description: Extracts substrings from a regular expression. Its function is
similar to substr. When a regular expression contains multiple parallel
brackets, it also needs to be processed.
Return type: text
For example:
SELECT regexp_substr('str','[ac]');
 regexp_substr
---------------

(1 row)

● regexp_matches(string text, pattern text [, flags text])
Description: Returns all captured substrings resulting from matching a POSIX
regular expression against the string. If the pattern does not match, the
function returns no rows. If the pattern contains no parenthesized sub-
expressions, then each row returned is a single-element text array containing
the substring matching the whole pattern. If the pattern contains
parenthesized sub-expressions, the function returns a text array whose nth
element is the substring matching the nth parenthesized sub-expression of
the pattern.
The optional flags argument contains zero or multiple single-letter flags that
change function behavior. i indicates that the matching is not related to
uppercase and lowercase. g indicates that each matching substring is
replaced, instead of replacing only the first one.

NO TICE

If the last parameter is provided but the parameter value is an empty string
('') and the SQL compatibility mode of the database is set to ORA, the
returned result is an empty set. This is because the ORA compatible mode
treats the empty string ('') as NULL. To resolve this problem, you can:
● Change the database SQL compatibility mode to TD.
● Do not provide the last parameter or do not set the last parameter to an

empty string.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 79



Return type: setof text[]
For example:
SELECT regexp_matches('foobarbequebaz', '(bar)(beque)');
 regexp_matches
----------------
 {bar,beque}
(1 row)
SELECT regexp_matches('foobarbequebaz', 'barbeque');
 regexp_matches 
----------------
 {barbeque}
(1 row)
 SELECT regexp_matches('foobarbequebazilbarfbonk', '(b[^b]+)(b[^b]+)', 'g');
    result    
--------------
 {bar,beque}
 {bazil,barf}
(2 rows)

● regexp_split_to_array(string text, pattern text [, flags text ])
Description: Splits string using a POSIX regular expression as the delimiter.
The regexp_split_to_array function behaves the same as regexp_split_to_table,
except that regexp_split_to_array returns its result as an array of text.
Return type: text[]
For example:
SELECT regexp_split_to_array('hello world', E'\\s+');
 regexp_split_to_array
-----------------------
 {hello,world}
(1 row)

● regexp_split_to_table(string text, pattern text [, flags text])
Description: Splits string using a POSIX regular expression as the delimiter. If
there is no match to the pattern, the function returns the string. If there is at
least one match, for each match it returns the text from the end of the last
match (or the beginning of the string) to the beginning of the match. When
there are no more matches, it returns the text from the end of the last match
to the end of the string.
The flags parameter is a text string containing zero or more single-letter flags
that change the function's behavior. i indicates that the matching is not
related to uppercase and lowercase. g indicates that each matching substring
is replaced, instead of replacing only the first one.
Return type: setof text
For example:
SELECT regexp_split_to_table('hello world', E'\\s+');
 regexp_split_to_table
-----------------------
 hello
 world
(2 rows)

● repeat(string text, number int )
Description: text
Return type: string repeated for number times
For example:
SELECT repeat('Pg', 4);
  repeat
----------

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 80



 PgPgPgPg
(1 row)

● replace(string text, from text, to text)
Description: Replaces all occurrences in string of substring from with
substring to.
Return type: text
For example:
SELECT replace('abcdefabcdef', 'cd', 'XXX');
    replace     
----------------
 abXXXefabXXXef
(1 row)

● reverse(str)
Description: Returns reversed string.
Return type: text
For example:
SELECT reverse('abcde');
 reverse
---------
 edcba
(1 row)

● right(str text, n int)
Description: Returns the last n characters in the string.
– In the ORA- or TD-compatible mode, all but the last |n| characters are

returned if n is negative.
– In the MySQL-compatible mode, an empty string is returned if n is

negative.
Return type: text
For example:
SELECT right('abcde', 2);
 right
-------
 de
(1 row)

SELECT right('abcde', -2);
 right 
-------
 cde
(1 row)

● rpad(string text, length int [, fill text])
Description: Fills up the string to length by appending the characters fill (a
space by default). If the string is already longer than length then it is
truncated.
Return type: text
For example:
SELECT rpad('hi', 5, 'xy');
 rpad
-------
 hixyx
(1 row)

● rtrim(string text [, characters text])

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 81



Description: Removes the longest string containing only characters from
characters (a space by default) from the end of string.
Return type: text
For example:
SELECT rtrim('trimxxxx', 'x');
 rtrim
-------
 trim
(1 row)

● sys_context ( 'namespace' , 'parameter')
Description: Obtains and returns the parameter values of a specified
namespace.
Return type: text
For example:
SELECT SYS_CONTEXT ( 'postgres' , 'archive_mode');
 sys_context
-------------

(1 row)

● substrb(text,int,int)
Description: Extracts a substring. The first int indicates the start position of
the subtraction. The second int indicates the number of characters subtracted.
Return type: text
For example:
SELECT substrb('string',2,3);
 substrb
---------
 tri
(1 row)

● substrb(text,int)
Description: Extracts a substring. int indicates the start position of the
subtraction.
Return type: text
For example:
SELECT substrb('string',2);
 substrb
---------
 tring
(1 row)

● string || string
Description: Concatenates strings.
Return type: text
For example:
SELECT 'MPP'||'DB' AS RESULT;
 result 
--------
 MPPDB
(1 row)

● string || non-string or non-string || string
Description: Concatenates strings and non-strings.
Return type: text

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 82



For example:
SELECT 'Value: '||42 AS RESULT;
  result   
-----------
 Value: 42
(1 row)

● split_part(string text, delimiter text, field int)
Description: Splits string on delimiter and returns the fieldth column
(counting from text of the first appeared delimiter).
Return type: text
For example:
SELECT split_part('abc~@~def~@~ghi', '~@~', 2);
 split_part
------------
 def
(1 row)

● strpos(string, substring)
Description: Specifies the position of a substring. It is the same as
position(substring in string). However, the parameter sequences of them are
reversed.
Return type: int
For example:
SELECT strpos('source', 'rc');
 strpos
--------
      4
(1 row)

● to_hex(number int or bigint)
Description: Converts number to a hexadecimal expression.
Return type: text
For example:
SELECT to_hex(2147483647);
  to_hex
----------
 7fffffff
(1 row)

● translate(string text, from text, to text)
Description: Any character in string that matches a character in the from set
is replaced by the corresponding character in the to set. If from is longer than
to, extra characters occurred in from are removed.
Return type: text
For example:
SELECT translate('12345', '143', 'ax');
 translate
-----------
 a2x5
(1 row)

● length(string)
Description: Obtains the number of characters in a string.
Return type: integer
For example:

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 83



SELECT length('abcd');
 length 
--------
      4
(1 row)

● lengthb(string)
Description: Obtains the number of characters in a string. The value depends
on character sets (GBK and UTF8).
Return type: integer
For example:
SELECT lengthb('hello');
 lengthb 
---------
       5
(1 row)

● substr(string,from)
Description:
Extracts substrings from a string.
from indicates the start position of the extraction.
– If from starts at 0, the value 1 is used.
– If the value of from is positive, all characters from from to the end are

extracted.
– If the value of from is negative, the last n characters in the string are

extracted, in which n indicates the absolute value of from.
Return type: varchar
For example:
If the value of from is positive:
SELECT substr('ABCDEF',2);
 substr
--------
 BCDEF
(1 row)

If the value of from is negative:
SELECT substr('ABCDEF',-2);
 substr
--------
 EF
(1 row)

● substr(string,from,count)
Description:
Extracts substrings from a string.
from indicates the start position of the extraction.
"count" indicates the length of the extracted substring.
– If from starts at 0, the value 1 is used.
– If the value of from is positive, extract count characters starting from

from.
– If the value of from is negative, extract the last n count characters in the

string, in which n indicates the absolute value of from.
– If the value of "count" is smaller than 1, null is returned.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 84



Return type: varchar

For example:

If the value of from is positive:
SELECT substr('ABCDEF',2,2);
 substr 
--------
 BC
(1 row)

If the value of from is negative:
SELECT substr('ABCDEF',-3,2);
 substr 
--------
 DE
(1 row)

● substrb(string,from)

Description: The functionality of this function is the same as that of
SUBSTR(string,from). However, the calculation unit is byte.

Return type: bytea

For example:
SELECT substrb('ABCDEF',-2);
 substrb 
---------
 EF
(1 row)

● substrb(string,from,count)

Description: The functionality of this function is the same as that of
SUBSTR(string,from,count). However, the calculation unit is byte.

Return type: bytea

For example:
SELECT substrb('ABCDEF',2,2);
 substrb 
---------
 BC
(1 row)

● trim([leading |trailing |both] [characters] from string)

Description: Removes the longest string containing only the characters (a
space by default) from the start/end/both ends of the string.

Return type: varchar

For example:
SELECT trim(BOTH 'x' FROM 'xTomxx');
 btrim
-------
 Tom
(1 row)
SELECT trim(LEADING 'x' FROM 'xTomxx');
 ltrim
-------
 Tomxx
(1 row)
SELECT trim(TRAILING 'x' FROM 'xTomxx');
 rtrim
-------
 xTom
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 85



● rtrim(string [, characters])
Description: Removes the longest string containing only characters from
characters (a space by default) from the end of string.
Return type: varchar
For example:
SELECT rtrim('TRIMxxxx','x');
 rtrim
-------
 TRIM
(1 row)

● ltrim(string [, characters])
Description: Removes the longest string containing only characters from
characters (a space by default) from the start of string.
Return type: varchar
For example:
SELECT ltrim('xxxxTRIM','x');
 ltrim
-------
 TRIM
(1 row)

● upper(string)
Description: Converts the string into the uppercase.
Return type: varchar
For example:
SELECT upper('tom');
 upper
-------
 TOM
(1 row)

● lower(string)
Description: Converts the string into the lowercase.
Return type: varchar
For example:
SELECT lower('TOM');
 lower
-------
 tom
(1 row)

● rpad(string varchar, length int [, fill varchar])
Description: Fills up the string to length by appending the characters fill (a
space by default). If the string is already longer than length then it is
truncated.
length in GaussDB(DWS) indicates the character length. One Chinese
character is counted as one character.
Return type: varchar
For example:
SELECT rpad('hi',5,'xyza');
 rpad
-------
 hixyz
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 86



SELECT rpad('hi',5,'abcdefg');
 rpad  
-------
 hiabc
(1 row)

● instr(string,substring[,position,occurrence])
Description: Queries and returns the value of the substring position that
occurs the occurrence (first by default) times from the position (1 by default)
in the string.
– If the value of "position" is 0, 0 is returned.
– If the value of position is negative, searches backwards from the last nth

character in the string, in which n indicates the absolute value of
position.

In this function, the calculation unit is character. One Chinese character is one
character.
Return type: integer
For example:
SELECT instr('corporate floor','or', 3);
 instr 
-------
     5
(1 row)
SELECT instr('corporate floor','or',-3,2);
 instr 
-------
     2
(1 row)

● initcap(string)
Description: The first letter of each word in the string is converted into the
uppercase and the other letters are converted into the lowercase.
Return type: text
For example:
SELECT initcap('hi THOMAS');
  initcap
-----------
 Hi Thomas
(1 row)

● ascii(string)
Description: Indicates the ASCII code of the first character in the string.
Return type: integer
For example:
SELECT ascii('xyz');
 ascii 
-------
   120
(1 row)

● replace(string varchar, search_string varchar, replacement_string varchar)
Description: Replaces all search-string in the string with replacement_string.
Return type: varchar
For example:
SELECT replace('jack and jue','j','bl');
    replace     
----------------

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 87



 black and blue
(1 row)

● lpad(string varchar, length int[, repeat_string varchar])
Description: Adds a series of repeat_string (a space by default) on the left of
the string to generate a new string with the total length of n.
If the length of the string is longer than the specified length, the function
truncates the string and returns the substrings with the specified length.
Return type: varchar
For example:
SELECT lpad('PAGE 1',15,'*.');
      lpad       
-----------------
 *.*.*.*.*PAGE 1
(1 row)
SELECT lpad('hello world',5,'abcd');
 lpad  
-------
 hello
(1 row)

● concat(str1,str2)
Description: Connects str1 and str2 and returns the string.
– In the ORA- or TD-compatible mode, a combination of all the non-null

strings is returned.
– In the MySQL-compatible mode, NULL is returned if an input string is

NULL.
Return type: varchar
For example:
SELECT concat('Hello', ' World!');
    concat    
--------------
 Hello World!
(1 row)

● chr(integer)
Description: Specifies the character of the ASCII code.
Return type: varchar
For example:
SELECT chr(65);
 chr
-----
 A
(1 row)

● regexp_substr(source_char, pattern)
Description: Extracts substrings from a regular expression.
Return type: varchar
For example:
SELECT regexp_substr('500 Hello World, Redwood Shores, CA', ',[^,]+,') "REGEXPR_SUBSTR";
  REGEXPR_SUBSTR   
-------------------
 , Redwood Shores,
(1 row)

● regexp_replace(string, pattern, replacement [,flags ])

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 88



Description: Replaces substring matching POSIX regular expression. The
source string is returned unchanged if there is no match to the pattern. If
there is a match, the source string is returned with the replacement string
substituted for the matching substring.

The replacement string can contain \n, where n is 1 through 9, to indicate
that the source substring matching the nth parenthesized sub-expression of
the pattern should be inserted, and it can contain \& to indicate that the
substring matching the entire pattern should be inserted.

The optional flags argument contains zero or multiple single-letter flags that
change function behavior. The following table lists the options of the flags
argument.

Table 6-3 Options of the flags argument

Op
tio
n

Description

g Replace all the matched substrings. (By default, only the first
matched substring is replaced.)

B Preferentially use the boost regex regular expression library and its
regular expression syntax. By default, the Henry Spencer's regular
expression library and its regular expression syntax are used.
In the following cases, the Henry Spencer's regular expression library
and its regular expression syntax will be used even if this option is
specified:
● One or multiple characters of p, q, w, and x are specified for flags.
● The string or pattern parameter contains multi-byte characters.

b Use POSIX Basic Regular Expressions (BREs) for matching.

c Case-sensitive matching

e Use POSIX Extended Regular Expressions (EREs) for matching. If
neither b nor e is specified and the Henry Spencer's regular
expression library is used, Advanced Regular Expressions (AREs),
similar to Perl Compatible Regular Expressions (PCREs), are used for
matching; if neither b nor e is specified and the boost regex regular
expression library is used, PCREs are used for matching.

i Case-insensitive matching

m Line feed-sensitive matching, which has the same meaning as option
n

n Line feed-sensitive matching. When this option takes effect, the line
separator affects the matching of metacharacters (., ^, $, and [^).

p Partial line feed-sensitive matching. When this option takes effect,
the line separator affects the matching of metacharacters (. and [^).

q Reset the regular expression to a text string enclosed in double
quotation marks ("") and consisting of only common characters.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 89



Op
tio
n

Description

s Non-line feed-sensitive matching

t Compact syntax (default). When this option takes effect, all
characters matter.

w Reverse partial line feed-sensitive matching. When this option takes
effect, the line separator affects the matching of metacharacters (^
and $).

x Extended syntax In contrast to the compact syntax, whitespace
characters in regular expressions are ignored in the extended syntax.
Whitespace characters include spaces, horizontal tabs, new lines, and
any other characters in the space character table.

 

Return type: varchar
For example:
SELECT regexp_replace('Thomas', '.[mN]a.', 'M');
 regexp_replace
----------------
 ThM
(1 row)
SELECT regexp_replace('foobarbaz','b(..)', E'X\\1Y', 'g') AS RESULT;                                                    
   result    
-------------
 fooXarYXazY
(1 row)

● concat_ws(sep text, str"any" [, str"any" [, ...] ])
Description: The first parameter is used as the separator, which is associated
with all following parameters.
Return type: text
For example:
SELECT concat_ws(',', 'ABCDE', 2, NULL, 22);
 concat_ws
------------
 ABCDE,2,22
(1 row)

● convert(string bytea, src_encoding name, dest_encoding name)
Description: Converts the bytea string to dest_encoding. src_encoding
specifies the source code encoding. The string must be valid in this encoding.
Return type: bytea
For example:
SELECT convert('text_in_utf8', 'UTF8', 'GBK');
          convert        
----------------------------
 \x746578745f696e5f75746638
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 90



NO TE

If the rule for converting between source to target encoding (for example, GBK and
LATIN1) does not exist, the string is returned without conversion. See the
pg_conversion system catalog for details.
For example:
show server_encoding;
 server_encoding 
-----------------
 LATIN1
(1 row)

SELECT convert_from('some text', 'GBK');
 convert_from 
--------------
 some text
(1 row)

db_latin1=# SELECT convert_to('some text', 'GBK');
      convert_to      
----------------------
 \x736f6d652074657874
(1 row)

db_latin1=# SELECT convert('some text', 'GBK', 'LATIN1');
       convert        
----------------------
 \x736f6d652074657874
(1 row)

● convert_from(string bytea, src_encoding name)
Description: Converts the long bytea using the coding mode of the database.
src_encoding specifies the source code encoding. The string must be valid in
this encoding.
Return type: text
For example:
SELECT convert_from('text_in_utf8', 'UTF8');
 convert_from
--------------
 text_in_utf8
(1 row)

● convert_to(string text, dest_encoding name)
Description: Converts string to dest_encoding.
Return type: bytea
For example:
SELECT convert_to('some text', 'UTF8');
      convert_to
----------------------
 \x736f6d652074657874
(1 row)

● string [NOT] LIKE pattern [ESCAPE escape-character]
Description: Pattern matching function
If the pattern does not include a percentage sign (%) or an underscore (_),
this mode represents itself only. In this case, the behavior of LIKE is the same
as the equal operator. The underscore (_) in the pattern matches any single
character while one percentage sign (%) matches no or multiple characters.
To match with underscores (_) or percent signs (%), corresponding characters
in pattern must lead escape characters. The default escape character is a

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 91



backward slash (\) and can be specified using the ESCAPE clause. To match
with escape characters, enter two escape characters.
Return type: boolean
For example:
SELECT 'AA_BBCC' LIKE '%A@_B%' ESCAPE '@' AS RESULT;
 result
--------
 t
(1 row)
SELECT 'AA_BBCC' LIKE '%A@_B%' AS RESULT;
 result
--------
 f
(1 row)
SELECT 'AA@_BBCC' LIKE '%A@_B%' AS RESULT;
 result
--------
 t
(1 row)

● REGEXP_LIKE(source_string, pattern [, match_parameter])
Description: Indicates the mode matching function of a regular expression.
source_string indicates the source string and pattern indicates the matching
pattern of the regular expression. match_parameter indicates the matching
items and the values are as follows:
– "i": case-insensitive
– "c": case-sensitive
– "n": allowing the metacharacter "." in a regular expression to be matched

with a linefeed.
– "m": allows source_string to be regarded as multiple rows.
If match_parameter is ignored, case-sensitive is enabled by default, "." is not
matched with a linefeed, and source_string is regarded as a single row.
Return type: boolean
For example:
SELECT regexp_like('ABC', '[A-Z]');
 regexp_like
-------------
 t
(1 row)
SELECT regexp_like('ABC', '[D-Z]');
 regexp_like
-------------
 f
(1 row)
SELECT regexp_like('ABC', '[A-Z]','i');
 regexp_like
-------------
 t
(1 row)
SELECT regexp_like('ABC', '[A-Z]');
 regexp_like
-------------
 t
(1 row)

● format(formatstr text [, str"any" [, ...] ])
Description: Formats a string.
Return type: text

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 92



For example:
SELECT format('Hello %s, %1$s', 'World');
       format       
--------------------
 Hello World, World
(1 row)

● md5(string)
Description: Encrypts a string in MD5 mode and returns a value in
hexadecimal form.

NO TE

MD5 is insecure and is not recommended.

Return type: text
For example:
SELECT md5('ABC');
               md5                
----------------------------------
 902fbdd2b1df0c4f70b4a5d23525e932
(1 row)

● decode(string text, format text)
Description: Decodes binary data from textual representation.
Return type: bytea
For example:
SELECT decode('MTIzAAE=', 'base64');
    decode    
--------------
 \x3132330001
(1 row)

● encode(data bytea, format text)
Description: Encodes binary data into a textual representation.
Return type: text
For example:
SELECT encode(E'123\\000\\001', 'base64');
  encode  
----------
 MTIzAAE=
(1 row)

NO TE

● For a string containing newline characters, for example, a string consisting of a newline
character and a space, the value of length and lengthb in GaussDB(DWS) is 2.

● In GaussDB(DWS), n of the CHAR(n) type indicates the number of characters. Therefore,
for multiple-octet coded character sets, the length returned by the LENGTHB function
may be longer than n.

6.4 Binary String Functions and Operators

String operators
SQL defines some string functions that use keywords, rather than commas, to
separate arguments.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 93



● octet_length(string)
Description: Number of bytes in binary string
Return type: int
For example:
SELECT octet_length(E'jo\\000se'::bytea) AS RESULT;
 result
--------
      5
(1 row)

● overlay(string placing string from int [for int])
Description: Replaces substring.
Return type: bytea
For example:
SELECT overlay(E'Th\\000omas'::bytea placing E'\\002\\003'::bytea from 2 for 3) AS RESULT;
     result     
----------------
 \x5402036d6173
(1 row)

● position(substring in string)
Description: Location of specified substring
Return type: int
For example:
SELECT position(E'\\000om'::bytea in E'Th\\000omas'::bytea) AS RESULT;
 result
--------
      3
(1 row)

● substring(string [from int] [for int])
Description: Truncates substring.
Return type: bytea
For example:
SELECT substring(E'Th\\000omas'::bytea from 2 for 3) AS RESULT; 
  result  
----------
 \x68006f
(1 row)

● trim([both] bytes from string)
Description: Removes the longest string containing only bytes from bytes
from the start and end of string.
Return type: bytea
For example:
SELECT trim(E'\\000'::bytea from E'\\000Tom\\000'::bytea) AS RESULT;
  result  
----------
 \x546f6d
(1 row)

Other Binary String Functions

GaussDB(DWS) also provides the common syntax used for invoking functions.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 94



● btrim(string bytea,bytes bytea)
Description: Removes the longest string containing only bytes from bytes
from the start and end of string.
Return type: bytea
For example:
SELECT btrim(E'\\000trim\\000'::bytea, E'\\000'::bytea) AS RESULT;
   result   
------------
 \x7472696d
(1 row)

● get_bit(string, offset)
Description: Extracts bit from string.
Return type: int
For example:
SELECT get_bit(E'Th\\000omas'::bytea, 45) AS RESULT; 
 result
--------
      1
(1 row)

● get_byte(string, offset)
Description: Extracts byte from string.
Return type: int
For example:
SELECT get_byte(E'Th\\000omas'::bytea, 4) AS RESULT; 
 result
--------
    109
(1 row)

● set_bit(string,offset, newvalue)
Description: Sets bit in string.
Return type: bytea
For example:
SELECT set_bit(E'Th\\000omas'::bytea, 45, 0) AS RESULT; 
      result      
------------------
 \x5468006f6d4173
(1 row)

● set_byte(string,offset, newvalue)
Description: Sets byte in string.
Return type: bytea
For example:
SELECT set_byte(E'Th\\000omas'::bytea, 4, 64) AS RESULT; 
      result      
------------------
 \x5468006f406173
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 95



6.5 Bit String Functions and Operators

Bit string operators
Aside from the usual comparison operators, the following operators can be used.
Bit string operands of &, |, and # must be of equal length. When bit shifting, the
original length of the string is preserved by zero padding (if necessary).

● ||
Description: Connects bit strings.
For example:
SELECT B'10001' || B'011' AS RESULT;
  result
----------
 10001011
(1 row)

● &
Description: AND operation between bit strings
For example:
SELECT B'10001' & B'01101' AS RESULT;
 result 
--------
 00001
(1 row)

● |
Description: OR operation between bit strings
For example:
SELECT B'10001' | B'01101' AS RESULT;
 result 
--------
 11101
(1 row)

● #
Description: OR operation between bit strings if they are inconsistent. If the
same positions in the two bit strings are both 1 or 0, the position returns 0.
For example:
SELECT B'10001' # B'01101' AS RESULT;
 result 
--------
 11100
(1 row)

● ~
Description: NOT operation between bit strings
For example:
SELECT ~B'10001'AS RESULT;
 result  
----------
 01110
(1 row)

● <<
Description: binary left shift

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 96



For example:
SELECT B'10001' << 3 AS RESULT;
 result  
----------
 01000
(1 row)

● >>
Description: binary right shift
For example:
SELECT B'10001' >> 2 AS RESULT;
 result  
----------
 00100
(1 row)

The following SQL-standard functions work on bit strings as well as character
strings: length, bit_length, octet_length, position, substring, and overlay.

The following functions work on bit strings as well as binary strings: get_bit and
set_bit. When working with a bit string, these functions number the first
(leftmost) bit of the string as bit 0.

In addition, it is possible to convert between integral values and type bit. For
example:
SELECT 44::bit(10) AS RESULT;
   result
------------
 0000101100
(1 row)

SELECT 44::bit(3) AS RESULT;
 result 
--------
 100
(1 row)

SELECT cast(-44 as bit(12)) AS RESULT;
    result    
--------------
 111111010100
(1 row)

SELECT '1110'::bit(4)::integer AS RESULT;
 result 
--------
     14
(1 row)

NO TE

Casting to just "bit" means casting to bit(1), and so will deliver only the least significant bit
of the integer.

6.6 Pattern Matching Operators
There are three separate approaches to pattern matching provided by the
database: the traditional SQL LIKE operator, the more recent SIMILAR TO operator,
and POSIX-style regular expressions. Besides these basic operators, functions can
be used to extract or replace matching substrings and to split a string at matching
locations.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 97



● LIKE
Description: checks whether the string matches the mode string following
LIKE. The LIKE expression returns true if the string matches the supplied
pattern. (As expected, the NOT LIKE expression returns false if LIKE returns
true, and vice versa.
Matching rule:

a. This operator can succeed only when its pattern matches the entire
string. If you want to match a sequence in any position within the string,
the pattern must begin and end with a percent sign.

b. The underscore (_) represents (matching) any single character.
Percentage (%) indicates the wildcard character of any string.

c. To match a literal underscore or percent sign without matching other
characters, the respective character in pattern must be preceded by the
escape character. The default escape character is the backslash but a
different one can be selected by using the ESCAPE clause.

d. To match the escape character itself, write two escape characters. For
example: To write a pattern constant containing a backslash (\), you
need to enter two backslashes in SQL statements.

NO TE

When standard_conforming_strings is set to off, any backslashes you write in
literal string constants will need to be doubled. Therefore, writing a pattern
matching a single backslash is actually going to write four backslashes in the
statement. You can avoid this by selecting a different escape character by using
ESCAPE, so that the backslash is no longer a special character of LIKE. But the
backslash is still the special character of the character text analyzer, so you still
need two backslashes.) You can also select no escape character by writing
ESCAPE ''. This effectively disables the escape mechanism, which makes it
impossible to turn off the special meaning of underscore and percent signs in the
pattern.

e. The keyword ILIKE can be used instead of LIKE to make the match case-
insensitive.

f. Operator ~~ is equivalent to LIKE, and operator ~~* corresponds to ILIKE.

For example:
SELECT 'abc' LIKE 'abc' AS RESULT;
 result
-----------
 t
(1 row)
SELECT 'abc' LIKE 'a%' AS RESULT;
 result
-----------
 t
(1 row)
SELECT 'abc' LIKE '_b_' AS RESULT;
 result
-----------
 t
(1 row)
SELECT 'abc' LIKE 'c' AS RESULT;
 result
-----------
 f
(1 row)

● SIMILAR TO

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 98



Description: The SIMILAR TO operator returns true or false depending on
whether the pattern matches the given string. It is similar to LIKE, except that
it interprets the pattern using the SQL standard's definition of a regular
expression.

Matching rule:

a. Like LIKE, this operator succeeds only when its pattern matches the entire
string. If you want to match a sequence in any position within the string,
the pattern must begin and end with a percent sign.

b. The underscore (_) represents (matching) any single character.
Percentage (%) indicates the wildcard character of any string.

c. SIMILAR TO supports these pattern-matching metacharacters borrowed
from POSIX regular expressions:

Metacharacter Description

| Specifies alternation (either of
two alternatives).

* Specifies repetition of the previous
item zero or more times.

+ Specifies repetition of the previous
item one or more times.

? Specifies repetition of the previous
item zero or one time.

{m} Specifies repetition of the previous
item exactly m times.

{m,} Specifies repetition of the previous
item m or more times.

{m,n} Specifies repetition of the previous
item at least m times and does
not exceed n times.

() Specifies that parentheses () can
be used to group items into a
single logical item.

[...] Specifies a character class, just as
in POSIX regular expressions.

 

d. A preamble escape character disables the special meaning of any of these
metacharacters. The rules for using escape characters are the same as
those for LIKE.

Regular expressions:

The substring function with three parameters, substring(string from pattern
for escape), provides extraction of a substring that matches an SQL regular
expression pattern.

Example:

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 99



SELECT 'abc' SIMILAR TO 'abc' AS RESULT;
 result
-----------
 t
(1 row)
SELECT 'abc' SIMILAR TO 'a' AS RESULT;
 result
-----------
 f
(1 row)
SELECT 'abc' SIMILAR TO '%(b|d)%' AS RESULT;
 result
-----------
 t
(1 row)
SELECT 'abc' SIMILAR TO '(b|c)%'  AS RESULT;
 result
-----------
 f
(1 row)

● POSIX regular expressions

Description: A regular expression is a character sequence that is an
abbreviated definition of a set of strings (a regular set). If a string is a
member of a regular expression described by a regular expression, the string
matches the regular expression. POSIX regular expressions provide a more
powerful means for pattern matching than the LIKE and SIMILAR TO
operators. Table 1 Regular expression match operators lists all available
operators for pattern matching using POSIX regular expressions.

Table 6-4 Regular expression match operators

Operator Description Example

~ Matches regular
expression, which is
case-sensitive.

'thomas' ~ '.*thomas.*'

~* Matches regular
expression, which is
case-insensitive.

'thomas' ~* '.*Thomas.*'

! ~ Does not match regular
expression, which is
case-sensitive.

'thomas' !~ '.*Thomas.*'

! ~* Does not match regular
expression, which is
case-insensitive.

'thomas' !~* '.*vadim.*'

 

Matching rule:

a. Unlike LIKE patterns, a regular expression is allowed to match anywhere
within a string, unless the regular expression is explicitly anchored to the
beginning or end of the string.

b. Besides the metacharacters mentioned above, POSIX regular expressions
also support the following pattern matching metacharacters:

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 100



Metacharacter Description

^ Specifies the match starting with a
string.

$ Specifies the match at the end of
a string.

. Matches any single character.

 

Regular expressions:
POSIX regular expressions support the following functions:
– The substring(string from pattern) function provides a method for

extracting a substring that matches the POSIX regular expression pattern.
– The regexp_replace function provides the function of replacing the

substring matching the POSIX regular expression pattern with the new
text.

– The regexp_matches function returns a text array consisting of all
captured substrings that match a POSIX regular expression pattern.

– The regexp_split_to_table function splits a string using a POSIX regular
expression pattern as a delimiter.

– The regexp_split_to_array function behaves the same as
regexp_split_to_table, except that regexp_split_to_array returns its result
as an array of text.

NO TE

The regular expression split functions ignore zero-length matches, which occur at
the beginning or end of a string or after the previous match. This is contrary to
the strict definition of regular expression matching. The latter is implemented by
regexp_matches, but the former is usually the most commonly used behavior in
practice.

For example:
 SELECT 'abc' ~ 'Abc' AS RESULT;
result 
--------
 f
(1 row)
SELECT 'abc' ~* 'Abc' AS RESULT;
 result 
--------
 t
(1 row)
SELECT 'abc' !~ 'Abc' AS RESULT;
 result 
--------
 t
(1 row)
SELECT 'abc'!~* 'Abc' AS RESULT;
 result 
--------
 f
(1 row)
SELECT 'abc' ~ '^a' AS RESULT;
 result 
--------
 t
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 101



SELECT 'abc' ~ '(b|d)'AS RESULT;
 result 
--------
 t
(1 row)
SELECT 'abc' ~ '^(b|c)'AS RESULT;
 result 
--------
 f
(1 row)

Although most regular expression searches can be executed quickly, the time
and memory for regular expression processing can still be manually
controlled. It is not recommended that you accept the regular expression
search mode from the non-security mode source. If you must do this, you are
advised to add the statement timeout limit. The search with the SIMILAR TO
mode has the same security risks as the SIMILAR TO provides many
capabilities that are the same as those of the POSIX- style regular expression.
The LIKE search is much simpler than the other two options. Therefore, it is
more secure to accept the non-secure mode source search.

6.7 Mathematical Functions and Operators

Numeric operators
● +

Description: Addition
For example:
SELECT 2+3 AS RESULT;
 result 
--------
      5
(1 row)

● -
Description: Subtraction
For example:
SELECT 2-3 AS RESULT;
 result 
--------
     -1
(1 row)

● *
Description: multiply
For example:
SELECT 2*3 AS RESULT;
 result 
--------
      6
(1 row)

● /
Description: Division (The result is not rounded.)
For example:
SELECT 4/2 AS RESULT;
 result 
--------

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 102



      2
(1 row)
SELECT 4/3 AS RESULT;
      result      
------------------
 1.33333333333333
(1 row)

● +/-
Description: Positive/negative
For example:
SELECT -2 AS RESULT;
 result 
--------
     -2
(1 row)

● %
Description: Model (to obtain the remainder)
For example:
SELECT 5%4 AS RESULT;
 result 
--------
      1
(1 row)

● @
Description: Absolute value
For example:
SELECT @ -5.0 AS RESULT;
 result 
--------
    5.0
(1 row)

● ^
Description: Power (exponent calculation)
In MySQL-compatible mode, this operator means exclusive or. For details, see
operator # in Bit String Functions and Operators.
For example:
SELECT 2.0^3.0 AS RESULT;
       result       
--------------------
 8.0000000000000000
(1 row)

● |/
Description: Square root
For example:
SELECT |/ 25.0 AS RESULT;
 result 
--------
      5
(1 row)

● ||/
Description: Cubic root
For example:
SELECT ||/ 27.0 AS RESULT;
 result 

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 103



--------
      3
(1 row)

● !
Description: Factorial
For example:
SELECT 5! AS RESULT;
 result 
--------
    120
(1 row)

● !!
Description: Factorial (prefix operator)
For example:
SELECT !!5 AS RESULT;
 result 
--------
    120
(1 row)

● &
Description: Binary AND
For example:
SELECT 91&15  AS RESULT;
 result 
--------
     11
(1 row)

● |
Description: Binary OR
For example:
SELECT 32|3  AS RESULT;
 result 
--------
     35
(1 row)

● #
Description: Binary XOR
For example:
SELECT 17#5  AS RESULT;
 result 
--------
     20
(1 row)

● ~
Description: Binary NOT
For example:
SELECT ~1 AS RESULT;
 result 
--------
     -2
(1 row)

● <<
Description: Binary shift left

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 104



For example:
SELECT 1<<4 AS RESULT;
 result 
--------
     16
(1 row)

● >>
Description: Binary shift right
For example:
SELECT 8>>2 AS RESULT;
 result 
--------
      2
(1 row)

Numeric operation functions
● abs(x)

Description: Absolute value
Return type: same as the input
For example:
SELECT abs(-17.4);
 abs
------
 17.4
(1 row)

● acos(x)
Description: Arc cosine
Return type: double precision
For example:
SELECT acos(-1);
       acos       
------------------
 3.14159265358979
(1 row)

● asin(x)
Description: Arc sine
Return type: double precision
For example:
SELECT asin(0.5);
       asin       
------------------
 .523598775598299
(1 row)

● atan(x)
Description: Arc tangent
Return type: double precision
For example:
SELECT atan(1);
       atan       
------------------
 .785398163397448
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 105



● atan2(y, x)
Description: Arc tangent of y/x
Return type: double precision
For example:
SELECT atan2(2, 1);
      atan2
------------------
 1.10714871779409
(1 row)

● bitand(integer, integer)
Description: Performs AND (&) operation on two integers.
Return type: bigint
For example:
SELECT bitand(127, 63);
 bitand 
--------
     63
(1 row)

● cbrt(dp)
Description: Cubic root
Return type: double precision
For example:
SELECT cbrt(27.0);
 cbrt
------
    3
(1 row)

● ceil(x)
Description: Minimum integer greater than or equal to the parameter
Return type: integer
For example:
SELECT ceil(-42.8);
 ceil 
------
  -42
(1 row)

● ceiling(dp or numeric)
Description: Minimum integer (alias of ceil) greater than or equal to the
parameter
Return type: same as the input
For example:
SELECT ceiling(-95.3);
 ceiling
---------
     -95
(1 row)

● cos(x)
Description: Cosine
Return type: double precision
For example:

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 106



SELECT cos(-3.1415927);
        cos        
-------------------
 -.999999999999999
(1 row)

● cot(x)
Description: Cotangent
Return type: double precision
For example:
SELECT cot(1);
       cot
------------------
 .642092615934331
(1 row)

● degrees(dp)
Description: Converts radians to angles.
Return type: double precision
For example:
SELECT degrees(0.5);
     degrees
------------------
 28.6478897565412
(1 row)

● div(y numeric, x numeric)
Description: Integer part of y/x
Return type: numeric
For example:
SELECT div(9,4);
 div
-----
   2
(1 row)

● exp(x)
Description: Natural exponent
Return type: same as the input
For example:
SELECT exp(1.0);
        exp         
--------------------
 2.7182818284590452
(1 row)

● floor(x)
Description: Not larger than the maximum integer of the parameter
Return type: same as the input
For example:
SELECT floor(-42.8);
 floor 
-------
   -43
(1 row)

● radians(dp)
Description: Converts angles to radians.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 107



Return type: double precision
For example:
SELECT radians(45.0);
     radians
------------------
 .785398163397448
(1 row)

● random()
Description: Random number between 0.0 and 1.0
Return type: double precision
For example:
SELECT random();
      random
------------------
 .824823560658842
(1 row)

● ln(x)
Description: Natural logarithm
Return type: same as the input
For example:
SELECT ln(2.0);
        ln         
-------------------
 .6931471805599453
(1 row)

● log(x)
Description: Logarithm with 10 as the base
– In the ORA- or TD-compatible mode, this operator means the logarithm

with 10 as the base.
– In the MySQL-compatible mode, this operator means the natural

logarithm.
Return type: same as the input
For example:
-- ORA-compatible mode
SELECT log(100.0);
        log         
--------------------
 2.0000000000000000
(1 row)
-- TD-compatible mode
SELECT log(100.0);
        log
--------------------
 2.0000000000000000
(1 row)
-- MySQL-compatible mode
SELECT log(100.0);
        log
--------------------
 4.6051701859880914
(1 row)

● log(b numeric, x numeric)
Description: Logarithm with b as the base
Return type: numeric

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 108



For example:
SELECT log(2.0, 64.0);
        log         
--------------------
 6.0000000000000000
(1 row)

● mod(x,y)
Description:
Remainder of x/y (model)
If x equals to 0, y is returned.
Return type: same as the parameter type
For example:
SELECT mod(9,4);
 mod 
-----
   1
(1 row)
SELECT mod(9,0);
 mod 
-----
   9
(1 row)

● pi()
Description: π constant value
Return type: double precision
For example:
SELECT pi();
        pi
------------------
 3.14159265358979
(1 row)

● power(a double precision, b double precision)
Description: b power of a
Return type: double precision
For example:
SELECT power(9.0, 3.0);
        power         
----------------------
 729.0000000000000000
(1 row)

● round(x)
Description: Integer closest to the input parameter
Return type: same as the input
For example:
SELECT round(42.4);
 round 
-------
    42
(1 row)

SELECT round(42.6);
 round 
-------
    43
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 109



NO TE

When the round function is invoked, the numeric type is rounded to zero. While on
most computers, the real number and the double-precision number are rounded to the
nearest even number.

● round(v numeric, s int)
Description: s digits are kept after the decimal point.
Return type: numeric
For example:
SELECT round(42.4382, 2);
 round
-------
 42.44
(1 row)

● setseed(dp)
Description: Sets seed for the following random() invoking (between -1.0 and
1.0, inclusive).
Return type: void
For example:
SELECT setseed(0.54823);
 setseed
---------

(1 row)

● sign(x)
Description: returns symbols of this parameter.
The return value type:-1 indicates negative. 0 indicates 0, and 1 indicates a
positive number.
For example:
SELECT sign(-8.4);
 sign 
------
   -1
(1 row)

● sin(x)
Description: Sine
Return type: double precision
For example:
SELECT sin(1.57079);
       sin        
------------------
 .999999999979986
(1 row)

● sqrt(x)
Description: Square root
Return type: same as the input
For example:
SELECT sqrt(2.0);
       sqrt        
-------------------
 1.414213562373095
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 110



● tan(x)
Description: Tangent
Return type: double precision
For example:
SELECT tan(20);
       tan        
------------------
 2.23716094422474
(1 row)

● trunc(x)
Description: truncates (the integral part).
Return type: same as the input
For example:
SELECT trunc(42.8);
 trunc 
-------
    42
(1 row)

● trunc(v numeric, s int)
Description: Truncates a number with s digits after the decimal point.
Return type: numeric
For example:
SELECT trunc(42.4382, 2);
 trunc
-------
 42.43
(1 row)

● width_bucket(op numeric, b1 numeric, b2 numeric, count int)
Description: Returns a bucket to which the operand will be assigned in an
equidepth histogram with count buckets, ranging from b1 to b2.
Return type: int
For example:
SELECT width_bucket(5.35, 0.024, 10.06, 5);
 width_bucket
--------------
            3
(1 row)

● width_bucket(op dp, b1 dp, b2 dp, count int)
Description: Returns a bucket to which the operand will be assigned in an
equidepth histogram with count buckets, ranging from b1 to b2.
Return type: int
For example:
SELECT width_bucket(5.35, 0.024, 10.06, 5);
 width_bucket
--------------
            3
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 111



6.8 Date and Time Processing Functions and Operators

Date and Time Operators

WARNING

When the user uses date/time operators, explicit type prefixes are modified for
corresponding operands to ensure that the operands parsed by the database are
consistent with what the user expects, and no unexpected results occur.
For example, abnormal mistakes will occur in the following example without an
explicit data type.
SELECT date '2001-10-01' - '7' AS RESULT;

Table 6-5 Time and date operators

Ope
rato
rs

Examples

+ SELECT date '2001-09-28' + integer '7' AS RESULT;
       result        
---------------------
 2001-10-05 00:00:00
(1 row)

SELECT date '2001-09-28' + interval '1 hour' AS RESULT;
       result        
---------------------
 2001-09-28 01:00:00
(1 row)

SELECT date '2001-09-28' + time '03:00' AS RESULT;
       result        
---------------------
 2001-09-28 03:00:00
(1 row)

SELECT interval '1 day' + interval '1 hour' AS RESULT;
     result     
----------------
 1 day 01:00:00
(1 row)

SELECT timestamp '2001-09-28 01:00' + interval '23 hours' AS RESULT;
       result        
---------------------
 2001-09-29 00:00:00
(1 row)

SELECT time '01:00' + interval '3 hours' AS RESULT;
  result  
----------
 04:00:00
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 112



Ope
rato
rs

Examples

- SELECT date '2001-10-01' - date '2001-09-28' AS RESULT;
 result 
--------
 3 days
(1 row)

SELECT date '2001-10-01' - integer '7' AS RESULT;
       result        
---------------------
 2001-09-24 00:00:00
(1 row)

SELECT date '2001-09-28' - interval '1 hour' AS RESULT;
       result        
---------------------
 2001-09-27 23:00:00
(1 row)

SELECT time '05:00' - time '03:00' AS RESULT;
  result  
----------
 02:00:00
(1 row)

SELECT time '05:00' - interval '2 hours' AS RESULT;
  result  
----------
 03:00:00
(1 row)

SELECT timestamp '2001-09-28 23:00' - interval '23 hours' AS RESULT;
       result        
---------------------
 2001-09-28 00:00:00
(1 row)

SELECT interval '1 day' - interval '1 hour' AS RESULT;
  result  
----------
 23:00:00
(1 row)

SELECT timestamp '2001-09-29 03:00' - timestamp '2001-09-27 12:00' AS RESULT;
     result     
----------------
 1 day 15:00:00
(1 row)

* SELECT 900 * interval '1 second' AS RESULT;
  result  
----------
 00:15:00
(1 row)

SELECT 21 * interval '1 day' AS RESULT;
 result  
---------
 21 days
(1 row)

SELECT double precision '3.5' * interval '1 hour' AS RESULT;
  result  
----------
 03:30:00
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 113



Ope
rato
rs

Examples

/ SELECT interval '1 hour' / double precision '1.5' AS RESULT;
  result  
----------
 00:40:00
(1 row)

 

Time/Date functions
● age(timestamp, timestamp)

Description: Subtracts arguments, producing a result in YYYY-MM-DD format.
If the result is negative, the returned result is also negative.
Return type: interval
For example:
SELECT age(timestamp '2001-04-10', timestamp '1957-06-13');
           age           
-------------------------
 43 years 9 mons 27 days
(1 row)

● age(timestamp)
Description: Subtracts from current_date
Return type: interval
For example:
SELECT age(timestamp '1957-06-13');
           age           
-------------------------
 60 years 2 mons 18 days
(1 row)

● timestampdiff(field, timestamp1, timestamp2)
Description: Subtracts timestamp1 from timestamp2 and returns the
difference in the unit of field. If the difference is negative, this function
returns it normally. The field can be day, month, quarter, day, week, hour,
minute, second, or microsecond.
Return type: bigint
For example:
SELECT timestampdiff(day, timestamp '2001-02-01', timestamp '2003-05-01 12:05:55');
 timestampdiff 
---------------
      819
(1 row)

● clock_timestamp()
Description: Specifies the current timestamp of the real-time clock.
Return type: timestamp with time zone
For example:
SELECT clock_timestamp();
        clock_timestamp        
-------------------------------
 2017-09-01 16:57:36.636205+08
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 114



● current_date
Description: Current date
Return type: date
For example:
SELECT current_date;
    date    
------------
 2017-09-01
(1 row)

● current_time
Description: Current time
Return type: time with time zone
For example:
SELECT current_time;
       timetz       
--------------------
 16:58:07.086215+08
(1 row)

● current_timestamp
Description: Specifies the current date and time.
Return type: timestamp with time zone
For example:
SELECT current_timestamp;
       pg_systimestamp        
------------------------------
 2017-09-01 16:58:19.22173+08
(1 row)

● date_part(text, timestamp)
Description:
Description: Obtains the hour.
Equivalent to extract(field from timestamp).
Return type: double precision
For example:
SELECT date_part('hour', timestamp '2001-02-16 20:38:40');
 date_part 
-----------
        20
(1 row)

● date_part(text, interval)
Description:
Obtains the month. If the value is greater than 12, obtain the remainder after
it is divided by 12.
Equivalent to extract(field from timestamp).
Return type: double precision
For example:
SELECT date_part('month', interval '2 years 3 months');
 date_part 
-----------
         3
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 115



● date_trunc(text, timestamp)
Description: Truncates to the precision specified by text.
Return type: timestamp
For example:
SELECT date_trunc('hour', timestamp  '2001-02-16 20:38:40');
     date_trunc      
---------------------
 2001-02-16 20:00:00
(1 row)

● trunc(timestamp)
Description: By default, the data is intercepted by day.
For example:
SELECT trunc(timestamp  '2001-02-16 
20:38:40');                                                                                                                                       
                            trunc
---------------------
2001-02-16 00:00:00
(1 row)

● extract(field from timestamp)
Description: Obtains the hour.
Return type: double precision
For example:
SELECT extract(hour from timestamp '2001-02-16 20:38:40');
 date_part 
-----------
        20
(1 row)

● extract(field from interval)
Description: Obtains the month. If the value is greater than 12, obtain the
remainder after it is divided by 12.
Return type: double precision
For example:
SELECT extract(month from interval '2 years 3 months');
 date_part 
-----------
         3
(1 row)

● isfinite(date)
Description: Tests for valid date.
Return type: boolean
For example:
SELECT isfinite(date '2001-02-16');
 isfinite 
----------
 t
(1 row)

● isfinite(timestamp)
Description: Tests for valid timestamp.
Return type: boolean
For example:
SELECT isfinite(timestamp '2001-02-16 21:28:30');
 isfinite 

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 116



----------
 t
(1 row)

● isfinite(interval)
Description: Tests for valid interval.
Return type: boolean
For example:
SELECT isfinite(interval '4 hours');
 isfinite 
----------
 t
(1 row)

● justify_days(interval)
Description: Adjusts interval to 30-day time periods are represented as
months
Return type: interval
For example:
SELECT justify_days(interval '35 days');
 justify_days 
--------------
 1 mon 5 days
(1 row)

● justify_hours(interval)
Description: Adjusts interval to 24-hour time periods are represented as days
Return type: interval
For example:
SELECT JUSTIFY_HOURS(INTERVAL '27 HOURS');
 justify_hours  
----------------
 1 day 03:00:00
(1 row)

● justify_interval(interval)
Description: Adjusts interval using justify_days and justify_hours.
Return type: interval
For example:
SELECT JUSTIFY_INTERVAL(INTERVAL '1 MON -1 HOUR');
 justify_interval 
------------------
 29 days 23:00:00
(1 row)

● localtime
Description: Current time
Return type: time
For example:
SELECT localtime AS RESULT;
     result
----------------
 16:05:55.664681
(1 row)

● localtimestamp
Description: Specifies the current date and time.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 117



Return type: timestamp
For example:
SELECT localtimestamp;
         timestamp          
----------------------------
 2017-09-01 17:03:30.781902
(1 row)

● now()
Description: Timestamp indicating the start of the current transaction.
Return type: timestamp with time zone
For example:
SELECT now();
              now              
-------------------------------
 2017-09-01 17:03:42.549426+08
(1 row)

● numtodsinterval(num, interval_unit)
Description: Converts a number to the interval type. num is a numeric-typed
number. interval_unit is a string in the following format: 'DAY' | 'HOUR' |
'MINUTE' | 'SECOND'
You can set the IntervalStyle parameter to oracle to be compatible with the
interval output format of the function in the Oracle database.
For example:
SELECT numtodsinterval(100, 'HOUR');
 numtodsinterval 
-----------------
 100:00:00
(1 row)

SET intervalstyle = oracle;
SET
SELECT numtodsinterval(100, 'HOUR');
        numtodsinterval
-------------------------------
 +000000004 04:00:00.000000000
(1 row)

● pg_sleep(seconds)
Description: Specifies the delay time of the server thread in unit of second.
Return type: void
For example:
SELECT pg_sleep(10);
 pg_sleep 
----------

(1 row)

● statement_timestamp()
Description: Specifies the current date and time.
Return type: timestamp with time zone
For example:
SELECT statement_timestamp();
      statement_timestamp      
-------------------------------
 2017-09-01 17:04:39.119267+08
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 118



● sysdate
Description: Specifies the current date and time.
Return type: timestamp
For example:
SELECT sysdate;
       sysdate       
---------------------
 2017-09-01 17:04:49
(1 row)

● timeofday()
Description: Current date and time (like clock_timestamp, but returned as a
text string)
Return type: text
For example:
SELECT timeofday();
              timeofday              
-------------------------------------
 Fri Sep 01 17:05:01.167506 2017 CST
(1 row)

● transaction_timestamp()
Description: Current date and time (equivalent to current_timestamp)
Return type: timestamp with time zone
For example:
SELECT transaction_timestamp();
     transaction_timestamp     
-------------------------------
 2017-09-01 17:05:13.534454+08
(1 row)

● add_months(d,n)
Description: Calculates the time point day and time of nth months.
Return type: timestamp
For example:
SELECT add_months(to_date('2017-5-29', 'yyyy-mm-dd'), 11) FROM dual;
     add_months      
---------------------
 2018-04-29 00:00:00
(1 row)

● last_day(d)
Description: Calculates the time of the last day in the month.
– In the ORA- or TD-compatible mode, the return type is timestamp.
– In the MySQL-compatible mode, the return type is date.
For example:
select last_day(to_date('2017-01-01', 'YYYY-MM-DD')) AS cal_result;
     cal_result      
---------------------
 2017-01-31 00:00:00
(1 row)

● next_day(x,y)
Description: Calculates the time of the next week y started from x
– In the ORA- or TD-compatible mode, the return type is timestamp.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 119



– In the MySQL-compatible mode, the return type is date.
For example:
select next_day(timestamp '2017-05-25 00:00:00','Sunday')AS cal_result;
     cal_result      
---------------------
 2017-05-28 00:00:00
(1 row)

● to_days(timestamp)
Description: Returns the number of days from the first day of year 0 to a
specified date.
Return type: int
For example:
SELECT to_days(timestamp '2008-10-07');
 to_days
---------
  733687
(1 row)

EXTRACT
EXTRACT(field FROM source)

The extract function retrieves subcolumns such as year or hour from date/time
values. source must be a value expression of type timestamp, time, or interval.
(Expressions of type date are cast to timestamp and can therefore be used as
well.) field is an identifier or string that selects what column to extract from the
source value. The extract function returns values of type double precision. The
following are valid field names:

● century
Century
The first century starts at 0001-01-01 00:00:00 AD. This definition applies to
all Gregorian calendar countries. There is no century number 0. You go from
-1 century to 1 century.
For example:
SELECT EXTRACT(CENTURY FROM TIMESTAMP '2000-12-16 12:21:13');
 date_part 
-----------
        20
(1 row)

● day
– For timestamp values, the day (of the month) column (1–31)

SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40');
 date_part 
-----------
        16
(1 row)

– For interval values, the number of days
SELECT EXTRACT(DAY FROM INTERVAL '40 days 1 minute');
 date_part 
-----------
        40
(1 row)

● decade
Year column divided by 10

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 120



SELECT EXTRACT(DECADE FROM TIMESTAMP '2001-02-16 20:38:40');
 date_part 
-----------
       200
(1 row)

● dow
Day of the week as Sunday(0) to Saturday (6)
SELECT EXTRACT(DOW FROM TIMESTAMP '2001-02-16 20:38:40');
 date_part 
-----------
         5
(1 row)

● doy
Day of the year (1–365 or 366)
SELECT EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40');
 date_part 
-----------
        47
(1 row)

● epoch
– For timestamp with time zone values, the number of seconds since

1970-01-01 00:00:00 UTC (can be negative);
for date and timestamp values, the number of seconds since 1970-01-01
00:00:00 local time;
for interval values, the total number of seconds in the interval.
SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40.12-08');
  date_part   
--------------
 982384720.12
(1 row)
SELECT EXTRACT(EPOCH FROM INTERVAL '5 days 3 hours');
 date_part 
-----------
    442800
(1 row)

– Way to convert an epoch value back to a timestamp
SELECT TIMESTAMP WITH TIME ZONE 'epoch' + 982384720.12 * INTERVAL '1 second' AS 
RESULT;
          result          
---------------------------
 2001-02-17 12:38:40.12+08
(1 row)

● hour
Hour column (0–23)
SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40');
 date_part 
-----------
        20
(1 row)

● isodow
Day of the week (1–7)
Monday is 1 and Sunday is 7.

NO TE

This is identical to dow except for Sunday.
SELECT EXTRACT(ISODOW FROM TIMESTAMP '2001-02-18 20:38:40');
 date_part 

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 121



-----------
         7
(1 row)

● isoyear
The ISO 8601 year that the date falls in (not applicable to intervals).
Each ISO year begins with the Monday of the week containing the 4th of
January, so in early January or late December the ISO year may be different
from the Gregorian year. See the week column for more information.
SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-01');
 date_part 
-----------
      2005
(1 row)
SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-02');
 date_part 
-----------
      2006
(1 row)

● microseconds
The seconds column, including fractional parts, multiplied by 1,000,000
SELECT EXTRACT(MICROSECONDS FROM TIME '17:12:28.5');
 date_part 
-----------
  28500000
(1 row)

● millennium
Millennium
Years in the 1900s are in the second millennium. The third millennium started
from January 1, 2001.
SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP '2001-02-16 20:38:40');
 date_part 
-----------
         3
(1 row)

● milliseconds
The seconds column, including fractional parts, multiplied by 1000. Note that
this includes full seconds.
SELECT EXTRACT(MILLISECONDS FROM TIME '17:12:28.5');
 date_part 
-----------
     28500
(1 row)

● minute
Minutes column (0–59)
SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40');
 date_part 
-----------
        38
(1 row)

● month
For timestamp values, the number of the month within the year (1–12);
SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40');
 date_part 
-----------
         2
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 122



For interval values, the number of months, modulo 12 (0–11)
SELECT EXTRACT(MONTH FROM INTERVAL '2 years 13 months');
 date_part 
-----------
         1
(1 row)

● quarter

Quarter of the year (1–4) that the date is in
SELECT EXTRACT(QUARTER FROM TIMESTAMP '2001-02-16 20:38:40');
 date_part 
-----------
         1
(1 row)

● second

Seconds column, including fractional parts (0–59)
SELECT EXTRACT(SECOND FROM TIME '17:12:28.5');
 date_part 
-----------
      28.5
(1 row)

● timezone

The time zone offset from UTC, measured in seconds. Positive values
correspond to time zones east of UTC, negative values to zones west of UTC.

● timezone_hour

The hour component of the time zone offset

● timezone_minute

The minute component of the time zone offset

● week

The number of the week of the year that the day is in. By definition (ISO
8601), the first week of a year contains January 4 of that year. (The ISO-8601
week starts on Monday.) In other words, the first Thursday of a year is in
week 1 of that year.

Because of this, it is possible for early January dates to be part of the 52nd or
53rd week of the previous year, and late December dates to be part of the 1st
week of the next year. For example, 2005-01-01 is part of the 53rd week of
year 2004, 2006-01-01 is part of the 52nd week of year 2005, and
2012-12-31 is part of the 1st week of year 2013. You are advised to use the
columns isoyear and week together to ensure consistency.
SELECT EXTRACT(WEEK FROM TIMESTAMP '2001-02-16 20:38:40');
 date_part 
-----------
         7
(1 row)

● year

Year column
SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40');
 date_part 
-----------
      2001
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 123



date_part

The date_part function is modeled on the traditional Ingres equivalent to the
SQL-standard function extract:

date_part('field', source)

Note that the field must be a string, rather than a name. The valid field names
are the same as those for extract. For details, see EXTRACT.

For example:

SELECT date_part('day', TIMESTAMP '2001-02-16 20:38:40');
 date_part 
-----------
        16
(1 row)
SELECT date_part('hour', INTERVAL '4 hours 3 minutes');
 date_part 
-----------
         4
(1 row)

The following table describes the patterns of date and time values. They can be
used for the to_date, to_timestamp, and to_char functions, and the
nls_timestamp_format parameter.

Table 6-6 Schemas for formatting date and time

Category Format Description

Hours HH Number of hours in one day (01-12)

HH12 Number of hours in one day (01-12)

HH24 Number of hours in one day (00-23)

Minute MI Minute (00-59)

Seconds SS Second (00-59)

FF Microsecond (000000-999999)

SSSSS Second after midnight (0-86399)

Morning
and
afternoon

AM or A.M. Morning identifier

PM or P.M. Afternoon identifier

Year Y,YYY Year with comma (with four digits or more)

SYYYY Year with four digits BC

YYYY Year (with four digits or more)

YYY Last three digits of a year

YY Last two digits of a year

Y Last one digit of a year

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 124



Category Format Description

IYYY ISO year (with four digits or more)

IYY Last three digits of an ISO year

IY Last two digits of an ISO year

I Last one digit of an ISO year

RR Last two digits of a year (A year of the 20th
century can be stored in the 21st century.)

RRRR Capable of receiving a year with four digits or
two digits. If there are 2 digits, the value is
the same as the returned value of RR. If there
are 4 digits, the value is the same as YYYY.

● BC or B.C.
● AD or A.D.

Era indicator Before Christ (BC) and After
Christ (AD)

Month MONTH Full spelling of a month in uppercase (9
characters are filled in if the value is empty.)

MON Month in abbreviated format in uppercase
(with three characters)

MM Month (01-12)

RM Month in Roman numerals (I-XII; I=JAN) and
uppercase

Day DAY Full spelling of a date in uppercase (9
characters are filled in if the value is empty.)

DY Day in abbreviated format in uppercase (with
three characters)

DDD Day in a year (001-366)

DD Day in a month (01-31)

D Day in a week (1-7.

Week W Week in a month (1-5) (The first week starts
from the first day of the month.)

WW Week in a year (1-53) (The first week starts
from the first day of the year.)

IW Week in an ISO year (The first Thursday is in
the first week.)

Century CC Century (with two digits) (The 21st century
starts from 2001-01-01.)

Julian
date

J Julian date (starting from January 1 of 4712
BC)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 125



Category Format Description

Quarter Q Quarter

 

NO TE

In the table, the rules for RR to calculate years are as follows:

● If the range of the input two-digit year is between 00 and 49:

If the last two digits of the current year are between 00 and 49, the first two digits of
the returned year are the same as the first two digits of the current year.

If the last two digits of the current year are between 50 and 99, the first two digits of
the returned year equal to the first two digits of the current year plus 1.

● If the range of the input two-digit year is between 50 and 99:

If the last two digits of the current year are between 00 and 49, the first two digits of
the returned year equal to the first two digits of the current year minus 1.

If the last two digits of the current year are between 50 and 99, the first two digits of
the returned year are the same as the first two digits of the current year.

date_format

date_format(timestamp, fmt)

Converts a date into a string in the format specified by fmt.

For example:

SELECT date_format('2009-10-04 22:23:00', '%M %D %W');
    date_format
--------------------
 October 4th Sunday
(1 row)
SELECT date_format('2021-02-20 08:30:45', '%Y-%m-%d %H:%i:%S');
     date_format
---------------------
 2021-02-20 08:30:45
(1 row)
SELECT date_format('2021-02-20 18:10:15', '%r-%T');
     date_format
----------------------
 06:10:15 PM-18:10:15
(1 row)

The following table describes the patterns of date parameter values. They can be
used for the date_format, time_format, str_to_date, str_to_time, and
from_unixtime functions.

Table 6-7 Output formats of date_format

Format Description Value

%a Abbreviated week name Sun...Sat

%b Abbreviated month name Jan...Dec

%c Month 0...12

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 126



Format Description Value

%D Date with a suffix 0th, 1st, 2nd, 3rd, ...

%d Day in a month (two digits) 00...31

%e Day in a month 0...31

%f Microsecond 000000...999999

%H Hour, in 24-hour format 00...23

%h Hour, in 12-hour format 01...12

%I Hour, in 12-hour format,
same as %h

01...12

%i Minute 00...59

%j Day in a year 001...366

%k Hour, in 24-hour format,
same as %H

0...23

%l Hour, in 12-hour format,
same as %h

1...12

%M Month name January...December

%m Month (two digits) 00...12

%p Morning and afternoon AM PM

%r Time, in 12-hour format hh::mm::ss AM/PM

%S Second 00...59

%s Second, same as %S 00...59

%T Time, in 24-hour format hh::mm::ss

%U Week (Sunday is the first day
of a week)

00...53

%u Week (Monday is the first
day of a week)

00...53

%V Week (Sunday is the first day
of a week). It is used
together with %X.

01...53

%v Week (Monday is the first
day of a week). It is used
together with %x.

01...53

%W Week name Sunday...Saturday

%w Day of a week. The value is 0
for Sunday.

0...6

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 127



Format Description Value

%X Year (four digits). It is used
together with %V. Sunday is
the first day of a week.

-

%x Year (four digits). It is used
together with %v. Monday is
the first day of a week.

-

%Y Year (four digits) -

%y Year (two digits) -

%% Character '%' Character '%'

%x 'x': any character apart from
the preceding ones

Character 'x'

 

NO TICE

In the preceding table, %U, %u, %V, %v, %X, and %x are not supported currently.

6.9 Type Conversion Functions

Type Conversion Functions
● cast(x as y)

Description: Converts x into the type specified by y.
For example:
SELECT cast('22-oct-1997' as timestamp);
      timestamp      
---------------------
 1997-10-22 00:00:00
(1 row)

● hextoraw(string)
Description: Converts a string in hexadecimal format into binary format.
Return type: raw
For example:
SELECT hextoraw('7D');
 hextoraw 
----------
 7D
(1 row)

● numtoday(numeric)
Description: Converts values of the number type into the timestamp of the
specified type.
Return type: timestamp
For example:

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 128



SELECT numtoday(2);
 numtoday
----------
 2 days
(1 row)

● pg_systimestamp()
Description: Obtains the system timestamp.
Return type: timestamp with time zone
For example:
SELECT pg_systimestamp();
        pg_systimestamp
-------------------------------
 2015-10-14 11:21:28.317367+08
(1 row)

● rawtohex(string)
Description: Converts a string in binary format into hexadecimal format.
The result is the ACSII code of the input characters in hexadecimal format.
Return type: varchar
For example:
SELECT rawtohex('1234567');
    rawtohex    
----------------
 31323334353637
(1 row)

● to_char (datetime/interval [, fmt])
Description: Converts a DATETIME or INTERVAL value of the DATE/
TIMESTAMP/TIMESTAMP WITH TIME ZONE/TIMESTAMP WITH LOCAL TIME
ZONE type into the VARCHAR type according to the format specified by fmt.
– The optional parameters fmt include the following types: date, time,

week, quarter, and century. Each type has a unique template. The
templates can be combined together. Common templates include: HH,
MM, SS, YYYY, MM, and DD.

– A template may have a modification word. FM is a common modification
word and is used to suppress the preceding zero or the following blank
spaces.

Return type: varchar
For example:
SELECT to_char(current_timestamp,'HH12:MI:SS');
 to_char  
----------
 10:19:26
(1 row)
SELECT to_char(current_timestamp,'FMHH12:FMMI:FMSS');
 to_char  
----------
 10:19:46
(1 row)

● to_char(double precision, text)
Description: Converts the values of the double-precision type into the strings
in the specified format.
Return type: text
For example:

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 129



SELECT to_char(125.8::real, '999D99');
 to_char 
---------
  125.80
(1 row)

● to_char (integer/number[, fmt])
Descriptions: Converts an integer or a value in floating point format into a
string in specified format.
– Optional parameters fmt include the following types: decimal characters,

grouping characters, positive/negative sign and currency sign. Each type
has a unique template. The templates can be combined together.
Common templates include: 9, 0, millesimal sign (,), and decimal point
(.).

– A template can have a modification word, similar to FM. However, FM
does not suppress 0 which is output according to the template.

– Use the template X or x to convert an integer value into a string in
hexadecimal format.

Return type: varchar
For example:
SELECT to_char(1485,'9,999');
 to_char 
---------
  1,485
(1 row)
SELECT to_char( 1148.5,'9,999.999');
  to_char   
------------
  1,148.500
(1 row)
SELECT to_char(148.5,'990999.909');
   to_char   
-------------
    0148.500
(1 row)
SELECT to_char(123,'XXX');
 to_char 
---------
   7B
(1 row)

● to_char(interval, text)
Description: Converts the values of the time interval type into the strings in
the specified format.
Return type: text
For example:
SELECT to_char(interval '15h 2m 12s', 'HH24:MI:SS');
 to_char
----------
 15:02:12
(1 row)

● to_char(int, text)
Description: Converts the values of the integer type into the strings in the
specified format.
Return type: text
For example:
SELECT to_char(125, '999');
 to_char

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 130



---------
  125
(1 row)

● to_char(numeric, text)
Description: Converts the values of the numeric type into the strings in the
specified format.
Return type: text
For example:
SELECT to_char(-125.8, '999D99S');
 to_char
---------
 125.80-
(1 row)

● to_char (string)
Description: Converts the CHAR/VARCHAR/VARCHAR2/CLOB type into the
VARCHAR type.
If this function is used to convert data of the CLOB type, and the value to be
converted exceeds the value range of the target type, an error is returned.
Return type: varchar
For example:
SELECT to_char('01110');
 to_char
---------
 01110
(1 row)

● to_char(timestamp, text)
Description: Converts the values of the timestamp type into the strings in the
specified format.
Return type: text
For example:
SELECT to_char(current_timestamp, 'HH12:MI:SS');
 to_char
----------
 10:55:59
(1 row)

● to_clob(char/nchar/varchar/nvarchar/varchar2/nvarchar2/text/raw)
Description: Convert the RAW type or text character set type CHAR/NCHAR/
VARCHAR/VARCHAR2/NVARCHAR2/TEXT into the CLOB type.
Return type: clob
For example:
SELECT to_clob('ABCDEF'::RAW(10));
 to_clob 
---------
 ABCDEF
(1 row)
SELECT to_clob('hello111'::CHAR(15));
 to_clob  
----------
 hello111
(1 row)
SELECT to_clob('gauss123'::NCHAR(10));
 to_clob  
----------
 gauss123
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 131



SELECT to_clob('gauss234'::VARCHAR(10));
 to_clob  
----------
 gauss234
(1 row)
SELECT to_clob('gauss345'::VARCHAR2(10));
 to_clob  
----------
 gauss345
(1 row)
SELECT to_clob('gauss456'::NVARCHAR2(10));
 to_clob  
----------
 gauss456
(1 row)
SELECT to_clob('World222!'::TEXT);
  to_clob  
-----------
 World222!
(1 row)

● to_date(text)
Description: Converts values of the text type into the timestamp in the
specified format.
Return type: timestamp
For example:
SELECT to_date('2015-08-14');
       to_date
---------------------
 2015-08-14 00:00:00
(1 row)

● to_date(text, text)
Description: Converts the values of the string type into the dates in the
specified format.
Return type: timestamp
For example:
SELECT to_date('05 Dec 2000', 'DD Mon YYYY');
       to_date
---------------------
 2000-12-05 00:00:00
(1 row)

● to_date(string, fmt)
Description:
Converts a string into a value of the DATE type according to the format
specified by fmt.
This function cannot support the CLOB type directly. However, a parameter of
the CLOB type can be converted using implicit conversion.
Return type: date
For example:
SELECT TO_DATE('05 Dec 2010','DD Mon YYYY');
       to_date       
---------------------
 2010-12-05 00:00:00
(1 row)

● to_number ( expr [, fmt])
Description: Converts expr into a value of the NUMBER type according to the
specified format.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 132



For details about the type conversion formats, see Table 6-8.
If a hexadecimal string is converted into a decimal number, the hexadecimal
string can include a maximum of 16 bytes if it is to be converted into a sign-
free number.
During the conversion from a hexadecimal string to a decimal digit, the
format string cannot have a character other than x or X. Otherwise, an error
is reported.
Return type: number
For example:
SELECT to_number('12,454.8-', '99G999D9S');
 to_number 
-----------
  -12454.8
(1 row)

● to_number(text, text)
Description: Converts the values of the string type into the numbers in the
specified format.
Return type: numeric
For example:
SELECT to_number('12,454.8-', '99G999D9S');
 to_number
-----------
  -12454.8
(1 row)

● to_timestamp(double precision)
Description: Converts a UNIX century into a timestamp.
Return type: timestamp with time zone
For example:
SELECT to_timestamp(1284352323);
      to_timestamp      
------------------------
 2010-09-13 12:32:03+08
(1 row)

● to_timestamp(string [,fmt])
Description: Converts a string into a value of the timestamp type according to
the format specified by fmt. When fmt is not specified, perform the
conversion according to the format specified by nls_timestamp_format.
In to_timestamp in GaussDB(DWS):
– If the input year YYYY is 0, an error will be reported.
– If the input year YYYY<0 to specify SYYYY in fmt, the year with the value

of n (an absolute value) BC is output correctly.
Characters in the fmt must match the schema for formatting the data and
time. Otherwise, an error is reported.
Return type: timestamp without time zone
For example:
SHOW nls_timestamp_format;
    nls_timestamp_format    
----------------------------
 DD-Mon-YYYY HH:MI:SS.FF AM
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 133



SELECT to_timestamp('12-sep-2014');
    to_timestamp     
---------------------
 2014-09-12 00:00:00
(1 row)
SELECT to_timestamp('12-Sep-10 14:10:10.123000','DD-Mon-YY HH24:MI:SS.FF');
      to_timestamp       
-------------------------
 2010-09-12 14:10:10.123
(1 row)
SELECT to_timestamp('-1','SYYYY');
      to_timestamp      
------------------------
 0001-01-01 00:00:00 BC
(1 row)
SELECT to_timestamp('98','RR');
    to_timestamp     
---------------------
 1998-01-01 00:00:00
(1 row)
SELECT to_timestamp('01','RR');
    to_timestamp     
---------------------
 2001-01-01 00:00:00
(1 row)

● to_timestamp(text, text)
Description: Converts values of the string type into the timestamp of the
specified type.
Return type: timestamp
For example:
SELECT to_timestamp('05 Dec 2000', 'DD Mon YYYY');
    to_timestamp
---------------------
 2000-12-05 00:00:00
(1 row)

The following table describes the value formats of the to_number function.

Table 6-8 Template patterns for numeric formatting

Schema Description

9 Value with specified digits

0 Values with leading zeros

Period (.) Decimal point

Comma (,) Group (thousand) separator

PR Negative values in angle brackets

S Sign anchored to number (uses locale)

L Currency symbol (uses locale)

D Decimal point (uses locale)

G Group separator (uses locale)

MI Minus sign in the specified position (if the number is
less than 0)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 134



Schema Description

PL Plus sign in the specified position (if the number is
greater than 0)

SG Plus or minus sign in the specified position

RN Roman numerals (the input values are between 1 and
3999)

TH or th Ordinal number suffix

V Shifts specified number of digits (decimal)

 

6.10 Geometric Functions and Operators

Geometric Operators
● +

Description: Translation
For example:
SELECT box '((0,0),(1,1))' + point '(2.0,0)' AS RESULT;
   result    
-------------
 (3,1),(2,0)
(1 row)

● -
Description: Translation
For example:
SELECT box '((0,0),(1,1))' - point '(2.0,0)' AS RESULT;
    result     
---------------
 (-1,1),(-2,0)
(1 row)

● *
Description: Scaling out/rotation
For example:
SELECT box '((0,0),(1,1))' * point '(2.0,0)' AS RESULT;
   result    
-------------
 (2,2),(0,0)
(1 row)

● /
Description: Scaling in/rotation
For example:
SELECT box '((0,0),(2,2))' / point '(2.0,0)' AS RESULT;
   result    
-------------
 (1,1),(0,0)
(1 row)

● #

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 135



Description: Point or box of intersection
For example:
SELECT box'((1,-1),(-1,1))' # box'((1,1),(-1,-1))' AS RESULT;
 result 
--------
(1,1),(-1,-1)
(1 row)

● #
Description: Number of paths or polygon vertexs
For example:
SELECT # path'((1,0),(0,1),(-1,0))' AS RESULT;
 result 
--------
      3
(1 row)

● @-@
Description: Length or circumference
For example:
SELECT @-@ path '((0,0),(1,0))' AS RESULT;
 result 
--------
      2
(1 row)

● @@
Description: Center of box
For example:
SELECT @@ circle '((0,0),10)' AS RESULT;
 result 
--------
 (0,0)
(1 row)

● ##
Description: Closest point to first figure on second figure.
For example:
SELECT point '(0,0)' ## box '((2,0),(0,2))' AS RESULT;
 result 
--------
 (0,0)
(1 row)

● <->
Description: Distance between the two figures.
For example:
SELECT circle '((0,0),1)' <-> circle '((5,0),1)' AS RESULT;
 result 
--------
      3
(1 row)

● &&
Description: Overlaps? (One point in common makes this true.)
For example:
SELECT box '((0,0),(1,1))' && box '((0,0),(2,2))' AS RESULT;
 result 
--------

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 136



 t
(1 row)

● <<
Description: Is strictly left of (no common horizontal coordinate)?
For example:
SELECT circle '((0,0),1)' << circle '((5,0),1)' AS RESULT;
 result 
--------
 t
(1 row)

● >>
Description: Is strictly right of (no common horizontal coordinate)?
For example:
SELECT circle '((5,0),1)' >> circle '((0,0),1)' AS RESULT;
 result 
--------
 t
(1 row)

● &<
Description: Does not extend to the right of?
For example:
SELECT box '((0,0),(1,1))' &< box '((0,0),(2,2))' AS RESULT;
 result 
--------
 t
(1 row)

● &>
Description: Does not extend to the left of?
For example:
SELECT box '((0,0),(3,3))' &> box '((0,0),(2,2))' AS RESULT;
 result 
--------
 t
(1 row)

● <<|
Description: Is strictly below (no common horizontal coordinate)?
For example:
SELECT box '((0,0),(3,3))' <<| box '((3,4),(5,5))' AS RESULT;
 result 
--------
 t
(1 row)

● |>>
Description: Is strictly above (no common horizontal coordinate)?
For example:
SELECT box '((3,4),(5,5))' |>> box '((0,0),(3,3))' AS RESULT;
 result 
--------
 t
(1 row)

● &<|
Description: Does not extend above?
For example:

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 137



SELECT box '((0,0),(1,1))' &<| box '((0,0),(2,2))' AS RESULT;
 result 
--------
 t
(1 row)

● |&>
Description: Does not extend below?
For example:
SELECT box '((0,0),(3,3))' |&> box '((0,0),(2,2))' AS RESULT;
 result 
--------
 t
(1 row)

● <^
Description: Is below (allows touching)?
For example:
SELECT box '((0,0),(-3,-3))' <^ box '((0,0),(2,2))' AS RESULT;
 result 
--------
 t
(1 row)

● >^
Description: Is above (allows touching)?
For example:
SELECT box '((0,0),(2,2))' >^ box '((0,0),(-3,-3))'  AS RESULT;
 result 
--------
 t
(1 row)

● ?#
Description: Intersect?
For example:
SELECT lseg '((-1,0),(1,0))' ?# box '((-2,-2),(2,2))' AS RESULT;
 result 
--------
 t
(1 row)

● ?-
Description: Is horizontal?
For example:
SELECT ?- lseg '((-1,0),(1,0))' AS RESULT;
 result 
--------
 t
(1 row)

● ?-
Description: Are horizontally aligned?
For example:
SELECT point '(1,0)' ?- point '(0,0)' AS RESULT;
 result 
--------
 t
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 138



● ?|
Description: Is vertical?
For example:
SELECT ?| lseg '((-1,0),(1,0))' AS RESULT;
 result 
--------
 f
(1 row)

● ?|
Description: Are vertically aligned?
For example:
SELECT point '(0,1)' ?| point '(0,0)' AS RESULT;
 result 
--------
 t
(1 row)

● ?-|
Description: Are perpendicular?
For example:
SELECT lseg '((0,0),(0,1))' ?-| lseg '((0,0),(1,0))' AS RESULT;
 result 
--------
 t
(1 row)

● ?||
Description: Are parallel?
For example:
SELECT lseg '((-1,0),(1,0))' ?|| lseg '((-1,2),(1,2))' AS RESULT;
 result 
--------
 t
(1 row)

● @>
Description: Contains?
For example:
SELECT circle '((0,0),2)' @> point '(1,1)' AS RESULT;
 result 
--------
 t
(1 row)

● <@
Description: Contained in or on?
For example:
SELECT point '(1,1)' <@ circle '((0,0),2)' AS RESULT;
 result 
--------
 t
(1 row)

● ~=
Description: Same as?
For example:
SELECT polygon '((0,0),(1,1))' ~= polygon '((1,1),(0,0))' AS RESULT;
 result 

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 139



--------
 t
(1 row)

Geometric Functions
● area(object)

Description: Area calculation
Return type: double precision
For example:
SELECT area(box '((0,0),(1,1))') AS RESULT;
 result 
--------
      1
(1 row)

● center(object)
Description: Figure center calculation
Return type: point
For example:
SELECT center(box '((0,0),(1,2))') AS RESULT;
 result  
---------
 (0.5,1)
(1 row)

● diameter(circle)
Description: Circle diameter calculation
Return type: double precision
For example:
SELECT diameter(circle '((0,0),2.0)') AS RESULT;
 result 
--------
      4
(1 row)

● height(box)
Description: Vertical size of box
Return type: double precision
For example:
SELECT height(box '((0,0),(1,1))') AS RESULT;
 result 
--------
      1
(1 row)

● isclosed(path)
Description: A closed path?
Return type: boolean
For example:
SELECT isclosed(path '((0,0),(1,1),(2,0))') AS RESULT;
 result 
--------
 t
(1 row)

● isopen(path)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 140



Description: An open path?
Return type: boolean
For example:
SELECT isopen(path '[(0,0),(1,1),(2,0)]') AS RESULT;
 result 
--------
 t
(1 row)

● length(object)
Description: Length calculation
Return type: double precision
For example:
SELECT length(path '((-1,0),(1,0))') AS RESULT;
 result 
--------
      4
(1 row)

● npoints(path)
Description: Number of points in path
Return type: int
For example:
SELECT npoints(path '[(0,0),(1,1),(2,0)]') AS RESULT;
 result 
--------
      3
(1 row)

● npoints(polygon)
Description: Number of points in polygon
Return type: int
For example:
SELECT npoints(polygon '((1,1),(0,0))') AS RESULT;
 result 
--------
      2
(1 row)

● pclose(path)
Description: Converts path to closed.
Return type: path
For example:
SELECT pclose(path '[(0,0),(1,1),(2,0)]') AS RESULT;
       result        
---------------------
 ((0,0),(1,1),(2,0))
(1 row)

● popen(path)
Description: Converts path to open.
Return type: path
For example:
SELECT popen(path '((0,0),(1,1),(2,0))') AS RESULT;
       result        
---------------------

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 141



 [(0,0),(1,1),(2,0)]
(1 row)

● radius(circle)
Description: Circle diameter calculation
Return type: double precision
For example:
SELECT radius(circle '((0,0),2.0)') AS RESULT;
 result 
--------
      2
(1 row)

● width(box)
Description: Horizontal size of box
Return type: double precision
For example:
SELECT width(box '((0,0),(1,1))') AS RESULT;
 result 
--------
      1
(1 row)

Geometric Type Conversion Functions
● box(circle)

Description: Circle to box
Return type: box
For example:
SELECT box(circle '((0,0),2.0)') AS RESULT;
                                  result                                   
---------------------------------------------------------------------------
 (1.41421356237309,1.41421356237309),(-1.41421356237309,-1.41421356237309)
(1 row)

● box(point, point)
Description: Points to box
Return type: box
For example:
SELECT box(point '(0,0)', point '(1,1)') AS RESULT;
   result    
-------------
 (1,1),(0,0)
(1 row)

● box(polygon)
Description: Polygon to box
Return type: box
For example:
SELECT box(polygon '((0,0),(1,1),(2,0))') AS RESULT;
   result    
-------------
 (2,1),(0,0)
(1 row)

● circle(box)
Description: Box to circle

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 142



Return type: circle
For example:
SELECT circle(box '((0,0),(1,1))') AS RESULT;
            result             
-------------------------------
 <(0.5,0.5),0.707106781186548>
(1 row)

● circle(point, double precision)
Description: Center and radius to circle
Return type: circle
For example:
SELECT circle(point '(0,0)', 2.0) AS RESULT;
  result   
-----------
 <(0,0),2>
(1 row)

● circle(polygon)
Description: Polygon to circle
Return type: circle
For example:
SELECT circle(polygon '((0,0),(1,1),(2,0))') AS RESULT;
                  result                   
-------------------------------------------
 <(1,0.333333333333333),0.924950591148529>
(1 row)

● lseg(box)
Description: Box diagonal to line segment
Return type: lseg
For example:
SELECT lseg(box '((-1,0),(1,0))') AS RESULT;
     result     
----------------
 [(1,0),(-1,0)]
(1 row)

● lseg(point, point)
Description: Points to line segment
Return type: lseg
For example:
SELECT lseg(point '(-1,0)', point '(1,0)') AS RESULT;
     result     
----------------
 [(-1,0),(1,0)]
(1 row)

● path(polygon)
Description: Polygon to path
Return type: path
For example:
SELECT path(polygon '((0,0),(1,1),(2,0))') AS RESULT;
       result        
---------------------
 ((0,0),(1,1),(2,0))
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 143



● point(double precision, double precision)
Description: Points
Return type: point
For example:
SELECT point(23.4, -44.5) AS RESULT;
    result    
--------------
 (23.4,-44.5)
(1 row)

● point(box)
Description: Center of box
Return type: point
For example:
SELECT point(box '((-1,0),(1,0))') AS RESULT;
 result 
--------
 (0,0)
(1 row)

● point(circle)
Description: Center of circle
Return type: point
For example:
SELECT point(circle '((0,0),2.0)') AS RESULT;
 result 
--------
 (0,0)
(1 row)

● point(lseg)
Description: Center of line segment
Return type: point
For example:
SELECT point(lseg '((-1,0),(1,0))') AS RESULT;
 result 
--------
 (0,0)
(1 row)

● point(polygon)
Description: Center of polygon
Return type: point
For example:
SELECT point(polygon '((0,0),(1,1),(2,0))') AS RESULT;
        result         
-----------------------
 (1,0.333333333333333)
(1 row)

● polygon(box)
Description: Box to 4-point polygon
Return type: polygon
For example:
SELECT polygon(box '((0,0),(1,1))') AS RESULT;
          result           

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 144



---------------------------
 ((0,0),(0,1),(1,1),(1,0))
(1 row)

● polygon(circle)
Description: Circle to 12-point polygon
Return type: polygon
For example:
SELECT polygon(circle '((0,0),2.0)') AS RESULT;
                                                                                                                                                
result                                                                                      

-----------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------
---------------------------------------------------------
 ((-2,0),(-1.73205080756888,1),(-1,1.73205080756888),(-1.22464679914735e-16,2),
(1,1.73205080756888),(1.73205080756888,1),(2,2.44929359829471e-16),
(1.73205080756888,-0.999999999999999),(1,-1.73205080756888),(3.67394039744206e-16,-2),
(-0.999999999999999,-1.73205080756888),(-1.73205080756888,-1))
(1 row)

● polygon(npts, circle)
Description: Circle to npts-point polygon
Return type: polygon
For example:
SELECT polygon(12, circle '((0,0),2.0)') AS RESULT;
                                                                                                                                                
result                                                                                      

-----------------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------------------
---------------------------------------------------------
 ((-2,0),(-1.73205080756888,1),(-1,1.73205080756888),(-1.22464679914735e-16,2),
(1,1.73205080756888),(1.73205080756888,1),(2,2.44929359829471e-16),
(1.73205080756888,-0.999999999999999),(1,-1.73205080756888),(3.67394039744206e-16,-2),
(-0.999999999999999,-1.73205080756888),(-1.73205080756888,-1))
(1 row)

● polygon(path)
Description: Path to polygon
Return type: polygon
For example:
SELECT polygon(path '((0,0),(1,1),(2,0))') AS RESULT;
       result        
---------------------
 ((0,0),(1,1),(2,0))
(1 row)

6.11 Network Address Functions and Operators

cidr and inet Operators
The operators <<, <<=, >>, and >>= test for subnet inclusion. They consider only
the network parts of the two addresses (ignoring any host part) and determine
whether one network is identical to or a subnet of the other.

● <
Description: Is less than

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 145



For example:
SELECT inet '192.168.1.5' < inet '192.168.1.6' AS RESULT;
 result 
--------
 t
(1 row)

● <=
Description: Is less than or equals
For example:
SELECT inet '192.168.1.5' <= inet '192.168.1.5' AS RESULT;
 result 
--------
 t
(1 row)

● =
Description: Equals
For example:
SELECT inet '192.168.1.5' = inet '192.168.1.5' AS RESULT;
 result 
--------
 t
(1 row)

● >=
Description: Is greater than or equals
For example:
SELECT inet '192.168.1.5' >= inet '192.168.1.5' AS RESULT;
 result 
--------
 t
(1 row)

● >
Description: Is greater than
For example:
SELECT inet '192.168.1.5' > inet '192.168.1.4' AS RESULT;
 result 
--------
 t
(1 row)

● <>
Description: Does not equal to
For example:
SELECT inet '192.168.1.5' <> inet '192.168.1.4' AS RESULT;
 result 
--------
 t
(1 row)

● <<
Description: Is contained in
For example:
SELECT inet '192.168.1.5' << inet '192.168.1/24' AS RESULT;
 result 
--------
 t
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 146



● <<=
Description: Is contained in or equals
For example:
SELECT inet '192.168.1/24' <<= inet '192.168.1/24' AS RESULT;
 result 
--------
 t
(1 row)

● >>
Description: Contains
For example:
SELECT inet '192.168.1/24' >> inet '192.168.1.5' AS RESULT;
 result 
--------
 t
(1 row)

● >>=
Description: Contains or equals
For example:
SELECT inet '192.168.1/24' >>= inet '192.168.1/24' AS RESULT;
 result 
--------
 t
(1 row)

● ~
Description: Bitwise NOT
For example:
SELECT ~ inet '192.168.1.6' AS RESULT; 
    result     
---------------
 63.87.254.249
(1 row)

● &
Description: The AND operation is performed on each bit of the two network
addresses.
For example:
SELECT inet '192.168.1.6' & inet '10.0.0.0' AS RESULT;
 result  
---------
 0.0.0.0
(1 row)

● |
Description: The OR operation is performed on each bit of the two network
addresses.
For example:
SELECT inet '192.168.1.6' | inet '10.0.0.0' AS RESULT;
   result    
-------------
 202.168.1.6
(1 row)

● +
Description: Addition

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 147



For example:
SELECT inet '192.168.1.6' + 25 AS RESULT;
    result    
--------------
 192.168.1.31
(1 row)

● -
Description: Subtraction
For example:
SELECT inet '192.168.1.43' - 36 AS RESULT;
   result    
-------------
 192.168.1.7
(1 row)

● -
Description: Subtraction
For example:
SELECT inet '192.168.1.43' - inet '192.168.1.19' AS RESULT;
 result 
--------
     24
(1 row)

cidr and inet Functions
The abbrev, host, and text functions are primarily intended to offer alternative
display formats.

● abbrev(inet)
Description: Abbreviated display format as text
Return type: text
For example:
SELECT abbrev(inet '10.1.0.0/16') AS RESULT;
   result    
-------------
 10.1.0.0/16
(1 row)

● abbrev(cidr)
Description: Abbreviated display format as text
Return type: text
For example:
SELECT abbrev(cidr '10.1.0.0/16') AS RESULT;
 result  
---------
 10.1/16
(1 row)

● broadcast(inet)
Description: Broadcast address for network
Return type: inet
For example:
SELECT broadcast('192.168.1.5/24') AS RESULT;
      result      
------------------

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 148



 192.168.1.255/24
(1 row)

● family(inet)
Description: Extracts family of address; 4 for IPv4, 6 for IPv6
Return type: int
For example:
SELECT family('::1') AS RESULT;
 result 
--------
      6
(1 row)

● host(inet)
Description: Extracts IP address as text.
Return type: text
For example:
SELECT host('192.168.1.5/24') AS RESULT;
   result    
-------------
 192.168.1.5
(1 row)

● hostmask(inet)
Description: Constructs host mask for network.
Return type: inet
For example:
SELECT hostmask('192.168.23.20/30') AS RESULT;
 result  
---------
 0.0.0.3
(1 row)

● masklen(inet)
Description: Extracts subnet mask length.
Return type: int
For example:
SELECT masklen('192.168.1.5/24') AS RESULT;
 result 
--------
     24
(1 row)

● netmask(inet)
Description: Constructs a subnet mask for the network.
Return type: inet
For example:
SELECT netmask('192.168.1.5/24') AS RESULT;
    result     
---------------
 255.255.255.0
(1 row)

● network(inet)
Description: Extracts network part of address.
Return type: cidr
For example:

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 149



SELECT network('192.168.1.5/24') AS RESULT;
     result     
----------------
 192.168.1.0/24
(1 row)

● set_masklen(inet, int)
Description: Sets subnet mask length for inet value.
Return type: inet
For example:
SELECT set_masklen('192.168.1.5/24', 16) AS RESULT;
     result     
----------------
 192.168.1.5/16
(1 row)

● set_masklen(cidr, int)
Description: Sets subnet mask length for cidr value.
Return type: cidr
For example:
SELECT set_masklen('192.168.1.0/24'::cidr, 16) AS RESULT;
     result     
----------------
 192.168.0.0/16
(1 row)

● text(inet)
Description: Extracts IP address and subnet mask length as text.
Return type: text
For example:
SELECT text(inet '192.168.1.5') AS RESULT;
     result     
----------------
 192.168.1.5/32
(1 row)

Any cidr value can be cast to inet implicitly or explicitly; therefore, the functions
shown above as operating on inet also work on cidr values. An inet value can be
cast to cidr. After the conversion, any bits to the right of the subnet mask are
silently zeroed to create a valid cidr value. In addition, you can cast a text string to
inet or cidr using normal casting syntax. For example, inet(expression) or
colname::cidr.

macaddr Functions
The function trunc(macaddr) returns a MAC address with the last 3 bytes set to
zero.

trunc(macaddr)

Description: Sets last 3 bytes to zero.

Return type: macaddr

For example:

SELECT trunc(macaddr '12:34:56:78:90:ab') AS RESULT;
      result       
-------------------

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 150



 12:34:56:00:00:00
(1 row)

The macaddr type also supports the standard relational operators (such as > and
<=) for lexicographical ordering, and the bitwise arithmetic operators (~, & and |)
for NOT, AND and OR.

6.12 Text Search Functions and Operators

Text Search Operators
● @@

Description: Specifies whether the tsvector-typed words match the tsquery-
typed words.
For example:
SELECT to_tsvector('fat cats ate rats') @@ to_tsquery('cat & rat') AS RESULT;
 result 
--------
 t
(1 row)

● @@@
Description: Synonym for @@
For example:
SELECT to_tsvector('fat cats ate rats') @@@ to_tsquery('cat & rat') AS RESULT;
 result 
--------
 t
(1 row)

● ||
Description: Connects two tsvector-typed words.
For example:
SELECT 'a:1 b:2'::tsvector || 'c:1 d:2 b:3'::tsvector AS RESULT;
          result           
---------------------------
 'a':1 'b':2,5 'c':3 'd':4
(1 row)

● &&
Description: Performs the AND operation on two tsquery-typed words.
For example:
SELECT 'fat | rat'::tsquery && 'cat'::tsquery AS RESULT;
          result           
---------------------------
 ( 'fat' | 'rat' ) & 'cat'
(1 row)

● ||
Description: Performs the OR operation on two tsquery-typed words.
For example:
SELECT 'fat | rat'::tsquery || 'cat'::tsquery AS RESULT;
          result           
---------------------------
 ( 'fat' | 'rat' ) | 'cat'
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 151



● !!
Description: NOT a tsquery
For example:
SELECT !! 'cat'::tsquery AS RESULT;
 result 
--------
 !'cat'
(1 row)

● @>
Description: Specifies whether a tsquery-typed word contains another
tsquery-typed word.
For example:
SELECT 'cat'::tsquery @> 'cat & rat'::tsquery AS RESULT;
 result 
--------
 f
(1 row)

● <@
Description: Specifies whether a tsquery-typed word is contained in another
tsquery-typed word.
For example:
SELECT 'cat'::tsquery <@ 'cat & rat'::tsquery AS RESULT;
 result 
--------
 t
(1 row)

In addition to the preceding operators, the ordinary B-tree comparison operators
(including = and <) are defined for types tsvector and tsquery.

Text search functions
● get_current_ts_config()

Description: Gets default text search configuration.
Return type: regconfig
For example:
SELECT get_current_ts_config();
 get_current_ts_config 
-----------------------
 english
(1 row)

● length(tsvector)
Description: Number of lexemes in a tsvector-typed word.
Return type: integer
For example:
SELECT length('fat:2,4 cat:3 rat:5A'::tsvector);
 length 
--------
      3
(1 row)

● numnode(tsquery)
Description: Number of lexemes plus tsquery operators
Return type: integer

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 152



For example:
SELECT numnode('(fat & rat) | cat'::tsquery);
 numnode 
---------
       5
(1 row)

● plainto_tsquery([ config regconfig , ] query text)
Description: Generates tsquery lexemes without punctuation.
Return type: tsquery
For example:
SELECT plainto_tsquery('english', 'The Fat Rats');
 plainto_tsquery 
-----------------
 'fat' & 'rat'
(1 row)

● querytree(query tsquery)
Description: Gets indexable part of a tsquery.
Return type: text
For example:
SELECT querytree('foo & ! bar'::tsquery);
 querytree 
-----------
 'foo'
(1 row)

● setweight(tsvector, "char")
Description: Assigns weight to each element of tsvector.
Return type: tsvector
For example:
SELECT setweight('fat:2,4 cat:3 rat:5B'::tsvector, 'A');
           setweight           
-------------------------------
 'cat':3A 'fat':2A,4A 'rat':5A
(1 row)

● strip(tsvector)
Description: Removes positions and weights from tsvector.
Return type: tsvector
For example:
SELECT strip('fat:2,4 cat:3 rat:5A'::tsvector);
       strip       
-------------------
 'cat' 'fat' 'rat'
(1 row)

● to_tsquery([ config regconfig , ] query text)
Description: Normalizes words and converts them to tsquery.
Return type: tsquery
For example:
SELECT to_tsquery('english', 'The & Fat & Rats');
  to_tsquery   
---------------
 'fat' & 'rat'
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 153



● to_tsvector([ config regconfig , ] document text)
Description: Reduces document text to tsvector.
Return type: tsvector
For example:
SELECT to_tsvector('english', 'The Fat Rats');
   to_tsvector   
-----------------
 'fat':2 'rat':3
(1 row)

● ts_headline([ config regconfig, ] document text, query tsquery [, options
text ])
Description: Highlights a query match.
Return type: text
For example:
SELECT ts_headline('x y z', 'z'::tsquery);
 ts_headline  
--------------
 x y <b>z</b>
(1 row)

● ts_rank([ weights float4[], ] vector tsvector, query tsquery [, normalization
integer ])
Description: Ranks document for query.
Return type: float4
For example:
SELECT ts_rank('hello world'::tsvector, 'world'::tsquery);
 ts_rank  
----------
 .0607927
(1 row)

● ts_rank_cd([ weights float4[], ] vector tsvector, query tsquery [, normalization
integer ])
Description: Ranks document for query using cover density.
Return type: float4
For example:
SELECT ts_rank_cd('hello world'::tsvector, 'world'::tsquery);
 ts_rank_cd 
------------
          0
(1 row)

● ts_rewrite(query tsquery, target tsquery, substitute tsquery)
Description: Replaces tsquery-typed word.
Return type: tsquery
For example:
SELECT ts_rewrite('a & b'::tsquery, 'a'::tsquery, 'foo|bar'::tsquery);
       ts_rewrite        
-------------------------
 'b' & ( 'foo' | 'bar' )
(1 row)

● ts_rewrite(query tsquery, select text)
Description: Replaces tsquery data in the target with the result of a SELECT
command.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 154



Return type: tsquery
For example:
SELECT ts_rewrite('world'::tsquery, 'select ''world''::tsquery, ''hello''::tsquery');
 ts_rewrite 
------------
 'hello'
(1 row)

Text Search Debugging Functions
● ts_debug([ config regconfig, ] document text, OUT alias text, OUT description

text, OUT token text, OUT dictionaries regdictionary[], OUT dictionary
regdictionary, OUT lexemes text[])
Description: Tests a configuration.
Return type: setof record
For example:
SELECT ts_debug('english', 'The Brightest supernovaes');
                                     ts_debug                                      
-----------------------------------------------------------------------------------
 (asciiword,"Word, all ASCII",The,{english_stem},english_stem,{})
 (blank,"Space symbols"," ",{},,)
 (asciiword,"Word, all ASCII",Brightest,{english_stem},english_stem,{brightest})
 (blank,"Space symbols"," ",{},,)
 (asciiword,"Word, all ASCII",supernovaes,{english_stem},english_stem,{supernova})
(5 rows)

● ts_lexize(dict regdictionary, token text)
Description: Tests a data dictionary.
Return type: text[]
For example:
SELECT ts_lexize('english_stem', 'stars');
 ts_lexize 
-----------
 {star}
(1 row)

● ts_parse(parser_name text, document text, OUT tokid integer, OUT token
text)
Description: Tests a parser.
Return type: setof record
For example:
SELECT ts_parse('default', 'foo - bar');
 ts_parse  
-----------
 (1,foo)
 (12," ")
 (12,"- ")
 (1,bar)
(4 rows)

● ts_parse(parser_oid oid, document text, OUT tokid integer, OUT token text)
Description: Tests a parser.
Return type: setof record
For example:
SELECT ts_parse(3722, 'foo - bar');
 ts_parse  
-----------

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 155



 (1,foo)
 (12," ")
 (12,"- ")
 (1,bar)
(4 rows)

● ts_token_type(parser_name text, OUT tokid integer, OUT alias text, OUT
description text)
Description: Gets token types defined by parser.
Return type: setof record
For example:
SELECT ts_token_type('default');
                        ts_token_type                         
--------------------------------------------------------------
 (1,asciiword,"Word, all ASCII")
 (2,word,"Word, all letters")
 (3,numword,"Word, letters and digits")
 (4,email,"Email address")
 (5,url,URL)
 (6,host,Host)
 (7,sfloat,"Scientific notation")
 (8,version,"Version number")
 (9,hword_numpart,"Hyphenated word part, letters and digits")
 (10,hword_part,"Hyphenated word part, all letters")
 (11,hword_asciipart,"Hyphenated word part, all ASCII")
 (12,blank,"Space symbols")
 (13,tag,"XML tag")
 (14,protocol,"Protocol head")
 (15,numhword,"Hyphenated word, letters and digits")
 (16,asciihword,"Hyphenated word, all ASCII")
 (17,hword,"Hyphenated word, all letters")
 (18,url_path,"URL path")
 (19,file,"File or path name")
 (20,float,"Decimal notation")
 (21,int,"Signed integer")
 (22,uint,"Unsigned integer")
 (23,entity,"XML entity")
(23 rows)

● ts_token_type(parser_oid oid, OUT tokid integer, OUT alias text, OUT
description text)
Description: Gets token types defined by parser.
Return type: setof record
For example:
SELECT ts_token_type(3722);
                        ts_token_type                         
--------------------------------------------------------------
 (1,asciiword,"Word, all ASCII")
 (2,word,"Word, all letters")
 (3,numword,"Word, letters and digits")
 (4,email,"Email address")
 (5,url,URL)
 (6,host,Host)
 (7,sfloat,"Scientific notation")
 (8,version,"Version number")
 (9,hword_numpart,"Hyphenated word part, letters and digits")
 (10,hword_part,"Hyphenated word part, all letters")
 (11,hword_asciipart,"Hyphenated word part, all ASCII")
 (12,blank,"Space symbols")
 (13,tag,"XML tag")
 (14,protocol,"Protocol head")
 (15,numhword,"Hyphenated word, letters and digits")
 (16,asciihword,"Hyphenated word, all ASCII")
 (17,hword,"Hyphenated word, all letters")
 (18,url_path,"URL path")

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 156



 (19,file,"File or path name")
 (20,float,"Decimal notation")
 (21,int,"Signed integer")
 (22,uint,"Unsigned integer")
 (23,entity,"XML entity")
(23 rows)

● ts_stat(sqlquery text, [ weights text, ] OUT word text, OUT ndoc integer, OUT
nentry integer)

Description: Gets statistics of a tsvector column.

Return type: setof record

For example:
SELECT ts_stat('select ''hello world''::tsvector');
   ts_stat   
-------------
 (world,1,1)
 (hello,1,1)
(2 rows)

6.13 UUID Functions
UUID functions are used to generate UUID data (see UUID Type).

● uuid_generate_v1()

Description: Generates a UUID sequence number.

Return type: UUID

Example:
SELECT uuid_generate_v1();
           uuid_generate_v1           
--------------------------------------
 c71ceaca-a175-11e9-a920-797ff7000001
(1 row)

NO TE

The uuid_generate_v1 function generates UUIDs based on the time information,
cluster node ID, and thread ID that generates the sequence. Each UUID is globally
unique in a cluster, but there is a low probability that a UUID is duplicated among
multiple clusters.

● sys_guid()

Description: Generate a sequence number that is the same as the sequence
number generated by the Oracle sys_guid method.

Return type: text

Example:
SELECT sys_guid();
             sys_guid             
----------------------------------
 4EBD3C74A17A11E9A1BF797FF7000001
(1 row)

NO TE

The data generation principle of the sys_guid function is the same as that of the
uuid_generate_v1 function.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 157



6.14 JSON Functions
JSON functions are used to generate JSON data (see JSON Types).

● array_to_json(anyarray [, pretty_bool])
Description: Returns the array as JSON. A multi-dimensional array becomes a
JSON array of arrays. Line feeds will be added between dimension-1 elements
if pretty_bool is true.
Return type: json
For example:
SELECT array_to_json('{{1,5},{99,100}}'::int[]);
array_to_json
------------------
[[1,5],[99,100]]
(1 row)

● row_to_json(record [, pretty_bool])
Description: Returns the row as JSON. Line feeds will be added between
level-1 elements if pretty_bool is true.
Return type: json
For example:
SELECT row_to_json(row(1,'foo'));
     row_to_json     
---------------------
 {"f1":1,"f2":"foo"}
(1 row)

6.15 HLL Functions and Operators

Hash Functions
● hll_hash_boolean(bool)

Description: Hashes data of the bool type.
Return type: hll_hashval
For example:
SELECT hll_hash_boolean(FALSE);
  hll_hash_boolean   
---------------------
 5048724184180415669
(1 row)

● hll_hash_boolean(bool, int32)
Description: Configures a hash seed (that is, change the hash policy) and
hashes data of the bool type.
Return type: hll_hashval
For example:
SELECT hll_hash_boolean(FALSE, 10);
  hll_hash_boolean  
--------------------
 391264977436098630
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 158



● hll_hash_smallint(smallint)
Description: Hashes data of the smallint type.
Return type: hll_hashval
For example:
SELECT hll_hash_smallint(100::smallint);
  hll_hash_smallint  
---------------------
 4631120266694327276
(1 row)

NO TE

If parameters with the same numeric value are hashed using different data types, the data
will differ, because hash functions select different calculation policies for each type.

● hll_hash_smallint(smallint, int32)
Description: Configures a hash seed (that is, change the hash policy) and
hashes data of the smallint type.
Return type: hll_hashval
For example:
SELECT hll_hash_smallint(100::smallint, 10);
  hll_hash_smallint  
---------------------
 8349353095166695771
(1 row)

● hll_hash_integer(integer)
Description: Hashes data of the integer type.
Return type: hll_hashval
For example:
SELECT hll_hash_integer(0);
   hll_hash_integer   
----------------------
 -3485513579396041028
(1 row)

● hll_hash_integer(integer, int32)
Description: Hashes data of the integer type and configures a hash seed (that
is, change the hash policy).
Return type: hll_hashval
For example:
 SELECT hll_hash_integer(0, 10);
  hll_hash_integer  
--------------------
 183371090322255134
(1 row)

● hll_hash_bigint(bigint)
Description: Hashes data of the bigint type.
Return type: hll_hashval
For example:
SELECT hll_hash_bigint(100::bigint);
   hll_hash_bigint   
---------------------
 8349353095166695771
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 159



● hll_hash_bigint(bigint, int32)
Description: Hashes data of the bigint type and configures a hash seed (that
is, change the hash policy).
Return type: hll_hashval
For example:
SELECT hll_hash_bigint(100::bigint, 10);
   hll_hash_bigint   
---------------------
 4631120266694327276
(1 row)

● hll_hash_bytea(bytea)
Description: Hashes data of the bytea type.
Return type: hll_hashval
For example:
SELECT hll_hash_bytea(E'\\x');
 hll_hash_bytea 
----------------
 0
(1 row)

● hll_hash_bytea(bytea, int32)
Description: Hashes data of the bytea type and configures a hash seed (that
is, change the hash policy).
Return type: hll_hashval
For example:
SELECT hll_hash_bytea(E'\\x', 10);
   hll_hash_bytea    
---------------------
 6574525721897061910
(1 row)

● hll_hash_text(text)
Description: Hashes data of the text type.
Return type: hll_hashval
For example:
SELECT hll_hash_text('AB');
    hll_hash_text    
---------------------
 5365230931951287672
(1 row)

● hll_hash_text(text, int32)
Description: Hashes data of the text type and configures a hash seed (that is,
change the hash policy).
Return type: hll_hashval
For example:
SELECT hll_hash_text('AB', 10);
hll_hash_text
---------------------
7680762839921155903
(1 row)

● hll_hash_any(anytype)
Description: Hashes data of any type.
Return type: hll_hashval

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 160



For example:
select hll_hash_any(1);
     hll_hash_any     
----------------------
 -8604791237420463362
(1 row)

select hll_hash_any('08:00:2b:01:02:03'::macaddr);
     hll_hash_any     
----------------------
 -4883882473551067169
(1 row)

● hll_hash_any(anytype, int32)
Description: Hashes data of any type and configures a hash seed (that is,
change the hash policy).
Return type: hll_hashval
For example:
select hll_hash_any(1, 10);
     hll_hash_any     
----------------------
 -1478847531811254870
(1 row)

● hll_hashval_eq(hll_hashval, hll_hashval)
Description: Compares two pieces of data of the hll_hashval type to check
whether they are the same.
Return type: bool
For example:
select hll_hashval_eq(hll_hash_integer(1), hll_hash_integer(1));
 hll_hashval_eq 
----------------
 t
(1 row)

● hll_hashval_ne(hll_hashval, hll_hashval)
Description: Compares two pieces of data of the hll_hashval type to check
whether they are different.
Return type: bool
For example:
select hll_hashval_ne(hll_hash_integer(1), hll_hash_integer(1));
 hll_hashval_ne 
----------------
 f
(1 row)

Precision Functions
HLL supports explicit, sparse, and full modes. explicit and sparse excel when the
data scale is small, and barely produce errors in calculation results. When the
number of distinct values increases, full becomes more suitable, but produces
some errors. The following functions are used to view precision parameters in
HLLs.

● hll_schema_version(hll)
Description: Checks the schema version in the current HLL.
For example:

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 161



select hll_schema_version(hll_empty());
 hll_schema_version 
--------------------
           1
(1 row)

● hll_type(hll)
Description: Checks the type of the current HLL.
For example:
select hll_type(hll_empty());
 hll_type 
----------
        1
(1 row)

● hll_log2m(hll)
Description: Check the value of log2m of the current HLL. This value affects
the error rate in calculating the number of distinct values by the HLL. The
formula for calculating the error rate is as follows:

For example:
select hll_log2m(hll_empty());
 hll_log2m 
-----------
        11
(1 row)

● hll_regwidth(hll)
Description: Checks the number of bits of buckets in a hll data structure.
For example:
select hll_regwidth(hll_empty());
 hll_regwidth 
--------------
        5
(1 row)

● hll_expthresh(hll)
Description: Obtains the size of expthresh in the current HLL. An HLL usually
switches from the explicit mode to the sparse mode and then to the full
mode. This process is called the promotion hierarchy policy. You can change
the value of expthresh to change the policy. For example, if expthresh is 0,
an HILL will skip the explicit mode and directly enter the sparse mode. If the
value of expthresh is explicitly set to a value ranging from 1 to 7, this
function returns 2expthresh.
For example:
select hll_expthresh(hll_empty());
 hll_expthresh 
---------------
 (-1,160)
(1 row)

select hll_expthresh(hll_empty(11,5,3));
 hll_expthresh 
---------------
 (8,8)
(1 row)

● hll_sparseon(hll)
Description: Specifies whether to enable the sparse mode. 0 indicates off and
1 indicates on.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 162



For example:
select hll_sparseon(hll_empty());
 hll_sparseon 
--------------
        1
(1 row)

Aggregation Functions
● hll_add_agg(hll_hashval)

Description: Groups hashed data into HLL.
Return type: hll
For example:
-- Prepare data:
create table t_id(id int);
insert into t_id values(generate_series(1,500));
create table t_data(a int, c text);
insert into t_data select mod(id,2), id from t_id;

-- Create another table and specify an HLL column:
create table t_a_c_hll(a int, c hll);

-- Use GROUP BY on column a to group data, and insert the data to the HLL:
insert into t_a_c_hll select a, hll_add_agg(hll_hash_text(c)) from t_data group by a;

-- Calculate the number of distinct values for each group in the HLL:
select a, #c as cardinality from t_a_c_hll order by a;
 a |   cardinality    
---+------------------
 0 | 250.741759091658
 1 | 250.741759091658
(2 rows)

● hll_add_agg(hll_hashval, int32 log2m)
Description: Groups hashed data into HLL and sets the log2m parameter. The
parameter value ranges from 10 to 16.
Return type: hll
For example:
 Select hll_cardinality(hll_add_agg(hll_hash_text(c), 10)) from t_data;
 hll_cardinality  
------------------
 503.932348927339
(1 row)

● hll_add_agg(hll_hashval, int32 log2m, int32 regwidth)
Description: Groups hashed data into HLL and sets the log2m and regwidth
parameters in sequence. The value of regwidth ranges from 1 to 5.
Return type: hll
For example:
Select hll_cardinality(hll_add_agg(hll_hash_text(c), NULL, 1)) from t_data;
 hll_cardinality  
------------------
 496.628982624022
(1 row)

● hll_add_agg(hll_hashval, int32 log2m, int32 regwidth, int64 expthresh)
Description: Groups hashed data into HLL and sets the parameters log2m,
regwidth, and expthresh in sequence. The value of expthresh is an integer
ranging from –1 to 7. expthresh is used to specify the threshold for switching

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 163



from the explicit mode to the sparse mode. –1 indicates the auto mode; 0
indicates that the explicit mode is skipped; a value from 1 to 7 indicates that
the mode is switched when the number of distinct values reaches 2expthresh.
Return type: hll
For example:
 Select hll_cardinality(hll_add_agg(hll_hash_text(c), NULL, 1, 4)) from t_data;
 hll_cardinality  
------------------
 496.628982624022
(1 row)

● hll_add_agg(hll_hashval, int32 log2m, int32 regwidth, int64 expthresh, int32
sparseon)
Description: Groups hashed data into HLL and sets the log2m, regwidth,
expthresh, and sparseon parameters in sequence. The value of sparseon is 0
or 1.
Return type: hll
For example:
 Select hll_cardinality(hll_add_agg(hll_hash_text(c), NULL, 1, 4, 0)) from t_data;
 hll_cardinality  
------------------
 496.628982624022
(1 row)

● hll_union_agg(hll)
Description: Perform the UNION operation on multiple pieces of data of the
hll type to obtain one HLL.
Return type: hll
For example:
-- Perform the UNION operation on data of the hll type in each group to obtain one HLL, and 
calculate the number of distinct values:
select #hll_union_agg(c) as cardinality from t_a_c_hll;
   cardinality    
------------------
 496.628982624022
(1 row)

NO TE

To perform UNION on data in multiple HLLs, ensure that the HLLs have the same
precision. Otherwise, UNION cannot be performed. This restriction also applies to the
hll_union(hll, hll) function.

Functional Functions
● hll_print(hll)

Description: Prints some debugging parameters of an HLL.
For example:
select hll_print(hll_empty());
                         hll_print                         
-----------------------------------------------------------
 EMPTY, nregs=2048, nbits=5, expthresh=-1(160), sparseon=1gongne
(1 row)

● hll_empty()
Description: Creates an empty HLL.
Return type: hll

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 164



For example:
select hll_empty();
 hll_empty 
-----------
 \x118b7f
(1 row)

● hll_empty(int32 log2m)
Description: Creates an empty HLL and sets the log2m parameter. The
parameter value ranges from 10 to 16.
Return type: hll
For example:
 select hll_empty(10);
 hll_empty 
-----------
 \x118a7f
(1 row)

● hll_empty(int32 log2m, int32 regwidth)
Description: Creates an empty HLL and sets the log2m and regwidth
parameters in sequence. The value of regwidth ranges from 1 to 5.
Return type: hll
For example:
select hll_empty(10, 4);
 hll_empty 
-----------
 \x116a7f
(1 row)

● hll_empty(int32 log2m, int32 regwidth, int64 expthresh)
Description: Creates an empty HLL and sets the log2m, regwidth, and
expthresh parameters. The value of expthresh is an integer ranging from –1
to 7. This parameter specifies the threshold for switching from the explicit
mode to the sparse mode. –1 indicates the auto mode; 0 indicates that the
explicit mode is skipped; a value from 1 to 7 indicates that the mode is
switched when the number of distinct values reaches 2expthresh.
Return type: hll
For example:
 select hll_empty(10, 4, 7);
 hll_empty 
-----------
 \x116a48
(1 row)

● hll_empty(int32 log2m, int32 regwidth, int64 expthresh, int32 sparseon)
Description: Creates an empty HLL and sets the log2m, regwidth, expthresh,
and sparseon parameters. The value of sparseon is 0 or 1.
Return type: hll
For example:
 select hll_empty(10,4,7,0);
 hll_empty 
-----------
 \x116a08
(1 row)

● hll_add(hll, hll_hashval)
Description: Adds hll_hashval to an HLL.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 165



Return type: hll
For example:
select hll_add(hll_empty(), hll_hash_integer(1));
         hll_add          
--------------------------
 \x128b7f8895a3f5af28cafe
(1 row)

● hll_add_rev(hll_hashval, hll)
Description: Adds hll_hashval to an HLL. This function works the same as
hll_add, except that the positions of parameters are switched.
Return type: hll
For example:
select hll_add_rev(hll_hash_integer(1), hll_empty());
       hll_add_rev        
--------------------------
 \x128b7f8895a3f5af28cafe
(1 row)

● hll_eq(hll, hll)
Description: Compares two HLLs to check whether they are the same.
Return type: bool
For example:
select hll_eq(hll_add(hll_empty(), hll_hash_integer(1)), hll_add(hll_empty(), hll_hash_integer(2)));
 hll_eq 
--------
 f
(1 row)

● hll_ne(hll, hll)
Description: Compares two HLLs to check whether they are different.
Return type: bool
For example:
select hll_ne(hll_add(hll_empty(), hll_hash_integer(1)), hll_add(hll_empty(), hll_hash_integer(2)));
 hll_ne 
--------
 t
(1 row)

● hll_cardinality(hll)
Description: Calculates the number of distinct values of an HLL.
Return type: int
For example:
select hll_cardinality(hll_empty() || hll_hash_integer(1));
 hll_cardinality 
-----------------
               1
(1 row)

● hll_union(hll, hll)
Description: Performs the UNION operation on two HLL data structures to
obtain one HLL.
Return type: hll
For example:
select hll_union(hll_add(hll_empty(), hll_hash_integer(1)), hll_add(hll_empty(), hll_hash_integer(2)));
                hll_union                 

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 166



------------------------------------------
 \x128b7f8895a3f5af28cafeda0ce907e4355b60
(1 row)

Built-in Functions

HLL has a series of built-in functions for internal data processing. Generally, users
do not need to know how to use these functions. For details, see Table 6-9.

Table 6-9 Built-in functions

Function Description

hll_in Receives hll data in string format.

hll_out Sends hll data in string format.

hll_recv Receives hll data in bytea format.

hll_send Sends hll data in bytea format.

hll_trans_in Receives hll_trans_type data in string format.

hll_trans_out Sends hll_trans_type data in string format.

hll_trans_recv Receives hll_trans_type data in bytea format.

hll_trans_send Sends hll_trans_type data in bytea format.

hll_typmod_in Receives typmod data.

hll_typmod_out Sends typmod data.

hll_hashval_in Receives hll_hashval data.

hll_hashval_out Sends hll_hashval data.

hll_add_trans0 Works similar to hll_add, and is used on the first phase of
DNs in distributed aggregation operations.

hll_union_trans Works similar to hll_union, and is used on the first phase of
DNs in distributed aggregation operations.

hll_union_collect Works similar to hll_union, and is used on the second phase
of CNs in distributed aggregation operations to summarize
the results of each DN.

hll_pack Is used on the third phase of CNs in distributed aggregation
operations to convert a user-defined type hll_trans_type to
the hll type.

hll Converts a hll type to another hll type. Input parameters
can be specified.

hll_hashval Converts the bigint type to the hll_hashval type.

hll_hashval_int4 Converts the int4 type to the hll_hashval type.

 

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 167



Operators
● =

Description: Compares the values of hll and hll_hashval types to check
whether they are the same.
Return type: bool
For example:
--hll
select (hll_empty() || hll_hash_integer(1)) = (hll_empty() || hll_hash_integer(1));
column 
----------
 t
(1 row)

--hll_hashval
select hll_hash_integer(1) = hll_hash_integer(1);
 ?column? 
----------
 t
(1 row)

● <> or !=
Description: Compares the values of hll and hll_hashval types to check
whether they are different.
Return type: bool
For example:
--hll
select (hll_empty() || hll_hash_integer(1)) <> (hll_empty() || hll_hash_integer(2));
 ?column? 
----------
 t
(1 row)

--hll_hashval
select hll_hash_integer(1) <> hll_hash_integer(2);
 ?column? 
----------
 t
(1 row)

● ||
Description: Represents the functions of hll_add, hll_union, and hll_add_rev.
Return type: hll
For example:
--hll_add
select hll_empty() || hll_hash_integer(1);
         ?column?         
--------------------------
 \x128b7f8895a3f5af28cafe
(1 row)
 
--hll_add_rev
select hll_hash_integer(1) || hll_empty();
         ?column?         
--------------------------
 \x128b7f8895a3f5af28cafe
(1 row)
 
--hll_union
select (hll_empty() || hll_hash_integer(1)) || (hll_empty() || hll_hash_integer(2));
                 ?column?                 

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 168



------------------------------------------
 \x128b7f8895a3f5af28cafeda0ce907e4355b60
(1 row)

● #
Description: Calculates the number of distinct values of an HLL. It works the
same as the hll_cardinality function.
Return type: int
For example:
select #(hll_empty() || hll_hash_integer(1));
 ?column? 
----------
        1
(1 row)

6.16 SEQUENCE Functions
The sequence functions provide a simple method to ensure security of multiple
users for users to obtain sequence values from sequence objects.

NO TE

● The hybrid data warehouse (standalone) does not support SEQUENCE and related
functions.

● nextval(regclass)
Specifies an increasing sequence and returns a new value.

NO TE

● To avoid blocking of concurrent transactions that obtain numbers from the same
sequence, a nextval operation is never rolled back; that is, once a value has been
fetched it is considered used, even if the transaction that did the nextval later
aborts. This means that aborted transactions may leave unused "holes" in the
sequence of assigned values. Therefore, sequences in GaussDB(DWS) cannot be
used to obtain sequence without gaps.

● If the nextval function is pushed to DNs, each DN will automatically connect to the
GTM and requests the next value. For example, in the insert into t1 select xxx
statement, a column in table t1 needs to invoke the nextval function. If maximum
number of connections on the GTM is 8192, this type of pushed statements
occupies too many GTM connections. Therefore, the number of concurrent
connections for these statements is limited to 7000 divided by the number of
cluster DNs. The other 1192 connections are reserved for other statements.

Return type: bigint
The nextval function can be invoked in either of the following ways: (In
example 2, the Oracle syntax is supported. Currently, the sequence name
cannot contain a dot.)
Example 1:
select nextval('seqDemo'); 
 nextval
---------
       2
(1 row)

Example 2:
select seqDemo.nextval; 
 nextval
---------

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 169



       2
(1 row)

● currval(regclass)
Returns the last value of nextval for a specified sequence in the current
session. If nextval has not been invoked for the specified sequence in the
current session, an error is reported when currval is invoked. By default,
currval is disabled. To enable it, set enable_beta_features to true. After
currval is enabled, nextval will not be pushed down.
Return type: bigint
The currval function can be invoked in either of the following ways: (In
example 2, the Oracle syntax is supported. Currently, the sequence name
cannot contain a dot.)
Example 1:
select currval('seq1'); 
 currval
---------
       2
(1 row)

Example 2:
select seq1.currval seq1; 
 currval
---------
       2
(1 row)

● lastval()
Returns the last value of nextval in the current session. This function is
equivalent to currval, but lastval does not have a parameter. If nextval has
not been invoked in the current session, an error is reported when lastval is
invoked.
By default, lastval is disabled. To enable it, set enable_beta_features or
lastval_supported to true. After lastval is enabled, nextval will not be
pushed down.
Return type: bigint
For example:
select lastval(); 
 lastval
---------
       2
(1 row)

● setval(regclass, bigint)
Sets the current value of a sequence.
Return type: bigint
For example:
select setval('seqDemo',1);
 setval
--------
      1
(1 row)

● setval(regclass, bigint, boolean)
Sets the current value of a sequence and the is_called sign.
Return type: bigint

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 170



For example:
select setval('seqDemo',1,true);
 setval
--------
      1
(1 row)

NO TE

The current session and GTM will take effect immediately after setval is performed. If
other sessions have buffered sequence values, setval will take effect only after the
values are used up. Therefore, to prevent sequence value conflicts, you are advised to
use setval with caution.
Because the sequence is non-transactional, changes made by setval will not be
canceled when a transaction rolled back.

6.17 Array Functions and Operators

Array Operators
● =

Description: Specifies whether two arrays are equal.
For example:
SELECT ARRAY[1.1,2.1,3.1]::int[] = ARRAY[1,2,3] AS RESULT ;
 result 
--------
 t
(1 row)

● <>
Description: Specifies whether two arrays are not equal.
For example:
SELECT ARRAY[1,2,3] <> ARRAY[1,2,4] AS RESULT;
 result 
--------
 t
(1 row)

● <
Description: Specifies whether an array is less than another.
For example:
SELECT ARRAY[1,2,3] < ARRAY[1,2,4] AS RESULT;
 result 
--------
 t
(1 row)

● >
Description: Specifies whether an array is greater than another.
For example:
SELECT ARRAY[1,4,3] > ARRAY[1,2,4] AS RESULT;
 result 
--------
 t
(1 row)

● <=
Description: Specifies whether an array is less than another.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 171



For example:
SELECT ARRAY[1,2,3] <= ARRAY[1,2,3] AS RESULT;
 result 
--------
 t
(1 row)

● >=
Description: Specifies whether an array is greater than or equal to another.
For example:
SELECT ARRAY[1,4,3] >= ARRAY[1,4,3] AS RESULT;
 result 
--------
 t
(1 row)

● @>
Description: Specifies whether an array contains another.
For example:
SELECT ARRAY[1,4,3] @> ARRAY[3,1] AS RESULT;
 result 
--------
 t
(1 row)

● <@
Description: Specifies whether an array is contained in another.
For example:
SELECT ARRAY[2,7] <@ ARRAY[1,7,4,2,6] AS RESULT;
 result 
--------
 t
(1 row)

● &&
Description: Specifies whether an array overlaps another (have common
elements).
For example:
SELECT ARRAY[1,4,3] && ARRAY[2,1] AS RESULT;
 result 
--------
 t
(1 row)

● ||
Description: Array-to-array concatenation
For example:
SELECT ARRAY[1,2,3] || ARRAY[4,5,6] AS RESULT;
    result     
---------------
 {1,2,3,4,5,6}
(1 row)
SELECT ARRAY[1,2,3] || ARRAY[[4,5,6],[7,8,9]] AS RESULT;
          result           
---------------------------
 {{1,2,3},{4,5,6},{7,8,9}}
(1 row)

● ||
Description: Element-to-array concatenation

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 172



For example:
SELECT 3 || ARRAY[4,5,6] AS RESULT;
  result   
-----------
 {3,4,5,6}
(1 row)

● ||
Description: Array-to-element concatenation
For example:
SELECT ARRAY[4,5,6] || 7 AS RESULT;
  result   
-----------
 {4,5,6,7}
(1 row)

Array comparisons compare the array contents element-by-element, using the
default B-tree comparison function for the element data type. In multidimensional
arrays, the elements are accessed in row-major order. If the contents of two arrays
are equal but the dimensionality is different, the first difference in the
dimensionality information determines the sort order.

Array Functions
● array_append(anyarray, anyelement)

Description: Appends an element to the end of an array, and only supports
dimension-1 arrays.
Return type: anyarray
For example:
SELECT array_append(ARRAY[1,2], 3) AS RESULT;
 result  
---------
 {1,2,3}
(1 row)

● array_prepend(anyelement, anyarray)
Description: Appends an element to the beginning of an array, and only
supports dimension-1 arrays.
Return type: anyarray
For example:
SELECT array_prepend(1, ARRAY[2,3]) AS RESULT;
 result  
---------
 {1,2,3}
(1 row)

● array_cat(anyarray, anyarray)
Description: Concatenates two arrays, and supports multi-dimensional arrays.
Return type: anyarray
For example:
SELECT array_cat(ARRAY[1,2,3], ARRAY[4,5]) AS RESULT;
   result    
-------------
 {1,2,3,4,5}
(1 row)

SELECT array_cat(ARRAY[[1,2],[4,5]], ARRAY[6,7]) AS RESULT;

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 173



       result        
---------------------
 {{1,2},{4,5},{6,7}}
(1 row)

● array_ndims(anyarray)
Description: Returns the number of dimensions of the array.
Return type: int
For example:
SELECT array_ndims(ARRAY[[1,2,3], [4,5,6]]) AS RESULT;
 result 
--------
      2
(1 row)

● array_dims(anyarray)
Description: Returns a text representation of array's dimensions.
Return type: text
For example:
SELECT array_dims(ARRAY[[1,2,3], [4,5,6]]) AS RESULT;
   result   
------------
 [1:2][1:3]
(1 row)

● array_length(anyarray, int)
Description: Returns the length of the requested array dimension.
Return type: int
For example:
SELECT array_length(array[1,2,3], 1) AS RESULT;
 result 
--------
      3
(1 row)

● array_lower(anyarray, int)
Description: Returns lower bound of the requested array dimension.
Return type: int
For example:
SELECT array_lower('[0:2]={1,2,3}'::int[], 1) AS RESULT;
 result 
--------
      0
(1 row)

● array_upper(anyarray, int)
Description: Returns upper bound of the requested array dimension.
Return type: int
For example:
SELECT array_upper(ARRAY[1,8,3,7], 1) AS RESULT;
 result 
--------
      4
(1 row)

● array_to_string(anyarray, text [, text])
Description: Uses the first text as the new delimiter and the second text to
replace NULL values.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 174



Return type: text
For example:
SELECT array_to_string(ARRAY[1, 2, 3, NULL, 5], ',', '*') AS RESULT;
  result   
-----------
 1,2,3,*,5
(1 row)

● string_to_array(text, text [, text])
Description: Uses the second text as the new delimiter and the third text as
the substring to be replaced by NULL values. A substring can be replaced by
NULL values only when it is the same as the third text.
Return type: text[]
For example:
SELECT string_to_array('xx~^~yy~^~zz', '~^~', 'yy') AS RESULT;
    result    
--------------
 {xx,NULL,zz}
(1 row)
SELECT string_to_array('xx~^~yy~^~zz', '~^~', 'y') AS RESULT;
   result   
------------
 {xx,yy,zz}
(1 row)

● unnest(anyarray)
Description: Expands an array to a set of rows.
Return type: setof anyelement
For example:
SELECT unnest(ARRAY[1,2]) AS RESULT;
 result 
--------
      1
      2
(2 rows)

In string_to_array, if the delimiter parameter is NULL, each character in the input
string will become a separate element in the resulting array. If the delimiter is an
empty string, then the entire input string is returned as a one-element array.
Otherwise the input string is split at each occurrence of the delimiter string.

In string_to_array, if the null-string parameter is omitted or NULL, none of the
substrings of the input will be replaced by NULL.

In array_to_string, if the null-string parameter is omitted or NULL, any null
elements in the array are simply skipped and not represented in the output string.

6.18 Range Functions and Operators

Range Operators
● =

Description: Equals
For example:
SELECT int4range(1,5) = '[1,4]'::int4range AS RESULT;
 result

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 175



--------
 t
(1 row)

● <>
Description: Does not equal to
For example:
SELECT numrange(1.1,2.2) <> numrange(1.1,2.3) AS RESULT;
 result
--------
 t
(1 row)

● <
Description: Is less than
For example:
SELECT int4range(1,10) < int4range(2,3) AS RESULT;
 result
--------
 t
(1 row)

● >
Description: Is greater than
For example:
SELECT int4range(1,10) > int4range(1,5) AS RESULT;
 result
--------
 t
(1 row)

● <=
Description: Is less than or equals
For example:
SELECT numrange(1.1,2.2) <= numrange(1.1,2.2) AS RESULT;
 result
--------
 t
(1 row)

● >=
Description: Is greater than or equals
For example:
SELECT numrange(1.1,2.2) >= numrange(1.1,2.0) AS RESULT;
 result
--------
 t
(1 row)

● @>
Description: Contains range
For example:
SELECT int4range(2,4) @> int4range(2,3) AS RESULT;
 result
--------
 t
(1 row)

● @>
Description: Contains element

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 176



For example:
SELECT '[2011-01-01,2011-03-01)'::tsrange @> '2011-01-10'::timestamp AS RESULT;
 result
--------
 t
(1 row)

● <@
Description: Range is contained by
For example:
SELECT int4range(2,4) <@ int4range(1,7) AS RESULT;
 result
--------
 t
(1 row)

● <@
Description: Element is contained by
For example:
SELECT 42 <@ int4range(1,7) AS RESULT;
 result
--------
 f
(1 row)

● &&
Description: Overlap (have points in common)
For example:
SELECT int8range(3,7) && int8range(4,12) AS RESULT;
 result
--------
 t
(1 row)

● <<
Description: Strictly left of
For example:
SELECT int8range(1,10) << int8range(100,110) AS RESULT;
 result
--------
 t
(1 row)

● >>
Description: Strictly right of
For example:
SELECT int8range(50,60) >> int8range(20,30) AS RESULT;
 result
--------
 t
(1 row)

● &<
Description: Does not extend to the right of
For example:
SELECT int8range(1,20) &< int8range(18,20) AS RESULT;
 result
--------
 t
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 177



● &>
Description: Does not extend to the left of
For example:
SELECT int8range(7,20) &> int8range(5,10) AS RESULT;
 result
--------
 t
(1 row)

● -|-
Description: Is adjacent to
For example:
SELECT numrange(1.1,2.2) -|- numrange(2.2,3.3) AS RESULT;
 result
--------
 t
(1 row)

● +
Description: Union
For example:
SELECT numrange(5,15) + numrange(10,20) AS RESULT;
 result 
--------
 [5,20)
(1 row)

● *
Description: Intersection
For example:
SELECT int8range(5,15) * int8range(10,20) AS RESULT;
 result  
---------
 [10,15)
(1 row)

● -
Description: Difference
For example:
SELECT int8range(5,15) - int8range(10,20) AS RESULT;
 result 
--------
 [5,10)
(1 row)

The simple comparison operators <, >, <=, and >= compare the lower bounds first,
and only if those are equal, compare the upper bounds.

The <<, >>, and -|- operators always return false when an empty range is involved;
that is, an empty range is not considered to be either before or after any other
range.

The union and difference operators will fail if the resulting range would need to
contain two disjoint sub-ranges.

Range Functions
● lower(anyrange)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 178



Description: Lower bound of range
Return type: Range's element type
For example:
SELECT lower(numrange(1.1,2.2)) AS RESULT;
 result 
--------
    1.1
(1 row)

● upper(anyrange)
Description: Upper bound of range
Return type: Range's element type
For example:
SELECT upper(numrange(1.1,2.2)) AS RESULT;
 result 
--------
    2.2
(1 row)

● isempty(anyrange)
Description: Is the range empty?
Return type: boolean
For example:
SELECT isempty(numrange(1.1,2.2)) AS RESULT;
 result 
--------
 f
(1 row)

● lower_inc(anyrange)
Description: Is the lower bound inclusive?
Return type: boolean
For example:
SELECT lower_inc(numrange(1.1,2.2)) AS RESULT;
 result 
--------
 t
(1 row)

● upper_inc(anyrange)
Description: Is the upper bound inclusive?
Return type: boolean
For example:
SELECT upper_inc(numrange(1.1,2.2)) AS RESULT;
 result 
--------
 f
(1 row)

● lower_inf(anyrange)
Description: Is the lower bound infinite?
Return type: boolean
For example:
SELECT lower_inf('(,)'::daterange) AS RESULT;
 result 
--------

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 179



 t
(1 row)

● upper_inf(anyrange)
Description: Is the upper bound infinite?
Return type: boolean
For example:
SELECT upper_inf('(,)'::daterange) AS RESULT;
 result 
--------
 t
(1 row)

The lower and upper functions return null if the range is empty or the requested
bound is infinite. The lower_inc, upper_inc, lower_inf, and upper_inf functions all
return false for an empty range.

6.19 Aggregate Functions

Aggregate Functions
● sum(expression)

Description: Sum of expression across all input values
Return type:
Generally, same as the argument data type. In the following cases, type
conversion occurs:
– BIGINT for SMALLINT or INT arguments
– NUMBER for BIGINT arguments
– DOUBLE PRECISION for floating-point arguments
For example:
SELECT SUM(ss_ext_tax) FROM tpcds.STORE_SALES;
  sum      
--------------
 213267594.69
(1 row)

● max(expression)
Description: Specifies the maximum value of expression across all input
values.
Argument types: any array, numeric, string, or date/time type
Return type: same as the argument type
For example:
SELECT MAX(inv_quantity_on_hand) FROM tpcds.inventory;
   max   
---------
 1000000
(1 row)

● min(expression)
Description: Specifies the minimum value of expression across all input
values.
Argument types: any array, numeric, string, or date/time type
Return type: same as the argument type

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 180



For example:
SELECT MIN(inv_quantity_on_hand) FROM tpcds.inventory;
 min 
-----
   0
(1 row)

● avg(expression)
Description: Average (arithmetic mean) of all input values
Return type:
NUMBER for any integer-type argument.
DOUBLE PRECISION for floating-point parameters.
otherwise the same as the argument data type.
For example:
SELECT AVG(inv_quantity_on_hand) FROM tpcds.inventory;
         avg          
----------------------
 500.0387129084044604
(1 row)

● median(expression)
Description: Median of all input values Currently, only the numeric and
interval types are supported. Null values are not used for calculation.
Return type: If all input values are integers, a median of the NUMERIC type is
returned; otherwise, a median of the same type as the input values is
returned.
In the Teradata-compatible mode, if the input values are integers, the
returned median is rounded to the nearest integer.
For example:
SELECT MEDIAN(inv_quantity_on_hand) FROM tpcds.inventory;
 median 
--------
    500
(1 row)

● percentile_cont(const) within group(order by expression)
Description: returns a value corresponding to the specified percentile in the
ordering, interpolating between adjacent input items if needed. Null values
are not used for calculation.
Input: const indicates a number ranging from 0 to 1. Currently, only numeric
and interval expressions are supported.
Return type: If all input values are integers, a median of the NUMERIC type is
returned; otherwise, a median of the same type as the input values is
returned.
In the Teradata-compatible mode, if the input values are integers, the
returned median is rounded to the nearest integer.
For example:
select percentile_cont(0.3) within group(order by x) from (select generate_series(1,5) as x) as t;
percentile_cont
-----------------
2.2
(1 row)
select percentile_cont(0.3) within group(order by x desc) from (select generate_series(1,5) as x) as t;
percentile_cont
-----------------

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 181



3.8
(1 row)

● percentile_disc(const) within group(order by expression)
Description: returns the first input value whose position in the ordering equals
or exceeds the specified percentile.
Input: const indicates a number ranging from 0 to 1. Currently, only numeric
and interval expressions are supported. Null values are not used for
calculation.
Return type: If all input values are integers, a median of the NUMERIC type is
returned; otherwise, a median of the same type as the input values is
returned.
For example:
select percentile_disc(0.3) within group(order by x) from (select generate_series(1,5) as x) as t;
percentile_disc
-----------------
2
(1 row)
select percentile_disc(0.3) within group(order by x desc) from (select generate_series(1,5) as x) as t;
percentile_disc
-----------------
4
(1 row)

● count(expression)
Description: Number of input rows for which the value of expression is not
null
Return type: bigint
For example:
SELECT COUNT(inv_quantity_on_hand) FROM tpcds.inventory;
  count   
----------
 11158087
(1 row)

● count(*)
Description: Number of input rows
Return type: bigint
For example:
SELECT COUNT(*) FROM tpcds.inventory;
  count   
----------
 11745000
(1 row)

● array_agg(expression)
Description: Input values, including nulls, concatenated into an array
Return type: array of the argument type
For example:
SELECT ARRAY_AGG(sr_fee) FROM tpcds.store_returns WHERE sr_customer_sk = 2;
   array_agg   
---------------
 {22.18,63.21}
(1 row)

● string_agg(expression, delimiter)
Description: Input values concatenated into a string, separated by delimiter

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 182



Return type: same as the argument type
For example:
SELECT string_agg(sr_item_sk, ',') FROM tpcds.store_returns where sr_item_sk < 3;
         string_agg         
---------------------------------------------------------------------------------
------------------------------
 1,2,1,2,2,1,1,2,2,1,2,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,2,1,1,1,1,1,1,1,1,1,2,
2,1,1,1,1,1,1,2,2,1,1,2,1,1,1
(1 row)

● listagg(expression [, delimiter]) WITHIN GROUP(ORDER BY order-list)
Description: Aggregation column data sorted according to the mode specified
by WITHIN GROUP, and concatenated to a string using the specified
delimiter
– expression: Mandatory. It specifies an aggregation column name or a

column-based, valid expression. It does not support the DISTINCT
keyword and the VARIADIC parameter.

– delimiter: Optional. It specifies a delimiter, which can be a string
constant or a deterministic expression based on a group of columns. The
default value is empty.

– order-list: Mandatory. It specifies the sorting mode in a group.
Return type: text

NO TE

listagg is a column-to-row aggregation function, compatible with Oracle Database
11g Release 2. You can specify the OVER clause as a window function. When listagg is
used as a window function, the OVER clause does not support the window sorting or
framework of ORDER BY, so as to avoid ambiguity in listagg and ORDER BY of the
WITHIN GROUP clause.

For example:
The aggregation column is of the text character set type.
SELECT deptno, listagg(ename, ',') WITHIN GROUP(ORDER BY ename) AS employees FROM emp 
GROUP BY deptno;
 deptno |              employees               
--------+--------------------------------------
     10 | CLARK,KING,MILLER
     20 | ADAMS,FORD,JONES,SCOTT,SMITH
     30 | ALLEN,BLAKE,JAMES,MARTIN,TURNER,WARD
(3 rows)

The aggregation column is of the integer type.
SELECT deptno, listagg(mgrno, ',') WITHIN GROUP(ORDER BY mgrno NULLS FIRST) AS mgrnos FROM 
emp GROUP BY deptno;
 deptno |            mgrnos             
--------+-------------------------------
     10 | 7782,7839
     20 | 7566,7566,7788,7839,7902
     30 | 7698,7698,7698,7698,7698,7839
(3 rows)

The aggregation column is of the floating point type.
SELECT job, listagg(bonus, '($); ') WITHIN GROUP(ORDER BY bonus DESC) || '($)' AS bonus FROM 
emp GROUP BY job;
    job     |                      bonus                      
------------+-------------------------------------------------
 CLERK      | 10234.21($); 2000.80($); 1100.00($); 1000.22($)
 PRESIDENT  | 23011.88($)
 ANALYST    | 2002.12($); 1001.01($)
 MANAGER    | 10000.01($); 2399.50($); 999.10($)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 183



 SALESMAN   | 1000.01($); 899.00($); 99.99($); 9.00($)
(5 rows)

The aggregation column is of the time type.
SELECT deptno, listagg(hiredate, ', ') WITHIN GROUP(ORDER BY hiredate DESC) AS hiredates FROM 
emp GROUP BY deptno;
 deptno |                                                          hiredates                                                           
--------
+---------------------------------------------------------------------------------------------------------------------
---------
     10 | 1982-01-23 00:00:00, 1981-11-17 00:00:00, 1981-06-09 00:00:00
     20 | 2001-04-02 00:00:00, 1999-12-17 00:00:00, 1987-05-23 00:00:00, 1987-04-19 00:00:00, 
1981-12-03 00:00:00
     30 | 2015-02-20 00:00:00, 2010-02-22 00:00:00, 1997-09-28 00:00:00, 1981-12-03 00:00:00, 
1981-09-08 00:00:00, 1981-05-01 00:00:00
(3 rows)

The aggregation column is of the time interval type.
SELECT deptno, listagg(vacationTime, '; ') WITHIN GROUP(ORDER BY vacationTime DESC) AS 
vacationTime FROM emp GROUP BY deptno;
 deptno |                                    vacationtime                                    
--------+------------------------------------------------------------------------------------
     10 | 1 year 30 days; 40 days; 10 days
     20 | 70 days; 36 days; 9 days; 5 days
     30 | 1 year 1 mon; 2 mons 10 days; 30 days; 12 days 12:00:00; 4 days 06:00:00; 24:00:00
(3 rows)

By default, the delimiter is empty.
SELECT deptno, listagg(job) WITHIN GROUP(ORDER BY job) AS jobs FROM emp GROUP BY deptno;
 deptno |                     jobs                     
--------+----------------------------------------------
     10 | CLERKMANAGERPRESIDENT
     20 | ANALYSTANALYSTCLERKCLERKMANAGER
     30 | CLERKMANAGERSALESMANSALESMANSALESMANSALESMAN
(3 rows)

When listagg is used as a window function, the OVER clause does not
support the window sorting of ORDER BY, and the listagg column is an
ordered aggregation of the corresponding groups.
SELECT deptno, mgrno, bonus, listagg(ename,'; ') WITHIN GROUP(ORDER BY hiredate) 
OVER(PARTITION BY deptno) AS employees FROM emp;
 deptno | mgrno |  bonus   |                 employees                 
--------+-------+----------+-------------------------------------------
     10 |  7839 | 10000.01 | CLARK; KING; MILLER
     10 |       | 23011.88 | CLARK; KING; MILLER
     10 |  7782 | 10234.21 | CLARK; KING; MILLER
     20 |  7566 |  2002.12 | FORD; SCOTT; ADAMS; SMITH; JONES
     20 |  7566 |  1001.01 | FORD; SCOTT; ADAMS; SMITH; JONES
     20 |  7788 |  1100.00 | FORD; SCOTT; ADAMS; SMITH; JONES
     20 |  7902 |  2000.80 | FORD; SCOTT; ADAMS; SMITH; JONES
     20 |  7839 |   999.10 | FORD; SCOTT; ADAMS; SMITH; JONES
     30 |  7839 |  2399.50 | BLAKE; TURNER; JAMES; MARTIN; WARD; ALLEN
     30 |  7698 |     9.00 | BLAKE; TURNER; JAMES; MARTIN; WARD; ALLEN
     30 |  7698 |  1000.22 | BLAKE; TURNER; JAMES; MARTIN; WARD; ALLEN
     30 |  7698 |    99.99 | BLAKE; TURNER; JAMES; MARTIN; WARD; ALLEN
     30 |  7698 |  1000.01 | BLAKE; TURNER; JAMES; MARTIN; WARD; ALLEN
     30 |  7698 |   899.00 | BLAKE; TURNER; JAMES; MARTIN; WARD; ALLEN
(14 rows)

● covar_pop(Y, X)
Description: Overall covariance
Return type: double precision
For example:
SELECT COVAR_POP(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
    covar_pop     
------------------

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 184



 829.749627587403
(1 row)

● covar_samp(Y, X)
Description: Sample covariance
Return type: double precision
For example:
SELECT COVAR_SAMP(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
    covar_samp    
------------------
 830.052235037289
(1 row)

● stddev_pop(expression)
Description: Overall standard difference
Return type: double precision for floating-point arguments, otherwise
numeric
For example:
SELECT STDDEV_POP(inv_quantity_on_hand) FROM tpcds.inventory WHERE inv_warehouse_sk = 1;
    stddev_pop    
------------------
 289.224294957556
(1 row)

● stddev_samp(expression)
Description: Sample standard deviation of the input values
Return type: double precision for floating-point arguments, otherwise
numeric
For example:
SELECT STDDEV_SAMP(inv_quantity_on_hand) FROM tpcds.inventory WHERE inv_warehouse_sk = 1;
   stddev_samp    
------------------
 289.224359757315
(1 row)

● var_pop(expression)
Description: Population variance of the input values (square of the population
standard deviation)
Return type: double precision for floating-point arguments, otherwise
numeric
For example:
SELECT VAR_POP(inv_quantity_on_hand) FROM tpcds.inventory WHERE inv_warehouse_sk = 1;
      var_pop       
--------------------
 83650.692793695475
(1 row)

● var_samp(expression)
Description: Sample variance of the input values (square of the sample
standard deviation)
Return type: double precision for floating-point arguments, otherwise
numeric
For example:
SELECT VAR_SAMP(inv_quantity_on_hand) FROM tpcds.inventory WHERE inv_warehouse_sk = 1;
      var_samp      
--------------------

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 185



 83650.730277028768
(1 row)

● bit_and(expression)
Description: The bitwise AND of all non-null input values, or null if none
Return type: same as the argument type
For example:
SELECT BIT_AND(inv_quantity_on_hand) FROM tpcds.inventory WHERE inv_warehouse_sk = 1;
 bit_and 
---------
       0
(1 row)

● bit_or(expression)
Description: The bitwise OR of all non-null input values, or null if none
Return type: same as the argument type
For example:
SELECT BIT_OR(inv_quantity_on_hand) FROM tpcds.inventory WHERE inv_warehouse_sk = 1;
 bit_or 
--------
   1023
(1 row)

● bool_and(expression)
Description: Its value is true if all input values are true, otherwise false.
Return type: bool
For example:
SELECT bool_and(100 <2500);
 bool_and
----------
 t
(1 row)

● bool_or(expression)
Description: Its value is true if at least one input value is true, otherwise
false.
Return type: bool
For example:
SELECT bool_or(100 <2500);
 bool_or
----------
 t
(1 row)

● corr(Y, X)
Description: Correlation coefficient
Return type: double precision
For example:
SELECT CORR(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
       corr        
-------------------
 .0381383624904186
(1 row)

● every(expression)
Description: Equivalent to bool_and
Return type: bool

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 186



For example:
SELECT every(100 <2500);
 every
-------
 t
(1 row)

● rank(expression)
Description: The tuples in different groups are sorted non-consecutively by
expression.
Return type: bigint
For example:
SELECT d_moy, d_fy_week_seq, rank() OVER(PARTITION BY d_moy ORDER BY d_fy_week_seq) FROM 
tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;
   d_moy | d_fy_week_seq | rank 
-------+---------------+------
     1 |             1 |    1
     1 |             1 |    1
     1 |             1 |    1
     1 |             1 |    1
     1 |             1 |    1
     1 |             1 |    1
     1 |             1 |    1
     1 |             2 |    8
     1 |             2 |    8
     1 |             2 |    8
     1 |             2 |    8
     1 |             2 |    8
     1 |             2 |    8
     1 |             2 |    8
     1 |             3 |   15
     1 |             3 |   15
     1 |             3 |   15
     1 |             3 |   15
     1 |             3 |   15
     1 |             3 |   15
     1 |             3 |   15
     1 |             4 |   22
     1 |             4 |   22
     1 |             4 |   22
     1 |             4 |   22
     1 |             4 |   22
     1 |             4 |   22
     1 |             4 |   22
     1 |             5 |   29
     1 |             5 |   29
     2 |             5 |    1
     2 |             5 |    1
     2 |             5 |    1
     2 |             5 |    1
     2 |             5 |    1
     2 |             6 |    6
     2 |             6 |    6
     2 |             6 |    6
     2 |             6 |    6
     2 |             6 |    6
     2 |             6 |    6
     2 |             6 |    6
(42 rows)

● regr_avgx(Y, X)
Description: Average of the independent variable (sum(X)/N)
Return type: double precision
For example:

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 187



SELECT REGR_AVGX(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
    regr_avgx     
------------------
 578.606576740795
(1 row)

● regr_avgy(Y, X)
Description: Average of the dependent variable (sum(Y)/N)
Return type: double precision
For example:
SELECT REGR_AVGY(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
    regr_avgy     
------------------
 50.0136711629602
(1 row)

● regr_count(Y, X)
Description: Number of input rows in which both expressions are non-null
Return type: bigint
For example:
SELECT REGR_COUNT(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
 regr_count 
------------
       2743
(1 row)

● regr_intercept(Y, X)
Description: y-intercept of the least-squares-fit linear equation determined by
the (X, Y) pairs
Return type: double precision
For example:
SELECT REGR_INTERCEPT(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 
1000;
  regr_intercept  
------------------
 49.2040847848607
(1 row)

● regr_r2(Y, X)
Description: Square of the correlation coefficient
Return type: double precision
For example:
SELECT REGR_R2(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
      regr_r2       
--------------------
 .00145453469345058
(1 row)

● regr_slope(Y, X)
Description: Slope of the least-squares-fit linear equation determined by the
(X, Y) pairs
Return type: double precision
For example:
SELECT REGR_SLOPE(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
     regr_slope     
--------------------
 .00139920009665259
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 188



● regr_sxx(Y, X)
Description: sum(X^2) - sum(X)^2/N (sum of squares of the independent
variables)
Return type: double precision
For example:
SELECT REGR_SXX(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
     regr_sxx     
------------------
 1626645991.46135
(1 row)

● regr_sxy(Y, X)
Description: sum(X*Y) - sum(X) * sum(Y)/N ("sum of products" of
independent times dependent variable)
Return type: double precision
For example:
SELECT REGR_SXY(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
     regr_sxy     
------------------
 2276003.22847225
(1 row)

● regr_syy(Y, X)
Description: sum(Y^2) - sum(Y)^2/N ("sum of squares" of the dependent
variable)
Return type: double precision
For example:
SELECT REGR_SYY(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
    regr_syy     
-----------------
 2189417.6547314
(1 row)

● stddev(expression)
Description: Alias of stddev_samp
Return type: double precision for floating-point arguments, otherwise
numeric
For example:
SELECT STDDEV(inv_quantity_on_hand) FROM tpcds.inventory WHERE inv_warehouse_sk = 1;
      stddev      
------------------
 289.224359757315
(1 row)

● variance(expexpression,ression)
Description: Alias of var_samp
Return type: double precision for floating-point arguments, otherwise
numeric
For example:
SELECT VARIANCE(inv_quantity_on_hand) FROM tpcds.inventory WHERE inv_warehouse_sk = 1;
      variance      
--------------------
 83650.730277028768
(1 row)

● checksum(expression)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 189



Description: Returns the CHECKSUM value of all input values. This function
can be used to check whether the data in the tables before and after
GaussDB(DWS) data restoration or migration is the same. Other databases
cannot be checked by using this function. Before and after database backup,
database restoration, or data migration, you need to manually run SQL
commands to obtain the execution results. Compare the obtained execution
results to check whether the data in the tables before and after the backup or
migration is the same.

NO TE

● For large tables, the CHECKSUM function may take a long time.

● If the CHECKSUM values of two tables are different, it indicates that the contents
of the two tables are different. Using the hash function in the CHECKSUM function
may incur conflicts. There is low possibility that two tables with different contents
may have the same CHECKSUM value. The same problem may occur when
CHECKSUM is used for columns.

● If the time type is timestamp, timestamptz, or smalldatetime, ensure that the time
zone settings are the same when calculating the CHECKSUM value.

– If the CHECKSUM value of a column is calculated and the column type
can be changed to TEXT by default, set expression to the column name.

– If the CHECKSUM value of a column is calculated and the column type
cannot be changed to TEXT by default, set expression to Column
name::TEXT.

– If the CHECKSUM value of all columns is calculated, set expression to
Table name::TEXT.

The following types of data can be converted into TEXT types by default: char,
name, int8, int2, int1, int4, raw, pg_node_tree, float4, float8, bpchar, varchar,
nvarchar2, date, timestamp, timestamptz, numeric, and smalldatetime. Other
types need to be forcibly converted to TEXT.
Return type: numeric
For example:
The following shows the CHECKSUM value of a column that can be converted
to the TEXT type by default:
SELECT CHECKSUM(inv_quantity_on_hand) FROM tpcds.inventory;
     checksum      
-------------------
 24417258945265247
(1 row)

The following shows the CHECKSUM value of a column that cannot be
converted to the TEXT type by default: The CHECKSUM parameter is set to
Column name::TEXT.
SELECT CHECKSUM(inv_quantity_on_hand::TEXT) FROM tpcds.inventory;
     checksum      
-------------------
 24417258945265247
(1 row)

The following shows the CHECKSUM value of all columns in a table. Note
that the CHECKSUM parameter is set to Table name::TEXT. The table name is
not modified by its schema.
SELECT CHECKSUM(inventory::TEXT) FROM tpcds.inventory;                    
     checksum      
-------------------

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 190



 25223696246875800
(1 row)

6.20 Window Functions
Regular aggregate functions return a single value calculated from values in a row,
or group all rows into a single output row. Window functions perform a
calculation across a set of rows and return a value for each row.

● A window function call represents the application of an aggregate-like
function over some portion of the rows selected by a query. Therefore,
aggregate functions (Aggregate Functions) can also be used as window
functions. In addition, window functions are able to scan all the rows and
divide the query rows into a partition by using the PARTITION BY clause.

● Column-store tables support only the window functions rank (expression)
and row_number (expression) and the aggregate functions sum, count, avg,
min, and max. Row-store tables do not have such restrictions.

● Invoking a window function requires special syntax using the OVER clause to
specify a window. The OVER clause is used for grouping data and sorting the
elements in a group. Window functions are used for generating sequence
numbers for the values in the group.

● order by in a window function must be followed by a column name. If it is
followed by a number, the number is processed as a constant value and the
target column is not ranked.

Syntax of a Window Function
function_name ([expression [, expression ... ]]) OVER ( window_definition ) function_name ([expression [, 
expression ... ]]) OVER window_namefunction_name ( * ) OVER ( window_definition ) function_name ( * ) 
OVER window_name

window_definition is defined as follows:

[ existing_window_name ] [ PARTITION BY expression [, ...] ] [ ORDER BY expression [ ASC | DESC | USING 
operator ] [ NULLS { FIRST | LAST } ] [, ...] ] [ frame_clause ]

frame_clause is defined as follows:

[ RANGE | ROWS ] frame_start [ RANGE | ROWS ] BETWEEN frame_start AND frame_end

You can use RANGE and ROWS to specify the window frame. ROWS specifies the
window in physical units (rows). RANGE specifies the window as a logical offset.

In RANGE and ROWS, you can use BETWEEN frame_start AND frame_end to
specify the window's first and last rows. If frame_end is left blank, it defaults to
CURRENT ROW.

The value options of BETWEEN frame_start AND frame_end are as follows:

● CURRENT ROW: The current row is used as the window frame's start or end
point.

● N PRECEDING: The window frame starts from the nth row to the current row.
● UNBOUNDED PRECEDING: The window frame starts at the first row of the

partition.
● N FOLLOWING: The window frame starts from the current row to the nth

row.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 191



● UNBOUNDED FOLLOWING: The window frame ends with the last row of the
partition.

frame_start cannot be UNBOUNDED FOLLOWING, frame_end cannot be
UNBOUNDED PRECEDING, and frame_end cannot be earlier than frame_start. For
example, RANGE BETWEEN CURRENT ROW AND value PRECEDING is not
allowed.

Window Functions
● RANK()

Description: The RANK function is used for generating non-consecutive
sequence numbers for the values in each group. The same values have the
same sequence number.

Return type: bigint

For example:
SELECT d_moy, d_fy_week_seq, rank() OVER(PARTITION BY d_moy ORDER BY d_fy_week_seq) FROM 
tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;
   d_moy | d_fy_week_seq | rank 
-------+---------------+------
     1 |             1 |    1
     1 |             1 |    1
     1 |             1 |    1
     1 |             1 |    1
     1 |             1 |    1
     1 |             1 |    1
     1 |             1 |    1
     1 |             2 |    8
     1 |             2 |    8
     1 |             2 |    8
     1 |             2 |    8
     1 |             2 |    8
     1 |             2 |    8
     1 |             2 |    8
     1 |             3 |   15
     1 |             3 |   15
     1 |             3 |   15
     1 |             3 |   15
     1 |             3 |   15
     1 |             3 |   15
     1 |             3 |   15
     1 |             4 |   22
     1 |             4 |   22
     1 |             4 |   22
     1 |             4 |   22
     1 |             4 |   22
     1 |             4 |   22
     1 |             4 |   22
     1 |             5 |   29
     1 |             5 |   29
     2 |             5 |    1
     2 |             5 |    1
     2 |             5 |    1
     2 |             5 |    1
     2 |             5 |    1
     2 |             6 |    6
     2 |             6 |    6
     2 |             6 |    6
     2 |             6 |    6
     2 |             6 |    6
     2 |             6 |    6
     2 |             6 |    6
(42 rows)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 192



● ROW_NUMBER()
Description: The ROW_NUMBER function is used for generating consecutive
sequence numbers for the values in each group. The same values have
different sequence numbers.
Return type: bigint
For example:
SELECT d_moy, d_fy_week_seq, Row_number() OVER(PARTITION BY d_moy ORDER BY 
d_fy_week_seq) FROM tpcds.date_dim  WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;
 d_moy | d_fy_week_seq | row_number 
-------+---------------+------------
     1 |             1 |          1
     1 |             1 |          2
     1 |             1 |          3
     1 |             1 |          4
     1 |             1 |          5
     1 |             1 |          6
     1 |             1 |          7
     1 |             2 |          8
     1 |             2 |          9
     1 |             2 |         10
     1 |             2 |         11
     1 |             2 |         12
     1 |             2 |         13
     1 |             2 |         14
     1 |             3 |         15
     1 |             3 |         16
     1 |             3 |         17
     1 |             3 |         18
     1 |             3 |         19
     1 |             3 |         20
     1 |             3 |         21
     1 |             4 |         22
     1 |             4 |         23
     1 |             4 |         24
     1 |             4 |         25
     1 |             4 |         26
     1 |             4 |         27
     1 |             4 |         28
     1 |             5 |         29
     1 |             5 |         30
     2 |             5 |          1
     2 |             5 |          2
     2 |             5 |          3
     2 |             5 |          4
     2 |             5 |          5
     2 |             6 |          6
     2 |             6 |          7
     2 |             6 |          8
     2 |             6 |          9
     2 |             6 |         10
     2 |             6 |         11
     2 |             6 |         12
(42 rows)

● DENSE_RANK()
Description: The DENSE_RANK function is used for generating consecutive
sequence numbers for the values in each group. The same values have the
same sequence number.
Return type: bigint
For example:
SELECT d_moy, d_fy_week_seq, dense_rank() OVER(PARTITION BY d_moy ORDER BY d_fy_week_seq) 
FROM tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;
 d_moy | d_fy_week_seq | dense_rank 

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 193



-------+---------------+------------
     1 |             1 |          1
     1 |             1 |          1
     1 |             1 |          1
     1 |             1 |          1
     1 |             1 |          1
     1 |             1 |          1
     1 |             1 |          1
     1 |             2 |          2
     1 |             2 |          2
     1 |             2 |          2
     1 |             2 |          2
     1 |             2 |          2
     1 |             2 |          2
     1 |             2 |          2
     1 |             3 |          3
     1 |             3 |          3
     1 |             3 |          3
     1 |             3 |          3
     1 |             3 |          3
     1 |             3 |          3
     1 |             3 |          3
     1 |             4 |          4
     1 |             4 |          4
     1 |             4 |          4
     1 |             4 |          4
     1 |             4 |          4
     1 |             4 |          4
     1 |             4 |          4
     1 |             5 |          5
     1 |             5 |          5
     2 |             5 |          1
     2 |             5 |          1
     2 |             5 |          1
     2 |             5 |          1
     2 |             5 |          1
     2 |             6 |          2
     2 |             6 |          2
     2 |             6 |          2
     2 |             6 |          2
     2 |             6 |          2
     2 |             6 |          2
     2 |             6 |          2
(42 rows)

● PERCENT_RANK()
Description: The PERCENT_RANK function is used for generating
corresponding sequence numbers for the values in each group. That is, the
function calculates the value according to the formula Sequence number =
(Rank – 1)/(Total rows – 1). Rank is the corresponding sequence number
generated based on the RANK function for the value and Total rows is the
total number of elements in a group.
Return type: double precision
For example:
SELECT d_moy, d_fy_week_seq, percent_rank() OVER(PARTITION BY d_moy ORDER BY d_fy_week_seq) 
FROM tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;
 d_moy | d_fy_week_seq |   percent_rank   
-------+---------------+------------------
     1 |             1 |                0
     1 |             1 |                0
     1 |             1 |                0
     1 |             1 |                0
     1 |             1 |                0
     1 |             1 |                0
     1 |             1 |                0
     1 |             2 | .241379310344828

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 194



     1 |             2 | .241379310344828
     1 |             2 | .241379310344828
     1 |             2 | .241379310344828
     1 |             2 | .241379310344828
     1 |             2 | .241379310344828
     1 |             2 | .241379310344828
     1 |             3 | .482758620689655
     1 |             3 | .482758620689655
     1 |             3 | .482758620689655
     1 |             3 | .482758620689655
     1 |             3 | .482758620689655
     1 |             3 | .482758620689655
     1 |             3 | .482758620689655
     1 |             4 | .724137931034483
     1 |             4 | .724137931034483
     1 |             4 | .724137931034483
     1 |             4 | .724137931034483
     1 |             4 | .724137931034483
     1 |             4 | .724137931034483
     1 |             4 | .724137931034483
     1 |             5 |  .96551724137931
     1 |             5 |  .96551724137931
     2 |             5 |                0
     2 |             5 |                0
     2 |             5 |                0
     2 |             5 |                0
     2 |             5 |                0
     2 |             6 | .454545454545455
     2 |             6 | .454545454545455
     2 |             6 | .454545454545455
     2 |             6 | .454545454545455
     2 |             6 | .454545454545455
     2 |             6 | .454545454545455
     2 |             6 | .454545454545455
(42 rows)

● CUME_DIST()
Description: The CUME_DIST function is used for generating accumulative
distribution sequence numbers for the values in each group. That is, the
function calculates the value according to the following formula: Sequence
number = Number of rows preceding or peer with current row/Total rows.
Return type: double precision
For example:
SELECT d_moy, d_fy_week_seq, cume_dist() OVER(PARTITION BY d_moy ORDER BY d_fy_week_seq) 
FROM tpcds.date_dim e_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;
 d_moy | d_fy_week_seq |    cume_dist     
-------+---------------+------------------
     1 |             1 | .233333333333333
     1 |             1 | .233333333333333
     1 |             1 | .233333333333333
     1 |             1 | .233333333333333
     1 |             1 | .233333333333333
     1 |             1 | .233333333333333
     1 |             1 | .233333333333333
     1 |             2 | .466666666666667
     1 |             2 | .466666666666667
     1 |             2 | .466666666666667
     1 |             2 | .466666666666667
     1 |             2 | .466666666666667
     1 |             2 | .466666666666667
     1 |             2 | .466666666666667
     1 |             3 |               .7
     1 |             3 |               .7
     1 |             3 |               .7
     1 |             3 |               .7
     1 |             3 |               .7
     1 |             3 |               .7

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 195



     1 |             3 |               .7
     1 |             4 | .933333333333333
     1 |             4 | .933333333333333
     1 |             4 | .933333333333333
     1 |             4 | .933333333333333
     1 |             4 | .933333333333333
     1 |             4 | .933333333333333
     1 |             4 | .933333333333333
     1 |             5 |                1
     1 |             5 |                1
     2 |             5 | .416666666666667
     2 |             5 | .416666666666667
     2 |             5 | .416666666666667
     2 |             5 | .416666666666667
     2 |             5 | .416666666666667
     2 |             6 |                1
     2 |             6 |                1
     2 |             6 |                1
     2 |             6 |                1
     2 |             6 |                1
     2 |             6 |                1
     2 |             6 |                1
(42 rows)

● NTILE(num_buckets integer)
Description: The NTILE function is used for equally allocating sequential data
sets to the buckets whose quantity is specified by num_buckets according to
num_buckets integer and allocating the bucket number to each row. Divide
the partition as equally as possible.
Return type: integer
For example:
SELECT d_moy, d_fy_week_seq, ntile(3) OVER(PARTITION BY d_moy ORDER BY d_fy_week_seq) FROM 
tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;
 d_moy | d_fy_week_seq | ntile 
-------+---------------+-------
     1 |             1 |     1
     1 |             1 |     1
     1 |             1 |     1
     1 |             1 |     1
     1 |             1 |     1
     1 |             1 |     1
     1 |             1 |     1
     1 |             2 |     1
     1 |             2 |     1
     1 |             2 |     1
     1 |             2 |     2
     1 |             2 |     2
     1 |             2 |     2
     1 |             2 |     2
     1 |             3 |     2
     1 |             3 |     2
     1 |             3 |     2
     1 |             3 |     2
     1 |             3 |     2
     1 |             3 |     2
     1 |             3 |     3
     1 |             4 |     3
     1 |             4 |     3
     1 |             4 |     3
     1 |             4 |     3
     1 |             4 |     3
     1 |             4 |     3
     1 |             4 |     3
     1 |             5 |     3
     1 |             5 |     3
     2 |             5 |     1
     2 |             5 |     1

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 196



     2 |             5 |     1
     2 |             5 |     1
     2 |             5 |     2
     2 |             6 |     2
     2 |             6 |     2
     2 |             6 |     2
     2 |             6 |     3
     2 |             6 |     3
     2 |             6 |     3
     2 |             6 |     3
(42 rows)

● LAG(value any [, offset integer [, default any ]])
Description: The LAG function is used for generating lag values for the
corresponding values in each group. That is, the value of the row obtained by
moving forward the row corresponding to the current value by offset
(integer) is the sequence number. If the row does not exist after the moving,
the result value is the default value. If omitted, offset defaults to 1 and
default to null.
Return type: same as the parameter type
For example:
SELECT d_moy, d_fy_week_seq, lag(d_moy,3,null) OVER(PARTITION BY d_moy ORDER BY 
d_fy_week_seq) FROM tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;
 d_moy | d_fy_week_seq | lag 
-------+---------------+-----
     1 |             1 |    
     1 |             1 |    
     1 |             1 |    
     1 |             1 |   1
     1 |             1 |   1
     1 |             1 |   1
     1 |             1 |   1
     1 |             2 |   1
     1 |             2 |   1
     1 |             2 |   1
     1 |             2 |   1
     1 |             2 |   1
     1 |             2 |   1
     1 |             2 |   1
     1 |             3 |   1
     1 |             3 |   1
     1 |             3 |   1
     1 |             3 |   1
     1 |             3 |   1
     1 |             3 |   1
     1 |             3 |   1
     1 |             4 |   1
     1 |             4 |   1
     1 |             4 |   1
     1 |             4 |   1
     1 |             4 |   1
     1 |             4 |   1
     1 |             4 |   1
     1 |             5 |   1
     1 |             5 |   1
     2 |             5 |    
     2 |             5 |    
     2 |             5 |    
     2 |             5 |   2
     2 |             5 |   2
     2 |             6 |   2
     2 |             6 |   2
     2 |             6 |   2
     2 |             6 |   2
     2 |             6 |   2
     2 |             6 |   2

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 197



     2 |             6 |   2
(42 rows)

● LEAD(value any [, offset integer [, default any ]])
Description: The LEAD function is used for generating leading values for the
corresponding values in each group. That is, the value of the row obtained by
moving backward the row corresponding to the current value by offset
(integer) is the sequence number. If the number of rows after the moving
exceeds the total number for the current group, the result value is the default
value. If omitted, offset defaults to 1 and default to null.
Return type: same as the parameter type
For example:
SELECT d_moy, d_fy_week_seq, lead(d_fy_week_seq,2) OVER(PARTITION BY d_moy ORDER BY 
d_fy_week_seq) FROM  tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 
1,2;                 d_moy | d_fy_week_seq | lead 
-------+---------------+------
     1 |             1 |    1
     1 |             1 |    1
     1 |             1 |    1
     1 |             1 |    1
     1 |             1 |    1
     1 |             1 |    2
     1 |             1 |    2
     1 |             2 |    2
     1 |             2 |    2
     1 |             2 |    2
     1 |             2 |    2
     1 |             2 |    2
     1 |             2 |    3
     1 |             2 |    3
     1 |             3 |    3
     1 |             3 |    3
     1 |             3 |    3
     1 |             3 |    3
     1 |             3 |    3
     1 |             3 |    4
     1 |             3 |    4
     1 |             4 |    4
     1 |             4 |    4
     1 |             4 |    4
     1 |             4 |    4
     1 |             4 |    4
     1 |             4 |    5
     1 |             4 |    5
     1 |             5 |     
     1 |             5 |     
     2 |             5 |    5
     2 |             5 |    5
     2 |             5 |    5
     2 |             5 |    6
     2 |             5 |    6
     2 |             6 |    6
     2 |             6 |    6
     2 |             6 |    6
     2 |             6 |    6
     2 |             6 |    6
     2 |             6 |     
     2 |             6 |     
(42 rows)

● FIRST_VALUE(value any)
Description: The FIRST_VALUE function is used for returning the first value of
each group.
Return type: same as the parameter type

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 198



For example:
SELECT d_moy, d_fy_week_seq, first_value(d_fy_week_seq) OVER(PARTITION BY d_moy ORDER BY 
d_fy_week_seq) FROM tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2; 
 d_moy | d_fy_week_seq | first_value 
-------+---------------+-------------
     1 |             1 |           1
     1 |             1 |           1
     1 |             1 |           1
     1 |             1 |           1
     1 |             1 |           1
     1 |             1 |           1
     1 |             1 |           1
     1 |             2 |           1
     1 |             2 |           1
     1 |             2 |           1
     1 |             2 |           1
     1 |             2 |           1
     1 |             2 |           1
     1 |             2 |           1
     1 |             3 |           1
     1 |             3 |           1
     1 |             3 |           1
     1 |             3 |           1
     1 |             3 |           1
     1 |             3 |           1
     1 |             3 |           1
     1 |             4 |           1
     1 |             4 |           1
     1 |             4 |           1
     1 |             4 |           1
     1 |             4 |           1
     1 |             4 |           1
     1 |             4 |           1
     1 |             5 |           1
     1 |             5 |           1
     2 |             5 |           5
     2 |             5 |           5
     2 |             5 |           5
     2 |             5 |           5
     2 |             5 |           5
     2 |             6 |           5
     2 |             6 |           5
     2 |             6 |           5
     2 |             6 |           5
     2 |             6 |           5
     2 |             6 |           5
     2 |             6 |           5
(42 rows)

● LAST_VALUE(value any)
Description: Returns the last value of each group.
Return type: same as the parameter type
For example:
SELECT d_moy, d_fy_week_seq, last_value(d_moy) OVER(PARTITION BY d_moy ORDER BY 
d_fy_week_seq) FROM tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 6 ORDER BY 1,2;
  d_moy | d_fy_week_seq | last_value 
-------+---------------+------------
     1 |             1 |          1
     1 |             1 |          1
     1 |             1 |          1
     1 |             1 |          1
     1 |             1 |          1
     1 |             1 |          1
     1 |             1 |          1
     1 |             2 |          1
     1 |             2 |          1
     1 |             2 |          1

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 199



     1 |             2 |          1
     1 |             2 |          1
     1 |             2 |          1
     1 |             2 |          1
     1 |             2 |          1
     1 |             3 |          1
     1 |             3 |          1
     1 |             3 |          1
     1 |             3 |          1
     1 |             3 |          1
     1 |             3 |          1
     1 |             3 |          1
     1 |             4 |          1
     1 |             4 |          1
     1 |             4 |          1
     1 |             4 |          1
     1 |             4 |          1
     1 |             4 |          1
     1 |             4 |          1
     1 |             5 |          1
     1 |             5 |          1
     2 |             5 |          2
     2 |             5 |          2
     2 |             5 |          2
     2 |             5 |          2
     2 |             5 |          2
(35 rows)

● NTH_VALUE(value any, nth integer)
Description: The nth row for a group is the returned value. If the row does not
exist, NULL is returned by default.
Return type: same as the parameter type
For example:
SELECT d_moy, d_fy_week_seq, nth_value(d_fy_week_seq,6) OVER(PARTITION BY d_moy ORDER BY 
d_fy_week_seq) FROM tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 6 ORDER BY 1,2;
 d_moy | d_fy_week_seq | nth_value 
-------+---------------+-----------
     1 |             1 |         1
     1 |             1 |         1
     1 |             1 |         1
     1 |             1 |         1
     1 |             1 |         1
     1 |             1 |         1
     1 |             1 |         1
     1 |             2 |         1
     1 |             2 |         1
     1 |             2 |         1
     1 |             2 |         1
     1 |             2 |         1
     1 |             2 |         1
     1 |             2 |         1
     1 |             3 |         1
     1 |             3 |         1
     1 |             3 |         1
     1 |             3 |         1
     1 |             3 |         1
     1 |             3 |         1
     1 |             3 |         1
     1 |             4 |         1
     1 |             4 |         1
     1 |             4 |         1
     1 |             4 |         1
     1 |             4 |         1
     1 |             4 |         1
     1 |             4 |         1
     1 |             5 |         1
     1 |             5 |         1

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 200



     2 |             5 |          
     2 |             5 |          
     2 |             5 |          
     2 |             5 |          
     2 |             5 |          
(35 rows)

6.21 Security Functions

Security Functions
● gs_encrypt(encryptstr, keystr, cryptotype, cryptomode, hashmethod)

Description: Encrypts an encryptstr string using the keystr key based on the
encryption algorithm specified by cryptotype and cryptomode and the
HMAC algorithm specified by hashmethod, and returns the encrypted string.
cryptotype can be aes128, aes192, aes256, or sm4. cryptomode is cbc.
hashmethod can be sha256, sha384, sha512, or sm3. Currently, the
following types of data can be encrypted: numerals supported in the
database; character type; RAW in binary type; and DATE, TIMESTAMP, and
SMALLDATETIME in date/time type. The keystr length is related to the
encryption algorithm and contains 1 to KeyLen bytes. If cryptotype is aes128
or sm4, KeyLen is 16; if cryptotype is aes192, KeyLen is 24; if cryptotype is
aes256, KeyLen is 32.
Return type: text
Length of the return value: at least 4 x [(maclen + 56)/3] bytes and no more
than 4 x [(Len + maclen + 56)/3] bytes, where Len indicates the string length
(in bytes) before the encryption and maclen indicates the length of the
HMAC value. If hashmethod is sha256 or sm3, maclen is 32; if hashmethod
is sha384, maclen is 48; if hashmethod is sha512, maclen is 64. That is, if
hashmethod is sha256 or sm3, the returned string contains 120 to 4 x [(Len
+ 88)/3] bytes; if hashmethod is sha384, the returned string contains 140 to
4 x [(Len + 104)/3] bytes; if hashmethod is sha512, the returned string
contains 160 to 4 x [(Len + 120)/3] bytes.
Example:
SELECT gs_encrypt('GaussDB(DWS)', '1234', 'aes128', 'cbc',  'sha256');
                                                        gs_encrypt                                                        
-----------------------------------------------------------------------------------------------------------------------
---
 AAAAAAAAAACcFjDcCSbop7D87sOa2nxTFrkE9RJQGK34ypgrOPsFJIqggI8tl
+eMDcQYT3po98wPCC7VBfhv7mdBy7IVnzdrp0rdMrD6/zTl8w0v9/s2OA==
(1 row)

NO TE

● This function is supported by version 8.1.1 or later clusters.
● A decryption password is required during the execution of this function. For

security purposes, the gsql tool does not record this function in the execution
history. That is, the execution history of this function cannot be found in gsql by
paging up and down.

● Do not use the ge_encrypt and gs_encrypt_aes128 functions for the same data
table.

● gs_decrypt(decryptstr, keystr, cryptotype, cryptomode, hashmethod)
Description: Decrypts a decryptstr string using the keystr key based on the
encryption algorithm specified by cryptotype and cryptomode and the

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 201



HMAC algorithm specified by hashmethod, and returns the decrypted string.
The keystr used for decryption must be consistent with that used for
encryption. keystr cannot be empty.
Return type: text
Example:
SELECT gs_decrypt('AAAAAAAAAACcFjDcCSbop7D87sOa2nxTFrkE9RJQGK34ypgrOPsFJIqggI8tl
+eMDcQYT3po98wPCC7VBfhv7mdBy7IVnzdrp0rdMrD6/zTl8w0v9/s2OA==', '1234', 'aes128', 'cbc', 
'sha256');
  gs_decrypt  
--------------
 GaussDB(DWS)
(1 row)

NO TE

● This function is supported by version 8.1.1 or later clusters.
● A decryption password is required during the execution of this function. For

security purposes, the gsql tool does not record this function in the execution
history. That is, the execution history of this function cannot be found in gsql by
paging up and down.

● This function works with the gs_encrypt function, and the two functions must use
the same encryption algorithm and HMAC algorithm.

● gs_encrypt_aes128(encryptstr,keystr)
Description: Encrypts encryptstr strings using keystr as the key and returns
encrypted strings. The length of keystr ranges from 1 to 16 bytes. Currently,
the following types of data can be encrypted: numerals supported in the
database; character type; RAW in binary type; and DATE, TIMESTAMP, and
SMALLDATETIME in date/time type.
Return type: text
Length of the return value: At least 92 bytes and no more than (4*[Len/
3]+68) bytes, where Len indicates the length of the data before encryption
(unit: byte).
Examples
SELECT gs_encrypt_aes128('MPPDB','1234');

                               gs_encrypt_aes128
-------------------------------------------------------------------------------------
gwditQLQG8NhFw4OuoKhhQJoXojhFlYkjeG0aYdSCtLCnIUgkNwvYI04KbuhmcGZp8jWizBdR1vU9CspjuzI
0lbz12A=
(1 row)

NO TE

● A decryption password is required during the execution of this function. For
security purposes, the gsql tool does not record this function in the execution
history. That is, the execution history of this function cannot be found in gsql by
paging up and down.

● Do not use the ge_encrypt and gs_encrypt_aes128 functions for the same data
table.

● gs_decrypt_aes128(decryptstr,keystr)
Description: Decrypts a decryptstr string using the keystr key and returns the
decrypted string. The keystr used for decryption must be consistent with that
used for encryption. keystr cannot be empty.
Return type: text
Examples:

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 202



SELECT 
gs_decrypt_aes128('gwditQLQG8NhFw4OuoKhhQJoXojhFlYkjeG0aYdSCtLCnIUgkNwvYI04KbuhmcGZp8j
WizBdR1vU9CspjuzI0lbz12A=','1234');
 gs_decrypt_aes128 
-------------------
 MPPDB
(1 row)

NO TE

● A decryption password is required during the execution of this function. For
security purposes, the gsql tool does not record this function in the execution
history. That is, the execution history of this function cannot be found in gsql by
paging up and down.

● This function works with the gs_encrypt_aes128 function.

● gs_password_deadline()
Description: Indicates the number of remaining days before the password of
the current user expires. After the password expires, the system prompts the
user to change the password. This parameter is related to the GUC parameter
password_effect_time.
Return type: interval
Examples:
SELECT gs_password_deadline();
  gs_password_deadline   
-------------------------
 83 days 17:44:32.196094
(1 row)

● gs_password_expiration()
Description: Indicates the number of remaining days before the password of
the current user expires. After the password expires, the user cannot log in to
the database. This parameter is related to the DDL statement PASSWORD
EXPIRATION period used for creating a user.
Return type: interval
Examples:
SELECT gs_password_expiration();
  gs_password_expiration   
-------------------------
 29 days 23:59:49.731482
(1 row)

● gs_hash(hashstr, hashmethod)
Description: Obtains the digest string of a hashstr string based on the
algorithm specified by hashmethod. hashmethod can be sha256, sha384,
sha512, or sm3. This function is supported by version 8.1.1 or later clusters.
Return type: text
Length of the return value: 64 bytes if hashmethod is sha256 or sm3; 96
bytes if hashmethod is sha384; 128 bytes if hashmethod is sha512
Example:
SELECT gs_hash('GaussDB(DWS)', 'sha256');
                                             gs_hash                                              
--------------------------------------------------------------------------------------------------
 
e59069daa6541ae20af7c747662702c731b26b8abd7a788f4d15611aa0db608efdbb5587ba90789a983f8
5dd51766609
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 203



● login_audit_messages(flag boolean)
Description: Queries login information about a login user.
Return type: tuple
Examples:
– Checks the date, time, and IP address successfully authenticated during

the last login.
SELECT * FROM login_audit_messages(true);
  username  | database |       logintime        |     type      | result |  client_conninfo   
------------+----------+------------------------+---------------+--------+--------------------
     dbadmin    | postgres | 2017-06-02 15:28:34+08 | login_success | ok     | gsql@[local]
(1 row)

– Checks the date, time, and IP address that failed to be authenticated
during the last login.
SELECT * FROM login_audit_messages(false) ORDER BY logintime desc limit 1;
  username  | database |       logintime        |     type     | result |     client_conninfo     
------------+----------+------------------------+--------------+--------+-------------------------
(0 rows)

– Checks the number of failed attempts, date, and time since the previous
successful authentication.
SELECT * FROM login_audit_messages(false);
  username  | database |       logintime        |     type     | result |     client_conninfo     
------------+----------+------------------------+--------------+--------+-------------------------
(0 rows)

● login_audit_messages_pid(flag boolean)
Description: Queries login information about a login user. Different from
login_audit_messages, this function queries login information based on
backendid. Information about subsequent logins of the same user does not
alter the query result of previous logins and cannot be found using this
function.
Return type: tuple
Examples:
– Checks the date, time, and IP address successfully authenticated during

the last login.
SELECT * FROM login_audit_messages_pid(true);
  username  | database |       logintime        |     type      | result |  client_conninfo | backendid
------------+----------+------------------------+---------------+--------+--------------------
     dbadmin    | gaussdb | 2017-06-02 15:28:34+08 | login_success | ok     | gsql@[local] | 
140311900702464
(1 row)

– Checks the date, time, and IP address that failed to be authenticated
during the last login.
SELECT * FROM login_audit_messages_pid(false) ORDER BY logintime desc limit 1;
  username  | database |       logintime        |     type     | result |     client_conninfo   | backendid
------------+----------+------------------------+--------------+--------+-------------------------
(0 rows)

– Checks the number of failed attempts, date, and time since the previous
successful authentication.
SELECT * FROM login_audit_messages_pid(false);
  username  | database |       logintime        |     type     | result |     client_conninfo    | backendid
------------+----------+------------------------+--------------+--------+-------------------------
(0 rows)

● inet_server_addr()
Description: Displays the server IP address.
Return type: inet
Examples:

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 204



SELECT inet_server_addr();
 inet_server_addr
------------------
 10.10.0.13
(1 row)

NO TE

● The client IP address 10.10.0.50 and server IP address 10.10.0.13 are used as an
example.

● If the database is connected to the local PC, the value is empty.

● inet_client_addr()
Description: Displays the client IP address.
Return type: inet
Examples:
SELECT inet_client_addr();
 inet_client_addr
------------------
 10.10.0.50
(1 row)

NO TE

● The client IP address 10.10.0.50 and server IP address 10.10.0.13 are used as an
example.

● If the database is connected to the local PC, the value is empty.

● pg_query_audit()
Description: Displays audit logs of the CN.
Return type: SETOF record
The following table describes return columns.

Column Type Description

begintime timestamp
with time
zone

Operation start time

endtime timestamp
with time
zone

Operation end time

operation_ty
pe

text Operation type

audit_type text Audit type

result text Operation result

username text Name of the user who performs the
operation

database text Database name

client_conni
nfo

text Client connection information

object_name text Object name

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 205



Column Type Description

command_t
ext

text Command used to perform the operation. In
versions earlier than 8.1.1, the audit content
of this column is contained in detail_info.

detail_info text Operation details

transaction_
xid

text Transaction ID

query_id text Query ID

node_name text Node name

thread_id text Thread ID

local_port text Local port

remote_port text Remote port

 

For details about how to use the function and details about function
examples, see section "Querying Audit Results."

● pgxc_query_audit()
Description: Displays audit logs of all CNs.
Return type: record
The return fields of this function are the same as those of the
pg_query_audit function.
For details about how to use the function, see "Querying Audit Results" in the
Developer Guide.

● pg_delete_audit()Description: Deletes audit logs in a specified period. Return
type: void

NO TE

For database security concerns, this function is unavailable. If you call it, the following
message is displayed: "ERROR: For security purposes, it is not allowed to manually
delete audit logs."

6.22 Set Returning Functions

Series Generating Functions
● generate_series(start, stop)

Description: Generates a series of values, from start to stop with a step size
of one.
Parameter type: int, bigint, or numeric
Return type: setof int, setof bigint, or setof numeric (same as the argument
type)

● generate_series(start, stop, step)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 206



Description: Generates a series of values, from start to stop with a step size
of step.

Parameter type: int, bigint, or numeric

Return type: setof int, setof bigint, or setof numeric (same as the argument
type)

● generate_series(start, stop, step interval)

Description: Generates a series of values, from start to stop with a step size
of step.

Parameter type: timestamp or timestamp with time zone

Return type: setof timestamp or setof timestamp with time zone (same as
argument type)

When step is positive, zero rows are returned if start is greater than stop.
Conversely, when step is negative, zero rows are returned if start is less than stop.
Zero rows are also returned for NULL inputs. It is an error for step to be zero.

For example:

SELECT * FROM generate_series(2,4);
 generate_series
-----------------
               2
               3
               4
(3 rows)

SELECT * FROM generate_series(5,1,-2);
 generate_series
-----------------
               5
               3
               1
(3 rows)

SELECT * FROM generate_series(4,3);
 generate_series
-----------------
(0 rows)

-- this example relies on the date-plus-integer operator
SELECT current_date + s.a AS dates FROM generate_series(0,14,7) AS s(a);
   dates
------------
 2017-06-02
 2017-06-09
 2017-06-16
(3 rows)

SELECT * FROM generate_series('2008-03-01 00:00'::timestamp, '2008-03-04 12:00', '10 hours');
   generate_series   
---------------------
 2008-03-01 00:00:00
 2008-03-01 10:00:00
 2008-03-01 20:00:00
 2008-03-02 06:00:00
 2008-03-02 16:00:00
 2008-03-03 02:00:00
 2008-03-03 12:00:00
 2008-03-03 22:00:00
 2008-03-04 08:00:00
(9 rows)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 207



Subscript Generating Functions
● generate_subscripts(array anyarray, dim int)

Description: Generates a series comprising the given array's subscripts.
Return type: setof int

● generate_subscripts(array anyarray, dim int, reverse boolean)
Description: Generates a series comprising the given array's subscripts. When
reverse is true, the series is returned in reverse order.
Return type: setof int

generate_subscripts is a function that generates the set of valid subscripts for the
specified dimension of the given array. Zero rows are returned for arrays that do
not have the requested dimension, or for NULL arrays (but valid subscripts are
returned for NULL array elements). For example:

-- basic usage
SELECT generate_subscripts('{NULL,1,NULL,2}'::int[], 1) AS s;
 s 
---
 1
 2
 3
 4
(4 rows)
-- unnest a 2D array
CREATE OR REPLACE FUNCTION unnest2(anyarray)
RETURNS SETOF anyelement AS $$
SELECT $1[i][j]
   FROM generate_subscripts($1,1) g1(i),
        generate_subscripts($1,2) g2(j);
$$ LANGUAGE sql IMMUTABLE;

SELECT * FROM unnest2(ARRAY[[1,2],[3,4]]);
 unnest2 
---------
       1
       2
       3
       4
(4 rows)

-- Delete the function:
DROP FUNCTION unnest2;

6.23 Conditional Expression Functions

Conditional Expression Functions
● coalesce(expr1, expr2, ..., exprn)

Description: Returns the first argument that is not NULL in the argument list.
COALESCE(expr1, expr2) is equivalent to CASE WHEN expr1 IS NOT NULL
THEN expr1 ELSE expr2 END.
For example:
SELECT coalesce(NULL,'hello');
 coalesce
----------
 hello
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 208



Note:
– NULL is returned only if all parameters are NULL.
– This value is replaced by the default value when data is displayed.
– Like a CASE expression, COALESCE only evaluates the parameters that are

needed to determine the result. That is, parameters to the right of the
first non-null parameter are not evaluated.

● decode(base_expr, compare1, value1, Compare2,value2, ... default)
Description: Compares base_expr with each compare(n) and returns value(n)
if they are matched. If base_expr does not match each compare(n), the
default value is returned.
For example:
SELECT decode('A','A',1,'B',2,0);
 case
------
 1
(1 row)

● if(bool_expr, expr1, expr2)
Description: Returns expr1 or expr2. If the value of bool_expr is true, expr1
is returned. Otherwise, expr2 is returned.
This function is equivalent to CASE WHEN bool_expr = true THEN expr1
ELSE expr2 END.
Example:
SELECT if(1 < 2, 'yes', 'no');
 if
-----
 yes
(1 row)

Note: expr1 and expr2 can be of any type. For details about the available
types, see UNION, CASE, and Related Constructs.

● ifnull(expr1, expr2)
Description: Returns expr1 or expr2. If expr1 is not NULL, expr1 is returned.
Otherwise, expr2 is returned.
This function is logically equivalent to CASE WHEN expr1 IS NOT NULL
THEN expr1 ELSE expr2 END.
Example:
SELECT ifnull(NULL,'hello');
 ifnull
--------
 hello
(1 row)

Note: expr1 and expr2 can be of any type. For details about the available
types, see UNION, CASE, and Related Constructs.

● isnull(expr)
Description: Checks whether expr is NULL. If it is NULL, true is returned.
Otherwise, false is returned.
This function is logically equivalent to expr IS NULL.
Example:
SELECT isnull(NULL), isnull('abc');
 isnull | isnull
--------+--------

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 209



 t      | f
(1 row)

● nullif(expr1, expr2)
Description: Returns NULL or expr1. If expr1 is equal to expr2, NULL is
returned. Otherwise, expr1 is returned.
nullif(expr1, expr2) is equivalent to CASE WHEN expr1 = expr2 THEN NULL
ELSE expr1 END.
For example:
SELECT nullif('hello','world');
 nullif 
--------
 hello
(1 row)

Note:
Assume the two parameter data types are different:
– If implicit conversion exists between the two data types, implicitly convert

the parameter of lower priority to this data type using the data type of
higher priority. If the conversion succeeds, computation is performed.
Otherwise, an error is returned. For example:
SELECT nullif('1234'::VARCHAR,123::INT4);
 nullif 
--------
   1234
(1 row)
SELECT nullif('1234'::VARCHAR,'2012-12-24'::DATE);
ERROR:  invalid input syntax for type timestamp: "1234"

– If implicit conversion is not applied between two data types, an error is
displayed. For example:
SELECT nullif(TRUE::BOOLEAN,'2012-12-24'::DATE);
ERROR:  operator does not exist: boolean = timestamp without time zone
LINE 1: SELECT nullif(TRUE::BOOLEAN,'2012-12-24'::DATE) FROM DUAL;
^
HINT:  No operator matches the given name and argument type(s). You might need to add 
explicit type casts.

● nvl( expr1 , expr2 )
Returns expr1 or expr2. If expr1 is NULL, expr2 is returned. Otherwise, expr1
is returned.
For example:
SELECT nvl('hello','world');
  nvl  
-------
 hello
(1 row)

Parameters expr1 and expr2 can be of any data type. If expr1 and expr2 are
of different data types, NVL checks whether expr2 can be implicitly converted
to expr1. If it can, the expr1 data type is returned. If epr2 cannot be implicitly
converted to expr1 but epr1 can be implicitly converted to expr2, the expr2
data type is returned. If no implicit type conversion exists between the two
parameters and the parameters are different data types, an error is reported.

● sys_context( 'namespace' , 'parameter')
Description: Obtains and returns the parameter values of a specified
namespace.
Return type: VARCHAR
For example:

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 210



SELECT sys_context('USERENV', 'CURRENT_SCHEMA');
 sys_context 
-------------
 public
(1 row)

The result varies according to the current actual schema.
Note: Currently, only the following formats are supported:
SYS_CONTEXT('USERENV', 'CURRENT_SCHEMA') and
SYS_CONTEXT('USERENV', 'CURRENT_USER').

● greatest(expr1 [, ...])
Description: Selects the largest value from a list of any number of expressions.
Return type:
For example:
SELECT greatest(1*2,2-3,4-1);
 greatest 
----------
        3
(1 row)
SELECT greatest('ABC', 'BCD', 'CDE');
 greatest 
----------
 CDE
(1 row)

● least(expr1 [, ...])
Description: Selects the smallest value from a list of any number of
expressions.
For example:
SELECT least(1*2,2-3,4-1);
 least 
-------
    -1
(1 row)
SELECT least('ABC','BCD','CDE');
 least  
--------
 ABC
(1 row)

● EMPTY_BLOB()
Description: Initiates a BLOB variable in an INSERT or an UPDATE statement
to a NULL value.
Return type: BLOB
For example:
-- Create a table:
CREATE TABLE blob_tb(b blob,id int) DISTRIBUTE BY REPLICATION;
-- Insert data:
INSERT INTO blob_tb VALUES (empty_blob(),1);
--Delete the table.
DROP TABLE blob_tb;

Note: The length is 0 obtained using DBMS.GETLENGTH in a parallel mode.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 211



6.24 System Information Functions

Session Information Functions
● current_catalog

Description: Name of the current database (called "catalog" in the SQL
standard)
Return type: name
For example:
SELECT current_catalog;
 current_database
------------------
 gaussdb
(1 row)

● current_database()
Description: Name of the current database
Return type: name
For example:
SELECT current_database();
 current_database
------------------
 gaussdb
(1 row)

● current_query()
Description: Text of the currently executing query, as submitted by the client
(might contain more than one statement)
Return type: text
For example:
SELECT current_query();
      current_query
-------------------------
 SELECT current_query();
(1 row)

● current_schema[()]
Description: Name of current schema
Return type: name
For example:
SELECT current_schema();
 current_schema
----------------
 public
(1 row)

Remarks: current_schema returns the first valid schema name in the search
path. (If the search path is empty or contains no valid schema name, NULL is
returned.) This is the schema that will be used for any tables or other named
objects that are created without specifying a target schema.

● current_schemas(boolean)
Description: Names of schemas in search path
Return type: name[]

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 212



For example:
SELECT current_schemas(true);
   current_schemas
---------------------
 {pg_catalog,public}
(1 row)

Note:
current_schemas(boolean) returns an array of the names of all schemas
presently in the search path. The Boolean option determines whether
implicitly included system schemas such as pg_catalog are included in the
returned search path.

NO TE

The search path can be altered at run time. The command is:
SET search_path TO schema [, schema, ...]

● current_user
Description: User name of current execution context
Return type: name
For example:
SELECT current_user;
 current_user
--------------
 dbadmin
(1 row)

Note: current_user is the user identifier that is applicable for permission
checking. Normally it is equal to the session user, but it can be changed with
SET ROLE. It also changes during the execution of functions with the attribute
SECURITY DEFINER.

● inet_client_addr()
Description: Remote connection address. inet_client_addr returns the IP
address of the current client.

NO TE

It is available only in remote connection mode.

Return type: inet
For example:
SELECT inet_client_addr();
 inet_client_addr
------------------
 10.10.0.50
(1 row)

● inet_client_port()
Description: Remote connection port. And inet_client_port returns the port
number of the current client.

NO TE

It is available only in remote connection mode.

Return type: int
For example:
SELECT inet_client_port();
 inet_client_port

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 213



------------------
            33143
(1 row)

● inet_server_addr()
Description: Local connection address. inet_server_addr returns the IP address
on which the server accepted the current connection.

NO TE

It is available only in remote connection mode.

Return type: inet
For example:
SELECT inet_server_addr();
 inet_server_addr
------------------
 10.10.0.13
(1 row)

● inet_server_port()
Description: Local connection port. inet_server_port returns the port number.
All these functions return NULL if the current connection is via a Unix-domain
socket.

NO TE

It is available only in remote connection mode.

Return type: int
For example:
SELECT inet_server_port();
 inet_server_port
------------------
 8000
(1 row)

● pg_backend_pid()
Description: Process ID of the server process attached to the current session
Return type: int
For example:
SELECT pg_backend_pid();
 pg_backend_pid
-----------------
 140229352617744
(1 row)

● pg_conf_load_time()
Description: Configures load time. pg_conf_load_time returns the timestamp
with time zone when the server configuration files were last loaded.
Return type: timestamp with time zone
For example:
SELECT pg_conf_load_time();
      pg_conf_load_time       
------------------------------
 2017-09-01 16:05:23.89868+08
(1 row)

● pg_my_temp_schema()
Description: OID of the temporary schema of a session. The value is 0 if the
OID does not exist.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 214



Return type: OID
For example:
SELECT pg_my_temp_schema();
 pg_my_temp_schema 
-------------------
                 0
(1 row)

Note: pg_my_temp_schema returns the OID of the current session's
temporary schema, or zero if it has none (because it has not created any
temporary tables). pg_is_other_temp_schema returns true if the given OID is
the OID of another session's temporary schema.

● pg_is_other_temp_schema(oid)
Description: Whether the schema is the temporary schema of another session.
Return type: boolean
For example:
SELECT pg_is_other_temp_schema(25356);
 pg_is_other_temp_schema
-------------------------
 f
(1 row)

● pg_listening_channels()
Description: Channel names that the session is currently listening on
Return type: setof text
For example:
SELECT pg_listening_channels();
 pg_listening_channels
-----------------------
(0 rows)

Note: pg_listening_channels returns a set of names of channels that the
current session is listening to.

● pg_postmaster_start_time()
Description: Server start time pg_postmaster_start_time returns the
timestamp with time zone when the server started.
Return type: timestamp with time zone
For example:
SELECT pg_postmaster_start_time();
   pg_postmaster_start_time   
------------------------------
 2017-08-30 16:02:54.99854+08
(1 row)

● pg_trigger_depth()
Description: Current nesting level of triggers
Return type: int
For example:
SELECT pg_trigger_depth();
 pg_trigger_depth 
------------------
                0
(1 row)

● pgxc_version()
Description: Postgres-XC version information

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 215



Return type: text
For example:
SELECT pgxc_version();
                                                pgxc_version                                                 
-------------------------------------------------------------------------------------------------------------
 Postgres-XC 1.1 on x86_64-unknown-linux-gnu, based on PostgreSQL 9.2.4, compiled by g++ (GCC) 
5.4.0, 64-bit
(1 row)

● session_user
Description: Session user name
Return type: name
For example:
SELECT session_user;
 session_user
--------------
 dbadmin
(1 row)

Note: session_user is usually the user who initiated the current database
connection, but administrators can change this setting with SET SESSION
AUTHORIZATION.

● user
Description: Is equivalent to current_user.
Return type: name
For example:
SELECT user;
 current_user
--------------
 dbadmin
(1 row)

● version()
Description: version information. version returns a string describing a server's
version.
Return type: text
For example:
SELECT version();
                                                                version                                                                
-----------------------------------------------------------------------------------------------------------------------
----------------
 PostgreSQL 9.2.4 gsql ((GaussDB 8.1.1 build af002019) compiled at 2020-01-10 05:43:20 commit 
6995 last mr 11566 ) on x86_64-unknown-linux-gnu, compiled by g++ (GCC) 5.4.0, 64-bit
(1 row)

Access Privilege Inquiry Functions
● has_any_column_privilege(user, table, privilege)

Description: Queries whether a specified user has permission for any column
of table.
Return type: boolean

● has_any_column_privilege(table, privilege)
Description: Queries whether the current user has permission for any column
of table.
Return type: boolean

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 216



has_any_column_privilege checks whether a user can access any column of a
table in a particular way. Its parameter possibilities are analogous to
has_table_privilege, except that the desired access permission type must be
some combination of SELECT, INSERT, UPDATE, or REFERENCES.

NO TE

Note that having any of these permissions at the table level implicitly grants it for
each column of the table, so has_any_column_privilege will always return true if
has_table_privilege does for the same parameters. But has_any_column_privilege
also succeeds if there is a column-level grant of the permission for at least one
column.

● has_column_privilege(user, table, column, privilege)
Description: Queries whether a specified user has permission for column.
Return type: boolean

● has_column_privilege(table, column, privilege)
Description: Queries whether the current user has permission for column.
Return type: boolean
has_column_privilege checks whether a user can access a column in a
particular way. Its argument possibilities are analogous to
has_table_privilege, with the addition that the column can be specified
either by name or attribute number. The desired access permission type must
evaluate to some combination of SELECT, INSERT, UPDATE, or REFERENCES.

NO TE

Note that having any of these permissions at the table level implicitly grants it for
each column of the table.

● has_database_privilege(user, database, privilege)
Description: Queries whether a specified user has permission for database.
Return type: boolean

● has_database_privilege(database, privilege)
Description: Queries whether the current user has permission for database.
Return type: boolean
Note: has_database_privilege checks whether a user can access a database
in a particular way. Its argument possibilities are analogous to
has_table_privilege. The desired access permission type must evaluate to
some combination of CREATE, CONNECT, TEMPORARY, or TEMP (which is
equivalent to TEMPORARY).

● has_foreign_data_wrapper_privilege(user, fdw, privilege)
Description: Queries whether a specified user has permission for foreign-data
wrapper.
The fdw parameter indicates the name or ID of the foreign data wrapper.
Return type: boolean

● has_foreign_data_wrapper_privilege(fdw, privilege)
Description: Queries whether the current user has permission for foreign-data
wrapper.
Return type: boolean

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 217



Note: has_foreign_data_wrapper_privilege checks whether a user can access
a foreign-data wrapper in a particular way. Its argument possibilities are
analogous to has_table_privilege. The desired access permission type must
evaluate to USAGE.

● has_function_privilege(user, function, privilege)
Description: Queries whether a specified user has permission for function.
Return type: boolean

● has_function_privilege(function, privilege)
Description: Queries whether the current user has permission for function.
Return type: boolean
Note: has_function_privilege checks whether a user can access a function in
a particular way. Its argument possibilities are analogous to
has_table_privilege. When a function is specified by a text string rather than
by OID, the allowed input is the same as that for the regprocedure data type
(see Object Identifier Types). The desired access permission type must
evaluate to EXECUTE.

● has_language_privilege(user, language, privilege)
Description: Queries whether a specified user has permission for language.
Return type: boolean

● has_language_privilege(language, privilege)
Description: Queries whether the current user has permission for language.
Return type: boolean
Note: has_language_privilege checks whether a user can access a procedural
language in a particular way. Its argument possibilities are analogous to
has_table_privilege. The desired access permission type must evaluate to
USAGE.

● has_schema_privilege(user, schema, privilege)
Description: Queries whether a specified user has permission for schema.
Return type: boolean

● has_schema_privilege(schema, privilege)
Description: Queries whether the current user has permission for schema.
Return type: boolean
Note: has_schema_privilege checks whether a user can access a schema in a
particular way. Its argument possibilities are analogous to
has_table_privilege. The desired access permission type must evaluate to
some combination of CREATE or USAGE.

● has_server_privilege(user, server, privilege)
Description: Queries whether a specified user has permission for foreign
server.
Return type: boolean

● has_server_privilege(server, privilege)
Description: Queries whether the current user has permission for foreign
server.
Return type: boolean

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 218



Note: has_server_privilege checks whether a user can access a foreign server
in a particular way. Its argument possibilities are analogous to
has_table_privilege. The desired access permission type must evaluate to
USAGE.

● has_table_privilege(user, table, privilege)
Description: Queries whether a specified user has permission for table.
Return type: boolean

● has_table_privilege(table, privilege)
Description: Queries whether the current user has permission for table.
Return type: boolean
has_table_privilege checks whether a user can access a table in a particular
way. The user can be specified by name, by OID (pg_authid.oid), public to
indicate the PUBLIC pseudo-role, or if the argument is omitted current_user
is assumed. The table can be specified by name or by OID. When specifying by
name, the name can be schema-qualified if necessary. The desired access
permission type is specified by a text string, which must be one of the values
SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES, or TRIGGER.
Optionally, WITH GRANT OPTION can be added to a permission type to test
whether the permission is held with grant option. Also, multiple permission
types can be listed separated by commas, in which case the result will be true
if any of the listed permissions is held.
For example:
SELECT has_table_privilege('tpcds.web_site', 'select');
 has_table_privilege  
--------------------- 
 t 
(1 row)

SELECT has_table_privilege('dbadmin', 'tpcds.web_site', 'select,INSERT WITH GRANT OPTION ');
 has_table_privilege  
--------------------- 
 t 
(1 row) 

● pg_has_role(user, role, privilege)
Description: Queries whether a specified user has permission for role.
Return type: boolean

● pg_has_role(role, privilege)
Description: Specifies whether the current user has permission for role.
Return type: boolean
Note: pg_has_role checks whether a user can access a role in a particular
way. Its argument possibilities are analogous to has_table_privilege, except
that public is not allowed as a user name. The desired access permission type
must evaluate to some combination of MEMBER or USAGE. MEMBER
denotes direct or indirect membership in the role (that is, the right to do SET
ROLE), while USAGE denotes the permissions of the role are available
without doing SET ROLE.

Schema Visibility Inquiry Functions
Each function performs the visibility check for one type of database object. For
functions and operators, an object in the search path is visible if there is no object

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 219



of the same name and argument data type(s) earlier in the path. For operator
classes, both name and associated index access method are considered.

All these functions require OIDs to identify the objects to be checked. If you want
to test an object by name, it is convenient to use the OID alias types (regclass,
regtype, regprocedure, regoperator, regconfig, or regdictionary).

For example, a table is said to be visible if its containing schema is in the search
path and no table of the same name appears earlier in the search path. This is
equivalent to the statement that the table can be referenced by name without
explicit schema qualification. For example, to list the names of all visible tables:

SELECT relname FROM pg_class WHERE pg_table_is_visible(oid);

● pg_collation_is_visible(collation_oid)
Description: Queries whether the collation is visible in search path.
Return type: boolean

● pg_conversion_is_visible(conversion_oid)
Description: Queries whether the conversion is visible in search path.
Return type: boolean

● pg_function_is_visible(function_oid)
Description: Queries whether the function is visible in search path.
Return type: boolean

● pg_opclass_is_visible(opclass_oid)
Description: Queries whether the operator class is visible in search path.
Return type: boolean

● pg_operator_is_visible(operator_oid)
Description: Queries whether the operator is visible in search path.
Return type: boolean

● pg_opfamily_is_visible(opclass_oid)
Description: Queries whether the operator family is visible in search path.
Return type: boolean

● pg_table_is_visible(table_oid)
Description: Queries whether the table is visible in search path.
Return type: boolean

● pg_ts_config_is_visible(config_oid)
Description: Queries whether the text search configuration is visible in search
path.
Return type: boolean

● pg_ts_dict_is_visible(dict_oid)
Description: Queries whether the text search dictionary is visible in search
path.
Return type: boolean

● pg_ts_parser_is_visible(parser_oid)
Description: Queries whether the text search parser is visible in search path.
Return type: boolean

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 220



● pg_ts_template_is_visible(template_oid)
Description: Queries whether the text search template is visible in search path.
Return type: boolean

● pg_type_is_visible(type_oid)
Description: Queries whether the type (or domain) is visible in search path.
Return type: boolean

System Catalog Information Functions
● format_type(type_oid, typemod)

Description: Gets SQL name of a data type.
Return type: text
Note:
format_type returns the SQL name of a data type that is identified by its type
OID and possibly a type modifier. Pass NULL for the type modifier if no
specific modifier is known. Certain type modifiers are passed for data types
with length limitations. The SQL name returned from format_type contains
the length of the data type, which can be calculated by taking sizeof(int32)
from actual storage length [actual storage len - sizeof(int32)] in the unit of
bytes. 32-bit space is required to store the customized length set by users. So
the actual storage length contains 4 bytes more than the customized length.
In the following example, the SQL name returned from format_type is
character varying(6), indicating the length of varchar type is 6 bytes. So the
actual storage length of varchar type is 10 bytes.
SELECT format_type((SELECT oid FROM pg_type WHERE typname='varchar'), 10);
     format_type      
----------------------
 character varying(6)
(1 row)

● pg_check_authid(role_oid)
Description: Checks whether a role name with given OID exists.
Return type: bool

● pg_describe_object(catalog_id, object_id, object_sub_id)
Description: Gets description of a database object.
Return type: text
Note: pg_describe_object returns a description of a database object specified
by catalog OID, object OID and a (possibly zero) sub-object ID. This is useful
to determine the identity of an object as stored in the pg_depend catalog.

● pg_get_constraintdef(constraint_oid)
Description: Gets definition of a constraint.
Return type: text

● pg_get_constraintdef(constraint_oid, pretty_bool)
Description: Gets definition of a constraint.
Return type: text
Note: pg_get_constraintdef and pg_get_indexdef respectively reconstruct
the creating command for a constraint and an index.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 221



● pg_get_expr(pg_node_tree, relation_oid)
Description: Decompiles internal form of an expression, assuming that any
Vars in it refer to the relationship indicated by the second parameter.
Return type: text

● pg_get_expr(pg_node_tree, relation_oid, pretty_bool)
Description: Decompiles internal form of an expression, assuming that any
Vars in it refer to the relationship indicated by the second parameter.
Return type: text
Note: pg_get_expr decompiles the internal form of an individual expression,
such as the default value for a column. It can be useful when examining the
contents of system catalogs. If the expression might contain Vars, specify the
OID of the relationship they refer to as the second parameter; if no Vars are
expected, zero is sufficient.

● pg_get_functiondef(func_oid)
Description: Gets definition of a function.
Return type: text

● pg_get_function_arguments(func_oid)
Description: Gets argument list of function's definition (with default values).
Return type: text
Note: pg_get_function_arguments returns the argument list of a function, in
the form it would need to appear in within CREATE FUNCTION.

● pg_get_function_identity_arguments(func_oid)
Description: Gets argument list to identify a function (without default values).
Return type: text
Note: pg_get_function_identity_arguments returns the argument list
necessary to identify a function, in the form it would need to appear in within
ALTER FUNCTION. This form omits default values.

● pg_get_function_result(func_oid)
Description: Gets RETURNS clause for function.
Return type: text
Note: pg_get_function_result returns the appropriate RETURNS clause for
the function.

● pg_get_indexdef(index_oid)
Description: Gets CREATE INDEX command for index.
Return type: text

● pg_get_indexdef(index_oid, column_no, pretty_bool)
Description: Gets CREATE INDEX command for index, or definition of just one
index column when column_no is not zero.
Return type: text
Note: pg_get_functiondef returns a complete CREATE OR REPLACE
FUNCTION statement for a function.

● pg_get_keywords()
Description: Gets list of SQL keywords and their categories.
Return type: setof record

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 222



Note: pg_get_keywords returns a set of records describing the SQL keywords
recognized by the server. The word column contains the keyword. The
catcode column contains a category code: U for unreserved, C for column
name, T for type or function name, or R for reserved. The catdesc column
contains a possibly-localized string describing the category.

● pg_get_ruledef(rule_oid)
Description: Gets CREATE RULE command for a rule.
Return type: text

● pg_get_ruledef(rule_oid, pretty_bool)
Description: Gets CREATE RULE command for a rule.
Return type: text

● pg_get_userbyid(role_oid)
Description: Gets role name with given OID.
Return type: name
Note: pg_get_userbyid extracts a role's name given its OID.

● pg_get_viewdef(viewname text [, pretty bool [, fullflag bool]])
Description: gets underlying SELECT command for views.
Return type: text
Note:
– pg_get_viewdef reconstructs the SELECT query that defines a view. If the

value of pretty bool is set to true, the display format is suitable for
printing and more readable. The default value of pretty bool is false, and
the display format is not readable. Use the default format for dump
purposes whenever possible. The pretty bool parameter can be applied
only to valid views.

– When fullflag bool is set to true, the complete definition of the view is
displayed. The default value is false.

● pg_get_viewdef(viewoid oid [, pretty bool [, fullflag bool]])
Description: gets underlying SELECT command for views.
Return type: text

● pg_get_viewdef(view_oid, wrap_column_int)
Description: Gets underlying SELECT command for view, wrapping lines with
columns as specified, printing is implied.
Return type: text

● pg_get_tabledef(table_oid)
Description: Obtains a table definition based on table_oid.
Return type: text

● pg_get_tabledef(table_name)
Description: Obtains a table definition based on table_name.
Return type: text
Remarks: pg_get_tabledef reconstructs the CREATE statement of the table
definition, including the table definition, index information, and comments.
Users need to create the dependent objects of the table, such as groups,
schemas, tablespaces, and servers. The table definition does not include the
statements for creating these dependent objects.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 223



● pg_options_to_table(reloptions)
Description: Gets the set of storage option name/value pairs.
Return type: setof record
Note: pg_options_to_table returns the set of storage option name/value pairs
(option_name/option_value) when passing pg_class.reloptions or
pg_attribute.attoptions.

● pg_typeof(any)
Description: Gets the data type of any value.
Return type: regtype
Note:
pg_typeof returns the OID of the data type of the value that is passed to it.
This can be helpful for troubleshooting or dynamically constructing SQL
queries. The function is declared as returning regtype, which is an OID alias
type (see Object Identifier Types). This means that it is the same as an OID
for comparison purposes but displays as a type name.
For example:
SELECT pg_typeof(33);
 pg_typeof 
-----------
 integer
(1 row)

SELECT typlen FROM pg_type WHERE oid = pg_typeof(33);
 typlen 
--------
      4
(1 row)

● collation for (any)
Description: Gets the collation of the parameter.
Return type: text
Note:
The expression collation for returns the collation of the value that is passed
to it. For example:
SELECT collation for (description) FROM pg_description LIMIT 1;
 pg_collation_for 
------------------
 "default"
(1 row)

The value might be quoted and schema-qualified. If no collation is derived for
the argument expression, then a null value is returned. If the parameter is not
of a collectable data type, then an error is thrown.

● getdistributekey(table_name)
Description: Gets a distribution column for a hash table.
Return type: text
For example:
SELECT getdistributekey('item');
 getdistributekey 
------------------
 i_item_sk
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 224



Comment Information Functions
● col_description(table_oid, column_number)

Description: Gets comment for a table column.
Return type: text
Note: col_description returns the comment for a table column, which is
specified by the OID of its table and its column number.

● obj_description(object_oid, catalog_name)
Description: Gets comment for a database object.
Return type: text
Note: The two-parameter form of obj_description returns the comment for a
database object specified by its OID and the name of the containing system
catalog. For example, obj_description(123456,'pg_class') would retrieve the
comment for the table with OID 123456. The one-parameter form of
obj_description requires only the object OID.
obj_description cannot be used for table columns since columns do not have
OIDs of their own.

● obj_description(object_oid)
Description: Gets comment for a database object.
Return type: text

● shobj_description(object_oid, catalog_name)
Description: Gets comment for a shared database object.
Return type: text
Note: shobj_description is used just like obj_description except the former is
used for retrieving comments on shared objects. Some system catalogs are
global to all databases within each cluster, and the comments for objects in
them are stored globally as well.

Transaction IDs and Snapshots
The following functions provide server transaction information in an exportable
form. The main use of these functions is to determine which transactions were
committed between two snapshots.

● pgxc_is_committed(transaction_id)
Description: Determines whether the given XID is committed or ignored. NULL
indicates the unknown status (such as running, preparing, and freezing).
Return type: bool

● txid_current()
Description: Gets current transaction ID.
Return type: bigint

● txid_current_snapshot()
Description: Gets current snapshot.
Return type: txid_snapshot

● txid_snapshot_xip(txid_snapshot)
Description: Gets in-progress transaction IDs in snapshot.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 225



Return type: setof bigint
● txid_snapshot_xmax(txid_snapshot)

Description: Gets xmax of snapshot.
Return type: bigint

● txid_snapshot_xmin(txid_snapshot)
Description: Gets xmin of snapshot.
Return type: bigint

● txid_visible_in_snapshot(bigint, txid_snapshot)
Description: Queries whether the transaction ID is visible in snapshot. (do not
use with subtransaction ids)
Return type: boolean

The internal transaction ID type (xid) is 32 bits wide and wraps around every 4
billion transactions. txid_snapshot, the data type used by these functions, stores
information about transaction ID visibility at a particular moment in time. Table
6-10 describes its components.

Table 6-10 Snapshot components

Name Description

xmin Earliest transaction ID (txid) that is still active. All earlier transactions
will either be committed and visible, or rolled back.

xmax First as-yet-unassigned txid. All txids greater than or equal to this are
not yet started as of the time of the snapshot, so they are invisible.

xip_list Active txids at the time of the snapshot. The list includes only those
active txids between xmin and xmax; there might be active txids
higher than xmax. A txid that is xmin <= txid < xmax and not in this
list was already completed at the time of the snapshot, and is either
visible or dead according to its commit status. The list does not
include txids of subtransactions.

 

txid_snapshot's textual representation is xmin:xmax:xip_list.

For example: 10:20:10,14,15 means xmin=10, xmax=20, xip_list=10, 14, 15.

Computing Node Group Function
pv_compute_pool_workload()

Description: Load status of a computing Node Group.

Return type: void

For example:

SELECT * from pv_compute_pool_workload();
 nodename  | rpinuse | maxrp | nodestate
-----------+---------+-------+-----------
 datanode1 |       0 |  1000 | normal

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 226



 datanode2 |       0 |  1000 | normal
(2 rows)

Lock Information Function

pgxc_get_lock_conflicts()

Description: Obtains information about conflicting locks in the cluster. When a
lock is waiting for another lock or another lock is waiting for it, a lock conflict
occurs.

Return type: setof record

6.25 System Administration Functions

6.25.1 Configuration Settings Functions
Configuration setting functions are used for querying and modifying configuration
parameters during running.

● current_setting(setting_name)
Description: Specifies the current setting.
Return type: text
Note: current_setting obtains the current setting of setting_name by query.
It is equivalent to the SHOW statement. For example:
SELECT current_setting('datestyle');

 current_setting
-----------------
 ISO, MDY
(1 row)

● set_config(setting_name, new_value, is_local)
Description: Sets the parameter and returns a new value.
Return type: text
Note: set_config sets the parameter setting_name to new_value. If is_local
is true, the new value will only apply to the current transaction. If you want
the new value to apply for the current session, use false instead. The function
corresponds to the SET statement. For example:
SELECT set_config('log_statement_stats', 'off', false);

 set_config
------------
 off
(1 row)

6.25.2 Universal File Access Functions
Universal file access functions provide local access interfaces for files on a
database server. Only files in the database cluster directory and the log_directory
directory can be accessed. Use a relative path for files in the cluster directory, and
a path matching the log_directory configuration setting for log files. Only
database system administrators can use these functions.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 227



● pg_ls_dir(dirname text)
Description: Lists files in a directory.
Return type: setof text
Note: pg_ls_dir returns all the names in the specified directory, except the
special entries "." and "..".
For example:
SELECT pg_ls_dir('./');
      pg_ls_dir       
----------------------
 .postgresql.conf.swp
 postgresql.conf
 pg_tblspc
 PG_VERSION
 pg_ident.conf
 core
 server.crt
 pg_serial
 pg_twophase
 postgresql.conf.lock
 pg_stat_tmp
 pg_notify
 pg_subtrans
 pg_ctl.lock
 pg_xlog
 pg_clog
 base
 pg_snapshots
 postmaster.opts
 postmaster.pid
 server.key.rand
 server.key.cipher
 pg_multixact
 pg_errorinfo
 server.key
 pg_hba.conf
 pg_replslot
 .pg_hba.conf.swp
 cacert.pem
 pg_hba.conf.lock
 global
 gaussdb.state
(32 rows)

● pg_read_file(filename text, offset bigint, length bigint)
Description: Returns the content of a text file.
Return type: text
Note: pg_read_file returns part of a text file. It can return a maximum of
length bytes from offset. The actual size of fetched data is less than length if
the end of the file is reached first. If offset is negative, it is the length rolled
back from the file end. If offset and length are omitted, the entire file is
returned.
For example:
SELECT pg_read_file('postmaster.pid',0,100);
             pg_read_file              
---------------------------------------
 53078                                +
 /srv/BigData/hadoop/data1/coordinator+
 1500022474                           +
 253088000                                +
 /var/run/FusionInsight               +
 localhost                            +

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 228



  2
(1 row)

● pg_read_binary_file(filename text [, offset bigint, length bigint,missing_ok
boolean])
Description: Returns the content of a binary file.
Return type: bytea
Note: pg_read_binary_file is similar to pg_read_file, except that the result is
a bytea value; accordingly, no encoding checks are performed. In combination
with the convert_from function, this function can be used to read a file in a
specified encoding:
SELECT convert_from(pg_read_binary_file('filename'), 'UTF8');

● pg_stat_file(filename text)
Description: Returns status information about a file.
Return type: record
Note: pg_stat_file returns a record containing the file size, last access
timestamp, last modification timestamp, last file status change timestamp,
and a boolean value indicating if it is a directory. Typical use cases are as
follows:
SELECT * FROM pg_stat_file('filename');
SELECT (pg_stat_file('filename')).modification;

Examples:
SELECT * FROM pg_stat_file('postmaster.pid');
 
 size |         access         |      modification      |         change         
| creation | isdir 
------+------------------------+------------------------+------------------------
+----------+-------
  117 | 2017-06-05 11:06:34+08 | 2017-06-01 17:18:08+08 | 2017-06-01 17:18:08+08 
|          | f
(1 row)
SELECT (pg_stat_file('postmaster.pid')).modification;
      modification      
------------------------
 2017-06-01 17:18:08+08
(1 row)

6.25.3 Server Signaling Functions
Server signaling functions send control signals to other server processes. Only
system administrators can use these functions.

● pg_cancel_backend(pid int)
Description: Cancels the current query of a backend.
Return type: boolean
Note: pg_cancel_backend sends a query cancellation (SIGINT) signal to the
backend process identified by pid. The PID of an active backend process can
be found in the pid column of the pg_stat_activity view, or can be found by
listing the database process using ps on the server.

● pg_reload_conf()
Description: Causes all server processes to reload their configuration files.
Return type: boolean
Note: pg_reload_conf sends a SIGHUP signal to the server. As a result, all
server processes reload their configuration files.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 229



● pg_rotate_logfile()

Description: Rotates the log files of the server.

Return type: boolean

Note: pg_rotate_logfile instructs the log file manager to immediately switch
to a new output file. This function is valid only if the built-in log collector is
running.

● pg_terminate_backend(pid int)

Description: Terminates a backend thread.

Return type: boolean

Note: Each of these functions returns true if they are successful and false
otherwise.

For example:
SELECT pid from pg_stat_activity;
       pid       
-----------------
 140657876268816
 140433774061312
 140433587902208
 140433656592128
 140433723717376
 140433637189376
 140433552770816
 140433481983744
 140433349310208
(1 rows)

SELECT pg_terminate_backend(140657876268816);
 pg_terminate_backend 
----------------------
 t
(1 row)

6.25.4 Backup and Restoration Control Functions

Backup Control Functions

Backup control functions help online backup.

● pg_create_restore_point(name text)

Description: Creates a named point for performing the restore operation
(restricted to system administrators).

Return type: text

Note: pg_create_restore_point creates a named transaction log record that
can be used as a restoration target, and returns the corresponding transaction
log location. The given name can then be used with recovery_target_name
to specify the point up to which restoration will proceed. Avoid creating
multiple restoration points with the same name, since restoration will stop at
the first one whose name matches the restoration target.

● pg_current_xlog_location()

Description: Obtains the write position of the current transaction log.

Return type: text

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 230



Note: pg_current_xlog_location displays the write position of the current
transaction log in the same format as those of the previous functions. Read-
only operations do not require rights of the system administrator.

● pg_current_xlog_insert_location()
Description: Obtains the insert position of the current transaction log.
Return type: text
Note: pg_current_xlog_insert_location displays the insert position of the
current transaction log. The insertion point is the logical end of the
transaction log at any instant, while the write location is the end of what has
been written out from the server's internal buffers. The write position is the
end that can be detected externally from the server. This operation can be
performed to archive only some of completed transaction log files. The insert
position is mainly used for commissioning the server. Read-only operations do
not require rights of the system administrator.

● pg_start_backup(label text [, fast boolean ])
Description: Starts executing online backup (restricted to system
administrators or replication roles).
Return type: text
Note: pg_start_backup receives a user-defined backup label (usually the
name of the position where the backup dump file is stored). This function
writes a backup label file to the data directory of the database cluster and
then returns the starting position of backed up transaction logs in text mode.
SELECT pg_start_backup('label_goes_here');
 pg_start_backup
-----------------
 0/3000020
(1 row)

● pg_stop_backup()
Description: Completes online backup (restricted to system administrators or
replication roles).
Return type: text
Note: pg_stop_backup deletes the label file created by pg_start_backup and
creates a backup history file in the transaction log archive area. The history
file includes the label given to pg_start_backup, the starting and ending
transaction log locations for the backup, and the starting and ending times of
the backup. The return value is the backup's ending transaction log location.
After the ending position is calculated, the insert position of the current
transaction log automatically goes ahead to the next transaction log file. This
way, the ended transaction log file can be immediately archived so that
backup is complete.

● pg_switch_xlog()
Description: Switches to a new transaction log file (restricted to system
administrators).
Return type: text
Note: pg_switch_xlog moves to the next transaction log file so that the
current log file can be archived (if continuous archive is used). The return
value is the ending transaction log location + 1 within the just-completed
transaction log file. If there has been no transaction log activity since the last
transaction log switchover, pg_switch_xlog will do nothing but return the
start location of the transaction log file currently in use.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 231



● pg_xlogfile_name(location text)
Description: Converts the position string in a transaction log to a file name.
Return type: text
Note: pg_xlogfile_name extracts only the transaction log file name. If the
given transaction log position is the transaction log file border, a transaction
log file name will be returned for both the two functions. This is usually the
desired behavior for managing transaction log archiving, since the preceding
file is the last one that currently needs to be archived.

● pg_xlogfile_name_offset(location text)
Description: Converts the position string in a transaction log to a file name
and returns the byte offset in the file.
Return type: text, integer
Note: pg_xlogfile_name_offset can extract transaction log file names and
byte offsets from the returned results of the preceding functions. For example:
SELECT * FROM pg_xlogfile_name_offset(pg_stop_backup());
NOTICE:  pg_stop_backup cleanup done, waiting for required WAL segments to be archived
NOTICE:  pg_stop_backup complete, all required WAL segments have been archived
        file_name         | file_offset 
--------------------------+-------------
000000010000000000000003  |         272
(1 row)

● pg_xlog_location_diff(location text, location text)
Description: pg_xlog_location_diff calculates the difference in bytes between
two transaction log locations.
Return type: numeric

● pg_cbm_tracked_location()
Description: Queries for the LSN location parsed by CBM.
Return type: text

● pg_cbm_get_merged_file(startLSNArg text, endLSNArg text)
Description: Combines CBM files within the specified LSN range into one and
returns the name of the combined file.
Return type: text

● pg_cbm_get_changed_block(startLSNArg text, endLSNArg text)
Description: Combines CBM files within the specified LSN range into a table
and return records of this table.
Return type: record
Note: The table columns include the start LSN, end LSN, tablespace OID,
database OID, table relfilenode, table fork number, whether the table is
deleted, whether the table is created, whether the table is truncated, number
of pages in the truncated table, number of modified pages, and list of No. of
modified pages.

● pg_cbm_recycle_file(slotName name, targetLSNArg text)
Description: Deletes the CBM files that are no longer used and returns the
first LSN after the deletion. If slotName is empty, targetLSNArg is used as
the recycling point. During backup and DR, you need to specify a slot name
due to parallelism. Record the targetLSNArg value of the task to the slot,
traverse all backup slots, and find the smallest LSN as the recycling point.
Return type: text

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 232



● pg_cbm_force_track(targetLSNArg text,timeOut int)
Description: Forcibly executes the CBM trace to the specified Xlog position and
returns the Xlog position of the actual trace end point.
Return type: text

● pg_enable_delay_ddl_recycle()
Description: Enables DDL delay and returns the Xlog position of the enabling
point.
Return type: text

● pg_disable_delay_ddl_recycle(barrierLSNArg text, isForce bool)
Description: Disables DDL delay and returns the Xlog range where DDL delay
takes effect.
Return type: record

● pg_enable_delay_xlog_recycle()
Description: Enables Xlog recycle delay.
Return type: void

● pg_disable_delay_xlog_recycle()
Description: Disables Xlog recycle delay.
Return type: void

● pgxc_get_senders_catchup_time()
Description: Displays the catchup information of the currently active primary/
standby instance sending thread on all DNs.
Return type: record
The following information is returned:

Table 6-11 pgxc_get_senders_catchup_time() columns

Name Type Description

node_name text Node name

lwpid integer Current sender lwpid

local_role text Local role

peer_role text Peer role

state text Current sender's
replication status

sender text Current sender type

catchup_start timestamp with time
zone

Startup time of a
catchup task

catchup_end timestamp with time
zone

End time of a catchup
task

catchup_type text Catchup task type, full
or incremental

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 233



Name Type Description

catchup_bcm_filename text BCM file executed by
the current catchup
task

catchup_bcm_finished integer Number of BCM files
completed by a
catchup task

catchup_bcm_total integer Total number of BCM
files to be operated by
a catchup task

catchup_percent text Completion percentage
of a catchup task

catchup_remaining_tim
e

text Estimated remaining
time of a catchup task

 

Restoration Control Functions
Restoration control functions provide information about the status of standby
nodes. These functions may be executed both during restoration and in normal
running.

● pg_is_in_recovery()
Description: Returns true if restoration is still in progress.
Return type: bool

● pg_last_xlog_receive_location()
Description: Gets the last transaction log location received and synchronized
to disk by streaming replication. While streaming replication is in progress,
this will increase monotonically. If restoration has completed, then this value
will remain static at the value of the last WAL record received and
synchronized to disk during restoration. If streaming replication is disabled or
if not yet started, the function return will return NULL.
Return type: text

● pg_last_xlog_replay_location()
Description: Gets last transaction log location replayed during restoration. If
restoration is still in progress, this will increase monotonically. If restoration
has completed, then this value will remain static at the value of the last WAL
record received during that restoration. When the server has been started
normally without restoration, the function returns NULL.
Return type: text

● pg_last_xact_replay_timestamp()
Description: Gets the timestamp of last transaction replayed during
restoration. This is the time to commit a transaction or abort a WAL record on
the primary node. If no transactions have been replayed during restoration,
this function will return NULL. Otherwise, if restoration is still in progress, this
will increase monotonically. If restoration has completed, then this value will

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 234



remain static at the value of the last WAL record received during that
restoration. If the server normally starts without manual intervention, this
function will return NULL.
Return type: timestamp with time zone

Restoration control functions control restoration processes. These functions may
be executed only during restoration.

● pg_is_xlog_replay_paused()
Description: Returns true if restoration is paused.
Return type: bool

● pg_xlog_replay_pause()
Description: Pauses restoration immediately.
Return type: void

● pg_xlog_replay_resume()
Description: Restarts restoration if it was paused.
Return type: void

While restoration is paused, no further database changes are applied. In hot
standby mode, all new queries will see the same consistent snapshot of the
database, and no further query conflicts will be generated until restoration is
resumed.

If streaming replication is disabled, the paused state may continue indefinitely
without problem. While streaming replication is in progress, WAL records will
continue to be received, which will eventually fill available disk space. This
progress depends on the duration of the pause, the rate of WAL generation, and
available disk space.

● pg_xlog_replay_completion()
Description: Displays the progress of xlog redo on the current DN.
Return type: record
The following information is returned:

Table 6-12 pg_xlog_replay_completion() columns

Column Type Description

replay_start integer Start LSN of xlog redo

replay_current integer LSN of the current replay of xlog
redo

replay_end integer Maximum LSN that requires xlog
redo

replay_percent integer Completion percentage of xlog redo

 
● pg_data_sync_from_dummy_completion()

Description: Displays the progress of data page file synchronization during the
failover on the current DN.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 235



Return type: record
The following information is returned:

Table 6-13 pg_data_sync_from_dummy_completion() columns

Column Type Description

start_index integer Start LSN of data page
file synchronization

current_index integer Current LSN of data
page file
synchronization

total_index integer Maximum LSN of data
page file
synchronization

sync_percent integer Completion percentage
of data page files

 
● gs_roach_stop_backup(backupid text)

Description: Stops a backup started by the internal backup tool GaussRoach
and returns the position where the current log is inserted. This function is
similar to pg_stop_backup, but is more lightweight.
Return type: text

● gs_roach_enable_delay_ddl_recycle(backupid name)
Description: Enables DDL delay and returns the log position of the enabling
point. This function is similar to pg_enable_delay_ddl_recycle, but is more
lightweight. In addition, this function allows you to enable DDL delay for
multiple backups.
Return type: text

● gs_roach_disable_delay_ddl_recycle(backupid text)
Description: Disables DDL delay, returns the logs for which DDL delay takes
effect, and deletes the physical files of the column-store tables that have
been deleted by the user. This function is similar to
pg_enable_delay_ddl_recycle, but is more lightweight. In addition, this
function allows you to disable DDL delay for multiple backups.
Return type: record

● gs_roach_switch_xlog(request_ckpt bool)
Description: Switches the currently used log segment file and returns the
position of the segment log. If the value of request_ckpt is true, a full check
point is triggered.
Return type: text

● pg_resume_bkp_flag(backupid name)
Description: Resumes the delay xlog flag from a specified backup and returns
start_backup_flag boolean, to_delay boolean, ddl_delay_recycle_ptr text,
and rewind_time text.
Return type: record

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 236



6.25.5 Snapshot Synchronization Functions
Snapshot synchronization functions save the current snapshot and return its
identifier.

pg_export_snapshot()

Description: Saves the current snapshot and returns its identifier.

Return type: text

Note: pg_export_snapshot saves the current snapshot and returns a text string
identifying the snapshot. This string must be passed to clients that want to import
the snapshot. A snapshot can be imported when the set transaction snapshot
snapshot_id; command is executed. Doing so is possible only when the
transaction is set to the REPEATABLE READ isolation level. The output of the
function cannot be used as the input of set transaction snapshot.

6.25.6 Database Object Functions

Database Object Size Functions

Database object size functions calculate the actual disk space used by database
objects.

● pg_column_size(any)
Description: Specifies the number of bytes used to store a particular value
(possibly compressed).
Return type: int
Note: pg_column_size displays the space for storing an independent data
value.
SELECT pg_column_size(1);
 pg_column_size 
----------------
              4
(1 row)

● pg_database_size(oid)
Description: Specifies the disk space used by the database with the specified
OID.
Return type: bigint

● pg_database_size(name)
Description: Specifies the disk space used by the database with the specified
name.
Return type: bigint
Note: pg_database_size receives the OID or name of a database and returns
the disk space used by the corresponding object.
For example:
SELECT pg_database_size('gaussdb');
 pg_database_size 
------------------
         51590112
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 237



● pg_relation_size(oid)
Description: Specifies the disk space used by the table with a specified OID or
index.
Return type: bigint

● get_db_source_datasize()
Description: Estimates the total size of non-compressed data in the current
database.
Return type: bigint
Note: (1) ANALYZE must be performed before this function is called. (2)
Calculate the total size of non-compressed data by estimating the
compression rate of column-store tables.
For example:
analyze;
ANALYZE
select get_db_source_datasize();
 get_db_source_datasize
------------------------
            35384925667
(1 row)

● pg_relation_size(text)
Description: Specifies the disk space used by the table with a specified name
or index. The table name can be schema-qualified.
Return type: bigint

● pg_relation_size(relation regclass, fork text)
Description: Specifies the disk space used by the specified bifurcating tree
('main', 'fsm', or 'vm') of a certain table or index.
Return type: bigint

● pg_relation_size(relation regclass)
Description: Is an abbreviation of pg_relation_size(..., 'main').
Return type: bigint
Note: pg_relation_size receives the OID or name of a table, index, or
compressed table, and returns the size.

● pg_partition_size(oid,oid)
Description: Specifies the disk space used by the partition with a specified
OID. The first oid is the OID of the table and the second oid is the OID of the
partition.
Return type: bigint

● pg_partition_size(text, text)
Description: Specifies the disk space used by the partition with a specified
name. The first text is the table name and the second text is the partition
name.
Return type: bigint

● pg_partition_indexes_size(oid,oid)
Description: Specifies the disk space used by the index of the partition with a
specified OID. The first oid is the OID of the table and the second oid is the
OID of the partition.
Return type: bigint

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 238



● pg_partition_indexes_size(text,text)
Description: Specifies the disk space used by the index of the partition with a
specified name. The first text is the table name and the second text is the
partition name.
Return type: bigint

● pg_indexes_size(regclass)
Description: Specifies the total disk space used by the index appended to the
specified table.
Return type: bigint

● pg_size_pretty(bigint)
Description: Converts the calculated byte size into a size readable to human
beings.
Return type: text

● pg_size_pretty(numeric)
Description: Converts the calculated byte size indicated by a numeral into a
size readable to human beings.
Return type: text
Note: pg_size_pretty formats the results of other functions into a human-
readable format. KB/MB/GB/TB can be used.

● pg_table_size(regclass)
Description: Specifies the disk space used by the specified table, excluding
indexes (but including TOAST, free space mapping, and visibility mapping).
Return type: bigint

● pg_total_relation_size(oid)
Description: Specifies the disk space used by the table with a specified OID,
including the index and the compressed data.
Return type: bigint

● pg_total_relation_size(regclass)
Description: Specifies the total disk space used by the specified table,
including all indexes and TOAST data.
Return type: bigint

● pg_total_relation_size(text)
Description: Specifies the disk space used by the table with a specified name,
including the index and the compressed data. The table name can be schema-
qualified.
Return type: bigint
Note: pg_total_relation_size receives the OID or name of a table or a
compressed table, and returns the sizes of the data, related indexes, and the
compressed table in bytes.

Database Object Position Functions
● pg_relation_filenode(relation regclass)

Description: Specifies the ID of a filenode with the specified relationship.
Return type: oid

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 239



Description: pg_relation_filenode receives the OID or name of a table, index,
sequence, or compressed table, and returns the filenode number allocated to
it. The filenode is the basic component of the file name used by the
relationship. For most tables, the result is the same as that of
pg_class.relfilenode. For the specified system directory, relfilenode is 0 and
this function must be used to obtain the correct value. If a relationship that is
not stored is transmitted, such as a view, this function returns NULL.

● pg_relation_filepath(relation regclass)
Description: Specifies the name of a file path with the specified relationship.
Return type: text
Description: pg_relation_filepath is similar to pg_relation_filenode, except
that pg_relation_filepath returns the whole file path name for the
relationship (relative to the data directory PGDATA of the database cluster).

6.25.7 Advisory Lock Functions
Advisory lock functions manage advisory locks. These functions are only for
internal use currently.

● pg_advisory_lock(key bigint)
Description: Obtains an exclusive session-level advisory lock.
Return type: void
Note: pg_advisory_lock locks resources defined by an application. The
resources can be identified using a 64-bit or two nonoverlapped 32-bit key
values. If another session locks the resources, the function blocks the
resources until they can be used. The lock is exclusive. Multiple locking
requests are pushed into the stack. Therefore, if the same resource is locked
three times, it must be unlocked three times so that it is released to another
session.

● pg_advisory_lock(key1 int, key2 int)
Description: Obtains an exclusive session-level advisory lock.
Return type: void

● pg_advisory_lock_shared(key bigint)
Description: Obtains a shared session-level advisory lock.
Return type: void

● pg_advisory_lock_shared(key1 int, key2 int)
Description: Obtains a shared session-level advisory lock.
Return type: void
Note: pg_advisory_lock_shared works in the same way as pg_advisory_lock,
except the lock can be shared with other sessions requesting shared locks.
Only would-be exclusive lockers are locked out.

● pg_advisory_unlock(key bigint)
Description: Releases an exclusive session-level advisory lock.
Return type: boolean

● pg_advisory_unlock(key1 int, key2 int)
Description: Releases an exclusive session-level advisory lock.
Return type: boolean

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 240



Note: pg_advisory_unlock releases the obtained exclusive advisory lock. If the
release is successful, the function returns true. If the lock was not held, it will
return false. In addition, a SQL warning will be reported by the server.

● pg_advisory_unlock_shared(key bigint)
Description: Releases a shared session-level advisory lock.
Return type: boolean

● pg_advisory_unlock_shared(key1 int, key2 int)
Description: Releases a shared session-level advisory lock.
Return type: boolean
Note: pg_advisory_unlock_shared works in the same way as
pg_advisory_unlock, except it releases a shared session-level advisory lock.

● pg_advisory_unlock_all()
Description: Releases all advisory locks owned by the current session.
Return type: void
Note: pg_advisory_unlock_all releases all advisory locks owned by the
current session. The function is implicitly invoked when the session ends even
if the client is abnormally disconnected.

● pg_advisory_xact_lock(key bigint)
Description: Obtains an exclusive transaction-level advisory lock.
Return type: void

● pg_advisory_xact_lock(key1 int, key2 int)
Description: Obtains an exclusive transaction-level advisory lock.
Return type: void
Note: pg_advisory_xact_lock works in the same way as pg_advisory_lock,
except the lock is automatically released at the end of the current transaction
and cannot be released explicitly.

● pg_advisory_xact_lock_shared(key bigint)
Description: Obtains a shared transaction-level advisory lock.
Return type: void

● pg_advisory_xact_lock_shared(key1 int, key2 int)
Description: Obtains a shared transaction-level advisory lock.
Return type: void
Note: pg_advisory_xact_lock_shared works in the same way as
pg_advisory_lock_shared, except the lock is automatically released at the
end of the current transaction and cannot be released explicitly.

● pg_try_advisory_lock(key bigint)
Description: Obtains an exclusive session-level advisory lock if available.
Return type: boolean
Note: pg_try_advisory_lock is similar to pg_advisory_lock, except
pg_try_advisory_lock does not block the resource until the resource is
released. pg_try_advisory_lock either immediately obtains the lock and
returns true or returns false, which indicates the lock cannot be performed
currently.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 241



● pg_try_advisory_lock(key1 int, key2 int)
Description: Obtains an exclusive session-level advisory lock if available.
Return type: boolean

● pg_try_advisory_lock_shared(key bigint)
Description: Obtains a shared session-level advisory lock if available.
Return type: boolean

● pg_try_advisory_lock_shared(key1 int, key2 int)
Description: Obtains a shared session-level advisory lock if available.
Return type: boolean
Note: pg_try_advisory_lock_shared is similar to pg_try_advisory_lock, except
pg_try_advisory_lock_shared attempts to obtain a shared lock instead of an
exclusive lock.

● pg_try_advisory_xact_lock(key bigint)
Description: Obtains an exclusive transaction-level advisory lock if available.
Return type: boolean

● pg_try_advisory_xact_lock(key1 int, key2 int)
Description: Obtains an exclusive transaction-level advisory lock if available.
Return type: boolean
Note: pg_try_advisory_xact_lock works in the same way as
pg_try_advisory_lock, except the lock, if acquired, is automatically released at
the end of the current transaction and cannot be released explicitly.

● pg_try_advisory_xact_lock_shared(key bigint)
Description: Obtains a shared transaction-level advisory lock if available.
Return type: boolean

● pg_try_advisory_xact_lock_shared(key1 int, key2 int)
Description: Obtains a shared transaction-level advisory lock if available.
Return type: boolean
Note: pg_try_advisory_xact_lock_shared works in the same way as
pg_try_advisory_lock_shared, except the lock, if acquired, is automatically
released at the end of the current transaction and cannot be released
explicitly.

6.25.8 Residual File Management Functions

Functions for Obtaining the Residual File List
● pg_get_residualfiles()

Description: Obtains all residual file records of the current node. This function
is an instance-level function and is irrelevant to the current database. It can
run on any instance.
Parameter type: none
Return type: record
The following table describes return columns.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 242



Column Type Description

isverified bool Verified or not

isdeleted bool Deleted or not

dbname text Database name

residualfile text Data file path

filepath text Residual file path

notes text Notes

 

Example:
select * from pg_get_residualfiles();
 isverified | isdeleted | dbname |   residualfile    |         filepath          | notes 
------------+-----------+--------+-------------------+---------------------------+-------
 f          | f         | db2    | base/49155/114691 | pgrf_20200908160211441546 | 
 f          | f         | db2    | base/49155/114694 | pgrf_20200908160211441546 | 
 f          | f         | db2    | base/49155/114696 | pgrf_20200908160211441546 | 
(3 rows)

● pgxc_get_residualfiles()
Description: Unified CN query function of pg_get_residualfiles() This function
is a cluster-level function and is irrelevant to the current database. It runs on
CNs.
Parameter type: none
Return type: record
The following table describes return columns.

Column Type Description

nodename text Node name

isverified bool Verified or not

isdeleted bool Deleted or not

dbname text Database name

residualfile text Data file path

filepath text Residual file path

notes text Notes

 

Example:
select * from pgxc_get_residualfiles();
   nodename   | isverified | isdeleted |  dbname  |   residualfile    |         filepath          | notes 
--------------+------------+-----------+----------+-------------------+---------------------------+-------
 cn_5001      | f          | f         | gaussdb | base/15092/32803  | pgrf_20200910170129360401 | 
 dn_6001_6002 | f          | f         | db2      | base/49155/114691 | pgrf_20200908160211441546 | 
 dn_6001_6002 | f          | f         | db2      | base/49155/114694 | pgrf_20200908160211441546 | 

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 243



 dn_6001_6002 | f          | f         | db2      | base/49155/114696 | pgrf_20200908160211441546 | 
(4 rows)

Functions for Verifying Residual Files
● pg_verify_residualfiles(filepath)

Description: Verifies whether the file recorded in the parameter specified file
is a residual file. This function is an instance-level function and is related to
the current database. It can run on any instance.
Parameter type: text
Return type: bool
The following table describes return columns.

Column Type Description

isverified bool Verification completed or not

 

Example:
select * from pg_verify_residualfiles('pgrf_20200908160211441546');
 isverified 
------------
 t
(1 row)

NO TE

This function only verifies whether the recorded file is a residual file in the current
database. If the recorded file is not in the current database, the verification is not
applicable.

● pg_verify_residualfiles()
Description: Verifies whether recorded files on all residual file lists of the
current instance are residual files. This function is an instance-level function
and is related to the current database. It can run on any instance.
Parameter type: none
Return type: record
The following table describes return columns.

Column Type Description

result bool Verification completed or not

filepath text Residual file path

notes text Notes

 

Example:
select * from pg_verify_residualfiles();
 result |         filepath          | notes 
--------+---------------------------+-------
 t      | pgrf_20200908160211441546 | 
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 244



NO TE

This function only verifies whether the recorded file is a residual file in the current
database. If the recorded file is not in the current database, the verification is not
applicable.

● pgxc_verify_residualfiles()
Description: Unified CN query function of pg_verify_residualfiles() This
function is a cluster-level function and is related to the current database. It
runs on CNs.
Parameter type: none
Return type: record
The following table describes return columns.

Column Type Description

nodename text Node name

result bool Verification completed or not

filepath text Residual file path

notes text Notes

 

Example:
select * from pgxc_verify_residualfiles();
   nodename   | result |         filepath          | notes 
--------------+--------+---------------------------+-------
 cn_5001      | t      | pgrf_20200910170129360401 | 
 dn_6001_6002 | t      | pgrf_20200908160211441546 | 
(2 rows)

NO TE

This function only verifies whether the recorded file is a residual file in the current
database. If the recorded file is not in the current database, the verification is not
applicable.

● pg_is_residualfiles(residualfile)
Description: Queries whether a specified relfilenode is a residual file in the
current database. This function is an instance-level function and is related to
the current database. It can run on any instance.
Parameter type: text
Return type: bool
The following table describes return columns.

Column Type Description

result bool Residual file or not

 

Example:
select * from pg_is_residualfiles('base/49155/114691');
 result 

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 245



--------
 t
(1 row)

NO TE

This function only verifies whether the recorded file is a residual file in the current
database. If the recorded file is not in the current database, it is verified as a residual
file.

For example, the file base/15092/14790 is not regarded as a residual file in a 
postgres database, but it is regarded as a residual file in other databases.

select * from pg_is_residualfiles('base/15092/14790');

result

--------

f

(1 row)

\c db2

db2=# select * from pg_is_residualfiles('base/15092/14790');

result

--------

t

(1 row)

Functions for Deleting Residual Files
● pg_rm_residualfiles(filepath)

Description: Deletes files from a specified residual file list on the current
instance. This function is an instance-level function and is irrelevant to the
current database. It can run on any instance.
Parameter type: text
Return type: record
The following table describes return columns.

Column Type Description

result bool Deletion completed or not

 

Example:
select * from pg_rm_residualfiles('pgrf_20200908160211441599');
 result 
--------
 t
(1 row)

NO TE

1. Residual files can be deleted only after verification using the
pg_verify_residualfiles() function.

2. All verified files, regardless which database they are in, will be deleted.

3. If all files recorded in the specified file have been deleted, the specified file will be
removed and backed up in the $PGDATA/pg_residualfile/backup directory.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 246



● pg_rm_residualfiles()
Description: Deletes all files recorded on all residual file lists on the current
instance. This function is an instance-level function and is irrelevant to the
current database. It can run on any instance.
Parameter type: none
Return type: record
The following table describes return columns.

Column Type Description

result bool Deleted or not

filepath text Residual file path

notes text Notes

 

Example:
select * from pg_rm_residualfiles();
 result |         filepath          | notes 
--------+---------------------------+-------
 t      | pgrf_20200908160211441546 | 
(1 row)

NO TE

● Residual files can be deleted only after verification using the
pg_verify_residualfiles() function.

● All verified files, regardless which database they are in, will be deleted.
● If all files recorded in the specified file have been deleted, the specified file will be

removed and backed up in the $PGDATA/pg_residualfile/backup directory.

● pgxc_rm_residualfiles()
Description: Unified CN query function of pgxc_rm_residualfiles. This function
is a cluster-level function and is irrelevant to the current database. It runs on
CNs.
Parameter type: none
Return type: record
The following table describes return columns.

Column Type Description

nodename text Node name

result bool Deletion completed or not

filepath text Residual file path

notes text Notes

 

Example:
select * from pgxc_rm_residualfiles();
   nodename   | result |         filepath          | notes 

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 247



--------------+--------+---------------------------+-------
 cn_5001      | t      | pgrf_20200910170129360401 | 
 dn_6001_6002 | t      | pgrf_20200908160211441546 | 
(2 rows)

Using the Residual File Management Function:

Procedure:

Step 1 Call the pgxc_get_residualfiles() function to obtain the name of the database
that has residual files.

Step 2 Go to the databases where residual files exist and call the
pgxc_verify_residualfiles() function to verify the residual files recorded in the
current database.

Step 3 Call the pgxc_rm_residualfiles() function to delete all the verified residual files.

----End

NO TE

The pgxc residual file management function only operates on the CN and the current
primary DN, and does not verify or clear residual files on the standby DN. Therefore, after
the primary DN is cleared, you need to clear residual files on the standby DN or build the
standby DN in a timely manner. This prevents residual files on the standby DN from being
copied back to the primary DN due to incremental build after a primary/standby
switchover.

Example:

The following example uses two user-created databases, db1 and db2.

1. Run the following command to obtain all residual file records of the cluster
on the CNs:
db1=# select * from pgxc_get_residualfiles() order by 4, 6; -- order by is optional.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 248



In the current cluster:
– Residual file records exist in the db1 and db2 databases on the

dn_6001_6002 node (active node instance).
– Residual files are displayed in the residualfile column.
– The filepath column lists the files that record residual files. These files

are stored in the pg_residualfiles directory under the instance data
directory.

2. Call the pgxc_verify_residualfiles() function to verify the db1 database.
db1=# select * from pgxc_verify_residualfiles();

Verification functions are at the database level. Therefore, when a verification
function is called in the db1 database, it only verifies residual files in db1.
You can call the get function again to check whether the verification is
complete.
db1=# select * from pgxc_get_residualfiles() order by 4, 6;

As shown in the preceding figure, the residual files in the db1 database have
been verified, and the residual files in the db2 database are not verified.

3. Call the pgxc_rm_residualfiles() function to delete residual files.
db1=# select * from pgxc_rm_residualfiles();

4. Call the pgxc_get_residualfiles() function again to check the deletion result.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 249



The result shows that the residual files in the db1 database are deleted
(isdeleted is marked as t) and the residual files in the db2 database are not
deleted.
In addition, nine query results are displayed. Compared with the previous
query results, a record for the residual file ending with 9438 is missing. This is
because the record file that records the residual file ending with 9438
contains only one record, which is deleted in step 3. If all residual files in a
record file are deleted, the record file is also deleted. Deleted files are backed
up in the pg_residualfiles/backup directory.

5. To delete files from the db2 database, you need to call the verify function in
the db2 database and then call the rm function.

a. Go to the db2 database and call the verification function.

Query the verification result:

b. Call the deletion function:

c. Query the deletion result:

All residual files recorded in the record file whose name ends with 8342
have been deleted, so the record file is deleted and backed up in the
backup directory. As a result, no records are found.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 250



6.25.9 Replication Functions
A replication function synchronizes logs and data between instances. It is a
statistics or operation method provided by the system to implement HA.

NO TE

Replication functions except statistics queries are internal functions. You are not advised to
use them directly.

● pg_create_logical_replication_slot('slot_name', 'plugin_name')
Description: Creates a logical replication slot.
Parameter:
– slot_name

Indicates the name of the streaming replication slot.
Value range: a string, supporting only letters, digits, and the following
special characters: _?-.

– plugin_name
Indicates the name of the plugin.
Value range: a string, supporting only mppdb_decoding

Return type: name, text
Note: The first return value is the slot name, and the second is the start LSN
position for decoding in the logical replication slot.

● pg_create_physical_replication_slot ('slot_name', isDummyStandby)
Description: Creates a physical replication slot.
Parameter:
– slot_name

Indicates the name of the streaming replication slot.
Value range: a string, supporting only letters, digits, and the following
special characters: _?.-

– isDummyStandby
Indicates whether the replication slot is the secondary one.
Value range: a boolean value, true or false

Return type: name, text
Note: The first return value is the slot name, and the second is the start LSN
position for decoding in the physical replication slot.

● pg_get_replication_slots()
Description: Displays information about all replication slots on the current DN.
Return type: record
The following information is returned:

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 251



Table 6-14 pg_get_replication_slots() fields

Field Type Description

slot_name text Replication slot name

plugin name Name of the output plug-in of the
logical replication slot

slot_type text Replication slot type

datoid oid Replication slot's database OID

active boolean Whether the replication slot is active

xmin xid Transaction ID of the replication slot

catalog_xmin
restart_lsn
dummy_standby

text
text
boolean

ID of the earliest-decoded
transaction corresponding to the
logical replication slot.
Xlog file information on the
replication slot.
Indicates whether the replication
slot is the secondary one.

 
● pg_drop_replication_slot('slot_name')

Description: Deletes a streaming replication slot.
Parameter:
– slot_name

Indicates the name of the streaming replication slot.
Value range: a string, supporting only letters, digits, and the following
special characters: _?-.

Return type: void
● pg_logical_slot_peek_changes('slot_name', 'LSN', upto_nchanges,

'options_name', 'options_value')
Description: Performs decoding but does not go to the next streaming
replication slot. (The decoding result will be returned again on future calls.)
Parameter:
– slot_name

Indicates the name of the streaming replication slot.
Value range: a string, supporting only letters, digits, and the following
special characters: _?-.

– LSN
Indicates a target LSN. Decoding is performed only when an LSN is less
than or equal to this value.
Value range: a string, in the format of xlogid/xrecoff, for example,
'1/2AAFC60' (If this parameter is set to NULL, the target LSN indicating
the end position of decoding is not specified.)

– upto_nchanges

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 252



Indicates the number of decoded records (including the begin and
commit timestamps). Assume that there are three transactions, which
involve 3, 5, and 7 records, respectively. If upto_nchanges is 4, 8 records
of the first two transactions will be decoded. Specifically, decoding is
stopped when the number of decoded records exceeds 4 after decoding
in the first two transactions is finished.
Value range: a non-negative integer

NO TE

If any of the LSN and upto_nchanges values are reached, decoding ends.

– options (optional)

▪ include-xids
Indicates whether the decoded data column contains XID
information.
Valid value: 0 and 1. The default value is 1.

○ 0: The decoded data column does not contain XID information.

○ 1: The decoded data column contains XID information.

▪ skip-empty-xacts
Indicates whether to ignore empty transaction information during
decoding.
Valid value: 0 and 1. The default value is 0.

○ 0: The empty transaction information is not ignored during
decoding.

○ 1: The empty transaction information is ignored during
decoding.

▪ include-timestamp
Indicates whether decoding information contains the commit
timestamp.
Valid value: 0 and 1. The default value is 0.

○ 0: The decoding information does not contain the commit
timestamp.

○ 1: The decoding information contains the commit timestamp.
Return type: text, uint, text
Note: The function returns the decoding result. Each decoding result contains
three columns, corresponding to the above return types and indicating the
LSN position, XID, and decoded content, respectively.

● pg_logical_slot_get_changes('slot_name', 'LSN', upto_nchanges,
'options_name', 'options_value')
Description: Performs decoding and goes to the next streaming replication
slot.
Parameter: This function has the same parameters as
pg_logical_slot_peek_changes. For details, see pg_logical_slot_peek_ch....

● pg_replication_slot_advance ('slot_name', 'LSN')

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 253



Description: Directly goes to the streaming replication slot for a specified LSN,
without outputting any decoding result.

Parameter:

– slot_name

Indicates the name of the streaming replication slot.

Value range: a string, supporting only letters, digits, and the following
special characters: _?-.

– LSN

Indicates a target LSN. Next decoding will be performed only in
transactions whose commission position is greater than this value. If an
input LSN is smaller than the position recorded in the current streaming
replication slot, the function directly returns. If the input LSN is greater
than the LSN of the current physical log, the latter LSN will be directly
used for decoding.

Value range: a string, in the format of xlogid/xrecoff

Return type: name, text

Note: A return result contains the slot name and LSN that is actually used for
decoding.

● pg_stat_get_data_senders()

Description: Displays statistics about replication sending threads on all data
page on the current DN.

Return type: record

The following information is returned:

Table 6-15 pg_stat_get_data_senders() fields

Field Type Description

pid bigint Thread PID

sender_pid integer Current sender PID

local_role text Local role

peer_role text Peer role

state text Current sender's replication status

catchup_start timestamp with
time zone

Startup time of a catchup task

catchup_end timestamp with
time zone

End time of a catchup task

queue_size text Data queue size

queue_lower_tail text Position of data queue tail 1

queue_header text Position of data queue header

queue_upper_tail text Position of data queue tail 2

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 254



Field Type Description

send_position text Sending position of the sender

receive_position text Receiving position of the receiver

catchup_type text Catchup task type, full or
incremental

catchup_bcm_file
name

text BCM file executed by the current
catchup task

catchup_bcm_finis
hed

integer Number of BCM files completed by a
catchup task

catchup_bcm_tota
l

integer Total number of BCM files to be
operated by a catchup task

catchup_percent text Completion percentage of a catchup
task

catchup_remainin
g_time

text Estimated remaining time of a
catchup task

 
● pg_stat_get_wal_senders()

Description: Displays statistics about replication sending threads on all WALs
on the current DN.
Return type: record
The following information is returned:

Table 6-16 pg_stat_get_wal_senders() fields

Field Type Description

pid bigint Thread PID

sender_pid integer Current sender PID

local_role text Local role

peer_role text Peer role

peer_state text Peer status

state text Current sender's replication status

catchup_start timestamp with
time zone

Startup time of a catchup task

catchup_end timestamp with
time zone

End time of a catchup task

sender_sent_loca
tion

text Location where the sender sends
LSNs

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 255



Field Type Description

sender_write_loc
ation

text Location where the sender writes
LSNs

sender_flush_loc
ation

text Location where the sender flushes
LSNs

sender_replay_lo
cation

text Location where the sender replays
LSNs

receiver_received
_location

text Location where the receiver receives
LSNs

receiver_write_lo
cation

text Location where the receiver writes
LSNs

receiver_flush_lo
cation

text Location where the receiver flushes
LSNs

receiver_replay_l
ocation

text Location where the receiver replays
LSNs

sync_percent text Specifies the synchronization
percentage.

sync_state text Synchronization state (asynchronous
duplication, synchronous duplication,
or potential synchronization)

sync_priority integer Priority of synchronous duplication
(0 indicates asynchronization)

sync_most_availa
ble

text Whether to block the active node
when the synchronization on the
standby node fails

channel text WALSender channel information

 

● pg_stat_get_wal_receiver()

Description: Displays statistics about replication receiving threads on all WALs
on the current DN.

Return type: record

The following information is returned:

Table 6-17 pg_stat_get_wal_receiver()

Field Type Description

receiver_pid integer Current receiver PID

local_role text Local role

peer_role text Peer role

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 256



Field Type Description

peer_state text Peer status

state text Current receiver's replication status

sender_sent_loca
tion

text Location where the sender sends
LSNs

sender_write_loc
ation

text Location where the sender writes
LSNs

sender_flush_loc
ation

text Location where the sender flushes
LSNs

sender_replay_lo
cation

text Location where the sender replays
LSNs

receiver_received
_location

text Location where the receiver receives
LSNs

receiver_write_lo
cation

text Location where the receiver writes
LSNs

receiver_flush_lo
cation

text Location where the receiver flushes
LSNs

receiver_replay_l
ocation

text Location where the receiver replays
LSNs

sync_percent text Specifies the synchronization
percentage.

channel text WALReceiver channel information

 
● pg_stat_get_stream_replications()

Description: Displays information about all replication statistics on the current
DN.
Return type: record
The following information is returned:

Table 6-18 pg_stat_get_stream_replications()

Field Type Description

local_role text Local role

static_connection
s

integer Connection statistics

db_state text Database status

detail_informatio
n

text Detail information

 

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 257



● pg_stat_xlog_space()

Description: Displays the Xlog space usage on the current DN.

Return type: record

The following information is returned:

Table 6-19 pg_stat_xlog_space()

Column Type Description

xlog_files bigint Number of all identified xlog files in
the pg_xlog directory, excluding the
backup and archive_status
subdirectories.

xlog_size bigint Total size (MB) of all identified xlog
files in the pg_xlog directory,
excluding the backup and
archive_status subdirectories.

other_size bigint Total size (MB) of files in the
backup and archive_status
subdirectories of the pg_xlog
directory.

 

● pgxc_stat_xlog_space()

Description: Displays the Xlog space usage on all active DNs.

Return type: record

The following information is returned:

Table 6-20 pgxc_stat_xlog_space()

Column Type Description

node_name name Node name

xlog_files bigint Number of all identified xlog files in
the pg_xlog directory, excluding the
backup and archive_status
subdirectories.

xlog_size bigint Total size (MB) of all identified xlog
files in the pg_xlog directory,
excluding the backup and
archive_status subdirectories.

other_size bigint Total size (MB) of files in the
backup and archive_status
subdirectories of the pg_xlog
directory.

 

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 258



6.25.10 Other Functions
● pgxc_pool_check()

Description: Checks whether the connection data buffered in the pool is
consistent with pgxc_node.
Return type: boolean

● pgxc_pool_reload()
Description: Updates the connection information buffered in the pool.
Return type: boolean

● pgxc_lock_for_backup()
Description: Locks the cluster before backup. Backup is performed to restore
data on new nodes.
Return type: boolean

NO TE

pgxc_lock_for_backup locks a cluster before gs_dump or gs_dumpall is used to back
up the cluster. After a cluster is locked, operations changing the system structure are
not allowed. This function does not affect DML statements.

● pg_pool_validate(clear boolean, co_node_name cstring)
Description: Clears invalid backend threads on a CN. (These backend threads
hold invalid pooler connections to standby DNs.)
Return type: record

● pg_nodes_memory()
Description: queries the memory usage of all nodes.
Return type: record

● table_skewness(text)
Description: queries the percentage of table data among all nodes.
Parameter: Indicates that the type of the name of the to-be-queried table is
text.
Return type: record

● table_skewness(table_name text, column_name text[, row_num text])
Description: Queries the proportion of column data distributed on each node
based on the hash distribution rule. The results are sorted based on the data
volumes of the nodes.
Parameters: table_name indicates a table name, column_name indicates a
column name, and row_num indicates that all data in the current column is
returned. The default value is 0. A value other than 0 indicates the number of
data records whose statistics are sampled. (Records are randomly sampled.)
Return type: record
Example:
Distribute data by hash based on the a column in the tx table. Seven records
are distributed on DN 1, two records on DN 2, and one record on DN 0.
select table_skewness('tx','a');
 table_skewness 
----------------
 (1,7,70.000%)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 259



 (2,2,20.000%)
 (0,1,10.000%)
(3 rows)

● table_data_skewness(data_row record, locatorType "char")
Description: Calculates the bucket distribution index for the records
concatenated using the columns in a specified table.
Parameters: data_row indicates the record concatenated using columns in the
specified table. locatorType indicates the distribution rule. You are advised to
set locatorType to H, indicating hash distribution.
Return type: smallint
Example:
Calculates the bucket distribution index based on the hash distribution rule
for the records combined concatenated using the columns in the tx table.
select a, table_data_skewness(row(a), 'H') from tx;
 a | table_data_skewness 
---+---------------------
 3 |                   0
 6 |                   2
 7 |                   2
 4 |                   1
 5 |                   1
(5 rows)

● table_distribution(schemaname text, tablename text)
Description: queries the storage space occupied by a specified table on each
node.
Parameter: Indicates that the types of the schema name and table name for
the table to be queried are both text.
Return type: record

NO TE

● To query for the storage distribution of a specified table by using this function, you
must have the SELECT permission for the table.

● The performance of table_distribution is better than that of table_skewness.
Especially in a large cluster with a large amount of data, table_distribution is
recommended.

● When you use table_distribution and want to view the space usage, you can use
dnsize or (sum(dnsize) over ()) to view the percentage.

● table_distribution(regclass)
Description: queries the storage space occupied by a specified table on each
node.
Parameter: indicates the name or OID of the table to be queried. The table
name can be defined by the schema name. Parameter type: regclass
Return type: record

NO TE

● To query for the storage distribution of a specified table by using this function, you
must have the SELECT permission for the table.

● The performance of table_distribution is better than that of table_skewness.
Especially in a large cluster with a large amount of data, table_distribution is
recommended.

● When you use table_distribution and want to view the space usage, you can use
dnsize or (sum(dnsize) over ()) to view the percentage.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 260



● table_distribution()
Description: queries the storage distribution of all tables in the current
database.
Return type: record

NO TE

● This function involves the query for information about all tables in the database.
To execute this function, you must have the administrator rights.

● Based on the table_distribution() function, GaussDB(DWS) provides the
PGXC_GET_TABLE_SKEWNESS view as an alternative way to query for data skew.
You are advised to use this view when the number of tables in the database is less
than 10000.

● pgxc_get_stat_dirty_tables(int dirty_percent, int n_tuples)
Description: Obtains information about insertion, update, and deletion
operations on tables and the dirty page rate of tables. This function optimizes
the performance of the PGXC_GET_STAT_ALL_TABLES view. It can quickly
filter out tables whose dirty page rate is greater than dirty_percent and
number of dead tuples is greater than n_tuples.
Return type: SETOF record
The following table describes return columns.

Name Type Description

relid oid Table OID

relname name Table name

schemaname name Schema name of the table

n_tup_ins bigint Number of inserted tuples

n_tup_upd bigint Number of updated tuples

n_tup_del bigint Number of deleted tuples

n_live_tup bigint Number of live tuples

n_dead_tup bigint Number of dead tuples

dirty_page_rate numeric(5,
2)

Dirty page rate (%) of a table

 
● pgxc_get_stat_dirty_tables(int dirty_percent, int n_tuples, text schema)

Description: Obtains information about insertion, update, and deletion
operations on tables and the dirty page rate of tables. This function can
quickly filter out tables whose dirty page rate is greater than page_dirty_rate,
number of dead tuples is greater than n_tuples, and schema name is
schema.
Return type: SETOF record
The return columns of the function are the same as those of the
pgxc_get_stat_dirty_tables(int dirty_percent, int n_tuples) function.

● plan_seed()

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 261



Description: Obtains the seed value of the previous query statement (internal
use).
Return type: int

● pg_stat_get_env()
Description: Obtains the environment variable information about the current
node.
Return type: record

● pg_stat_get_thread()
Description: Provides information about the status of all threads under the
current node.
Return type: record

● pgxc_get_os_threads()
Description: Provides information about the status of threads under all normal
nodes in a cluster.
Return type: record

● pg_stat_get_sql_count()
Description: Provides statistics on the number of SELECT/UPDATE/INSERT/
DELETE/MERGE INTO statements executed by all users on the current node,
response time, and the number of DDL, DML, and DCL statements.
Return type: record

● pgxc_get_sql_count()
Description: Provides statistics on the number of SELECT/UPDATE/INSERT/
DELETE/MERGE INTO statements executed by all users on all nodes of the
current cluster, response time, and the number of DDL, DML, and DCL
statements.
Return type: record

● pgxc_get_workload_sql_count()
Description: Provides statistics on the number of SELECT/UPDATE/INSERT/
DELETE statements executed in all workload Cgroup on all CNs of the current
cluster and the number of DDL, DML, and DCL statements.
Return type: record

● pgxc_get_workload_sql_elapse_time()
Description: Provides statistics on response time of SELECT/UPDATE/INSERT/
DELETE statements executed in all workload Cgroup on all CNs of the current
cluster.
Return type: record

● get_instr_unique_sql()
Description: Provides information about Unique SQL statistics collected on the
current node. If the node is a CN, the system returns the complete
information about the Unique SQL statistics collected on the CN. That is, the
system collects and summarizes the information about the Unique SQL
statistics on other CNs and DNs. If the node is a DN, the Unique SQL statistics
on the DN is returned. For details, see GS_INSTR_UNIQUE_SQL.
Return type: record

● reset_instr_unique_sql(cstring, cstring, INT8)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 262



Description: Clears collected Unique SQL statistics. The input parameters are
described as follows:
– GLOBAL/LOCAL: Data is cleared from all nodes or the current node.
– ALL/BY_USERID/BY_CNID/BY_GUC: ALL indicates that all data is cleared.

BY_USERID/BY_CNID indicates that data is cleared by USERID or CNID.
BY_GUC indicates that the clearance operation is caused by the decrease
of the value of the GUC parameter instr_unique_sql_count.

– The third parameter corresponds to the second parameter. The parameter
is invalid for ALL/BY_GUC.

Return type: bool
● pgxc_get_instr_unique_sql()

Description: Provides complete information about Unique SQL statistics
collected on all CNs in a cluster. This function can be executed only on CNs.
Return type: record

● get_instr_unique_sql_remote_cns()
Description: Provides complete information about Unique SQL statements
collected on all CNs in the cluster, except the CN on which the function is
being executed. This function can be executed only on CNs.
Return type: record

● pgxc_get_node_env()
Description: Provides the environment variable information about all nodes in
a cluster.
Return type: record

● gs_switch_relfilenode()
Description: Exchanges meta information of two tables or partitions. (This is
only used for the redistribution tool. An error message is displayed when the
function is directly used by users).
Return type: int

● copy_error_log_create()
Description: Creates the error table (public.pgxc_copy_error_log) required for
creating the COPY FROM error tolerance mechanism.
Return type: boolean

NO TE

● This function attempts to create the public.pgxc_copy_error_log table. For details
about the table, see Table 6-21.

● Create the B-tree index on the relname column and execute REVOKE ALL on
public.pgxc_copy_error_log FROM public to manage permissions for the error
table (the permissions are the same as those of the COPY statement).

● public.pgxc_copy_error_log is a row-store table. Therefore, this function can be
executed and COPY FROM error tolerance is available only when row-store tables
can be created in the cluster. After the GUC parameter enable_hadoop_env is
enabled, row-based tables cannot be created in the cluster. The default value is off.

● Same as the error table and the COPY statement, the function requires sysadmin
or higher permissions.

● If the public.pgxc_copy_error_log table or the copy_error_log_relname_idx index
already exists before the function creates it, the function will report an error and
roll back.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 263



Table 6-21 Error table public.pgxc_copy_error_log

Column Type Description

relname varchar Table name in the form of Schema
name.Table name

begintime timestamp with
time zone

Time when a data format error was
reported

filename character varying Name of the source data file where
a data format error occurs

rownum bigint Number of the row where a data
format error occurs in a source data
file

rawrecord text Raw record of a data format error in
the source data file To prevent a
field from being too long, the length
of the field cannot exceed 1024
bytes.

detail text Error details

 
● pv_compute_pool_workload()

Description: Provides the current load information about computing Node
Groups on cloud.
Return type: record

● pg_stat_get_status(tid, num_node_display)
Description: Queries for the blocking and waiting status of the backend
threads and auxiliary threads in the current instance. For details about the
returned results, see the PG_THREAD_WAIT_STATUS view. The input
parameters are described as follows:
– tid: thread ID, which is of the bigint type. If this parameter is null, the

waiting statuses of all backend threads and auxiliary threads are
returned. Otherwise, only the waiting statuses of threads with the
specified IDs are returned.

– num_node_display: integer type. Specifies the maximum number of
waiting nodes displayed in the wait_status column for records whose
waiting status is wait node.

▪ If this parameter is left empty or set to a value less than or equal to
0, only one waiting node is displayed.

▪ If the value is greater than 20, a maximum number of nodes can be
displayed is 20.

▪ If the value is greater than 0 and less than or equal to 20, the
smaller value between num_node_display and the actual number of
waiting nodes is displayed. Use the SELECT * from
pg_stat_get_status(NULL, 10) query for example. If the number of
waiting nodes is greater than 10, the names of only 10 nodes are
displayed randomly. If the number of waiting nodes is less than or

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 264



equal to 10, the names of all waiting nodes are displayed. If the
number of waiting nodes is greater than the number of displayed
nodes, the displayed node names are randomly selected.

Return type: record
● pgxc_get_thread_wait_status(num_node_display)

Description: Queries for the call hierarchy between threads generated by all
SQL statements on each node in a cluster, as well as the block waiting status
of each thread. For details about the returned results, see the
PGXC_THREAD_WAIT_STATUS view. The type and meaning of the input
parameter num_node_display are the same as those of the
pg_stat_get_status function.
Return type: record

● pgxc_os_run_info()
Description: Obtains the running status of the operating system on each node
in a cluster. For details about the returned results, see "System Catalogs >
System Views >PV_OS_RUN_INFO" in the Developer Guide.
Return type: record

● get_instr_wait_event()
Description: Obtains the waiting status and events of the current instance. For
details about the returned results, see "System Catalogs > System Views >
GS_WAIT_EVENTS" in the Developer Guide. If the GUC parameter
enable_track_wait_event is off, this function returns 0.
Return type: record

● pgxc_wait_events()
Description: queries statistics about waiting status and events on each node in
a cluster. For details about the returned results, see "System Catalogs >
System Views > PGXC_WAIT_EVENTS" in the Developer Guide. If the GUC
parameter enable_track_wait_event is off, this function returns 0.
Return type: record

● pgxc_stat_bgwriter()
Description: queries statistics about backend write processes on each node in
a cluster. For details about the returned results, see "System Catalogs >
System Views > PG_STAT_BGWRITER" in the Developer Guide.
Return type: record

● pgxc_stat_replication()
Description: queries information about the log synchronization status on each
node in a cluster, such as the location where the logs are sent and received.
For details about the returned results, see "System Catalogs > System Views >
PG_STAT_REPLICATION" in the Developer Guide.
Return type: record

● pgxc_replication_slots()
Description: queries the replication status on each DN in a cluster. For details
about the returned results, see "System Catalogs > System Views >
PG_REPLICATION_SLOTS" in the Developer Guide.
Return type: record

● pgxc_settings()

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 265



Description: queries information about runtime parameters on each node in a
cluster. For details about the returned results, see "System Catalogs > System
Views > PG_SETTINGS" in the Developer Guide.
Return type: record

● pgxc_instance_time()
Description: queries the running time statistics of each node in a cluster and
the time consumed in each execution phase. For details about the returned
results, see "System Catalogs > System Views > PV_INSTANCE_TIME" in the
Developer Guide.
Return type: record

● pg_stat_get_redo_stat()
Description: queries Xlog redo statistics on the current node. For details about
the returned results, see "System Catalogs > System Views > PV_REDO_STAT"
in the Developer Guide.
Return type: record

● pgxc_redo_stat()
Description: queries the Xlog redo statistics of each node in a cluster. For
details about the returned results, see "System Catalogs > System Views >
PV_REDO_STAT" in the Developer Guide.
Return type: record

● get_local_rel_iostat()
Description: Obtains the disk I/O statistics of the current instance. For details
about the returned results, see "System Catalogs > System Views >
GS_REL_IOSTAT" in the Developer Guide.
Return type: record

● pgxc_rel_iostat()
Description: queries the disk I/O statistics on each node in a cluster. For
details about the returned result, see "System Catalogs > System Views >
GS_REL_IOSTAT" in the Developer Guide.
Return type: record

● get_node_stat_reset_time()
Description: Obtains the time when statistics of the current instance were
reset.
Return type: timestamptz

● pgxc_node_stat_reset_time()
Description: queries the time when the statistics of each node in a cluster are
reset. For details about the returned result, see "System Catalogs > System
Views > GS_NODE_STAT_RESET_TIME" in the Developer Guide.
Return type: record

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 266



NO TE

When an instance is running, its statistics keep rising. In the following cases, the
statistical values in the memory will be reset to 0:

● The instance is restarted or a cluster switchover occurs.

● The database is deleted.

● A reset operation is performed. For example, the statistics counter in the
database is reset using the pgstat_recv_resetcounter function or the Unique
SQL statements are cleared using the reset_instr_unique_sql function.

If any of the preceding events occurs, GaussDB(DWS) will record the time when the
statistics are reset. You can query the time using the get_node_stat_reset_time
function.

6.25.11 Resource Management Functions
This section describes the functions of the resource management module.

● gs_wlm_readjust_user_space(oid)
Description: This function calibrates the permanent storage space of a user.
The input parameter is the user OID. If the input parameter is set to 0, the
permanent storage space of all users is calibrated.
Return type: text
Example:
select gs_wlm_readjust_user_space(0);
gs_wlm_readjust_user_space
----------------------------
Exec Success
(1 row)

● pgxc_wlm_readjust_schema_space()
Description: This function calibrates the permanent storage space of a
schema.
Return type: text
Example:
select pgxc_wlm_readjust_schema_space();
pgxc_wlm_readjust_schema_space
--------------------------------
Exec Success
(1 row)

● pgxc_wlm_get_schema_space(cstring)
Description: Obtains the schema space of each instance in a specified logical
cluster on the CN.
Return type: record
The following table describes return columns.

Column Type Description

schemaname text Schema name

schemaid oid Schema OID

databasename text Database name

databaseid oid Database OID

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 267



Column Type Description

nodename text Instance name

nodegroup text Name of the node
group

usedspace bigint Size of the used space

permspace bigint Upper limit of the
space

 

Example:
select * from pgxc_wlm_get_schema_space('group1');
     schemaname     | schemaid | databasename | databaseid |   nodename   |  nodegroup   | usedspace 
| permspace
--------------------+----------+--------------+------------+--------------+--------------+-----------+-----------
 pg_catalog         |       11 | test1        |      16384 | datanode1    | installation |   9469952 |        -1
 public             |     2200 | gaussdb     |      15253 | datanode1    | installation |  25280512 |        -1
 pg_toast           |       99 | test1        |      16384 | datanode1    | installation |   1859584 |        -1
 cstore             |      100 | test1        |      16384 | datanode1    | installation |         0 |        -1
 data_redis         |    18106 | gaussdb     |      15253 | datanode1    | installation |    655360 |        -1
 data_redis         |    18116 | test1        |      16384 | datanode1    | installation |         0 |        -1
 public             |     2200 | test1        |      16384 | datanode1    | installation |     16384 |        -1
 dbms_om            |     3987 | gaussdb     |      15253 | datanode1    | installation |         0 |        -1
 dbms_job           |     3988 | gaussdb     |      15253 | datanode1    | installation |         0 |        -1
 dbms_om            |     3987 | test1        |      16384 | datanode1    | installation |         0 |        -1
 dbms_job           |     3988 | test1        |      16384 | datanode1    | installation |         0 |        -1
 sys                |    11693 | gaussdb     |      15253 | datanode1    | installation |         0 |        -1
 sys                |    11693 | test1        |      16384 | datanode1    | installation |         0 |        -1
 utl_file           |    14644 | gaussdb     |      15253 | datanode1    | installation |         0 |        -1
 utl_raw            |    14669 | gaussdb     |      15253 | datanode1    | installation |         0 |        -1
 dbms_sql           |    14674 | gaussdb     |      15253 | datanode1    | installation |         0 |        -1
 dbms_output        |    14662 | gaussdb     |      15253 | datanode1    | installation |         0 |        -1
 dbms_random        |    14666 | gaussdb     |      15253 | datanode1    | installation |         0 |        -1
 dbms_lob           |    14701 | gaussdb     |      15253 | datanode1    | installation |         0 |        -1
 information_schema |    14300 | gaussdb     |      15253 | datanode1    | installation |    294912 |        
-1
 information_schema |    14300 | test1        |      16384 | datanode1    | installation |    294912 |        -1
 utl_file           |    14644 | test1        |      16384 | datanode1    | installation |         0 |        -1
 dbms_output        |    14662 | test1        |      16384 | datanode1    | installation |         0 |        -1
 dbms_random        |    14666 | test1        |      16384 | datanode1    | installation |         0 |        -1
 utl_raw            |    14669 | test1        |      16384 | datanode1    | installation |         0 |        -1
 dbms_sql           |    14674 | test1        |      16384 | datanode1    | installation |         0 |        -1
 dbms_lob           |    14701 | test1        |      16384 | datanode1    | installation |         0 |        -1
 pg_catalog         |       11 | gaussdb     |      15253 | datanode1    | installation |  13049856 |        -1
 redisuser          |    16387 | gaussdb     |      15253 | datanode1    | installation |    630784 |        -1
 pg_toast           |       99 | gaussdb     |      15253 | datanode1    | installation |   3080192 |        -1
 cstore             |      100 | gaussdb     |      15253 | datanode1    | installation |   2408448 |        -1
 pg_catalog         |       11 | test1        |      16384 | datanode2    | installation |   9469952 |        -1
 public             |     2200 | gaussdb     |      15253 | datanode2    | installation |  25214976 |        -1
 pg_toast           |       99 | test1        |      16384 | datanode2    | installation |   1859584 |        -1
 cstore             |      100 | test1        |      16384 | datanode2    | installation |         0 |        -1
 data_redis         |    18106 | gaussdb     |      15253 | datanode2    | installation |    655360 |        -1
 data_redis         |    18116 | test1        |      16384 | datanode2    | installation |         0 |        -1
 public             |     2200 | test1        |      16384 | datanode2    | installation |     16384 |        -1
 dbms_om            |     3987 | gaussdb     |      15253 | datanode2    | installation |         0 |        -1
 dbms_job           |     3988 | gaussdb     |      15253 | datanode2    | installation |         0 |        -1
 dbms_om            |     3987 | test1        |      16384 | datanode2    | installation |         0 |        -1
 dbms_job           |     3988 | test1        |      16384 | datanode2    | installation |         0 |        -1

● pgxc_wlm_analyze_schema_space(cstring)
Description: Obtains the schema space of a specified logical cluster on the CN.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 268



Return type: record
The following table describes return columns.

Column Type Description

schemaname text Schema name

databasena
me

text Database name

nodegroup text Name of the node group

total_value bigint Total cluster space in the current schema

avg_value bigint Average space of instances in the current
schema

skew_percent integer Skew ratio

extend_info text Extended information, including the
maximum space of a single instance,
minimum space of a single instance, and
name of the instance with the maximum or
minimum space

 

Example:
select * from pgxc_wlm_analyze_schema_space('group1');
     schemaname     | databasename |  nodegroup   | total_value | avg_value | skew_percent 
|                  extend_info
--------------------+--------------+--------------+-------------+-----------+--------------
+-----------------------------------------------
 pg_catalog         | test1        | installation |    56819712 |   9469952 |            0 | min:9469952 
datanode1,max:9469952 datanode1
 public             | gaussdb     | installation |   150495232 |  25082538 |            0 | min:24903680 
datanode6,max:25280512 datanode1
 pg_toast           | test1        | installation |    11157504 |   1859584 |            0 | min:1859584 
datanode1,max:1859584 datanode1
 cstore             | test1        | installation |           0 |         0 |            0 | min:0 datanode1,max:0 
datanode1
 data_redis         | gaussdb     | installation |     1966080 |    327680 |           50 | min:0 datanode4,max:
655360 datanode1
 data_redis         | test1        | installation |           0 |         0 |            0 | min:0 datanode1,max:0 
datanode1
 public             | test1        | installation |       98304 |     16384 |            0 | min:16384 datanode1,max:
16384 datanode1
 dbms_om            | gaussdb     | installation |           0 |         0 |            0 | min:0 datanode1,max:0 
datanode1
 dbms_job           | gaussdb     | installation |           0 |         0 |            0 | min:0 datanode1,max:0 
datanode1
 dbms_om            | test1        | installation |           0 |         0 |            0 | min:0 datanode1,max:0 
datanode1
 dbms_job           | test1        | installation |           0 |         0 |            0 | min:0 datanode1,max:0 
datanode1
 sys                | gaussdb     | installation |           0 |         0 |            0 | min:0 datanode1,max:0 
datanode1
 sys                | test1        | installation |           0 |         0 |            0 | min:0 datanode1,max:0 
datanode1
 utl_file           | gaussdb     | installation |           0 |         0 |            0 | min:0 datanode1,max:0 
datanode1
 utl_raw            | gaussdb     | installation |           0 |         0 |            0 | min:0 datanode1,max:0 
datanode1
 dbms_sql           | gaussdb     | installation |           0 |         0 |            0 | min:0 datanode1,max:0 

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 269



datanode1
 dbms_output        | gaussdb     | installation |           0 |         0 |            0 | min:0 datanode1,max:0 
datanode1
 dbms_random        | gaussdb     | installation |           0 |         0 |            0 | min:0 datanode1,max:0 
datanode1
 dbms_lob           | gaussdb     | installation |           0 |         0 |            0 | min:0 datanode1,max:0 
datanode1
 information_schema | gaussdb     | installation |     1769472 |    294912 |            0 | min:294912 
datanode1,max:294912 datanode1
 information_schema | test1        | installation |     1769472 |    294912 |            0 | min:294912 
datanode1,max:294912 datanode1
 utl_file           | test1        | installation |           0 |         0 |            0 | min:0 datanode1,max:0 
datanode1
 dbms_output        | test1        | installation |           0 |         0 |            0 | min:0 datanode1,max:0 
datanode1
 dbms_random        | test1        | installation |           0 |         0 |            0 | min:0 datanode1,max:0 
datanode1
 utl_raw            | test1        | installation |           0 |         0 |            0 | min:0 datanode1,max:0 
datanode1
 dbms_sql           | test1        | installation |           0 |         0 |            0 | min:0 datanode1,max:0 
datanode1
 dbms_lob           | test1        | installation |           0 |         0 |            0 | min:0 datanode1,max:0 
datanode1
 pg_catalog         | gaussdb     | installation |    75431936 |  12571989 |            3 | min:12124160 
datanode4,max:13049856 datanode1
 redisuser          | gaussdb     | installation |     1884160 |    314026 |           50 | min:16384 
datanode4,max:630784 datanode1
 pg_toast           | gaussdb     | installation |    17154048 |   2859008 |            7 | min:2637824 
datanode4,max:3080192 datanode1
 cstore             | gaussdb     | installation |    15294464 |   2549077 |            5 | min:2408448 
datanode1,max:2703360 datanode6
(31 rows)

● gs_wlm_set_queryband_action(cstring,cstring,int4)
Description: Sets the action and query order of query_band.
Return type: boolean
The following table describes the input parameters.

Name Type Description

qband cstring Query band key-value pair. The maximum
length is 63 characters.

action cstring Action associated to a query band

order int4 Query band query order. The default value is
-1.

 

Example:
select * from gs_wlm_set_queryband_action('a=1','respool=p1');
 gs_wlm_set_queryband_action
-----------------------------
 t
(1 row)
select * from gs_wlm_set_queryband_action('a=3','respool=p1;priority=rush',1);
 gs_wlm_set_queryband_action
-----------------------------
 t
(1 row)

● gs_wlm_set_queryband_order(cstring,int4)
Description: Sets the query_band query order.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 270



Return type: boolean
The following table describes the input parameters.

Name Type Description

qband cstring query_band key-value pairs

order int4 query_band query order. The default value
is -1.

 

Example:
select * from gs_wlm_set_queryband_order('a=1',2);
 gs_wlm_set_queryband_action
-----------------------------
 t
(1 row)

● gs_wlm_get_queryband_action(cstring)
Description: Obtains the action and query order of query_band.
Return type: record
The following table describes return columns.

Column Type Description

qband cstring query_band key-value pairs

respool_id Oid OID of the resource pool associated with
query_band

respool text Name of the resource pool associated with
query_band

priority text Intra-queue priority associated with
query_band

qborder int4 query_band query order

 

Example:
select * from gs_wlm_get_queryband_action('a=1');
qband | respool_id | respool | priority | qborder
-------+------------+---------+----------+---------
 a=1   |      16388 | p1      | Medium   |      -1
(1 row)

● gs_cgroup_reload_conf()
Description: This function loads the Cgroup configuration file online on the
current instance.
Return type: record
The following table describes return columns.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 271



Column Type Description

node_name text Instance name

node_host text IP address of the node where the instance is
located

result text Whether Cgroup online loading is successful

 

Example:
select * from gs_cgroup_reload_conf();
 node_name |   node_host    | result
-----------+----------------+---------
 cn_5001   | 192.168.178.35 | success

● pgxc_cgroup_reload_conf()
Description: This function loads the Cgroup configuration file online on all
instances of the system.
Return type: record
The following table describes return columns.

Column Type Description

node_name text Instance name

node_host text IP address of the node where the instance is
located

result text Whether Cgroup online loading is successful

 

Example:
select * from pgxc_cgroup_reload_conf();
  node_name   |    node_host    | result
--------------+-----------------+---------
 dn_6025_6026 | 192.168.178.177 | success
 dn_6049_6050 | 192.168.179.79  | success
 dn_6051_6052 | 192.168.179.79  | success
 dn_6055_6056 | 192.168.179.79  | success
 dn_6067_6068 | 192.168.181.57  | success
 dn_6023_6024 | 192.168.178.39  | success
 dn_6009_6010 | 192.168.181.21  | success
 dn_6011_6012 | 192.168.181.21  | success
 dn_6015_6016 | 192.168.181.21  | success
 dn_6029_6030 | 192.168.178.177 | success
 dn_6031_6032 | 192.168.178.177 | success
 dn_6045_6046 | 192.168.179.45  | success
 cn_5001      | 192.168.178.35  | success
 cn_5003      | 192.168.178.39  | success
 dn_6061_6062 | 192.168.181.179 | success
 cn_5006      | 192.168.179.45  | success
 cn_5004      | 192.168.178.177 | success
 cn_5002      | 192.168.181.21  | success
 cn_5005      | 192.168.178.187 | success
 dn_6019_6020 | 192.168.178.39  | success
 dn_6007_6008 | 192.168.178.35  | success
 dn_6071_6072 | 192.168.181.57  | success
 dn_6003_6004 | 192.168.178.35  | success

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 272



 dn_6013_6014 | 192.168.181.21  | success
 dn_6035_6036 | 192.168.178.187 | success
 dn_6037_6038 | 192.168.178.187 | success
 dn_6001_6002 | 192.168.178.35  | success
 dn_6063_6064 | 192.168.181.179 | success
 dn_6005_6006 | 192.168.178.35  | success
 dn_6057_6058 | 192.168.181.179 | success
 dn_6069_6070 | 192.168.181.57  | success
 dn_6027_6028 | 192.168.178.177 | success
 dn_6059_6060 | 192.168.181.179 | success
 dn_6041_6042 | 192.168.179.45  | success
 dn_6043_6044 | 192.168.179.45  | success
 dn_6047_6048 | 192.168.179.45  | success
 dn_6033_6034 | 192.168.178.187 | success
 dn_6065_6066 | 192.168.181.57  | success
 dn_6021_6022 | 192.168.178.39  | success
 dn_6017_6018 | 192.168.178.39  | success
 dn_6039_6040 | 192.168.178.187 | success
 dn_6053_6054 | 192.168.179.79  | success
(42 rows)

● pgxc_cgroup_reload_conf(text)
Description: This function loads the Cgroup configuration file online on a
node. The input parameter is the IP address of the node.
Return type: record
The following table describes return columns.

Column Type Description

node_name text Instance name

node_host text IP address of the node where the instance is
located

result text Whether Cgroup online loading is successful

 

Example:
select * from pgxc_cgroup_reload_conf('192.168.178.35');
  node_name   |   node_host    | result
--------------+----------------+---------
 cn_5001      | 192.168.178.35 | success
 dn_6007_6008 | 192.168.178.35 | success
 dn_6003_6004 | 192.168.178.35 | success
 dn_6001_6002 | 192.168.178.35 | success
 dn_6005_6006 | 192.168.178.35 | success
(5 rows)

● pg_wlm_jump_queue(pid int)
Description: Moves a task to the top of the CN queue.
Return type: Boolean
Note: Each of these functions returns true if they are successful and false
otherwise.

● gs_wlm_switch_cgroup(pid int, cgroup text)
Description: Moves a job to other Cgroup to improve the job priority.
Return type: Boolean
Note: Each of these functions returns true if they are successful and false
otherwise.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 273



● gs_wlm_node_recover(boolean isForce)
Description: Updates and restores job information and counts on the CCN in
dynamic resource management mode. This function can be executed only by
administrators, and is usually used to restore a faulty CN after it was
restarted. This function is called by the Cluster Manager (CM). Its usage are
as follows:
– If this function is executed by CN, it instructs the CCN to clear job

information and counts on the CN.
– If this function is executed by CCN, it resets job counts and obtains the

latest slow lane job information from the CN.
Return type: bool

● gs_wlm_node_clean(cstring nodename)
Description: On the CCN in dynamic resource management mode, clears the
job information and counts of a specified CN. This function can be executed
only by administrators, and is usually used to restore a faulty CN after it was
restarted. This function is called by the Cluster Manager (CM). Generally,
users are not advised to call it.
Return type: bool

6.26 Data Redaction Functions
Data redaction functions are used to mask and protect sensitive data. Generally,
you are advised to bind these functions to the columns to be redacted based on
the data redaction syntax, rather than use them directly on query statements.

● mask_none(column_name)
Description: Masks no data (for internal tests only).
Return type: same as column_name

● mask_full(column_name)
Description: Replaces all data with a fixed value. The fixed value varies
depending on the data type of the redacted column.
Return type: same as column_name

● mask_partial(column_name, mask_digital, mask_from[, mask_to])
Description: Replaces the digits from the mask_from to mask_to position in a
number with the digit specified by mask_digital. The default value of
mask_to can be used, which indicates that the digits from the mask_from
position to the end of the number are replaced. mask_digital can only be a
digit from 0 to 9.
Return type: same as column_name

● mask_partial(column_name [, input_format, output_format], mask_char,
mask_from[, mask_to])
Description: Replaces the digits from the mask_from to mask_to position in a
string with the character specified by mask_char based on the given input
and output formats.
Parameter description:
– input_format

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 274



The input format is a character string of V and F, whose length is the
same as that of the data in the redacted column. Characters in positions
corresponding to V may be masked, and characters in positions
corresponding to F are skipped. The V character string specifies which
characters are to be masked. The input and output formats apply to data
with a fixed length, such as bank card numbers, ID card numbers, and
phone numbers.

– output_format
The output format is a character string of V and any other character,
whose length is the same as that of the data in the redacted column. V
characters correspond to those in the input_format, and other characters
correspond to the F characters in the input_format.
For parameters input_format and output_format, you can use their
default values or set them to "". In this case, there is no requirement for
the input or output format, and the whole string will be masked.

– mask_char
Masking character, which can be any one character, for example, an
asterisk (*) or a number sign (#).

– mask_from
First character in the string that will be masked. The value must be
greater than 0.

– mask_to
Last character in the string that will be masked. The default value can be
used, which indicates that the character from the mask_from position to
the last character of the string will be masked.

Return type: same as column_name
● mask_partial(column_name, mask_field1, mask_value1, mask_field2,

mask_value2, mask_field3, mask_value3)
Description: Masks a date or time based on three specified fields. If
mask_value is -1, the corresponding mask_field is not masked. mask_field
can be month, day, year, hour, minute, or second. The value range of each
field must be within that of the actual time unit.
Return type: same as column_name

NO TE

Redaction functions are recommended if you want to create redaction policies.

For details about how to use data redaction functions, see the examples in .

User-Defined Redaction Functions

You can use the PL/pgSQL language to customize redaction functions.

User-defined redaction functions must meet the following requirements:
● The return type must be the same as the data type of the redacted column.
● The functions can be pushed down.
● In addition to the redaction format, only one column can be specified in the

argument list for data redaction.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 275



● The functions only implement the formatting for specific data types and do
not involve complex association operations with other table objects.

If either of the first two requirements is not met, an error will be reported when
you create a redaction policy. If either of the last two requirements is not met,
unexpected problems may occur in query execution results.

6.27 Statistics Information Functions
Statistics information functions are divided into the following two categories:
functions that access databases, using the OID of each table or index in a
database to mark the database for which statistics are generated; functions that
access servers, identified by the server process ID, whose value ranges from 1 to
the number of currently active servers.

● pg_stat_get_db_numbackends(oid)
Description: Obtains the number of active server threads of a specified
database on the current instance.
Return type: integer

● pg_stat_get_db_total_numbackends(oid)
Description: Obtains the total number of active server threads of a specified
database on all CNs in a cluster (if this function is executed on a CN), or
obtains the number of active server threads of a specified database on the
current instance (if this function is executed on a DN).
Return type: integer

● pg_stat_get_db_xact_commit(oid)
Description: Obtains the number of committed transactions in a specified
database on the current instance.
Return type: bigint

● pg_stat_get_db_total_xact_commit(oid)
Description: Obtains the total number of committed transactions in a
specified database on all CNs in a cluster (if this function is executed on a
CN), or obtains the number of committed transactions in a specified database
on the current instance (if this function is executed on a DN).
Return type: bigint

● pg_stat_get_db_xact_rollback(oid)
Description: Obtains the number of rollback transactions in a specified
database on the current instance.
Return type: bigint

● pg_stat_get_db_total_xact_rollback(oid)
Description: Obtains the total number of rollback transactions in a specified
database on all CNs in a cluster (if this function is executed on a CN), or
obtains the number of rollback transactions in a specified database on the
current instance (if this function is executed on a DN).
Return type: bigint

● pg_stat_get_db_blocks_fetched(oid)
Description: Obtains the number of disk block fetch requests in a specified
database on the current instance.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 276



Return type: bigint
● pg_stat_get_db_total_blocks_fetched(oid)

Description: Obtains the total number of disk block fetch requests in a
specified database on all DNs in a cluster (if this function is executed on a
CN), or obtains the number of disk block fetch requests in a specified
database on the current instance (if this function is executed on a DN).
Return type: bigint

● pg_stat_get_db_blocks_hit(oid)
Description: Obtains the number of requested disk blocks found in the cache
in a specified database on the current instance.
Return type: bigint

● pg_stat_get_db_total_blocks_hit(oid)
Description: Obtains the total number of requested disk blocks found in the
cache in a specified database on all DNs in a cluster (if this function is
executed on a CN), or obtains the number of requested disk blocks found in
the cache in a specified database on the current instance (if this function is
executed on a DN).
Return type: bigint

● pg_stat_get_db_tuples_returned(oid)
Description: Obtains the number of tuples returned for a specified database
on the current instance.
Return type: bigint

● pg_stat_get_db_total_tuples_returned(oid)
Description: Obtains the total number of tuples returned for a specified
database on all DNs in a cluster (if this function is executed on a CN), or
obtains the number of tuples returned for a specified database on the current
instance (if this function is executed on a DN).
Return type: bigint

● pg_stat_get_db_tuples_fetched(oid)
Description: Obtains the number of tuples read from a specified database on
the current instance.
Return type: bigint

● pg_stat_get_db_total_tuples_fetched(oid)
Description: Obtains the total number of tuples read from a specified
database on all DNs in a cluster (if this function is executed on a CN), or
obtains the number of tuples read from a specified database on the current
instance (if this function is executed on a DN).
Return type: bigint

● pg_stat_get_db_tuples_inserted(oid)
Description: Obtains the number of tuples inserted into a specified database
on the current instance.
Return type: bigint

● pg_stat_get_db_total_tuples_inserted(oid)
Description: Obtains the total number of tuples inserted into a specified
database on all DNs in a cluster (if this function is executed on a CN), or

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 277



obtains the number of tuples inserted into a specified database on the current
instance (if this function is executed on a DN).
Return type: bigint

● pg_stat_get_db_tuples_updated(oid)
Description: Obtains the number of updated tuples in a specified database on
the current instance.
Return type: bigint

● pg_stat_get_db_total_tuples_updated(oid)
Description: Obtains the total number of updated tuples in a specified
database on all DNs in a cluster (if this function is executed on a CN), or
obtains the number of updated tuples in a specified database on the current
instance (if this function is executed on a DN).
Return type: bigint

● pg_stat_get_db_tuples_deleted(oid)
Description: Obtains the number of tuples deleted from a specified database
on the current instance.
Return type: bigint

● pg_stat_get_db_total_tuples_deleted(oid)
Description: Obtains the total number of tuples deleted from a specified
database on all DNs in a cluster (if this function is executed on a CN), or
obtains the number of tuples deleted from a specified database on the
current instance (if this function is executed on a DN).
Return type: bigint

● pg_stat_get_db_conflict_lock(oid)
Description: Obtains the total number of conflicting locks in a specified
database on all CNs and DNs in a cluster (if this function is executed on a
CN), or obtains the number of conflicting locks in a specified database on the
current instance (if this function is executed on a DN).
Return type: bigint

● pg_stat_get_db_deadlocks(oid)
Description: Obtains the number of deadlocks in a specified database on the
current instance.
Return type: bigint

● pg_stat_get_db_total_deadlocks(oid)
Description: Obtains the total number of deadlocks in a specified database on
all CNs and DNs in a cluster (if this function is executed on a CN), or obtains
the number of deadlocks in a specified database on the current instance (if
this function is executed on a DN).
Return type: bigint

● pg_stat_get_db_conflict_all(oid)
Description: Obtains the number of conflict recoveries in a specified database
on the current instance.
Return type: bigint

● pg_stat_get_db_total_conflict_all(oid)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 278



Description: Obtains the total number of conflict recoveries in a specified
database on all CNs and DNs in a cluster (if this function is executed on a
CN), or obtains the number of conflict recoveries in a specified database on
the current instance (if this function is executed on a DN).
Return type: bigint

● pg_stat_get_db_temp_files(oid)
Description: Obtains the number of temporary files created in a specified
database on the current instance.
Return type: bigint

● pg_stat_get_db_total_temp_files(oid)
Description: Obtains the total number of temporary files created in a specified
database on all DNs in a cluster (if this function is executed on a CN), or
obtains the number of temporary files created in a specified database on the
current instance (if this function is executed on a DN).
Return type: bigint

● pg_stat_get_db_temp_bytes(oid)
Description: Obtains the number of bytes of the temporary files created in a
specified database on the current instance.
Return type: bigint

● pg_stat_get_db_total_temp_bytes(oid)
Description: Obtains the total number of bytes of the temporary files created
in a specified database on all DNs in a cluster (if this function is executed on
a CN), or obtains the number of bytes of the temporary files created in a
specified database on the current instance (if this function is executed on a
DN).
Return type: bigint

● pg_stat_get_db_blk_read_time(oid)
Description: Obtains the time required for reading data blocks from a
specified database on the current instance.
Return type: double

● pg_stat_get_db_total_blk_read_time(oid)
Description: Obtains the total time required for reading data blocks from a
specified database on all DNs in a cluster (if this function is executed on a
CN), or obtains the time required for reading data blocks from a specified
database on the current instance (if this function is executed on a DN).
Return type: double

● pg_stat_get_db_blk_write_time(oid)
Description: Obtains the time required for writing data blocks to a specified
database on the current instance.
Return type: double

● pg_stat_get_db_total_blk_write_time(oid)
Description: Obtains the total time required for writing data blocks to a
specified database on all DNs in a cluster (if this function is executed on a
CN), or obtains the time required for writing data blocks to a specified
database on the current instance (if this function is executed on a DN).
Return type: double

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 279



● pg_stat_get_numscans(oid)
Description: Number of sequential row scans done if parameters are in a table
or number of index scans done if parameters are in an index
Return type: bigint

● pg_stat_get_tuples_returned(oid)
Description: Number of sequential row scans done if parameters are in a table
or number of index entries returned if parameters are in an index
Return type: bigint

● pg_stat_get_tuples_fetched(oid)
Description: Number of table rows fetched by bitmap scans if parameters are
in a table,
or table rows fetched by simple index scans using the index if parameters are
in an index
Return type: bigint

● pg_stat_get_tuples_inserted(oid)
Description: Number of rows inserted into table
Return type: bigint

● pg_stat_get_tuples_updated(oid)
Description: Number of rows updated in table
Return type: bigint

● pg_stat_get_tuples_deleted(oid)
Description: Number of rows deleted from table
Return type: bigint

● pg_stat_get_tuples_changed(oid)
Description: Total number of inserted, updated, and deleted rows after the
table was last analyzed or autoanalyzed
Return type: bigint

● pg_stat_get_tuples_hot_updated(oid)
Description: Number of rows HOT-updated in table
Return type: bigint

● pg_stat_get_live_tuples(oid)
Description: Number of live rows in table
Return type: bigint

● pg_stat_get_dead_tuples(oid)
Description: Number of dead rows in table
Return type: bigint

● pg_stat_get_blocks_fetched(oid)
Description: Number of disk block fetch requests for table or index
Return type: bigint

● pg_stat_get_blocks_hit(oid)
Description: Number of disk block requests found in cache for table or index

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 280



Return type: bigint
● pg_stat_get_partition_tuples_inserted(oid)

Description: Number of rows in the corresponding table partition
Return type: bigint

● pg_stat_get_partition_tuples_updated(oid)
Description: Number of rows that have been updated in the corresponding
table partition
Return type: bigint

● pg_stat_get_partition_tuples_deleted(oid)
Description: Number of rows deleted from the corresponding table partition
Return type: bigint

● pg_stat_get_partition_tuples_changed(oid)
Description: Total number of inserted, updated, and deleted rows after the
table partition was last analyzed or autoanalyzed
Return type: bigint

● pg_stat_get_partition_live_tuples(oid)
Description: Number of live rows in a table partition
Return type: bigint

● pg_stat_get_partition_dead_tuples(oid)
Description: Number of dead rows in a table partition
Return type: bigint

● pg_stat_get_xact_tuples_inserted(oid)
Description: Number of tuple inserted into the active subtransactions related
to the table.
Return type: bigint

● pg_stat_get_xact_tuples_deleted(oid)
Description: Number of deleted tuples in the active subtransactions related to
a table
Return type: bigint

● pg_stat_get_xact_tuples_hot_updated(oid)
Description: Number of hot updated tuples in the active subtransactions
related to a table
Return type: bigint

● pg_stat_get_xact_tuples_updated(oid)
Description: Number of updated tuples in the active subtransactions related
to a table
Return type: bigint

● pg_stat_get_xact_partition_tuples_inserted(oid)
Description: Number of inserted tuples in the active subtransactions related to
a table partition
Return type: bigint

● pg_stat_get_xact_partition_tuples_deleted(oid)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 281



Description: Number of deleted tuples in the active subtransactions related to
a table partition
Return type: bigint

● pg_stat_get_xact_partition_tuples_hot_updated(oid)
Description: Number of hot updated tuples in the active subtransactions
related to a table partition
Return type: bigint

● pg_stat_get_xact_partition_tuples_updated(oid)
Description: Number of updated tuples in the active subtransactions related
to a table partition
Return type: bigint

● pg_stat_get_last_vacuum_time(oid)
Description: Last time when the autovacuum thread is manually started to
clear a table
Return type: timestamptz

● pg_stat_get_last_autovacuum_time(oid)
Description: Time of the last vacuum initiated by the autovacuum daemon on
this table
Return type: timestamptz

● pg_stat_get_vacuum_count(oid)
Description: Number of times a table is manually cleared
Return type: bigint

● pg_stat_get_autovacuum_count(oid)
Description: Number of times the autovacuum daemon is started to clear a
table
Return type: bigint

● pg_stat_get_last_analyze_time(oid)
Description: Last time when a table starts to be analyzed manually or by the
autovacuum thread
Return type: timestamptz

● pg_stat_get_last_autoanalyze_time(oid)
Description: Time of the last analysis initiated by the autovacuum daemon on
this table
Return type: timestamptz

● pg_stat_get_analyze_count(oid)
Description: Number of times a table is manually analyzed
Return type: bigint

● pg_stat_get_autoanalyze_count(oid)
Description: Number of times the autovacuum daemon analyzes a table
Return type: bigint

● pg_total_autovac_tuples(bool)
Description: Gets the tuple records related to total autovac, such as
nodename, nspname, relname, and the IUD information of tuples.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 282



Return type: SETOF record
● pg_autovac_status(oid)

Description: Returns autovac information, such as nodename, nspname,
relname, analyze, vacuum, thresholds of analyze and vacuum, and the
number of analyzed or vacuumed tuples.
Return type: SETOF record

● pg_autovac_timeout(oid)
Description: Returns the number of consecutive timeouts during the autovac
operation on a table. If the table information is invalid or the node
information is abnormal, NULL will be returned.
Return type: bigint

● pg_autovac_coordinator(oid)
Description: Returns the name of the CN performing the autovac operation on
a table. If the table information is invalid or the node information is
abnormal, NULL will be returned.
Return type: text

● pgxc_get_wlm_session_info_bytime(text, timestamp without time zone,
timestamp without time zone, int)
Description: The query performance of the PGXC_WLM_SESSION_INFO view is
poor if the view contains a large number of records. In this case, you are
advised to use this function to filter the query. The input parameters are time
column (start_time or finish_time), start time, end time, and maximum
number of records returned for each CN. The return result is a subset of
records in the GS_WLM_SESSION_HISTORY view.
Return type: SETOF record

● pgxc_get_wlm_current_instance_info(text, int default null)
Description: Queries the current resource usage of each node in the cluster on
the CN and reads the data that is not stored in the
GS_WLM_INSTANCE_HISTORY system catalog in the memory. The input
parameters are the node name (ALL, C, D, or instance name) and the
maximum number of records returned by each node. The returned value is
GS_WLM_INSTANCE_HISTORY.
Return type: SETOF record

● pgxc_get_wlm_history_instance_info(text, TIMESTAMP, TIMESTAMP, int default
null)
Description: Queries the historical resource usage of each cluster node on the
CN node and reads data from the GS_WLM_INSTANCE_HISTORY system
catalog. The input parameters are as follows: node name (ALL, C, D, or
instance name), start time, end time, and maximum number of records
returned for each instance. The returned value is
GS_WLM_INSTANCE_HISTORY.
Return type: SETOF record

● pg_stat_get_last_data_changed_time(oid)
Description: Returns the time when INSERT, UPDATE, DELETE, or
EXCHANGE/TRUNCATE/DROP PARTITION was performed last time on a
table. The data in the last_data_changed column of the
PG_STAT_ALL_TABLES view is calculated by using this function. The

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 283



performance of obtaining the last modification time by using the view is poor
when the table has a large amount of data. In this case, you are advised to
use the function.
Return type: timestamptz

● pg_stat_set_last_data_changed_time(oid)
Description: Manually changes the time when INSERT, UPDATE, DELETE, or
EXCHANGE/TRUNCATE/DROP PARTITION was performed last time.
Return type: void

● pv_session_time()
Description: Collects statistics on the running time of each session thread on
the current node and the time consumed in each execution phase.
Return type: record

● pv_instance_time()
Description: Collects statistics on the running time of the current node and
the time consumed in each execution phase.
Return type: record

● pg_stat_get_activity(integer)
Description: Returns a record about the backend with the specified PID. A
record for each active backend in the system is returned if NULL is specified.
The return result is a subset of records (excluding the connection_info
column) in the PG_STAT_ACTIVITY view.
Return type: SETOF record

● pg_stat_get_activity_with_conninfo(integer)
Description: Returns a record about the backend with the specified PID. A
record for each active backend in the system is returned if NULL is specified.
The return result is a subset of records in the PG_STAT_ACTIVITY view.
Return type: SETOF record

● pg_user_iostat(text)
Description: Displays the I/O load management information about the job
currently executed by the user.
Return type: record
The following table describes return fields.

Name Type Description

userid oid User ID

min_curr_iop
s

int4 Minimum I/O of the current user across DNs.
The IOPS is counted by ones for column storage
and by thousands for row storage.

max_curr_iop
s

int4 Maximum I/O of the current user across DNs.
The IOPS is counted by ones for column storage
and by thousands for row storage.

min_peak_io
ps

int4 Minimum peak I/O of the current user across
DNs. The IOPS is counted by ones for column
storage and by thousands for row storage.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 284



Name Type Description

max_peak_io
ps

int4 Maximum peak I/O of the current user across
DNs. The IOPS is counted by ones for column
storage and by thousands for row storage.

io_limits int4 io_limits set for the resource pool specified by
the user. The IOPS is counted by ones for
column storage and by thousands for row
storage.

io_priority text io_priority set for the user. The IOPS is counted
by ones for column storage and by thousands
for row storage.

 

● pg_stat_get_function_calls(oid)

Description: Number of times the function has been called

Return type: bigint

● pg_stat_get_function_total_time(oid)

Description: Gets the total wall-clock time spent on a function, in
microseconds. The time spent on calling this function is included.

Return type: double precision

● pg_stat_get_function_self_time(oid)

Description: Gets the time spent only on this function in the current
transaction. The time spent on calling this function is not included.

Return type: double precision

● pg_stat_get_backend_idset()

Description: Set of currently active server process numbers (from 1 to the
number of active server processes)

Return type: SETOF integer

● pg_stat_get_backend_pid(integer)

Description: Thread ID of the given server thread

Return type: bigint
SELECT pg_stat_get_backend_pid(1);
 pg_stat_get_backend_pid 
-------------------------
         139706243217168
(1 row)

● pg_stat_get_backend_dbid(integer)

Description: ID of the database connected to the given server process

Return type: OID

● pg_stat_get_backend_userid(integer)

Description: User ID of the given server process

Return type: OID

● pg_stat_get_backend_activity(integer)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 285



Description: Active command of the given server process, but only if the
current user is a system administrator or the same user as that of the session
being queried and track_activities is on
Return type: text

● pg_stat_get_backend_waiting(integer)
Description: True if the given server process is waiting for a lock, but only if
the current user is a system administrator or the same user as that of the
session being queried and track_activities is on
Return type: boolean

● pg_stat_get_backend_activity_start(integer)
Description: The time at which the given server process's currently executing
query was started, but only if the current user is a system administrator or the
same user as that of the session being queried and track_activities is on
Return type: timestamp with time zone

● pg_stat_get_backend_xact_start(integer)
Description: The time at which the given server process's currently executing
transaction was started, but only if the current user is a system administrator
or the same user as that of the session being queried and track_activities is
on
Return type: timestamp with time zone

● pg_stat_get_backend_start(integer)
Description: The time at which the given server process was started, or NULL
if the current user is neither a system administrator nor the same user as that
of the session being queried
Return type: timestamp with time zone

● pg_stat_get_backend_client_addr(integer)
Description: IP address of the client connected to the given server process.
If the connection is over a Unix domain socket, or if the current user is neither
a system administrator nor the same user as that of the session being
queried, NULL will be returned.
Return type: inet
Note: An IP address used as an input parameter of this function cannot
contain periods (.). For example, 192.168.100.128 should be written as
192168100128.

● pg_stat_get_backend_client_port(integer)
Description: TCP port number of the client connected to the given server
process
If the connection is over a Unix domain socket, -1 will be returned. If the
current user is neither a system administrator nor the same user as that of
the session being queried, NULL will be returned.
Return type: integer

● pg_stat_get_bgwriter_timed_checkpoints()
Description: The number of times the background writer has started timed
checkpoints (because the checkpoint_timeout time has expired)
Return type: bigint

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 286



● pg_stat_get_bgwriter_requested_checkpoints()
Description: The number of times the background writer has started
checkpoints based on requests from the backend because
checkpoint_segments has been exceeded or the CHECKPOINT command has
been executed
Return type: bigint

● pg_stat_get_bgwriter_buf_written_checkpoints()
Description: The number of buffers written by the background writer during
checkpoints
Return type: bigint

● pg_stat_get_bgwriter_buf_written_clean()
Description: The number of buffers written by the background writer for
routine cleaning of dirty pages
Return type: bigint

● pg_stat_get_bgwriter_maxwritten_clean()
Description: The number of times the background writer has stopped its
cleaning scan because it has written more buffers than specified in the
bgwriter_lru_maxpages parameter
Return type: bigint

● pg_stat_get_buf_written_backend()
Description: The number of buffers written by the backend because they
needed to allocate a new buffer
Return type: bigint

● pg_stat_get_buf_alloc()
Description: The total number of buffer allocations
Return type: bigint

● pg_stat_clear_snapshot()
Description: Discards the current statistics snapshot.
Return type: void

● pg_stat_reset()
Description: Resets all statistics counters for the current database to zero
(requires system administrator permissions).
Return type: void

● pg_stat_reset_shared(text)
Description: Resets all statistics counters for the current database in each
node in a shared cluster to zero (requires system administrator permissions).
Return type: void

● pg_stat_reset_single_table_counters(oid)
Description: Resets statistics for a single table or index in the current database
to zero (requires system administrator permissions).
Return type: void

● pg_stat_reset_single_function_counters(oid)
Description: Resets statistics for a single function in the current database to
zero (requires system administrator permissions).

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 287



Return type: void
● pg_stat_session_cu(int, int, int)

Description: Obtains the compression unit (CU) hit statistics of sessions
running on the current node.
Return type: record

● gs_get_stat_session_cu(text, int, int, int)
Description: Obtains the CU hit statistics of all sessions running in a cluster.
Return type: record

● gs_get_stat_db_cu(text, text, int, int, int)
Description: Obtains the CU hit statistics of a database in a cluster.
Return type: record

● pg_stat_get_cu_mem_hit(oid)
Description: Obtains the number of CU memory hits of a column storage
table in the current database of the current node.
Return type: bigint

● pg_stat_get_cu_hdd_sync(oid)
Description: Obtains the times CU is synchronously read from a disk by a
column storage table in the current database of the current node.
Return type: bigint

● pg_stat_get_cu_hdd_asyn(oid)
Description: Obtains the times CU is asynchronously read from a disk by a
column storage table in the current database of the current node.
Return type: bigint

● pg_stat_get_db_cu_mem_hit(oid)
Description: Obtains the CU memory hit in a database of the current node.
Return type: bigint

● pg_stat_get_db_cu_hdd_sync(oid)
Description: Obtains the times CU is synchronously read from a disk by a
database of the current node.
Return type: bigint

● pg_stat_get_db_cu_hdd_asyn(oid)
Description: Obtains the times CU is asynchronously read from a disk by a
database of the current node.
Return type: bigint

● pgxc_fenced_udf_process()
Description: Shows the number of UDF Master and Work processes.
Return type: record

● pgxc_terminate_all_fenced_udf_process()
Description: Kills all UDF Work processes.
Return type: bool

● GS_ALL_NODEGROUP_CONTROL_GROUP_INFO(text)
Description: Provides Cgroup information for all logical clusters. Before
invoking this function, you need to specify the name of a logical cluster to be

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 288



queried. For example, to query the Cgroup information for the installation
logical cluster, run the following command:
SELECT * FROM GS_ALL_NODEGROUP_CONTROL_GROUP_INFO('installation')

Return type: record
The following table describes return fields.

Name Type Description

name text Name of a Cgroup

type text Type of the Cgroup

gid bigint Cgroup ID

classgid bigint ID of the Class Cgroup where a Workload
Cgroup belongs

class text Class Cgroup

workload text Workload Cgroup

shares bigint CPU quota allocated to a Cgroup

limits bigint Limit of CPUs allocated to a Cgroup

wdlevel bigint Workload Cgroup level

cpucores text Usage of CPU cores in a Cgroup

 
● gs_get_nodegroup_tablecount(name)

Description: Total number of user tables in all the databases in a logical
cluster
Return type: integer

● pgxc_max_datanode_size(name)
Description: Maximum disk space occupied by database files in all the DNs of
a logical cluster. The unit is byte.
Return type: bigint

● gs_check_logic_cluster_consistency()
Description: Checks whether the system information of all logical clusters in
the system is consistent. If no record is returned, the information is consistent.
Otherwise, the Node Group information on CNs and DNs in the logical cluster
is inconsistent. This function cannot be invoked during redistribution in a
scale-in or scale-out.
Return type: record

● gs_check_tables_distribution()
Description: Checks whether the user table distribution in the system is
consistent. If no record is returned, table distribution is consistent. This
function cannot be invoked during redistribution in a scale-in or scale-out.
Return type: record

● pg_stat_bad_block(text, int, int, int, int, int, timestamp with time zone,
timestamp with time zone)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 289



Description: Obtains damage information about pages or CUs after the
current node is started.
Return type: record

● pgxc_stat_bad_block(text, int, int, int, int, int, timestamp with time zone,
timestamp with time zone)
Description: Obtains damage information about pages or CUs after all the
nodes in the cluster are started.
Return type: record

● pg_stat_bad_block_clear()
Description: Deletes the page and CU damage information that is read and
recorded on the node. (System administrator rights are required.)
Return type: void

● pgxc_stat_bad_block_clear()
Description: Deletes the page and CU damage information that is read and
recorded on all the nodes in the cluster. (System administrator rights are
required.)
Return type: void

● gs_respool_exception_info(pool text)
Description: Queries for the query rule of a specified resource pool.
Return type: record

● gs_control_group_info(pool text)
Description: Queries for information about Cgroups associated with a resource
pool.
Return type: record
The following information is displayed:

Attribute Value Description

name class_a:workload_a
1

Class name and workload name

class class_a Class Cgroup name

workload workload_a1 Workload Cgroup name

type DEFWD Cgroup type (Top, CLASS,
BAKWD, DEFWD, and TSWD)

gid 87 Cgroup ID

shares 30 Percentage of CPU resources to
those on the parent node

limits 0 Percentage of CPU cores to
those on the parent node

rate 0 Allocation ratio in Timeshare

cpucores 0-3 Number of CPU cores

 

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 290



● gs_wlm_user_resource_info(name text)
Description: Queries for a user's resource quota and resource usage.
Return type: record

6.28 Trigger Functions
● pg_get_triggerdef(oid)

Description: Obtains the definition information of a trigger.
Parameter: OID of the trigger to be queried
Return type: text
Example:
select pg_get_triggerdef(oid) from pg_trigger;
                                                  pg_get_triggerdef
----------------------------------------------------------------------------------------------------------------------
 CREATE TRIGGER insert_trigger BEFORE INSERT ON test_trigger_src_tbl FOR EACH ROW EXECUTE 
PROCEDURE tri_insert_func()
(1 row)

● pg_get_triggerdef(oid, boolean)
Description: Obtains the definition information of a trigger.
Parameter: OID of the trigger to be queried and whether it is displayed in
pretty mode
Return type: text

NO TE

The Boolean parameters take effect only when the WHEN condition is specified during
trigger creation.

Example:
select pg_get_triggerdef(oid,true)from pg_trigger;
                                                  pg_get_triggerdef
----------------------------------------------------------------------------------------------------------------------
 CREATE TRIGGER insert_trigger BEFORE INSERT ON test_trigger_src_tbl FOR EACH ROW EXECUTE 
PROCEDURE tri_insert_func()
(1 row)

select pg_get_triggerdef(oid,false)from pg_trigger;
                                                  pg_get_triggerdef
----------------------------------------------------------------------------------------------------------------------
 CREATE TRIGGER insert_trigger BEFORE INSERT ON test_trigger_src_tbl FOR EACH ROW EXECUTE 
PROCEDURE tri_insert_func()
(1 row)

6.29 XML Functions

Generating XML Content
● XMLPARSE ( { DOCUMENT | CONTENT } value)

Description: Generates an XML value from character data.

Return type: XML

Example:

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 291



SELECT xmlparse(document '<foo>bar</foo>');
xmlparse
----------------
<foo>bar</foo>
(1 row)

● XMLSERIALIZE ( { DOCUMENT | CONTENT } value AS type

Description: Generates a string from XML values.

Return type: type, which can be character, character varying, or text (or its alias)

Example:

SELECT xmlserialize(content 'good' AS CHAR(10));
xmlserialize
--------------
good
(1 row)

● xmlcomment(text)

Description: Creates an XML note that uses the specified text as the content. The
text cannot contain two consecutive hyphens (--) or end with a hyphen (-). If the
parameter is null, the result is also null.

Return type: XML

Example:

SELECT xmlcomment('hello');
xmlcomment
--------------
<!--hello-->
(1 row)

● xmlconcat(xml[, ...])

Description: Concatenates a list of XML values into a single value. Null values are
ignored. If all parameters are null, the result is also null.

Return type: XML

Example:

SELECT xmlconcat('<abc/>', '<bar>foo</bar>');
xmlconcat
----------------------
<abc/><bar>foo</bar>
(1 row)

Note: If XML declarations exist and they are the same XML version, the result will
use the version. Otherwise, the result does not use any version. If all XML values
have the standalone attribute whose status is yes, the standalone attribute in the
result is yes. If at least one XML value's standalone attribute is no, the
standalone attribute in the result is no. Otherwise, the result does not contain the
standalone attribute.

Example:

SELECT xmlconcat('<?xml version="1.1"?><foo/>', '<?xml version="1.1" standalone="no"?><bar/>');
xmlconcat
-----------------------------------
<?xml version="1.1"?><foo/><bar/>
(1 row)

● xmlelement(name name [, xmlattributes(value [AS attname] [, ... ])] [,
content, ...])

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 292



Description: Generates an XML element with the given name, attribute, and
content.

Return type: XML

Example:

SELECT xmlelement(name foo, xmlattributes(current_date as bar), 'cont', 'ent');
xmlelement
-------------------------------------
<foo bar="2020-08-15">content</foo>
(1 row)

● xmlforest(content [AS name] [, ...])

Description: Generates an XML forest (sequence) of an element with a given name
and content.

Return type: XML

Example:

SELECT xmlforest('abc' AS foo, 123 AS bar);
xmlforest
------------------------------
<foo>abc</foo><bar>123</bar>
(1 row)

● xmlpi(name target [, content])

Description: Creates an XML processing instruction. The content cannot contain
the character sequence of ?>.

Return type: XML

Example:

SELECT xmlpi(name php, 'echo "hello world";');
xmlpi
-----------------------------
<?php echo "hello world";?>
(1 row)

● xmlroot(xml, version text | no value [, standalone yes|no|no value])

Description: Modifies the attributes of the root node of an XML value. If a version
is specified, it replaces the value in the version declaration of the root node. If a
standalone value is specified, it replaces the standalone value in the root node.

Return type: XML

Example:

SELECT xmlroot(xmlparse(document '<?xml version="1.0" standalone="no"?><content>abc</content>'), 
version '1.1', standalone yes);
xmlroot
--------------------------------------------------------------
<?xml version="1.1" standalone="yes"?><content>abc</content>
(1 row)

● xmlagg(xml)

Description: The xmlagg function is an aggregate function that concatenates
input values.

Return type: XML

Example:

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 293



CREATE TABLE test (y int, x xml);
INSERT INTO test VALUES (1, '<foo>abc</foo>');
INSERT INTO test VALUES (2, '<bar/>');
SELECT xmlagg(x) FROM test;
xmlagg
----------------------
<foo>abc</foo><bar/>
(1 row)

To determine the concatenation sequence, you can add an ORDER BY clause for
an aggregate call, for example:

SELECT xmlagg(x ORDER BY y DESC) FROM test;
xmlagg
----------------------
<bar/><foo>abc</foo>
(1 row)

XML Predicates
● xml IS DOCUMENT

Description: IS DOCUMENT returns true if the XML value of the parameter is a
correct XML document; if the XML document is incorrect, false is returned. If the
parameter is null, a null value is returned.

Return type: bool

● xml IS NOT DOCUMENT

Description: Returns true if the XML value of the parameter is not a correct XML
document. If the XML document is correct, false is returned. If the parameter is
null, a null value is returned.

Return type: bool

● XMLEXISTS(text PASSING [BY REF] xml [BY REF])

Description: If the xpath expression in the first parameter returns any node, the
XMLEXISTS function returns true. Otherwise, the function returns false. (If any
parameter is null, the result is null.) The BY REF clause is invalid and is used to
maintain SQL compatibility.

Return type: bool

Example:

SELECT xmlexists('//town[text() = ''Toronto'']' PASSING BY REF '<towns><town>Toronto</
town><town>Ottawa</town></towns>');
xmlexists
-----------
t
(1 row)

● xml_is_well_formed(text)

Description: Checks whether a text string is a well-formatted XML value and
returns a Boolean result. If the xmloption parameter is set to DOCUMENT, the
document is checked. If the xmloption parameter is set to CONTENT, the content
is checked.

Return type: bool

Example:

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 294



SELECT xml_is_well_formed('<abc/>');
xml_is_well_formed
--------------------
t
(1 row)

● xml_is_well_formed_document(text)

Description: Checks whether a text string is a well-formatted text and returns a
Boolean result.

Return type: bool

Example:

SELECT xml_is_well_formed_document('<test:foo xmlns:test="http://test.com/test">bar</test:foo>');
xml_is_well_formed_document
-----------------------------
t
(1 row)

● xml_is_well_formed_content(text)

Description: Checks whether a text string is a well-formatted content and returns
a Boolean result.

Return type: bool

Example:

SELECT xml_is_well_formed_content('content');
xml_is_well_formed_content
----------------------------
t
(1 row)

Processing XML
● xpath(xpath, xml [, nsarray])

Description: Returns an array of XML values corresponding to the set of nodes
produced by the xpath expression. If the xpath expression returns a scalar value
instead of a set of nodes, an array of individual elements is returned. The second
parameter xml must be a complete XML document, which must have a root node
element. The third parameter is an array map of a namespace. The array should
be a two-dimensional text array, and the length of the second dimension should
be 2. (It should be an array of arrays, each containing exactly two elements). The
first element of each array item is the alias of the namespace name, and the
second element is the namespace URI. The alias provided in this array does not
have to be the same as the alias used in the XML document itself. In other words,
in the context of both XML documents and xpath functions, aliases are local.

Return type: XML value array

Example:

SELECT xpath('/my:a/text()', '<my:a xmlns:my="http://example.com">test</my:a>', ARRAY[ARRAY['my', 
'http://example.com']]);
xpath
--------
{test}
(1 row)

● xpath_exists(xpath, xml [, nsarray])

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 295



Description: The xpath_exists function is a special form of the xpath function.
This function does not return an XML value that satisfies the xpath function; it
returns a Boolean value indicating whether the query is satisfied. This function is
equivalent to the standard XMLEXISTS predicate, but it also provides support for a
namespace mapping parameter.

Return type: bool

Example:

SELECT xpath_exists('/my:a/text()', '<my:a xmlns:my="http://example.com">test</my:a>', 
ARRAY[ARRAY['my', 'http://example.com']]);
xpath_exists
--------------
t
(1 row)

● xmltable

Description: Generates a table based on the input XML data, XPath expression,
and column definition. An xmltable is similar to a function in syntax, but it can
appear only as a table in the FROM clause of a query.

Return value: setof record

Syntax:

XMLTABLE ( [ XMLNAMESPACES ( namespace_uri AS namespace_name [,  ...] ), ]
                row_expression PASSING [ BY  { REF | VALUE } ]
document_expression [ BY  { REF | VALUE } ]
COLUMNS name  { type  [ PATH column_expression  ] [ DEFAULT default_expression ] [ NOT NULL | 
NULL ] | FOR ORDINALITY }
[, ...]
)

Parameter:

● The optional XMLNAMESPACES clause is a comma-separated list of
namespace definitions, where each namespace_uri is a text-type expression
and each namespace_name is a simple identifier. XMLNAMESPACES specifies
the XML namespaces used in the document and their aliases. The default
namespace declaration is not supported.

● The mandatory parameter row_expression is an XPath 1.0 expression. This
expression calculates the sequence of XML nodes based on the provided XML
document document_expression. The sequence is the sequence of converting
xmltable to output lines. If the document_expression value is NULL or an
empty node set generated by row_expression, no line is returned.

● The document_expression parameter is used to input an XML document. The
input document must be in the XML format. XML fragment data or XML
documents in incorrect format are not accepted. The BY REF and BY VALUE
clauses do not take effect. They are used only to implement SQL standard
compatibility.

● The COLUMNS clause specifies the column list definition in the output table.
The column name and column data type are mandatory, and the path,
default value, and whether the clause is empty are optional.
– column_expression of a column is an XPath 1.0 expression used to

calculate the value of the column extracted from the current row based
on row_expression. If column_expression is not specified, the field name
is used as an implicit path.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 296



– A column can be marked as NOT NULL. If column_expression in the
NOT NULL column does not return any data, and there is no DEFAULT
clause or the calculation result of default_expression is NULL, an error is
reported.

– The columns marked as FOR ORDINALITY are filled with row numbers
starting from 1. The sequence is the node sequence retrieved from the
row_expression result set. A maximum of one column can be marked as
FOR ORDINALITY.

NO TICE

XPath 1.0 does not specify the order for nodes, so the order in which
results are returned depends on the order in which data is obtained.

Example:

SELECT * FROM XMLTABLE('/ROWS/ROW'
PASSING '<ROWS><ROW id="1"><COUNTRY_ID>AU</COUNTRY_ID><COUNTRY_NAME>Australia</
COUNTRY_NAME></ROW><ROW id="2"><COUNTRY_ID>FR</COUNTRY_ID><COUNTRY_NAME>France</
COUNTRY_NAME></ROW><ROW id="3"><COUNTRY_ID>SG</
COUNTRY_ID><COUNTRY_NAME>Singapore</COUNTRY_NAME></ROW></ROWS>'
COLUMNS id INT PATH '@id',
_id FOR ORDINALITY,
country_id TEXT PATH 'COUNTRY_ID',
country_name TEXT PATH 'COUNTRY_NAME' NOT NULL);
id  |   _id  | country_id | country_name
----+-----+---------------+--------------
  1 |      1 | AU         | Australia
  2 |      2 | FR         | France
  3 |      3 | SG         | Singapore
(3 rows)

Mapping a Table to XML
● table_to_xml(tbl regclass, nulls boolean, tableforest boolean, targetns text)

Description: Maps the contents of a table to XML values.

Return type: XML

● table_to_xmlschema(tbl regclass, nulls boolean, tableforest boolean, targetns
text)

Description: Maps a relational table schema to an XML schema document.

Return type: XML

● table_to_xml_and_xmlschema(tbl regclass, nulls boolean, tableforest boolean,
targetns text)

Description: Maps a relational table to XML values and schema documents.

Return type: XML

● query_to_xml(query text, nulls boolean, tableforest boolean, targetns text)

Description: Maps the contents of an SQL query to XML values.

Return type: XML

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 297



● query_to_xmlschema(query text, nulls boolean, tableforest boolean, targetns
text)

Description: Maps an SQL query into an XML schema document.

Return type: XML

● query_to_xml_and_xmlschema(query text, nulls boolean, tableforest boolean,
targetns text)

Description: Maps SQL queries to XML values and schema documents.

Return type: XML

● cursor_to_xml(cursor refcursor, count int, nulls boolean, tableforest boolean,
targetns text)

Description: Maps a cursor query to an XML value.

Return type: XML

● cursor_to_xmlschema(cursor refcursor, nulls boolean, tableforest boolean,
targetns text)

Description: Maps a cursor query to an XML schema document.

Return type: XML

● schema_to_xml(schema name, nulls boolean, tableforest boolean, targetns
text)

Description: Maps a table in a schema to an XML value.

Return type: XML

● schema_to_xmlschema(schema name, nulls boolean, tableforest boolean,
targetns text)

Description: Maps a table in a schema to an XML schema document.

Return type: XML

● schema_to_xml_and_xmlschema(schema name, nulls boolean, tableforest
boolean, targetns text)

Description: Maps a table in a schema to an XML value and a schema document.

Return type: XML

● database_to_xml(nulls boolean, tableforest boolean, targetns text)

Description: Maps a database table to an XML value.

Return type: XML

● database_to_xmlschema(nulls boolean, tableforest boolean, targetns text)

Description: Maps a database table to an XML schema document.

Return type: XML

● database_to_xml_and_xmlschema(nulls boolean, tableforest boolean, targetns
text)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 298



Description: Maps database tables to XML values and schema documents.

Return type: XML

NO TE

The parameters for mapping a table to an XML value are described as follows:

● tbl: table name.

● nulls: indicates whether the output contains null values. If the value is true, the null
value in the column is <columnname xsi:nil="true"/>. If the value is false, the columns
containing null values are omitted from the output.

● tableforest: If this parameter is set to true, XML fragments are generated. If this
parameter is set to false, XML files are generated.

● targetns: specifies the XML namespace of the desired result. If this parameter is not
specified, an empty string is passed.

● query: SQL query statement

● cursor: cursor name

● count: amount of data obtained from the cursor

● schema: schema name

6.30 Call Stack Recording Functions
The pv_memory_profiling(type int) and environment variable MALLOC_CONF
are used by GaussDB(DWS) to control the enabling and disabling of the memory
allocation call stack recording module and the output of the memory call stack.
The following figure illustrates the process.

MALLOC_CONF

The environment variable MALLOC_CONF is used to enable the monitoring
module. It is in the ${BIGDATA_HOME}/mppdb/.mppdbgs_profile file and is
enabled by default. Note the following points:

● Restart the database after modifying this environment variable.
● If om_monitor is enabled in the cluster, restart the om_monitor process and

then the database after setting this environment variable, so that the setting
can take effect.

● This environment variable can be set on all servers in the cluster or on some
servers where the module needs to be enabled. For the GaussDB process, each
process determines whether to enable the module based on the
MALLOC_CONF environment variable.

Commands for enabling and disabling MALLOC_CONF:

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 299



● Enabling the monitoring module:
export MALLOC_CONF=prof:true

● Disabling the monitoring module:
export MALLOC_CONF=prof:false

pv_memory_profiling (type int)
Parameter description: Controls the backtrace recording and output of memory
allocation functions such as malloc in the kernel.

Value range: a positive integer from 0 to 3.

Table 6-22 Values and descriptions of pv_memory_profiling

pv_memory_profil
ing
Value

Description

0 Disables the memory trace function and does not record
information of call stacks such as malloc.

1 Enables the memory trace function to record information
of call stacks such as malloc.

2 Outputs trace logs of call stacks such as malloc.
● Output path: /proc/pid/cwd directory. pid indicates the

ID of the GaussDB process.
● Output log name format: jeprof.<pid>.*.heap, where

pid indicates the ID of the GaussDB process and *
indicates the unique sequence number of the output
trace log, for example, jeprof.195473.0.u0.heap.

3 Outputs memory statistics.
● Output path: /proc/pid/cwd directory. pid indicates the

ID of the GaussDB process.
● Log name format: Node name + Process ID + Time +

heap_stats + .out. You can use vim to open the file.

 

Return type: Boolean

Note:

● If the function is called successfully, true is returned. Otherwise, false is
returned.

● If Memory profiling failed, check if $MALLOC_CONF contain 'prof:true'. is
displayed, it indicates that the module is used when
MALLOC_CONF=prof:true is not set. In this case, you need to set the
environment variable.

● If Type %d is not supported. The valid range is 0-3. is displayed, the
parameter value is incorrect. The correct values are 0, 1, 2, and 3.

● If Memory profiling failed, inputed type is %d, failed number is %d. is
displayed, contact technical support for assistance.

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 300



Outputting Memory Call Stack Information

Procedure:

Step 1 Execute the following statement to output the memory call stack information and
output the trace file in the directory where the GaussDB process is located:
select * from pv_memory_profiling(2);

Step 2 Use the jeprof tool provided by jemalloc to parse log information.

Method 1: Output in text format.
jeprof --text --show_bytes $GAUSSHOME/bin/gaussdb trace file 1 >prof.txt

Method 2: Export the report in PDF format.

jeprof --pdf --show_bytes $GAUSSHOME/bin/gaussdb trace file 1 > prof.pdf

NO TE

● To parse the memory call stack information, you need to use the GaussDB source code
for analysis. You need to send the trace file to R&D engineers for analysis.

● To analyze the trace file, you need to use the jeprof tool, which is generated by
jemalloc. The Perl environment is required for using the tool. To generate PDF calling
diagrams, you need to install the Graphviz tool that matches the OS.

----End

Example
-- Log in as the system administrator, set environment variables, and start the database.
export MALLOC_CONF=prof:true

-- Disable the memory trace recording function when the database is running.
select pv_memory_profiling(0);
pv_memory_profiling
----------------------------
t
(1 row)

-- Enable the memory trace recording function when the database is running.
select pv_memory_profiling(1);
pv_memory_profiling
----------------------------
t
(1 row)

-- Output memory trace records.
select pv_memory_profiling(2);
pv_memory_profiling
----------------------------
t
(1 row)

-- Generate the trace file in text or PDF format in the directory where the GaussDB process is located.
jeprof --text --show_bytes $GAUSSHOME/bin/gaussdb trace file 1 >prof.txt
jeprof --pdf --show_bytes $GAUSSHOME/bin/gaussdb trace file 1 > prof.pdf

-- Output memory statistics.
Execute the following statement to generate the memory statistics file in the directory where the GaussDB 
process is located. The file can be directly read.
select pv_memory_profiling(3);
pv_memory_profiling
----------------------------
t
(1 row)

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 301



7 Expressions

7.1 Simple Expressions

Logical Expressions
Logical Operators lists the operators and calculation rules of logical expressions.

Comparative Expressions
Comparison Operators lists the common comparative operators.

In addition to comparative operators, you can also use the following sentence
structure:

● BETWEEN operator
a BETWEEN x AND y is equivalent to a >= x AND a <= y.
a NOT BETWEEN x AND y is equivalent to a < x OR a > y.

● To check whether a value is null, use:
expression IS NULL
expression IS NOT NULL
or an equivalent (non-standard) sentence structure:
expression ISNULL
expression NOTNULL

NO TICE

Do not write expression=NULL or expression<>(!=)NULL, because NULL
represents an unknown value, and these expressions cannot determine
whether two unknown values are equal.

Examples
SELECT 2 BETWEEN 1 AND 3 AS RESULT;
 result 

Data Warehouse Service
SQL Syntax 7 Expressions

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 302



----------
 t
(1 row)

SELECT 2 >= 1 AND 2 <= 3 AS RESULT;
 result 
----------
 t
(1 row)

SELECT 2 NOT BETWEEN 1 AND 3 AS RESULT;
 result 
----------
 f
(1 row)

SELECT 2 < 1 OR 2 > 3 AS RESULT;
 result 
----------
 f
(1 row)

SELECT 2+2 IS NULL AS RESULT;
 result 
----------
 f
(1 row)

SELECT 2+2 IS NOT NULL AS RESULT;
 result 
----------
 t
(1 row)

SELECT 2+2 ISNULL AS RESULT;
 result 
----------
 f
(1 row)

SELECT 2+2 NOTNULL AS RESULT;
 result 
----------
 t
(1 row)

SELECT 2+2 IS DISTINCT FROM NULL AS RESULT;
 result 
----------
 t
(1 row)

SELECT 2+2 IS NOT DISTINCT FROM NULL AS RESULT;
 result  
----------
 f
(1 row)

7.2 Conditional Expressions
Data that meets the requirements specified by conditional expressions are filtered
during SQL statement execution.

Conditional expressions include the following types:

● CASE

Data Warehouse Service
SQL Syntax 7 Expressions

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 303



CASE expressions are similar to the CASE statements in other coding
languages.

Figure 7-1 shows the syntax of a CASE expression.

Figure 7-1 case::=

A CASE clause can be used in a valid expression. condition is an expression
that returns a value of Boolean type.

– If the result is true, the result of the CASE expression is the required
result.

– If the result is false, the following WHEN or ELSE clauses are processed in
the same way.

– If every WHEN condition is false, the result of the expression is the result
of the ELSE clause. If the ELSE clause is omitted and has no match
condition, the result is NULL.

Examples:
CREATE TABLE tpcds.case_when_t1(CW_COL1 INT)  DISTRIBUTE BY HASH (CW_COL1);

INSERT INTO tpcds.case_when_t1 VALUES (1), (2), (3);

SELECT * FROM tpcds.case_when_t1;
 a 
---
 1
 2
 3
(3 rows)

SELECT CW_COL1, CASE WHEN CW_COL1=1 THEN 'one' WHEN CW_COL1=2 THEN 'two' ELSE 'other' 
END FROM tpcds.case_when_t1;
 a | case  
---+-------
 3 | other
 1 | one
 2 | two
(3 rows)

DROP TABLE tpcds.case_when_t1;

● DECODE

Figure 7-2 shows the syntax of a DECODE expression.

Figure 7-2 decode::=

Data Warehouse Service
SQL Syntax 7 Expressions

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 304



Compare each following compare(n) with base_expr, value(n) is returned if
a compare(n) matches the base_expr expression. If base_expr does not
match each compare(n), the default value is returned.
Conditional Expression Functions describes the examples.
SELECT DECODE('A','A',1,'B',2,0);
 case 
------
    1
(1 row)

● COALESCE
Figure 7-3 shows the syntax of a COALESCE expression.

Figure 7-3 coalesce::=

COALESCE returns its first non-NULL value. If all the arguments are NULL,
return NULL. This value is replaced by the default value when data is
displayed. Like a CASE expression, COALESCE only evaluates the parameters
that are needed to determine the result. That is, parameters to the right of
the first non-null parameter are not evaluated.
Example:
CREATE TABLE tpcds.c_tabl(description varchar(10), short_description varchar(10), last_value 
varchar(10)) 
DISTRIBUTE BY HASH (last_value);

INSERT INTO tpcds.c_tabl VALUES('abc', 'efg', '123');
INSERT INTO tpcds.c_tabl VALUES(NULL, 'efg', '123');

INSERT INTO tpcds.c_tabl VALUES(NULL, NULL, '123');

SELECT description, short_description, last_value, COALESCE(description, short_description, last_value) 
FROM tpcds.c_tabl ORDER BY 1, 2, 3, 4;
 description | short_description | last_value | coalesce
-------------+-------------------+------------+----------
 abc         | efg               | 123        | abc
             | efg               | 123        | efg
             |                   | 123        | 123
(3 rows)

DROP TABLE tpcds.c_tabl;

If description is not NULL, the value of description is returned. Otherwise,
parameter short_description is calculated. If short_description is not NULL,
the value of short_description is returned. Otherwise, parameter last_value
is calculated. If last_value is not NULL, the value of last_value is returned.
Otherwise, none is returned.
SELECT COALESCE(NULL,'Hello World');
   coalesce    
---------------
 Hello World
(1 row)

● NULLIF
Figure 7-4 shows the syntax of a NULLIF expression.

Data Warehouse Service
SQL Syntax 7 Expressions

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 305



Figure 7-4 nullif::=

Only if value1 is equal to value2 can NULLIF return the NULL value.
Otherwise, value1 is returned.
Examples
CREATE TABLE tpcds.null_if_t1 (
    NI_VALUE1 VARCHAR(10),
    NI_VALUE2 VARCHAR(10)
)  DISTRIBUTE BY HASH (NI_VALUE1);

INSERT INTO tpcds.null_if_t1 VALUES('abc', 'abc');
INSERT INTO tpcds.null_if_t1 VALUES('abc', 'efg');

SELECT NI_VALUE1, NI_VALUE2, NULLIF(NI_VALUE1, NI_VALUE2) FROM tpcds.null_if_t1 ORDER BY 1, 
2, 3;

 ni_value1 | ni_value2 | nullif 
-----------+-----------+--------
 abc       | abc       | 
 abc       | efg       | abc
(2 rows)
DROP TABLE tpcds.null_if_t1;

If value1 is equal to value2, NULL is returned. Otherwise, value1 is returned.
SELECT NULLIF('Hello','Hello World');
 nullif 
--------
 Hello
(1 row)

● GREATEST (maximum value) and LEAST (minimum value)
Figure 7-5 shows the syntax of a GREATEST expression.

Figure 7-5 greatest::=

You can select the maximum value from any numerical expression list.
SELECT greatest(9000,155555,2.01);
 greatest 
----------
   155555
(1 row)

Figure 7-6 shows the syntax of a LEAST expression.

Figure 7-6 least::=

Data Warehouse Service
SQL Syntax 7 Expressions

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 306



You can select the minimum value from any numerical expression list.

Each of the preceding numeric expressions can be converted into a common
data type, which will be the data type of the result.

The NULL values in the list will be ignored. The result is NULL only if the
results of all expressions are NULL.
SELECT least(9000,2);
 least 
-------
     2
(1 row)

Conditional Expression Functions describes the examples.

● NVL

Figure 7-7 shows the syntax of an NVL expression.

Figure 7-7 nvl::=

If the value of value1 is NULL, value2 is returned. Otherwise, value1 is
returned.

For example:
SELECT nvl(null,1);
NVL 
-----
 1
(1 row)
SELECT nvl ('Hello World' ,1);
      nvl      
---------------
 Hello World
(1 row)

● IF

Figure 7-8 shows the syntax of an IF expression.

Figure 7-8 if::=

If the value of bool_expr is true, expr1 is returned. Otherwise, expr2 is
returned.

Conditional Expression Functions describes the examples.

● IFNULL

Figure 7-9 shows the syntax of a NULLIF expression.

Data Warehouse Service
SQL Syntax 7 Expressions

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 307



Figure 7-9 ifnull::=

Only if value1 is equal to value2 can NULLIF return the NULL value.
Otherwise, value1 is returned.
Conditional Expression Functions describes the examples.

7.3 Subquery Expressions
Subquery expressions include the following types:

● EXISTS/NOT EXISTS
Figure 7-10 shows the syntax of an EXISTS/NOT EXISTS expression.

Figure 7-10 EXISTS/NOT EXISTS::=

The parameter of an EXISTS expression is an arbitrary SELECT statement, or
subquery. The subquery is evaluated to determine whether it returns any
rows. If it returns at least one row, the result of EXISTS is "true". If the
subquery returns no rows, the result of EXISTS is "false".
The subquery will generally only be executed long enough to determine
whether at least one row is returned, not all the way to completion.
For example:
SELECT sr_reason_sk,sr_customer_sk FROM tpcds.store_returns WHERE EXISTS (SELECT d_dom FROM 
tpcds.date_dim WHERE d_dom = store_returns.sr_reason_sk and sr_customer_sk <10);
sr_reason_sk | sr_customer_sk 
--------------+----------------
           13 |              2
           22 |              5
           17 |              7
           25 |              7
            3 |              7
           31 |              5
            7 |              7
           14 |              6
           20 |              4
            5 |              6
           10 |              3
            1 |              5
           15 |              2
            4 |              1
           26 |              3
(15 rows)

● IN/NOT IN

Data Warehouse Service
SQL Syntax 7 Expressions

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 308



Figure 7-11 shows the syntax of an IN/NOT IN expression.

Figure 7-11 IN/NOT IN::=

The right-hand side is a parenthesized subquery, which must return exactly
one column. The left-hand expression is evaluated and compared to each row
of the subquery result. The result of IN is "true" if any equal subquery row is
found. The result is "false" if no equal row is found (including the case where
the subquery returns no rows).
This is in accordance with SQL's normal rules for Boolean combinations of
null values. If the columns corresponding to two rows equal and are not
empty, the two rows are equal to each other. If any columns corresponding to
the two rows do not equal and are not empty, the two rows are not equal to
each other. Otherwise, the result is NULL. If there are no equal right-hand
values and at least one right-hand row yields null, the result of IN will be null,
not false.
For example:
 SELECT sr_reason_sk,sr_customer_sk  FROM tpcds.store_returns WHERE sr_customer_sk IN (SELECT 
d_dom FROM tpcds.date_dim WHERE d_dom < 10);
sr_reason_sk | sr_customer_sk 
--------------+----------------
           10 |              3
           26 |              3
           22 |              5
           31 |              5
            1 |              5
           32 |              5
           32 |              5
            4 |              1
           15 |              2
           13 |              2
           33 |              4
           20 |              4
           33 |              8
            5 |              6
           14 |              6
           17 |              7
            3 |              7
           25 |              7
            7 |              7
(19 rows)

● ANY/SOME
Figure 7-12 shows the syntax of an ANY/SOME expression.

Figure 7-12 any/some::=

Data Warehouse Service
SQL Syntax 7 Expressions

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 309



The right-hand side is a parenthesized subquery, which must return exactly
one column. The left-hand expression is evaluated and compared to each row
of the subquery result using the given operator, which must yield a Boolean
result. The result of ANY is "true" if any true result is obtained. The result is
"false" if no true result is found (including the case where the subquery
returns no rows). SOME is a synonym of ANY. IN can be equivalently replaced
with ANY.
For example:
SELECT sr_reason_sk,sr_customer_sk  FROM tpcds.store_returns WHERE sr_customer_sk < ANY 
(SELECT d_dom FROM tpcds.date_dim WHERE d_dom < 10);
sr_reason_sk | sr_customer_sk 
--------------+----------------
           26 |              3
           17 |              7
           32 |              5
           32 |              5
           13 |              2
           31 |              5
           25 |              7
            5 |              6
            7 |              7
           10 |              3
            1 |              5
           14 |              6
            4 |              1
            3 |              7
           22 |              5
           33 |              4
           20 |              4
           33 |              8
           15 |              2
(19 rows)

● ALL
Figure 7-13 shows the syntax of an ALL expression.

Figure 7-13 all::=

The right-hand side is a parenthesized subquery, which must return exactly
one column. The left-hand expression is evaluated and compared to each row
of the subquery result using the given operator, which must yield a Boolean
result. The result of ALL is "true" if all rows yield true (including the case
where the subquery returns no rows). The result is "false" if any false result is
found.
Example:
SELECT sr_reason_sk,sr_customer_sk  FROM tpcds.store_returns WHERE sr_customer_sk < all(SELECT 
d_dom FROM tpcds.date_dim WHERE d_dom < 10);
 sr_reason_sk | sr_customer_sk 
--------------+----------------
(0 rows)

Data Warehouse Service
SQL Syntax 7 Expressions

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 310



7.4 Array Expressions

IN
expression IN (value [, ...])

The parentheses on the right contain an expression list. The expression result on
the left is compared with the content in the expression list. If the content in the
list meets the expression result on the left, the result of IN is true. If no result
meets the requirements, the result of IN is false.

Example:

SELECT 8000+500 IN (10000, 9000) AS RESULT;
  result 
----------
 f
(1 row)

NO TE

If the expression result is null or the expression list does not meet the expression conditions
and at least one empty value is returned for the expression list on the right, the result of IN
is null rather than false. This method is consistent with the Boolean rules used when SQL
statements return empty values.

NOT IN
expression NOT IN (value [, ...])

The parentheses on the right contain an expression list. The expression result on
the left is compared with the content in the expression list. If the content in the
list does not meet the expression result on the left, the result of NOT IN is true. If
any content meets the expression result, the result of NOT IN is false.

Example:

SELECT 8000+500 NOT IN (10000, 9000) AS RESULT;
  result 
----------
 t
(1 row)

NO TE

If the query statement result is null or the expression list does not meet the expression
conditions and at least one empty value is returned for the expression list on the right, the
result of NOT IN is null rather than false. This method is consistent with the Boolean rules
used when SQL statements return empty values.

In all situations, X NOT IN Y equals to NOT(X IN Y).

ANY/SOME (array)
expression operator ANY (array expression)

expression operator SOME (array expression)
SELECT 8000+500 < SOME (array[10000,9000]) AS RESULT;
  result 

Data Warehouse Service
SQL Syntax 7 Expressions

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 311



----------
 t
(1 row)
SELECT 8000+500 < ANY (array[10000,9000]) AS RESULT;
  result 
----------
 t
(1 row)

The parentheses on the right contain an array expression, which must generate an
array value. The result of the expression on the left uses operators to compute and
compare the results in each row of the array expression. The comparison result
must be a Boolean value.

● If at least one comparison result is true, the result of ANY is true.
● If no comparison result is true, the result of ANY is false.

NO TE

If no comparison result is true and the array expression generates at least one null value,
the value of ANY is NULL, rather than false. This method is consistent with the Boolean
rules used when SQL statements return empty values.

SOME is a synonym of ANY.

ALL (array)
expression operator ALL (array expression)

The parentheses on the right contain an array expression, which must generate an
array value. The result of the expression on the left uses operators to compute and
compare the results in each row of the array expression. The comparison result
must be a Boolean value.

● The result of ALL is "true" if all comparisons yield true (including the case
where the array has zero elements).

● The result is false if any false result is found.

If the array expression yields a null array, the result of ALL will be null. If the left-
hand expression yields null, the result of ALL is ordinarily null (though a non-strict
comparison operator could possibly yield a different result). Also, if the right-hand
array contains any null elements and no false comparison result is obtained, the
result of ALL will be null, not true (again, assuming a strict comparison operator).
This method is consistent with the Boolean rules used when SQL statements
return empty values.
SELECT 8000+500 < ALL (array[10000,9000]) AS RESULT;
  result
----------
 t
(1 row)

7.5 Row Expressions
Syntax:

row_constructor operator row_constructor

Both sides of the row expression are row constructors. The values of both rows
must have the same number of fields and they are compared with each other. The

Data Warehouse Service
SQL Syntax 7 Expressions

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 312



row comparison allows operators including =, <>, <, <=, and >= or a similar
operator.

The use of operators =<> is slightly different from other operators. If all fields of
two rows are not empty and equal, the two rows are equal. If any field in two
rows is not empty and not equal, the two rows are not equal. Otherwise, the
comparison result is null.

For operators <, <=, >, and > =, the fields in rows are compared from left to right
until a pair of fields that are not equal or are empty are detected. If the pair of
fields contains at least one null value, the comparison result is null. Otherwise, the
comparison result of this pair of fields is the final result.

For example:

SELECT ROW(1,2,NULL) < ROW(1,3,0) AS RESULT;
  result
----------
 t
(1 row)

Data Warehouse Service
SQL Syntax 7 Expressions

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 313



8 Type Conversion

8.1 Overview

Context
SQL is a typed language. That is, every data item has an associated data type
which determines its behavior and allowed usage. GaussDB(DWS) has an
extensible type system that is more general and flexible than other SQL
implementations. Hence, most type conversion behavior in GaussDB(DWS) is
governed by general rules. This allows the use of mixed-type expressions.

The GaussDB(DWS) scanner/parser divides lexical elements into five fundamental
categories: integers, floating-point numbers, strings, identifiers, and keywords.
Constants of most non-numeric types are first classified as strings. The SQL
language definition allows specifying type names with constant strings. For
example, the query:

SELECT text 'Origin' AS "label", point '(0,0)' AS "value";
 label  | value
--------+-------
 Origin | (0,0)
(1 row)

has two literal constants, of type text and point. If a type is not specified for a
string literal, then the placeholder type unknown is assigned initially.

There are four fundamental SQL constructs requiring distinct type conversion rules
in the GaussDB(DWS) parser:

● Function calls
Much of the SQL type system is built around a rich set of functions. Functions
can have one or more arguments. Since SQL permits function overloading, the
function name alone does not uniquely identify the function to be called. The
parser must select the right function based on the data types of the supplied
arguments.

● Operators
SQL allows expressions with prefix and postfix unary (one-argument)
operators, as well as binary (two-argument) operators. Like functions,

Data Warehouse Service
SQL Syntax 8 Type Conversion

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 314



operators can be overloaded, so the same problem of selecting the right
operator exists.

● Value Storage
SQL INSERT and UPDATE statements place the results of expressions into a
table. The expressions in the statement must be matched up with, and
perhaps converted to, the types of the target columns.

● UNION, CASE, and related constructs
Since all query results from a unionized SELECT statement must appear in a
single set of columns, the types of the results of each SELECT clause must be
matched up and converted to a uniform set. Similarly, the result expressions
of a CASE construct must be converted to a common type so that the CASE
expression as a whole has a known output type. The same holds for ARRAY
constructs, and for the GREATEST and LEAST functions.

The system catalog pg_cast stores information about which conversions, or casts,
exist between which data types, and how to perform those conversions. For
details, see PG_CAST.

The return type and conversion behavior of an expression are determined during
semantic analysis. Data types are divided into several basic type categories,
including boolean, numeric, string, bitstring, datetime, timespan, geometric,
and network. Within each category there can be one or more preferred types,
which are preferred when there is a choice of possible types. With careful selection
of preferred types and available implicit casts, it is possible to ensure that
ambiguous expressions (those with multiple candidate parsing solutions) can be
resolved in a useful way.

All type conversion rules are designed based on the following principles:

● Implicit conversions should never have surprising or unpredictable outcomes.
● There should be no extra overhead in the parser or executor if a query does

not need implicit type conversion. That is, if a query is well-formed and the
types already match, then the query should execute without spending extra
time in the parser and without introducing unnecessary implicit conversion
calls in the query.

● Additionally, if a query usually requires an implicit conversion for a function,
and if then the user defines a new function with the correct argument types,
the parser should use this new function.

Converting Empty Strings to Numeric Values in TD-Compatible Mode
● Different from the Oracle database, which processes an empty string as NULL,

Teradata database converts an empty string to 0 by default. Therefore, when
an empty string is queried, value 0 is found. Similarly, in TD-compatible mode,
the empty string is converted to 0 of the corresponding numeric type by
default. In addition, '-', '+', and ' ' are converted to 0 by default in TD-
compatible mode, but an error is reported for a decimal point string. Example:
create table t1(no int,col varchar);
insert into t1 values(1,'');
insert into t1 values(2,null);
select * from t1 where col is null;
 no | col
----+-----
  2 |
(1 row)

Data Warehouse Service
SQL Syntax 8 Type Conversion

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 315



select * from t1 where col='';
 no | col
----+-----
 1 |
(1 row)

● The method of converting an empty string into a numeric value in MySQL-
compatible mode is the same as that in TD-compatible mode.

8.2 Operators
Operator Type Resolution

1. Select the operators to be considered from the pg_operator system catalog.
Considered operators are those with the matching name and argument count.
If the search path finds multiple available operators, only the most suitable
one is considered.

2. Look for the best match.
a. Discard candidate operators for which the input types do not match and

cannot be converted (using an implicit conversion) to match. unknown
literals are assumed to be convertible to anything for this purpose. If only
one candidate remains, use it; else continue to the next step.

b. Run through all candidates and keep those with the most exact matches
on input types. Domains are considered the same as their base type for
this purpose. Keep all candidates if there are no exact matches. If only
one candidate remains, use it; else continue to the next step.

c. Run through all candidates and keep those that accept preferred types
(of the input data type's type category) at the most positions where type
conversion will be required. Keep all candidates if none accepts preferred
types. If only one candidate remains, use it; else continue to the next
step.

d. If any input arguments are of unknown types, check the type categories
accepted at those argument positions by the remaining candidates. At
each position, select the string category if any candidate accepts that
category. (This bias towards string is appropriate since an unknown-type
literal looks like a string.) Otherwise, if all the remaining candidates
accept the same type category, select that category; otherwise fail
because the correct choice cannot be deduced without more clues. Now
discard candidates that do not accept the selected type category.
Furthermore, if any candidate accepts a preferred type in that category,
discard candidates that accept non-preferred types for that argument.
Keep all candidates if none survives these tests. If only one candidate
remains, use it; else continue to the next step.

e. If there are both unknown and known-type arguments, and all the
known-type arguments have the same type, assume that the unknown
arguments are also of that type, and check which candidates can accept
that type at the unknown-argument positions. If exactly one candidate
passes this test, use it. Otherwise, an error is reported.

Examples
Example 1: factorial operator type resolution. There is only one factorial operator
(postfix !) defined in the system catalog, and it takes an argument of type bigint.

Data Warehouse Service
SQL Syntax 8 Type Conversion

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 316



The scanner assigns an initial type of bigint to the argument in this query
expression:
SELECT 40 ! AS "40 factorial";

                   40 factorial
--------------------------------------------------
 815915283247897734345611269596115894272000000000
(1 row)

So the parser does a type conversion on the operand and the query is equivalent
to:
SELECT CAST(40 AS bigint) ! AS "40 factorial";

Example 2: string concatenation operator type resolution. A string-like syntax is
used for working with string types and for working with complex extension types.
Strings with unspecified type are matched with likely operator candidates. An
example with one unspecified argument:
SELECT text 'abc' || 'def' AS "text and unknown";
 text and unknown
------------------
 abcdef
(1 row)

In this example, the parser looks for an operator whose parameters are of the text
type. Such an operator is found.

Here is a concatenation of two values of unspecified types:
SELECT 'abc' || 'def' AS "unspecified";
 unspecified
-------------
 abcdef
(1 row)

NO TE

In this case there is no initial hint for which type to use, since no types are specified in the
query. So, the parser looks for all candidate operators and finds that there are candidates
accepting both string-category and bit-string-category inputs. Since string category is
preferred when available, that category is selected, and then the preferred type for strings,
text, is used as the specific type to resolve the unknown-type literals.

Example 3: absolute-value and negation operator type resolution. The
GaussDB(DWS) operator catalog has several entries for the prefix operator @. All
the entries implement absolute-value operations for various numeric data types.
One of these entries is for type float8, which is the preferred type in the numeric
category. Therefore, GaussDB(DWS) will use that entry when faced with an
unknown input:
SELECT @ '-4.5' AS "abs";
 abs
-----
 4.5
(1 row)

Here the system has implicitly resolved the unknown-type literal as type float8
before applying the chosen operator.

Example 4: array inclusion operator type resolution. The following is an example
of resolving an operator with one known and one unknown input:
SELECT array[1,2] <@ '{1,2,3}' as "is subset";
 is subset

Data Warehouse Service
SQL Syntax 8 Type Conversion

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 317



-----------
 t
(1 row)

NO TE

In the pg_operator table of GaussDB(DWS), several entries correspond to the infix operator
<@, but the only two that may accept an integer array on the left-hand side are array
inclusion (anyarray <@ anyarray) and range inclusion (anyelement <@ anyrange).
Because none of these polymorphic pseudo-types (see Pseudo-Types) is considered
preferred, the parser cannot resolve the ambiguity on that basis. However, 2.e tells it to
assume that the unknown-type literal is of the same type as the other input, that is, integer
array. Now only one of the two operators can match, so array inclusion is selected. (If you
select range inclusion, an error will be reported because the string does not have the right
format to be a range literal.)

8.3 Functions

Function Type Resolution
1. Select the functions to be considered from the pg_proc system catalog. If a

non-schema-qualified function name was used, the functions in the current
search path are considered. If a qualified function name was given, only
functions in the specified schema are considered.
If the search path finds multiple functions of different argument types, a
proper function in the path is considered.

2. Check for a function accepting exactly the input argument types. If the
function exists, use it. Cases involving unknown will never find a match at
this step.

3. If no exact match is found, see if the function call appears to be a special type
conversion request.

4. Look for the best match.

a. Discard candidate functions for which the input types do not match and
cannot be converted (using an implicit conversion) to match. unknown
literals are assumed to be convertible to anything for this purpose. If only
one candidate remains, use it; else continue to the next step.

b. Run through all candidates and keep those with the most exact matches
on input types. Domains are considered the same as their base type for
this purpose. Keep all candidates if none has exact matches. If only one
candidate remains, use it; else continue to the next step.

c. Run through all candidates and keep those that accept preferred types at
the most positions where type conversion will be required. Keep all
candidates if none accepts preferred types. If only one candidate remains,
use it; else continue to the next step.

d. If any input arguments are of unknown types, check the type categories
accepted at those argument positions by the remaining candidates. At
each position, select the string category if any candidate accepts that
category. (This bias towards string is appropriate since an unknown-type
literal looks like a string.) Otherwise, if all the remaining candidates
accept the same type category, select that category; otherwise fail
because the correct choice cannot be deduced without more clues. Now
discard candidates that do not accept the selected type category.

Data Warehouse Service
SQL Syntax 8 Type Conversion

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 318



Furthermore, if any candidate accepts a preferred type in that category,
discard candidates that accept non-preferred types for that argument.
Keep all candidates if none survives these tests. If only one candidate
remains, use it; else continue to the next step.

e. If there are both unknown and known-type arguments, and all the
known-type arguments have the same type, assume that the unknown
arguments are also of that type, and check which candidates can accept
that type at the unknown-argument positions. If exactly one candidate
passes this test, use it. Otherwise, fail.

Examples

Example 1: Use the rounding function argument type resolution as the first
example. There is only one round function that takes two arguments; it takes a
first argument of type numeric and a second argument of type integer. So the
following query automatically converts the first argument of type integer to
numeric:

SELECT round(4, 4);
 round
--------
 4.0000
(1 row)

That query is converted by the parser to:

SELECT round(CAST (4 AS numeric), 4);

Since numeric constants with decimal points are initially assigned the type
numeric, the following query will require no type conversion and therefore might
be slightly more efficient:

SELECT round(4.0, 4);

Example 2: Use the substring function type resolution as the second example.
There are several substr functions, one of which takes types text and integer. If
called with a string constant of unspecified type, the system chooses the candidate
function that accepts an argument of the preferred category string (namely of
type text).

SELECT substr('1234', 3);
 substr
--------
     34
(1 row)

If the string is declared to be of type varchar, as might be the case if it comes
from a table, then the parser will try to convert it to become text:

SELECT substr(varchar '1234', 3);
 substr
--------
     34
(1 row)

This is transformed by the parser to effectively become:

SELECT substr(CAST (varchar '1234' AS text), 3);

Data Warehouse Service
SQL Syntax 8 Type Conversion

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 319



NO TE

The parser learns from the pg_cast catalog that text and varchar are binary-compatible,
meaning that one can be passed to a function that accepts the other without doing any
physical conversion. Therefore, no type conversion is inserted in this case.

And, if the function is called with an argument of type integer, the parser will try
to convert that to text:

SELECT substr(1234, 3);
substr
--------
 34
(1 row)

This is transformed by the parser to effectively become:

SELECT substr(CAST (1234 AS text), 3);
 substr
--------
     34
(1 row)

8.4 Value Storage

Value Storage Type Resolution
1. Search for an exact match with the target column.
2. Try to convert the expression to the target type. This will succeed if there is a

registered cast between the two types. If the expression is an unknown-type
literal, the content of the literal string will be fed to the input conversion
routine for the target type.

3. Check to see if there is a sizing cast for the target type. A sizing cast is a cast
from that type to itself. If one is found in the pg_cast catalog, apply it to the
expression before storing into the destination column. The implementation
function for such a cast always takes an extra parameter of type integer. The
parameter receives the destination column's atttypmod value (typically its
declared length, although the interpretation of atttypmod varies for different
data types), and may take a third boolean parameter that says whether the
cast is explicit or implicit. The cast function is responsible for applying any
length-dependent semantics such as size checking or truncation.

Examples
Use the character storage type conversion as an example. For a target column
declared as character(20) the following statement shows that the stored value is
sized correctly:
CREATE TABLE x1
(
    customer_sk             integer,
    customer_id             char(20),
    first_name              char(6),
    last_name               char(8)
)
with (orientation = column,compression=middle)
distribute by hash (last_name);

INSERT INTO x1(customer_sk, customer_id, first_name) VALUES (3769, 'abcdef', 'Grace');

Data Warehouse Service
SQL Syntax 8 Type Conversion

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 320



SELECT customer_id, octet_length(customer_id) FROM x1;
     customer_id      | octet_length 
----------------------+--------------
 abcdef               |           20
(1 row)
DROP TABLE x1;

NO TE

What has really happened here is that the two unknown literals are resolved to text by
default, allowing the || operator to be resolved as text concatenation. Then the text result
of the operator is converted to bpchar ("blank-padded char", the internal name of the
character data type) to match the target column type. Since the conversion from text to
bpchar is binary-coercible, this conversion does not insert any real function call. Finally, the
sizing function bpchar(bpchar, integer, boolean) is found in the system catalog and used
for the operator's result and the stored column length. This type-specific function performs
the required length check and addition of padding spaces.

8.5 UNION, CASE, and Related Constructs
SQL UNION constructs must match up possibly dissimilar types to become a single
result set. Since all query results from a SELECT UNION statement must appear in
a single set of columns, the types of the results of each SELECT clause must be
matched up and converted to a uniform set. Similarly, the result expressions of a
CASE construct must be converted to a common type so that the CASE expression
as a whole has a known output type. The same holds for ARRAY constructs, and
for the GREATEST and LEAST functions.

Type Resolution for UNION, CASE, and Related Constructs
● If all inputs are of the same type, and it is not unknown, resolve as that type.
● If all inputs are of type unknown, resolve as type text (the preferred type of

the string category). Otherwise, unknown inputs are ignored.
● If the non-unknown inputs are not all of the same type category, fail. (Type

unknown is not included.)
● If the non-unknown inputs are all of the same type category, choose the first

non-unknown input type which is a preferred type in that category, if there is
one. (Exception: The UNION operation regards the type of the first branch as
the selected type.)

NO TE

typcategory in the pg_type system catalog indicates the data type category.
typispreferred indicates whether a type is preferred in typcategory.

● All the input is converted to the selected type. (The original length of a string
is retained). Fail if there is not an implicit conversion from a given input to the
selected type.

● If the input contains the json, txid_snapshot, sys_refcursor, or geometry type,
UNION cannot be performed.

Type Resolution for CASE, COALESCE, IF, and IFNULL in TD-Compatible Mode
● If all inputs are of the same type, and it is not unknown, resolve as that type.
● If all inputs are of type unknown, resolve as type text.

Data Warehouse Service
SQL Syntax 8 Type Conversion

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 321



● If inputs are of string type (including unknown which is resolved as type
text) and digit type, resolve as the string type. If the inputs are not of the two
types, fail.

● If the non-unknown inputs are all of the same type category, choose the input
type which is a preferred type in that category, if there is one.

● Convert all inputs to the selected type. Fail if there is not an implicit
conversion from a given input to the selected type.

Type Resolution for CASE, COALESCE, IF, and IFNULL in MySQL-Compatible
Mode

● If all inputs are of the same type, and it is not unknown, resolve as that type.
● If all inputs are of type unknown, resolve as type text.
● If some inputs are of type unknown and the others are of a non-unknown

type, resolve as that non-unknown type.
● If the inputs are of different non-unknown types, treat type enum as type

text for comparison.
● If the non-unknown inputs are all of the same type, choose a preferred type,

if there is one. If the inputs are of different types, resolve as type text.
● Convert all inputs to the selected type. Fail if there is not an implicit

conversion from a given input to the selected type.

Examples
Example 1: Use type resolution with unknown types in a union as the first
example. Here, the unknown-type literal 'b' will be resolved to type text.

SELECT text 'a' AS "text" UNION SELECT 'b';
 text
------
 a
 b
(2 rows)

Example 2: Use type resolution in a simple union as the second example. The
literal 1.2 is of type numeric, and the integer value 1 can be cast implicitly to
numeric, so that type is used.

SELECT 1.2 AS "numeric" UNION SELECT 1;
 numeric
---------
       1
     1.2
(2 rows)

Example 3: Use type resolution in a transposed union as the third example. Here,
since type real cannot be implicitly cast to integer, but integer can be implicitly
cast to real, the union result type is resolved as real.

SELECT 1 AS "real" UNION SELECT CAST('2.2' AS REAL);
 real
------
    1
  2.2
(2 rows)

Example 4: Use type resolution in the COALESCE function with input values of
types int and varchar as the fourth example. Type resolution fails in ORA-

Data Warehouse Service
SQL Syntax 8 Type Conversion

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 322



compatible mode. The types are resolved as type varchar in TD-compatible mode,
and as type text in MySQL-compatible mode.

Create the ora_db, td_db, and mysql_db databases by setting dbcompatibility to
ORA, TD, and MySQL, respectively.

CREATE DATABASE ora_db dbcompatibility = 'ORA';
CREATE DATABASE td_db dbcompatibility = 'TD';
CREATE DATABASE mysql_db dbcompatibility = 'MySQL';

● Switch to the ora_db database.
postgres=# \c ora_db

Create table t1. Show the execution plan of a statement for querying the
types int and varchar of input parameters for COALESCE.
ora_db=# CREATE TABLE t1(a int, b varchar(10));      
ora_db=# EXPLAIN SELECT coalesce(a, b) FROM t1;
ERROR:  COALESCE types integer and character varying cannot be matched
CONTEXT:  referenced column: coalesce

● Switch to the td_db database.
ora_db=# \c td_db

Create table t2. Show the execution plan of a statement for querying the
types int and varchar of input parameters for COALESCE.
td_db=# CREATE TABLE t2(a int, b varchar(10));
td_db=# EXPLAIN VERBOSE select coalesce(a, b) from t2;
                                          QUERY PLAN
-----------------------------------------------------------------------------------------------
  id |                  operation                   | E-rows | E-distinct | E-width | E-costs
 ----+----------------------------------------------+--------+------------+---------+---------
   1 | ->  Data Node Scan on "__REMOTE_FQS_QUERY__" |      0 |            |       0 | 0.00

                       Targetlist Information (identified by plan id)
 -------------------------------------------------------------------------------------------
   1 --Data Node Scan on "__REMOTE_FQS_QUERY__"
         Output: (COALESCE((t2.a)::character varying, t2.b))
         Node/s: All datanodes
         Remote query: SELECT COALESCE(a::character varying, b) AS "coalesce" FROM public.t2
(10 rows)

● Switch to the mysql_db database.
td_db=# \c mysql_db

Create table t3. Show the execution plan of a statement for querying the
types int and varchar of input parameters for COALESCE.
mysql_db=# CREATE TABLE t3(a int, b varchar(10));
mysql_db=# EXPLAIN VERBOSE select coalesce(a, b) from t3;
                                          QUERY PLAN
-----------------------------------------------------------------------------------------------
  id |                  operation                   | E-rows | E-distinct | E-width | E-costs
 ----+----------------------------------------------+--------+------------+---------+---------
   1 | ->  Data Node Scan on "__REMOTE_FQS_QUERY__" |      0 |            |       0 | 0.00

                    Targetlist Information (identified by plan id)
 ------------------------------------------------------------------------------------
   1 --Data Node Scan on "__REMOTE_FQS_QUERY__"
         Output: (COALESCE((t3.a)::text, (t3.b)::text))
         Node/s: All datanodes
         Remote query: SELECT COALESCE(a::text, b::text) AS "coalesce" FROM public.t3
(10 rows)

● Switch to the postgres database.
mysql_db=# \c postgres

Data Warehouse Service
SQL Syntax 8 Type Conversion

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 323



9 Full Text Search

9.1 Introduction

9.1.1 Full-Text Retrieval
Textual search operators have been used in databases for years. GaussDB(DWS)
has ~, ~*, LIKE, and ILIKE operators for textual data types, but they lack many
essential properties required by modern information systems. They can be
supplemented by indexes and dictionaries.

NO TE

The hybrid data warehouse (standalone) does not support full-text search.

Text search lacks the following essential properties required by information
systems:
● There is no linguistic support, even for English.

Regular expressions are not sufficient because they cannot easily handle
derived words. For example, you might miss documents that contain satisfies,
although you probably would like to find them when searching for satisfy. It
is possible to use OR to search for multiple derived forms, but this is tedious
and error-prone, because some words can have several thousand derivatives.

● They provide no ordering (ranking) of search results, which makes them
ineffective when thousands of matching documents are found.

● They tend to be slow because there is no index support, so they must process
all documents for every search.

Full text indexing allows documents to be preprocessed and an index is saved for
later rapid searching. Preprocessing includes:
● Parsing documents into tokens

It is useful to identify various classes of tokens, for example, numbers, words,
complex words, and email addresses, so that they can be processed
differently. In principle, token classes depend on the specific application, but
for most purposes it is adequate to use a predefined set of classes.

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 324



● Converting tokens into lexemes

A lexeme is a string, just like a token, but it has been normalized so that
different forms of the same word are made alike. For example, normalization
almost always includes folding upper-case letters to lower-case, and often
involves removal of suffixes (such as s or es in English) This allows searches
to find variant forms of the same word, without tediously entering all the
possible variants. Also, this step typically eliminates stop words, which are
words that are so common that they are useless for searching. (In short,
tokens are raw fragments of the document text, while lexemes are words that
are believed useful for indexing and searching.) GaussDB(DWS) uses
dictionaries to perform this step and provides various standard dictionaries.

● Storing preprocessed documents optimized for searching

For example, each document can be represented as a sorted array of
normalized lexemes. Along with the lexemes, it is often desirable to store
positional information for proximity ranking. Therefore, a document that
contains a more "dense" region of query words is assigned with a higher rank
than the one with scattered query words.

Dictionaries allow fine-grained control over how tokens are normalized. With
appropriate dictionaries, you can define stop words that should not be indexed.

A data type tsvector is provided for storing preprocessed documents, along with a
type tsquery for storing query conditions. For details, see Text Search Types. For
details about the functions and operators available for these data types, see Text
Search Functions and Operators. The match operator @@, which is the most
important among those functions and operators, is introduced in Basic Text
Matching.

9.1.2 What Is a Document?
A document is the unit of searching in a full text search system; for example, a
magazine article or email message. The text search engine must be able to parse
documents and store associations of lexemes (keywords) with their parent
document. Later, these associations are used to search for documents that contain
query words.

For searches within GaussDB(DWS), a document is normally a textual column
within a row of a database table, or possibly a combination (concatenation) of
such columns, perhaps stored in several tables or obtained dynamically. In other
words, a document can be constructed from different parts for indexing and it
might not be stored anywhere as a whole. For example:

SELECT d_dow || '-' || d_dom || '-' || d_fy_week_seq  AS identify_serials FROM tpcds.date_dim WHERE 
d_fy_week_seq = 1;
identify_serials 
------------------
 5-6-1
 0-8-1
 2-3-1
 3-4-1
 4-5-1
 1-2-1
 6-7-1
(7 rows) 

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 325



NO TICE

Actually, in these example queries, coalesce should be used to prevent a single
NULL attribute from causing a NULL result for the whole document.

Another possibility is to store the documents as simple text files in the file system.
In this case, the database can be used to store the full text index and to execute
searches, and some unique identifier can be used to retrieve the document from
the file system. However, retrieving files from outside the database requires
system administrator permissions or special function support, so this is less
convenient than keeping all the data inside the database. Also, keeping everything
inside the database allows easy access to document metadata to assist in indexing
and display.

For text search purposes, each document must be reduced to the preprocessed
tsvector format. Searching and relevance-based ranking are performed entirely on
the tsvector representation of a document. The original text is retrieved only
when the document has been selected for display to a user. We therefore often
speak of the tsvector as being the document, but it is only a compact
representation of the full document.

9.1.3 Basic Text Matching
Full text search in GaussDB(DWS) is based on the match operator @@, which
returns true if a tsvector (document) matches a tsquery (query). It does not
matter which data type is written first:

SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector @@ 'cat & rat'::tsquery AS RESULT;
 result
----------
 t
(1 row)
SELECT 'fat & cow'::tsquery @@ 'a fat cat sat on a mat and ate a fat rat'::tsvector AS RESULT;
 result
----------
 f
(1 row) 

As the above example suggests, a tsquery is not raw text, any more than a
tsvector is. A tsquery contains search terms, which must be already-normalized
lexemes, and may combine multiple terms using AND, OR, and NOT operators.
For details, see Text Search Types. There are functions to_tsquery and
plainto_tsquery that are helpful in converting user-written text into a proper
tsquery, for example by normalizing words appearing in the text. Similarly,
to_tsvector is used to parse and normalize a document string. So in practice a text
search match would look more like this:

SELECT to_tsvector('fat cats ate fat rats') @@ to_tsquery('fat & rat') AS RESULT;
result
----------
 t
(1 row)

Observe that this match would not succeed if written as follows:

SELECT 'fat cats ate fat rats'::tsvector @@ to_tsquery('fat & rat')AS RESULT;
result
----------
 f
(1 row)

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 326



In the preceding match, no normalization of the word rats will occur. Therefore,
rats does not match rat.

The @@ operator also supports text input, allowing explicit conversion of a text
string to tsvector or tsquery to be skipped in simple cases. The variants available
are:

tsvector @@ tsquery
tsquery  @@ tsvector
text @@ tsquery
text @@ text

We already saw the first two of these. The form text @@ tsquery is equivalent to
to_tsvector(text) @@ tsquery. The form text @@ text is equivalent to
to_tsvector(text) @@ plainto_tsquery(text).

9.1.4 Configurations
Full text search functionality includes the ability to do many more things: skip
indexing certain words (stop words), process synonyms, and use sophisticated
parsing, for example, parse based on more than just white space. This
functionality is controlled by text search configurations. GaussDB(DWS) comes
with predefined configurations for many languages, and you can easily create your
own configurations. (The \dF command of gsql shows all available
configurations.)

During installation an appropriate configuration is selected and
default_text_search_config is set accordingly in postgresql.conf. If you are using
the same text search configuration for the entire cluster you can use the value in
postgresql.conf. To use different configurations throughout the cluster but the
same configuration within any one database, use ALTER DATABASE ... SET.
Otherwise, you can set default_text_search_config in each session.

Each text search function that depends on a configuration has an optional
argument, so that the configuration to use can be specified explicitly.
default_text_search_config is used only when this argument is omitted.

To make it easier to build custom text search configurations, a configuration is
built up from simpler database objects. GaussDB(DWS)'s text search facility
provides the following types of configuration-related database objects:

● Text search parsers break documents into tokens and classify each token (for
example, as words or numbers).

● Text search dictionaries convert tokens to normalized form and reject stop
words.

● Text search templates provide the functions underlying dictionaries. (A
dictionary simply specifies a template and a set of parameters for the
template.)

● Text search configurations select a parser and a set of dictionaries to use to
normalize the tokens produced by the parser.

9.2 Table and index

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 327



9.2.1 Searching a Table
It is possible to do a full text search without an index.

● A simple query to print each row that contains the word science in its body
column is as follows:
DROP SCHEMA IF EXISTS tsearch CASCADE;

CREATE SCHEMA tsearch;

CREATE TABLE tsearch.pgweb(id int, body text, title text, last_mod_date date);

INSERT INTO tsearch.pgweb VALUES(1, 'Philology is the study of words, especially the history and 
development of the words in a particular language or group of languages.', 'Philology', '2010-1-1');

INSERT INTO tsearch.pgweb VALUES(2, 'Mathematics is the science that deals with the logic of shape, 
quantity and arrangement.', 'Mathematics', '2010-1-1');

INSERT INTO tsearch.pgweb VALUES(3, 'Computer science is the study of processes that interact with 
data and that can be represented as data in the form of programs.', 'Computer science', '2010-1-1');

INSERT INTO tsearch.pgweb VALUES(4, 'Chemistry is the scientific discipline involved with elements 
and compounds composed of atoms, molecules and ions.', 'Chemistry', '2010-1-1');

INSERT INTO tsearch.pgweb VALUES(5, 'Geography is a field of science devoted to the study of the 
lands, features, inhabitants, and phenomena of the Earth and planets.', 'Geography', '2010-1-1');

INSERT INTO tsearch.pgweb VALUES(6, 'History is a subject studied in schools, colleges, and 
universities that deals with events that have happened in the past.', 'History', '2010-1-1');

INSERT INTO tsearch.pgweb VALUES(7, 'Medical science is the science of dealing with the 
maintenance of health and the prevention and treatment of disease.', 'Medical science', '2010-1-1');

INSERT INTO tsearch.pgweb VALUES(8, 'Physics is one of the most fundamental scientific disciplines, 
and its main goal is to understand how the universe behaves.', 'Physics', '2010-1-1');

SELECT id, body, title FROM tsearch.pgweb WHERE to_tsvector('english', body) @@ 
to_tsquery('english', 'science');
 id |                                                          body                                                           |  title  
----
+---------------------------------------------------------------------------------------------------------------------
----+---------
  
 2 | Mathematics is the science that deals with the logic of shape, quantity and 
arrangement.                                        | Mathematics
 3 | Computer science is the study of processes that interact with data and that can be represented as 
data in the form of programs. | Computer science
 5 | Geography is a field of science devoted to the study of the lands, features, inhabitants, and 
phenomena of the Earth and planets.   | Geography
 7 | Medical science is the science of dealing with the maintenance of health and the prevention and 
treatment of disease.           | Medical science
(4 rows)

This will also find related words, such as science, since all these are reduced
to the same normalized lexeme.
The query above specifies that the english configuration is to be used to
parse and normalize the strings. Alternatively we could omit the configuration
parameters, and use the configuration set by default_text_search_config.
SHOW default_text_search_config;
 default_text_search_config 
----------------------------
 pg_catalog.english
(1 row)

SELECT id, body, title FROM tsearch.pgweb WHERE to_tsvector(body) @@ to_tsquery('science');
 id |                                                          body                                                           |  title  

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 328



----
+---------------------------------------------------------------------------------------------------------------------
----+---------
 
 2 | Mathematics is the science that deals with the logic of shape, quantity and 
arrangement.                                        | Mathematics
 3 | Computer science is the study of processes that interact with data and that can be represented as 
data in the form of programs. | Computer science
 5 | Geography is a field of science devoted to the study of the lands, features, inhabitants, and 
phenomena of the Earth and planets.   | Geography
 7 | Medical science is the science of dealing with the maintenance of health and the prevention and 
treatment of disease.           | Medical science

(4 rows)

● A more complex example to select the ten most recent documents that
contain treatment and science in the title or body column is as follows:
SELECT title FROM tsearch.pgweb WHERE to_tsvector(title || ' ' || body) @@ to_tsquery('treatment & 
science') ORDER BY last_mod_date DESC LIMIT 10;
 title  
--------
 
Medical science

(1 rows)

For clarity we omitted the coalesce function calls which would be needed to
find rows that contain NULL in one of the two columns.
The preceding examples show queries without using indexes. Most
applications will find this approach too slow. Therefore, practical use of text
searching usually requires creating an index, except perhaps for occasional ad-
hoc searches.

9.2.2 Creating an Index
You can create a GIN index to speed up text searches:

CREATE INDEX pgweb_idx_1 ON tsearch.pgweb USING gin(to_tsvector('english', body));

The to_tsvector() function accepts one or two augments.

If the one-augment version of the index is used, the system will use the
configuration specified by default_text_search_config by default.

To create an index, the two-augment version must be used, or the index content
may be inconsistent. Only the text search functions that specify a configuration
name can be used in expression indexes. Index content is not affected by
default_text_search_config, because different entries could contain tsvectors
that were created with different text search configurations, and there would be no
way to guess which was which. It would be impossible to dump and restore such
an index correctly.

Because the two-argument version of to_tsvector was used in the index above,
only a query reference that uses the two-argument version of to_tsvector with the
same configuration name will use that index. That is, WHERE
to_tsvector('english', body) @@ 'a & b' can use the index, but WHERE
to_tsvector(body) @@ 'a & b' cannot. This ensures that an index will be used
only with the same configuration used to create the index entries.

More complex expression indexes can be set up when the configuration name of
the index is specified by another column. For example:

CREATE INDEX pgweb_idx_2 ON tsearch.pgweb USING gin(to_tsvector('zhparser', body));

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 329



NO TE

In this example, zhparser supports only the UTF-8 or GBK database encoding format. If the
SQL_ASCII encoding is used, an error will be reported.

body is a column in the pgweb table. This allows mixed configurations in the
same index while recording which configuration was used for each index entry.
This would be useful, for example, if the document collection contained
documents in different languages. Again, queries that are meant to use the index
must be phrased to match, for example, WHERE to_tsvector(config_name, body)
@@ 'a & b' must match to_tsvector in the index.

Indexes can even concatenate columns:

CREATE INDEX pgweb_idx_3 ON tsearch.pgweb USING gin(to_tsvector('english', title || ' ' || body));

Another approach is to create a separate tsvector column to hold the output of
to_tsvector. This example is a concatenation of title and body, using coalesce to
ensure that one column will still be indexed when the other is NULL:

ALTER TABLE tsearch.pgweb ADD COLUMN textsearchable_index_col tsvector;
UPDATE tsearch.pgweb SET textsearchable_index_col = to_tsvector('english', coalesce(title,'') || ' ' || 
coalesce(body,''));

Then, create a GIN index to speed up the search:

CREATE INDEX textsearch_idx_4 ON tsearch.pgweb USING gin(textsearchable_index_col);

Now you are ready to perform a fast full text search:

SELECT title 
FROM tsearch.pgweb 
WHERE textsearchable_index_col @@ to_tsquery('science & Computer') 
ORDER BY last_mod_date DESC 
LIMIT 10; 

 title  
--------
 Computer science

(1 rows)

One advantage of the separate-column approach over an expression index is that
it is unnecessary to explicitly specify the text search configuration in queries in
order to use the index. As shown in the preceding example, the query can depend
on default_text_search_config. Another advantage is that searches will be faster,
since it will not be necessary to redo the to_tsvector calls to verify index matches.
The expression-index approach is simpler to set up, however, and it requires less
disk space since the tsvector representation is not stored explicitly.

9.2.3 Constraints on Index Use
The following is an example of using an index. Run the following statements in a
database that uses the UTF-8 or GBK encoding:

create table table1 (c_int int,c_bigint bigint,c_varchar varchar,c_text text) with(orientation=row);

create text search configuration ts_conf_1(parser=POUND);
create text search configuration ts_conf_2(parser=POUND) with(split_flag='%');

set default_text_search_config='ts_conf_1';
create index idx1 on table1 using gin(to_tsvector(c_text));

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 330



set default_text_search_config='ts_conf_2';
create index idx2 on table1 using gin(to_tsvector(c_text));

select c_varchar,to_tsvector(c_varchar) from table1 where to_tsvector(c_text) @@ plainto_tsquery('¥#@……
&**') and to_tsvector(c_text) @@ 
plainto_tsquery('Company') and c_varchar is not null order by 1 desc limit 3;

In this example, table1 has two GIN indexes created on the same column c_text,
idx1 and idx2, but these two indexes are created under different settings of
default_text_search_config. Differences between this example and the scenario
where one table has common indexes created on the same column are as follows:

● GIN indexes use different parsers (that is, different delimiters). In this case,
the index data of idx1 is different from that of idx2.

● In the specified scenario, the index data of multiple common indexes created
on the same column is the same.

As a result, using idx1 and idx2 for the same query returns different results.

Constraints
In the preceding example, when:

● Multiple GIN indexes are created on the same column of the same table.
● The GIN indexes use different parsers (that is, different delimiters).
● The column is used in a query, and an index scan is used in the execution

plan.
To avoid different query results caused by different GIN indexes, ensure that
only one GIN index is available on a column of the physical table.

9.3 Controlling Text Search

9.3.1 Parsing Documents
GaussDB(DWS) provides function to_tsvector for converting a document to the
tsvector data type.

to_tsvector([ config regconfig, ] document text) returns tsvector

to_tsvector parses a textual document into tokens, reduces the tokens to lexemes,
and returns a tsvector, which lists the lexemes together with their positions in the
document. The document is processed according to the specified or default text
search configuration. Here is a simple example:

SELECT to_tsvector('english', 'a fat  cat sat on a mat - it ate a fat rats');
                  to_tsvector
-----------------------------------------------------
 'ate':9 'cat':3 'fat':2,11 'mat':7 'rat':12 'sat':4

In the preceding example we see that the resulting tsvector does not contain the
words a, on, or it, the word rats became rat, and the punctuation sign (-) was
ignored.

The to_tsvector function internally calls a parser which breaks the document text
into tokens and assigns a type to each token. For each token, a list of dictionaries
is consulted. where the list can vary depending on the token type. The first

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 331



dictionary that recognizes the token emits one or more normalized lexemes to
represent the token. For example:

● rats became rat because one of the dictionaries recognized that the word
rats is a plural form of rat.

● Some words are recognized as stop words (see Stop Words), which causes
them to be ignored since they occur too frequently to be useful in searching.
In our example these are a, on, and it.

● If no dictionary in the list recognizes the token then it is also ignored. In this
example that happened to the punctuation sign (-) because there are in fact
no dictionaries assigned for its token type (Space symbols), meaning space
tokens will never be indexed.

The choices of parser, dictionaries and which types of tokens to index are
determined by the selected text search configuration. It is possible to have many
different configurations in the same database, and predefined configurations are
available for various languages. In our example we used the default configuration
english for the English language.

The function setweight can be used to label the entries of a tsvector with a given
weight, where a weight is one of the letters A, B, C, or D. This is typically used to
mark entries coming from different parts of a document, such as title versus body.
Later, this information can be used for ranking of search results.

Because to_tsvector(NULL) will return NULL, you are advised to use coalesce
whenever a column might be NULL. Here is the recommended method for
creating a tsvector from a structured document:

CREATE TABLE tsearch.tt (id int, title text, keyword text, abstract text, body text, ti tsvector);

INSERT INTO tsearch.tt(id, title, keyword, abstract, body) VALUES (1, 'book', 'literature', 'Ancient 
poetry','Tang poem Song jambic verse');

UPDATE tsearch.tt SET ti =
    setweight(to_tsvector(coalesce(title,'')), 'A')    ||
    setweight(to_tsvector(coalesce(keyword,'')), 'B')  ||
    setweight(to_tsvector(coalesce(abstract,'')), 'C') ||
    setweight(to_tsvector(coalesce(body,'')), 'D');
DROP TABLE tsearch.tt;

Here we have used setweight to label the source of each lexeme in the finished
tsvector, and then merged the labeled tsvector values using the tsvector
concatenation operator ||. For details about these operations, see Manipulating
tsvector.

9.3.2 Parsing Queries
GaussDB(DWS) provides functions to_tsquery and plainto_tsquery for converting
a query to the tsquery data type. to_tsquery offers access to more features than
plainto_tsquery, but is less forgiving about its input.

to_tsquery([ config regconfig, ] querytext text) returns tsquery

to_tsquery creates a tsquery value from querytext, which must consist of single
tokens separated by the Boolean operators & (AND), | (OR), and ! (NOT). These
operators can be grouped using parentheses. In other words, the input to
to_tsquery must already follow the general rules for tsquery input, as described
in Text Search Types. The difference is that while basic tsquery input takes the
tokens at face value, to_tsquery normalizes each token to a lexeme using the

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 332



specified or default configuration, and discards any tokens that are stop words
according to the configuration. For example:

SELECT to_tsquery('english', 'The & Fat & Rats');
   to_tsquery   
---------------
 'fat' & 'rat'
(1 row)

As in basic tsquery input, weight(s) can be attached to each lexeme to restrict it
to match only tsvector lexemes of those weight(s). For example:

SELECT to_tsquery('english', 'Fat | Rats:AB');
    to_tsquery    
------------------
 'fat' | 'rat':AB
(1 row)

Also, the asterisk (*) can be attached to a lexeme to specify prefix matching:

SELECT to_tsquery('supern:*A & star:A*B');
        to_tsquery        
--------------------------
 'supern':*A & 'star':*AB
(1 row)

Such a lexeme will match any word having the specified string and weight in a
tsquery.

plainto_tsquery([ config regconfig, ] querytext text) returns tsquery

plainto_tsquery transforms unformatted text querytext to tsquery. The text is
parsed and normalized much as for to_tsvector, then the & (AND) Boolean
operator is inserted between surviving words.

For example:

SELECT plainto_tsquery('english', 'The Fat Rats');
 plainto_tsquery 
-----------------
 'fat' & 'rat'
(1 row)

Note that plainto_tsquery cannot recognize Boolean operators, weight labels, or
prefix-match labels in its input:

SELECT plainto_tsquery('english', 'The Fat & Rats:C');
   plainto_tsquery   
---------------------
 'fat' & 'rat' & 'c'
(1 row)

Here, all the input punctuation was discarded as being space symbols.

9.3.3 Ranking Search Results
Ranking attempts to measure how relevant documents are to a particular query,
so that when there are many matches the most relevant ones can be shown first.
GaussDB(DWS) provides two predefined ranking functions. which take into
account lexical, proximity, and structural information; that is, they consider how
often the query terms appear in the document, how close together the terms are
in the document, and how important is the part of the document where they
occur. However, the concept of relevancy is vague and application-specific.
Different applications might require additional information for ranking, for

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 333



example, document modification time. The built-in ranking functions are only
examples. You can write your own ranking functions and/or combine their results
with additional factors to fit your specific needs.

The two ranking functions currently available are:

ts_rank([ weights float4[], ] vector tsvector, query tsquery [, normalization integer ]) returns float4

Ranks vectors based on the frequency of their matching lexemes.

ts_rank_cd([ weights float4[], ] vector tsvector, query tsquery [, normalization integer ]) returns 
float4

This function requires positional information in its input. Therefore, it will not
work on "stripped" tsvector values. It will always return zero.

For both these functions, the optional weights argument offers the ability to
weigh word instances more or less heavily depending on how they are labeled.
The weight arrays specify how heavily to weigh each category of word, in the
order:

{D-weight, C-weight, B-weight, A-weight}

If no weights are provided, then these defaults are used: {0.1, 0.2, 0.4, 1.0}

Typically weights are used to mark words from special areas of the document, like
the title or an initial abstract, so they can be treated with more or less importance
than words in the document body.

Since a longer document has a greater chance of containing a query term it is
reasonable to take into account document size. For example, a hundred-word
document with five instances of a search word is probably more relevant than a
thousand-word document with five instances. Both ranking functions take an
integer normalization option that specifies whether and how a document's length
should impact its rank. The integer option controls several behaviors, so it is a bit
mask: you can specify one or more behaviors using a vertical bar (|) (for example,
2|4).

● 0 (the default) ignores the document length
● 1 divides the rank by (1 + Logarithm of the document length)
● 2 divides the rank by the document length
● 4 divides the rank by the mean harmonic distance between extents (this is

implemented only by ts_rank_cd)
● 8 divides the rank by the number of unique words in document
● 16 divides the rank by (1 + Logarithm of the number of unique words in

document)
● 32 divides the rank by (itself + 1)

If more than one flag bit is specified, the transformations are applied in the order
listed.

It is important to note that the ranking functions do not use any global
information, so it is impossible to produce a fair normalization to 1% or 100% as
sometimes desired. Normalization option 32 (rank/(rank+1)) can be applied to
scale all ranks into the range zero to one, but of course this is just a cosmetic
change; it will not affect the ordering of the search results.

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 334



The following example selects the top 10 matches. Run the following statements
in a database that uses the UTF-8 or GBK encoding:

SELECT id, title, ts_rank_cd(to_tsvector(body), query) AS rank 
FROM tsearch.pgweb, to_tsquery('science') query 
WHERE query @@ to_tsvector(body) 
ORDER BY rank DESC 
LIMIT 10;
 id |  title  | rank 
----+---------+------
 11 | Philology  |   .2
  2 | Mathematics |   .1
 12 | Geography  |   .1
 13 | Computer science  |   .1
(4 rows)

This is the same example using normalized ranking:

SELECT id, title, ts_rank_cd(to_tsvector(body), query, 32 /* rank/(rank+1) */ ) AS rank 
FROM tsearch.pgweb, to_tsquery('science') query 
WHERE  query @@ to_tsvector(body) 
ORDER BY rank DESC 
LIMIT 10;
 id |  title  |   rank   
----+---------+----------
 11 | Philology  |  .166667
  2 | Mathematics | .0909091
 12 | Geography  | .0909091
 13 | Computer science  | .0909091
(4 rows)

The following example sorts query by Chinese word segmentation:

CREATE TABLE tsearch.ts_zhparser(id int, body text);
INSERT INTO tsearch.ts_zhparser VALUES (1, 'Chinese');
INSERT INTO tsearch.ts_zhparser VALUES (2, 'Chinese search');
INSERT INTO tsearch.ts_zhparser VALUES (3 'Search Chinese');
-- Accurate match
SELECT id, body, ts_rank_cd (to_tsvector ('zhparser', body), query) AS rank FROM tsearch.ts_zhparser, 
to_tsquery ('Chinese') query WHERE query @@ to_tsvector (body);
 id | body | rank 
----+------+------
  1 | Chinese |   .1
(1 row)

-- Fuzzy match
SELECT id, body, ts_rank_cd (to_tsvector ('zhparser', body), query) AS rank FROM tsearch.ts_zhparser, 
to_tsquery ('Chinese') query WHERE query @@ to_tsvector ('zhparser', body);
 id |   body   | rank 
----+----------+------
  3 | Search Chinese |   .1
  1 | Chinese     |   .1
  2 | Chinese search |   .1
(3 rows)

Ranking can be expensive since it requires consulting the tsvector of each
matching document, which can be I/O bound and therefore slow. Unfortunately, it
is almost impossible to avoid since practical queries often result in large numbers
of matches.

9.3.4 Highlighting Results
To present search results it is ideal to show a part of each document and how it is
related to the query. Usually, search engines show fragments of the document
with marked search terms. GaussDB(DWS) provides function ts_headline that
implements this functionality.

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 335



ts_headline([ config regconfig, ] document text, query tsquery [, options text ]) returns text

ts_headline accepts a document along with a query, and returns an excerpt from
the document in which terms from the query are highlighted. The configuration to
be used to parse the document can be specified by config. If config is omitted,
the default_text_search_config configuration is used.

If an options string is specified it must consist of a comma-separated list of one or
more option=value pairs. The available options are:

● StartSel, StopSel: The strings with which to delimit query words appearing in
the document, to distinguish them from other excerpted words. You must
double-quote these strings if they contain spaces or commas.

● MaxWords, MinWords: These numbers determine the longest and shortest
headlines to output.

● ShortWord: Words of this length or less will be dropped at the start and end
of a headline. The default value of three eliminates common English articles.

● HighlightAll: Boolean flag. If true the whole document will be used as the
headline, ignoring the preceding three parameters.

● MaxFragments: Maximum number of text excerpts or fragments to display.
The default value of zero selects a non-fragment-oriented headline
generation method. A value greater than zero selects fragment-based
headline generation. This method finds text fragments with as many query
words as possible and stretches those fragments around the query words. As a
result query words are close to the middle of each fragment and have words
on each side. Each fragment will be of at most MaxWords and words of
length ShortWord or less are dropped at the start and end of each fragment.
If not all query words are found in the document, then a single fragment of
the first MinWords in the document will be displayed.

● FragmentDelimiter: When more than one fragment is displayed, the
fragments will be separated by this string.

Any unspecified options receive these defaults:

StartSel=<b>, StopSel=</b>,
MaxWords=35, MinWords=15, ShortWord=3, HighlightAll=FALSE,
MaxFragments=0, FragmentDelimiter=" ... "

For example:

SELECT ts_headline('english',
'The most common type of search
is to find all documents containing given query terms
and return them in order of their similarity to the
query.',
to_tsquery('english', 'query & similarity'));
                        ts_headline                         
------------------------------------------------------------
 containing given <b>query</b> terms
 and return them in order of their <b>similarity</b> to the
 <b>query</b>.
(1 row)

SELECT ts_headline('english',
'The most common type of search
is to find all documents containing given query terms
and return them in order of their similarity to the
query.',
to_tsquery('english', 'query & similarity'),
'StartSel = <, StopSel = >');

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 336



                      ts_headline                      
-------------------------------------------------------
 containing given <query> terms
 and return them in order of their <similarity> to the
 <query>.
(1 row)

ts_headline uses the original document, not a tsvector summary, so it can be
slow and should be used with care.

9.4 Additional Features

9.4.1 Manipulating tsvector
GaussDB(DWS) provides functions and operators that can be used to manipulate
documents that are already in tsvector type.

● tsvector || tsvector
The tsvector concatenation operator returns a new tsvector which combines
the lexemes and positional information of the two tsvectors given as
arguments. Positions and weight labels are retained during the concatenation.
Positions appearing in the right-hand tsvector are offset by the largest
position mentioned in the left-hand tsvector, so that the result is nearly
equivalent to the result of performing to_tsvector on the concatenation of
the two original document strings. (The equivalence is not exact, because any
stop-words removed from the end of the left-hand argument will not affect
the result, whereas they would have affected the positions of the lexemes in
the right-hand argument if textual concatenation were used.)
One advantage of using concatenation in the tsvector form, rather than
concatenating text before applying to_tsvector, is that you can use different
configurations to parse different sections of the document. Also, because the
setweight function marks all lexemes of the given tsvector the same way, it is
necessary to parse the text and do setweight before concatenating if you
want to label different parts of the document with different weights.

● setweight(vector tsvector, weight "char") returns tsvector
setweight returns a copy of the input tsvector in which every position has
been labeled with the given weight, either A, B, C, or D. (D is the default for
new tsvectors and as such is not displayed on output.) These labels are
retained when tsvectors are concatenated, allowing words from different
parts of a document to be weighted differently by ranking functions.

NO TICE

Note that weight labels apply to positions, not lexemes. If the input tsvector
has been stripped of positions then setweight does nothing.

● length(vector tsvector) returns integer
Returns the number of lexemes stored in the vector.

● strip(vector tsvector) returns tsvector
Returns a tsvector which lists the same lexemes as the given tsvector, but
which lacks any position or weight information. While the returned tsvector is

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 337



much less useful than an unstripped tsvector for relevance ranking, it will
usually be much smaller.

9.4.2 Manipulating Queries
GaussDB(DWS) provides functions and operators that can be used to manipulate
queries that are already in tsquery type.

● tsquery && tsquery
Returns the AND-combination of the two given tsqueries.

● tsquery || tsquery
Returns the OR-combination of the two given tsqueries.

● !! tsquery
Returns the negation (NOT) of the given tsquery.

● numnode(query tsquery) returns integer
Returns the number of nodes (lexemes plus operators) in a tsquery. This
function is useful to determine if the query is meaningful (returns > 0), or
contains only stop words (returns 0). For example:
SELECT numnode(plainto_tsquery('the any'));
NOTICE:  text-search query contains only stop words or doesn't contain lexemes, ignored
CONTEXT:  referenced column: numnode
 numnode 
---------
       0

SELECT numnode('foo & bar'::tsquery);
 numnode
---------
       3

● querytree(query tsquery) returns text
Returns the portion of a tsquery that can be used for searching an index. This
function is useful for detecting unindexable queries, for example those
containing only stop words or only negated terms. For example:
SELECT querytree(to_tsquery('!defined'));
 querytree 
-----------
 T
(1 row)

9.4.3 Rewriting Queries
The ts_rewrite family of functions searches a given tsquery for occurrences of a
target subquery, and replace each occurrence with a substitute subquery. In
essence this operation is a tsquery specific version of substring replacement. A
target and substitute combination can be thought of as a query rewrite rule. A
collection of such rewrite rules can be a powerful search aid. For example, you can
expand the search using synonyms (that is, new york, big apple, nyc, gotham) or
narrow the search to direct the user to some hot topic.

● ts_rewrite (query tsquery, target tsquery, substitute tsquery) returns tsquery
This form of ts_rewrite simply applies a single rewrite rule: target is replaced
by substitute wherever it appears in query. For example:
SELECT ts_rewrite('a & b'::tsquery, 'a'::tsquery, 'c'::tsquery);
 ts_rewrite

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 338



------------
 'b' & 'c'

● ts_rewrite (query tsquery, select text) returns tsquery
This form of ts_rewrite accepts a starting query and a SQL select command,
which is given as a text string. The select must yield two columns of tsquery
type. For each row of the select result, occurrences of the first column value
(the target) are replaced by the second column value (the substitute) within
the current query value.

NO TE

Note that when multiple rewrite rules are applied in this way, the order of application
can be important; so in practice you will want the source query to ORDER BY some
ordering key.

Consider a real-life astronomical example. We will expand query supernovae
using table-driven rewriting rules:
CREATE TABLE tsearch.aliases (id int, t tsquery, s tsquery);

INSERT INTO tsearch.aliases VALUES(1, to_tsquery('supernovae'), to_tsquery('supernovae|sn'));

SELECT ts_rewrite(to_tsquery('supernovae & crab'), 'SELECT t, s FROM tsearch.aliases');

           ts_rewrite            
---------------------------------
 'crab' & ( 'supernova' | 'sn' )

We can change the rewriting rules just by updating the table:
UPDATE tsearch.aliases
SET s = to_tsquery('supernovae|sn & !nebulae')
WHERE t = to_tsquery('supernovae');

SELECT ts_rewrite(to_tsquery('supernovae & crab'), 'SELECT t, s FROM tsearch.aliases');

                 ts_rewrite                  
---------------------------------------------
 'crab' & ( 'supernova' | 'sn' & !'nebula' )

Rewriting can be slow when there are many rewriting rules, since it checks
every rule for a possible match. To filter out obvious non-candidate rules we
can use the containment operators for the tsquery type. In the example
below, we select only those rules which might match the original query:
SELECT ts_rewrite('a & b'::tsquery, 'SELECT t,s FROM tsearch.aliases WHERE ''a & b''::tsquery @> t');

 ts_rewrite 
------------
 'b' & 'a'
(1 row)
DROP TABLE ts_rewrite;

9.4.4 Gathering Document Statistics
The function ts_stat is useful for checking your configuration and for finding stop-
word candidates.

ts_stat(sqlquery text, [ weights text, ]
        OUT word text, OUT ndoc integer,
        OUT nentry integer) returns setof record

sqlquery is a text value containing an SQL query which must return a single
tsvector column. ts_stat executes the query and returns statistics about each
distinct lexeme (word) contained in the tsvector data. The columns returned are

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 339



● word text: the value of a lexeme
● ndoc integer: number of documents (tsvectors) the word occurred in
● nentry integer: total number of occurrences of the word

If weights are supplied, only occurrences having one of those weights are
counted. For example, to find the ten most frequent words in a document
collection:

SELECT * FROM ts_stat('SELECT to_tsvector(''english'', sr_reason_sk) FROM tpcds.store_returns WHERE 
sr_customer_sk < 10') ORDER BY nentry DESC, ndoc DESC, word LIMIT 10;;
   word | ndoc | nentry 
------+------+--------
 32   |    2 |      2
 33   |    2 |      2
 1    |    1 |      1
 10   |    1 |      1
 13   |    1 |      1
 14   |    1 |      1
 15   |    1 |      1
 17   |    1 |      1
 20   |    1 |      1
 22   |    1 |      1
(10 rows)

The same, but counting only word occurrences with weight A or B:

SELECT * FROM ts_stat('SELECT to_tsvector(''english'', sr_reason_sk) FROM tpcds.store_returns WHERE 
sr_customer_sk < 10', 'a') ORDER BY nentry DESC, ndoc DESC, word LIMIT 10;
 word | ndoc | nentry 
------+------+--------
(0 rows)

9.5 Parsers
Text search parsers are responsible for splitting raw document text into tokens and
identifying each token's type, where the set of types is defined by the parser itself.
Note that a parser does not modify the text at all — it simply identifies plausible
word boundaries. Because of this limited scope, there is less need for application-
specific custom parsers than there is for custom dictionaries.

Currently, GaussDB(DWS) provides the following built-in parsers:
pg_catalog.default for English configuration, and pg_catalog.ngram,
pg_catalog.zhparser, and pg_catalog.pound for full text search in texts containing
Chinese, or both Chinese and English.

The built-in parser is named pg_catalog.default. It recognizes 23 token types,
shown in Table 9-1.

Table 9-1 Default parser's token types

Alias Description Examples

asciiword Word, all ASCII letters elephant

word Word, all letters mañana

numword Word, letters and digits beta1

asciihword Hyphenated word, all ASCII up-to-date

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 340



Alias Description Examples

hword Hyphenated word, all
letters

lógico-matemática

numhword Hyphenated word, letters
and digits

postgresql-beta1

hword_asciipart Hyphenated word part, all
ASCII

postgresql in the context
postgresql-beta1

hword_part Hyphenated word part, all
letters

lógico or matemática in the
context lógico-matemática

hword_numpart Hyphenated word part,
letters and digits

beta1 in the context
postgresql-beta1

email Email address foo@example.com

protocol Protocol head http://

url URL example.com/stuff/index.html

host Host example.com

url_path URL path /stuff/index.html, in the
context of a URL

file File or path name /usr/local/foo.txt, if not
within a URL

sfloat Scientific notation -1.23E+56

float Decimal notation -1.234

int Signed integer -1234

uint Unsigned integer 1234

version Version number 8.3.0

tag XML tag <a href="dictionaries.html">

entity XML entity &amp;

blank Space symbols (any whitespace or
punctuation not otherwise
recognized)

 

Note: The parser's notion of a "letter" is determined by the database's locale
setting, specifically lc_ctype. Words containing only the basic ASCII letters are
reported as a separate token type, since it is sometimes useful to distinguish them.
In most European languages, token types word and asciiword should be treated
alike.

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 341



email does not support all valid email characters as defined by RFC 5322.
Specifically, the only non-alphanumeric characters supported for email user names
are period, dash, and underscore.

It is possible for the parser to identify overlapping tokens in the same piece of
text. As an example, a hyphenated word will be reported both as the entire word
and as each component:

SELECT alias, description, token FROM ts_debug('english','foo-bar-beta1');
      alias      |               description                |     token     
-----------------+------------------------------------------+---------------
 numhword        | Hyphenated word, letters and digits      | foo-bar-beta1
 hword_asciipart | Hyphenated word part, all ASCII          | foo
 blank           | Space symbols                            | -
 hword_asciipart | Hyphenated word part, all ASCII          | bar
 blank           | Space symbols                            | -
 hword_numpart   | Hyphenated word part, letters and digits | beta1

This behavior is desirable since it allows searches to work for both the whole
compound word and for components. Here is another instructive example:

SELECT alias, description, token FROM ts_debug('english','http://example.com/stuff/index.html');
  alias   |  description  |            token             
----------+---------------+------------------------------
 protocol | Protocol head | http://
 url      | URL           | example.com/stuff/index.html
 host     | Host          | example.com
 url_path | URL path      | /stuff/index.html

N-gram is a mechanical word segmentation method, and applies to no semantic
Chinese segmentation scenarios. The N-gram segmentation method ensures the
completeness of the segmentation. However, to cover all the possibilities, it but
adds unnecessary words to the index, resulting in a large number of index items.
N-gram supports Chinese coding, including GBK and UTF-8. Six built-in token
types are shown in Table 9-2.

Table 9-2 Token types

Alias Description

zh_words chinese words

en_word english word

numeric numeric data

alnum alnum string

grapsymbol graphic symbol

multisymbol multiple symbol

 

Zhparser is a dictionary-based semantic word segmentation method. The bottom-
layer calls the Simple Chinese Word Segmentation (SCWS) algorithm (https://
github.com/hightman/scws), which applies to Chinese segmentation scenarios.
SCWS is a term frequency and dictionary-based mechanical Chinese words engine.
It can split a whole paragraph Chinese text into words. The two Chinese coding
formats, GBK and UTF-8, are supported. The 26 built-in token types are shown in
Table 9-3.

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 342



Table 9-3 Token types

Alias Description

A Adjective

B Differentiation

C Conjunction

D Adverb

E Exclamation

F Position

G Lexeme

H Preceding element

I Idiom

J Acronyms and abbreviations

K Subsequent element

L Common words

M Numeral

N Noun

O Onomatopoeia

P Preposition

Q Quantifiers

R Pronoun

S Space

T Time

U Auxiliary word

V Verb

W Punctuation

X Unknown

Y Interjection

Z Status words

 

Pound segments words in a fixed format. It is used to segment to-be-parsed
nonsense Chinese and English words that are separated by fixed separators. It
supports Chinese encoding (including GBK and UTF8) and English encoding
(including ASCII). Pound has six pre-configured token types (as listed in Table

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 343



9-4) and supports five separators (as listed in Table 9-5). The default, the
separator is #. Pound The maximum length of a token is 256 characters.

Table 9-4 Token types

Alias Description

zh_words chinese words

en_word english word

numeric numeric data

alnum alnum string

grapsymbol graphic symbol

multisymbol multiple symbol

 

Table 9-5 Separator types

Delimiter Description

@ Special character

# Special character

$ Special character

% Special character

/ Special character

 

9.6 Dictionaries

9.6.1 Overview
A dictionary is used to define stop words, that is, words to be ignored in full-text
retrieval.

A dictionary can also be used to normalize words so that different derived forms
of the same word will match. A normalized word is called a lexeme.

In addition to improving retrieval quality, normalization and removal of stop
words can reduce the size of the tsvector representation of a document, thereby
improving performance. Normalization and removal of stop words do not always
have linguistic meaning. Users can define normalization and removal rules in
dictionary definition files based on application environments.

A dictionary is a program that receives a token as input and returns:

● An array of lexemes if the input token is known to the dictionary (note that
one token can produce more than one lexeme).

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 344



● A single lexeme to replace the original token with a new token to be passed
to subsequent dictionaries (a dictionary that does this is called a filtering
dictionary).

● An empty array if the input token is known to the dictionary but is a stop
word.

● NULL if the dictionary does not recognize the token.

GaussDB(DWS) provides predefined dictionaries for many languages and also
provides five predefined dictionary templates, Simple, Synonym, Thesaurus,
Ispell, and Snowball. These templates can be used to create new dictionaries with
custom parameters.

When using full-text retrieval, you are advised to:

● In the text search configuration, configure a parser together with a set of
dictionaries to process the parser's output tokens. For each token type that
the parser can return, a separate list of dictionaries is specified by the
configuration. When a token of that type is found by the parser, each
dictionary in the list is consulted in turn, until a dictionary recognizes it as a
known word. If it is identified as a stop word, or no dictionary recognizes the
token, it will be discarded and not indexed or searched for. Generally, the first
dictionary that returns a non-NULL output determines the result, and any
remaining dictionaries are not consulted. However, a filtering dictionary can
replace the input token with a modified one, which is then passed to
subsequent dictionaries.

● The general rule for configuring a list of dictionaries is to place first the most
narrow, most specific dictionary, then the more general dictionaries, finishing
with a very general dictionary, like a Snowball stemmer dictionary or a
Simple dictionary, which recognizes everything. In the following example, for
an astronomy-specific search (astro_en configuration), you can configure the
token type asciiword (ASCII word) with a Synonym dictionary of
astronomical terms, a general English Ispell dictionary, and a Snowball
English stemmer dictionary:
ALTER TEXT SEARCH CONFIGURATION astro_en
  ADD MAPPING FOR asciiword WITH astro_syn, english_ispell, english_stem;

A filtering dictionary can be placed anywhere in the list, except at the end
where it would be useless. Filtering dictionaries are useful to partially
normalize words to simplify the task of later dictionaries.

9.6.2 Stop Words
Stop words are words that are very common, appear in almost every document,
and have no discrimination value. Therefore, they can be ignored in the context of
full text searching. Each type of dictionaries treats stop words in different ways.
For example, Ispell dictionaries first normalize words and then check the list of
stop words, while Snowball dictionaries first check the list of stop words.

For example, every English text contains words like a and the, so it is useless to
store them in an index. However, stop words affect the positions in tsvector,
which in turn affect ranking.

SELECT to_tsvector('english','in the list of stop words');
        to_tsvector
----------------------------
 'list':3 'stop':5 'word':6

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 345



The missing positions 1, 2, and 4 are because of stop words. Ranks calculated for
documents with and without stop words are quite different:

SELECT ts_rank_cd (to_tsvector('english','in the list of stop words'), to_tsquery('list & stop'));
 ts_rank_cd
------------
        .05

SELECT ts_rank_cd (to_tsvector('english','list stop words'), to_tsquery('list & stop'));
 ts_rank_cd
------------
         .1

9.6.3 Simple Dictionary
A Simple dictionary operates by converting the input token to lower case and
checking it against a list of stop words. If the token is found in the list, an empty
array will be returned, causing the token to be discarded. If it is not found, the
lower-cased form of the word is returned as the normalized lexeme. In addition,
you can set Accept to false for Simple dictionaries (default: true) to report non-
stop-words as unrecognized, allowing them to be passed on to the next dictionary
in the list.

Precautions
● Most types of dictionaries rely on dictionary configuration files. The name of a

configuration file can only be lowercase letters, digits, and underscores (_).
● A dictionary cannot be created in pg_temp mode.
● Dictionary configuration files must be stored in UTF-8 encoding. They will be

translated to the actual database encoding, if that is different, when they are
read into the server.

● Generally, a session will read a dictionary configuration file only once, when it
is first used within the session. To modify a configuration file, run the ALTER
TEXT SEARCH DICTIONARY statement to update and reload the file.

Procedure

Step 1 Create a Simple dictionary.
CREATE TEXT SEARCH DICTIONARY public.simple_dict (
     TEMPLATE = pg_catalog.simple,
     STOPWORDS = english
);

english.stop is the full name of a file of stop words. For details about the syntax
and parameters for creating a Simple dictionary, see CREATE TEXT SEARCH
DICTIONARY.

Step 2 Use the Simple dictionary.
SELECT ts_lexize('public.simple_dict','YeS');
 ts_lexize 
-----------
 {yes}
(1 row)

SELECT ts_lexize('public.simple_dict','The');
 ts_lexize 
-----------
 {}
(1 row)

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 346



Step 3 Set Accept=false so that the Simple dictionary returns NULL instead of a lower-
cased non-stop word.
ALTER TEXT SEARCH DICTIONARY public.simple_dict ( Accept = false );
SELECT ts_lexize('public.simple_dict','YeS');
 ts_lexize 
-----------

(1 row)

SELECT ts_lexize('public.simple_dict','The');
 ts_lexize 
-----------
 {}
(1 row)

----End

9.6.4 Synonym Dictionary
A synonym dictionary is used to define, identify, and convert synonyms of tokens.
Phrases are not supported (use the thesaurus dictionary in Thesaurus Dictionary).

Examples
● A synonym dictionary can be used to overcome linguistic problems, for

example, to prevent an English stemmer dictionary from reducing the word
"Paris" to "pari". It is enough to have a Paris paris line in the synonym
dictionary and put it before the english_stem dictionary.
SELECT * FROM ts_debug('english', 'Paris');
   alias   |   description   | token |  dictionaries  |  dictionary  | lexemes 
-----------+-----------------+-------+----------------+--------------+---------
 asciiword | Word, all ASCII | Paris | {english_stem} | english_stem | {pari}
(1 row)

CREATE TEXT SEARCH DICTIONARY my_synonym (
    TEMPLATE = synonym,
    SYNONYMS = my_synonyms,
    FILEPATH =  'obs://bucket01/obs.xxx.myhuaweicloud.com accesskey=xxxxx secretkey=xxxxx 
region=xx-xx-xx'
);

ALTER TEXT SEARCH CONFIGURATION english
    ALTER MAPPING FOR asciiword
    WITH my_synonym, english_stem;

SELECT * FROM ts_debug('english', 'Paris');
   alias   |   description   | token |       dictionaries        | dictionary | lexemes 
-----------+-----------------+-------+---------------------------+------------+---------
 asciiword | Word, all ASCII | Paris | {my_synonym,english_stem} | my_synonym | {paris}
(1 row)

SELECT * FROM ts_debug('english', 'paris');
   alias   |   description   | token |       dictionaries        | dictionary | lexemes 
-----------+-----------------+-------+---------------------------+------------+---------
 asciiword | Word, all ASCII | Paris | {my_synonym,english_stem} | my_synonym | {paris}
(1 row)

ALTER TEXT SEARCH DICTIONARY my_synonym ( CASESENSITIVE=true);

SELECT * FROM ts_debug('english', 'Paris');
   alias   |   description   | token |       dictionaries        | dictionary | lexemes 
-----------+-----------------+-------+---------------------------+------------+---------
 asciiword | Word, all ASCII | Paris | {my_synonym,english_stem} | my_synonym | {paris}
(1 row)

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 347



SELECT * FROM ts_debug('english', 'paris');
   alias   |   description   | token |       dictionaries        | dictionary | lexemes 
-----------+-----------------+-------+---------------------------+------------+---------
 asciiword | Word, all ASCII | Paris | {my_synonym,english_stem} | my_synonym | {pari}
(1 row)

The full name of the synonym dictionary file is my_synonyms.syn, and the
dictionary is stored in 'obs://bucket01/obs.xxx.myhuaweicloud.com
accesskey=xxxxx secretkey=xxxxx region=xx-xx-xx'. For details about the
syntax and parameters for creating a synonym dictionary, see CREATE TEXT
SEARCH DICTIONARY.

● An asterisk (*) can be placed at the end of a synonym in the configuration
file. This indicates that the synonym is a prefix. The asterisk is ignored when
the entry is used in to_tsvector(), but when it is used in to_tsquery(), the
result will be a query item with the prefix match marker (see Manipulating
Queries).

Assume that the content in the dictionary file synonym_sample.syn is as
follows:
postgres        pgsql
postgresql      pgsql 
postgre pgsql 
gogle   googl 
indices index*

Create and use a dictionary.
CREATE TEXT SEARCH DICTIONARY syn (
    TEMPLATE = synonym,
    SYNONYMS = synonym_sample
);

SELECT ts_lexize('syn','indices');
 ts_lexize 
-----------
 {index}
(1 row)

CREATE TEXT SEARCH CONFIGURATION tst (copy=simple);

ALTER TEXT SEARCH CONFIGURATION tst ALTER MAPPING FOR asciiword WITH syn;

SELECT to_tsvector('tst','indices');
 to_tsvector 
-------------
 'index':1
(1 row)

SELECT to_tsquery('tst','indices');
 to_tsquery 
------------
 'index':*
(1 row)

SELECT 'indexes are very useful'::tsvector;
            tsvector             
---------------------------------
 'are' 'indexes' 'useful' 'very'
(1 row)

SELECT 'indexes are very useful'::tsvector @@ to_tsquery('tst','indices');
 ?column? 
----------
 t
(1 row)

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 348



9.6.5 Thesaurus Dictionary
A thesaurus dictionary (sometimes abbreviated as TZ) is a collection of words that
include relationships between words and phrases, such as broader terms (BT),
narrower terms (NT), preferred terms, non-preferred terms, and related terms. A
thesaurus dictionary replaces all non-preferred terms by one preferred term and,
optionally, preserves the original terms for indexing as well. A thesaurus dictionary
is an extension of the synonym dictionary with added phrase support.

Precautions
● A thesaurus dictionary has the capability to recognize phrases. Therefore, it

must remember its state and interact with the parser to check whether it
should handle the next token or stop accumulation. The thesaurus dictionary
must be configured carefully. For example, if the thesaurus dictionary is
assigned to handle only the asciiword token, then a thesaurus dictionary
definition like one 7 will not work because token type uint is not assigned to
the thesaurus dictionary.

● Thesauruses are used during indexing. Any change in the thesaurus
dictionary's parameters requires reindexing. For most other dictionary types,
small changes such as adding or removing stop words does not force
reindexing.

Procedure

Step 1 Create a TZ named thesaurus_astro.

thesaurus_astro is a simple astronomical TZ that defines two astronomical word
combinations (word+synonym).
supernovae stars : sn 
crab nebulae : crab

Run the following statement to create the TZ:

CREATE TEXT SEARCH DICTIONARY thesaurus_astro (
    TEMPLATE = thesaurus,
    DictFile = thesaurus_astro,
    Dictionary = pg_catalog.english_stem,
    FILEPATH =  'obs://bucket01/obs.xxx.myhuaweicloud.com accesskey=xxxxx secretkey=xxxxx region=xx-xx-
xx'
);

The full name of the dictionary file is thesaurus_astro.ths, and the dictionary is
stored in 'obs://bucket01/obs.xxx.myhuaweicloud.com accesskey=xxxxx
secretkey=xxxxx region=xx-xx-xx'. pg_catalog.english_stem is the subdictionary
(a Snowball English stemmer) used for input normalization. The subdictionary
has its own configuration (for example, stop words), which is not shown here. For
details about the syntax and parameters for creating a TZ, see CREATE TEXT
SEARCH DICTIONARY.

Step 2 Bind the TZ to the desired token types in the text search configuration.
ALTER TEXT SEARCH CONFIGURATION english
    ALTER MAPPING FOR asciiword, asciihword, hword_asciipart
    WITH thesaurus_astro, english_stem;

Step 3 Use the TZ.
● Test the TZ.

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 349



The ts_lexize function is not very useful for testing the TZ because the
function processes its input as a single token. Instead, you can use the
plainto_tsquery, to_tsvector, or to_tsquery function which will break their
input strings into multiple tokens.
SELECT plainto_tsquery('english','supernova star');
 plainto_tsquery 
-----------------
 'sn'
(1 row)

SELECT to_tsvector('english','supernova star');
 to_tsvector 
-------------
 'sn':1
(1 row)

SELECT to_tsquery('english','''supernova star''');
 to_tsquery 
------------
 'sn'
(1 row)

supernova star matches supernovae stars in thesaurus_astro because the
english_stem stemmer is specified in the thesaurus_astro definition. The
stemmer removed e and s.

● To index the original phrase, include it in the right-hand part of the definition.
supernovae stars : sn supernovae stars

ALTER TEXT SEARCH DICTIONARY thesaurus_astro (
    DictFile = thesaurus_astro,
    FILEPATH = 'file:///home/dicts/');

SELECT plainto_tsquery('english','supernova star');
       plainto_tsquery       
-----------------------------
 'sn' & 'supernova' & 'star'
(1 row)

----End

9.6.6 Ispell Dictionary
The Ispell dictionary template supports morphological dictionaries, which can
normalize many different linguistic forms of a word into the same lexeme. For
example, an English Ispell dictionary can match all declensions and conjugations
of the search term bank, such as banking, banked, banks, banks', and bank's.

GaussDB(DWS) does not provide any predefined Ispell dictionaries or dictionary
files. The .dict files and .affix files support multiple open-source dictionary formats,
including Ispell, MySpell, and Hunspell.

Procedure

Step 1 Obtain the dictionary definition file (.dict) and affix file (.affix).

You can use an open-source dictionary. The name extensions of the open-source
dictionary may be .aff and .dic. In this case, you need to change them to .affix
and .dict. In addition, for some dictionary files (for example, Norwegian dictionary
files), you need to run the following commands to convert the character encoding
to UTF-8:

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 350



iconv -f ISO_8859-1 -t UTF-8 -o nn_no.affix nn_NO.aff 
iconv -f ISO_8859-1 -t UTF-8 -o nn_no.dict nn_NO.dic

Step 2 Create an Ispell dictionary.
CREATE TEXT SEARCH DICTIONARY norwegian_ispell (
    TEMPLATE = ispell,
    DictFile = nn_no,
    AffFile = nn_no,
    FilePath = 'obs://bucket_name/path accesskey=ak secretkey=sk region=rg'
);

The full name of the Ispell dictionary file is nn_no.dict and nn_no.affix, and the
dictionary is stored in the 'obs://bucket01/obs.xxx.myhuaweicloud.com
accesskey=xxxxx secretkey=xxxxx region=xx-xx-xx'. For details about the syntax
and parameters for creating an Ispell dictionary, see CREATE TEXT SEARCH
DICTIONARY.

Step 3 Use the Ispell dictionary to split compound words.
SELECT ts_lexize('norwegian_ispell', 'sjokoladefabrikk');
      ts_lexize      
---------------------
 {sjokolade,fabrikk}
(1 row)

MySpell does not support compound words. Hunspell supports compound words.
GaussDB(DWS) supports only the basic compound word operations of Hunspell.
Generally, an Ispell dictionary recognizes a limited set of words, so they should be
followed by another broader dictionary, for example, a Snowball dictionary, which
recognizes everything.

----End

9.6.7 Snowball Dictionary
A Snowball dictionary is based on a project by Martin Porter and is used for stem
analysis, providing stemming algorithms for many languages. GaussDB(DWS)
provides predefined Snowball dictionaries of many languages. You can query the
PG_TS_DICT system catalog to view the predefined Snowball dictionaries and
supported stemming algorithms.

A Snowball dictionary recognizes everything, no matter whether it is able to
simplify the word. Therefore, it should be placed at the end of the dictionary list. It
is useless to place it before any other dictionary because a token will never pass it
through to the next dictionary.

For details about the syntax of Snowball dictionaries, see CREATE TEXT SEARCH
DICTIONARY.

9.7 Configuration Examples
Text search configuration specifies the following components required for
converting a document into a tsvector:

● A parser, decomposes a text into tokens.
● Dictionary list, converts each token into a lexeme.

Each time when the to_tsvector or to_tsquery function is invoked, a text search
configuration is required to specify a processing procedure. The GUC parameter

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 351



default_text_search_config specifies the default text search configuration, which
will be used if the text search function does not explicitly specify a text search
configuration.

GaussDB(DWS) provides some predefined text search configurations. You can also
create user-defined text search configurations. In addition, to facilitate the
management of text search objects, multiple gsql meta-commands are provided
to display related information. For details, see "Meta-Command Reference" in the
Tool Guide.

Procedure

Step 1 Create a text search configuration ts_conf by copying the predefined text search
configuration english.
CREATE TEXT SEARCH CONFIGURATION ts_conf ( COPY = pg_catalog.english );
CREATE TEXT SEARCH CONFIGURATION

Step 2 Create a Synonym dictionary.

Assume that the definition file pg_dict.syn of the Synonym dictionary contains
the following contents:
postgres    pg 
pgsql       pg 
postgresql  pg

Run the following statement to create the Synonym dictionary:

CREATE TEXT SEARCH DICTIONARY pg_dict (
     TEMPLATE = synonym,
     SYNONYMS = pg_dict,
     FILEPATH =  'obs://bucket01/obs.xxx.myhuaweicloud.com accesskey=xxxxx secretkey=xxxxx region=xx-xx-
xx'
 );

Step 3 Create an Ispell dictionary english_ispell (the dictionary definition file is from the
open source dictionary).
CREATE TEXT SEARCH DICTIONARY english_ispell (
    TEMPLATE = ispell,
    DictFile = english,
    AffFile = english,
    StopWords = english,
    FILEPATH =   'obs://bucket01/obs.xxx.myhuaweicloud.com accesskey=xxxxx secretkey=xxxxx region=xx-xx-
xx'
);

Step 4 Modify the text search configuration ts_conf and change the dictionary list for
tokens of certain types. For details about token types, see Parsers.
ALTER TEXT SEARCH CONFIGURATION ts_conf
    ALTER MAPPING FOR asciiword, asciihword, hword_asciipart,
                      word, hword, hword_part
    WITH pg_dict, english_ispell, english_stem;

Step 5 In the text search configuration, set non-index or set the search for tokens of
certain types.
ALTER TEXT SEARCH CONFIGURATION ts_conf
    DROP MAPPING FOR email, url, url_path, sfloat, float;

Step 6 Use the text retrieval commissioning function ts_debug() to test the text search
configuration ts_conf.
SELECT * FROM ts_debug('ts_conf', '
PostgreSQL, the highly scalable, SQL compliant, open source object-relational
database management system, is now undergoing beta testing of the next

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 352



version of our software.
');

Step 7 You can set the default text search configuration of the current session to ts_conf.
This setting is valid only for the current session.
\dF+ ts_conf
      Text search configuration "public.ts_conf"
Parser: "pg_catalog.default"
      Token      |            Dictionaries             
-----------------+-------------------------------------
 asciihword      | pg_dict,english_ispell,english_stem
 asciiword       | pg_dict,english_ispell,english_stem
 file            | simple
 host            | simple
 hword           | pg_dict,english_ispell,english_stem
 hword_asciipart | pg_dict,english_ispell,english_stem
 hword_numpart   | simple
 hword_part      | pg_dict,english_ispell,english_stem
 int             | simple
 numhword        | simple
 numword         | simple
 uint            | simple
 version         | simple
 word            | pg_dict,english_ispell,english_stem

SET default_text_search_config = 'public.ts_conf';
SET
SHOW default_text_search_config;
 default_text_search_config 
----------------------------
 public.ts_conf
(1 row)

----End

9.8 Testing and Debugging Text Search

9.8.1 Testing a Configuration
The function ts_debug allows easy testing of a text search configuration.
ts_debug([ config regconfig, ] document text,
         OUT alias text,
         OUT description text,
         OUT token text,
         OUT dictionaries regdictionary[],
         OUT dictionary regdictionary,
         OUT lexemes text[])
         returns setof record

ts_debug displays information about every token of document as produced by the
parser and processed by the configured dictionaries. It uses the configuration
specified by config, or default_text_search_config if that argument is omitted.

ts_debug returns one row for each token identified in the text by the parser. The
columns returned are:

● alias text — short name of the token type
● description text — description of the token type
● token text — text of the token
● dictionaries regdictionary[] — the dictionaries selected by the configuration

for this token type

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 353



● dictionary regdictionary: the dictionary that recognized the token, or NULL if
none did

● lexemes text[]: the lexeme(s) produced by the dictionary that recognized the
token, or NULL if none did; an empty array ({}) means the token was
recognized as a stop word

Here is a simple example:

SELECT * FROM ts_debug('english','a fat  cat sat on a mat - it ate a fat rats');
   alias   |   description   | token |  dictionaries  |  dictionary  | lexemes 
-----------+-----------------+-------+----------------+--------------+---------
 asciiword | Word, all ASCII | a     | {english_stem} | english_stem | {}
 blank     | Space symbols   |       | {}             |              | 
 asciiword | Word, all ASCII | fat   | {english_stem} | english_stem | {fat}
 blank     | Space symbols   |       | {}             |              | 
 asciiword | Word, all ASCII | cat   | {english_stem} | english_stem | {cat}
 blank     | Space symbols   |       | {}             |              | 
 asciiword | Word, all ASCII | sat   | {english_stem} | english_stem | {sat}
 blank     | Space symbols   |       | {}             |              | 
 asciiword | Word, all ASCII | on    | {english_stem} | english_stem | {}
 blank     | Space symbols   |       | {}             |              | 
 asciiword | Word, all ASCII | a     | {english_stem} | english_stem | {}
 blank     | Space symbols   |       | {}             |              | 
 asciiword | Word, all ASCII | mat   | {english_stem} | english_stem | {mat}
 blank     | Space symbols   |       | {}             |              | 
 blank     | Space symbols   | -     | {}             |              | 
 asciiword | Word, all ASCII | it    | {english_stem} | english_stem | {}
 blank     | Space symbols   |       | {}             |              | 
 asciiword | Word, all ASCII | ate   | {english_stem} | english_stem | {ate}
 blank     | Space symbols   |       | {}             |              | 
 asciiword | Word, all ASCII | a     | {english_stem} | english_stem | {}
 blank     | Space symbols   |       | {}             |              | 
 asciiword | Word, all ASCII | fat   | {english_stem} | english_stem | {fat}
 blank     | Space symbols   |       | {}             |              | 
 asciiword | Word, all ASCII | rats  | {english_stem} | english_stem | {rat}
(24 rows)

9.8.2 Testing a Parser
The ts_parse function allows direct testing of a text search parser.

ts_parse(parser_name text, document text,
         OUT tokid integer, OUT token text) returns setof record

ts_parse parses the given document and returns a series of records, one for each
token produced by parsing. Each record includes a tokid showing the assigned
token type and a token which is the text of the token. For example:

SELECT * FROM ts_parse('default', '123 - a number');
 tokid | token
-------+--------
    22 | 123
    12 |
    12 | -
     1 | a
    12 |
     1 | number
(6 rows)
ts_token_type(parser_name text, OUT tokid integer,
              OUT alias text, OUT description text) returns setof record

ts_token_type returns a table which describes each type of token the specified
parser can recognize. For each token type, the table gives the integer tokid that
the parser uses to label a token of that type, the alias that names the token type
in configuration commands, and a short description. For example:

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 354



SELECT * FROM ts_token_type('default');
 tokid |      alias      |               description                
-------+-----------------+------------------------------------------
     1 | asciiword       | Word, all ASCII
     2 | word            | Word, all letters
     3 | numword         | Word, letters and digits
     4 | email           | Email address
     5 | url             | URL
     6 | host            | Host
     7 | sfloat          | Scientific notation
     8 | version         | Version number
     9 | hword_numpart   | Hyphenated word part, letters and digits
    10 | hword_part      | Hyphenated word part, all letters
    11 | hword_asciipart | Hyphenated word part, all ASCII
    12 | blank           | Space symbols
    13 | tag             | XML tag
    14 | protocol        | Protocol head
    15 | numhword        | Hyphenated word, letters and digits
    16 | asciihword      | Hyphenated word, all ASCII
    17 | hword           | Hyphenated word, all letters
    18 | url_path        | URL path
    19 | file            | File or path name
    20 | float           | Decimal notation
    21 | int             | Signed integer
    22 | uint            | Unsigned integer
    23 | entity          | XML entity
(23 rows)

9.8.3 Testing a Dictionary
The ts_lexize function facilitates dictionary testing.

ts_lexize(dict regdictionary, token text) returns text[] ts_lexize returns an
array of lexemes if the input token is known to the dictionary, or an empty array
if the token is known to the dictionary but it is a stop word, or NULL if it is an
unknown word.

For example:

SELECT ts_lexize('english_stem', 'stars');
 ts_lexize
-----------
 {star}

SELECT ts_lexize('english_stem', 'a');
 ts_lexize
-----------
 {}

NO TICE

The ts_lexize function expects a single token, not text.

9.9 Limitations
The current limitations of GaussDB(DWS)'s full text search are:

● The length of each lexeme must be less than 2 KB.
● The length of a tsvector (lexemes + positions) must be less than 1 megabyte.
● Position values in tsvector must be greater than 0 and no more than 16383.

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 355



● No more than 256 positions per lexeme. Excessive positions, if any, will be
discarded.

● The number of nodes (lexemes + operators) in a tsquery must be less than
32768.

Data Warehouse Service
SQL Syntax 9 Full Text Search

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 356



10 System Operation

GaussDB(DWS) runs SQL statements to perform different system operations, such
as setting variables, displaying the execution plan, and collecting garbage data.

Setting Variables

For details about how to set various parameters for a session or transaction, see
SET.

Displaying the Execution Plan

For details about how to display the execution plan that GaussDB(DWS) makes
for SQL statements, see EXPLAIN.

Specifying a Checkpoint in Transaction Logs

By default, WALs periodically specify checkpoints in a transaction log.
CHECKPOINT forces an immediate checkpoint when the related command is
issued, without waiting for a regular checkpoint scheduled by the system. For
details, see CHECKPOINT.

Collecting Unnecessary Data

For details about how to collect garbage data and analyze a database as required,
For details, see VACUUM.

Collecting statistics

For details about how to collect statistics on tables in databases, For details, see
ANALYZE | ANALYSE.

Setting the Constraint Check Mode for the Current Transaction

For details about how to set the constraint check mode for the current transaction,
For details, see SET CONSTRAINTS.

Data Warehouse Service
SQL Syntax 10 System Operation

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 357



11 Controlling Transactions

A transaction is a user-defined sequence of database operations, which form an
integral unit of work.

Starting Transactions
GaussDB(DWS) starts a transaction using START TRANSACTION and BEGIN. For
details, see START TRANSACTION and BEGIN.

Setting Transactions
GaussDB(DWS) sets a transaction using SET TRANSACTION or SET LOCAL
TRANSACTION. For details, see SET TRANSACTION.

Submitting Transactions
GaussDB(DWS) commits all operations of a transaction using COMMIT or END.
For details, see COMMIT | END.

Rolling Back Transactions
If a fault occurs during a transaction and the transaction cannot proceed, the
system performs rollback to cancel all the completed database operations related
to the transaction. For details, see ROLLBACK.

NO TE

If an execution request (not in a transaction block) received in the database contains
multiple statements, the statements will be packed into a transaction. If one of the
statements fails, the entire request will be rolled back.

Data Warehouse Service
SQL Syntax 11 Controlling Transactions

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 358



12 DDL Syntax

12.1 DDL Syntax Overview
Data definition language (DDL) is used to define or modify an object in a
database, such as a table, index, or view.

NO TE

GaussDB(DWS) does not support DDL if its CN is unavailable. For example, if a CN in the
cluster is faulty, creating a database or table will fail.

Defining a Database
A database is the warehouse for organizing, storing, and managing data. Defining
a database includes: creating a database, altering the database attributes, and
dropping the database. The following table lists the related SQL statements.

Table 12-1 SQL statements for defining a database

Function SQL Statement

Create a database CREATE DATABASE

Alter database attributes ALTER DATABASE

Delete a database DROP DATABASE

 

Defining a Schema
A schema is the set of a group of database objects and is used to control the
access to the database objects. The following table lists the related SQL
statements.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 359



Table 12-2 SQL statements for defining a schema

Function SQL Statement

Create a schema CREATE SCHEMA

Alter schema attributes ALTER SCHEMA

Delete a schema DROP SCHEMA

 

Defining a Tablespace
A tablespace is used to manage data objects and corresponds to a catalog on a
disk. The following table lists the related SQL statements.

Table 12-3 SQL statements for defining a tablespace

Function SQL Statement

Create a tablespace CREATE TABLESPACE

Delete a tablespace DROP TABLESPACE

 

Defining a Table
A table is a special data structure in a database and is used to store data objects
and the relationship between data objects. The following table lists the related
SQL statements.

Table 12-4 SQL statements for defining a table

Function SQL Statement

Create a table CREATE TABLE

Alter table attributes ALTER TABLE

Delete a table DROP TABLE

Delete all the data from a table TRUNCATE

 

Defining a Partitioned Table
A partitioned table is a special data structure in a database and is used to store
data objects and the relationship between data objects. The following table lists
the related SQL statements.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 360



Table 12-5 SQL statements for defining a partitioned table

Function SQL Statement

Create a partitioned table CREATE TABLE PARTITION

Create a partition ALTER TABLE PARTITION

Alter partitioned table attributes ALTER TABLE PARTITION

Delete a partition ALTER TABLE PARTITION

Delete a partitioned table DROP TABLE

 

Defining an Index
An index indicates the sequence of values in one or more columns in the database
table. The database index is a data structure that improves the speed of data
access to specific information in a database table. The following table lists the
related SQL statements.

Table 12-6 SQL statements for defining an index

Function SQL Statement

Create an index CREATE INDEX

Alter index attributes ALTER INDEX

Delete an index DROP INDEX

Rebuild an index REINDEX

 

Defining a Role
A role is used to manage rights. For database security, all management and
operation rights can be assigned to different roles. The following table lists the
related SQL statements.

Table 12-7 SQL statements for defining a role

Function SQL Statement

Create a role CREATE ROLE

Alter role attributes ALTER ROLE

Delete a role DROP ROLE

 

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 361



Defining a User

A user is used to log in to a database. Different rights can be assigned to users for
managing data accesses and operations of users. The following table lists the
related SQL statements.

Table 12-8 SQL statements for defining a user

Function SQL Statement

Create a user CREATE USER

Alter user attributes ALTER USER

Delete a user DROP USER

 

Defining a Redaction Policy

Data redaction is to protect sensitive data by masking or changing data. You can
create a data redaction policy for a specific table object and specify the effective
scope of the policy. You can also add, modify, and delete redaction columns. The
following table lists the related SQL statements.

Table 12-9 SQL statements for managing redaction policies

Function SQL Statement

Create a data redaction policy CREATE REDACTION POLICY

Modify a data redaction policy applied
to a specified table

ALTER REDACTION POLICY

Delete a data redaction policy applied
to a specified table

DROP REDACTION POLICY

 

Defining Row-Level Access Control

Row-level access control policies control the visibility of rows in database tables. In
this way, the same SQL query may return different results for different users. The
following table lists the related SQL statements.

Table 12-10 SQL statements for row-level access control

Function SQL Statement

Create a row-level access control
policy

CREATE ROW LEVEL SECURITY
POLICY

Modify an existing row-level access
control policy

ALTER ROW LEVEL SECURITY POLICY

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 362



Function SQL Statement

Delete a row-level access control
policy from a table

DROP ROW LEVEL SECURITY POLICY

 

Defining a Stored Procedure

A stored procedure is a set of SQL statements for achieving specific functions and
is stored in the database after compiling. Users can specify a name and provide
parameters (if necessary) to execute the stored procedure. The following table lists
the related SQL statements.

Table 12-11 SQL statements for defining a stored procedure

Function SQL Statement

Create a stored procedure CREATE PROCEDURE

Delete a stored procedure DROP PROCEDURE

 

Defining a Function

In GaussDB(DWS), a function is similar to a stored procedure, which is a set of
SQL statements. The function and stored procedure are used the same. The
following table lists the related SQL statements.

Table 12-12 SQL statements for defining a function

Function SQL Statement

Create a function CREATE FUNCTION

Alter function attributes ALTER FUNCTION

Delete a function DROP FUNCTION

 

Defining a View

A view is a virtual table exported from one or several basic tables. The view is
used to control data accesses for users. The following table lists the related SQL
statements.

Table 12-13 SQL statements for defining a view

Function SQL Statement

Create a view CREATE VIEW

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 363



Function SQL Statement

Delete a view DROP VIEW

 

Defining a Cursor
To process SQL statements, the stored procedure process assigns a memory
segment to store context association. Cursors are handles or pointers to context
regions. With a cursor, the stored procedure can control alterations in context
areas.

Table 12-14 SQL statements for defining a cursor

Function SQL Statement

Create a cursor CURSOR

Move a cursor MOVE

Extract data from a cursor FETCH

Close a cursor CLOSE

 

Altering or Ending a Session
A session is a connection established between the user and the database. The
following table lists the related SQL statements.

Table 12-15 SQL statements related to sessions

Function SQL Statement

Alter a session ALTER SESSION

End a session ALTER SYSTEM KILL SESSION

 

Defining a Resource Pool
A resource pool is a system catalog used by the resource load management
module to specify attributes related to resource management, such as Cgroups.
The following table lists the related SQL statements.

Table 12-16 SQL statements for defining a resource pool

Function SQL Statement

Create a resource pool CREATE RESOURCE POOL

Change resource attributes ALTER RESOURCE POOL

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 364



Function SQL Statement

Delete a resource pool DROP RESOURCE POOL

 

Defining Synonyms

A synonym is a special database object compatible with Oracle. It is used to store
the mapping between a database object and another. Currently, only synonyms
can be used to associate the following database objects: tables, views, functions,
and stored procedures. The following table lists the related SQL statements.

Table 12-17 SQL statements for managing synonyms

Function SQL Statement

Creating a synonym CREATE SYNONYM

Modifying a synonym ALTER SYNONYM

Deleting a synonym DROP SYNONYM

 

Defining Text Search Configuration

A text search configuration specifies a text search parser that can divide a string
into tokens, plus dictionaries that can be used to determine which tokens are of
interest for searching. The following table lists the related SQL statements.

Table 12-18 SQL statements for configuring text search

Function SQL Statement

Create a text search configuration CREATE TEXT SEARCH
CONFIGURATION

Modify a text search configuration ALTER TEXT SEARCH
CONFIGURATION

Delete a text search configuration DROP TEXT SEARCH
CONFIGURATION

 

Defining a Full-text Retrieval Dictionary

A dictionary is used to identify and process specific words during full-text retrieval.
Dictionaries are created by using predefined templates (defined in the
PG_TS_TEMPLATE system catalog). Dictionaries of the Simple, Ispell, Synonym,
Thesaurus, and Snowball types can be created. The following table lists the
related SQL statements.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 365



Table 12-19 SQL statements for a full-text search dictionary

Function SQL Statement

Create a full-text retrieval dictionary CREATE TEXT SEARCH DICTIONARY

Modify a full-text retrieval dictionary ALTER TEXT SEARCH DICTIONARY

Delete a full-text retrieval dictionary DROP TEXT SEARCH DICTIONARY

 

12.2 ALTER DATABASE

Function
This command is used to modify the attributes of a database, including the
database name, owner, maximum number of connections, and object isolation
attribute.

Important Notes
● Only the owner of a database or a system administrator has the permission to

run the ALTER DATABASE statement. Users other than system administrators
may have the following permission constraints depending on the attributes to
be modified:
– To modify the database name, you must have the CREATEDB permission.
– To modify a database owner, you must be a database owner and a

member of the new owner, and have the CREATEDB permission.
– To change the default tablespace, you must be a database owner or a

system administrator, and must have the CREATE permission on the new
tablespace. This statement physically migrates tables and indexes in a
default tablespace to a new tablespace. Note that tables and indexes
outside the default tablespace are not affected.

– Only a database owner or a system administrator can modify GUC
parameters for the database.

– Only database owners and system administrators can modify the object
isolation attribute of a database.

● You are not allowed to rename a database in use. To rename it, connect to
another database.

Syntax
● Modify the maximum number of connections of the database.

ALTER DATABASE database_name
    [ [ WITH ] CONNECTION LIMIT connlimit ];

● Rename the database.
ALTER DATABASE database_name
    RENAME TO new_name;

NO TE

If the database contains OBS hot or cold tables, the database name cannot be
changed.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 366



● Change the database owner.
ALTER DATABASE database_name
    OWNER TO new_owner;

● Change the default tablespace of the database.
ALTER DATABASE database_name
    SET TABLESPACE new_tablespace;

NO TE

The current tablespaces cannot be changed to OBS tablespaces.

● Modify the session parameter value of the database.
ALTER DATABASE database_name
    SET configuration_parameter { { TO | = } { value | DEFAULT } | FROM CURRENT };

● Reset the database configuration parameter.
ALTER DATABASE database_name RESET
    { configuration_parameter | ALL };

● Modify the object isolation attribute of a database.
ALTER DATABASE database_name [ WITH ] { ENABLE | DISABLE } PRIVATE OBJECT;

NO TE

● To modify the object isolation attribute of a database, the database must be
connected. Otherwise, the modification will fail.

● For a new database, the object isolation attribute is disabled by default. After this
attribute is enabled, common users can view only the objects (such as tables,
functions, views, and columns) that they have the permission to access. This
attribute does not take effect for administrators. After this attribute is enabled,
administrators can still view all database objects.

Parameter Description
● database_name

Specifies the name of the database whose attributes are to be modified.
Value range: a string. It must comply with the naming convention.

● connlimit
Specifies the maximum number of concurrent connections that can be made
to this database (excluding administrators' connections).
Value range: The value must be an integer, preferably between 1 and 50. The
default value -1 indicates no restrictions.

● new_name
Specifies the new name of a database.
Value range: a string. It must comply with the naming convention.

● new_owner
Specifies the new owner of a database.
Value range: a string indicating a valid user name

● configuration_parameter
value
Sets a specified database session parameter. If the value is DEFAULT or
RESET, the default setting is used in the new session. OFF closes the setting.
Value range: a string. It can be set to:
– DEFAULT

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 367



– OFF
– RESET

● FROM CURRENT
Sets the value based on the database connected to the current session.

● RESET configuration_parameter
Resets the specified database session parameter.

● RESET ALL
Resets all database session parameters.

NO TE

● Modifies the default tablespace of a database by moving all the tables or indexes from
the old tablespace to the new one. This operation does not affect the tables or indexes
in other non-default tablespaces.

● The modified database session parameter values will take effect in the next session.

Examples
Modify the number of connections of the music database.

ALTER DATABASE music CONNECTION LIMIT= 10;

Change the name of the music database to music1.

ALTER DATABASE music RENAME TO music1;

Change the owner of the music1 database.

ALTER DATABASE music1 OWNER TO tom;

Modify the tablespace of the music1 database.

ALTER DATABASE music1 SET TABLESPACE PG_DEFAULT;

Disable the default index scan on the music1 database.

ALTER DATABASE music1 SET enable_indexscan TO off;

Reset the enable_indexscan parameter of the music1 database.

ALTER DATABASE music1 RESET enable_indexscan;

Links
CREATE DATABASE, DROP DATABASE

12.3 ALTER FOREIGN TABLE (for GDS)

Function
ALTER FOREIGN TABLE modifies a foreign table.

Precautions
None

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 368



Syntax
● Set the attributes of a foreign table.

ALTER FOREIGN TABLE [ IF EXISTS ]  table_name
    OPTIONS ( {[ ADD | SET | DROP ] option ['value']}[, ... ]);

● Set a new owner.
ALTER FOREIGN TABLE [ IF EXISTS ] tablename
    OWNER TO new_owner;

Parameter Description
● table_name

Specifies the name of an existing foreign table to be modified.
Value range: an existing foreign table name.

● option
Name of the option to be modified.
Value range: See Parameter Description in CREATE FOREIGN TABLE.

● value
Specifies the new value of option.

Examples

Modify the customer_ft attribute of the foreign table. Delete the mode option.

ALTER FOREIGN TABLE customer_ft options(drop mode);

Helpful Links

CREATE FOREIGN TABLE (for GDS Import and Export), DROP FOREIGN TABLE

12.4 ALTER FOREIGN TABLE (for HDFS or OBS)

Function

ALTER FOREIGN TABLE modifies an HDFS or OBS foreign table.

Precautions

None

Syntax
● Set a foreign table's attributes.

ALTER FOREIGN TABLE [ IF EXISTS ]  table_name
    OPTIONS ( {[ ADD | SET | DROP ] option ['value']} [, ... ]);

● Set the owner of the foreign table.
ALTER FOREIGN TABLE [ IF EXISTS ] tablename 
    OWNER TO new_owner;

● Update a foreign table column.
ALTER FOREIGN TABLE [ IF EXISTS ] table_name
    MODIFY ( { column_name data_type | column_name [ CONSTRAINT constraint_name ] NOT NULL 
[ ENABLE ] | column_name [ CONSTRAINT constraint_name ] NULL } [, ...] );

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 369



● Modify the column of the foreign table.
ALTER FOREIGN TABLE [ IF EXISTS ] tablename 
    action [, ... ];

The action syntax is as follows:
ALTER [ COLUMN ] column_name [ SET DATA ] TYPE data_type
   | ALTER [ COLUMN ] column_name { SET | DROP } NOT NULL
   | ALTER [ COLUMN ] column_name SET STATISTICS [PERCENT] integer
   | ALTER [ COLUMN ] column_name OPTIONS ( {[ ADD | SET | DROP ] option ['value'] } [, ... ])
   | MODIFY column_name data_type
   | MODIFY column_name [ CONSTRAINT constraint_name ] NOT NULL [ ENABLE ]
   | MODIFY column_name [ CONSTRAINT constraint_name ] NULL

For details, see ALTER TABLE.

● Add a foreign table informational constraint.
ALTER FOREIGN TABLE [ IF EXISTS ] tablename
    ADD [ CONSTRAINT constraint_name ]
    { PRIMARY KEY | UNIQUE } ( column_name )
    [ NOT ENFORCED [ ENABLE QUERY OPTIMIZATION | DISABLE QUERY OPTIMIZATION ] | 
ENFORCED ];

For parameters about adding an informational constraint to a foreign table,
see Parameter Description in CREATE FOREIGN TABLE (For HDFS).

● Remove a foreign table informational constraint.
ALTER FOREIGN TABLE [ IF EXISTS ] tablename 
    DROP CONSTRAINT constraint_name ;

Parameter Description
● IF EXISTS

Sends a notification instead of an error if no tables have identical names. The
notification prompts that the table you are querying does not exist.

● tablename
Specifies the name of an existing foreign table to be modified.
Value range: an existing foreign table name

● new_owner
Specifies the new owner of the foreign table.
Value range: A string indicating a valid user name.

● data_type
Specifies the new type for an existing column.
Value range: a string. It must comply with the naming convention.

● constraint_name
Specifies the name of a constraint to add or delete.

● column_name
Specifies the name of an existing column.
Value range: a string. It must comply with the naming convention.

For details on how to modify other parameters in the foreign table, such as IF
EXISTS, see Parameter Description in ALTER TABLE.

Examples
Change the type of the r_name column to text in the ft_region foreign table.

ALTER FOREIGN TABLE ft_region ALTER r_name TYPE TEXT;

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 370



Run the following command to mark the r_name column of the ft_region foreign
table as not null:
ALTER FOREIGN TABLE ft_region ALTER r_name SET NOT NULL;

Links
CREATE FOREIGN TABLE (SQL on OBS or Hadoop ), DROP FOREIGN TABLE

12.5 ALTER FUNCTION

Function
ALTER FUNCTION modifies the attributes of a customized function.

Precautions
Only the owner of a function or a system administrator can run this statement. If
a function involves operations on temporary tables, the ALTER FUNCTION cannot
be used.

Syntax
● Modify the additional parameter of the customized function.

ALTER FUNCTION function_name ( [ { [ argmode ] [ argname ] argtype} [, ...] ] )
    action [ ... ] [ RESTRICT ];

The syntax of the action clause is as follows:
{CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT}
 | {IMMUTABLE | STABLE | VOLATILE}
 | {SHIPPABLE | NOT SHIPPABLE}
 | {NOT FENCED | FENCED}
 | [ NOT ] LEAKPROOF
 | { [ EXTERNAL ] SECURITY INVOKER | [ EXTERNAL ] SECURITY DEFINER }
 | AUTHID { DEFINER | CURRENT_USER }
 | COST execution_cost
 | ROWS result_rows
 | SET configuration_parameter { { TO | = } { value | DEFAULT }| FROM CURRENT}
 | RESET {configuration_parameter | ALL}

● Modify the name of the customized function.
ALTER FUNCTION funname ( [ { [ argmode ] [ argname ] argtype} [, ...] ] )
    RENAME TO new_name;

● Modify the owner of the customized function.
ALTER FUNCTION funname ( [ { [ argmode ] [ argname ] argtype} [, ...] ] )
    OWNER TO new_owner;

● Modify the schema of the customized function.
ALTER FUNCTION funname ( [ { [ argmode ] [ argname ] argtype} [, ...] ] )
    SET SCHEMA new_schema;

Parameter Description
● function_name

Specifies the function name to be modified.
Value range: An existing function name.

● argmode
Specifies whether a parameter is an input or output parameter.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 371



Value range: IN, OUT, IN OUT
● argname

Indicates the parameter name.
Value range: A string. It must comply with the naming convention.

● argtype
Specifies the parameter type.
Value range: A valid type. For details, see Data Types.

● CALLED ON NULL INPUT
Declares that some parameters of the function can be invoked in normal
mode if the parameter values are NULL. By default, the usage is the same as
specifying the parameters.

● RETURNS NULL ON NULL INPUT
STRICT
Indicates that the function always returns NULL whenever any of its
arguments are NULL. If this parameter is specified, the function is not
executed when there are null arguments; instead a null result is assumed
automatically.
The usage of RETURNS NULL ON NULL INPUT is the same as that of
STRICT.

● IMMUTABLE
Indicates that the function always returns the same result if the parameter
values are the same.

● STABLE
Indicates that the function cannot modify the database, and that within a
single table scan it will consistently return the same result for the same
parameter values, but that its result varies by SQL statements.

● VOLATILE
Indicates that the function value can change in one table scanning and no
optimization is performed.

● SHIPPABLE
● NOT SHIPPABLE

Indicates whether the function can be pushed down to DNs for execution.
Functions of the IMMUTABLE type can always be pushed down to the DNs.
Functions of the STABLE or VOLATILE type can be pushed down to DNs only if
their attribute is SHIPPABLE.

● LEAKPROOF
Indicates that the function has no side effect and specifies that the parameter
includes only the returned value. LEAKROOF can be set only by a system
administrator.

● EXTERNAL
(Optional) The objective is to be compatible with SQL. This feature applies to
all functions, including external functions.

● SECURITY INVOKER
AUTHID CURREN_USER

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 372



Declares that the function will be executed according to the permission of the
user that invokes it. By default, the usage is the same as specifying the
parameters.
SECURITY INVOKER and AUTHID CURREN_USER have the same functions.

● SECURITY DEFINER
AUTHID DEFINER
Specifies that the function is to be executed with the permissions of the user
that created it.
The usage of AUTHID DEFINER is the same as that of SECURITY DEFINER.

● COST execution_cost
A positive number giving the estimated execution cost for the function.
The unit of execution_cost is cpu_operator_cost.
Value range: A positive number.

● ROWS result_rows
Estimates the number of rows returned by the function. This is only allowed
when the function is declared to return a set.
Value range: A positive number. The default is 1000 rows.

● configuration_parameter
– value

Sets a specified database session parameter to a specified value. If the
value is DEFAULT or RESET, the default setting is used in the new
session. OFF closes the setting.
Value range: a string

▪ DEFAULT

▪ OFF

▪ RESET

Specifies the default value.
– from current

Uses the value of configuration_parameter of the current session.
● new_name

Specifies the new name of a function. To change a function's schema, you
must also have the CREATE permission on the new schema.
Value range: A string. It must comply with the naming convention.

● new_owner
Specifies the new owner of a function. To alter the owner, the new owner
must also be a direct or indirect member of the new owning role, and that
role must have CREATE permission on the function's schema.
Value range: Existing user roles.

● new_schema
Specifies the new schema of a function.
Value range: Existing schemas.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 373



Examples
Alter the execution rule of the func_add_sql function to IMMUTABLE (that is, the
same result is returned if the parameter remains unchanged):

ALTER FUNCTION func_add_sql(INTEGER, INTEGER) IMMUTABLE;

Change the name of the func_add_sql function to add_two_number.

ALTER FUNCTION func_add_sql(INTEGER, INTEGER) RENAME TO add_two_number;

Change the owner of the func_add_sql function to dbadmin.

ALTER FUNCTION add_two_number(INTEGER, INTEGER) OWNER TO dbadmin;

Helpful Links
CREATE FUNCTION, DROP FUNCTION

12.6 ALTER GROUP

Function
ALTER GROUP modifies the attributes of a user group.

Precautions
ALTER GROUP is an alias for ALTER ROLE, and it is not a standard SQL command
and not recommended. Users can use ALTER ROLE directly.

Syntax
● Add users to a group.

ALTER GROUP group_name 
    ADD USER user_name [, ... ];

● Remove users from a group.
ALTER GROUP group_name 
    DROP USER user_name [, ... ];

● Change the name of the group.
ALTER GROUP group_name 
    RENAME TO new_name;

Parameter Description
See the Example in ALTER ROLE.

Helpful Links
CREATE GROUP, DROP GROUP, ALTER ROLE

12.7 ALTER INDEX

Function
ALTER INDEX modifies the definition of an existing index.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 374



There are several sub-forms:

● IF EXISTS

If the specified index does not exist, a notice instead of an error is sent.

● RENAME TO

Changes only the name of the index. There is no effect on the stored data.

● SET ( { STORAGE_PARAMETER = value } [, ...] )

Change one or more index-method-specific storage parameters. Note that the
index contents will not be modified immediately by this command. You might
need to rebuild the index with REINDEX to get the desired effects depending
on parameters.

● RESET ( { storage_parameter } [, ...] )

Reset one or more index-method-specific storage parameters to the default
value. Similar to the SET statement, REINDEX may be used to completely
update the index.

● [ MODIFY PARTITION index_partition_name ] UNUSABLE

Sets the index on a table or index partition to be unavailable.

● REBUILD [ PARTITION index_partition_name ]

Recreates the index on a table or index partition.

● RENAME PARTITION

Renames an index partition.

Precautions
● Only the owner of an index or a system administrator can run this statement.

Syntax
● Rename a table index.

ALTER INDEX [ IF EXISTS ] index_name 
    RENAME TO new_name;

● Modify the storage parameter of a table index.
ALTER INDEX [ IF EXISTS ] index_name 
    SET ( {storage_parameter = value} [, ... ] );

● Reset the storage parameter of a table index.
ALTER INDEX [ IF EXISTS ] index_name 
    RESET ( storage_parameter [, ... ] ) ;

● Set a table index or an index partition to be unavailable.
ALTER INDEX [ IF EXISTS ] index_name 
    [ MODIFY PARTITION index_partition_name ] UNUSABLE;

NO TE

The syntax cannot be used for column-store tables.

● Rebuild a table index or index partition.
ALTER INDEX index_name 
    REBUILD [ PARTITION index_partition_name ];

● Rename an index partition.
ALTER INDEX [ IF EXISTS ] index_name 
    RENAME PARTITION index_partition_name TO new_index_partition_name;

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 375



NO TE

PG_OBJECT does not support the record of the syntax when the last modification time
of the index is recorded.

Parameter Description
● index_name

Specifies the index name to be modified.
● new_name

Specifies the new name for the index.
Value range: a string that must comply with the identifier naming rules.

● storage_parameter
Specifies the name of an index-method-specific parameter.

● value
Specifies the new value for an index-method-specific storage parameter. This
might be a number or a word depending on the parameter.

● new_index_partition_name
Specifies the new name of the index partition.

● index_partition_name
Specifies the name of the index partition.

Examples

Rename the ds_ship_mode_t1_index1 index to ds_ship_mode_t1_index5.

ALTER INDEX tpcds.ds_ship_mode_t1_index1 RENAME TO ds_ship_mode_t1_index5;

Set the ds_ship_mode_t1_index2 index as unusable.

ALTER INDEX tpcds.ds_ship_mode_t1_index2 UNUSABLE;

Rebuild the ds_ship_mode_t1_index2 index.

ALTER INDEX tpcds.ds_ship_mode_t1_index2 REBUILD;

Rename a partitioned table index.

ALTER INDEX tpcds.ds_customer_address_p1_index2 RENAME PARTITION CA_ADDRESS_SK_index1 TO 
CA_ADDRESS_SK_index4;

Links

CREATE INDEX, DROP INDEX, REINDEX

12.8 ALTER LARGE OBJECT

Function

ALTER LARGE OBJECT modifies the definition of a large object. It can only assign
a new owner to a large object.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 376



Precautions

Only the administrator or the owner of the to-be-modified large object can run
ALTER LARGE OBJECT.

Syntax
ALTER LARGE OBJECT large_object_oid 
    OWNER TO new_owner;

Parameter Description
● large_object_oid

OID of a large object.
Value range: an existing large object name

● OWNER TO new_owner
New owner of a large object
Value range: an existing user name/role

Examples

None.

12.9 ALTER REDACTION POLICY

Function

ALTER REDACTION POLICY modifies a data redaction policy applied to a specified
table.

Precautions

Only the owner of the table to which the redaction policy is applied has the
permission to modify the redaction policy.

Syntax
● Modify the expression used for a redaction policy to take effect.

ALTER REDACTION POLICY policy_name ON table_name WHEN (new_when_expression);

● Enable or disable a redaction policy.
ALTER REDACTION POLICY policy_name ON table_name ENABLE | DISABLE;

● Rename a redaction policy.
ALTER REDACTION POLICY policy_name ON table_name RENAME TO new_policy_name;

● Add, modify, or delete a column on which the redaction policy is used.
ALTER REDACTION POLICY policy_name ON table_name 
    action;

There are several clauses of action:
ADD COLUMN column_name WITH function_name ( arguments )
  | MODIFY COLUMN column_name WITH function_name ( arguments )
  | DROP COLUMN column_name

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 377



Parameter Description
● policy_name

Specifies the name of the redaction policy to be modified.
● table_name

Specifies the name of the table to which the redaction policy is applied.
● new_when_expression

Specifies the new expression used for the redaction policy to take effect.
● ENABLE | DISABLE

Specifies whether to enable or disable the current redaction policy.
– ENABLE

Enables the redaction policy that was previously disabled for the table.
– DISABLE

Disables the redaction policy currently applied to the table.
● new_policy_name

Specifies the new name of the redaction policy.
● column_name

Specifies the name of the table column to which the redaction policy is
applied.
To add a column, use a column name that has not been bound to any
redaction functions.
To modify a column, use the name of an existing column.
To delete a column, use the name of an existing column.

● function_name
Specifies the name of a redaction function.

● arguments
Specifies the list of arguments of the redaction function.

Examples

Modify the expression for the data redaction policy to take effect for all users.

ALTER REDACTION POLICY mask_emp ON emp WHEN (1=1);

Disable the redaction policy.

ALTER REDACTION POLICY mask_emp ON emp DISABLE;

Enable the redaction policy again.

ALTER REDACTION POLICY mask_emp ON emp ENABLE;

Change the redaction policy name to mask_emp_new.

ALTER REDACTION POLICY mask_emp ON emp RENAME TO mask_emp_new;

Add a column with the redaction policy used.

ALTER REDACTION POLICY mask_emp_new ON emp ADD COLUMN name WITH mask_partial(name, '*', 1, 
length(name));

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 378



Modify the redaction policy for the name column. Use the MASK_FULL function
to redact all data in the name column.

ALTER REDACTION POLICY mask_emp_new ON emp MODIFY COLUMN name WITH mask_full(name);

Delete an existing column where the redaction policy is used.

ALTER REDACTION POLICY mask_emp_new ON emp DROP COLUMN name;

Helpful Links
CREATE REDACTION POLICY, DROP REDACTION POLICY

12.10 ALTER RESOURCE POOL

Function
ALTER RESOURCE POOL changes the Cgroup of a resource pool.

Precautions
Users having the ALTER permission can modify resource pools.

Syntax
ALTER RESOURCE POOL pool_name
    WITH ({MEM_PERCENT= pct | CONTROL_GROUP="group_name" | ACTIVE_STATEMENTS=stmt | 
MAX_DOP = dop | MEMORY_LIMIT='memory_size' | io_limits=io_limits | io_priority='io_priority'}[, ... ]);

Parameter Description
● pool_name

Specifies the name of the resource pool.
The name of the resource pool is the name of an existing resource pool.
Value range: a string. It must comply with the naming convention.

● group_name
Specifies the name of a Cgroup.

NO TE

● You can use either double quotation marks ("") or single quotation mark ('') in the
syntax when setting the name of a Cgroup.

● The value of group_name is case-sensitive.
● When group_name is not specified, the default value "Medium" is used. It is the

"Medium" Timeshare Cgroup
of the DefaultClass Cgroup.

● If a database user specifies the Timeshare string (Rush, High, Medium, or Low) in
the syntax, for example, if control_group is set to High, the resource pool will be
associated with the High Timeshare Cgroup under DefaultClass.

Value range: an existing control group.
● stmt

Specifies the maximum number of statements that can be concurrently
executed in a resource pool.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 379



Value range: Numeric data ranging from -1 to INT_MAX.
● dop

This is a reserved parameter.
Value range: Numeric data ranging from -1 to INT_MAX.

● memory_size
Specifies the maximum storage for a resource pool.
Value range: a string, from 1KB to 2047GB.

● mem_percent
Specifies the proportion of available resource pool memory to the total
memory or group user memory.
The value of mem_percent for a common user is an integer ranging from 0
to 100. The default value is 0.

● io_limits
Specifies the upper limit of IOPS in a resource pool.
The IOPS is counted by ones for column storage and by 10 thousands for row
storage.

● io_priority
Specifies the I/O priority for jobs that consume many I/O resources. It takes
effect when the I/O usage reaches 90%.
There are three priorities: Low, Medium, and High. If you do not want to
control I/O resources, set this parameter to None, which is the default value.

NO TE

The settings of io_limits and io_priority are valid only for complex jobs, such as batch
import (using INSERT INTO SELECT, COPY FROM, or CREATE TABLE AS), complex queries
involving over 500 MB data on each DN, and VACUUM FULL.

Examples
Specify "High" Timeshare Workload under "DefaultClass" as the Cgroup for a
resource pool.

ALTER RESOURCE POOL pool1 WITH (CONTROL_GROUP="High");

Helpful Links
CREATE RESOURCE POOL, DROP RESOURCE POOL

12.11 ALTER ROLE

Function
ALTER ROLE changes the attributes of a role.

Important Notes
None

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 380



Syntax
● Modifying the Rights of a Role

ALTER ROLE role_name [ [ WITH ] option [ ... ] ];

The option clause for granting rights is as follows:
{CREATEDB | NOCREATEDB}
    | {CREATEROLE | NOCREATEROLE}
    | {INHERIT | NOINHERIT}
    | {AUDITADMIN | NOAUDITADMIN}
    | {SYSADMIN | NOSYSADMIN}
    | {USEFT | NOUSEFT}
    | {LOGIN | NOLOGIN}
    | {REPLICATION | NOREPLICATION}
    | {INDEPENDENT | NOINDEPENDENT}
    | {VCADMIN | NOVCADMIN}
    | CONNECTION LIMIT connlimit
    | [ ENCRYPTED | UNENCRYPTED ] PASSWORD 'password'
    | [ ENCRYPTED | UNENCRYPTED ] IDENTIFIED BY 'password' [ REPLACE 'old_password' ]
    | [ ENCRYPTED | UNENCRYPTED ] PASSWORD { 'password' | DISABLE }
    | [ ENCRYPTED | UNENCRYPTED ] IDENTIFIED BY { 'password' [ REPLACE 'old_password' ] | 
DISABLE }
    | VALID BEGIN 'timestamp'
    | VALID UNTIL 'timestamp'
    | RESOURCE POOL 'respool'
    | USER GROUP 'groupuser'
    | PERM SPACE 'spacelimit'
    | NODE GROUP logic_cluster_name
    | ACCOUNT { LOCK | UNLOCK }
    | PGUSER
    | AUTHINFO 'authinfo'
    | PASSWORD EXPIRATOIN period

● Rename a role.
ALTER ROLE role_name 
    RENAME TO new_name;

● Set parameters for a role.
ALTER ROLE role_name [ IN DATABASE database_name ]
    SET configuration_parameter {{ TO | = } { value | DEFAULT } | FROM CURRENT};

● Reset parameters for a role.
ALTER ROLE role_name
    [ IN DATABASE database_name ] RESET {configuration_parameter|ALL};

Parameters
● role_name

Indicates a role name.
Value range: an existing user name

● IN DATABASE database_name
Modifies the parameters of a role on a specified database.

● SET configuration_parameter
Sets parameters for a role. The session parameters modified using the ALTER
ROLE command is only for a specific role and is valid in the next session
triggered by the role.
Valid value:
Values of configuration_parameter and value are listed in SET.
DEFAULT clears the value of configuration_parameter. The value of the
configuration_parameter parameter will inherit the default value of the new
session generated for the role.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 381



FROM CURRENT uses the value of configuration_parameter of the current
session.

● RESET configuration_parameter/ALL
The effect of clearing the configuration_parameter value is the same as
setting it to DEFAULT.
Value range: ALL indicates that all parameter values are cleared.

● ACCOUNT LOCK | ACCOUNT UNLOCK
– ACCOUNT LOCK: locks an account to forbid login to databases.
– ACCOUNT UNLOCK: unlocks an account to allow login to databases.

● PGUSER
PGUSER of a role cannot be modified in the current version.

For details about other parameters, see Parameter Description in CREATE ROLE.

Example
Change the password of role manager.

ALTER ROLE manager IDENTIFIED BY 'password123' REPLACE 'password456';

Alter role manager to a system administrator.

ALTER ROLE manager SYSADMIN;

Modify the fulluser information of the LDAP authentication role.

ALTER ROLE role2 WITH LOGIN AUTHINFO 'ldapcn=role2,cn=user2,dc=func,dc=com' PASSWORD DISABLE;

Change the validity period of the login password of the role to 90 days.

ALTER ROLE role3 PASSWORD EXPIRATION 90;

Links
CREATE ROLE, DROP ROLE

12.12 ALTER ROW LEVEL SECURITY POLICY

Function
ALTER ROW LEVEL SECURITY POLICY modifies an existing row-level access
control policy, including the policy name and the users and expressions affected by
the policy.

Precautions
Only the table owner or administrators can perform this operation.

Syntax
ALTER [ ROW LEVEL SECURITY ] POLICY [ IF EXISTS ] policy_name ON table_name RENAME TO 
new_policy_name

ALTER [ ROW LEVEL SECURITY ] POLICY policy_name ON table_name

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 382



    [ TO { role_name | PUBLIC } [, ...] ]
    [ USING ( using_expression ) ]

Parameter Description
● policy_name

Specifies the name of a row-level access control policy to be modified.
● table_name

Specifies the name of a table to which a row-level access control policy is
applied.

● new_policy_name
Specifies the new name of a row-level access control policy.

● role_name
Specifies names of users affected by a row-level access control policy will be
applied. PUBLIC indicates that the row-level access control policy will affect
all users.

● using_expression
Specifies an expression defined for a row-level access control policy. The
return value is of the boolean type.

Examples
Change the name of the all_data_rls policy.

ALTER ROW LEVEL SECURITY POLICY all_data_rls ON all_data RENAME TO all_data_new_rls;

Change the users affected by the row-level access control policy.

ALTER ROW LEVEL SECURITY POLICY all_data_new_rls ON all_data TO alice, bob;

Modify the expression defined for the access control policy.

ALTER ROW LEVEL SECURITY POLICY all_data_new_rls ON all_data USING (id > 100 AND role = 
current_user);

Helpful Links
CREATE ROW LEVEL SECURITY POLICY, DROP ROW LEVEL SECURITY POLICY

12.13 ALTER SCHEMA

Function
ALTER SCHEMA changes the attributes of a schema.

Precautions
Only the owner of an index or a system administrator can run this statement.

Syntax
● Rename a schema.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 383



ALTER SCHEMA schema_name 
    RENAME TO new_name;

● Changes the owner of a schema.
ALTER SCHEMA schema_name 
    OWNER TO new_owner;

● Changes the storage space limit of the permanent table in the schema.
ALTER SCHEMA schema_name 
    WITH PERM SPACE 'space_limit';

Parameter Description
● schema_name

Indicates the name of the current schema.

Value range: An existing schema name.

● RENAME TO new_name

Renames a schema.

new_name: new name of the schema

Value range: A string. It must comply with the naming convention.

● OWNER TO new_owner

Changes the owner of a schema. To do this as a non-administrator, you must
be a direct or indirect member of the new owning role, and that role must
have CREATE permission in the database.

new_owner: new owner of a schema

Value range: An existing user name/role.

● WITH PERM SPACE

Changes the storage upper limit of the permanent table in the schema. If a
non-administrator user wants to change the storage upper limit, the user
must be a direct or indirect member of all new roles, and the member must
have the CREATE permission on the database.

new_owner: new owner of a schema

Value range: A string consists of an integer and unit. The unit can be
K/M/G/T/P currently. The unit of parsed value is K and cannot exceed the
range that can be expressed in 64 bits, which is 1 KB to 9007199254740991
KB.

Examples

Rename the ds schema to ds_new.

ALTER SCHEMA ds RENAME TO ds_new;

Change the owner of ds_new to jack.

ALTER SCHEMA ds_new OWNER TO jack;

Helpful Links

CREATE SCHEMA, DROP SCHEMA

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 384



12.14 ALTER SEQUENCE

Function
ALTER SEQUENCE modifies the parameters of an existing sequence.

Precautions
● You must be the owner of the sequence to use ALTER SEQUENCE.
● In the current version, you can modify only the owner, home column, and the

maximum value. To modify other parameters, delete the sequence and create
it again. Then, use the Setval function to restore original parameter values.

● ALTER SEQUENCE MAXVALUE cannot be used in transactions, functions, and
stored procedures.

● After the maximum value of a sequence is changed, the cache of the
sequence in all sessions is cleared.

● ALTER SEQUENCE blocks the invocation of nextval, setval, currval, and
lastval.

Syntax
Change the maximum value or home column of the sequence.

ALTER SEQUENCE [ IF EXISTS ] name 
    [ MAXVALUE maxvalue | NO MAXVALUE | NOMAXVALUE ]
    [ OWNED BY { table_name.column_name | NONE } ] ;

Change the owner of a sequence.

ALTER SEQUENCE [ IF EXISTS ] name OWNER TO new_owner;

Parameter Description
● name

Specifies the sequence name to be changed.
● IF EXISTS

Sends a notification instead of an error when you are modifying a non-
existing sequence.

● MAXVALUE maxvalue | NO MAXVALUE
Maximum value of a sequence. If NO MAXVALUE is declared, the default
value of the ascending sequence is 263-1, and that of the descending
sequence is -1. NOMAXVALUE is equivalent to NO MAXVALUE.

● OWNED BY
Associates a sequence with a specified column included in a table. In this way,
the sequence will be deleted when you delete its associated field or the table
where the field belongs.
If the sequence has been associated with another table before you use this
parameter, the new association will overwrite the old one.
The associated table and sequence must be owned by the same user and in
the same schema.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 385



If OWNED BY NONE is used, existing associations will be deleted.
● new_owner

Specifies the user name of the new owner. To change the owner, you must
also be a direct or indirect member of the new role, and this role must have
CREATE permission on the sequence's schema.

Examples
Modify the maximum value of serial to 200.

ALTER SEQUENCE serial MAXVALUE 200;

Create a table, and specify default values for the sequence.

CREATE TABLE T1(C1 bigint default nextval('serial'));

Change the owning column of the serial sequence to T1.C1.

ALTER SEQUENCE serial OWNED BY T1.C1;

Helpful Links
CREATE SEQUENCE, DROP SEQUENCE

12.15 ALTER SERVER

Function
ALTER SERVER adds, modifies, or deletes the parameters of an existing server. You
can query existing servers from the pg_foreign_server system catalog.

Precautions
Only the owner of a server or a system administrator can run this statement.

Syntax
● Change the parameters of an external server.
ALTER SERVER server_name [ VERSION 'new_version' ]
    [ OPTIONS ( {[ ADD | SET | DROP ] option ['value']} [, ... ] ) ];

In OPTIONS, ADD, SET, and DROP are operations to be executed. If these
operations are not specified, the ADD operation will be performed by default.
option and value are corresponding operation parameters.

Currently, only SET is supported on an HDFS server. ADD and DROP are not
supported. The syntax for SET and DROP operations is retained for later use.

● Change the owner of an external server.
ALTER SERVER server_name 
    OWNER TO new_owner;

● Change the name of an external server.
ALTER SERVER server_name 
    RENAME TO new_name;

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 386



● Refresh the HDFS configuration file. Only 8.0.0.10 and later versions (except
8.1.0) support this function.

ALTER SERVER server_name REFRESH OPTIONS;

Parameter Description

The server parameters to be modified are as follows:

● server_name
Specifies the name of the server to be modified.

● new_version
Specifies the new version of the server.

● The server parameters in OPTIONS are as follows:
– address

Specifies the endpoint of the OBS service.
Specifies the IP address and port number of the primary and standby
nodes of the HDFS cluster.

NO TE

● address is mandatory for HDFS servers. Therefore, ADD and DROP operations
are not supported.

● address only supports IPv4 addresses in dot-decimal notation, and an address
string cannot contain spaces. Groups of addresses are separated by commas
(,). An IP address and a port number are separated by a colon (:). You are
advised to configure two IP address and port pairs in an HDFS cluster. One is
used as the socket address of the primary HDFS NameNode and the other is
used as that of the secondary HDFS NameNode.

● If the server type is DLI, the address is the OBS address stored on DLI.

– hdfscfgpath
Specifies the HDFS cluster configuration file.

NO TE

● If HDFS is in security mode, hdfscfgpath is mandatory.

● If you set hdfscfgpath, you can only set one value for path.

– encrypt
Specifies whether data is encrypted. This parameter is available only
when type is OBS. The default value is off.
Value range:

▪ on indicates that data is encrypted.

▪ off indicates that data is not encrypted.

– access_key
Indicates the access key (AK) (obtained by users from the OBS page)
used for the OBS access protocol. When you create a foreign table, its AK
value is encrypted and saved to the metadata table of the database. This
parameter is available only when type is OBS.

– secret_access_key

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 387



Indicates the secret access key (SK) (obtained by users from the OBS
page) used for the OBS access protocol. When you create a foreign table,
its SK value is encrypted and saved to the metadata table of the
database. This parameter is available only when type is OBS.

– dli_address
Specifies the endpoint of the DLI service. This parameter is available only
when type is DLI.

– dli_access_key
Specifies the AK (obtained by users from the DLI page) used for the DLI
access protocol. When you create a foreign table, its AK value is
encrypted and saved to the metadata table of the database. This
parameter is available only when type is DLI.

– dli_secret_access_key
Specifies the SK (obtained by users from the DLI page) used for the DLI
access protocol. When you create a foreign table, its SK value is encrypted
and saved to the metadata table of the database. This parameter is
available only when type is DLI.

– region
Indicates the IP address or domain name of the OBS server. This
parameter is available only when type is OBS.

– dbname
Specifies the database name of a remote cluster to be connected. This
parameter is used for collaborative analysis.

– username
Specifies the username of a remote cluster to be connected. This
parameter is used for collaborative analysis.

– password
Specifies the user password of a remote cluster to be connected. This
parameter is used for collaborative analysis.

● new_owner
Specifies the new owner of the server. To change the owner, you must be the
owner of the foreign server and a direct or indirect member of the new owner
role, and must have the USAGE permission on the encapsulator of the
external server.

● new_name
Specifies the new name of the server.

● REFRESH OPTIONS
Refreshes the HDFS configuration file. This command is executed when the
configuration file is modified. If this command is not executed, an access error
may be reported.

Examples
Change the current name to the IP address of the hdfs_server server.

ALTER SERVER hdfs_server OPTIONS ( SET address '10.10.0.110:25000,10.10.0.120:25000');

Change the current name to hdfscfgpath of the hdfs_server server.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 388



ALTER SERVER hdfs_server OPTIONS ( SET hdfscfgpath '/opt/bigdata/hadoop');

Helpful Links
CREATE SERVER DROP SERVER

12.16 ALTER SESSION

Function
ALTER SESSION defines or modifies the conditions or parameters that affect the
current session. Modified session parameters are kept until the current session is
disconnected.

Precautions
● If the START TRANSACTION command is not executed before the SET

TRANSACTION command, the transaction is ended instantly and the
command does not take effect.

● You can use the transaction_mode(s) method declared in the START
TRANSACTION command to avoid using the SET TRANSACTION command.

Syntax
● Set transaction parameters of a session.

ALTER SESSION SET [ SESSION CHARACTERISTICS AS ] TRANSACTION
    { ISOLATION LEVEL { READ COMMITTED | READ UNCOMMITTED } | { READ ONLY  | READ 
WRITE } } [, ...] ;

● Set other running parameters of a session.
ALTER SESSION SET 
    {{config_parameter { { TO  | =  }  { value | DEFAULT }
      | FROM CURRENT }} | CURRENT_SCHEMA [ TO | = ] { schema | DEFAULT }
      | TIME ZONE time_zone
      | SCHEMA schema
      | NAMES encoding_name
      | ROLE role_name PASSWORD 'password'
      | SESSION AUTHORIZATION { role_name PASSWORD 'password' | DEFAULT }
      | XML OPTION { DOCUMENT | CONTENT }
    } ;

Parameter Description
To modify the description of parameters related to the session, see Parameter
Description of the SET syntax.

Examples
Create the ds schema.

CREATE SCHEMA ds;

Set the search path of the schema.

SET SEARCH_PATH TO ds, public;

Set the time/date type to the traditional postgres format (date before month).

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 389



SET DATESTYLE TO postgres, dmy;

Set the character code of the current session to UTF8.

ALTER SESSION SET NAMES 'UTF8';

Set the time zone to Berkeley of California.

SET TIME ZONE 'PST8PDT';

Set the time zone to Italy.

SET TIME ZONE 'Europe/Rome';

Set the current schema.

ALTER SESSION SET CURRENT_SCHEMA TO tpcds;

Set XML OPTION to DOCUMENT.

ALTER SESSION SET XML OPTION DOCUMENT;

Create the role joe, and set the session role to omm.

CREATE ROLE joe WITH PASSWORD 'password';
ALTER SESSION SET SESSION AUTHORIZATION joe PASSWORD 'password';

Switch to the default user.

ALTER SESSION SET SESSION AUTHORIZATION default;

Helpful Links
SET

12.17 ALTER SYNONYM

Function
ALTER SYNONYM is used to modify the attribute of a synonym.

Precautions
● Only the synonym owner can be changed.
● Only the system administrator and the synonym owner has the permission to

modify the synonym owner information.
● The modifier must be a direct or indirect member of the new owner, and the

new owner must have the CREATE permission on the schema to which the
synonym belongs.

Syntax
ALTER SYNONYM synonym_name
    OWNER TO new_owner;

Parameter Description
● synonym

Name of a synonym to be modified (optionally with schema names)

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 390



Value range: A string compliant with the identifier naming rules
● new_owner

New owner of a synonym object
Value range: A string. It must be a valid username.

Examples
Create synonym t1.

CREATE OR REPLACE SYNONYM t1 FOR ot.t1;

Create user u1.

CREATE USER u1 PASSWORD 'user@111';

Change the owner of the synonym t1 to u1.

ALTER SYNONYM t1 OWNER TO u1;

Helpful Links
CREATE SYNONYM and DROP SYNONYM

12.18 ALTER SYSTEM KILL SESSION

Function
ALTER SYSTEM KILL SESSION ends a session.

Precautions
None

Syntax
ALTER SYSTEM KILL SESSION 'session_sid, serial' [ IMMEDIATE ];

Parameter Description
● session_sid, serial

Specifies SID and SERIAL of a session (see examples for format).
Value range: The SIDs and SERIALs of all sessions that can be queried from
the system catalog V$SESSION.

● IMMEDIATE
Indicates that a session will be ended instantly after the command is
executed.

Examples
Query session information.

SELECT sid,serial#,username FROM V$SESSION;

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 391



       sid       | serial# | username 
-----------------+---------+----------
 140131075880720 |       0 | 
 140131025549072 |       0 | 
 140131073779472 |       0 | 
 140131071678224 |       0 | 
 140131125774096 |       0 | 
 140131127875344 |       0 | 
 140131113629456 |       0 | 
 140131094742800 |       0 | 
(8 rows)

End the session whose SID is 140131075880720.

ALTER SYSTEM KILL SESSION '140131075880720,0' IMMEDIATE;

12.19 ALTER TABLE

Function

ALTER TABLE is used to modify tables, including modifying table definitions,
renaming tables, renaming specified columns in tables, renaming table constraints,
setting table schemas, enabling or disabling row-level access control, and adding
or updating multiple columns.

Important Notes
● You must own the table to use ALTER TABLE. A system administrator has the

permission by default.

● The storage parameter ORIENTATION cannot be modified.

● Currently, SET SCHEMA can only be used to set a schema to a user schema,
not to a system internal schema.

● Column-store tables support PARTIAL CLUSTER KEY but do not support
table-level foreign key constraints. In 8.1.1 or later, column-store tables
support the PRIMARY KEY constraint and table-level UNIQUE constraint.

● In a column-store table, you can perform ADD COLUMN, ALTER TYPE, SET
STATISTICS, DROP COLUMN operations. The types of new and modified
columns should be the Data Types supported by column storage. The USING
option of ALTER TYPE only supports constant expression and expression
involved in the column.

● The column constraints supported by column-store tables include NULL, NOT
NULL, and DEFAULT constant values. Only the DEFAULT value can be
modified (SET DEFAULT and DROP DEFAULT), and only the NOT NULL
constraint can be deleted. Currently, NULL and NOT NULL constraints cannot
be modified.

● When you modify the COLVERSION or enable_delta parameter of a column-
store table, other ALTER operations cannot be performed.

● Auto-increment columns cannot be added, or a column in which the DEFAULT
value contains the nextval() expression cannot be added either.

● Row-level access control cannot be enabled for HDFS tables, foreign tables,
and temporary tables.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 392



● If you delete the PRIMARY KEY constraint by specifying the constraint name,
the NOT NULL constraint is not deleted. You can manually delete the NOT
NULL constraint as needed.

● The cold_tablespace and storage_policy parameters of ALTER RESET cannot
be used in OBS hot or cold tables, and COLVERSION cannot be changed to
1.0 for such tables.

● You can change a column-store table whose COLVERSION parameter is 2.0 to
an OBS hot or cold table. The COLD_TABLESPACE and STORAGE_POLICY
parameters must be added.

● You can use ALTER TABLE to change the values of STORAGE_POLICY for
RELOPTIONS. After the cold/hot switchover policy is changed, the cold/hot
attribute of the existing cold data will not change. The new policy takes effect
for the next cold/hot switchover.

Syntax
● ALTER TABLE modifies the definition of a table.

ALTER TABLE [ IF EXISTS ] { table_name [*] | ONLY table_name | ONLY ( table_name ) }
    action [, ... ];

There are several clauses of action:
column_clause
    | ADD table_constraint [ NOT VALID ]
    | ADD table_constraint_using_index
    | VALIDATE CONSTRAINT constraint_name
    | DROP CONSTRAINT [ IF EXISTS ]  constraint_name [ RESTRICT | CASCADE ]
    | CLUSTER ON index_name
    | SET WITHOUT CLUSTER
    | SET ( {storage_parameter = value} [, ... ] )
    | RESET ( storage_parameter [, ... ] )
    | OWNER TO new_owner
    | SET TABLESPACE new_tablespace
    | SET {COMPRESS|NOCOMPRESS}
    | DISTRIBUTE BY { REPLICATION | { HASH ( column_name [,...] ) } }
    | TO { GROUP groupname | NODE ( nodename [, ... ] ) }
    | ADD NODE ( nodename [, ... ] )
    | DELETE NODE ( nodename [, ... ] )
    | DISABLE TRIGGER [ trigger_name | ALL | USER ]
    | ENABLE TRIGGER [ trigger_name | ALL | USER ]
    | ENABLE REPLICA TRIGGER trigger_name
    | ENABLE ALWAYS TRIGGER trigger_name
    | DISABLE ROW LEVEL SECURITY
    | ENABLE ROW LEVEL SECURITY
    | FORCE ROW LEVEL SECURITY
    | NO FORCE ROW LEVEL SECURITY
    | REFRESH STORAGE

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 393



NO TE

● ADD table_constraint [ NOT VALID ]
Adds a new table constraint.

● ADD table_constraint_using_index
Adds primary key constraint or unique constraint based on the unique index.

● VALIDATE CONSTRAINT constraint_name
Validates a foreign key or check constraint that was previously created as NOT
VALID, by scanning the table to ensure there are no rows for which the constraint
is not satisfied. Nothing happens if the constraint is already marked valid.

● DROP CONSTRAINT [ IF EXISTS ] constraint_name [ RESTRICT | CASCADE ]
Drops a table constraint.

● CLUSTER ON index_name
Selects the default index for future CLUSTER operations. It does not actually re-
cluster the table.

● SET WITHOUT CLUSTER
Removes the most recently used CLUSTER index specification from the table. This
operation affects future cluster operations that do not specify an index.

● SET ( {storage_parameter = value} [, ... ] )
Changes one or more storage parameters for the table.

● RESET ( storage_parameter [, ... ] )
Resets one or more storage parameters to their defaults. As with SET, a table
rewrite might be needed to update the table entirely.

● OWNER TO new_owner
Changes the owner of the table, sequence, or view to the specified user.

● SET {COMPRESS|NOCOMPRESS}
Sets the compression feature of a table. The table compression feature affects only
the storage mode of data inserted in a batch subsequently and does not affect
storage of existing data. Setting the table compression feature will result in the
fact that there are both compressed and uncompressed data in the table.

● DISTRIBUTE BY { REPLICATION | { HASH ( column_name [,...] ) } }
Changing a table's distribution mode will physically redistribute the table data
based on the new distribution mode. After the distribution mode is changed, you
are advised to manually run the ANALYZE statement to collect new statistics about
the table.

NO TE

● This operation is a major change operation, involving table distribution
information modification and physical data redistribution. During the
modification, services are blocked. After the modification, the original
execution plan of services will change. Perform this operation according to
the standard change process.

● This operation is a resource-intensive operation. If you need to modify the
distribution mode of large tables, perform the operation when the
computing and storage resources are sufficient. Ensure that the remaining
space of the entire cluster and the tablespace where the original table is
located is sufficient to store a table that has the same size as the original
table and is distributed in the new distribution mode.

● TO { GROUP groupname | NODE ( nodename [, ... ] ) }
The syntax is only available in extended mode (when GUC parameter
support_extended_features is on). Exercise caution when enabling the mode. It is
used for tools like internal dilatation tools. Common users should not use the
mode.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 394



● ADD NODE ( nodename [, ... ] )
It is only available for tools like internal dilatation. General users should not use
the mode.

● DELETE NODE ( nodename [, ... ] )
It is only available for internal scale-in tools. Common users should not use the
syntax.

● DISABLE TRIGGER [ trigger_name | ALL | USER ]
Disables a single trigger specified by trigger_name, disables all triggers, or
disables only user triggers (excluding internally generated constraint triggers, for
example, deferrable unique constraint triggers and exclusion constraints triggers).

NO TE

Exercise caution when using this function because data integrity cannot be
ensured as expected if the triggers are not executed.

● | ENABLE TRIGGER [ trigger_name | ALL | USER ]
Enables a single trigger specified by trigger_name, enables all triggers, or enables
only user triggers.

● | ENABLE REPLICA TRIGGER trigger_name
Determines that the trigger firing mechanism is affected by the configuration
variable session_replication_role. When the replication role is origin (default
value) or local, a simple trigger is fired.
When ENABLE REPLICA is configured for a trigger, it is fired only when the session
is in replica mode.

● | ENABLE ALWAYS TRIGGER trigger_name
Determines that all triggers are fired regardless of the current replication mode.

● | DISABLE/ENABLE ROW LEVEL SECURITY
Enables or disables row-level access control for a table.
If row-level access control is enabled for a data table but no row-level access
control policy is defined, the row-level access to the data table is not affected. If
row-level access control for a table is disabled, the row-level access to the table is
not affected even if a row-level access control policy has been defined. For details,
see CREATE ROW LEVEL SECURITY POLICY.

● | NO FORCE/FORCE ROW LEVEL SECURITY
Forcibly enables or disables row-level access control for a table.
By default, the table owner is not affected by the row-level access control feature.
However, if row-level access control is forcibly enabled, the table owner (excluding
system administrators) will be affected. System administrators are not affected by
any row-level access control policies.

● | REFRESH STORAGE
Changes the local hot partitions that meet the criteria defined by the rules
specified in the storage_policy parameter of an OBS hot or cold table to the cold
partitions stored in the OBS.
For example, if storage_policy is set to 'LMT:10' for an OBS hot or cold table
when it is created, the partitions that are not updated within the last 10 days are
switched to cold partitions in the OBS.

– There are several clauses of column_clause:
ADD [ COLUMN ] column_name data_type [ compress_mode ] [ COLLATE collation ] 
[ column_constraint [ ... ] ]    
| MODIFY column_name data_type
| MODIFY column_name [ CONSTRAINT constraint_name ] NOT NULL [ ENABLE ]
| MODIFY column_name [ CONSTRAINT constraint_name ] NULL    
| DROP [ COLUMN ] [ IF EXISTS ] column_name [ RESTRICT | CASCADE ]    
| ALTER [ COLUMN ] column_name [ SET DATA ] TYPE data_type [ COLLATE collation ] [ USING 
expression ]    

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 395



| ALTER [ COLUMN ] column_name { SET DEFAULT expression | DROP DEFAULT }    
| ALTER [ COLUMN ] column_name { SET | DROP } NOT NULL    
| ALTER [ COLUMN ] column_name SET STATISTICS [PERCENT] integer    
| ADD STATISTICS (( column_1_name, column_2_name [, ...] ))    
| DELETE STATISTICS (( column_1_name, column_2_name [, ...] ))    
| ALTER [ COLUMN ] column_name SET ( {attribute_option = value} [, ... ] )    
| ALTER [ COLUMN ] column_name RESET ( attribute_option [, ... ] )    
| ALTER [ COLUMN ] column_name SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN }

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 396



NO TE

● ADD [ COLUMN ] column_name data_type [ compress_mode ] [ COLLATE
collation ] [ column_constraint [ ... ] ]
Adds a column to a table. If a column is added with ADD COLUMN, all
existing rows in the table are initialized with the column's default value
(NULL if no DEFAULT clause is specified).

● ADD ( { column_name data_type [ compress_mode ] } [, ...] )
Adds columns in the table.

● MODIFY column_name data_type
Change the data type of an existing field in the table. Only the type
conversion of the same category (between values, character strings, and
time) is allowed.

● MODIFY column_name [ CONSTRAINT constraint_name ] NOT NULL
[ ENABLE ]
Adds a NOT NULL constraint to a column of a table. Currently, this clause is
unavailable to column-store tables.

● MODIFY column_name [ CONSTRAINT constraint_name ] NULL
Deletes the NOT NULL constraint to a certain column in the table.

● DROP [ COLUMN ] [ IF EXISTS ] column_name [ RESTRICT | CASCADE ]
Drops a column from a table. Index and constraint related to the column are
automatically dropped. If an object not belonging to the table depends on the
column, CASCADE must be specified, such as foreign key reference and view.
The DROP COLUMN form does not physically remove the column, but simply
makes it invisible to SQL operations. Subsequent insert and update operations
in the table will store a NULL value for the column. Therefore, column
deletion takes a short period of time but does not immediately release the
table space on the disks, because the space occupied by the deleted column is
not reclaimed. The space will be reclaimed when VACUUM is executed.

● ALTER [ COLUMN ] column_name [ SET DATA ] TYPE data_type
[ COLLATE collation ] [ USING expression ]
Change the data type of a field in the table. Only the type conversion of the
same category (between values, character strings, and time) is allowed.
Indexes and simple table constraints on the column will automatically use the
new data type by reparsing the originally supplied expression.
ALTER TYPE requires an entire table be rewritten. This is an advantage
sometimes, because it frees up unnecessary space from a table. For example,
to reclaim the space occupied by a deleted column, the fastest method is to
use the command.
ALTER TABLE table ALTER COLUMN anycol TYPE anytype;

In this command, anycol indicates any column existing in the table and
anytype indicates the type of the prototype of the column. ALTER TYPE does
not change the table except that the table is forcibly rewritten. In this way,
the data that is no longer used is deleted.

● ALTER [ COLUMN ] column_name { SET DEFAULT expression | DROP
DEFAULT }
Sets or removes the default value for a column. The default values only apply
to subsequent INSERT commands; they do not cause rows already in the
table to change. Defaults can also be created for views, in which case they are
inserted into INSERT statements on the view before the view's ON INSERT
rule is applied.

● ALTER [ COLUMN ] column_name { SET | DROP } NOT NULL
Changes whether a column is marked to allow NULL values or to reject NULL
values. You can only use SET NOT NULL when the column contains no NULL
values.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 397



● ALTER [ COLUMN ] column_name SET STATISTICS [PERCENT] integer

Specifies the per-column statistics-gathering target for subsequent ANALYZE
operations. The value ranges from 0 to 10000. Set it to -1 to revert to using
the default system statistics target.

● {ADD | DELETE} STATISTICS ((column_1_name, column_2_name [, ...]))

Adds or deletes the declaration of collecting multi-column statistics to collect
multi-column statistics as needed when ANALYZE is performed for a table or
a database. The statistics about a maximum of 32 columns can be collected
at a time. You are not allowed to add or delete the declaration for system
tables or foreign tables

● ALTER [ COLUMN ] column_name SET ( {attribute_option = value} [, ... ] )

ALTER [ COLUMN ] column_name RESET ( attribute_option [, ... ] )

Sets or resets per-attribute options.

Currently, the only defined per-attribute options are n_distinct and
n_distinct_inherited. n_distinct affects statistics of table, while
n_distinct_inherited affects the statistics of table and its subtables. Currently,
only SET/RESET n_distinct is supported, and SET/RESET n_distinct_inherited
is forbidden.

● ALTER [ COLUMN ] column_name SET STORAGE { PLAIN | EXTERNAL |
EXTENDED | MAIN }

Sets the storage mode for a column. This clause specifies whether this column
is held inline or in a secondary TOAST table, and whether the data should be
compressed. This statement can only be used for row-based tables. SET
STORAGE only sets the strategy to be used for future table operations.

▪ column_constraint is as follows:
[ CONSTRAINT constraint_name ]
    { NOT NULL |
      NULL |
      CHECK ( expression ) |
      DEFAULT default_expr  |
      UNIQUE index_parameters |
      PRIMARY KEY index_parameters }
    [ DEFERRABLE | NOT DEFERRABLE | INITIALLY DEFERRED | INITIALLY IMMEDIATE ]

▪ compress_mode of a column is as follows:
[ DELTA | PREFIX | DICTIONARY | NUMSTR | NOCOMPRESS ]

– table_constraint_using_index used to add the primary key constraint or
unique constraint based on the unique index is as follows:
[ CONSTRAINT constraint_name ]
    { UNIQUE | PRIMARY KEY } USING INDEX index_name
    [ DEFERRABLE | NOT DEFERRABLE | INITIALLY DEFERRED | INITIALLY IMMEDIATE ]

– table_constraint is as follows:
[ CONSTRAINT constraint_name ]
    { CHECK ( expression ) |
      UNIQUE ( column_name [, ... ] ) index_parameters |
      PRIMARY KEY ( column_name [, ... ] ) index_parameters }
     
    [ DEFERRABLE | NOT DEFERRABLE | INITIALLY DEFERRED | INITIALLY IMMEDIATE ]

index_parameters is as follows:
[ WITH ( {storage_parameter = value} [, ... ] ) ]
    [ USING INDEX TABLESPACE tablespace_name ]

● Rename the table. The renaming does not affect stored data.
ALTER TABLE [ IF EXISTS ] table_name 
    RENAME TO new_table_name;

● Rename the specified column in the table.
ALTER TABLE [ IF EXISTS ] { table_name [*] | ONLY table_name | ONLY ( table_name )}
    RENAME [ COLUMN ] column_name TO new_column_name;

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 398



● Rename the constraint of the table.
ALTER TABLE { table_name [*] | ONLY table_name | ONLY ( table_name ) }
    RENAME CONSTRAINT constraint_name TO new_constraint_name;

● Set the schema of the table.
ALTER TABLE [ IF EXISTS ] table_name 
    SET SCHEMA new_schema;

NO TE

● The schema setting moves the table into another schema. Associated indexes and
constraints owned by table columns are migrated as well. Currently, the schema for
sequences cannot be changed. If the table has sequences, delete the sequences,
and create them again or delete the ownership between the table and sequences.
In this way, the table schema can be changed.

● To change the schema of a table, you must also have CREATE privilege on the new
schema. To add the table as a new child of a parent table, you must own the
parent table as well. To alter the owner, you must also be a direct or indirect
member of the new owning role, and that role must have CREATE permission on
the table's schema. These restrictions enforce that altering the owner does not do
anything you could not do by dropping and recreating the table. However, a
system administrator can alter ownership of any table anyway.

● All the actions except for RENAME and SET SCHEMA can be combined into a list
of multiple alterations to apply in parallel. For example, it is possible to add several
columns or alter the type of several columns in a single command. This is useful
with large tables, since only one pass over the table need be made.

● Adding a CHECK or NOT NULL constraint requires scanning the table to verify that
existing rows meet the constraint.

● Adding a column with a non-null default or changing the type of an existing
column will require the entire table to be rewritten. Table rebuilding may take a
significant amount of time for a large table; and will temporarily require as much
as double the disk space.

● Add columns.
ALTER TABLE [ IF EXISTS ] table_name
    ADD ( { column_name data_type [ compress_mode ] [ COLLATE collation ] [ column_constraint 
[ ... ] ]} [, ...] );

● Update columns.
ALTER TABLE [ IF EXISTS ] table_name 
    MODIFY ( { column_name data_type | column_name [ CONSTRAINT constraint_name ] NOT NULL 
[ ENABLE ] | column_name [ CONSTRAINT constraint_name ] NULL } [, ...] );

Parameter Description
● IF EXISTS

Sends a notification instead of an error if no tables have identical names. The
notification prompts that the table you are querying does not exist.

● table_name [*] | ONLY table_name | ONLY ( table_name )
table_name is the name of table that you need to modify.
If ONLY is specified, only the table is modified. If ONLY is not specified, the
table and all subtables will be modified. You can add the asterisk (*) option
following the table name to specify that all subtables are scanned, which is
the default operation.

● constraint_name
Specifies the name of an existing constraint to drop.

● index_name
Specifies the name of this index.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 399



● storage_parameter
Specifies the name of a storage parameter.

● new_owner
Specifies the name of the new table owner.

● new_tablespace
Specifies the new name of the tablespace to which the table belongs.

● column_name, column_1_name, column_2_name
Specifies the name of a new or an existing column.

● data_type
Specifies the type of a new column or a new type of an existing column.

● compress_mode
Specifies the compress options of the table, only available for row-based
tables. The clause specifies the algorithm preferentially used by the column.

● collation
Specifies the collation rule name of a column. The optional COLLATE clause
specifies a collation for the new column; if omitted, the collation is the default
for the new column.

● USING expression
A USING clause specifies how to compute the new column value from the
old; if omitted, the default conversion is an assignment cast from old data
type to new. A USING clause must be provided if there is no implicit or
assignment cast from the old to new type.

NO TE

USING in ALTER TYPE can specify any expression involving the old values of the row;
that is, it can refer to any columns other than the one being converted. This allows
very general conversions to be done with the ALTER TYPE syntax. Because of this
flexibility, the USING expression is not applied to the column's default value (if any);
the result might not be a constant expression as required for a default. This means
that when there is no implicit or assignment cast from old to new type, ALTER TYPE
might fail to convert the default even though a USING clause is supplied. In such
cases, drop the default with DROP DEFAULT, perform the ALTER TYPE, and then use
SET DEFAULT to add a suitable new default. Similar considerations apply to indexes
and constraints involving the column.

● NOT NULL | NULL
Sets whether the column allows null values.

● integer
Specifies the constant value of an integer with a sign. If PERCENT is used, the
range of integer is from 0 to 100.

● attribute_option
Specifies an attribute option.

● PLAIN | EXTERNAL | EXTENDED | MAIN
Specifies a column storage mode.
– PLAIN must be used for fixed-length values (such as integers). It must be

inline and uncompressed.
– MAIN is for inline, compressible data.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 400



– EXTERNAL is for external, uncompressed data. Use of EXTERNAL will
make substring operations on text and bytea values run faster, at the
penalty of increased storage space.

– EXTENDED is for external, compressed data. EXTENDED is the default for
most data types that support non-PLAIN storage.

● CHECK ( expression )
New or updated rows must satisfy for an insert or update operation to
succeed. Expressions evaluating to TRUE succeed. If any row of an insert or
update operation produces a FALSE result, an error exception is raised and the
insert or update does not alter the database.
A check constraint specified as a column constraint should reference only the
column's values, while an expression appearing in a table constraint can
reference multiple columns.
Currently, CHECK expression does not include subqueries and cannot use
variables apart from the current column.

● DEFAULT default_expr
Assigns a default data value for a column.
The data type of the default expression must match the data type of the
column.
The default expression will be used in any insert operation that does not
specify a value for the column. If there is no default value for a column, then
the default value is NULL.

● UNIQUE index_parameters
UNIQUE ( column_name [, ... ] ) index_parameters
The UNIQUE constraint specifies that a group of one or more columns of a
table can contain only unique values.

● PRIMARY KEY index_parameters
PRIMARY KEY ( column_name [, ... ] ) index_parameters
The primary key constraint specifies that a column or columns of a table can
contain only unique (non-duplicate) and non-null values.

● DEFERRABLE | NOT DEFERRABLE | INITIALLY DEFERRED | INITIALLY
IMMEDIATE
Sets whether the constraint is deferrable. This option is unavailable to
column-store tables.
– DEFERRABLE: deferrable can be postponed until the end of the

transaction using the SET CONSTRAINTS command.
– NOT DEFERRABLE: checks immediately after the execution of each

command.
– INITIALLY IMMEDIATE: checks immediately after the execution of each

statement.
– INITIALLY DEFERRED: checks when the transaction ends.

● WITH ( {storage_parameter = value} [, ... ] )
Specifies an optional storage parameter for a table or an index.

● COMPRESS|NOCOMPRESS
– NOCOMPRESS: If the NOCOMPRESS keyword is specified, the existing

compression feature of the table is not changed.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 401



– COMPRESS: If the COMPRESS keyword is specified, the table
compression feature is triggered if tuples are inserted in a batch.

● new_table_name
Specifies the new table name.

● new_column_name
Specifies the new name of a specific column in a table.

● new_constraint_name
Specifies the new name of a table constraint.

● new_schema
Specifies the new schema name.

● CASCADE
Automatically drops objects that depend on the dropped column or constraint
(for example, views referencing the column).

● RESTRICT
Refuses to drop the column or constraint if there are any dependent objects.
This is the default behavior.

● schema_name
Specifies the schema name of a table.

Examples
Create an index ds_warehouse_t1_index1 for the table tpcds.warehouse_t1.
Then add primary key constraints, and rename the created index.

CREATE UNIQUE INDEX ds_warehouse_t1_index1 ON tpcds.warehouse_t1(W_WAREHOUSE_SK);
ALTER TABLE tpcds.warehouse_t1 ADD CONSTRAINT ds_warehouse_t1_index2 PRIMARY KEY USING INDEX 
ds_warehouse_t1_index1;

Delete the primary key ds_warehouse_t1_index2 from the table
tpcds.warehouse_t1.

ALTER TABLE warehouse_t1 DROP CONSTRAINT ds_warehouse_t1_index2;

Add a varchar column to the tpcds.warehouse_t19 table.

ALTER TABLE tpcds.warehouse_t19 ADD W_GOODS_CATEGORY varchar(30);

Add a check constraint to the tpcds.warehouse_t19 table.

ALTER TABLE tpcds.warehouse_t19 ADD CONSTRAINT W_CONSTR_KEY4 CHECK (W_STATE <> '');

Use one statement to alter the types of two existing columns.

ALTER TABLE tpcds.warehouse_t19
ALTER COLUMN W_GOODS_CATEGORY TYPE varchar(80),
ALTER COLUMN W_STREET_NAME TYPE varchar(100);

This statement is equivalent to the preceding statement.

ALTER TABLE tpcds.warehouse_t19 MODIFY (W_GOODS_CATEGORY varchar(30), W_STREET_NAME 
varchar(60));

Add a Not-Null constraint to an existing column.

ALTER TABLE tpcds.warehouse_t19 ALTER COLUMN W_GOODS_CATEGORY SET NOT NULL;

Remove Not-Null constraints from an existing column.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 402



ALTER TABLE tpcds.warehouse_t19 ALTER COLUMN W_GOODS_CATEGORY DROP NOT NULL;

If no partial clusters have been specified in a column-store table, add a partial
cluster to the table.

ALTER TABLE tpcds.warehouse_t17 ADD PARTIAL CLUSTER KEY(W_WAREHOUSE_SK);

View a constraint name.

\d+ tpcds.warehouse_t17
                              Table "tpcds.warehouse_t17"
      Column       |         Type          | Modifiers | Storage  | Stats target | Description 
-------------------+-----------------------+-----------+----------+--------------+-------------
 w_warehouse_sk    | integer               | not null  | plain    |              | 
 w_warehouse_id    | character(16)         | not null  | extended |              | 
 w_warehouse_name  | character varying(20) |           | extended |              | 
 w_warehouse_sq_ft | integer               |           | plain    |              | 
 w_street_number   | character(10)         |           | extended |              | 
 w_street_name     | character varying(60) |           | extended |              | 
 w_street_type     | character(15)         |           | extended |              | 
 w_suite_number    | character(10)         |           | extended |              | 
 w_city            | character varying(60) |           | extended |              | 
 w_county          | character varying(30) |           | extended |              | 
 w_state           | character(2)          |           | extended |              | 
 w_zip             | character(10)         |           | extended |              | 
 w_country         | character varying(20) |           | extended |              | 
 w_gmt_offset      | numeric(5,2)          |           | main     |              | 
Partial Cluster :
    "warehouse_t17_cluster" PARTIAL CLUSTER KEY (w_warehouse_sk)
Has OIDs: no
Distribute By: HASH(w_warehouse_sk)
Location Nodes: ALL DATANODES
Options: orientation=column, compression=high, colversion=2.0, enable_delta=false

Delete a partial cluster column from the column-store table.

ALTER TABLE tpcds.warehouse_t17 DROP CONSTRAINT warehouse_t17_cluster;

Create the joe schema.

CREATE SCHEMA joe;

Move a table to another schema.

ALTER TABLE tpcds.warehouse_t19 SET SCHEMA joe;

Rename an existing table.

ALTER TABLE joe.warehouse_t19 RENAME TO joe.warehouse_t23;

Change the distribution mode of the tpcds.warehouse_t22 table to
REPLICATION.

ALTER TABLE tpcds.warehouse_t22 DISTRIBUTE BY REPLICATION;

Change the distribution column of the tpcds.warehouse_t22 table to
W_WAREHOUSE_SK.

ALTER TABLE tpcds.warehouse_t22 DISTRIBUTE BY HASH(W_WAREHOUSE_SK);

Delete a column from the warehouse_t23 table.

ALTER TABLE joe.warehouse_t23 DROP COLUMN W_STREET_NAME;

Switch the storage format of a column-store table.

ALTER TABLE tpcds.warehouse_t26 SET (COLVERSION = 1.0);

Disable the delta table function of the column-store table.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 403



ALTER TABLE tpcds.warehouse_t27 SET (ENABLE_DELTA = OFF);

Disable the SKIP_FPI_HINT function of the table.

ALTER TABLE tpcds.warehouse_t29 SET (SKIP_FPI_HINT = FALSE);

Change the data temperature for a single table.

ALTER TABLE tpcds.warehouse_t28 REFRESH STORAGE;

Change the data temperature for multiple tables in batches.

SELECT pg_refresh_storage();

Links

CREATE TABLE, DROP TABLE

12.20 ALTER TABLE PARTITION

Function

ALTER TABLE PARTITION modifies table partitioning, including adding, deleting,
splitting, merging partitions, and modifying partition attributes.

Precautions
● The name of the added partition must be different from names of existing

partitions in the partitioned table.
● The partition key of the added partition must be the same type as that of the

partitioned table. The key value of the added partition must exceed the upper
limit of the last partition range.

● If the number of partitions in the target partitioned table has reached the
maximum (32767), partitions cannot be added.

● If a partitioned table has only one partition, the partition cannot be deleted.
● Use PARTITION FOR() to choose partitions. The number of specified values in

the brackets should be the same as the column number in customized
partition, and they must be consistent.

● The Value partitioned table does not support the Alter Partition operation.
● For OBS cold and hot tables:

– The tablespace of a partitioned table cannot be set to an OBS tablespace
during the MOVE, EXCHANGE, MERGE, and SPLIT operations.

– When an ALTER statement is executed, the cold and hot data attributes
in the partitions cannot be changed, that is, data in the cold partition
should still be put in the cold partition after a data operation, and hot
partition data should be put in the hot partition. Therefore, cold partition
data cannot be migrated to the local tablespace.

– Only the default tablespace is supported for cold partitions.
– Cold and hot partitions cannot be merged.
– Cold partition switching is not supported for the EXCHANGE operation.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 404



Syntax
● Modify the syntax of the table partition.

ALTER TABLE [ IF EXISTS ] { table_name  [*] | ONLY table_name | ONLY ( table_name  )}
    action [, ... ];

action indicates the following clauses for maintaining partitions. For the
partition continuity when multiple clauses are used for partition maintenance,
GaussDB(DWS) does DROP PARTITION and then ADD PARTITION, and
finally runs the rest clauses in sequence.
move_clause  |
    exchange_clause  |
    row_clause  |
    merge_clause  |
    modify_clause  |
    split_clause  |
    add_clause  |
    drop_clause

– The move_clause syntax is used to move the partition to a new
tablespace.
MOVE PARTITION { partition_name | FOR ( partition_value [, ...] ) } TABLESPACE tablespacename

– The exchange_clause syntax is used to move the data from a general
table to a specified partition.
EXCHANGE PARTITION { ( partition_name ) | FOR ( partition_value [, ...] ) } 
    WITH TABLE {[ ONLY ] ordinary_table_name | ordinary_table_name * | ONLY 
( ordinary_table_name )} 
    [ { WITH | WITHOUT } VALIDATION ] [ VERBOSE ]

The ordinary table and the partitioned table whose data is to be
exchanged must meet the following requirements:

▪ The number of columns of the ordinary table is the same as that of
the partitioned table, and their information should be consistent,
including the column name, data type, constraint, collation, storage
parameter, compression, and data type of a deleted column.

▪ The compression information of the ordinary table and partitioned
table should be consistent.

▪ The distribution column information of the ordinary table and the
partitioned table should be consistent.

▪ The number and information of indexes of the ordinary table and the
partitioned table should be consistent.

▪ The number and information of constraints of the ordinary table and
the partitioned table should be consistent.

▪ The ordinary table cannot be a temporary table or unlogged table.

▪ The ordinary table and the partitioned table must be in the same
logical cluster or node group.

▪ If other columns following the last valid column in the partitioned
table are deleted and the deleted columns are not considered, the
partitioned table can be exchanged with the ordinary table as long
as the columns of the two tables are the same.

When the execution is complete, the data and tablespace of the ordinary
table and the partitioned table are exchanged. In this case, statistics

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 405



about the ordinary table and the partitioned table become unreliable.
Both tables should be analyzed again.

– The syntax of row_clause is used to set the row movement switch of a
partitioned table.
{ ENABLE | DISABLE } ROW MOVEMENT

– The merge_clause syntax is used to merge partitions into one.
MERGE PARTITIONS { partition_name } [, ...] INTO PARTITION partition_name 
    

– The syntax of modify_clause is used to set whether a partition index is
usable.
MODIFY PARTITION partition_name { UNUSABLE LOCAL INDEXES | REBUILD UNUSABLE LOCAL 
INDEXES }

– The split_clause syntax is used to split one partition into partitions.
SPLIT PARTITION { partition_name | FOR ( partition_value [, ...] ) } { split_point_clause | 
no_split_point_clause }

▪ The syntax of specified split_point_clause is as follows:
AT ( partition_value ) INTO ( PARTITION partition_name  , PARTITION partition_name  )

NO TICE

The size of split point should be in the range of splitting partition
key. The split point can only split one partition into two.

▪ The syntax of no_split_point_clause is as follows:
INTO { ( partition_less_than_item [, ...] ) | ( partition_start_end_item [, ...] ) }

NO TICE

● The first new partition key specified by partition_less_than_item
must be larger than that of the former partition (if any), and the
last partition key specified by partition_less_than_item must be
equal to that of the splitting partition.

● The start point (if any) of the first new partition specified by
partition_start_end_item must be equal to the partition key (if
any) of the previous partition. The end point (if any) of the last
partition specified by partition_start_end_item must be equal to
the partition key of the splitting partition.

● partition_less_than_item supports a maximum of four partition
keys and partition_start_end_item supports only one partition
key. For details about the supported data types, see Partition Key.

▪ The syntax of partition_less_than_item is as follows:
PARTITION partition_name VALUES LESS THAN ( { partition_value | MAXVALUE }  [, ...] ) 
    [ TABLESPACE tablespacename ]

▪ The syntax of partition_start_end_item is as follows. For details
about the constraints, see partition_start_end_item syntax.
PARTITION partition_name {
        {START(partition_value) END (partition_value) EVERY (interval_value)} |
        {START(partition_value) END ({partition_value | MAXVALUE})} |
        {START(partition_value)} |

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 406



        {END({partition_value | MAXVALUE})}
} [TABLESPACE tablespace_name]

– The syntax of add_clause is used to add a partition to one or more
specified partitioned tables.
ADD {partition_less_than_item | partition_start_end_item}

– The syntax of drop_clause is used to remove a specified partition from a
partitioned table.
DROP PARTITION  { partition_name | FOR (  partition_value [, ...] )  } 

● The syntax of modifying a table partition name is as follows:
ALTER TABLE [ IF EXISTS ] { table_name [*] | ONLY table_name | ONLY ( table_name  )}
    RENAME PARTITION { partition_name | FOR ( partition_value [, ...] ) } TO partition_new_name;

Parameter Description
● table_name

Specifies the name of a partitioned table.
Value range: an existing partitioned table name

● partition_name
Specifies the name of a partition.
Value range: an existing partition name

● partition_value
Specifies the key value of a partition.
The value specified by PARTITION FOR ( partition_value [, ...] ) can uniquely
identify a partition.
Value range: value range of the partition key for the partition to be renamed

● UNUSABLE LOCAL INDEXES
Sets all the indexes unusable in the partition.

● REBUILD UNUSABLE LOCAL INDEXES
Rebuilds all the indexes in the partition.

● ENABLE/DISABLE ROW MOVEMENT
Specifies the row movement switch.
If the tuple value is updated on the partition key during the UPDATE action,
the partition where the tuple is located is altered. Setting of this parameter
enables error messages to be reported or movement of the tuple between
partitions.
Valid value:
– ENABLE: The row movement switch is enabled.
– DISABLE: The row movement switch is disabled.
The switch is disabled by default.

● ordinary_table_name
Specifies the name of the ordinary table whose data is to be migrated.
Value range: an existing ordinary table name

● { WITH | WITHOUT } VALIDATION
Checks whether the ordinary table data meets the specified partition key
range of the partition to be migrated.
Valid value:

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 407



– WITH: checks whether the common table data meets the partition key
range of the partition to be exchanged. If any data does not meet the
required range, an error is reported.

– WITHOUT: does not check whether the common table data meets the
partition key range of the partition to be exchanged.

The default value is WITH.
The check is time consuming, especially when the data volume is large.
Therefore, use WITHOUT when you are sure that the current common table
data meets the partition key range of the partition to be exchanged.

● VERBOSE
When VALIDATION is WITH, if the ordinary table contains data that is out of
the partition key range, insert the data to the correct partition. If there is no
correct partition where the data can be route to, an error is reported.

NO TICE

Only when VALIDATION is WITH, VERBOSE can be specified.

● partition_new_name
Specifies the new name of a partition.
Value range: a string. It must comply with the naming convention.

Example
Delete partition P8.

ALTER TABLE tpcds.web_returns_p1 DROP PARTITION P8;

Add a partition WR_RETURNED_DATE_SK with values ranging from 2453005 to
2453105.

ALTER TABLE tpcds.web_returns_p1 ADD PARTITION P8 VALUES LESS THAN (2453105);

Add a partition WR_RETURNED_DATE_SK with values ranging from 2453105 to
MAXVALUE.

ALTER TABLE tpcds.web_returns_p1 ADD PARTITION P9 VALUES LESS THAN (MAXVALUE);

Rename the P7 partition as P10.

ALTER TABLE tpcds.web_returns_p1 RENAME PARTITION P7 TO P10;

Rename the P6 partition as P11.

ALTER TABLE tpcds.web_returns_p1 RENAME PARTITION FOR (2452639) TO P11;

Query rows in the P10 partition.

SELECT count(*) FROM tpcds.web_returns_p1 PARTITION (P10);
 count  
--------
 9362
(1 row)

Split the P8 partition at 2453010.

ALTER TABLE tpcds.web_returns_p2 SPLIT PARTITION P8 AT (2453010) INTO
(

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 408



        PARTITION P9,
        PARTITION P10
); 

Merge the P6 and P7 partitions into one.

ALTER TABLE tpcds.web_returns_p2 MERGE PARTITIONS P6, P7 INTO PARTITION P8;

Modify the migration attribute of a partitioned table.

ALTER TABLE tpcds.web_returns_p2 DISABLE ROW MOVEMENT;

Add partitions [5000, 5300), [5300, 5600), [5600, 5900), and [5900, 6000).

ALTER TABLE tpcds.startend_pt ADD PARTITION p6 START(5000) END(6000) EVERY(300);

Add the partition p7, specified by MAXVALUE.

ALTER TABLE tpcds.startend_pt ADD PARTITION p7 END(MAXVALUE);

Rename the partition where 5950 is located to p71.

ALTER TABLE tpcds.startend_pt RENAME PARTITION FOR(5950) TO p71;

Split the partition [4000, 5000) where 4500 is located.

ALTER TABLE tpcds.startend_pt SPLIT PARTITION FOR(4500) INTO(PARTITION q1 START(4000) END(5000) 
EVERY;

Links

CREATE TABLE PARTITION, DROP TABLE

12.21 ALTER TEXT SEARCH CONFIGURATION

Function

ALTER TEXT SEARCH CONFIGURATION modifies the definition of a text search
configuration. You can modify its mappings from token types to dictionaries,
change the configuration's name or owner, or modify the parameters.

The ADD MAPPING FOR form installs a list of dictionaries to be consulted for the
specified token types; an error will be generated if there is already a mapping for
any of the token types.

The ALTER MAPPING FOR form removes existing mapping for those token types
and then adds specified mappings.

ALTER MAPPING REPLACE ... WITH ... and ALTER MAPPING FOR... REPLACE ...
WITH ... options replace old_dictionary with new_dictionary. Note that only
when pg_ts_config_map has tuples corresponding to maptokentype and
old_dictionary, the update will succeed. If the update fails, no messages are
returned.

The DROP MAPPING FOR form deletes all dictionaries for the specified token
types in the text search configuration. If IF EXISTS is not specified and the string
type mapping specified by DROP MAPPING FOR does not exist in text search
configuration, an error will occur in database.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 409



Important Notes
● If a search configuration is referenced (to create an index), users are not

allowed to modify it.
● To use ALTER TEXT SEARCH CONFIGURATION, you must be the owner of

the configuration.

Syntax
● Add text search configuration string mapping.
ALTER TEXT SEARCH CONFIGURATION name 
    ADD MAPPING FOR token_type [, ... ] WITH dictionary_name [, ... ];

● Modify the text search configuration dictionary syntax.
ALTER TEXT SEARCH CONFIGURATION name 
    ALTER MAPPING FOR token_type [, ... ] REPLACE old_dictionary WITH new_dictionary;

● Modify the text search configuration string.
ALTER TEXT SEARCH CONFIGURATION name
    ALTER MAPPING FOR token_type [, ... ] WITH dictionary_name [, ... ];

● Change the text search configuration dictionary.
ALTER TEXT SEARCH CONFIGURATION name
    ALTER MAPPING REPLACE old_dictionary WITH new_dictionary;

● Remove text search configuration string mapping.
ALTER TEXT SEARCH CONFIGURATION name
    DROP MAPPING [ IF EXISTS ] FOR token_type [, ... ];

● Rename the owner of text search configuration.
ALTER TEXT SEARCH CONFIGURATION name OWNER TO new_owner;

● Rename the name of text search configuration.
ALTER TEXT SEARCH CONFIGURATION name RENAME TO new_name;

● Rename the namespace of text search configuration.
ALTER TEXT SEARCH CONFIGURATION name SET SCHEMA new_schema;

● Modify the attributes of text search configuration.
ALTER TEXT SEARCH CONFIGURATION name SET ( { configuration_option = value } [, ...] );

● Reset the attributes of text search configuration.
ALTER TEXT SEARCH CONFIGURATION name RESET ( {configuration_option} [, ...] );

Parameter description
● name

Specifies the name (optionally schema-qualified) of an existing text search
configuration.

● token_type
Specifies the name of a token type that is emitted by the configuration's
parser. For details, see Parsers.

● dictionary_name
Specifies the name of a text search dictionary to be consulted for the specified
token types. If multiple dictionaries are listed, they are consulted in the
specified order.

● old_dictionary
Specifies the name of a text search dictionary to be replaced in the mapping.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 410



● new_dictionary
Specifies the name of a text search dictionary to be substituted for
old_dictionary.

● new_owner
Specifies the new owner of the text search configuration.

● new_name
Specifies the new name of the text search configuration.

● new_schema
Specifies the new schema for the text search configuration.

● configuration_option
Text search configuration option. For details, see CREATE TEXT SEARCH
CONFIGURATION.

● value
Specifies the value of text search configuration option.

Examples
Add a type mapping for the text search type ngram1.

ALTER TEXT SEARCH CONFIGURATION ngram1 ADD MAPPING FOR multisymbol WITH simple;

Change the owner of text search configuration.

ALTER TEXT SEARCH CONFIGURATION ngram1 OWNER TO joe;

Modify the schema of text search configuration.

ALTER TEXT SEARCH CONFIGURATION ngram1 SET SCHEMA joe;

Rename a text search configuration.

ALTER TEXT SEARCH CONFIGURATION joe.ngram1 RENAME TO ngram_1;

Delete type mapping.

ALTER TEXT SEARCH CONFIGURATION joe.ngram_1 DROP MAPPING IF EXISTS FOR multisymbol;

Add text search configuration string mapping.

ALTER TEXT SEARCH CONFIGURATION english_1 ADD MAPPING FOR word WITH simple,english_stem;

Add text search configuration string mapping.

ALTER TEXT SEARCH CONFIGURATION english_1 ADD MAPPING FOR email WITH english_stem, 
french_stem;

Modify text search configuration string mapping.

ALTER TEXT SEARCH CONFIGURATION english_1 ALTER MAPPING REPLACE french_stem with german_stem;

Query information about the text search configuration.

SELECT b.cfgname,a.maptokentype,a.mapseqno,a.mapdict,c.dictname FROM pg_ts_config_map 
a,pg_ts_config b, pg_ts_dict c WHERE a.mapcfg=b.oid AND a.mapdict=c.oid AND b.cfgname='english_1' 
ORDER BY 1,2,3,4,5;
  cfgname  | maptokentype | mapseqno | mapdict |   dictname   
-----------+--------------+----------+---------+--------------
 english_1 |            2 |        1 |    3765 | simple
 english_1 |            2 |        2 |   12960 | english_stem
 english_1 |            4 |        1 |   12960 | english_stem

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 411



 english_1 |            4 |        2 |   12966 | german_stem
(4 rows)

Links

CREATE TEXT SEARCH CONFIGURATION, DROP TEXT SEARCH
CONFIGURATION

12.22 ALTER TEXT SEARCH DICTIONARY

Function

ALTER TEXT SEARCH DICTIONARY modifies the definition of a full-text retrieval
dictionary, including its parameters, name, owner, and schema.

Precautions
● ALTER is not supported by predefined dictionaries.
● Only the owner of a dictionary can do ALTER to the dictionary. System

administrators have this permission by default.
● After a dictionary is created or modified, any modification to the user-defined

dictionary definition file in the directory specified by FilePath will not affect
the dictionary in the database. To make such modifications take effect in the
dictionary in the database, run the ALTER TEXT SEARCH DICTIONARY
statement to update the definition file of the dictionary.

Syntax
● Modify the dictionary definition.

ALTER TEXT SEARCH DICTIONARY name (
    option [ = value ] [, ... ]
);

● Rename a dictionary.
ALTER TEXT SEARCH DICTIONARY name RENAME TO new_name;

● Set the schema of a dictionary.
ALTER TEXT SEARCH DICTIONARY name SET SCHEMA new_schema;

● Change the owner of a dictionary.
ALTER TEXT SEARCH DICTIONARY name OWNER TO new_owner;

Parameter Description
● name

Specifies the name of an existing dictionary. (If you do not specify a schema
name, the dictionary in the current schema will be used.)
Value range: name of an existing dictionary

● option
Specifies the name of a parameter to be modified. Each type of dictionaries
has a template containing their custom parameters. Parameters function in a
way irrelevant to their setting sequence. For details about parameters, see
option.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 412



NO TE

● The TEMPLATE parameter in a dictionary cannot be modified.

● To specify a dictionary, specify both the dictionary definition file path (FILEPATH)
and the file name (the parameter varies based on dictionary types).

● The name of a dictionary definition file can contain only lowercase letters, digits,
and underscores (_).

● value
Specifies the new value of a parameter. If = and value are omitted, the
previous settings of the parameter will be deleted and the default value will
be used.
Value range: valid values defined for the parameter

● new_name
Specifies the new name of a dictionary.
Value range: a string, which complies with the identifier naming convention. A
value can contain a maximum of 63 characters.

● new_owner
Specifies the new owner of a dictionary.
Value range: an existing user name

● new_schema
Specifies the new schema of a dictionary.
Value range: an existing schema name

Examples

Modify the definition of stop words in Snowball dictionaries. Retain the values of
other parameters.

ALTER TEXT SEARCH DICTIONARY my_dict ( StopWords = newrussian, FilePath = 'obs://bucket_name/path 
accesskey=ak secretkey=sk region=rg' );

Modify the Language parameter in Snowball dictionaries and delete the
definition of stop words.

ALTER TEXT SEARCH DICTIONARY my_dict ( Language = dutch, StopWords );

Update the dictionary definition and do not change any other content.

ALTER TEXT SEARCH DICTIONARY my_dict ( dummy );

Helpful Links

CREATE TEXT SEARCH DICTIONARY, DROP TEXT SEARCH DICTIONARY

12.23 ALTER TRIGGER

Function

ALTER TRIGGER modifies the definition of a trigger.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 413



Precautions
Only the owner of a table where a trigger is created and system administrators
can run the ALTER TRIGGER statement.

Syntax
ALTER TRIGGER trigger_name ON table_name RENAME TO new_name;

Parameter Description
● trigger_name

Specifies the name of the trigger to be modified.
Value range: an existing trigger

● table_name
Specifies the name of the table where the trigger to be modified is located.
Value range: an existing table having a trigger

● new_name
Specifies the new name after modification.
Value range: a string that complies with the identifier naming convention. A
value contains a maximum of 63 characters and cannot be the same as other
triggers on the same table.

Examples
Modified the trigger delete_trigger.

ALTER TRIGGER delete_trigger ON test_trigger_src_tbl RENAME TO delete_trigger_renamed;

Disable the trigger insert_trigger.

ALTER TABLE test_trigger_src_tbl DISABLE TRIGGER insert_trigger;  

Disable all triggers on the test_trigger_src_tbl table.

ALTER TABLE test_trigger_src_tbl DISABLE TRIGGER ALL; 

Helpful Links
CREATE TRIGGER, DROP TRIGGER, ALTER TABLE

12.24 ALTER TYPE

Function
ALTER TYPE modifies the definition of a type.

Syntax
● Modify a type.

ALTER TYPE name action [, ... ]
ALTER TYPE name OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER TYPE name RENAME ATTRIBUTE attribute_name TO new_attribute_name [ CASCADE | 
RESTRICT ]

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 414



ALTER TYPE name RENAME TO new_name
ALTER TYPE name SET SCHEMA new_schema
ALTER TYPE name ADD VALUE [ IF NOT EXISTS ] new_enum_value [ { BEFORE | AFTER } 
neighbor_enum_value ] 
ALTER TYPE name RENAME VALUE existing_enum_value TO new_enum_value

where action is one of:
    ADD ATTRIBUTE attribute_name data_type [ COLLATE collation ] [ CASCADE | RESTRICT ]
    DROP ATTRIBUTE [ IF EXISTS ] attribute_name [ CASCADE | RESTRICT ]
    ALTER ATTRIBUTE attribute_name [ SET DATA ] TYPE data_type [ COLLATE collation ] [ CASCADE | 
RESTRICT ]

● Add a new attribute to a composite type.
ALTER TYPE name ADD ATTRIBUTE attribute_name data_type [ COLLATE collation ] [ CASCADE | 
RESTRICT ]

● Delete an attribute from a composite type.
ALTER TYPE name DROP ATTRIBUTE [ IF EXISTS ] attribute_name [ CASCADE | RESTRICT ]

● Change the type of an attribute in a composite type.
ALTER TYPE name ALTER ATTRIBUTE attribute_name [ SET DATA ] TYPE data_type [ COLLATE 
collation ] [ CASCADE | RESTRICT ]

● Change the owner of a type.
ALTER TYPE name OWNER TO { new_owner | CURRENT_USER | SESSION_USER }

● Change the name of a type or the name of an attribute in a composite type.
ALTER TYPE name RENAME TO new_name
ALTER TYPE name RENAME ATTRIBUTE attribute_name TO new_attribute_name [ CASCADE | 
RESTRICT ]

● Move a type to a new schema.
ALTER TYPE name SET SCHEMA new_schema

● Add a new value to an enumerated type.
ALTER TYPE name ADD VALUE [ IF NOT EXISTS ] new_enum_value [ { BEFORE | AFTER } 
neighbor_enum_value ]

● Change an enumerated value in the value list.
ALTER TYPE name RENAME VALUE existing_enum_value TO new_enum_value

Parameter Description
● name

Specifies the name of an existing type that needs to be modified (schema-
qualified).

● new_name
Specifies the new name of the type.

● new_owner
Specifies the new owner of the type.

● new_schema
Specifies the new schema of the type.

● attribute_name
Specifies the name of the attribute to be added, modified, or deleted.

● new_attribute_name
Specifies the new name of the attribute to be renamed.

● data_type
Specifies the data type of the attribute to be added, or the new type of the
attribute to be modified.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 415



● new_enum_value
Specifies a new enumerated value. It is a non-empty string with a maximum
length of 64 bytes.

● neighbor_enum_value
Specifies an existing enumerated value before or after which a new
enumerated value will be added.

● existing_enum_value
Specifies an enumerated value to be changed. It is a non-empty string with a
maximum length of 64 bytes.

● CASCADE
Determines that the type to be modified, its associated records, and subtables
that inherit the type will all be updated.

● RESTRICT
Refuses to update the association record of the modified type. This is the
default.

NO TICE

● ADD ATTRIBUTE, DROP ATTRIBUTE, and ALTER ATTRIBUTE can be
combined for processing. For example, it is possible to add several
attributes or change the types of several attributes at the same time in one
command.

● Only type owners can run ALTER TYPE. To modify the schema of a type,
you must also have the CREATE permission for the new schema. To modify
the owner of a type, you must be a direct or indirect member of the new
owner and have the CREATE permission for the schema of this type.
(These restrictions force modification owners not to do anything that
cannot be done by deleting and rebuilding types. However, system
administrators can modify the ownership of any type in any way.) To add
an attribute or modify the type of an attribute, you must also have the
USAGE permission for this type.

Examples
Rename the data type.

ALTER TYPE compfoo RENAME TO compfoo1;

Change the owner of the user-defined type compfoo1 to usr1.

ALTER TYPE compfoo1 OWNER TO usr1;

Change the schema of the user-defined type compfoo1 to usr1.

ALTER TYPE compfoo1 SET SCHEMA usr1;

Add the f3 attribute to the compfoo1 data type.

ALTER TYPE compfoo1 ADD ATTRIBUTE f3 int;

Add a tag value to the enumeration type bugstatus.

ALTER TYPE bugstatus ADD VALUE IF NOT EXISTS 'regress' BEFORE 'closed';

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 416



Rename a tag value of the enumeration type bugstatus.

ALTER TYPE bugstatus RENAME VALUE 'create' TO 'new';

Helpful Links
CREATE TYPE, DROP TYPE

12.25 ALTER USER

Function
ALTER USER modifies the attributes of a database user.

Precautions
Session parameters modified by ALTER USER apply to a specified user and take
effect in the next session.

Syntax
● Modify user rights or other information.

ALTER USER user_name [ [ WITH ] option [ ... ] ];

The option clause is as follows:
{ CREATEDB | NOCREATEDB }
    | { CREATEROLE | NOCREATEROLE }
    | { INHERIT | NOINHERIT }
    | { AUDITADMIN | NOAUDITADMIN }
    | { SYSADMIN | NOSYSADMIN }
    | { USEFT | NOUSEFT }
    | { LOGIN | NOLOGIN }
    | { REPLICATION | NOREPLICATION }
    | {INDEPENDENT | NOINDEPENDENT}
    | {VCADMIN | NOVCADMIN}
    | CONNECTION LIMIT connlimit
    | [ ENCRYPTED | UNENCRYPTED ] PASSWORD { 'password' | DISABLE }
    | [ ENCRYPTED | UNENCRYPTED ] IDENTIFIED BY { 'password' [ REPLACE 'old_password' ] | 
DISABLE }
    | VALID BEGIN 'timestamp'
    | VALID UNTIL 'timestamp'
    | RESOURCE POOL 'respool'
    | USER GROUP 'groupuser'
    | PERM SPACE 'spacelimit'
    | TEMP SPACE 'tmpspacelimit'
    | SPILL SPACE 'spillspacelimit'
    | NODE GROUP logic_cluster_name
    | ACCOUNT { LOCK | UNLOCK }
    | PGUSER
    | AUTHINFO 'authinfo'
    | PASSWORD EXPIRATOIN period

● Change the user name.
ALTER USER user_name 
    RENAME TO new_name;

● Change the value of a specified parameter associated with the user.
ALTER USER user_name 
    SET configuration_parameter { { TO | = } { value | DEFAULT } | FROM CURRENT };

● Reset the value of a specified parameter associated with the user.
ALTER USER user_name 
    RESET { configuration_parameter | ALL };

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 417



Parameters
● user_name

Specifies the current user name.
Value range: an existing user name

● new_password
Indicates a new password.
A password must:
– Differ from the old password.
– Contain at least eight characters. This is the default length.
– Differ from the user name or the user name spelled backwards.
– Contains at least three of the following four character types: uppercase

letters, lowercase letters, digits, and special characters, including: ~!@#$
%^&*()-_=+\|[{}];:,<.>/?. If you use characters other than the four types, a
warning is displayed, but you can still create the password.

Value range: a string
● old_password

Indicates the old password.
● ACCOUNT LOCK | ACCOUNT UNLOCK

– ACCOUNT LOCK: locks an account to forbid login to databases.
– ACCOUNT UNLOCK: unlocks an account to allow login to databases.

● PGUSER
PGUSER of a user cannot be modified in the current version.

For details about other parameters, see "Parameter Description" in CREATE ROLE
and ALTER ROLE.

Example

Change the login password of user jim.

ALTER USER jim IDENTIFIED BY 'password123' REPLACE 'password456';

Add the CREATEROLE permission to user jim.

ALTER USER jim CREATEROLE;

Set enable_seqscan to on (the setting will take effect in the next session).

ALTER USER jim SET enable_seqscan TO on;

Reset the enable_seqscan parameter for user jim.

ALTER USER jim RESET enable_seqscan;

Lock the jim account.

ALTER USER jim ACCOUNT LOCK;

Links

CREATE ROLE, CREATE USER, DROP USER

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 418



12.26 ALTER VIEW

Function

ALTER VIEW modifies all auxiliary attributes of a view. (To modify the query
definition of a view, use CREATE OR REPLACE VIEW.)

Precautions
● Only the view owner can modify a view by running ALTER VIEW.
● To change a view's schema, you must also have the CREATE permission on

the new schema.
● To alter the owner, you must also be a direct or indirect member of the new

owning role, and that role must have CREATE privilege on the view's schema.
● An administrator can change the owner relationship of any view.

Syntax
● Set the default value of the view column.

ALTER VIEW [ IF EXISTS ] view_name
    ALTER [ COLUMN ] column_name SET DEFAULT expression;

● Remove the default value of the view column.
ALTER VIEW [ IF EXISTS ] view_name
    ALTER [ COLUMN ] column_name DROP DEFAULT;

● Change the owner of a view.
ALTER VIEW [ IF EXISTS ] view_name 
    OWNER TO new_owner;

● Rename a view.
ALTER VIEW [ IF EXISTS ] view_name 
    RENAME TO new_name;

● Set the schema of the view.
ALTER VIEW [ IF EXISTS ] view_name 
    SET SCHEMA new_schema;

● Set the options of the view.
ALTER VIEW [ IF EXISTS ] view_name
    SET ( { view_option_name [ = view_option_value ] } [, ... ] );

● Reset the options of the view.
ALTER VIEW [ IF EXISTS ] view_name
    RESET ( view_option_name [, ... ] );

● Rebuild a view.
ALTER VIEW [ IF EXISTS ] view_name
    REBUILD;

● Rebuild a dependent view.
ALTER VIEW ONLY [ IF EXISTS ] view_name
    REBUILD;

Parameter Description
● IF EXISTS

If this option is specified, no error is reported if the view does not exist. Only a
message is displayed.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 419



● view_name
Specifies the view name, which can be schema-qualified.
Value range: a string. It must comply with the naming convention.

● column_name
Indicates an optional list of names to be used for columns of the view. If not
given, the column names are deduced from the query.
Value range: a string. It must comply with the naming convention.

● SET/DROP DEFAULT
Sets or deletes the default value of a column. Currently, this parameter does
not take effect.

● new_owner
Specifies the new owner of a view.

● new_name
Specifies the new view name.

● new_schema
Specifies the new schema of the view.

● view_option_name [ = view_option_value ]
This clause specifies optional parameters for a view.
Currently, the only parameter supported by view_option_name is
security_barrier, which should be enabled when a view is intended to provide
row-level security.
Value range: boolean type. It can be TRUE or FALSE.

● REBUILD
This clause is used for view decoupling. You can use the saved original
statement to rebuild views and restore the dependencies. Note the following:
– View rebuilding starts from the current view and updates all associated

backward views. If the forward views on which the current view depends
are also unavailable, automatic rebuilding is triggered.

– The temporary tables and views that have dependency relationships
cannot be decoupled and dropped. However, you can perform the
REBUILD operation on temporary views that do not have dependency
relationships.

– View schema names and view names can be modified. The names of
rebuilt view schemas or views are re-created based on the latest name,
but the query operation retains the original definition.

– Only fields of the character, number, and time types in the base table can
be modified.

– Invalid views are exported as comments during backup. You need to
manually restore the invalid views.

– Views can be automatically rebuilt when VIEW_INDEPENDENT is set to
on.

● ONLY
Only views and their dependent views are rebuilt. This function is available
only if view_independent is set to on.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 420



Examples
Rename a view.

ALTER VIEW tpcds.customer_details_view_v1 RENAME TO customer_details_view_v2;

Change the schema of a view.

ALTER VIEW tpcds.customer_details_view_v2 SET schema public;

Rebuild a view.

ALTER VIEW public.customer_details_view_v2 REBUILD;

Rebuild a dependent view.

ALTER VIEW ONLY public.customer_details_view_v2 REBUILD;

Helpful Links
CREATE VIEW, DROP VIEW

12.27 CLEAN CONNECTION

Function
CLEAN CONNECTION clears database connections when a database is abnormal.
You may use this statement to delete a specific user's connections to a specified
database.

Precautions
None

Syntax
CLEAN CONNECTION 
    TO { COORDINATOR ( nodename [, ... ] ) | NODE ( nodename [, ... ] )| ALL [ CHECK ] [ FORCE ] }
    [ FOR DATABASE dbname ] 
    [ TO USER username ];

Parameter Description
● CHECK

This parameter can be specified only when the node list is specified as TO
ALL. Setting this parameter will check whether a database is accessed by
other sessions before its connections are cleared. If any sessions are detected
before DROP DATABASE is executed, an error will be reported and the
database will not be deleted.

● FORCE
This parameter can be specified only when the node list is specified as TO
ALL. Setting this parameter will send SIGTERM signals to all the threads
related to the specified dbname and username and forcibly shut them down.

● COORDINATOR ( nodename ,nodename ... } ) | NODE ( nodename ,
nodename ... ) | ALL
Deletes connections on a specified node. There are three scenarios:

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 421



– Deletes connections to a specified CN.
– Deletes connections to a specified DN.
– Deletes connections to all CNs and DNs.
Value range: nodename is an existing node name.

● dbname
Deletes connections to a specific database. If this parameter is not specified,
connections to all databases will be deleted.
Value range: an existing database name

● username
Deletes connections of a specific user. If this parameter is not specified,
connections of all users will be deleted.
Value range: an existing user name

Examples

Clean connections to nodes dn1 and dn2 for the template1 database.

CLEAN CONNECTION TO NODE (dn_6001_6002,dn_6003_6004) FOR DATABASE template1;

Clean user jack's connections to dn1.

CLEAN CONNECTION TO NODE (dn_6001_6002) TO USER jack;

Delete all connections to the postgres database.

CLEAN CONNECTION TO ALL FORCE FOR DATABASE postgres;

12.28 CLOSE

Function

CLOSE frees the resources associated with an open cursor.

Precautions
● After a cursor is closed, no subsequent operations are allowed on it.
● A cursor should be closed when it is no longer needed.
● Every non-holdable open cursor is implicitly closed when a transaction is

terminated by COMMIT or ROLLBACK.
● A holdable cursor is implicitly closed if the transaction that created it aborts

via ROLLBACK.
● If the creating transaction successfully commits, the holdable cursor remains

open until an explicit CLOSE is executed, or the client disconnects.
● GaussDB(DWS) does not have an explicit OPEN cursor statement. A cursor is

considered open when it is declared. You can see all available cursors by
querying the pg_cursors system view.

Syntax
CLOSE { cursor_name | ALL } ;

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 422



Parameter Description
● cursor_name

Specifies the name of a cursor to be closed.
● ALL

Closes all open cursors.

Example
Close a cursor.

CLOSE cursor1;

Links
FETCH, MOVE

12.29 CLUSTER

Function
Cluster a table according to an index.

CLUSTER instructs GaussDB(DWS) to cluster the table specified by table_name
based on the index specified by index_name. The index must have been defined
on table_name.

When a table is clustered, it is physically reordered based on the index
information. Clustering is a one-time operation: when the table is subsequently
updated, the changes are not clustered. That is, no attempt is made to store new
or updated rows according to their index order.

When a table is clustered, GaussDB(DWS) records which index the table was
clustered by. The form CLUSTER table_name reclusters the table using the same
index as before. You can also use the CLUSTER or SET WITHOUT CLUSTER forms
of ALTER TABLE to set the index to be used for future cluster operations, or to
clear any previous setting.

CLUSTER without any parameter reclusters all the previously-clustered tables in
the current database that the calling user owns, or all such tables if called by an
administrator.

When a table is being clustered, an ACCESS EXCLUSIVE lock is acquired on it. This
prevents any other database operations (both reads and writes) from operating on
the table until the CLUSTER is finished.

Precautions
Only row-store B-tree indexes support CLUSTER.

In cases where you are accessing single rows randomly within a table, the actual
order of the data in the table is unimportant. However, if you tend to access some
data more than others, and there is an index that groups them together, you will
benefit from using CLUSTER. If you are requesting a range of indexed values from

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 423



a table, or a single indexed value that has multiple rows that match, CLUSTER will
help because once the index identifies the table page for the first row that
matches, all other rows that match are probably already on the same table page,
and so you save disk accesses and speed up the query.

When an index scan is used, a temporary copy of the table is created that contains
the table data in the index order. Temporary copies of each index on the table are
created as well. Therefore, you need free space on disk at least equal to the sum
of the table size and the index sizes.

Because CLUSTER remembers which indexes are clustered, one can cluster the
tables manually the first time, then set up a time like VACUUM without any
parameters, so that the desired tables are periodically reclustered.

Because the optimizer records statistics about the ordering of tables, it is advisable
to run ANALYZE on the newly clustered table. Otherwise, the optimizer might
make poor choices of query plans.

CLUSTER cannot be executed in transactions.

Syntax
● Cluster a table.

CLUSTER [ VERBOSE ] table_name [ USING index_name ];

● Cluster a partition.
CLUSTER [ VERBOSE ] table_name PARTITION ( partition_name ) [ USING index_name ];

● Cluster the table that has previously been clustered.
CLUSTER [ VERBOSE ];

Parameter Description
● VERBOSE

Enables the display of progress messages.
● table_name

Specifies the name of the table.
Value range: an existing table name

● index_name
Name of this index
Value range: An existing index name.

● partition_name
Specifies the partition name.
Value range: An existing partition name.

Examples
Create a partitioned table.

CREATE TABLE tpcds.inventory_p1
(
    INV_DATE_SK               INTEGER               NOT NULL,
    INV_ITEM_SK               INTEGER               NOT NULL,
    INV_WAREHOUSE_SK          INTEGER               NOT NULL,
    INV_QUANTITY_ON_HAND      INTEGER
)

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 424



DISTRIBUTE BY HASH(INV_ITEM_SK)
PARTITION BY RANGE(INV_DATE_SK)
(
        PARTITION P1 VALUES LESS THAN(2451179),
        PARTITION P2 VALUES LESS THAN(2451544),
        PARTITION P3 VALUES LESS THAN(2451910),
        PARTITION P4 VALUES LESS THAN(2452275),
        PARTITION P5 VALUES LESS THAN(2452640),
        PARTITION P6 VALUES LESS THAN(2453005),
        PARTITION P7 VALUES LESS THAN(MAXVALUE)
);

Create an index named ds_inventory_p1_index1.

CREATE INDEX ds_inventory_p1_index1 ON tpcds.inventory_p1 (INV_ITEM_SK) LOCAL;

Cluster the tpcds.inventory_p1 table.

CLUSTER tpcds.inventory_p1 USING ds_inventory_p1_index1;

Cluster the p3 partition.

CLUSTER tpcds.inventory_p1 PARTITION (p3) USING ds_inventory_p1_index1;

Cluster the tables that can be clustered in the database.

CLUSTER;

12.30 COMMENT

Function
COMMENT defines or changes the comment of an object.

Precautions
● Only one comment string is stored for each object. To modify a comment,

issue a new COMMENT command for the same object. To remove a
comment, write NULL in place of the text string. Comments are automatically
deleted when their objects are deleted.

● Currently, there is no security protection for viewing comments. Any user
connected to a database can view all the comments for objects in the
database. For shared objects such as databases, roles, and tablespaces,
comments are stored globally so any user connected to any database in the
cluster can see all the comments for shared objects. Therefore, do not put
security-critical information in comments.

● For most kinds of objects, only the owner of objects can set the comment.
Roles do not have owners, so the rule for COMMENT ON ROLE is that you
must be administrator to comment on an administrator role, or have the
CREATEROLE permission to comment on non-administrator roles. An
administrator can comment on anything.

Syntax
COMMENT ON
{
  AGGREGATE agg_name (agg_type [, ...] ) |
  CAST (source_type AS target_type) |
  COLLATION object_name |
  COLUMN { table_name.column_name | view_name.column_name } |

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 425



  CONSTRAINT constraint_name ON table_name |
  CONVERSION object_name |
  DATABASE object_name |
  DOMAIN object_name |
  EXTENSION object_name |
  FOREIGN DATA WRAPPER object_name |
  FOREIGN TABLE object_name |
  FUNCTION function_name ( [ {[ argmode ] [ argname ] argtype} [, ...] ] ) |
  INDEX object_name |
  LARGE OBJECT large_object_oid |
  OPERATOR operator_name (left_type, right_type) |
  OPERATOR CLASS object_name USING index_method |
  OPERATOR FAMILY object_name USING index_method |
  [ PROCEDURAL ] LANGUAGE object_name |
  ROLE object_name |
  RULE rule_name ON table_name |
  SCHEMA object_name |
  SERVER object_name |
  TABLE object_name |
  TABLESPACE object_name |
  TEXT SEARCH CONFIGURATION object_name |
  TEXT SEARCH DICTIONARY object_name |
  TEXT SEARCH PARSER object_name |
  TEXT SEARCH TEMPLATE object_name |
  TYPE object_name |
  VIEW object_name
}
   IS 'text';

Parameter Description
● agg_name

Specifies the new name of an aggregation function.
● agg_type

Specifies the data types of the aggregation function parameters.
● source_type

Specifies the name of the source data type of the cast.
● target_type

Specifies the name of the target data type of the cast.
● object_name

Specifies the name of the object to be commented.
● table_name.column_name

view_name.column_name
Specifies the column whose comment is defined or modified. You can add the
table name or view name as the prefix.

● constraint_name
Specifies the table constraints whose comment is defined or modified.

● table_name
Specifies the table name.

● function_name
Specifies the function whose comment is defined or modified.

● argmode,argname,argtype
Specifies the schema, name, and type of the function parameters.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 426



● large_object_oid
Specifies the OID of the large object whose comment is defined or modified.

● operator_name
Specifies the name of the operator.

● left_type,right_type
The data type(s) of the operator's arguments (optionally schema-qualified).
Write NONE for the missing argument of a prefix or postfix operator.

● text
Specifies the new comment, written as a string literal; or NULL to drop the
comment.

Examples
Add a comment to the customer.c_customer_sk column.

COMMENT ON COLUMN customer.c_customer_sk IS 'Primary key of customer demographics table.';

Add a comment to the tpcds.customer_details_view_v2 view.

COMMENT ON VIEW tpcds.customer_details_view_v2 IS 'View of customer detail';

Add comments to the customer table.

COMMENT ON TABLE customer IS 'This is my table';

12.31 CREATE BARRIER

Function
Creates a barrier for cluster nodes. The barrier can be used for data restoration.

Precautions
Before creating a barrier, ensure that gtm_backup_barrier and
enable_cbm_tracking are set to on for CNs and DNs in the cluster.

Syntax
CREATE BARRIER [ barrier_name  ] ;

Parameter Description
barrier_name

(Optional) Indicates the name of a barrier.

Value range: a string. It must comply with the naming convention.

Examples
Create a barrier without specifying its name.

CREATE BARRIER;

Create a barrier named barrier1.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 427



CREATE BARRIER 'barrier1';

12.32 CREATE DATABASE

Function
CREATE DATABASE creates a database. By default, the new database will be
created by cloning the standard system database template1. A different template
can be specified using TEMPLATE template name.

Precautions
● A user that has the CREATEDB permission or a sysadmin can create a

database.
● CREATE DATABASE cannot be executed inside a transaction block.
● Errors along the line of "could not initialize database directory" are most

likely related to insufficient permissions on the data directory, a full disk, or
other file system problems.

Syntax
CREATE DATABASE database_name
    [ [ WITH ] { [ OWNER [=] user_name ] |
               [ TEMPLATE [=] template ] |
               [ ENCODING [=] encoding ] |
               [ LC_COLLATE [=] lc_collate ] |
               [ LC_CTYPE [=] lc_ctype ] |
               [ DBCOMPATIBILITY [=] compatibilty_type ] |
               
               [ CONNECTION LIMIT [=] connlimit ]}[...] ];

Parameter Description
● database_name

Indicates the database name.
Value range: a string. It must comply with the naming convention.

● OWNER [ = ] user_name
Indicates the owner of the new database. By default, the owner of the
database is the current user.
Value range: an existing user name

● TEMPLATE [ = ] template
Indicates the template name, that is, the name of the template to be used to
create the database. GaussDB(DWS) creates a database by coping a database
template. GaussDB(DWS) has two default template databases template0 and
template1 and a default user database postgres.
Value range: An existing database name. If this it is not specified, the system
copies template1 by default. Its value cannot be postgres.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 428



NO TICE

Currently, database templates cannot contain sequences. If a database
template contains sequences, database creation using this template will fail.

● ENCODING [ = ] encoding
Specifies the encoding format used by the new database. The value can be a
string (for example, SQL_ASCII) or an integer.
By default, the encoding format of the template database is used. The
encoding formats of the template databases template0 and template1 vary
based on OS environments by default. The template1 database does not
allow encoding customization. To specify encoding for a database when
creating it, use template0. To specify encoding, set template to template0.
Common values: GBK, UTF8, and Latin1

NO TICE

● The character encoding set of the new database must be compatible with
the local settings (LC_COLLATE and LC_CTYPE).

● When the specified character encoding set is GBK, some uncommon
Chinese characters cannot be used as object names. This is because when
the encoding range of the second byte of GBK is between 0x40 and 0x7E,
the byte encoding overlaps with the ASCII character @A-Z[\]^_`a-z{|}.
@[\]^_?{|} are operators in the database. If it is directly used as an object
name, a syntax error will be reported. For example, the GBK hexadecimal
code of an uncommon character is 0x8240, and the second byte is 0x40,
which is the same as the ASCII character @. Therefore, the character
cannot be used as an object name. If you really want to use it, you can
avoid this problem by adding double quotation marks when creating and
accessing objects.

● In the current version, the GBK character set supports the character €,
which is represented as 0x80 in hexadecimal code. You can use the €
character in the GBK library, and the GBK character set of GaussDB(DWS)
is compatible with the CP936 character set. Note that the GBK character
set is approximately equal to the CP936 character set, but the GBK
character set does not contain the definition of the character €.

● LC_COLLATE [ = ] lc_collate
Specifies the collation order to use in the new database. For example, this
parameter can be set using lc_collate = 'zh_CN.gbk'.
The use of this parameter affects the sort order applied to strings, for
example, in queries with ORDER BY, as well as the order used in indexes on
text columns. The default is to use the collation order of the template
database.
Value range: A valid order type.

● LC_CTYPE [ = ] lc_ctype
Specifies the character classification to use in the new database. For example,
this parameter can be set using lc_ctype = 'zh_CN.gbk'. The use of this
parameter affects the categorization of characters, for example, lower, upper

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 429



and digit. The default is to use the character classification of the template
database.
Value range: A valid character type.

● DBCOMPATIBILITY [ = ] compatibilty_type
Specifies the compatible database type.
Value range: ORA, TD, and MySQL, representing the Oracle-, Teradata-, and
MySQL-compatible modes, respectively. If this parameter is not specified, the
default value ORA is used.

● TABLESPACE [ = ] tablespace_name
Specifies the name of the tablespace that will be associated with the new
database.
Value range: An existing tablespace name.

NO TICE

The specified tablespace cannot be the OBS tablespace.

● CONNECTION LIMIT [ = ] connlimit
Indicates the maximum number of concurrent connections that can be made
to the new database.
Value range: An integer greater than or equal to -1. The default value -1
means no limit.

NO TICE

● This limit does not apply to sysadmin.
● To ensure the proper running of a cluster, the minimum value of

CONNECTION LIMIT is the number of CNs in the cluster, because when a
cluster runs ANALYZE on a CN, other CNs will connect to the running CN
for metadata synchronization. For example, if there are three CNs in the
cluster, set CONNECTION LIMIT to 3 or a greater value.

The following are limitations on character encoding:

● If the locale is C (or equivalently POSIX), then all encoding modes are
allowed, but for other locale settings only the encoding consistent with that
of the locale will work properly.

● The encoding and locale settings must match those of the template database,
except when template0 is used as template. This is because other databases
might contain data that does not match the specified encoding, or might
contain indexes whose sort ordering is affected by LC_COLLATE and
LC_CTYPE. Copying such data would result in a database that is corrupt
according to the new settings. template0, however, is known to not contain
any data or indexes that would be affected.

● Supported encoding depends on the environment. If the message "invalid
locale name" is displayed, run the locale -a command to check the encoding
set supported by the environment.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 430



Examples
Create database music using GBK (the local encoding type is also GBK).

CREATE DATABASE music ENCODING 'GBK' template = template0;

Create database music2 and specify jim as its owner.

CREATE DATABASE music2 OWNER jim;

Create database music3 using template template0 and specify jim as its owner.

CREATE DATABASE music3 OWNER jim TEMPLATE template0;

Create a compatible Oracle database ora_compatible_db.

CREATE DATABASE ora_compatible_db DBCOMPATIBILITY 'ORA';

Helpful Links
ALTER DATABASE, DROP DATABASE

12.33 CREATE FOREIGN TABLE (for GDS Import and
Export)

CREATE FOREIGN TABLE creates a GDS foreign table.

Function
CREATE FOREIGN TABLE creates a GDS foreign table in the current database for
concurrent data import and export. The GDS foreign table can be read-only or
write-only, used for concurrent data import and export, respectively. The OBS
foreign table is read-only by default.

Precautions
● The foreign table is owned by the user who runs the command.
● The distribution mode of a GDS foreign table does not need to be explicitly

specified. The default is ROUNDROBIN.
● All constraints (including column and row constraints) are invalid to the GDS

foreign table.

Syntax
CREATE FOREIGN TABLE [ IF NOT EXISTS  ] table_name 
    ( [  { column_name type_name POSITION(offset,length) | LIKE source_table } [, ...]  ] ) 
    SERVER gsmpp_server 
    OPTIONS (  { option_name ' value '  }  [, ...] ) 
    [  { WRITE ONLY  |  READ ONLY  }] 
    [ WITH error_table_name | LOG INTO error_table_name] 
    [REMOTE LOG 'name'] 
    [PER NODE REJECT LIMIT 'value']
    [ TO { GROUP groupname | NODE ( nodename [, ... ] ) } ];

Parameter Overview
CREATE FOREIGN TABLE provides multiple parameters, which are classified as
follows:

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 431



● Mandatory parameters
– table_name
– column_name
– type_name
– SERVER gsmpp_server
– OPTIONS

● Optional parameters
– Data source location parameter for foreign tables: location
– Data format parameters

▪ format

▪ header (only for CSV and FIXED source data files)

▪ fileheader (only for CSV and FIXED source data files)

▪ out_filename_prefix

▪ delimiter

▪ quote (only for CSV source data files)

▪ escape (only for CSV source data files)

▪ null

▪ noescaping (only for TEXT source data files)

▪ encoding

▪ eol

▪ conflict_delimiter

▪ file_type

▪ auto_create_pipe

– Error-tolerance parameters

▪ fill_missing_fields

▪ ignore_extra_data

▪ reject_limit

▪ compatible_illegal_chars

▪ WITH error_table_name

▪ LOG INTO error_table_name

▪ REMOTE LOG 'name'

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 432



▪ PER NODE REJECT LIMIT 'value'

– Performance parameter

▪ file_sequence

Parameter Description
● IF NOT EXISTS

Does not throw an error if a table with the same name already exists. A
notice is issued in this case.

● table_name
Specifies the name of the foreign table to be created.
Value range: a string. It must comply with the naming convention.

● column_name
Specifies the name of a column in the foreign table.
Value range: a string. It must comply with the naming convention.

● type_name
Specifies the data type of the column.

● POSITION(offset,length)
Defining the location of each column in the data file in fixed length mode.

NO TE

offset is the start of the column in the source file, and length is the length of the
column.

Value range: offset must be greater than 0 bytes, and its unit is byte.
The length of each record must be less than 1 GB. By default, columns not in
the file are replaced with null.

● SERVER gsmpp_server
Specifies the server name of the foreign table. For the GDS foreign table, its
server is created by initial database, which is gsmpp_server.

● OPTIONS ( { option_name ' value ' } [, ...] )
Specifies all types of parameters of foreign table data.
– location

Specifies the data source location of the foreign table, which can be
expressed through URLs. Separate URLs with vertical bars (|).
Currently, GDS can automatically create a directory defined by a foreign
table during data export. For example, when the foreign table location
defines that gsfs:// 192.168.0.91:5000/2019/09 executes an export task,
if the 2019/09 subdirectory in the GDS data directory does not exist, the
subdirectory is automatically created. You do not need to manually create
the directory specified in the foreign table.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 433



NO TE

● For a read-only foreign table imported by GDS from a remote server in
parallel, its URL must end with its corresponding schema or file name. (Read-
only is the default file attribute.)

For example: gsfs://192.168.0.90:5000/* or file:///data/data.txt or gsfs://
192.168.0.90:5000/* | gsfs:// 192.168.0.91:5000/*.

● For a writable foreign table used for GDS to export data to a remote server in
parallel, file names are not required in URLs. If the data source location is a
remote URL, for example, gsfs:// 192.168.0.90:5000/, multiple data sources
can be specified. If the number of exported data file locations is less than or
equal to the number of DNs, when you use the foreign table for export, data
is evenly distributed to each data source location. If the number of exported
data file locations is greater than the number of DNs, when you export data,
the data is evenly distributed to data source locations corresponding to the
DNs. Blank data files are created on the excess data source locations.

● For a foreign table used for GDS to import data from a remote server in
parallel, the number of URLs must be less than the number of DNs, and URLs
containing the same location cannot be used.

● If the URL begins with gsfss://, data is imported and exported in encryption
mode, and DOP cannot exceed 10.

● During GDS export, the 2019/09 subdirectory in THE gsfs://
127.0.0.1:7789/2019/09/ directory specified by the location table is
automatically created when the export task is executed.

● If file_type is set to pipe, GDS determines whether the target file to be
imported or exported is a pipe file or a directory based on whether the last
character in the URL is a slash (/). Example:

● In gsfs://192.168.0.90:5000/a/b, GDS identifies b as a pipe file.

● In gsfs://192.168.0.90:5000/a/b/, GDS identifies b as a directory and
creates a pipe file in the directory.

– format

Specifies the format of the data source file in a foreign table.

Value range: CSV, TEXT. The default value is TEXT.

▪ In CSV files, escape sequences are processed as common strings.
Therefore, linefeeds are processed as data.

▪ In TEXT files, escape sequences are processed as they are. Therefore,
linefeeds are not processed as data.

NO TE

● An escape sequence is a string starting with a backslash (\), including \b
(backspace), \f (formfeed page break), \n (new line), \r (carriage return), \t
(horizontal tab), \v (vertical tab), \number (octal number), and \xnumber
(hexadecimal number). In TEXT files, strings are processed as they are. In files
of other formats, strings are processed as data.

– header

Specifies whether a data file contains a table header. header is available
only for CSV and FIXED files.

When data is imported, if header is on, the first row of the data file will
be identified as title row and ignored. If header is off, the first row is
identified as data.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 434



When data is exported, if header is on, fileheader must be specified.
fileheader is used to specify the export header file format. If header is
off, the exported file does not include a title row.
Value range: true, on, false, and off. The default value is false or off.

– fileheader
Specifies a file that defines the content in the header for exported data.
The file contains one row of data description of each column.
For example, to add a header in a file containing product information,
define the file as follows:
The information of products.\n

NO TICE

● This parameter is available only when header is on or true. The file
must be prepared in advance.

● In Remote mode, the definition file must be put to the working
directory of GDS (the -d directory specified when starting the GDS).

● The definition file can contain only one row of title information, and
end with a newline character. Excess rows will be discarded. (Title
information cannot contain newline character).

● The length of the definition file including the newline character cannot
exceed 1 MB.

– out_filename_prefix
Specifies the name prefix of the exported data file exported using GDS
from a write-only foreign table.
If file_type is set to pipe, the pipe file
dbName_schemaName_foreignTableName.pipe is generated.
If both out_filename_prefix and location specify a pipe name, the pipe
name specified in location is used.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 435



NO TICE

● The prefix of the specified file name must be valid and compliant with
the restrictions of the file system in the physical environment where
the GDS is deployed. Otherwise, the file will fail to be created.
● The file name prefix can contain only lowercase letters, uppercase

letters, digits, and underscores (_).
● The prefix of the specified export file name cannot contain feature

fields reserved for the Windows and Linux OS, including but not
limited to:
"con","aux","nul","prn","com0","com1","com2","com3","com4","co
m5","com6","com7","com8","com9","lpt0","lpt1","lpt2","lpt3","lpt
4","lpt5","lpt6","lpt7","lpt8","lpt9"

● The total length of the absolute path consisting of the exported
file prefix, the path specified by GDS –d, .dat, or .pipe should be
as required by the file system where GDS is deployed.

● It is required that the prefix can be correctly parsed and identified
by the receiver (including but not limited to the original database
where it was exported) of the data file. Identify and modify the
option that causes the file name resolution problem (if any).

● To concurrently perform export jobs, do not use the same file name
prefix for them. Otherwise, the exported files may overwrite each
other or be lost in the OS or file system.

– delimiter
Specifies the column delimiter of data, and uses the default delimiter if it
is not set. The default delimiter of TEXT is a tab and that of CSV is a
comma (,). No delimiter is used in FIXED format.

NO TE

● A delimiter cannot be \r or \n.

● A delimiter cannot be the same as the null value. The delimiter of CSV
cannot be same as the quote value.

● The delimiter for the TEXT format data cannot contain any of the following
characters: \.abcdefghijklmnopqrstuvwxyz0123456789.

● The data length of a single row should be less than 1 GB. If the delimiters are
too long and there are too many rows, the length of valid data will be
affected.

● You are advised to use a multi-character, such as the combination of the
dollar sign ($), caret (^), the ampersand (&), or invisible characters, such as
0x07, 0x08, and 0x1b as the delimiter.

● For a multi-character delimiter, do not use the same characters, for example,
---.

Valid value:
The value of delimiter can be a multi-character delimiter whose length is
less than or equal to 10 bytes.

– quote
Specifies which characters in a CSV source data file will be identified as
quotation marks. The default value is a double quotation mark (").

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 436



NO TE

● The quote parameter cannot be the same as the delimiter or null parameter.
● The quote parameter must be a single-byte character.
● Invisible characters are recommended as quote values, such as 0x07, 0x08,

and 0x1b.

– escape
Specifies which characters in a CSV source data file are escape characters.
Escape characters can only be single-byte characters.
Default value: the same as the value of QUOTE

– null
Specifies the string that represents a null value.

NO TE

● The null value cannot be \r or \n. The maximum length is 100 characters.
● The null value cannot be the same as the delimiter or quote parameter.

Valid value:

▪ The default value is \n for the TEXT format.

▪ The default value for the CSV format is an empty string without
quotation marks.

– noescaping
Specifies in TEXT format, whether to escape the backslash (\) and its
following characters.

NO TE

noescaping is available only for the TEXT format.

Value range: true, on, false, and off. The default value is false or off.
– encoding

Specifies the encoding of a data file, that is, the encoding used to parse,
check, and generate a data file. Its default value is the default
client_encoding value of the current database.
Before you import foreign tables, it is recommended that you set
client_encoding to the file encoding format, or a format matching the
character set of the file. Otherwise, unnecessary parsing and check errors
may occur, leading to import errors, rollback, or even invalid data import.
Before you import foreign tables, you are also advised to specify this
parameter, because the export result using the default character set may
not be what you expected.
If this parameter is not specified when you create a foreign table, a
warning message will be displayed on the client.

NO TE

Currently, GDS cannot parse or write in a file using multiple encoding formats
during foreign table import or export.

– fill_missing_fields
Specifies whether to generate an error message when the last column in
a row in the source file is lost during data import.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 437



Value range: true, on, false, and off. The default value is false or off.

▪ If this parameter is set to true or on and the last column of a data
row in a data source file is lost, the column will be replaced with
NULL and no error message will be generated.

▪ If this parameter is set to false or off and the last column is missing,
the following error information will be displayed:
missing data for column "tt"

– ignore_extra_data
Specifies whether to ignore excessive columns when the number of data
source files exceeds the number of foreign table columns. This parameter
is available during data import.
Value range: true, on, false, and off. The default value is false or off.

▪ If this parameter is set to true or on and the number of data source
files exceeds the number of foreign table columns, excessive columns
will be ignored.

▪ If this parameter is set to false or off and the number of data source
files exceeds the number of foreign table columns, the following
error information will be displayed:
extra data after last expected column

NO TICE

If the newline character at the end of the row is lost, setting the
parameter to true will ignore data in the next row.

– reject_limit
Specifies the maximum number of data format errors allowed during a
data import task. If the number of errors does not reach the maximum
number, the data import task can still be executed.

NO TICE

You are advised to replace this syntax with PER NODE REJECT LIMIT
'value'.
Examples of data format errors include the following: a column is lost, an
extra column exists, a data type is incorrect, and encoding is incorrect.
Once a non-data format error occurs, the whole data import process is
stopped.

Value range: a positive integer or unlimited
The default value is 0, indicating that error information is returned
immediately.

NO TE

Enclose positive integer values with single quotation marks ('').

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 438



– mode
Specifies the data import policy during a specific data import process.
GaussDB(DWS) supports only the Normal mode.
Valid value:

▪ Normal (default): supports all file types (CSV, TEXT, FIXED). Enabling
Gauss data service to help data import.

– eol
Specifies the newline character style of the imported or exported data
file.
Value range: multi-character newline characters within 10 bytes.
Common newline characters include \r (0x0D), \n (0x0A), and \r\n
(0x0D0A). Special newline characters include $ and #.

NO TE

● The eol parameter supports only the TEXT format for data import and export
and does not support the CSV or FIXED format for data import. For forward
compatibility, the eol parameter can be set to 0x0D or 0x0D0A for data
export in the CSV and FIXED formats.

● The value of the eol parameter cannot be the same as that of DELIMITER or
NULL.

● The eol parameter value cannot contain lowercase letters, digits, or dot (.).

– conflict_delimiter
This parameter is generally used with the compatible_illegal_chars
parameter. If a data file contains a truncated Chinese character, the
truncated character and a delimiter will be encoded into another Chinese
character due to inconsistent encoding between the foreign table and the
database. As a result, the delimiter is masked and an error will be
reported, indicating that there are missing fields.
This parameter is used to avoid encoding a truncated character and a
delimiter into another character.
Value range: true, on, false, and off. The default value is false or off.

▪ If the parameter is set to true or on, encoding a truncated character
and a delimiter into another character is allowed.

▪ If the parameter is set to false or off, encoding a truncated character
and a delimiter into another character is not allowed.

NO TICE

This parameter is disabled by default. It is recommended that you disable
this parameter, because encoding a truncated character and a delimiter
into another character is rarely required. If the parameter is enabled, the
scenario may be incorrectly identified and thereby causing incorrect
information imported to the table.

– file_type
Specifies the type of the file to be imported or exported.
Value options: normal, pipe. normal is the default value.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 439



▪ If this parameter is set to normal, the file to be imported or exported
is a common file.

▪ If this parameter is set to pipe, the file to be imported or exported is
a named pipe.

– auto_create_pipe
This parameter specifies whether the GDS process automatically creates a
named pipe.
Value options: true, on, false, and off. The default value is true/on.

▪ If this parameter is set to true or on, the GDS process is allowed to
automatically create a named pipe.

▪ If this parameter is set to false or off, you need to manually create a
named pipe.

NO TICE

● When setting auto_create_pipe, set file_type to pipe. Otherwise, the
foreign table cannot be created.

● If auto_create_pipe is set to false and no pipe is specified during data
import and export, the database name_schema name_foreign table
name.pipe file will be opened. If a pipe has been specified, the
specified pipe in the location will be opened. If the named pipe is not
written by other programs or is not opened in write mode within the
period specified by the pipe-timeout parameter, an error message is
displayed indicating that the import or export task times out. If the file
is not a pipe, an error is reported when the import or export task is
executed.

● If auto_create_pipe is set to true and no pipe file is specified during
data import and export, the database name_schema name_foreign
table name.pipe file will be opened. If the file is a common file, an
error is reported when the file is imported or exported. If the file is a
pipe, the system automatically deletes the file and re-creates the
named pipe.

● You can use the location parameter to specify the pipe when
exporting data, for example, location'gsfs://127.0.0.1:7789/aa.pipe.
When auto_create_pipe is set to true, GDS automatically creates the
aa.pipe file in the data directory.

– fix
Specifies the length of fixed format data. The unit is byte. This syntax is
available only for READ ONLY foreign tables.
Value range: Less than 1 GB, and greater than or equal to the total
length specified by POSITION (The total length is the sum of offset and
length in the last column of the table definition.)

– out_fix_alignment
Specifies how the columns of the types BYTEAOID, CHAROID, NAMEOID,
TEXTOID, BPCHAROID, VARCHAROID, NVARCHAR2OID, and CSTRINGOID
are aligned during fixed-length export.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 440



Value range: align_left, align_right
Default value: align_right

NO TICE

The bytea data type must be in hexadecimal format (for example, \XXXX)
or octal format (for example, \XXX\XXX\XXX). The data to be imported
must be left-aligned (that is, the column data starts with either of the
two formats instead of spaces). Therefore, if the exported file needs to be
imported using a GDS foreign table and the file data length is less than
that specified by the foreign table formatter, the exported file must be
left aligned. Otherwise, an error is reported during the import.

– date_format
Imports data of the DATE type. This syntax is available only for READ
ONLY foreign tables.
Value range: any valid DATE value. For details, see Date and Time
Processing Functions and Operators.

NO TE

If ORACLE is specified as the compatible database, the DATE format is
TIMESTAMP. For details, see timestamp_format below.

– time_format
Imports data of the TIME type. This syntax is available only for READ
ONLY foreign tables.
Value range: any valid TIME value. Time zones cannot be used. For
details, see Date and Time Processing Functions and Operators.

– timestamp_format
Imports data of the TIMESTAMP type. This syntax is available only for
READ ONLY foreign tables.
Value range: any valid TIMESTAMP value. Time zones are not supported.
For details, see Date and Time Processing Functions and Operators.

– smalldatetime_format
Imports data of the SMALLDATETIME type. This syntax is available only
for READ ONLY foreign tables.
Value range: any valid SMALLDATETIME value. For details, see Date and
Time Processing Functions and Operators.

– compatible_illegal_chars
Enables or disables fault tolerance on invalid characters during data
import. This syntax is available only for READ ONLY foreign tables.
Value range: true, on, false, and off. The default value is false or off.

▪ If this parameter is set to true or on, invalid characters are tolerated
and imported to the database after conversion.

▪ If this parameter is set to false or off and an error occurs when there
are invalid characters, the import will be interrupted.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 441



NO TE

The rule of error tolerance when you import invalid characters is as follows:
(1) \0 is converted to a space.
(2) Other invalid characters are converted to question marks.
(3) If compatible_illegal_chars is set to true or on, invalid characters are
tolerated. If NULL, DELIMITER, QUOTE, and ESCAPE are set to a spaces or
question marks. Errors like "illegal chars conversion may confuse COPY escape
0x20" will be displayed to prompt user to modify parameter values that cause
confusion, preventing import errors.

● READ ONLY
Specifies whether a foreign table is read-only. This parameter is available only
for data import.

● WRITE ONLY
Specifies whether a foreign table is write-only. This parameter is available
only for data import.

● WITH error_table_name
Specifies the table where data format errors generated during parallel data
import are recorded. You can query the error information table after data is
imported to obtain error details. This parameter is available only after
reject_limit is set.

NO TE

To be compatible with PostgreSQL open source interfaces, you are advised to replace
this syntax with LOG INTO.

Value range: a string. It must comply with the naming convention.
● LOG INTO error_table_name

Specifies the table where data format errors generated during parallel data
import are recorded. You can query the error information table after data is
imported to obtain error details.

NO TE

This parameter is available only after PER NODE REJECT LIMIT is set.

Value range: a string. It must comply with the naming convention.
● file_sequence

Concurrently imports data in parallel through GDS foreign tables, to improve
single-file import performance. This parameter is only used for data import.
The parameter format is file_sequence'total number of shards-current shard'.
Example:
file_sequence '3-1' indicates that the imported file is logically split into three
shards and the data currently imported by the foreign table is the data on the
first shard.
file_sequence '3-2' indicates that the imported file is logically split into three
shards and the data currently imported by the foreign table is the data on the
second shard.
file_sequence '3-3' indicates that the imported file is logically split into three
shards and the data currently imported by the foreign table is the data on the
third shard.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 442



This parameter has the following constraints:
– A file can be split to a maximum of 8 shards.
– The number of currently imported shard should be less than or equal to

the total number of split shards.
– Only CSV and TXT files can be imported.

NO TE

When data is imported in parallel in CSV format, some shards fail to be imported in
the following scenario because the CSV rules conflict with the GDS splitting logic:

Scenario: A CSV file contains a newline character that is not escaped, the newline
character is contained in the character specified by quote, and the data of this line is
in the first row of the logical shard.

For example, if you import the big.csv file in parallel, the following information is
displayed:
--id, username, address
10001,"customer1 name","Rose District"
10002,"customer2 name","
23 Road Rose 
District NewCity"
10003,"customer3 name","NewCity"

After the file is split into two shards, the content of the first shard is as follows:
10001,"customer1 name","Rose District"
10002,"customer2 name","
23

The content of the second shard is as follows:
Road Rose 
District NewCity"
10003,"customer3 name","NewCity"

The newline character after 23 Road Rose in the first line of the second shard is
contained between double quotation marks. As a result, GDS cannot determine
whether the newline character is a newline character in the field or a separator in the
line. Therefore, two data records on the first shard are successfully imported, but the
second shard fails to be imported.

● REMOTE LOG 'name'
The data format error information is saved as files in GDS. name is the prefix
of the error data file.

● PER NODE REJECT LIMIT 'value'
This parameter specifies the allowed number of data format errors on each
DN during data import. If the number of errors exceeds the specified value on
any DN, data import fails, an error is reported, and the system exits data
import.

NO TICE

This syntax specifies the error tolerance of a single node.
Examples of data format errors include the following: a column is lost, an
extra column exists, a data type is incorrect, and encoding is incorrect. When
a non-data format error occurs, the whole data import process stops.

Value range: integer, unlimited. The default value is 0, indicating that error
information is returned immediately.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 443



● TO { GROUP groupname | NODE ( nodename [, ... ] ) }
Currently, TO GROUP cannot be used. TO NODE is used for internal scale-out
tools.

Examples

Create a foreign tablecustomer_ft to import data from GDS server 10.10.123.234
in TEXT format.

CREATE FOREIGN TABLE customer_ft
(
    c_customer_sk             integer               ,
    c_customer_id             char(16)              ,
    c_current_cdemo_sk        integer               ,
    c_current_hdemo_sk        integer               ,
    c_current_addr_sk         integer               ,
    c_first_shipto_date_sk    integer               ,
    c_first_sales_date_sk     integer               ,
    c_salutation              char(10)              ,
    c_first_name              char(20)              ,
    c_last_name               char(30)              ,
    c_preferred_cust_flag     char(1)               ,
    c_birth_day               integer               ,
    c_birth_month             integer               ,
    c_birth_year              integer                       ,
    c_birth_country           varchar(20)                   ,
    c_login                   char(13)                      ,
    c_email_address           char(50)                      ,
    c_last_review_date        char(10)
)
    SERVER gsmpp_server
    OPTIONS
(
    location 'gsfs://10.10.123.234:5000/customer1*.dat',
    FORMAT 'TEXT' ,
    DELIMITER '|',
    encoding 'utf8',
    mode 'Normal')
READ ONLY;

Create a foreign table to import data from GDS servers 192.168.0.90 and
192.168.0.91 in TEXT format. Record errors that occur during data import in
foreign_HR_staffS_ft. A maximum of two data format errors are allowed during
the data import.

CREATE FOREIGN TABLE foreign_HR_staffS_ft
(
  staff_ID       NUMBER(6) ,
  FIRST_NAME     VARCHAR2(20),
  LAST_NAME      VARCHAR2(25),
  EMAIL          VARCHAR2(25),
  PHONE_NUMBER   VARCHAR2(20),
  HIRE_DATE      DATE,
  employment_ID  VARCHAR2(10),
  SALARY         NUMBER(8,2),
  COMMISSION_PCT NUMBER(2,2),
  MANAGER_ID     NUMBER(6),
  section_ID  NUMBER(4)
) SERVER gsmpp_server OPTIONS (location 'gsfs://192.168.0.90:5000/* | gsfs://192.168.0.91:5000/*', format 
'TEXT', delimiter E'\x08',  null '',reject_limit '2') WITH err_HR_staffS_ft;

Helpful Links

ALTER FOREIGN TABLE (for GDS), DROP FOREIGN TABLE

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 444



12.34 CREATE FOREIGN TABLE (SQL on OBS or
Hadoop )

Function
CREATE FOREIGN TABLE creates an HDFS or OBS foreign table in the current
database to access or export structured data stored on HDFS or OBS. You can also
export data in ORC format to HDFS or OBS.

NO TE

The hybrid data warehouse (standalone) does not support OBS and HDFS foreign table
import and export.

Precautions
● HDFS foreign tables and OBS foreign tables are classified into read-only and

write-only foreign tables. Read-only foreign tables are used for query, and
write-only foreign tables can be used to export data from GaussDB(DWS) to a
distributed file system.

● In this mode, you can import and query data in ORC, CarbonData, Text, or
CSV format and export data in ORC format.

● In this mode, you need to manually create a foreign server. For details, see
CREATE SERVER.

Syntax
Create an HDFS foreign table.

CREATE FOREIGN TABLE [ IF NOT EXISTS ] table_name 
( [ { column_name type_name 
    [ { [CONSTRAINT constraint_name] NULL |
    [CONSTRAINT constraint_name] NOT NULL |
      column_constraint [...]} ] |
      table_constraint [, ...]} [, ...] ] ) 
    SERVER server_name 
    OPTIONS ( { option_name ' value ' } [, ...] ) 
    [ {WRITE ONLY | READ ONLY}]
    DISTRIBUTE BY {ROUNDROBIN | REPLICATION}
   
    [ PARTITION BY ( column_name ) [ AUTOMAPPED ] ] ;

● column_constraint is as follows:
[CONSTRAINT constraint_name]
{PRIMARY KEY | UNIQUE}
[NOT ENFORCED [ENABLE QUERY OPTIMIZATION | DISABLE QUERY OPTIMIZATION] | ENFORCED]

● table_constraint is as follows:
[CONSTRAINT constraint_name]
{PRIMARY KEY | UNIQUE} (column_name)
[NOT ENFORCED [ENABLE QUERY OPTIMIZATION | DISABLE QUERY OPTIMIZATION] | ENFORCED]

Parameter Description
● IF NOT EXISTS

Does not throw an error if a table with the same name exists. A notice is
issued in this case.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 445



● table_name
Specifies the name of the foreign table to be created.
Value range: a string. It must comply with the naming convention.

● column_name
Specifies the name of a column in the foreign table. Columns are separated
by commas (,).
Value range: a string. It must comply with the naming convention.

● type_name
Specifies the data type of the column.
Data types supported by ORC tables.
The data types supported by TXT table are the same as those in row-store
tables.

● constraint_name
Specifies the name of a constraint for the foreign table.

● { NULL | NOT NULL }
Specifies whether the column allows NULL.
When you create a table, whether the data in HDFS is NULL or NOT NULL
cannot be guaranteed. The consistency of data is guaranteed by users. Users
must decide whether the column is NULL or NOT NULL. (The optimizer
optimizes the NULL/NOT NULL and generates a better plan.)

● SERVER server_name
Specifies the server name of the foreign table. Users can customize its name.
Value range: a string indicating an existing server. It must comply with the
naming convention.

● OPTIONS ( { option_name ' value ' } [, ...] )
Specifies the following parameters for a foreign table:
– header

Specifies whether a data file contains a table header. header is available
only for CSV files.
If header is on, the first row of the data file will be identified as the
header and ignored during export. If header is off, the first row will be
identified as a data row.
Value range: true, on, false, and off. The default value is false or off.

– quote
Specifies the quotation mark for the CSV format. The default value is a
double quotation mark (").

NO TE

The quote value cannot be the same as the delimiter or null value.
The quote value must be a single-byte character.
Invisible characters are recommended as quote values, such as 0x07, 0x08, and
0x1b.

– escape
Specifies an escape character for a CSV file. The value must be a single-
byte character.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 446



The default value is a double quotation mark ("). If the value is the same
as the quote value, it will be replaced with \0.

– location
Specifies the file path on OBS. This is an OBS foreign table parameter.
The data sources of multiple buckets are separated by vertical bars (|), for
example, LOCATION 'obs://bucket1/folder/ | obs://bucket2/'. The
database scans all objects in the specified folders.
When accessing a DLI multi-version table, you do not need to specify the
location parameter.

– format: format of the data source file in the foreign table.

▪ HDFS read-only foreign tables support ORC, TEXT, CSV, and Parquet
file formats, while the write-only foreign tables support only the ORC
file format.

▪ OBS read-only foreign tables support ORC, TEXT, CSV, and
CarbonData file formats, while the write-only foreign tables support
only the ORC file format.

– foldername: The directory of the data source file in the foreign table,
that is, the corresponding file directory in HDFS or on OBS. This
parameter is mandatory for the write-only foreign table and optional for
the read-only foreign table.
When accessing a DLI multi-version table, you do not need to specify the
foldername parameter.

– encoding: encoding of data source files in foreign tables. The default
value is utf8. This parameter is optional.

– totalrows: (Optional) estimated number of rows in a table. This
parameter is used only for OBS foreign tables. Because OBS may store
many files, it is slow to analyze data. This parameter allows you to set an
estimated value so that the optimizer can estimate the table size
according to the value. Generally, query efficiency is high when the
estimated value is close to the actual value.

– filenames: data source files specified in the foreign table. Multiple files
are separated by commas (,).

NO TE

● You are advised to use the foldername parameter to specify the location of
the data source. For a read-only foreign table, either filenames or
foldername must be specified. For a write-only foreign table, only
foldername can be specified.

● If foldername is an absolute directory, it should be enclosed by slashes (/).
Multiple paths are separated by commas (,).

● When you query a partitioned table, data is pruned based on partition
information, and data files that meet the requirement are queried. Pruning
involves scanning HDFS directory contents many times. Therefore, do not use
columns with low repetition as partition column.

● An OBS read-only foreign table is not supported.

– delimiter
Specifies the column delimiter of data, and uses the default delimiter if it
is not set. The default delimiter of TEXT is a tab.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 447



NO TE

● A delimiter cannot be \r or \n.

● A delimiter cannot be the same as the null parameter.

● A delimiter cannot contain the following characters:
\.abcdefghijklmnopqrstuvwxyz0123456789

● The data length of a single row should be less than 1 GB. A row that has
many columns using long delimiters cannot contain much valid data.

● You are advised to use a multi-character, such as the combination of the
dollar sign ($), caret (^), ampersand (&), or invisible characters, such as 0x07,
0x08, and 0x1b as the delimiter.

● delimiter is available only for TEXT and CSV source data files.

Valid value:
The value of delimiter can be a multi-character delimiter whose length is
less than or equal to 10 bytes.

– eol
Specifies the newline character style of the imported data file.
Value range: multi-character newline characters within 10 bytes.
Common newline characters include \r (0x0D), \n (0x0A), and \r\n
(0x0D0A). Special newline characters include $ and #.

NO TE

● The eol parameter applies only to TEXT files.

● The value of the eol parameter cannot be the same as that of delimiter or
null.

● The value of the eol parameter cannot contain digits, letters, or periods (.).

– null
Specifies the string that represents a null value.

NO TE

● The null value cannot be \r or \n. The maximum length is 100 characters.

● The null parameter cannot be the same as the delimiter.

● null is available only for TEXT and CSV source data files.

Valid value:
The default value is \N for the TEXT format.

– noescaping
Specifies whether to escape the backslash (\) and its following characters
in .txt format.

NO TE

noescaping is available only for TEXT source data files.

Value range: true, on, false, and off. The default value is false or off.
– fill_missing_fields

Specifies whether to generate an error message when the last column in
a row in the source file is lost during data loading.
Value range: true, on, false, and off. The default value is false or off.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 448



▪ If this parameter is set to true or on and the last column of a data
row in a data source file is lost, the column is replaced with NULL
and no error message will be generated.

▪ If this parameter is set to false or off and the last column is missing,
the following error information will be displayed:
missing data for column "tt"

NO TE

● Because SELECT COUNT(*) does not parse columns in .txt format, it does not
report missing columns.

● fill_missing_fields is available only for TXT and CSV source data files.

– ignore_extra_data
Specifies whether to ignore excessive columns when the number of data
source files exceeds the number of foreign table columns. This parameter
is available during data import.
Value range: true, on, false, and off. The default value is false or off.

▪ If this parameter is set to true or on and the number of data source
files exceeds the number of foreign table columns, excessive columns
will be ignored.

▪ If this parameter is set to false or off and the number of data source
files exceeds the number of foreign table columns, the following
error information will be displayed:
extra data after last expected column

NO TICE

● If the newline character at the end of the row is lost, setting the
parameter to true will ignore data in the next row.

● Because SELECT COUNT(*) does not parse columns in .txt format, it
does not report missing columns.

● ignore_extra_data is available only for TXT and CSV source data files.

– date_format
Specifies the DATE format for data import. This syntax is available only
for READ ONLY foreign tables.
Value range: any valid DATE value. For details, see Date and Time
Processing Functions and Operators.

NO TE

● If ORACLE is specified as the compatible database, the DATE format is
TIMESTAMP. For details, see timestamp_format below.

● date_format is available only for TEXT and CSV source data files.

– time_format
Specifies the TIME format for data import. This syntax is available only
for READ ONLY foreign tables.
Value range: a valid TIME value. Time zones cannot be used. For details,
see Date and Time Processing Functions and Operators.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 449



NO TE

time_format is available only for TEXT and CSV source data files.

– timestamp_format
Specifies the TIMESTAMP format for data import. This syntax is available
only for READ ONLY foreign tables.
Value range: any valid TIMESTAMP value. Time zones are not supported.
For details, see Date and Time Processing Functions and Operators.

NO TE

timestamp_format is available only for TEXT and CSV source data files.

– smalldatetime_format
Specifies the SMALLDATETIME format for data import. This syntax is
available only for READ ONLY foreign tables.
Value range: a valid SMALLDATETIME value. For details, see Date and
Time Processing Functions and Operators.

NO TE

smalldatetime_format is available only for TEXT and CSV source data files.

– dataencoding
This parameter specifies the data code of the data table to be exported
when the database code is different from the data code of the data table.
For example, the database code is Latin-1, but the data in the exported
data table is in UTF-8 format. This parameter is optional. If this
parameter is not specified, the database encoding format is used by
default. This syntax is valid only for the write-only HDFS foreign table.
Value range: data code types supported by the database encoding

NO TE

The dataencoding parameter is valid only for the ORC-formatted write-only
HDFS foreign table.

– filesize
Specifies the file size of a write-only foreign table. This parameter is
optional. If this parameter is not specified, the file size in the distributed
file system configuration is used by default. This syntax is available only
for the write-only foreign table.
Value range: an integer ranging from 1 to 1024

NO TE

The filesize parameter is valid only for the ORC-formatted write-only HDFS
foreign table.

– compression
Specifies the compression mode of ORC files. This parameter is optional.
This syntax is available only for the write-only foreign table.
Value range: zlib, snappy, and lz4 The default value is snappy.

– version
Specifies the ORC version number. This parameter is optional. This syntax
is available only for the write-only foreign table.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 450



Value range: Only 0.12 is supported. The default value is 0.12.
– dli_project_id

Specifies the project ID corresponding to DLI. You can obtain the project
ID from the management console. This parameter is available only when
the server type is DLI. This feature is supported only in 8.1.1 or later.

– dli_database_name
Specifies the name of the database where the DLI multi-version table to
be accessed is located. This parameter is available only when the server
type is DLI. This feature is supported only in 8.1.1 or later.

– dli_table_name
Specifies the name of the DLI multi-version table to be accessed. This
parameter is available only when the server type is DLI. This feature is
supported only in 8.1.1 or later.

– checkencoding
Specifies whether to check the character encoding.
Value range: low, high The default value is low.

NO TE

In TEXT format, the rule of error tolerance for invalid characters imported is as
follows:

● \0 is converted to a space.

● Other invalid characters are converted to question marks.

● Setting checkencoding to low enables invalid characters toleration. If NULL
and DELIMITER are set to spaces or question marks (?), errors like "illegal
chars conversion may confuse null 0x20" will be displayed, prompting you to
modify parameters that may cause confusion and preventing importing
errors.

In ORC format, the rule of error tolerance for invalid characters imported is as
follows:

● If checkencoding is low, an imported field containing invalid characters will
be replaced with a quotation mark string of the same length.

● If checkencoding is high, data import stops when an invalid character is
detected.

Table 12-20 Support for TEXT, CSV, ORC, CarbonData, and Parquet formats

Paramet
er

OBS HDFS

- TEX
T

CSV ORC CAR
BO
ND
ATA

TEX
T

CSV ORC PAR
QU
ET

REA
D
ON
LY

REA
D
ON
LY

REA
D
ON
LY

WRI
TE
ON
LY

REA
D
ON
LY

REA
D
ON
LY

REA
D
ON
LY

REA
D
ON
LY

WRI
TE
ON
LY

REA
D
ON
LY

location √ √ √ × × × × × × ×

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 451



Paramet
er

OBS HDFS

format √ √ √ √ √ √ √ √ √ √

header × √ × × × × √ × × ×

delimiter √ √ × × × √ √ × × ×

quote × √ × × × × √ × × ×

escape × √ × × × × √ × × ×

null √ √ × × × √ √ × × ×

noescapi
ng

√ × × × × √ × × × ×

encoding √ √ √ √ √ √ √ √ √ √

fill_missi
ng_fields

√ √ × × × √ √ × × ×

ignore_e
xtra_data

√ √ × × × √ √ × × ×

date_for
mat

√ √ × × × √ √ × × ×

time_for
mat

√ √ × × × √ √ × × ×

timestam
p_format

√ √ × × × √ √ × × ×

smalldat
etime_for
mat

√ √ × × × √ √ × × ×

chunksiz
e

√ √ × × × √ √ × × ×

filename
s

× × × × √ √ √ √ × √

folderna
me

√ √ √ √ √ √ √ √ √ √

dataenco
ding

× × × × × × × × √ ×

filesize × × × × × × × × √ ×

compress
ion

× × × √ × × × × √ ×

version × × × √ × × × × √ ×

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 452



Paramet
er

OBS HDFS

checkenc
oding

√ √ √ × √ √ √ √ √ √

totalrows √ √ √ × × × × × × ×

 
● WRITE ONLY | READ ONLY

WRITE ONLY creates a write-only HDFS/OBS foreign table.
READ ONLY creates a read-only HDFS/OBS foreign table.
If the foreign table type is not specified, a read-only foreign table is created
by default.

● DISTRIBUTE BY ROUNDROBIN
Specifies ROUNDROBIN as the distribution mode for the HDFS/OBS foreign
table.

● DISTRIBUTE BY REPLICATION
Specifies REPLICATION as the distribution mode for the HDFS/OBS foreign
table.

● PARTITION BY ( column_name ) AUTOMAPPED
column_name specifies the partition column. AUTOMAPPED means the
partition column specified by the HDFS partitioned foreign table is
automatically mapped with the partition directory information in HDFS. The
prerequisite is that the sequences of partition columns specified in the HDFS
foreign table and in the directory are the same. This function is applicable
only to read-only foreign tables.

NO TE

● HDFS read-only and write-only foreign tables support partitioned tables. However,
write-only foreign tables support only primary partitions and do not support multi-
level partitions.

● Partitioned tables can be used as read-only foreign tables for OBS.

● CONSTRAINT constraint_name
Specifies the name of informational constraint of the foreign table.
Value range: a string. It must comply with the naming convention.

● PRIMARY KEY
The primary key constraint specifies that one or more columns of a table
must contain unique (non-duplicate) and non-null values. Only one primary
key can be specified for a table.

● UNIQUE
Specifies that a group of one or more columns of a table must contain unique
values. For the purpose of a unique constraint, NULL is not considered equal.

● NOT ENFORCED
Specifies the constraint to be an informational constraint. This constraint is
guaranteed by the user instead of the database.

● ENFORCED

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 453



The default value is ENFORCED. ENFORCED is a reserved parameter and is
currently not supported.

● PRIMARY KEY (column_name)
Specifies the informational constraint on column_name.
Value range: a string. It must comply with the naming convention, and the
value of column_name must exist.

● ENABLE QUERY OPTIMIZATION
Optimizes an execution plan using an informational constraint.

● DISABLE QUERY OPTIMIZATION
Disables the optimization of an execution plan using an informational
constraint.

Informational Constraint
In GaussDB(DWS), the use of data constraints depend on users. If users can make
data sources strictly comply with certain constraints, the query on data with such
constraints can be accelerated. Foreign tables do not support Index. Informational
constraint is used for optimizing query plans.

The constraints of creating informational constraints for a foreign table are as
follows:

● You can create an informational constraint only if the values in a NOT NULL
column in your table are unique. Otherwise, the query result will be different
from expected.

● Currently, the informational constraint of GaussDB(DWS) supports only
PRIMARY KEY and UNIQUE constraints.

● The informational constraints of GaussDB(DWS) support the NOT ENFORCED
attribute.

● UNIQUE informational constraints can be created for multiple columns in a
table, but only one PRIMARY KEY constraint can be created in a table.

● Multiple informational constraints can be established in a column of a table
(because the function that establishing a column or multiple constraints in a
column is the same.) Therefore, you are not advised to set up multiple
informational constraints in a column, and only one Primary Key type can be
set up.

● Multi-column combination constraints are not supported.
● Different CNs in the same cluster cannot concurrently export data to the

same write-only ORC foreign table.
● The catalog of a write-only foreign table in ORC format can only be used as

the export catalog of a single foreign table of GaussDB(DWS). It cannot be
used for multiple foreign tables, and other components cannot write other
files to this catalog.

Example 1
Example 1: In HDFS, import the TPC-H benchmark test tables part and region
using Hive. The path of the part table is /user/hive/warehouse/partition.db/
part_4, and that of the region table is /user/hive/warehouse/mppdb.db/
region_orc11_64stripe/.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 454



1. Establish HDFS_Server, with HDFS_FDW or DFS_FDW as the foreign data
wrapper.
CREATE SERVER hdfs_server FOREIGN DATA WRAPPER HDFS_FDW OPTIONS (address 
'10.10.0.100:25000,10.10.0.101:25000',hdfscfgpath '/opt/hadoop_client/HDFS/hadoop/etc/
hadoop',type'HDFS');

NO TE

The IP addresses and port numbers of HDFS NameNodes are specified in OPTIONS.
10.10.0.100:25000,10.10.0.101:25000 indicates the IP addresses and port numbers of
the primary and standby HDFS NameNodes. It is the recommended format. Two
groups of parameter values are separated by commas (,). Take '10.10.0.100:25000' as
an example. In this example, the IP address is 10.10.0.100, and the port number is
25000.

2. Create an HDFS foreign table. The HDFS server associated with the table is
hdfs_server, the corresponding file format of the ft_region table on the HDFS
server is 'orc', and the file directory in the HDFS file system is '/user/hive/
warehouse/mppdb. db/region_orc11_64stripe/'.

● Create an HDFS foreign table without partition keys.
CREATE FOREIGN TABLE ft_region
(
    R_REGIONKEY INT4,
    R_NAME TEXT,
    R_COMMENT TEXT
)
SERVER
    hdfs_server
OPTIONS
(
    FORMAT 'orc',
    encoding 'utf8',
    FOLDERNAME '/user/hive/warehouse/mppdb.db/region_orc11_64stripe/'
)
DISTRIBUTE BY 
     roundrobin;

● Create an HDFS foreign table with partition keys.
CREATE FOREIGN TABLE ft_part 
(
     p_partkey int, 
     p_name text, 
     p_mfgr text, 
     p_brand text, 
     p_type text, 
     p_size int, 
     p_container text, 
     p_retailprice float8, 
     p_comment text
)
SERVER
     hdfs_server
OPTIONS
(
     FORMAT 'orc',
     encoding 'utf8',
     FOLDERNAME '/user/hive/warehouse/partition.db/part_4'
)
DISTRIBUTE BY 
     roundrobin
PARTITION BY 
     (p_mfgr) AUTOMAPPED;

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 455



NO TE

GaussDB(DWS) allows you to specify files using the keyword filenames or
foldername. The latter is recommended. The key word distribute specifies the storage
distribution mode of the region table.

3. View the created server and foreign table.
SELECT * FROM pg_foreign_table WHERE ftrelid='ft_region'::regclass;
 ftrelid | ftserver | ftwriteonly |                                  ftoptions
---------+----------+-------------+------------------------------------------------------------------------------
   16510 |    16509 | f           | {format=orc,foldername=/user/hive/warehouse/mppdb.db/
region_orc11_64stripe/}
(1 row)

select * from pg_foreign_table where ftrelid='ft_part'::regclass;
 ftrelid | ftserver | ftwriteonly |                            ftoptions
---------+----------+-------------+------------------------------------------------------------------
   16513 |    16509 | f           | {format=orc,foldername=/user/hive/warehouse/partition.db/part_4}
(1 row)

Example 2
Export data from the TPC-H benchmark test table region table to the /user/hive/
warehouse/mppdb.db/regin_orc/ directory of the HDFS file system through the
HDFS write-only foreign table.

1. Create an HDFS foreign table. The corresponding foreign data wrapper is
HDFS_FDW or DFS_FDW, which is the same as that in Example 1.

2. Create a write-only HDFS foreign table.
CREATE FOREIGN TABLE ft_wo_region
(
    R_REGIONKEY INT4,
    R_NAME TEXT,
    R_COMMENT TEXT
)
SERVER
    hdfs_server
OPTIONS
(
    FORMAT 'orc',
    encoding 'utf8',
    FOLDERNAME '/user/hive/warehouse/mppdb.db/regin_orc/'
)
WRITE ONLY;

3. Writes data to the HDFS file system through a write-only foreign table.
INSERT INTO ft_wo_regin SELECT * FROM region;

Example 3
Perform operations on an HDFS foreign table that includes informational
constraints.

● Create an HDFS foreign table with informational constraints.
CREATE FOREIGN TABLE ft_region  (
 R_REGIONKEY  int,
 R_NAME TEXT,
 R_COMMENT TEXT
  , primary key (R_REGIONKEY) not enforced)
SERVER hdfs_server
OPTIONS(format 'orc',
    encoding 'utf8',
 foldername '/user/hive/warehouse/mppdb.db/region_orc11_64stripe')
DISTRIBUTE BY roundrobin;

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 456



● Check whether the region table has an informational constraint index.
SELECT relname,relhasindex FROM pg_class WHERE oid='ft_region'::regclass;
        relname         | relhasindex 
------------------------+-------------
        ft_region          | f
(1 row)

SELECT conname, contype, consoft, conopt, conindid, conkey FROM pg_constraint WHERE conname 
='region_pkey';
   conname   | contype | consoft | conopt | conindid | conkey
-------------+---------+---------+--------+----------+--------
 region_pkey | p       | t       | t      |        0 | {1}
(1 row)

● Delete the informational constraint.
ALTER FOREIGN TABLE ft_region DROP CONSTRAINT region_pkey RESTRICT;

SELECT conname, contype, consoft, conindid, conkey FROM pg_constraint WHERE conname 
='region_pkey';
 conname | contype | consoft | conindid | conkey 
---------+---------+---------+----------+--------
(0 rows)

● Add a unique informational constraint for the foreign table.
ALTER FOREIGN TABLE ft_region ADD CONSTRAINT constr_unique UNIQUE(R_REGIONKEY) NOT 
ENFORCED;

Delete the informational constraint.
ALTER FOREIGN TABLE ft_region DROP CONSTRAINT constr_unique RESTRICT;

SELECT conname, contype, consoft, conindid, conkey FROM pg_constraint WHERE conname 
='constr_unique';
 conname | contype | consoft | conindid | conkey 
---------+---------+---------+----------+--------
(0 rows)

● Add a unique informational constraint for the foreign table.
ALTER FOREIGN TABLE ft_region ADD CONSTRAINT constr_unique UNIQUE(R_REGIONKEY) NOT 
ENFORCED disable query optimization;

SELECT relname,relhasindex FROM pg_class WHERE oid='ft_region'::regclass;
        relname         | relhasindex 
------------------------+-------------
        ft_region          | f
(1 row)

Delete the informational constraint.
ALTER FOREIGN TABLE ft_region DROP CONSTRAINT constr_unique CASCADE;

Example 4
Read data stored in OBS using a foreign table.

1. Create obs_server, with DFS_FDW as the foreign data wrapper.
CREATE SERVER obs_server FOREIGN DATA WRAPPER DFS_FDW OPTIONS ( 
  ADDRESS 'obs.xxx.myhuaweicloud.com', 
   ACCESS_KEY 'xxxxxxxxx', 
  SECRET_ACCESS_KEY 'yyyyyyyyyyyyy', 
  TYPE 'OBS'
);

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 457



NO TE

● ADDRESS is the endpoint of OBS. Replace it with the actual endpoint. You can find
the domain name by searching for the value of regionCode in the region_map
file.

● ACCESS_KEY and SECRET_ACCESS_KEY are access keys for the cloud account
system. Replace the values as needed.

● TYPE indicates the server type. Retain the value OBS.

2. Create an OBS foreign table named customer_address, which does not
contain partition columns and is associated with an OBS server named
obs_server. Files on obs_server are in ORC format and stored in /user/hive/
warehouse/mppdb.db/region_orc11_64stripe1/.
CREATE FOREIGN TABLE customer_address
(
    ca_address_sk             integer               not null,
    ca_address_id             char(16)              not null,
    ca_street_number          char(10)                      ,   
    ca_street_name            varchar(60)                   ,   
    ca_street_type            char(15)                      ,   
    ca_suite_number           char(10)                      ,   
    ca_city                   varchar(60)                   ,   
    ca_county                 varchar(30)                   ,   
    ca_state                  char(2)                       ,   
    ca_zip                    char(10)                      ,   
    ca_country                varchar(20)                   ,   
    ca_gmt_offset             decimal(36,33)                  ,   
    ca_location_type          char(20)    
) 
SERVER obs_server OPTIONS (
    FOLDERNAME '/user/hive/warehouse/mppdb.db/region_orc11_64stripe1/',
    FORMAT 'ORC',
    ENCODING 'utf8',
    TOTALROWS  '20'
)
DISTRIBUTE BY roundrobin;

3. Query data stored in OBS using a foreign table.
SELECT COUNT(*) FROM customer_address;
 count 
-------
    20
(1 row)

Example 5
Read a DLI multi-version foreign table using a foreign table. Only DLI 8.1.1 and
later support the multi-version foreign table example.

1. Create dli_server, with DFS_FDW as the foreign data wrapper.
CREATE SERVER dli_server FOREIGN DATA WRAPPER DFS_FDW OPTIONS ( 
  ADDRESS 'obs.xxx.myhuaweicloud.com', 
  ACCESS_KEY 'xxxxxxxxx', 
  SECRET_ACCESS_KEY 'yyyyyyyyyyyyy', 
  TYPE 'DLI',
  DLI_ADDRESS 'dli.xxx.myhuaweicloud.com',
  DLI_ACCESS_KEY 'xxxxxxxxx',
  DLI_SECRET_ACCESS_KEY 'yyyyyyyyyyyyy'
);

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 458



NO TE

● ADDRESS is the endpoint of OBS. DLI_ADDRESS is the endpoint of DLI. Replace it
with the actual endpoint.

● ACCESS_KEY and SECRET_ACCESS_KEY are access keys for the cloud account
system to access OBS. Use the actual value.

● DLI_ACCESS_KEY and DLI_SECRET_ACCESS_KEY are access keys for the cloud
account system to access DLI. Use the actual value.

● TYPE indicates the server type. Retain the value DLI.

2. Create the OBS foreign table customer_address for accessing DLI. The table
does not contain partition columns, and the DLI server associated with the
table is dli_server. In the preceding command, dli_project_id is
xxxxxxxxxxxxxxx, dli_database_name is database123, and dli_table_name
is table456. Set their values based on site requirements.
CREATE FOREIGN TABLE customer_address
(
    ca_address_sk             integer               not null,
    ca_address_id             char(16)              not null,
    ca_street_number          char(10)                      ,   
    ca_street_name            varchar(60)                   ,   
    ca_street_type            char(15)                      ,   
    ca_suite_number           char(10)                      ,   
    ca_city                   varchar(60)                   ,   
    ca_county                 varchar(30)                   ,   
    ca_state                  char(2)                       ,   
    ca_zip                    char(10)                      ,   
    ca_country                varchar(20)                   ,   
    ca_gmt_offset             decimal(36,33)                  ,   
    ca_location_type          char(20)    
) 
SERVER dli_server OPTIONS (
    FORMAT 'ORC',
    ENCODING 'utf8',
    DLI_PROJECT_ID 'xxxxxxxxxxxxxxx',
    DLI_DATABASE_NAME 'database123',
    DLI_TABLE_NAME 'table456'
)
DISTRIBUTE BY roundrobin;

3. Query data in a DLI multi-version table using a foreign table.
SELECT COUNT(*) FROM customer_address;
 count 
-------
    20
(1 row)

Helpful Links
ALTER FOREIGN TABLE (for HDFS or OBS), DROP FOREIGN TABLE

12.35 CREATE FOREIGN TABLE (for OBS Import and
Export)

Function
CREATE FOREIGN TABLE creates a foreign table in the current database for
parallel data import and export of OBS data. The server used is gsmpp_server,
which is created by the database by default.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 459



NO TE

The hybrid data warehouse (standalone) does not support OBS foreign table import and
export.

Precautions
● Only the data in text and CSV formats is supported, and the OBS connection

should be configured. ORC and CarbonData data on OBS is not applicable.
For details, see CREATE FOREIGN TABLE (SQL on OBS or Hadoop ).

● An OBS foreign table can be set to READ ONLY or WRITE ONLY. The default
value is READ ONLY. To import data to the cluster, use READ ONLY for the
foreign table. To export data, use WRITE ONLY.

● The foreign table is owned by the user who runs the command.
● The distribution mode of an OBS foreign table does not need to be explicitly

specified. The default mode is ROUNDROBIN.
● Only constraints in Informational Constraint take effect for an OBS foreign

table.
● Ensure no Chinese characters are contained in paths used for importing data

to or exporting data from OBS.

Table 12-21 Read and write formats supported by OBS foreign tables

Data Type User-built Server gsmpp_server

- READ ONLY WRITE ONLY READ ONLY WRITE ONLY

ORC √ √ × ×

CARBONDAT
A

√ × × ×

TEXT √ × √ √

CSV √ × √ √

JSON √ × × ×

 

Syntax
CREATE FOREIGN TABLE [ IF NOT EXISTS  ] table_name 
( { column_name type_name [column_constraint ]
    | LIKE source_table | table_constraint [, ...]} [, ...] ) 
SERVER gsmpp_server 
OPTIONS (  { option_name ' value '  }  [, ...] ) 
[  { WRITE ONLY  |  READ ONLY  }] 
[ WITH error_table_name | LOG INTO error_table_name] 
[PER NODE REJECT LIMIT 'value']  ;

● column_constraint is as follows:
[CONSTRAINT constraint_name]
{PRIMARY KEY | UNIQUE}
[NOT ENFORCED [ENABLE QUERY OPTIMIZATION | DISABLE QUERY OPTIMIZATION] | ENFORCED]

● table_constraint is as follows:

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 460



[CONSTRAINT constraint_name]
{PRIMARY KEY | UNIQUE} (column_name)
[NOT ENFORCED [ENABLE QUERY OPTIMIZATION | DISABLE QUERY OPTIMIZATION] | ENFORCED]

Parameter Overview
CREATE FOREIGN TABLE provides multiple parameters, which are classified as
follows:
● Mandatory parameters

– table_name
– column_name
– type_name
– SERVER gsmpp_server
– access_key
– secret_access_key

● OPTIONS parameters
– Data source location parameter in foreign tables: location
– Data format parameters

▪ format

▪ header (Only CSV and FIXED formats are supported.)

▪ delimiter

▪ quote (Only the CSV format is supported.)

▪ escape (Only the CSV format is supported.)

▪ null

▪ noescaping (Only the TEXT format is supported.)

▪ encoding

▪ eol

– Error-tolerance parameters

▪ fill_missing_fields

▪ ignore_extra_data

▪ compatible_illegal_chars

▪ PER NODE REJECT LIMIT 'val...

▪ LOG INTO error_table_name

▪ WITH error_table_name

Parameter Description
● IF NOT EXISTS

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 461



Does not throw an error if a table with the same name exists. A notice is
issued in this case.

● table_name
Specifies the name of the foreign table to be created.
Value range: a string compliant with the naming convention.

● column_name
Specifies the name of a column in the foreign table.
Value range: a string compliant with the naming convention.

● type_name
Specifies the data type of the column.

● SERVER gsmpp_server
Specifies the server name of the foreign table. In the OBS foreign table, its
server gsmpp_server is created by the initial database.

● OPTIONS ( { option_name ' value ' } [, ...] )
Specifies parameters of foreign table data.
– encrypt

Specifies whether HTTPS is enabled for data transfer. on enables HTTPS
and off disables it (in this case, HTTP is used). The default value is off.

– access_key
Indicates the access key (AK, obtained from the user information on the
console) used for the OBS access protocol. When you create a foreign
table, its AK value is encrypted and saved to the metadata table of the
database.

– secret_access_key:
Indicates the secret access key (SK, obtained from the user information
on the console) used for the OBS access protocol. When you create a
foreign table, its SK value is encrypted and saved to the metadata table
of the database.

– chunksize
Specifies the cache read by each OBS thread on a DN. Its value range is 8
to 512 in the unit of MB. Its default value is 64.

– location
Specifies the data source location of a foreign table. Currently, only URLs
are allowed. Multiple URLs are separated using vertical bars (|).

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 462



NO TE

● The URL of a read-only foreign table (the default permission is read-only) can
end with the path prefix or the full path of the target object in the format of
obs://Bucket/Prefix. Prefix indicates the prefix of an object path, for example,
obs://mybucket/tpch/nation/.

● If the region parameter is explicitly specified in obs://Bucket/Prefix, the value
of region will be read. If the region parameter is not specified, the value of
defaultRegion will be read.

● The URL of a writable foreign table does not need to contain a file name. You
can specify only one data source location for a foreign table. The directory
corresponding to the location must be created before you specify the location.

● URLs specified for a read-only foreign table must be different.
● Specify location when inserting data to a foreign table.
● The location parameter supports prefixes gsobs and obs, which are identified

as OBS information. location should be followed by gsobs, OBS URL, and
Bucket, or by obs and Bucket.

When importing and exporting data, you are advised to use the location
parameter as follows:

▪ You are advised to specify a file name for location during data
import. If you only specify an OBS bucket or directory, all text files in
it will be imported. An error message will be reported if the data
format is incorrect. If you set fault tolerance, a large amount of data
may be imported to the fault-tolerant table.

▪ Multiple files in an OBS bucket can be imported at the same time.
The matched files are imported based on the file name prefix.
For example, you can identify and import the following two files
after specifying the prefix mybucket/input_data/product_info in
location:
mybucket/input_data/product_info.0
mybucket/input_data/product_info.1

▪ If you specify a file name, for example, 1.csv, then other files (like
1.csv1 or 1.csv22) starting with 1.csv in the bucket or directory
where 1.csv resides will be automatically imported. That is, files, such
as 1.csv1 and 1.csv22, are automatically imported.

▪ To specify multiple URLs in OBS mode, separate URLs by using
vertical bars (|). In gsobs mode, only one URL can be specified.

▪ During data export, a directory is generated for location by default.
If you specify only a file name, the system automatically creates a
directory whose name starts with the file name and then generates
the file that stores the exported data. The file name is automatically
generated by GaussDB(DWS).

▪ You can specify one path for location only during data export.
– region

(Optional) Specifies the value of regionCode, which indicates the region
information on the cloud.
If the region parameter is explicitly specified, the value of region will be
read. If the region parameter is not specified, the value of defaultRegion
will be read.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 463



NO TE

Note the following when setting parameters for importing or exporting OBS
foreign tables in TEXT or CSV format:
● The location parameter is mandatory. The prefixes gsobs and obs indicate

file locations on OBS. The gsobs prefix should be followed by obs url, bucket,
and prefix. The obs prefix should be followed by bucket or prefix.

● The data sources of multiple buckets are separated by vertical bars (|), for
example, LOCATION 'obs://bucket1/folder/ | obs://bucket2/'. The database
scans all objects in the specified folders.

– format
Specifies the format of the source data file in a foreign table.
Valid value: CSV and TEXT. The default value is TEXT. GaussDB(DWS)
only supports CSV and TEXT formats.

▪ CSV (comma-separated format):
○ The CSV file can process linefeeds efficiently, but cannot process

certain special characters very well.
○ A CSV file is composed of records that are separated as columns

by delimiters. Each record shares the same column sequence.

▪ TEXT (text format):
○ Records are separated as columns by linefeed. The TEXT file can

process special characters efficiently, but cannot process
linefeeds well.

– header
Specifies whether a file contains a header with the names of each column
in the file.
When OBS exports data, this parameter cannot be set to true. Use the
default value false, indicating that the first row of the exported data file
is not the header.
When data is imported, if header is on, the first row of the data file will
be identified as the header and ignored. If header is off, the first row will
be identified as a data row.
Valid value: true, on, false, and off. The default value is false or off.

– delimiter
Specifies the column delimiter of data. Use the default delimiter if it is
not set. The default delimiter of TEXT is a tab and that of CSV is a
comma (,).

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 464



NO TE

● The delimiter of TEXT cannot be \r or \n.

● A delimiter cannot be the same as the null value. The delimiter for the CSV
format cannot be same as the quote value.

● The delimiter for the TEXT format data cannot contain backslash (\),
lowercase letters, digits, or dot (.).

● The data length of a single row should be less than 1 GB. A row that has
many columns using long delimiters cannot contain much valid data.

● You are advised to use a multi-character string, such as the combination of
the dollar sign ($), caret (^), and ampersand (&), or invisible characters, such
as 0x07, 0x08, and 0x1b as the delimiter.

Value range:
The value of delimiter can be a multi-character delimiter whose length is
less than or equal to 10 bytes.

– quote
Specifies the quotation mark for the CSV format. The default value is a
double quotation mark (").

NO TE

● The quote value cannot be the same as the delimiter or null value.

● The quote value must be a single-byte character.

● Invisible characters are recommended as quote values, such as 0x07, 0x08,
and 0x1b.

– escape
Specifies an escape character for a CSV file. The value must be a single-
byte character.
The default value is a double quotation mark ("). If the value is the same
as the quote value, it will be replaced with \0.

– null
Specifies the string that represents a null value.

NO TE

● The null value cannot be \r or \n. The maximum length is 100 characters.

● The null value cannot be the same as the delimiter or quote value.

Value range:

▪ The default value is \N for the TEXT format.

▪ The default value for the CSV format is an empty string without
quotation marks.

– noescaping
Specifies whether to escape the backslash (\) and its following characters
in the TEXT format.

NO TE

noescaping is available only for the TEXT format.

Valid value: true, on, false, and off. The default value is false or off.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 465



– encoding
Specifies the encoding of a data file, that is, the encoding used to parse,
check, and generate a data file. Its default value is the default
client_encoding value of the current database.
Before you import foreign tables, it is recommended that you set
client_encoding to the file encoding format, or a format matching the
character set of the file. Otherwise, unnecessary parsing and check errors
may occur, leading to import errors, rollback, or even invalid data import.
Before exporting foreign tables, you are also advised to specify this
parameter, because the export result using the default character set may
not be what you expect.
If this parameter is not specified when you create a foreign table, a
warning message will be displayed on the client.

NO TE

Currently, OBS cannot parse a file using multiple character sets during foreign
table import.
Currently, OBS cannot write a file using multiple character sets during foreign
table export.

– fill_missing_fields
Specifies how to handle the problem that the last column of a row in the
source file is lost during data import.
Valid value: true, on, false, and off. The default value is false or off.

▪ If this parameter is set to true or on and the last column of a data
row in a source data file is lost, the column will be replaced with null
and no error message will be generated.

▪ If this parameter is set to false or off and the last column of a data
row in a source data file is lost, the following error information will
be displayed:
missing data for column "tt"

– ignore_extra_data
Specifies whether to ignore excessive columns when the number of
columns in a source data file exceeds that defined in the foreign table.
This parameter is available only for data import.
Valid value: true, on, false, and off. The default value is false or off.

▪ If this parameter is set to true or on and the number of source data
files exceeds the number of foreign table columns, excessive columns
will be ignored.

▪ If this parameter is set to false or off and the number of source data
files exceeds the number of foreign table columns, the following
error information will be displayed:
extra data after last expected column

NO TICE

If the linefeed at the end of a row is lost and this parameter is set to
true, data in the next row will be ignored.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 466



– reject_limit
Specifies the maximum number of data format errors allowed during a
data import task. If the number of errors does not reach the maximum
number, the data import task can still be executed.

NO TICE

You are advised to replace this syntax with PER NODE REJECT LIMIT
'value'.
Examples of data format errors include the following: a column is lost, an
extra column exists, a data type is incorrect, and encoding is incorrect.
When a non-data format error occurs, the whole data import process is
stopped.

Value range: an integer and unlimited.
The default value is 0, indicating that error information is returned
immediately.

– eol
Specifies the newline character style of the imported or exported data
file.
Value range: multi-character newline characters within 10 bytes.
Common newline characters include \r (0x0D), \n (0x0A), and \r\n
(0x0D0A). Special newline characters include $ and #.

NO TE

● The eol parameter supports only the TEXT format for data import.

● The value of the eol parameter cannot be the same as that of delimiter or
null.

● The value of the eol parameter cannot contain digits, letters, or periods (.).

– date_format
Specifies the DATE format for data import. This syntax is available only
for READ ONLY foreign tables.
Value range: a valid DATE value. For details, see Date and Time
Processing Functions and Operators.

NO TE

If Oracle is specified as the compatible database, the DATE format is TIMESTAMP.
For details, see timestamp_format below.

– time_format
Specifies the TIME format for data import. This syntax is available only
for READ ONLY foreign tables.
Value range: any valid TIME value. Time zones cannot be used.

– timestamp_format
Specifies the TIMESTAMP format for data import. This syntax is available
only for READ ONLY foreign tables.
Value range: any valid TIMESTAMP value. Time zones cannot be used.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 467



– smalldatetime_format
Specifies the SMALLDATETIME format for data import. This syntax is
available only for READ ONLY foreign tables.
Value range: a valid SMALLDATETIME value.

– compatible_illegal_chars
Specifies whether to enable fault tolerance on invalid characters during
data import. This syntax is available only for READ ONLY foreign tables.
Valid value: true, on, false, and off. The default value is false or off.

▪ If this parameter is set to true or on, invalid characters are tolerated
and imported to the database after conversion.

▪ If this parameter is set to false or off and an error occurs when there
are invalid characters, the import will be interrupted.

NO TICE

On a Windows platform, if OBS reads data files using the TEXT format,
0x1A will be treated as an EOF symbol and a parsing error will occur. It is
the implementation constraint of the Windows platform. Since OBS on a
Windows platform does not support BINARY read, the data can be read
by OBS on a Linux platform.

NO TE

The rule of error tolerance for invalid characters imported is as follows:
(1) \0 is converted to a space.
(2) Other invalid characters are converted to question marks.
(3) If compatible_illegal_chars is set to true or on, invalid characters are
tolerated. If null, delimiter, quote, and escape are set to a spaces or question
marks, errors like "illegal chars conversion may confuse COPY escape 0x20" will
be displayed to prompt users to change parameter values that cause confusion,
preventing import errors.

● READ ONLY
Specifies whether a foreign table is read-only. This parameter is available only
for data import.

● WRITE ONLY
Specifies whether a foreign table is write-only. This parameter is available
only for data import.

● WITH error_table_name
Specifies the table where data format errors generated during parallel data
import are recorded. You can query the error information table after data is
imported to obtain error details. This parameter is available only after
reject_limit is set.

NO TE

To be compatible with postgres open source interfaces, you are advised to replace this
syntax with LOG INTO. When this parameter is specified, an error table is
automatically created.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 468



Value range: a string compliant with the naming convention.
● LOG INTO error_table_name

Specifies the table where data format errors generated during parallel data
import are recorded. You can query the error information table after data is
imported to obtain error details.

NO TE

● This parameter is available only after PER NODE REJECT LIMIT is set.
● When this parameter is specified, an error table is automatically created.

Value range: a string compliant with the naming convention.
● PER NODE REJECT LIMIT 'value'

Specifies the maximum number of data format errors on each DN during data
import. If the number of errors exceeds the specified value on any DN, data
import fails, an error is reported, and the system exits data import.

NO TICE

This syntax specifies the error tolerance of a single node.
Examples of data format errors include the following: a column is lost, an
extra column exists, a data type is incorrect, and encoding is incorrect. When
a non-data format error occurs, the whole data scanning process is stopped.

Valid value: an integer and unlimited. The default value is 0, indicating that
error information is returned immediately.

● NOT ENFORCED
Specifies the constraint to be an informational constraint. This constraint is
guaranteed by the user instead of the database.

● ENFORCED
The default value is ENFORCED. ENFORCED is a reserved parameter and is
currently not supported.

● PRIMARY KEY (column_name)
Specifies the informational constraint on column_name.
Value range: a string. It must comply with the naming convention, and the
value of column_name must exist.

● ENABLE QUERY OPTIMIZATION
Optimizes the query plan using an informational constraint.

● DISABLE QUERY OPTIMIZATION
Disables the optimization of the query plan using an informational constraint.

Examples
Create a foreign table to import data in the .txt format from OBS to the OBS_ft
table.
DROP FOREIGN TABLE IF EXISTS OBS_ft;
NOTICE:  foreign table "obs_ft" does not exist, skipping
DROP FOREIGN TABLE

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 469



CREATE FOREIGN TABLE OBS_ft( a int, b int)SERVER gsmpp_server OPTIONS (location 'obs://gaussdbcheck/
obs_ddl/test_case_data/txt_obs_informatonal_test001',format 'text',encoding 'utf8',chunksize '32', encrypt 
'on',ACCESS_KEY 'access_key_value_to_be_replaced',SECRET_ACCESS_KEY 
'secret_access_key_value_to_be_replaced',delimiter E'\x08') read only;
CREATE FOREIGN TABLE

DROP TABLE row_tbl;
DROP TABLE

CREATE TABLE row_tbl( a int, b int);
NOTICE:  The 'DISTRIBUTE BY' clause is not specified. Using 'a' as the distribution column by default.
HINT:  Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE

INSERT INTO row_tbl SELECT * FROM OBS_ft;
INSERT 0 3

Helpful Links

ALTER FOREIGN TABLE (for HDFS or OBS), DROP FOREIGN TABLE

12.36 CREATE FUNCTION

Function

CREATE FUNCTION creates a function.

Precautions
● The precision values (if any) of the parameters or return values of a function

are not checked.
● When creating a function, you are advised to explicitly specify the schemas of

tables in the function definition. Otherwise, the function may fail to be
executed.

● current_schema and search_path specified by SET during function creation
are invalid. search_path and current_schema before and after function
execution should be the same.

● If a function has output parameters, the SELECT statement uses the default
values of the output parameters when calling the function. When the CALL
statement calls the function, it requires that the output parameter values are
adapted to Oracle. When the CALL statement calls an overloaded PACKAGE
function, it can use the default values of the output parameters. For details,
see examples in CALL.

● Only the functions compatible with PostgreSQL or those with the PACKAGE
attribute can be overloaded. After REPLACE is specified, a new function is
created instead of replacing a function if the number of parameters,
parameter type, or return value is different.

● You can use the SELECT statement to specify different parameters using
identical functions, but cannot use the CALL statement to call identical
functions without the PACKAGE attribute because CALL aligns with Oracle
syntax.

● When you create a function, you cannot insert other agg functions out of the
avg function or other functions.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 470



● In non-logical cluster mode, return values, parameters, and variables cannot
be set to the tables of the Node Groups that are not installed in the system
by default. The internal statements of SQL functions cannot be executed on
such tables.

● In logical cluster mode, if return values and parameters of the function are
user tables, all the tables must be in the same logical cluster. If the function
body involves operations on multiple logical cluster tables, the function
cannot be set to IMMUTABLE or SHIPPABLE, preventing the function from
being pushed down to a DN.

● In logical cluster mode, the parameters and return values of the function
cannot use the %type to reference a table column type. Otherwise, the
function will fail to be created.

● By default, the permissions to execute new functions are granted to PUBLIC.
For details, see GRANT. You can revoke the default execution permissions
from PUBLIC and grant them to other users as needed. To avoid the time
window during which new functions can be accessed by all users, create
functions in transactions and set function execution permissions.

Syntax
● Syntax (compatible with PostgreSQL) for creating a user-defined function:

CREATE [ OR REPLACE  ] FUNCTION function_name 
    ( [  { argname [ argmode  ] argtype [  { DEFAULT  | :=  | =  } expression  ]}  [, ...]  ] )
    [ RETURNS rettype [ DETERMINISTIC  ]  | RETURNS TABLE (  { column_name column_type  }  
[, ...] )]
    LANGUAGE lang_name 
    [ 
       {IMMUTABLE  | STABLE  | VOLATILE }
        | {SHIPPABLE | NOT SHIPPABLE}
        | WINDOW
        | [ NOT  ] LEAKPROOF  
        | {CALLED ON NULL INPUT  | RETURNS NULL ON NULL INPUT | STRICT } 
        | {[ EXTERNAL  ] SECURITY INVOKER | [ EXTERNAL  ] SECURITY DEFINER | AUTHID DEFINER  | 
AUTHID CURRENT_USER} 
        | {fenced | not fenced}
        | {PACKAGE}

        | COST execution_cost
        | ROWS result_rows
        | SET configuration_parameter { {TO | =} value | FROM CURRENT }}
     ][...]
    {
        AS 'definition'
        | AS 'obj_file', 'link_symbol'
    }

● Oracle syntax of creating a customized function:
CREATE [ OR REPLACE  ] FUNCTION function_name 
    ( [  { argname [ argmode  ] argtype [  { DEFAULT | := | =  } expression  ] }  [, ...]  ] )
    RETURN rettype [ DETERMINISTIC  ]
    [ 
        {IMMUTABLE  | STABLE  | VOLATILE } 
        | {SHIPPABLE | NOT SHIPPABLE}
        | {PACKAGE}
        | {FENCED | NOT FENCED}
        | [ NOT  ] LEAKPROOF  
        | {CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT } 
        | {[ EXTERNAL  ] SECURITY INVOKER  | [ EXTERNAL  ] SECURITY DEFINER |
AUTHID DEFINER | AUTHID CURRENT_USER
} 
        | COST execution_cost  
        | ROWS result_rows  
        | SET configuration_parameter { {TO | =} value  | FROM CURRENT

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 471



    ][...] 

    { 
      IS  | AS
} plsql_body
/

Parameter Description
● function_name

Indicates the name of the function to create (optionally schema-qualified).
Value range: a string. It must comply with the naming convention.

● argname
Indicates the name of a function parameter.
Value range: a string. It must comply with the naming convention.

● argmode
Indicates the mode of a parameter.
Value range: IN, OUT, IN OUT, INOUT, and VARIADIC. The default value is
IN. Only the parameter of OUT mode can be followed by VARIADIC. The
parameters of OUT and INOUT cannot be used in function definition of
RETURNS TABLE.

NO TE

VARIADIC specifies parameters of array types.

● argtype
Indicates the data types of the function's parameters.

● expression
Indicates the default expression of a parameter.

● rettype
Indicates the return data type.
When there is OUT or IN OUT parameter, the RETURNS clause can be
omitted. If the clause exists, it must be the same as the result type indicated
by the output parameter. If there are multiple output parameters, the value is
RECORD. Otherwise, the value is the same as the type of a single output
parameter.
The SETOF modifier indicates that the function will return a set of items,
rather than a single item.

● DETERMINISTIC
The adaptation oracle SQL syntax. You are not advised to use it.

● column_name
Specifies the column name.

● column_type
Specifies the column type.

● definition
Specifies a string constant defining the function; the meaning depends on the
language. It can be an internal function name, a path pointing to a target file,
a SQL query, or text in a procedural language.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 472



● LANGUAGE lang_name
Indicates the name of the language that is used to implement the function. It
can be SQL, internal, or the name of user-defined process language. To
ensure downward compatibility, the name can use single quotation marks.
Contents in single quotation marks must be capitalized.

● WINDOW
Indicates that the function is a window function. The WINDOW attribute
cannot be changed when the function definition is replaced.

NO TICE

For a user-defined window function, the value of LANGUAGE can only be
internal, and the referenced internal function must be a window function.

● IMMUTABLE
Indicates that the function always returns the same result if the parameter
values are the same.
If the input argument of the function is a constant, the function value is
calculated at the optimizer stage. The advantage is that the expression value
can be obtained as early as possible, so the cost estimation is more accurate
and the execution plan generated is better.
A user-defined IMMUTABLE function is automatically pushed down to DNs
for execution, which may cause potential risks. If a function is defined as
IMMUTABLE but the function execution process is in fact not IMMUTABLE,
serious problems such as result errors may occur. Therefore, exercise caution
when defining the IMMUTABLE attribute for a function.
Examples:

a. If a user-defined function references objects such as tables and views, the
function cannot be defined as IMMUTABLE, because the function may
return different results when the data in a referenced table changes.

b. If a user-defined function references a STABLE or VOLATILE function, the
function cannot be defined as IMMUTABLE.

c. If a user-defined function contains factors that cannot be pushed down,
the function cannot be defined as IMMUTABLE, because the
IMMUTABLE attribute conflicts with factors that cannot be pushed down.
Typical scenarios include functions and syntax that cannot be pushed
down.

d. If a user-defined function contains an aggregation operation that will
generate STREAM plans to complete the operation (meaning that DNs
and CNs are involved for results calculation, such as the LISTAGG
function), the function cannot be defined as IMMUTABLE.

To prevent possible problems, you can set behavior_compat_options to
check_function_conflicts in the database to check definition conflicts. This
method can identify the a and b scenarios described above.

● STABLE
Indicates that the function cannot modify the database, and that within a
single table scan it will consistently return the same result for the same
parameter values, but that its result varies by SQL statements.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 473



● VOLATILE
Indicates that the function value can change even within a single table scan,
so no optimizations can be made.

● SHIPPABLE
NOT SHIPPABLE
Indicates whether the function can be pushed down to DNs for execution.
– Functions of the IMMUTABLE type can always be pushed down to the

DNs.
– Functions of the STABLE or VOLATILE type can be pushed down to DNs

only if their attribute is SHIPPABLE.
Exercise caution when defining the SHIPPABLE attribute for a function.
SHIPPABLE means that the entire function will be pushed down to DNs
for execution. If the attribute is incorrectly set, serious problems such as
result errors may occur.
Similar to the IMMUTABLE attribute, the SHIPPABLE attribute has use
restrictions. The function cannot contain factors that do not allow the
function to be pushed down for execution. If a function is pushed down
to a single DN for execution, the function's calculation logic will depend
only on the data set of the DN.
Examples:

i. If a function references a hash table, you cannot define the function
as SHIPPABLE.

ii. If a function contains factors, functions, or syntax that cannot be
pushed down, the function cannot be defined as SHIPPABLE. For
details, see Optimizing Statement Pushdown.

iii. If a function's calculation process involves data across DNs, the
function cannot be defined as SHIPPABLE. For example, some
aggregation operations involve data across DNs.

● PACKAGE
Indicates whether the function can be overloaded. PostgreSQL-style functions
can be overloaded, and this parameter is designed for Oracle-style functions.
– All PACKAGE and non-PACKAGE functions cannot be overloaded or

replaced.
– PACKAGE functions do not support parameters of the VARIADIC type.
– The PACKAGE attribute of functions cannot be modified.

● LEAKPROOF
Indicates that the function has no side effects. LEAKPROOF can be set only by
the system administrator.

● CALLED ON NULL INPUT
Declares that some parameters of the function can be invoked in normal
mode if the parameter values are NULL. This parameter can be omitted.

● RETURNS NULL ON NULL INPUT
STRICT
Indicates that the function always returns NULL whenever any of its
parameters are NULL. If this parameter is specified, the function is not

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 474



executed when there are NULL parameters; instead a NULL result is returned
automatically.
The usage of RETURNS NULL ON NULL INPUT is the same as that of
STRICT.

● EXTERNAL
The keyword EXTERNAL is allowed for SQL conformance, but it is optional
since, unlike in SQL, this feature applies to all functions not only external
ones.

● SECURITY INVOKER
AUTHID CURRENT_USER
Indicates that the function is to be executed with the permissions of the user
that calls it. This parameter can be omitted.
SECURITY INVOKER and AUTHID CURRENT_USER have the same functions.

● SECURITY DEFINER
AUTHID DEFINER
Specifies that the function is to be executed with the permissions of the user
that created it.
The usage of AUTHID DEFINER is the same as that of SECURITY DEFINER.

● FENCED
NOT FENCED
(Effective only for C functions) Specifies whether functions are executed in
fenced mode. In NOT FENCED mode, a function is executed in a CN or DN
process. In FENCED mode, a function is executed in a new fork process, which
does not affect CN or DN processes.
Application scenarios:
– Develop or debug a function in FENCED mode and execute it in NOT

FENCED mode. This reduces the cost of the fork process and
communication.

– Perform complex OS operations, such as open a file, process signals and
threads, in FENCED mode so that GaussDB(DWS) running is not affected.

– The default value is FENCED.
● COST execution_cost

A positive number giving the estimated execution cost for the function.
The unit of execution_cost is cpu_operator_cost.
Value range: A positive number.

● ROWS result_rows
Estimates the number of rows returned by the function. This is only allowed
when the function is declared to return a set.
Value range: A positive number. The default is 1000 rows.

● configuration_parameter
– value

Sets a specified database session parameter to a specified value. If the
value is DEFAULT or RESET, the default setting is used in the new
session. OFF closes the setting.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 475



Value range: a string

▪ DEFAULT

▪ OFF

▪ RESET

Specifies the default value.
– from current

Uses the value of configuration_parameter of the current session.
● obj_file, link_symbol

(Used for C functions) Specifies the absolute path of the dynamic library using
obj_file and the link symbol (function name in C programming language) of
the function using link_symbol.

● plsql_body
Indicates the PL/SQL stored procedure body.

NO TICE

When the function is creating users, the log will record unencrypted
passwords. You are not advised to do it.

Examples
Define the function as SQL query.

CREATE FUNCTION func_add_sql(integer, integer) RETURNS integer
    AS 'select $1 + $2;'
    LANGUAGE SQL
    IMMUTABLE
    RETURNS NULL ON NULL INPUT;

Add an integer by parameter name using PL/pgSQL.

CREATE OR REPLACE FUNCTION func_increment_plsql(i integer) RETURNS integer AS $$
        BEGIN
                RETURN i + 1;
        END;
$$ LANGUAGE plpgsql;

Return the RECORD type.

CREATE OR REPLACE FUNCTION compute(i int, out result_1 bigint, out result_2 bigint)
returns SETOF RECORD
as $$
begin
    result_1 = i + 1;
    result_2 = i * 10;
return next;
end;
$$language plpgsql;

Get a record containing multiple output parameters.

CREATE FUNCTION func_dup_sql(in int, out f1 int, out f2 text)
    AS $$ SELECT $1, CAST($1 AS text) || ' is text' $$
    LANGUAGE SQL;
SELECT * FROM func_dup_sql(42);

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 476



Calculate the sum of two integers and get the result. If the input is null, null will
be returned.

CREATE FUNCTION func_add_sql2(num1 integer, num2 integer) RETURN integer
AS
BEGIN 
RETURN num1 + num2;
END;
/

Create an overloaded function with the PACKAGE attribute.

CREATE OR REPLACE FUNCTION package_func_overload(col int, col2  int)
return integer package
as
declare
    col_type text;
begin
     col := 122;
         dbms_output.put_line('two int parameters ' || col2);
         return 0;
end;
/

CREATE OR REPLACE FUNCTION package_func_overload(col int, col2 smallint)
return integer package
as
declare
    col_type text;
begin
     col := 122;
         dbms_output.put_line('two smallint parameters ' || col2);
         return 0;
end;
/

Helpful Links
ALTER FUNCTION, DROP FUNCTION

12.37 CREATE GROUP

Function
CREATE GROUP creates a user group.

Precautions
CREATE GROUP is an alias for CREATE ROLE, and it is not a standard SQL
command and not recommended. Users can use CREATE ROLE directly.

Syntax
CREATE GROUP group_name [ [ WITH ] option [ ... ] ] 
    [ ENCRYPTED | UNENCRYPTED ] { PASSWORD | IDENTIFIED BY } { 'password' | DISABLE };

The syntax of optional action clause is as follows:

where option can be:
{SYSADMIN | NOSYSADMIN}
    | {AUDITADMIN | NOAUDITADMIN}
    | {CREATEDB | NOCREATEDB}

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 477



    | {USEFT | NOUSEFT}
    | {CREATEROLE | NOCREATEROLE}
    | {INHERIT | NOINHERIT}
    | {LOGIN | NOLOGIN}
    | {REPLICATION | NOREPLICATION}
    | {INDEPENDENT | NOINDEPENDENT}
    | {VCADMIN | NOVCADMIN}
    | CONNECTION LIMIT connlimit
    | VALID BEGIN 'timestamp'
    | VALID UNTIL 'timestamp'
    | RESOURCE POOL 'respool'
    | USER GROUP 'groupuser'
    | PERM SPACE 'spacelimit'
    | NODE GROUP logic_group_name
    | IN ROLE role_name [, ...]
    | IN GROUP role_name [, ...]
    | ROLE role_name [, ...]
    | ADMIN role_name [, ...]
    | USER role_name [, ...]
    | SYSID uid
    | DEFAULT TABLESPACE tablespace_name
    | PROFILE DEFAULT
    | PROFILE profile_name
    | PGUSER

Parameter Description
See Parameter Description in CREATE ROLE.

Helpful Links
ALTER GROUP, DROP GROUP, CREATE ROLE

12.38 CREATE INDEX

Function
CREATE INDEX-bak defines a new index.

Indexes are primarily used to enhance database performance (though
inappropriate use can result in slower database performance). You are advised to
create indexes on:

● Columns that are often queried
● Join conditions. For a query on joined columns, you are advised to create a

composite index on the columns, for example, select * from t1 join t2 on
t1.a=t2.a and t1.b=t2.b. You can create a composite index on the a and b
columns of table t1.

● Columns having filter criteria (especially scope criteria) of a where clause
● Columns that appear after order by, group by, and distinct.

The partitioned table does not support concurrent index creation, partial index
creation, and NULL FIRST.

Precautions
● Indexes consume storage and computing resources. Creating too many

indexes has negative impact on database performance (especially the

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 478



performance of data import. Therefore, you are advised to import the data
before creating indexes). Create indexes only when they are necessary.

● All functions and operators used in an index definition must be immutable,
that is, their results must depend only on their arguments and never on any
outside influence (such as the contents of another table or the current time).
This restriction ensures that the behavior of the index is well-defined. To use a
user-defined function in an index expression or WHERE clause, remember to
mark the function immutable when you create it.

● A unique index created on a partitioned table must include a partition column
and all the partition keys.

● Column-store tables and HDFS tables support B-tree indexes. If the B-tree
indexes are used, you cannot create expression and partial indexes.

● Column-store tables support creating unique indexes using B-tree indexes.
● Column-store and HDFS tables support psort indexes. If the psort indexes are

used, you cannot create expression, partial, and unique indexes.
● Column-store tables support GIN indexes, rather than partial indexes and

unique indexes. If GIN indexes are used, you can create expression indexes.
However, an expression in this situation cannot contain empty splitters, empty
columns, or multiple columns.

Syntax
● Create an index on a table.

CREATE [ UNIQUE ] INDEX [ [ schema_name. ] index_name ] ON table_name [ USING method ]
    ({ { column_name | ( expression ) } [ COLLATE collation ] [ opclass ] [ ASC | DESC ] [ NULLS 
{ FIRST | LAST } ] }[, ...] )
    [ WITH ( {storage_parameter = value} [, ... ] ) ]
    [ TABLESPACE tablespace_name ]
    [ WHERE predicate ];

● Create an index for a partitioned table.
CREATE [ UNIQUE ] INDEX [ [ schema_name. ] index_name ] ON table_name [ USING method ]
    ( {{ column_name | ( expression ) } [ COLLATE collation ] [ opclass ] [ ASC | DESC ] [ NULLS 
LAST ] }[, ...] )
    LOCAL [ ( { PARTITION index_partition_name [ TABLESPACE index_partition_tablespace ] } [, ...] ) ]
    [ WITH ( { storage_parameter = value } [, ...] ) ]
    [ TABLESPACE tablespace_name ];

Parameters
● UNIQUE

Causes the system to check for duplicate values in the table when the index is
created (if data exists) and each time data is added. Attempts to insert or
update data which would result in duplicate entries will generate an error.
Currently, only B-tree indexes of row-store tables and column-store tables
support unique indexes.

● schema_name
Name of the schema where the index to be created is located. The specified
schema name must be the same as the schema of the table.

● index_name
Specifies the name of the index to be created. The schema of the index is the
same as that of the table.
Value range: a string. It must comply with the naming convention.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 479



● table_name
Specifies the name of the table to be indexed (optionally schema-qualified).
Value range: an existing table name

● USING method
Specifies the name of the index method to be used.
Valid value:
– btree: The B-tree index uses a structure that is similar to the B+ tree

structure to store data key values, facilitating index search. btree
supports comparison queries with ranges specified.

– gin: GIN indexes are reverse indexes and can process values that contain
multiple keys (for example, arrays).

– gist: GiST indexes are suitable for the set data type and multidimensional
data types, such as geometric and geographic data types.

– Psort: psort index. It is used to perform partial sort on column-store
tables.

Row-based tables support the following index types: btree (default), gin, and
gist. Column-based tables support the following index types: Psort (default),
btree, and gin.

● column_name
Specifies the name of a column of the table.
Multiple columns can be specified if the index method supports multi-column
indexes. A maximum of 32 columns can be specified.

● expression
Specifies an expression based on one or more columns of the table. The
expression usually must be written with surrounding parentheses, as shown in
the syntax. However, the parentheses can be omitted if the expression has the
form of a function call.
Expression can be used to obtain fast access to data based on some
transformation of the basic data. For example, an index computed on
upper(col) would allow the clause WHERE upper(col) = 'JIM' to use an index.
If an expression contains IS NULL, the index for this expression is invalid. In
this case, you are advised to create a partial index.

● COLLATE collation
Assigns a collation to the column (which must be of a collatable data type). If
no collation is specified, the default collation is used.

● opclass
Specifies the name of an operator class. Specifies an operator class for each
column of an index. The operator class identifies the operators to be used by
the index for that column. For example, a B-tree index on the type int4 would
use the int4_ops class; this operator class includes comparison functions for
values of type int4. In practice, the default operator class for the column's
data type is sufficient. The operator class applies to data with multiple sorts.
For example, we might want to sort a complex-number data type either by
absolute value or by real part. We could do this by defining two operator
classes for the data type and then selecting the proper class when making an
index.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 480



● ASC
Indicates ascending sort order (default). This option is supported only by row
storage.

● DESC
Indicates descending sort order. This option is supported only by row storage.

● NULLS FIRST
Specifies that nulls sort before not-null values. This is the default when DESC
is specified.

● NULLS LAST
Specifies that nulls sort after not-null values. This is the default when DESC is
not specified.

● WITH ( {storage_parameter = value} [, ... ] )
Specifies the name of an index-method-specific storage parameter.
Valid value:
Only the GIN index supports the FASTUPDATE and
GIN_PENDING_LIST_LIMIT parameters. The indexes other than GIN and psort
support the FILLFACTOR parameter.
– FILLFACTOR

The fillfactor for an index is a percentage between 10 and 100.
Value range: 10–100

– FASTUPDATE
Specifies whether fast update is enabled for the GIN index.
Valid value: ON and OFF
Default: ON

– GIN_PENDING_LIST_LIMIT
Specifies the maximum capacity of the pending list of the GIN index
when fast update is enabled for the GIN index.
Value range: 64–INT_MAX. The unit is KB.
Default value: The default value of gin_pending_list_limit depends on
gin_pending_list_limit specified in GUC parameters. By default, the value
is 4 MB.

● WHERE predicate
Creates a partial index. A partial index is an index that contains entries for
only a portion of a table, usually a portion that is more useful for indexing
than the rest of the table. For example, if you have a table that contains both
billed and unbilled orders where the unbilled orders take up a small fraction
of the total table and yet that is an often used section, you can improve
performance by creating an index on just that portion. Another possible
application is to use WHERE with UNIQUE to enforce uniqueness over a
subset of a table.
Value range: predicate expression can refer only to columns of the underlying
table, but it can use all columns, not just the ones being indexed. Presently,
subquery and aggregate expressions are also forbidden in WHERE.

● PARTITION index_partition_name
Specifies the name of the index partition.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 481



Value range: a string. It must comply with the naming convention.

Examples
● Create a sample table named tpcds.ship_mode_t1.

CREATE TABLE tpcds.ship_mode_t1
(
    SM_SHIP_MODE_SK           INTEGER               NOT NULL,
    SM_SHIP_MODE_ID           CHAR(16)              NOT NULL,
    SM_TYPE                   CHAR(30)                      ,
    SM_CODE                   CHAR(10)                      ,
    SM_CARRIER                CHAR(20)                      ,
    SM_CONTRACT               CHAR(20)
) 
DISTRIBUTE BY HASH(SM_SHIP_MODE_SK);

-- Create a common index on the SM_SHIP_MODE_SK column in the
tpcds.ship_mode_t1 table:
CREATE UNIQUE INDEX ds_ship_mode_t1_index1 ON tpcds.ship_mode_t1(SM_SHIP_MODE_SK);

Create a B-tree index on the SM_SHIP_MODE_SK column in the
tpcds.ship_mode_t1 table.
CREATE INDEX ds_ship_mode_t1_index4 ON tpcds.ship_mode_t1 USING btree(SM_SHIP_MODE_SK);

Create an expression index on the SM_CODE column in the
tpcds.ship_mode_t1 table.
CREATE INDEX ds_ship_mode_t1_index2 ON tpcds.ship_mode_t1(SUBSTR(SM_CODE,1 ,4));

Create a partial index on the SM_SHIP_MODE_SK column where
SM_SHIP_MODE_SK is greater than 10 in the tpcds.ship_mode_t1 table.
CREATE UNIQUE INDEX ds_ship_mode_t1_index3 ON tpcds.ship_mode_t1(SM_SHIP_MODE_SK) 
WHERE SM_SHIP_MODE_SK>10;

● Create a sample table named tpcds.customer_address_p1.
CREATE TABLE tpcds.customer_address_p1
(
    CA_ADDRESS_SK             INTEGER               NOT NULL,
    CA_ADDRESS_ID             CHAR(16)              NOT NULL,
    CA_STREET_NUMBER          CHAR(10)                      ,
    CA_STREET_NAME            VARCHAR(60)                   ,
    CA_STREET_TYPE            CHAR(15)                      ,
    CA_SUITE_NUMBER           CHAR(10)                      ,
    CA_CITY                   VARCHAR(60)                   ,
    CA_COUNTY                 VARCHAR(30)                   ,
    CA_STATE                  CHAR(2)                       ,
    CA_ZIP                    CHAR(10)                      ,
    CA_COUNTRY                VARCHAR(20)                   ,
    CA_GMT_OFFSET             DECIMAL(5,2)                  ,
    CA_LOCATION_TYPE          CHAR(20)
)
DISTRIBUTE BY HASH(CA_ADDRESS_SK)
PARTITION BY RANGE(CA_ADDRESS_SK)
( 
   PARTITION p1 VALUES LESS THAN (3000),
   PARTITION p2 VALUES LESS THAN (5000) ,
   PARTITION p3 VALUES LESS THAN (MAXVALUE) 
)
ENABLE ROW MOVEMENT;

Create the partitioned table index ds_customer_address_p1_index1 with the
name of the index partition not specified.
CREATE INDEX ds_customer_address_p1_index1 ON tpcds.customer_address_p1(CA_ADDRESS_SK) 
LOCAL; 

Create the partitioned table index ds_customer_address_p1_index2 with the
name of the index partition specified.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 482



CREATE INDEX ds_customer_address_p1_index2 ON tpcds.customer_address_p1(CA_ADDRESS_SK) 
LOCAL
(
    PARTITION CA_ADDRESS_SK_index1,
    PARTITION CA_ADDRESS_SK_index2,
    PARTITION CA_ADDRESS_SK_index3 
) 
;

Links

ALTER INDEX, DROP INDEX

12.39 CREATE REDACTION POLICY

Function

CREATE REDACTION POLICY creates a data redaction policy for a table.

Precautions
● Only the table owner has the permission to create a data redaction policy.
● You can create data redaction policies only for ordinary tables. Redaction

policies are unavailable to system catalogs, HDFS tables, foreign tables,
temporary tables, UNLOGGED tables, views, and functions.

● Synonyms cannot be used to create redaction policies for ordinary table
objects.

● Table objects and redaction policies have a one-to-one mapping relationship.
A redaction policy is a collection of data redaction functions that can be
applied to multiple columns in a table. You can set different redaction
functions for different columns.

● A redaction policy is enabled by default upon its creation, that is, the enable
parameter of the policy is true by default.

● Redaction policies do not take effect on users with the sysadmin permission.
Data in the redacted columns is always visible to such users.

Syntax
CREATE REDACTION POLICY policy_name ON table_name
    [ WHEN (when_expression) ]
    [ ADD COLUMN column_name WITH redaction_function_name ( [ argument [, ...] ] )] [, ... ];

Parameter Description
● policy_name

Specifies the name of a redaction policy.
● table_name

Specifies the name of the table to which the redaction policy is applied.
● WHEN ( when_expression )

Specifies the expression used for the redaction policy to take effect. The
redaction policy takes effect only when this expression is true.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 483



NO TE

When a query statement is querying a table where a redaction policy is enabled, the
redacted data is invisible in the query only if the WHEN expression for the redaction
policy is true. Generally, the WHEN clause is used to specify the users for which the
redaction policy takes effect.
The WHEN clause must comply with the following rules:
1. The expression can be a combination of multiple subexpressions connected by AND

and/or OR.
2. Each subexpression supports only the =, <>, !=, >=, >, <=, and < operators. The left

and right operand values can only be constant values or one of the following
system constant values: SESSION_USER, CURRENT_USER, USER, CURRENT_ROLE,
and CURRENT_SCHEMA system constants or the SYS_CONTEXT system function.

3. Each subexpression can be an IN or NOT IN expression. The value for the left
operand can be any of the system constant values listed in rule 2, and each
element in the array of the right operand must be a constant value.

4. If you want a redaction policy to be valid in all conditions, that is, you want it to
take effect on all users (including the table owner), you are advised to use the
(1=1) expression to create this policy.

5. If the WHEN clause is not specified, the redaction policy is disabled by default. You
need to manually specify a WHEN expression for the policy to take effect.

● column_name
Specifies the name of the table column to which the redaction policy is
applied.

● function_name
Specifies the redaction function applied to the specified table column.

● arguments
Specifies the list of arguments of the redaction function.

NO TE

The system provides three built-in redaction functions: MASK_NONE, MASK_FULL,
and MASK_PARTIAL. For details about the function specifications, see Data Redaction
Functions. You can also define your own redaction functions, which must comply with
the following rules:
1. In addition to the redaction format, only one column can be specified in the

argument list for data redaction.
2. The return type must be the same as the data type of the redacted column.
3. The functions can be pushed down.
4. The functions only implement the formatting for specific data types and do not

involve complex association operations with other table objects.
Built-in redaction functions can cover common redaction scenarios of sensitive
information. Therefore, you are advised to use built-in redaction functions to create
redaction policies.

Examples
Create a table object emp as user alice, and insert data into the table.

CREATE TABLE emp(id int, name varchar(20), salary NUMERIC(10,2));
INSERT INTO emp VALUES(1, 'July', 1230.10), (2, 'David', 999.99);

Create a redaction policy mask_emp for the emp table as user alice to make the
salary column invisible to user matu.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 484



CREATE REDACTION POLICY mask_emp ON emp WHEN(current_user = 'matu') ADD COLUMN salary WITH 
mask_full(salary);

Grant the SELECT permission on the emp table to user matu as user alice.

GRANT SELECT ON emp TO matu;

Switch to user matu.

SET ROLE matu PASSWORD 'password';

Query the emp table. Data in the salary column has been redacted.

SELECT * FROM emp;

Helpful Links
ALTER REDACTION POLICY, DROP REDACTION POLICY

12.40 CREATE ROW LEVEL SECURITY POLICY

Function
CREATE ROW LEVEL SECURITY POLICY creates a row-level access control policy
for a table.

The policy takes effect only after row-level access control is enabled (by running
ALTER TABLE... ENABLE ROW LEVEL SECURITY).

Currently, row-level access control affects the read (SELECT, UPDATE, DELETE) of
data tables and does not affect the write (INSERT and MERGE INTO) of data
tables. The table owner or system administrators can create an expression in the
USING clause. When the client reads the data table, the database server combines
the expressions that meet the condition and applies it to the execution plan in the
statement rewriting phase of a query. For each tuple in a data table, if the
expression returns TRUE, the tuple is visible to the current user; if the expression
returns FALSE or NULL, the tuple is invisible to the current user.

A row-level access control policy name is specific to a table. A data table cannot
have row-level access control policies with the same name. Different data tables
can have the same row-level access control policy.

Row-level access control policies can be applied to specified operations (SELECT,
UPDATE, DELETE, and ALL). ALL indicates that SELECT, UPDATE, and DELETE
will be affected. For a new row-level access control policy, the default value ALL
will be used if you do not specify the operations that will be affected.

Row-level access control policies can be applied to a specified user (role) or to all
users (PUBLIC). For a new row-level access control policy, the default value
PUBLIC will be used if you do not specify the user that will be affected.

Precautions
● Row-level access control policies can be defined for row-store tables, row-

store partitioned tables, column-store tables, column-store partitioned tables,
replication tables, unlogged tables, and hash tables.

● Row-level access control policies cannot be defined for HDFS tables, foreign
tables, and temporary tables.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 485



● Row-level access control policies cannot be defined for views.
● A maximum of 100 row-level access control policies cannot be defined for a

table.
● System administrators are not affected by row-level access control policies

and can view all data in a table.
● Tables queried by using SQL statements, views, functions, and stored

procedures are affected by row-level access control policies.
● The type of a column that a row-level access control policy depends on

cannot be changed. For example, the following modifications are not
supported:
ALTER TABLE public.all_data ALTER COLUMN role TYPE text;

Syntax
CREATE [ ROW LEVEL SECURITY ] POLICY policy_name ON table_name
    [ AS { PERMISSIVE | RESTRICTIVE } ]
    [ FOR { ALL | SELECT | UPDATE | DELETE } ]
    [ TO { role_name | PUBLIC } [, ...] ]
    USING ( using_expression )

Parameter Description
● policy_name

Specifies the name of a row-level access control policy to be created. The
names of row-level access control policies for a table must be unique.

● table_name
Specifies the name of a table to which a row-level access control policy is
applied.

● PERMISSIVE
Specifies that the row-level access control policy is to be created as a
permissive policy. For a given query, all applicable permissive policies are
combined using the OR operator. Row-level access control policies are
permissive by default.

● RESTRICTIVE
Specifies that the row-level access control policy is to be created as a
restrictive policy. For a given query, all applicable restrictive policies are
combined using the AND operator.

NO TICE

At least one permissive policy is required to grant access to data records. If
only restrictive policies are used, no records will be accessible. When both
permissive and restrictive policies are used, a record is accessible only when it
passes at least one permissive policy and all restrictive policies.

● command
Specifies the SQL operations affected by a row-level access control policy,
including ALL, SELECT, UPDATE, and DELETE. If this parameter is not
specified, the default value ALL will be used, covering SELECT, UPDATE, and
DELETE.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 486



If command is set to SELECT, only tuple data that meets the condition (the
return value of using_expression is TRUE) can be queried. The operations that
are affected include SELECT, UPDATE.... RETURNING, and DELETE...
RETURNING.
If command is set to UPDATE, only tuple data that meets the condition (the
return value of using_expression is TRUE) can be updated. The operations
that are affected include UPDATE, UPDATE ... RETURNING, and SELECT ...
FOR UPDATE/SHARE.
If command is set to DELETE, only tuple data that meets the condition (the
return value of using_expression is TRUE) can be deleted. The operations that
are affected include DELETE and DELETE ... RETURNING.
The following table describes the relationship between row-level access
control policies and SQL statements.

Table 12-22 Relationship between row-level security policies and SQL
statements

Command SELECT/ALL
Policy

UPDATE/ALL
Policy

DELETE/ALL
Policy

SELECT Existing row No No

SELECT FOR
UPDATE/SHARE

Existing row Existing row No

UPDATE No Existing row No

UPDATE
RETURNING

Existing row Existing row No

DELETE No No Existing row

DELETE
RETURNING

Existing row No Existing row

 
● role_name

Specifies database users affected by a row-level access control policy.
If this parameter is not specified, the default value PUBLIC will be used,
indicating that all database users will be affected. You can specify multiple
affected database users.

NO TICE

System administrators are not affected by row access control.

● using_expression
Specifies an expression defined for a row-level access control policy (return
type: boolean).
The expression cannot contain aggregate functions and window functions. In
the statement rewriting phase of a query, if row-level access control for a
data table is enabled, the expressions that meet the specified conditions will

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 487



be added to the plan tree. The expression is calculated for each tuple in the
data table. For SELECT, UPDATE, and DELETE, row data is visible to the
current user only when the return value of the expression is TRUE. If the
expression returns FALSE, the tuple is invisible to the current user. In this case,
the user cannot view the tuple through the SELECT statement, update the
tuple through the UPDATE statement, or delete the tuple through the
DELETE statement.

Examples
Create users alice and bob.

CREATE ROLE alice PASSWORD 'password1'
CREATE ROLE bob PASSWORD 'password2';

Create the data table public.all_data.

CREATE TABLE public.all_data(id int, role varchar(100), data varchar(100));

Insert data into the data table.

INSERT INTO all_data VALUES(1, 'alice', 'alice data');
INSERT INTO all_data VALUES(2, 'bob', 'bob data');
INSERT INTO all_data VALUES(3, 'peter', 'peter data');

Grant the read permission for the all_data table to users alice and bob.

GRANT SELECT ON all_data TO alice, bob;

Enable row-level access control.

ALTER TABLE all_data ENABLE ROW LEVEL SECURITY;

Create a row-level access control policy to specify that the current user can view
only its own data.

CREATE ROW LEVEL SECURITY POLICY all_data_rls ON all_data USING(role = CURRENT_USER);

View information about the all_data table.

\d+ all_data
                               Table "public.all_data"
 Column |          Type          | Modifiers | Storage  | Stats target | Description
--------+------------------------+-----------+----------+--------------+-------------
 id     | integer                |           | plain    |              |
 role   | character varying(100) |           | extended |              |
 data   | character varying(100) |           | extended |              |
Row Level Security Policies:
    POLICY "all_data_rls"
      USING (((role)::name = "current_user"()))
Has OIDs: no
Distribute By: HASH(id)
Location Nodes: ALL DATANODES
Options: orientation=row, compression=no, enable_rowsecurity=true

Run SELECT.

SELECT * FROM all_data;
 id | role  |    data
----+-------+------------
  1 | alice | alice data
  2 | bob   | bob data
  3 | peter | peter data
(3 rows)

EXPLAIN(COSTS OFF) SELECT * FROM all_data;

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 488



         QUERY PLAN
----------------------------
 Streaming (type: GATHER)
   Node/s: All datanodes
   ->  Seq Scan on all_data
(3 rows)

Switch to the alice user.

set role alice password 'password1';

Perform the SELECT operation.

SELECT * FROM all_data;
 id | role  |    data
----+-------+------------
  1 | alice | alice data
(1 row)

EXPLAIN(COSTS OFF) SELECT * FROM all_data;
                           QUERY PLAN
----------------------------------------------------------------
 Streaming (type: GATHER)
   Node/s: All datanodes
   ->  Seq Scan on all_data
         Filter: ((role)::name = 'alice'::name)
 Notice: This query is influenced by row level security feature
(5 rows)

Helpful Links

DROP ROW LEVEL SECURITY POLICY

12.41 CREATE PROCEDURE

Function

CREATE PROCEDURE creates a stored procedure.

Precautions
● The precision values (if any) of the parameters or return values of a stored

procedure are not checked.
● When creating a stored procedure, you are advised to display the specified

schema for the operations on the table objects in the stored procedure
definition. Otherwise, the stored procedure may fail to be executed.

● current_schema and search_path specified by SET during stored procedure
creation are invalid. search_path and current_schema before and after
function execution should be the same.

● If a stored procedure has output parameters, the SELECT statement uses the
default values of the output parameters when calling the procedure. When
the CALL statement calls the stored procedure, it requires that the output
parameter values are adapted to Oracle. When the CALL statement calls a
non-overloaded function, output parameters must be specified. When the
CALL statement calls an overloaded PACKAGE function, it can use the default
values of the output parameters. For details, see examples in CALL.

● A stored procedure with the PACKAGE attribute can use overloaded functions.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 489



● When you create a procedure, you cannot insert aggregate functions or other
functions out of the average function.

Syntax
CREATE [ OR REPLACE ] PROCEDURE procedure_name
    [ ( {[ argmode ] [ argname ] argtype [ { DEFAULT | := | = } expression ]}[,...]) ]
    [
       { IMMUTABLE | STABLE | VOLATILE }
       | { SHIPPABLE | NOT SHIPPABLE }
       | {PACKAGE}
       | [ NOT ] LEAKPROOF
       | { CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT }
       | {[ EXTERNAL ] SECURITY INVOKER | [ EXTERNAL ] SECURITY DEFINER | AUTHID DEFINER | AUTHID 
CURRENT_USER}
       | COST execution_cost
       | ROWS result_rows
       | SET configuration_parameter { [ TO | = ] value | FROM CURRENT }
    ][ ... ]
 { IS | AS } 
plsql_body 
/

Parameter Description
● OR REPLACE

Replaces the original definition when two stored procedures are with the
same name.

● procedure_name
Specifies the name of the stored procedure that is created (optionally with
schema names).
Value range: a string. It must comply with the naming convention.

● argmode
Specifies the mode of an argument.

NO TICE

VARIADIC specifies arguments of array types.

Value range: IN, OUT, IN OUT, INOUT, and VARIADIC. The default value is
IN. Only the argument of OUT mode can be followed by VARIADIC. The
parameters of OUT and INOUT cannot be used in procedure definition of
RETURNS TABLE.

● argname
Specifies the name of an argument.
Value range: a string. It must comply with the naming convention.

● argtype
Specifies the type of a parameter.
Value range: A valid data type.

● IMMUTABLE, STABLE, ...
Specifies a constraint. Parameters here are similar to those of CREATE
FUNCTION. For details, see 5.18.17.13-CREATE FUNCTION.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 490



● plsql_body
Indicates the PL/SQL stored procedure body.

NO TICE

When you create a user, or perform other operations requiring password input
in a stored procedure, the system catalog and csv log records the unencrypted
password. Therefore, you are advised not to perform such operations in the
stored procedure.

NO TE

No specific order is applied to argument_name and argmode. The following order is
advised: argument_name, argmode, and argument_type.

Examples

Create a stored procedure.

CREATE OR REPLACE PROCEDURE prc_add
(
    param1    IN   INTEGER,
    param2    IN OUT  INTEGER
)
AS
BEGIN
   param2:= param1 + param2;
   dbms_output.put_line('result is: '||to_char(param2));
END;
/

Call the stored procedure.

SELECT prc_add(2,3);

Create a stored procedure whose parameter type is VARIADIC.

CREATE OR REPLACE PROCEDURE pro_variadic (var1 VARCHAR2(10) DEFAULT 'hello!',var4 VARIADIC int4[])
AS
BEGIN
    dbms_output.put_line(var1);
END;
/

Execute the stored procedure.

SELECT pro_variadic(var1=>'hello', VARIADIC var4=> array[1,2,3,4]);

Create a stored procedure with the PACKAGE attribute.

create or replace procedure package_func_overload(col int, col2 out varchar)
package
as
declare
    col_type text;
begin
     col2 := '122';
         dbms_output.put_line('two varchar parameters ' || col2);
end;
/

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 491



Helpful Links

DROP PROCEDURE, CALL

12.42 CREATE RESOURCE POOL

Function

CREATE RESOURCE POOL creates a resource pool and specifies the Cgroup for
the resource pool.

Precautions

As long as the current user has CREATE permission, it can create a resource pool.

Syntax
CREATE RESOURCE POOL pool_name
    [WITH ({MEM_PERCENT=pct | CONTROL_GROUP="group_name" | ACTIVE_STATEMENTS=stmt | 
MAX_DOP = dop | MEMORY_LIMIT='memory_size' | io_limits=io_limits | io_priority='io_priority' | 
nodegroup="nodegroupname" | is_foreign=boolean }[, ... ])];

Parameter Description
● pool_name

Specifies the name of a resource pool.
The name of a resource pool cannot be same as that of an existing resource
pool.
Value range: a string. It must comply with the naming convention.

● group_name
Specifies the name of a Cgroup.

NO TE

● You can use either double quotation marks ("") or single quotation mark ('') in the
syntax when setting the name of a Cgroup.

● The value of group_name is case-sensitive.

● If group_name is not specified, the string "Medium" will be used by default in the
syntax, indicating the Medium Timeshare Cgroup under DefaultClass.

● If an administrator specifies a Workload Cgroup under Class, for example,
control_group set to class1:workload1, the resource pool will be associated with
the workload1 Cgroup under class1. The level of Workload can also be specified.
For example, control_group is set to class1:workload1:1.

● If a database user specifies the Timeshare string (Rush, High, Medium, or Low) in
the syntax, for example, if control_group is set to High, the resource pool will be
associated with the High Timeshare Cgroup under DefaultClass.

● In multi-tenant scenarios, the Cgroup associated with a group resource pool is a
Class Cgroup, and that associated with a service resource pool is a Workload
Cgroup. Additionally, switching Cgroups between different resource pools is not
allowed.

Value range: a string. It must comply with the rule in the description,
specifying an existing Cgroup.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 492



● stmt
Specifies the maximum number of statements that can be concurrently
executed in a resource pool.
Value range: Numeric data ranging from -1 to INT_MAX.

● dop
This is a reserved parameter.
Value range: Numeric data ranging from 1 to INT_MAX.

● memory_size
Specifies the maximum storage for a resource pool.
Value range: a string, from 1KB to 2047GB.

● mem_percent
Specifies the proportion of available resource pool memory to the total
memory or group user memory.
In multi-tenant scenarios, mem_percent of group users or service users
ranges from 1 to 100. The default value is 20.
In common scenarios, mem_percent of common users ranges from 0 to 100.
The default value is 0.

NO TE

When both of mem_percent and memory_limit are specified, only mem_percent
takes effect.

● io_limits
Specifies the upper limit of IOPS in a resource pool.
The IOPS is counted by ones for column storage and by 10 thousands for row
storage.

● io_priority
Specifies the I/O priority for jobs that consume many I/O resources. It takes
effect when the I/O usage reaches 90%.
There are three priorities: Low, Medium, and High. If you do not want to
control I/O resources, use the default value None.

NO TE

The settings of io_limits and io_priority are valid only for complex jobs, such as batch
import (using INSERT INTO SELECT, COPY FROM, or CREATE TABLE AS), complex
queries involving over 500 MB data on each DN, and VACUUM FULL.

Examples
This example assumes that Cgroups have been created by users in advance.

Create a default resource pool, and associate it with the Medium Timeshare
Cgroup under Workload under DefaultClass.

CREATE RESOURCE POOL pool1;

Create a resource pool, and associate it with the High Timeshare Cgroup under
Workload under DefaultClass.

CREATE RESOURCE POOL pool2 WITH (CONTROL_GROUP="High");

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 493



Create a resource pool, and associate it with the Low Timeshare Cgroup under
Workload under class1.

CREATE RESOURCE POOL pool3 WITH (CONTROL_GROUP="class1:Low");

Create a resource pool, and associate it with the wg1 Workload Cgroup under
class1.

CREATE RESOURCE POOL pool4 WITH (CONTROL_GROUP="class1:wg1");

Create a resource pool, and associate it with the wg2 Workload Cgroup under
class1.

CREATE RESOURCE POOL pool5 WITH (CONTROL_GROUP="class1:wg2:3");

Helpful Links
ALTER RESOURCE POOL, DROP RESOURCE POOL

12.43 CREATE ROLE

Function
Create a role.

A role is an entity that has own database objects and permissions. In different
environments, a role can be considered a user, a group, or both.

Important Notes
● CREATE ROLE adds a role to a database. The role does not have the login

permission.
● Only the user who has the CREATE ROLE permission or a system

administrator is allowed to create roles.

Syntax
CREATE ROLE role_name [ [ WITH ] option [ ... ] ] [ ENCRYPTED | UNENCRYPTED ] { PASSWORD | 
IDENTIFIED BY } { 'password' | DISABLE };

The syntax of role information configuration clause option is as follows:
{SYSADMIN | NOSYSADMIN}
    | {AUDITADMIN | NOAUDITADMIN}
    | {CREATEDB | NOCREATEDB}
    | {USEFT | NOUSEFT}
    | {CREATEROLE | NOCREATEROLE}
    | {INHERIT | NOINHERIT}
    | {LOGIN | NOLOGIN}
    | {REPLICATION | NOREPLICATION}
    | {INDEPENDENT | NOINDEPENDENT}
    | {VCADMIN | NOVCADMIN}
    | CONNECTION LIMIT connlimit
    | VALID BEGIN 'timestamp'
    | VALID UNTIL 'timestamp'
    | RESOURCE POOL 'respool'
    | USER GROUP 'groupuser'
    | PERM SPACE 'spacelimit'
    | TEMP SPACE 'tmpspacelimit'
    | SPILL SPACE 'spillspacelimit'
    | NODE GROUP logic_cluster_name

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 494



    | IN ROLE role_name [, ...]
    | IN GROUP role_name [, ...]
    | ROLE role_name [, ...]
    | ADMIN rol e_name [, ...]
    | USER role_name [, ...]
    | SYSID uid
    | DEFAULT TABLESPACE tablespace_name
    | PROFILE DEFAULT
    | PROFILE profile_name
    | PGUSER
    | AUTHINFO 'authinfo'
    | PASSWORD EXPIRATOIN period

Parameter Description
● role_name

Role name
Value range: a string. It must comply with the naming convention. and can
contain a maximum of 63 characters.

● password
Specifies the login password.
A password must:
– Contain at least eight characters. This is the default length.
– Differ from the user name or the user name spelled backwards.
– Contains at least three of the following four character types: uppercase

letters, lowercase letters, digits, and special characters, including: ~!@#$
%^&*()-_=+\|[{}];:,<.>/?. If you use characters other than the four types, a
warning is displayed, but you can still create the password.

Value range: a string
● DISABLE

By default, you can change your password unless it is disabled. Use this
parameter to disable the password of a user. After the password of a user is
disabled, the password will be deleted from the system. The user can connect
to the database only through external authentication, for example, IAM
authentication, Kerberos authentication, or LDAP authentication. Only
administrators can enable or disable a password. Common users cannot
disable the password of an initial user. To enable a password, run ALTER USER
and specify the password.

● ENCRYPTED | UNENCRYPTED
Determines the password stored in the system is encrypted or unencrypted. (If
neither is specified, the password status is determined by
password_encryption_type.) According to product security requirements, the
password must be stored encrypted. Therefore, UNENCRYPTED is forbidden in
GaussDB(DWS). If the presented password string is already in SHA256-
encrypted format, then it is stored encrypted as-is, regardless of whether
ENCRYPTED or UNENCRYPTED is specified (since the system cannot decrypt
the specified encrypted password string). This allows reloading of encrypted
passwords during dump/restore.

● SYSADMIN | NOSYSADMIN
Determines whether a new role is a system administrator. Roles having the
SYSADMIN attribute have the highest permission.
Value range: If not specified, NOSYSADMIN is the default.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 495



● AUDITADMIN | NOAUDITADMIN
Determines whether a role has the audit and management attributes.
If not specified, NOAUDITADMIN is the default.

● CREATEDB | NOCREATEDB
Defines a role's ability to create databases.
A new role does not have the permission to create databases.
Value range: If not specified, NOCREATEDB is the default.

● USEFT | NOUSEFT
Determines whether a new role can perform operations on foreign tables,
such as creating, deleting, modifying, and reading/witting foreign tables.
A new role does not have permissions for these operations.
The default value is NOUSEFT.

● CREATEROLE | NOCREATEROLE
Determines whether a role will be permitted to create new roles (that is,
execute CREATE ROLE and CREATE USER). A role with the CREATEROLE
permission can also modify and delete other roles.
Value range: If not specified, NOCREATEROLE is the default.

● INHERIT | NOINHERIT
Determines whether a role "inherits" the permissions of roles it is a member
of. You are not advised to execute them.

● LOGIN | NOLOGIN
Determines whether a role is allowed to log in to a database. A role having
the LOGIN attribute can be thought of as a user.
Value range: If not specified, NOLOGIN is the default.

● REPLICATION | NOREPLICATION
Determines whether a role is allowed to initiate streaming replication or put
the system in and out of backup mode. A role having the REPLICATION
attribute is a highly privileged role, and should only be used on roles used for
replication.
If not specified, NOREPLICATION is the default.

● INDEPENDENT | NOINDEPENDENT
Defines private, independent roles. For a role with the INDEPENDENT
attribute, administrators' rights to control and access this role are separated.
Specific rules are as follows:
– Administrators have no rights to add, delete, query, modify, copy, or

authorize the corresponding table objects without the authorization from
the INDEPENDENT role.

– Administrators have no rights to modify the inheritance relationship of
the INDEPENDENT role without the authorization from this role.

– Administrators have no rights to modify the owner of the table objects
for the INDEPENDENT role.

– Administrators have no rights to delete the INDEPENDENT attribute of
the INDEPENDENT role.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 496



– Administrators have no rights to change the database password of the
INDEPENDENT role. The INDEPENDENT role must manage its own
password, which cannot be reset if lost.

– The SYSADMIN attribute of a user cannot be changed to the
INDEPENDENT attribute.

● VCADMIN | NOVCADMIN
Defines the role of a logical cluster administrator. A logical cluster
administrator has the following more permissions than common users:
– Create, modify, and delete resource pools in the associated logical cluster.
– Grant the access permission for the associated logical cluster to other

users or roles, or reclaim the access permission from those users or roles.
● CONNECTION LIMIT

Indicates how many concurrent connections the role can make.
Value range: Integer, >=-1. The default value is -1, which means unlimited.

NO TICE

To ensure the proper running of a cluster, the minimum value of
CONNECTION LIMIT is the number of CNs in the cluster, because when a
cluster runs ANALYZE on a CN, other CNs will connect to the running CN for
metadata synchronization. For example, if there are three CNs in the cluster,
set CONNECTION LIMIT to 3 or a greater value.

● VALID BEGIN
Sets a date and time when the role's password becomes valid. If this clause is
omitted, the password will be valid for all time.

● VALID UNTIL
Sets a date and time after which the role's password is no longer valid. If this
clause is omitted, the password will be valid for all time.

● RESOURCE POOL
Sets the name of resource pool used by the role, and the name belongs to the
system catalog: pg_resource_pool.

● USER GROUP 'groupuser'
Creates a sub-user. For details, see "Resource Load Management > Tenant
Management > User Level Management" in the Developer Guide.

● PERM SPACE
Sets the storage space of the user permanent table.

● TEMP SPACE
Sets the storage space of the user temporary table.

● SPILL SPACE
Sets the operator disk flushing space of the user.

● NODE GROUP
Specifies the name of the logical cluster associated with a user. If the name
contains uppercase characters or special characters, enclose the name with
double quotation marks.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 497



● IN ROLE
Lists one or more existing roles whose permissions will be inherited by a new
role. You are not advised to execute them.

● IN GROUP
Indicates an obsolete spelling of IN ROLE. You are not advised to execute
them.

● ROLE
Lists one or more existing roles which are automatically added as members of
the new role.

● ADMIN
Is similar to ROLE. However, the roles after ADMIN can grant rights of new
roles to other roles.

● USER
Indicates an obsolete spelling of the ROLE clause.

● SYSID
The SYSID clause is ignored.

● DEFAULT TABLESPACE
The DEFAULT TABLESPACE clause is ignored.

● PROFILE
The PROFILE clause is ignored.

● PGUSER
This attribute is used to be compatible with open-source Postgres
communication. An open-source Postgres client interface (Postgres 9.2.19 is
recommended) can use a database user having this attribute to connect to
the database.

NO TICE

This attribute only ensures compatibility with the connection process.
Incompatibility caused by kernel differences between this product and
Postgres cannot be solved using this attribute.
Users having the PGUSER attribute are authenticated in a way different from
other users. Error information reported by the open-source client may cause
the attribute to be enumerated. Therefore, you are advised to use a client of
this product. Example:
# normaluser is a user that does not have the PGUSER attribute. psql is the Postgres client tool.
pg@MPPDB04:~> psql -d postgres -p 8000 -h 10.11.12.13 -U normaluser
psql: authentication method 10 not supported

# pguser is a user having the PGUSER attribute.
pg@MPPDB04:~> psql -d postgres -p 8000 -h 10.11.12.13 -U pguser
Password for user pguser:

● AUTHINFO 'authinfo'
This attribute is used to specify the role authentication type. authinfo is the
description character string, which is case sensitive. Only the LDAP type is
supported. Its description character string is ldap. LDAP authentication is an

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 498



external authentication mode. Therefore, PASSWORD DISABLE must be
specified.

NO TICE

● Additional information about LDAP authentication can be added to
authinfo, for example, fulluser in LDAP authentication, which is equivalent
to ldapprefix+username+ldapsuffix. If the content of authinfo is ldap,
the role authentication type is LDAP. In this case, the ldapprefix and
ldapsuffix information is provided by the corresponding record in the
pg_hba.conf file.

● When executing the ALTER ROLE command, users are not allowed to
change the authentication type. Only LDAP users are allowed to modify
LDAP attributes.

● PASSWORD EXPIRATOIN period

Number of days before the login password of the role expires. The user needs
to change the password in time before the login password expires. If the login
password expires, the user cannot log in to the system. In this case, the user
needs to ask the administrator to set a new login password.

Value range: an integer greater than or equal to -1. The default value is -1,
indicating that the password does not expire. The value 0 indicates that the
password expires immediately.

Examples

Create a role manager.

CREATE ROLE manager IDENTIFIED BY 'password';

Create a role with a validity from January 1, 2015 to January 1, 2026.

CREATE ROLE miriam WITH LOGIN PASSWORD 'password' VALID BEGIN '2015-01-01' VALID UNTIL 
'2026-01-01';

Create a role. The authentication type is LDAP. Other LDAP authentication
information is provided by pg_hba.conf.

CREATE ROLE role1 WITH LOGIN AUTHINFO 'ldap' PASSWORD DISABLE;

Create a role. The authentication type is LDAP. The fulluser information for LDAP
authentication is specified during the role creation. In this case, LDAP is case
sensitive and must be enclosed in single quotation marks.

CREATE ROLE role2 WITH LOGIN AUTHINFO 'ldapcn=role2,cn=user,dc=lework,dc=com' PASSWORD DISABLE;

Create a role and set the validity period of the login password to 30 days.

CREATE ROLE role3 WITH LOGIN PASSWORD 'password' PASSWORD EXPIRATION 30;

Links

SET ROLE, ALTER ROLE, DROP ROLE, GRANT, REVOKE

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 499



12.44 CREATE SCHEMA

Function
CREATE SCHEMA creates a schema.

Named objects are accessed either by "qualifying" their names with the schema
name as a prefix, or by setting a search path that includes the desired schema(s).
When creating named objects, you can also use the schema name as a prefix.

Optionally, CREATE SCHEMA can include sub-commands to create objects within
the new schema. The sub-commands are treated essentially the same as separate
commands issued after creating the schema, If the AUTHORIZATION clause is
used, all the created objects are owned by this user.

Precautions
● As long as the current user has the CREATE permission, the user can create a

schema.
● The owner of an object created by a system administrator in a schema with

the same name as a common user is the common user, not the system
administrator.

Syntax
● Create a schema based on a specified name.

CREATE SCHEMA schema_name 
    [ AUTHORIZATION user_name ] [ WITH PERM SPACE 'space_limit'] [ schema_element [ ... ] ];

● Create a schema based on a user name.
CREATE SCHEMA AUTHORIZATION user_name [ WITH PERM SPACE 'space_limit'] [ schema_element 
[ ... ] ];

Parameter Description
● schema_name

Indicates the name of the schema to be created.

NO TICE

The name must be unique,
and cannot start with pg_.

Value range: a string. It must comply with the naming convention rule.
● AUTHORIZATION user_name

Indicates the name of the user who will own this schema. If schema_name is
not specified, user_name will be used as the schema name. In this case,
user_name can only be a role name.
Value range: An existing user name/role.

● WITH PERM SPACE 'space_limit'

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 500



Indicates the storage upper limit of the permanent table in the specified
schema. If space_limit is not specified, the space is not limited.
Value range: A string consists of an integer and unit. The unit can be
K/M/G/T/P currently. The unit of parsed value is K and cannot exceed the
range that can be expressed in 64 bits, which is 1 KB to 9007199254740991
KB.

● schema_element
Indicates an SQL statement defining an object to be created within the
schema. Currently, only CREATE TABLE, CREATE VIEW, CREATE INDEX,
CREATE PARTITION, and GRANT are accepted as clauses within CREATE
SCHEMA.
Objects created by sub-commands are owned by the user specified by
AUTHORIZATION.

NO TE

If objects in the schema on the current search path are with the same name, specify the
schemas different objects are in. You can run the SHOW SEARCH_PATH command to check
the schemas on the current search path.

Examples
Create a schema named role1 for the role1 role. The owner of the films and
winners tables created by the clause is role1.

CREATE SCHEMA AUTHORIZATION role1
CREATE TABLE films (title text, release date, awards text[])      
CREATE VIEW winners AS         
SELECT title, release FROM films WHERE awards IS NOT NULL;

Helpful Links
ALTER SCHEMA, DROP SCHEMA

12.45 CREATE SEQUENCE

Function
CREATE SEQUENCE adds a sequence to the current database. The owner of a
sequence is the user who creates the sequence.

Precautions
● A sequence is a special table that stores arithmetic sequence. Such a table is

controlled by DBMS. It has no actual meaning and is usually used to generate
unique identifiers for rows or tables.

● If a schema name is given, the sequence is created in the specified schema;
otherwise, it is created in the current schema. The sequence name must be
different from the names of other sequences, tables, indexes, views in the
same schema.

● After the sequence is created, functions NEXTVAL() and
generate_series(1,N) insert data to the table. Make sure that the number of
times for invoking NEXTVAL is greater than or equal to N+1. Otherwise,

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 501



errors will be reported because the number of times for invoking the function
generate_series() is N+1.

● A sequence cannot be created in the template1 database.

Syntax
CREATE SEQUENCE name [ INCREMENT [ BY ] increment ]
    [ MINVALUE minvalue | NO MINVALUE | NOMINVALUE ] [ MAXVALUE maxvalue | NO MAXVALUE | 
NOMAXVALUE] 
    [ START [ WITH ] start ] [ CACHE cache ] [ [ NO ] CYCLE | NOCYCLE ] 
    [ OWNED BY { table_name.column_name | NONE } ];

Parameter Description
● name

Specifies the name of a sequence to be created.
Value range: The value can contain only lowercase letters, uppercase letters,
special characters #_$, and digits.

● increment
Specifies the step for a sequence. A positive generates an ascending sequence,
and a negative generates a decreasing sequence.
The default value is 1.

● MINVALUE minvalue | NO MINVALUE| NOMINVALUE
Specifies the minimum value of a sequence. If MINVALUE is not declared, or
NO MINVALUE is declared, the default value of the ascending sequence is 1,
and that of the descending sequence is -263-1. NOMINVALUE is equivalent to
NO MINVALUE.

● MAXVALUE maxvalue | NO MAXVALUE| NOMAXVALUE
Specifies the maximum value of a sequence. If MAXVALUE is not declared or
NO MAXVALUE is declared, the default value of the ascending sequence is
263-1, and that of the descending sequence is -1. NOMAXVALUE is equivalent
to NO MAXVALUE.

● start
Specifies the start value of the sequence. The default value for ascending
sequences is minvalue and for descending sequences maxvalue.

● cache
Specifies the number of sequence numbers stored in the memory for quick
access. Within a cache period, the CN does not request a sequence number
from the GTM. Instead, the CN uses the sequence number that is locally
applied for in advance.
Default value 1 indicates that one value can be generated each time.

NO TE

● It is not recommended that cache and maxvalue or minvalue be defined at the
same time. The continuity of sequences cannot be ensured after cache is defined
because unacknowledged sequences may be generated, causing waste of sequence
number segments.

● You are advised not to set a large value for cache (less than 100000000).
Otherwise, it takes a long time to cache the sequence number (the first NEXTVAL
in each cache period). Set a proper value for cache based on services to ensure
quick access without wasting sequence numbers.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 502



● CYCLE
Used to ensure that sequences can recycle after the number of sequences
reaches maxvalue or minvalue.
If you declare NO CYCLE, any invocation of nextval would return an error
after the sequence reaches its maximum value.
NOCYCLE is equivalent to NO CYCLE.
The default value is NO CYCLE.
If the sequence is defined as CYCLE, the sequence uniqueness cannot be
ensured.

● OWNED BY-
Associates a sequence with a specified column included in a table. In this way,
the sequence will be deleted when you delete its associated field or the table
where the field belongs. The associated table and sequence must be owned
by the same user and in the same schema. OWNED BY only establishes the
association between a table column and the sequence. The sequence is not
created for this column.
If the default value is OWNED BY NONE, indicating that such association
does not exist.

NO TICE

You are not advised to use the sequence created using OWNED BY in other
tables. If multiple tables need to share a sequence, the sequence must not
belong to a specific table.

Examples
Create an ascending sequence named serial, which starts from 101:

CREATE SEQUENCE serial
 START 101
 CACHE 20;

Select the next number from the sequence:

SELECT nextval('serial');
 nextval 
 ---------
      101

Select the next number from the sequence:

SELECT nextval('serial');
 nextval 
 ---------
      102

Create a sequence associated with the table:

CREATE TABLE customer_address
(
    ca_address_sk             integer               not null,
    ca_address_id             char(16)              not null,
    ca_street_number          char(10)                      ,
    ca_street_name            varchar(60)                   ,
    ca_street_type            char(15)                      ,

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 503



    ca_suite_number           char(10)                      ,
    ca_city                   varchar(60)                   ,
    ca_county                 varchar(30)                   ,
    ca_state                  char(2)                       ,
    ca_zip                    char(10)                      ,
    ca_country                varchar(20)                   ,
    ca_gmt_offset             decimal(5,2)                  ,
    ca_location_type          char(20)                     
) ;

CREATE SEQUENCE serial1
 START 101
 CACHE 20
OWNED BY customer_address.ca_address_sk;

Use SERIAL to create a serial table serial_table for primary key auto-increment.

CREATE TABLE serial_table(a int, b serial);
INSERT INTO serial_table (a) VALUES (1),(2),(3);
SELECT * FROM serial_table ORDER BY b;
 a | b
---+---
 1 | 1
 2 | 2
 3 | 3
(3 rows)

Helpful Links

DROP SEQUENCE ALTER SEQUENCE

12.46 CREATE SERVER

Function

CREATE SERVER creates an external server.

An external server stores information of HDFS clusters, OBS servers, DLI
connections, or other homogeneous clusters.

Precautions

By default, only the system administrator can create a foreign server. Otherwise,
creating a server requires permissions on the foreign data wrapper being used. Use
the following syntax to grant permissions:

GRANT USAGE ON FOREIGN DATA WRAPPER fdw_name TO username

fdw_name is the name of the foreign data wrapper, and username is the
username of creating SERVER.

Syntax
CREATE SERVER server_name 
    FOREIGN DATA WRAPPER fdw_name
    OPTIONS ( { option_name ' value ' } [, ...] ) ;

Parameter Description
● server_name

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 504



Name of the foreign server to be created. The server name must be unique in
a database.
Value range: The length must be less than or equal to 63.

● FOREIGN DATA WRAPPER fdw_name
Specifies the name of the foreign data wrapper.
Value range: fdw_name indicates the data wrapper created by the system in
the initial phase of the database. Currently, fdw_name can be hdfs_fdw or
dfs_fdw for the HDFS cluster, and can be gc_fdw for other homogeneous
clusters.

● OPTIONS ( { option_name ' value ' } [, ...] )
Specifies the parameters for the server. The detailed parameter description is
as follows:
– address

Specifies the IP address of the OBS service endpoint or HDFS cluster.
OBS: address is the endpoint of OBS.
HDFS: Specifies the IP address and port number of a NameNode
(metadata node) in the HDFS cluster, or the IP address and port number
of a CN in other homogeneous clusters.
HDFS NameNodes are deployed in primary/secondary mode for HA. Add
the addresses of the primary and secondary NameNodes to address.
When accessing HDFS, GaussDB(DWS) dynamically searches for the
active NameNode.

NO TE

address option must exist.
If the server type is DLI, the address is the OBS address stored on DLI.

– hdfscfgpath
This parameter is available only when type is HDFS.
You can set the hdfscfgpath parameter to specify the HDFS
configuration file path. GaussDB(DWS) accesses the HDFS cluster based
on the connection configuration mode and security mode specified in the
HDFS configuration file stored in that path. If the HDFS cluster is
connected in non-secure mode, data transmission encryption is not
supported.
If the address option is not specified, the address specified by
hdfscfgpath in the configuration file is used by default.

– encrypt
Specifies whether data is encrypted. This parameter is available only
when type is OBS. The default value is off.
Value range:

▪ on indicates that data is encrypted.

▪ off indicates that data is not encrypted.

– access_key
Specifies the access key (AK) (obtained by users from the OBS console)
used for the OBS access protocol. When you create a foreign table, its AK

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 505



value is encrypted and saved to the metadata table of the database. This
parameter is available only when type is OBS.

– secret_access_key

Specifies the secret access key (SK) (obtained by users from the OBS
console) used for the OBS access protocol. When you create a foreign
table, its SK value is encrypted and saved to the metadata table of the
database. This parameter is available only when type is OBS.

– type

Specifies the dfs_fdw connection type.

Value range:

▪ OBS indicates that OBS is connected.

▪ HDFS indicates that HDFS is connected.

▪ DLI indicates that DLI is connected.

– dli_address

Specifies the endpoint of the DLI service. This parameter is available only
when type is DLI.

– dli_access_key

Specifies the access key (AK) (obtained by users from the DLI console)
used for the DLI access protocol. When you create a foreign table, its AK
value is encrypted and saved to the metadata table of the database. This
parameter is available only when type is DLI.

– dli_secret_access_key

Specifies the secret access key (SK) (obtained by users from the DLI
console) used for the DLI access protocol. When you create a foreign
table, its SK value is encrypted and saved to the metadata table of the
database. This parameter is available only when type is DLI.

– dbname

Specifies the database name of a remote cluster to be connected. This
parameter is used for collaborative analysis.

– username

Specifies the username of a remote cluster to be connected. This
parameter is used for collaborative analysis.

– password

Specifies the user password of a remote cluster to be connected. This
parameter is used for collaborative analysis.

NO TE

When an on-premises cluster is migrated to the cloud, the password in the server
configuration exported from the on-premises cluster is in ciphertext. The
encryption and decryption keys of the on-premises cluster are different from
those of the cloud cluster. Therefore, if CREATE SERVER is executed on the cloud
cluster, the execution fails and a decryption failure error is reported. In this case,
you need to manually change the password in CREATE SERVER to a plaintext
password.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 506



Examples
Create the hdfs_server server, in which hdfs_fdw is the built-in foreign data
wrapper.

CREATE SERVER hdfs_server FOREIGN DATA WRAPPER HDFS_FDW OPTIONS 
   (address '10.10.0.100:25000,10.10.0.101:25000',
    hdfscfgpath '/opt/hadoop_client/HDFS/hadoop/etc/hadoop', 
    type 'HDFS'
) ;

Create the obs_server server, in which dfs_fdw is the built-in foreign data
wrapper.

CREATE SERVER obs_server FOREIGN DATA WRAPPER DFS_FDW OPTIONS ( 
  address 'obs.xxx.myhuaweicloud.com', 
   access_key 'xxxxxxxxx', 
  secret_access_key 'yyyyyyyyyyyyy', 
  type 'obs'
);

Create the dli_server server, in which dfs_fdw is the built-in foreign data wrapper.

CREATE SERVER dli_server FOREIGN DATA WRAPPER DFS_FDW OPTIONS ( 
  address 'obs.xxx.myhuaweicloud.com', 
  access_key 'xxxxxxxxx', 
  secret_access_key 'yyyyyyyyyyyyy', 
  type 'dli',
  dli_address 'dli.xxx.myhuaweicloud.com',
  dli_access_key 'xxxxxxxxx',
  dli_secret_access_key 'yyyyyyyyyyyyy'
);

Create another server in the homogeneous cluster, where gc_fdw is the foreign
data wrapper in the database.

CREATE SERVER server_remote FOREIGN DATA WRAPPER GC_FDW OPTIONS 
   (address '10.10.0.100:25000,10.10.0.101:25000',
  dbname 'test', 
  username 'test', 
  password 'xxxxxxxx'
);

Helpful Links

ALTER SERVER DROP SERVER

12.47 CREATE SYNONYM

Function
CREATE SYNONYM is used to create a synonym object. A synonym is an alias of a
database object and is used to record the mapping between database object
names. You can use synonyms to access associated database objects.

Precautions
● The user of a synonym should be its owner.
● If the schema name is specified, create a synonym in the specified schema.

Otherwise create a synonym in the current schema.
● Database objects that can be accessed using synonyms include tables, views,

functions, and stored procedures.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 507



● To use synonyms, you must have the required permissions on associated
objects.

● The following DML statements support synonyms: SELECT, INSERT, UPDATE,
DELETE, EXPLAIN, and CALL.

● The CREATE SYNONYM statement of an associated function or stored
procedure cannot be used in a stored procedure. You are advised to use
synonyms existing in the pg_synonym system catalog in the stored procedure.

Syntax
CREATE [ OR REPLACE ] SYNONYM synonym_name 
    FOR object_name;

Parameter Description
● synonym

Name of a synonym which is created (optionally with schema names)
Value range: a string. It must comply with the identifier naming rules.

● object_name
Name of an object that is associated (optionally with schema names)
Value range: a string. It must comply with the identifier naming rules.

NO TE

object_name can be the name of an object that does not exist.

Examples
Create schema ot.

CREATE SCHEMA ot;

Create table ot.t1 and its synonym t1.

CREATE TABLE ot.t1(id int, name varchar2(10)) DISTRIBUTE BY hash(id);
CREATE OR REPLACE SYNONYM t1 FOR ot.t1;

Use synonym t1.

SELECT * FROM t1;
INSERT INTO t1 VALUES (1, 'ada'), (2, 'bob');
UPDATE t1 SET t1.name = 'cici' WHERE t1.id = 2;

Create synonym v1 and its associated view ot.v_t1.

CREATE SYNONYM v1 FOR ot.v_t1;
CREATE VIEW ot.v_t1 AS SELECT * FROM ot.t1;

Use synonym v1.

SELECT * FROM v1;

Create overloaded function ot.add and its synonym add.

CREATE OR REPLACE FUNCTION ot.add(a integer, b integer) RETURNS integer AS
$$
SELECT $1 + $2
$$
LANGUAGE sql;

CREATE OR REPLACE FUNCTION ot.add(a decimal(5,2), b decimal(5,2)) RETURNS decimal(5,2) AS

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 508



$$
SELECT $1 + $2
$$
LANGUAGE sql;

CREATE OR REPLACE SYNONYM add FOR ot.add;

Use synonym add.

SELECT add(1,2);
SELECT add(1.2,2.3);

Create stored procedure ot.register and its synonym register.

CREATE PROCEDURE ot.register(n_id integer, n_name varchar2(10))
SECURITY INVOKER
AS
BEGIN
    INSERT INTO ot.t1 VALUES(n_id, n_name);
END;
/

CREATE OR REPLACE SYNONYM register FOR ot.register;

Use synonym register to invoke the stored procedure.

CALL register(3,'mia');

Helpful Links

ALTER SYNONYM DROP SYNONYM

12.48 CREATE TABLE

Function

CREATE TABLE creates a table in the current database. The table will be owned by
the user who created it.

Precautions
● For details about the data types supported by column-store tables, see Data

Types Supported by Column-Store Tables.

● It is recommended that the number of column-store and HDFS partitioned
tables do not exceed 1000.

● The primary key constraint and unique constraint in the table must contain a
distribution column.

● If an error occurs during table creation, after it is fixed, the system may fail to
delete the empty disk files created before the last automatic clearance. This
problem seldom occurs.

● Column-store tables support the PARTIAL CLUSTER KEY and table-level
primary key and unique constraints, but do not support table-level foreign key
constraints.

● Only the NULL, NOT NULL, and DEFAULT constant values can be used as
column-store table column constraints.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 509



● Whether column-store tables support a delta table is specified by the
enable_delta parameter. The threshold for storing data into a delta table is
specified by the deltarow_threshold parameter.

● Hot and cold tables support only partitioned column-store tables and depend
on available OBS tablespaces.

● Only the table-level and partition-level tablespaces of a hot or cold table can
be set to general tablespaces.

Syntax
CREATE [ [ GLOBAL | LOCAL ] { TEMPORARY | TEMP } | UNLOGGED ] TABLE [ IF NOT EXISTS ] table_name 
    ({ column_name data_type [ compress_mode ] [ COLLATE collation ] [ column_constraint [ ... ] ]
        | table_constraint
        | LIKE source_table [ like_option [...] ] }
        [, ... ])
    [ WITH ( {storage_parameter = value} [, ... ] ) ]
    [ ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP } ]
    [ COMPRESS | NOCOMPRESS ]
    
    [ DISTRIBUTE BY { REPLICATION | { HASH ( column_name [,...] ) } } ]
    [ TO { GROUP groupname | NODE ( nodename [, ... ] ) } ];

● column_constraint is as follows:
[ CONSTRAINT constraint_name ]
{ NOT NULL |
  NULL |
  CHECK ( expression ) |
  DEFAULT default_expr |
  UNIQUE index_parameters |
  PRIMARY KEY index_parameters }
[ DEFERRABLE | NOT DEFERRABLE | INITIALLY DEFERRED | INITIALLY IMMEDIATE ]

● compress_mode of a column is as follows:
{ DELTA | PREFIX | DICTIONARY | NUMSTR | NOCOMPRESS }

● table_constraint is as follows:
[ CONSTRAINT constraint_name ]
{ CHECK ( expression ) |
  UNIQUE ( column_name [, ... ] ) index_parameters |
  PRIMARY KEY ( column_name [, ... ] ) index_parameters |
  PARTIAL CLUSTER KEY ( column_name [, ... ] ) }
[ DEFERRABLE | NOT DEFERRABLE | INITIALLY DEFERRED | INITIALLY IMMEDIATE ]

● like_option is as follows:
{ INCLUDING | EXCLUDING } { DEFAULTS | CONSTRAINTS | INDEXES | STORAGE | COMMENTS | 
PARTITION | RELOPTIONS | DISTRIBUTION | DROPCOLUMNS | ALL }

● index_parameters is as follows:
[ WITH ( {storage_parameter = value} [, ... ] ) ]

Parameter Description
● UNLOGGED

If this key word is specified, the created table is not a log table. Data written
to unlogged tables is not written to the write-ahead log, which makes them
considerably faster than ordinary tables. However, an unlogged table is
automatically truncated after a crash or unclean shutdown, incurring data
loss risks. The contents of an unlogged table are also not replicated to
standby servers. Any indexes created on an unlogged table are not
automatically logged as well.
Usage scenario: Unlogged tables do not ensure safe data. Users can back up
data before using unlogged tables; for example, users should back up the
data before a system upgrade.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 510



Troubleshooting: If data is missing in the indexes of unlogged tables due to
some unexpected operations such as an unclean shutdown, users should re-
create the indexes with errors.

● GLOBAL | LOCAL
When creating a temporary table, you can specify the GLOBAL or LOCAL
keyword before TEMP or TEMPORARY. Currently, the two keywords are used
to be compatible with the SQL standard. GaussDB(DWS) will create a local
temporary table regardless of whether GLOBAL or LOCAL is specified.

● TEMPORARY | TEMP
If TEMP or TEMPORARY is specified, the created table is a temporary table.
Temporary tables are automatically dropped at the end of a session, or
optionally at the end of the current transaction. Therefore, apart from CN and
other CN errors connected by the current session, you can still create and use
temporary table in the current session. Temporary tables are created only in
the current session. If a DDL statement involves operations on temporary
tables, a DDL error will be generated. Therefore, you are not advised to
perform operations on temporary tables in DDL statements. TEMP is
equivalent to TEMPORARY.

NO TICE

● Temporary tables are visible to the current session through schema of the
pg_temp start. Users should not delete schema started with pg_temp,
pg_toast_temp.

● If TEMPORARY or TEMP is not specified when you create a table and the
schema of the specified table starts with pg_temp_, the table is created as
a temporary table.

● IF NOT EXISTS
If IF NOT EXISTS is specified, a table will be created if there is no table using
the specified name. If there is already a table using the specified name, no
error will be reported. A message will be displayed indicating that the table
already exists, and the database will skip table creation.

● table_name
Specifies the name of the table to be created.
The table name can contain a maximum of 63 characters, including letters,
digits, underscores (_), dollar signs ($), and number signs (#). It must start
with a letter or underscore (_).

● column_name
Specifies the name of a column to be created in the new table.
The column name can contain a maximum of 63 characters, including letters,
digits, underscores (_), dollar signs ($), and number signs (#). It must start
with a letter or underscore (_).

● data_type
Specifies the data type of the column.

● compress_mode
Specifies the compress option of the table, only available for row-store table.
The option specifies the algorithm preferentially used by table columns.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 511



Value range: DELTA, PREFIX, DICTIONARY, NUMSTR, NOCOMPRESS
● COLLATE collation

Assigns a collation to the column (which must be of a collatable data type). If
no collation is specified, the default collation is used.

● LIKE source_table [ like_option ... ]
Specifies a table from which the new table automatically copies all column
names, their data types, and their not-null constraints.
The new table and the source table are decoupled after creation is complete.
Changes to the source table will not be applied to the new table, and it is not
possible to include data of the new table in scans of the source table.
Columns and constraints copied by LIKE are not merged with the same name.
If the same name is specified explicitly or in another LIKE clause, an error is
reported.
– The default expressions are copied from the source table to the new table

only if INCLUDING DEFAULTS is specified. The default behavior is to
exclude default expressions, resulting in the copied columns in the new
table having default values NULL.

– The CHECK constraints are copied from the source table to the new table
only when INCLUDING CONSTRAINTS is specified. Other types of
constraints are never copied to the new table. NOT NULL constraints are
always copied to the new table. These rules also apply to column
constraints and table constraints.

– Any indexes on the source table will not be created on the new table,
unless the INCLUDING INDEXES clause is specified.

– STORAGE settings for the copied column definitions are copied only if
INCLUDING STORAGE is specified. The default behavior is to exclude
STORAGE settings.

– If INCLUDING COMMENTS is specified, comments for the copied
columns, constraints, and indexes are copied. The default behavior is to
exclude comments.

– If INCLUDING PARTITION is specified, the partition definitions of the
source table are copied to the new table, and the new table no longer
uses the PARTITION BY clause. The default behavior is to exclude
partition definition of the source table.

– If INCLUDING RELOPTIONS is specified, the storage parameter (WITH
clause of the source table) of the source table is copied to the new table.
The default behavior is to exclude partition definition of the storage
parameter of the source table.

– If INCLUDING DISTRIBUTION is specified, the distribution information of
the source table is copied to the new table, including distribution type
and column, and the new table no longer use the DISTRIBUTE BY clause.
The default behavior is to exclude distribution information of the source
table.

– If INCLUDING DROPCOLUMNS is specified, the deleted column
information in the source table is copied to the new table. By default, the
deleted column information of the source table is not copied.

– INCLUDING ALL contains the meaning of INCLUDING DEFAULTS,
INCLUDING CONSTRAINTS, INCLUDING INDEXES, INCLUDING

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 512



STORAGE, INCLUDING COMMENTS, INCLUDING PARTITION,
INCLUDING RELOPTIONS, INCLUDING DISTRIBUTION, and INCLUDING
DROPCOLUMNS.

– If EXCLUDING is specified, the specified parameters are not included.
– For an OBS hot or cold table, all partitions of the new table are local hot

partitions after INCLUDING PARTITION is specified.

NO TICE

● If the source table contains a sequence with the SERIAL, BIGSERIAL, or
SMALLSERIAL data type, or a column in the source table is a sequence by
default and the sequence is created for this table by using CREATE
SEQUENCE... OWNED BY, these sequences will not be copied to the new
table, and another sequence specific to the new table will be created. This
is different from earlier versions. To share a sequence between the source
table and new table, create a shared sequence (do not use OWNED BY)
and set a column in the source table to this sequence.

● You are not advised to set a column in the source table to the sequence
specific to another table especially when the table is distributed in specific
Node Groups, because doing so may result in CREATE TABLE ... LIKE
execution failures. In addition, doing so may cause the sequence to
become invalid in the source sequence because the sequence will also be
deleted from the source table when it is deleted from the table that the
sequence is specific to. To share a sequence among multiple tables, you are
advised to create a shared sequence for them.

● WITH ( { storage_parameter = value } [, ... ] )
Specifies an optional storage parameter for a table or an index.

NO TE

Using Numeric of any precision to define column, specifies precision p and scale s.
When precision and scale are not specified, the input will be displayed.

The description of parameters is as follows:
– FILLFACTOR

The fillfactor of a table is a percentage between 10 and 100. 100
(complete packing) is the default value. When a smaller fillfactor is
specified, INSERT operations pack table pages only to the indicated
percentage. The remaining space on each page is reserved for updating
rows on that page. This gives UPDATE a chance to place the updated
copy of a row on the same page, which is more efficient than placing it
on a different page. For a table whose records are never updated, setting
the fillfactor to 100 (complete packing) is the appropriate choice, but in
heavily updated tables smaller fillfactors are appropriate. The parameter
has no meaning for column-based tables.
Value range: 10–100

– ORIENTATION
Specifies the storage mode (row-store, column-store) for table data. This
parameter cannot be modified once it is set.
Valid value:

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 513



▪ ROW indicates that table data is stored in rows.
ROW applies to OLTP service, which has many interactive
transactions. An interaction involves many columns in the table.
Using ROW can improve the efficiency.

▪ COLUMN indicates that the data is stored in columns.
COLUMN applies to the data warehouse service, which has a large
amount of aggregation computing, and involves a few column
operations.

Default value:
If an ordinary tablespace is specified, the default is ROW.

– COMPRESSION
Specifies the compression level of the table data. It determines the
compression ratio and time. Generally, the higher the level of
compression, the higher the ratio, the longer the time, and the lower the
level of compression, the lower the ratio, the shorter the time. The actual
compression ratio depends on the distribution characteristics of loading
table data.
Valid value:

▪ The valid values for column-store tables are YES/NO and LOW/
MIDDLE/HIGH, and the default is LOW.

▪ The valid values for row-store tables are YES and NO, and the
default is NO.

NO TE

● The row-store table compression function is not put into commercial
use. To use this function, contact technical support.

GaussDB(DWS) provides the following compression algorithms:

Table 12-23 Compression algorithms for column-based storage

COMPRESSI
ON

NUMERIC STRING INT

LOW Delta
compression +
RLE compression

LZ4 compression Delta compression
(RLE is optional.)

MIDDLE Delta
compression +
RLE compression
+ LZ4
compression

dict compression
or LZ4
compression

Delta compression
or LZ4
compression (RLE
is optional)

HIGH Delta
compression +
RLE compression
+ zlib
compression

dict compression
or zlib
compression

Delta compression
or zlib
compression (RLE
is optional)

 

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 514



– COMPRESSLEVEL
Specifies the compression level of the table data. It determines the
compression ratio and time. This divides a compression level into
sublevels, providing you with more choices for compression rate and
duration. As the value becomes greater, the compression rate becomes
higher and duration longer at the same compression level. The parameter
is only valid for column-store table.
Value range: 0 to 3. The default value is 0.

– MAX_BATCHROW
Specifies the maximum of a storage unit during data loading process. The
parameter is only valid for column-store table.
Value range: 10000 to 60000
Default value: 60000

– PARTIAL_CLUSTER_ROWS
Specifies the number of records to be partial cluster stored during data
loading process. The parameter is only valid for column-store table.
Value range: 600000 to 2147483647

– enable_delta
Specifies whether to enable delta tables in column-store tables. The
parameter is only valid for column-store tables.
Default value: off

– DELTAROW_THRESHOLD
Specifies the upper limit of to-be-imported rows for triggering the data
import to a delta table when data is to be imported to a column-store
table. This parameter takes effect only if the enable_delta table
parameter is set to on. The parameter is only valid for column-store
table.
The value ranges from 0 to 60000. The default value is 6000.

– VERSION
Specifies the version of ORC storage format.
Value range: 0.12. ORC 0.12 format is supported currently. More formats
will be supported as the development of ORC format.
Default value: 0.12

– COLVERSION
Specifies the version of the column-store format. You can switch between
different storage formats.
Valid value:
1.0: Each column in a column-store table is stored in a separate file. The
file name is relfilenode.C1.0, relfilenode.C2.0, relfilenode.C3.0, or
similar.
2.0: All columns of a column-store table are combined and stored in a
file. The file is named relfilenode.C1.0.
Default value: 2.0
The value of COLVERSION can only be set to 2.0 for OBS hot and cold
tables.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 515



NO TE

When creating a column-store table, set COLVERSION to 2.0. Compared with the
1.0 storage format, the performance is significantly improved:
1. The time required for creating a column-store wide table is significantly

reduced.
2. In the Roach data backup scenario, the backup time is significantly reduced.
3. The build and catch up time is greatly reduced.
4. The occupied disk space decreases significantly.

– COLD_TABLESPACE
Specifies the OBS tablespace for the cold partitions in a hot or cold table.
This parameter is available only to partitioned column-store tables and
cannot be modified. It must be used together with storage_policy.
Valid value: a valid OBS tablespace name

– STORAGE_POLICY
Specifies the hot and cold partition switching policy. This parameter is
supported only by hot and cold tables. This parameter must be used
together with cold_tablespace.
Value range: Cold and hot switchover policy name:Cold and hot
switchover threshold. Currently, only LMT and HPN policies are
supported. LMT indicates that the switchover is performed based on the
last update time of partitions. HPN indicates the switchover is performed
based on a fixed number of reserved hot partitions.

▪ LMT:[day]: Switch the hot partition data that is not updated in the
last [day] days to the OBS tablespace as cold partition data. [day] is
an integer ranging from 0 to 36500, in days.

▪ HPN:[hot_partition_num]: [hot_partition_num] indicates the number
of hot partitions (with data) to be retained. The rule is to find the
maximum sequence ID of the partitions with data. The partitions
without data whose sequence ID is greater than the maximum
sequence ID are hot partitions, and [hot_partition_num] partitions
are retained as hot partitions in descending order according to the
sequence ID. A partition whose sequence ID is smaller than the
minimum sequence ID of the retained hot partition is a cold
partition. During hot and cold partition switchover, data needs to be
migrated to the OBS tablespace. [hot_partition_num] is an integer
ranging from 0 to 1600.

NO TE

The hybrid data warehouse (standalone) does not support cold and hot partition
switchover.

– SKIP_FPI_HINT
Indicates whether to skip the hint bits operation when the full-page
writes (FPW) log needs to be written during sequential scanning.
Default value: false

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 516



NO TE

If SKIP_FPI_HINT is set to true and the checkpoint operation is performed on a
table, no Xlog will be generated when the table is sequentially scanned. This
applies to intermediate tables that are queried less frequently, reducing the size
of Xlogs and improving query performance.

● ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }
ON COMMIT determines what to do when you commit a temporary table
creation operation. The three options are as follows. Currently, only PRESERVE
ROWS and DELETE ROWS can be used.
– PRESERVE ROWS (Default): No special action is taken at the ends of

transactions. The temporary table and its table data are unchanged.
– DELETE ROWS: All rows in the temporary table will be deleted at the end

of each transaction block.
– DROP: The temporary table will be dropped at the end of the current

transaction block.
● COMPRESS | NOCOMPRESS

If you specify COMPRESS in the CREATE TABLE statement, the compression
feature is triggered in the case of a bulk INSERT operation. If this feature is
enabled, a scan is performed for all tuple data within the page to generate a
dictionary and then the tuple data is compressed and stored. If
NOCOMPRESS is specified, the table is not compressed.
Default value: NOCOMPRESS, tuple data is not compressed before storage.

● DISTRIBUTE BY
Specifies how the table is distributed or replicated between DNs.
Valid value:
– REPLICATION: Each row in the table exists on all DNs, that is, each DN

has complete table data.
– HASH (column_name): Each row of the table will be placed into all the

DNs based on the hash value of the specified column.

NO TE

● When DISTRIBUTE BY HASH (column_name) is specified, the primary key
and its unique index must contain the column_name column.

● When DISTRIBUTE BY HASH (column_name) in a referenced table is
specified, the foreign key of the reference table must contain the
column_name column.

● The hybrid data warehouse (standalone) has only one DN. Therefore, the
distribution rule is ignored and cannot be modified.

Default value: HASH(column_name), the key column of column_name (if
any) or the column of distribution column supported by first data type.
column_name supports the following data types:
– Integer types: TINYINT, SMALLINT, INT, BIGINT, and NUMERIC/DECIMAL
– Character types: CHAR, BPCHAR, VARCHAR, VARCHAR2, NVARCHAR2,

and TEXT
– Date/time types: DATE, TIME, TIMETZ, TIMESTAMP, TIMESTAMPTZ,

INTERVAL, and SMALLDATETIME

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 517



NO TE

When you create a table, the choices of distribution keys and partition keys have
major impact on SQL query performance. Therefore, choosing proper distribution
column and partition key with strategies.

● Selecting an Appropriate Distribution Column

In the data distributed table using Hash, an appropriate distributed array should be
used to distribute and store data on multiple DNs evenly, preventing data skew
(uneven data distribution across several DNs). Determine the proper distribution
column based on the following principles:

1. Determine whether data is skewed.

Connect to the database and run the following statements to check the number
of tuples on each DN: Replace tablename with the actual name of the table to
be analyzed.
SELECT a.count,b.node_name FROM (SELECT count(*) AS count,xc_node_id FROM 
tablename GROUP BY xc_node_id) a, pgxc_node b WHERE a.xc_node_id=b.node_id 
ORDER BY a.count DESC;

If tuple numbers vary greatly (several times or tenfold) in each DN, a data
skew occurs. Change the data distribution key based on the following
principles:

2. Run the ALTER TABLE statement to adjust the distribution column. The rules for
selecting a distribution column are as follows:

The column value of the distribution column should be discrete so that data
can be evenly distributed on each DN. For example, you are advised to select
the primary key of a table as the distribution column, and the ID card number
as the distribution column in a personnel information table.

With the above principles met, you can select join conditions as distribution
keys so that join tasks can be pushed down to DNs, reducing the amount of
data transferred between the DNs.

● Selecting appropriate partition keys

In range partitioning, the table is partitioned into ranges defined by a key column
or set of columns, with no overlap between the ranges of values assigned to
different partitions. Each range has a dedicated partition for data storage.

Modify partition keys to make the query result stored in the same or least
partitions (partition pruning). Obtaining consecutive I/O to improve the query
performance.

In actual services, time is used to filter query objects. Therefore, you can use time
as a partition key, and change the key value based on the total data volume and
single data query volume.

● TO { GROUP groupname | NODE ( nodename [, ... ] ) }
TO GROUP specifies the Node Group in which the table is created. Currently,
it cannot be used for HDFS tables. TO NODE is used for internal scale-out
tools.

● CONSTRAINT constraint_name
Specifies a name for a column or table constraint. The optional constraint
clauses specify constraints that new or updated rows must satisfy for an insert
or update operation to succeed.
There are two ways to define constraints:
– A column constraint is defined as part of a column definition, and it is

bound to a particular column.
– A table constraint is not bound to any particular columns but can apply

to more than one column.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 518



● NOT NULL
Indicates that the column is not allowed to contain NULL values.

● NULL
The column is allowed to contain NULL values. This is the default setting.
This clause is only provided for compatibility with non-standard SQL
databases. You are advised not to use this clause.

● CHECK ( expression )
Specifies an expression producing a Boolean result which new or updated
rows must satisfy for an insert or update operation to succeed. Expressions
evaluating to TRUE or UNKNOWN succeed. If any row of an insert or update
operation produces a FALSE result, an error exception is raised and the insert
or update does not alter the database.
A check constraint specified as a column constraint should reference only the
column's values, while an expression appearing in a table constraint can
reference multiple columns.

NO TE

<>NULL and !=NULL are invalid in an expression. Change them to IS NOT NULL.

● DEFAULT default_expr
Assigns a default data value for a column. The value can be any variable-free
expressions (Subqueries and cross-references to other columns in the current
table are not allowed). The data type of the default expression must match
the data type of the column.
The default expression will be used in any insert operation that does not
specify a value for the column. If there is no default value for a column, then
the default value is NULL.

● UNIQUE index_parameters
UNIQUE ( column_name [, ... ] ) index_parameters
Specifies that a group of one or more columns of a table can contain only
unique values.
For the purpose of a unique constraint, NULL is not considered equal.

NO TE

If DISTRIBUTE BY REPLICATION is not specified, the column table that contains only
unique values must contain distribution columns.

● PRIMARY KEY index_parameters
PRIMARY KEY ( column_name [, ... ] ) index_parameters
Specifies the primary key constraint specifies that a column or columns of a
table can contain only unique (non-duplicate) and non-null values.
Only one primary key can be specified for a table.

NO TE

If DISTRIBUTE BY REPLICATION is not specified, the column set with a primary key
constraint must contain distributed columns.

● DEFERRABLE | NOT DEFERRABLE
Controls whether the constraint can be deferred. A constraint that is not
deferrable will be checked immediately after every command. Checking of

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 519



constraints that are deferrable can be postponed until the end of the
transaction using the SET CONSTRAINTS command. NOT DEFERRABLE is the
default value. Currently, only UNIQUE and PRIMARY KEY constraints of row-
store tables accept this clause. All the other constraints are not deferrable.

● PARTIAL CLUSTER KEY

Specifies a partial cluster key for storage. When importing data to a column-
store table, you can perform local data sorting by specified columns (single or
multiple).

● INITIALLY IMMEDIATE | INITIALLY DEFERRED

If a constraint is deferrable, this clause specifies the default time to check the
constraint.

– If the constraint is INITIALLY IMMEDIATE (default value), it is checked
after each statement.

– If the constraint is INITIALLY DEFERRED, it is checked only at the end of
the transaction.

The constraint check time can be altered using the SET CONSTRAINTS
command.

Examples

Create an ordinary table.

CREATE TABLE tpcds.warehouse_t1
(
    W_WAREHOUSE_SK            INTEGER               NOT NULL,
    W_WAREHOUSE_ID            CHAR(16)              NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)                   ,
    W_WAREHOUSE_SQ_FT         INTEGER                       ,
    W_STREET_NUMBER           CHAR(10)                      ,
    W_STREET_NAME             VARCHAR(60)                   ,
    W_STREET_TYPE             CHAR(15)                      ,
    W_SUITE_NUMBER            CHAR(10)                      ,
    W_CITY                    VARCHAR(60)                   ,
    W_COUNTY                  VARCHAR(30)                   ,
    W_STATE                   CHAR(2)                       ,
    W_ZIP                     CHAR(10)                      ,
    W_COUNTRY                 VARCHAR(20)                   ,
    W_GMT_OFFSET              DECIMAL(5,2)
);

Create a table and set the default value of the W_STATE column to GA.

CREATE TABLE tpcds.warehouse_t3
(
    W_WAREHOUSE_SK            INTEGER               NOT NULL,
    W_WAREHOUSE_ID            CHAR(16)              NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)                   ,
    W_WAREHOUSE_SQ_FT         INTEGER                       ,
    W_STREET_NUMBER           CHAR(10)                      ,
    W_STREET_NAME             VARCHAR(60)                   ,
    W_STREET_TYPE             CHAR(15)                      ,
    W_SUITE_NUMBER            CHAR(10)                      ,
    W_CITY                    VARCHAR(60)                   ,
    W_COUNTY                  VARCHAR(30)                   ,
    W_STATE                   CHAR(2)           DEFAULT 'GA',
    W_ZIP                     CHAR(10)                      ,
    W_COUNTRY                 VARCHAR(20)                   ,
    W_GMT_OFFSET              DECIMAL(5,2)
);

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 520



Create a table and check whether the W_WAREHOUSE_NAME column is unique
at the end of its creation.

CREATE TABLE tpcds.warehouse_t4
(
    W_WAREHOUSE_SK            INTEGER                NOT NULL,
    W_WAREHOUSE_ID            CHAR(16)               NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)   UNIQUE DEFERRABLE,
    W_WAREHOUSE_SQ_FT         INTEGER                        ,
    W_STREET_NUMBER           CHAR(10)                       ,
    W_STREET_NAME             VARCHAR(60)                    ,
    W_STREET_TYPE             CHAR(15)                       ,
    W_SUITE_NUMBER            CHAR(10)                       ,
    W_CITY                    VARCHAR(60)                    ,
    W_COUNTY                  VARCHAR(30)                    ,
    W_STATE                   CHAR(2)                        ,
    W_ZIP                     CHAR(10)                       ,
    W_COUNTRY                 VARCHAR(20)                    ,
    W_GMT_OFFSET              DECIMAL(5,2) 
);

Create a table with its fillfactor set to 70%.

CREATE TABLE tpcds.warehouse_t5
(
    W_WAREHOUSE_SK            INTEGER                NOT NULL,
    W_WAREHOUSE_ID            CHAR(16)               NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)                    ,
    W_WAREHOUSE_SQ_FT         INTEGER                        ,
    W_STREET_NUMBER           CHAR(10)                       ,
    W_STREET_NAME             VARCHAR(60)                    ,
    W_STREET_TYPE             CHAR(15)                       ,
    W_SUITE_NUMBER            CHAR(10)                       ,
    W_CITY                    VARCHAR(60)                    ,
    W_COUNTY                  VARCHAR(30)                    ,
    W_STATE                   CHAR(2)                        ,
    W_ZIP                     CHAR(10)                       ,
    W_COUNTRY                 VARCHAR(20)                    ,
    W_GMT_OFFSET              DECIMAL(5,2),
    UNIQUE(W_WAREHOUSE_NAME) WITH(fillfactor=70)
);

Alternatively, use the following syntax to create a table with its fillfactor set to
70%:

CREATE TABLE tpcds.warehouse_t6
(
    W_WAREHOUSE_SK            INTEGER                NOT NULL,
    W_WAREHOUSE_ID            CHAR(16)               NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)              UNIQUE,
    W_WAREHOUSE_SQ_FT         INTEGER                        ,
    W_STREET_NUMBER           CHAR(10)                       ,
    W_STREET_NAME             VARCHAR(60)                    ,
    W_STREET_TYPE             CHAR(15)                       ,
    W_SUITE_NUMBER            CHAR(10)                       ,
    W_CITY                    VARCHAR(60)                    ,
    W_COUNTY                  VARCHAR(30)                    ,
    W_STATE                   CHAR(2)                        ,
    W_ZIP                     CHAR(10)                       ,
    W_COUNTRY                 VARCHAR(20)                    ,
    W_GMT_OFFSET              DECIMAL(5,2)
) WITH(fillfactor=70);

Create a table and specify that its data is not written to WALs.

CREATE UNLOGGED TABLE tpcds.warehouse_t7
(
    W_WAREHOUSE_SK            INTEGER               NOT NULL,
    W_WAREHOUSE_ID            CHAR(16)              NOT NULL,

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 521



    W_WAREHOUSE_NAME          VARCHAR(20)                   ,
    W_WAREHOUSE_SQ_FT         INTEGER                       ,
    W_STREET_NUMBER           CHAR(10)                      ,
    W_STREET_NAME             VARCHAR(60)                   ,
    W_STREET_TYPE             CHAR(15)                      ,
    W_SUITE_NUMBER            CHAR(10)                      ,
    W_CITY                    VARCHAR(60)                   ,
    W_COUNTY                  VARCHAR(30)                   ,
    W_STATE                   CHAR(2)                       ,
    W_ZIP                     CHAR(10)                      ,
    W_COUNTRY                 VARCHAR(20)                   ,
    W_GMT_OFFSET              DECIMAL(5,2)
);

Create a temporary table.

CREATE TEMPORARY TABLE warehouse_t24
(
    W_WAREHOUSE_SK            INTEGER               NOT NULL,
    W_WAREHOUSE_ID            CHAR(16)              NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)                   ,
    W_WAREHOUSE_SQ_FT         INTEGER                       ,
    W_STREET_NUMBER           CHAR(10)                      ,
    W_STREET_NAME             VARCHAR(60)                   ,
    W_STREET_TYPE             CHAR(15)                      ,
    W_SUITE_NUMBER            CHAR(10)                      ,
    W_CITY                    VARCHAR(60)                   ,
    W_COUNTY                  VARCHAR(30)                   ,
    W_STATE                   CHAR(2)                       ,
    W_ZIP                     CHAR(10)                      ,
    W_COUNTRY                 VARCHAR(20)                   ,
    W_GMT_OFFSET              DECIMAL(5,2)
);

Create a temporary table in a transaction and specify that data of this table is
deleted when the transaction is committed.

CREATE TEMPORARY TABLE warehouse_t25
(
    W_WAREHOUSE_SK            INTEGER               NOT NULL,
    W_WAREHOUSE_ID            CHAR(16)              NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)                   ,
    W_WAREHOUSE_SQ_FT         INTEGER                       ,
    W_STREET_NUMBER           CHAR(10)                      ,
    W_STREET_NAME             VARCHAR(60)                   ,
    W_STREET_TYPE             CHAR(15)                      ,
    W_SUITE_NUMBER            CHAR(10)                      ,
    W_CITY                    VARCHAR(60)                   ,
    W_COUNTY                  VARCHAR(30)                   ,
    W_STATE                   CHAR(2)                       ,
    W_ZIP                     CHAR(10)                      ,
    W_COUNTRY                 VARCHAR(20)                   ,
    W_GMT_OFFSET              DECIMAL(5,2)
) ON COMMIT DELETE ROWS;

Create a table and specify that no error is reported for duplicate tables (if any).

CREATE TABLE IF NOT EXISTS tpcds.warehouse_t8
(
    W_WAREHOUSE_SK            INTEGER               NOT NULL,
    W_WAREHOUSE_ID            CHAR(16)              NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)                   ,
    W_WAREHOUSE_SQ_FT         INTEGER                       ,
    W_STREET_NUMBER           CHAR(10)                      ,
    W_STREET_NAME             VARCHAR(60)                   ,
    W_STREET_TYPE             CHAR(15)                      ,
    W_SUITE_NUMBER            CHAR(10)                      ,
    W_CITY                    VARCHAR(60)                   ,
    W_COUNTY                  VARCHAR(30)                   ,
    W_STATE                   CHAR(2)                       ,

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 522



    W_ZIP                     CHAR(10)                      ,
    W_COUNTRY                 VARCHAR(20)                   ,
    W_GMT_OFFSET              DECIMAL(5,2)
);

Create a table with a primary key constraint.

CREATE TABLE tpcds.warehouse_t11
(
    W_WAREHOUSE_SK            INTEGER            PRIMARY KEY,
    W_WAREHOUSE_ID            CHAR(16)              NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)                   ,
    W_WAREHOUSE_SQ_FT         INTEGER                       ,
    W_STREET_NUMBER           CHAR(10)                      ,
    W_STREET_NAME             VARCHAR(60)                   ,
    W_STREET_TYPE             CHAR(15)                      ,
    W_SUITE_NUMBER            CHAR(10)                      ,
    W_CITY                    VARCHAR(60)                   ,
    W_COUNTY                  VARCHAR(30)                   ,
    W_STATE                   CHAR(2)                       ,
    W_ZIP                     CHAR(10)                      ,
    W_COUNTRY                 VARCHAR(20)                   ,
    W_GMT_OFFSET              DECIMAL(5,2)
);

Alternatively, use the following syntax to create a table with a primary key
constraint:

CREATE TABLE tpcds.warehouse_t12
(
    W_WAREHOUSE_SK            INTEGER               NOT NULL,
    W_WAREHOUSE_ID            CHAR(16)              NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)                   ,
    W_WAREHOUSE_SQ_FT         INTEGER                       ,
    W_STREET_NUMBER           CHAR(10)                      ,
    W_STREET_NAME             VARCHAR(60)                   ,
    W_STREET_TYPE             CHAR(15)                      ,
    W_SUITE_NUMBER            CHAR(10)                      ,
    W_CITY                    VARCHAR(60)                   ,
    W_COUNTY                  VARCHAR(30)                   ,
    W_STATE                   CHAR(2)                       ,
    W_ZIP                     CHAR(10)                      ,
    W_COUNTRY                 VARCHAR(20)                   ,
    W_GMT_OFFSET              DECIMAL(5,2),
    PRIMARY KEY(W_WAREHOUSE_SK)
);

Create a table with a specified constraint name.

CREATE TABLE tpcds.warehouse_t13
(
    W_WAREHOUSE_SK            INTEGER               NOT NULL,
    W_WAREHOUSE_ID            CHAR(16)              NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)                   ,
    W_WAREHOUSE_SQ_FT         INTEGER                       ,
    W_STREET_NUMBER           CHAR(10)                      ,
    W_STREET_NAME             VARCHAR(60)                   ,
    W_STREET_TYPE             CHAR(15)                      ,
    W_SUITE_NUMBER            CHAR(10)                      ,
    W_CITY                    VARCHAR(60)                   ,
    W_COUNTY                  VARCHAR(30)                   ,
    W_STATE                   CHAR(2)                       ,
    W_ZIP                     CHAR(10)                      ,
    W_COUNTRY                 VARCHAR(20)                   ,
    W_GMT_OFFSET              DECIMAL(5,2),
    CONSTRAINT W_CSTR_KEY1 PRIMARY KEY(W_WAREHOUSE_SK)
);

Create a table with a compound primary key constraint.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 523



CREATE TABLE tpcds.warehouse_t14
(
    W_WAREHOUSE_SK            INTEGER               NOT NULL,
    W_WAREHOUSE_ID            CHAR(16)              NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)                   ,
    W_WAREHOUSE_SQ_FT         INTEGER                       ,
    W_STREET_NUMBER           CHAR(10)                      ,
    W_STREET_NAME             VARCHAR(60)                   ,
    W_STREET_TYPE             CHAR(15)                      ,
    W_SUITE_NUMBER            CHAR(10)                      ,
    W_CITY                    VARCHAR(60)                   ,
    W_COUNTY                  VARCHAR(30)                   ,
    W_STATE                   CHAR(2)                       ,
    W_ZIP                     CHAR(10)                      ,
    W_COUNTRY                 VARCHAR(20)                   ,
    W_GMT_OFFSET              DECIMAL(5,2),
    CONSTRAINT W_CSTR_KEY2 PRIMARY KEY(W_WAREHOUSE_SK, W_WAREHOUSE_ID)
);

Create a column-store table.

CREATE TABLE tpcds.warehouse_t15
(
    W_WAREHOUSE_SK            INTEGER               NOT NULL,
    W_WAREHOUSE_ID            CHAR(16)              NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)                   ,
    W_WAREHOUSE_SQ_FT         INTEGER                       ,
    W_STREET_NUMBER           CHAR(10)                      ,
    W_STREET_NAME             VARCHAR(60)                   ,
    W_STREET_TYPE             CHAR(15)                      ,
    W_SUITE_NUMBER            CHAR(10)                      ,
    W_CITY                    VARCHAR(60)                   ,
    W_COUNTY                  VARCHAR(30)                   ,
    W_STATE                   CHAR(2)                       ,
    W_ZIP                     CHAR(10)                      ,
    W_COUNTRY                 VARCHAR(20)                   ,
    W_GMT_OFFSET              DECIMAL(5,2)
) WITH (ORIENTATION = COLUMN);

Create a column-store table using partial clustered storage.

CREATE TABLE tpcds.warehouse_t16
(
    W_WAREHOUSE_SK            INTEGER               NOT NULL,
    W_WAREHOUSE_ID            CHAR(16)              NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)                   ,
    W_WAREHOUSE_SQ_FT         INTEGER                       ,
    W_STREET_NUMBER           CHAR(10)                      ,
    W_STREET_NAME             VARCHAR(60)                   ,
    W_STREET_TYPE             CHAR(15)                      ,
    W_SUITE_NUMBER            CHAR(10)                      ,
    W_CITY                    VARCHAR(60)                   ,
    W_COUNTY                  VARCHAR(30)                   ,
    W_STATE                   CHAR(2)                       ,
    W_ZIP                     CHAR(10)                      ,
    W_COUNTRY                 VARCHAR(20)                   ,
    W_GMT_OFFSET              DECIMAL(5,2),
    PARTIAL CLUSTER KEY(W_WAREHOUSE_SK, W_WAREHOUSE_ID)
) WITH (ORIENTATION = COLUMN)

Define a column-store table with compression enabled.

CREATE TABLE tpcds.warehouse_t17
(
    W_WAREHOUSE_SK            INTEGER               NOT NULL,
    W_WAREHOUSE_ID            CHAR(16)              NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)                   ,
    W_WAREHOUSE_SQ_FT         INTEGER                       ,
    W_STREET_NUMBER           CHAR(10)                      ,
    W_STREET_NAME             VARCHAR(60)                   ,

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 524



    W_STREET_TYPE             CHAR(15)                      ,
    W_SUITE_NUMBER            CHAR(10)                      ,
    W_CITY                    VARCHAR(60)                   ,
    W_COUNTY                  VARCHAR(30)                   ,
    W_STATE                   CHAR(2)                       ,
    W_ZIP                     CHAR(10)                      ,
    W_COUNTRY                 VARCHAR(20)                   ,
    W_GMT_OFFSET              DECIMAL(5,2)
) WITH (ORIENTATION = COLUMN, COMPRESSION=HIGH);

Define a table with compression enabled.

CREATE TABLE tpcds.warehouse_t18
(
    W_WAREHOUSE_SK            INTEGER               NOT NULL,
    W_WAREHOUSE_ID            CHAR(16)              NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)                   ,
    W_WAREHOUSE_SQ_FT         INTEGER                       ,
    W_STREET_NUMBER           CHAR(10)                      ,
    W_STREET_NAME             VARCHAR(60)                   ,
    W_STREET_TYPE             CHAR(15)                      ,
    W_SUITE_NUMBER            CHAR(10)                      ,
    W_CITY                    VARCHAR(60)                   ,
    W_COUNTY                  VARCHAR(30)                   ,
    W_STATE                   CHAR(2)                       ,
    W_ZIP                     CHAR(10)                      ,
    W_COUNTRY                 VARCHAR(20)                   ,
    W_GMT_OFFSET              DECIMAL(5,2)
) COMPRESS;

Define a table and check column constraints.

CREATE TABLE tpcds.warehouse_t19
(
    W_WAREHOUSE_SK            INTEGER               PRIMARY KEY CHECK (W_WAREHOUSE_SK > 0),
    W_WAREHOUSE_ID            CHAR(16)              NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)           CHECK (W_WAREHOUSE_NAME IS NOT NULL),
    W_WAREHOUSE_SQ_FT         INTEGER                       ,
    W_STREET_NUMBER           CHAR(10)                      ,
    W_STREET_NAME             VARCHAR(60)                   ,
    W_STREET_TYPE             CHAR(15)                      ,
    W_SUITE_NUMBER            CHAR(10)                      ,
    W_CITY                    VARCHAR(60)                   ,
    W_COUNTY                  VARCHAR(30)                   ,
    W_STATE                   CHAR(2)                       ,
    W_ZIP                     CHAR(10)                      ,
    W_COUNTRY                 VARCHAR(20)                   ,
    W_GMT_OFFSET              DECIMAL(5,2)
);
CREATE TABLE tpcds.warehouse_t20
(
    W_WAREHOUSE_SK            INTEGER               PRIMARY KEY,
    W_WAREHOUSE_ID            CHAR(16)              NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)           CHECK (W_WAREHOUSE_NAME IS NOT NULL),
    W_WAREHOUSE_SQ_FT         INTEGER                       ,
    W_STREET_NUMBER           CHAR(10)                      ,
    W_STREET_NAME             VARCHAR(60)                   ,
    W_STREET_TYPE             CHAR(15)                      ,
    W_SUITE_NUMBER            CHAR(10)                      ,
    W_CITY                    VARCHAR(60)                   ,
    W_COUNTY                  VARCHAR(30)                   ,
    W_STATE                   CHAR(2)                       ,
    W_ZIP                     CHAR(10)                      ,
    W_COUNTRY                 VARCHAR(20)                   ,
    W_GMT_OFFSET              DECIMAL(5,2),
    CONSTRAINT W_CONSTR_KEY2 CHECK(W_WAREHOUSE_SK > 0 AND W_WAREHOUSE_NAME IS NOT 
NULL)  
);

Define a table with each of its rows stored in all DNs.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 525



CREATE TABLE tpcds.warehouse_t21
(
    W_WAREHOUSE_SK            INTEGER               NOT NULL,
    W_WAREHOUSE_ID            CHAR(16)              NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)                   ,
    W_WAREHOUSE_SQ_FT         INTEGER                       ,
    W_STREET_NUMBER           CHAR(10)                      ,
    W_STREET_NAME             VARCHAR(60)                   ,
    W_STREET_TYPE             CHAR(15)                      ,
    W_SUITE_NUMBER            CHAR(10)                      ,
    W_CITY                    VARCHAR(60)                   ,
    W_COUNTY                  VARCHAR(30)                   ,
    W_STATE                   CHAR(2)                       ,
    W_ZIP                     CHAR(10)                      ,
    W_COUNTRY                 VARCHAR(20)                   ,
    W_GMT_OFFSET              DECIMAL(5,2)
)DISTRIBUTE BY REPLICATION;

Define a hash table.

CREATE TABLE tpcds.warehouse_t22
(
    W_WAREHOUSE_SK            INTEGER               NOT NULL,
    W_WAREHOUSE_ID            CHAR(16)              NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)                   ,
    W_WAREHOUSE_SQ_FT         INTEGER                       ,
    W_STREET_NUMBER           CHAR(10)                      ,
    W_STREET_NAME             VARCHAR(60)                   ,
    W_STREET_TYPE             CHAR(15)                      ,
    W_SUITE_NUMBER            CHAR(10)                      ,
    W_CITY                    VARCHAR(60)                   ,
    W_COUNTY                  VARCHAR(30)                   ,
    W_STATE                   CHAR(2)                       ,
    W_ZIP                     CHAR(10)                      ,
    W_COUNTRY                 VARCHAR(20)                   ,
    W_GMT_OFFSET              DECIMAL(5,2),
    CONSTRAINT W_CONSTR_KEY3 UNIQUE(W_WAREHOUSE_SK)
)DISTRIBUTE BY HASH(W_WAREHOUSE_SK);

Create a column-store table whose storage format can be configured.

CREATE TABLE tpcds.warehouse_t26
(
    W_WAREHOUSE_SK            INTEGER               NOT NULL,
    W_WAREHOUSE_ID            CHAR(16)              NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)                   ,
    W_WAREHOUSE_SQ_FT         INTEGER                       ,
    W_STREET_NUMBER           CHAR(10)                      ,
    W_STREET_NAME             VARCHAR(60)                   ,
    W_STREET_TYPE             CHAR(15)                      ,
    W_SUITE_NUMBER            CHAR(10)                      ,
    W_CITY                    VARCHAR(60)                   ,
    W_COUNTY                  VARCHAR(30)                   ,
    W_STATE                   CHAR(2)                       ,
    W_ZIP                     CHAR(10)                      ,
    W_COUNTRY                 VARCHAR(20)                   ,
    W_GMT_OFFSET              DECIMAL(5,2)
) WITH (ORIENTATION = COLUMN, COLVERSION=2.0);

Create a column-store table with the delta table function enabled.

CREATE TABLE tpcds.warehouse_t27
(
    W_WAREHOUSE_SK            INTEGER               NOT NULL,
    W_WAREHOUSE_ID            CHAR(16)              NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)                   ,
    W_WAREHOUSE_SQ_FT         INTEGER                       ,
    W_STREET_NUMBER           CHAR(10)                      ,
    W_STREET_NAME             VARCHAR(60)                   ,
    W_STREET_TYPE             CHAR(15)                      ,

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 526



    W_SUITE_NUMBER            CHAR(10)                      ,
    W_CITY                    VARCHAR(60)                   ,
    W_COUNTY                  VARCHAR(30)                   ,
    W_STATE                   CHAR(2)                       ,
    W_ZIP                     CHAR(10)                      ,
    W_COUNTRY                 VARCHAR(20)                   ,
    W_GMT_OFFSET              DECIMAL(5,2)
) WITH (ORIENTATION = COLUMN, ENABLE_DELTA = ON);

Create an OBS tablespace that hot and cold tables depend on.

CREATE TABLESPACE obs_location WITH(
    filesystem = obs, 
    address = 'obs URL', 
    access_key = 'xxxxxxxx',  
    secret_access_key = 'xxxxxxxx', 
    encrypt = 'on', 
    storepath = '/obs_bucket/obs_tablespace'
);

Create a hot or cold table. Only column-store partitioned tables are supported.

CREATE TABLE tpcds.warehouse_t28
(
    W_WAREHOUSE_SK            INTEGER               NOT NULL,
    W_WAREHOUSE_ID            CHAR(16)              NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)                   ,
    W_WAREHOUSE_SQ_FT         INTEGER                       ,
    W_STREET_NUMBER           CHAR(10)                      ,
    W_STREET_NAME             VARCHAR(60)                   ,
    W_STREET_TYPE             CHAR(15)                      ,
    W_SUITE_NUMBER            CHAR(10)                      ,
    W_CITY                    VARCHAR(60)                   ,
    W_COUNTY                  VARCHAR(30)                   ,
    W_STATE                   CHAR(2)                       ,
    W_ZIP                     CHAR(10)                      ,
    W_COUNTRY                 VARCHAR(20)                   ,
    W_GMT_OFFSET              DECIMAL(5,2)
)
WITH (ORIENTATION = COLUMN, cold_tablespace = "obs_location", storage_policy = 'LMT:30')
DISTRIBUTE BY HASH (W_WAREHOUSE_SK)
PARTITION BY RANGE(W_WAREHOUSE_SQ_FT)
(
    PARTITION P1 VALUES LESS THAN(100000),
    PARTITION P2 VALUES LESS THAN(200000),
    PARTITION P3 VALUES LESS THAN(300000),
    PARTITION P4 VALUES LESS THAN(400000),
    PARTITION P5 VALUES LESS THAN(500000),
    PARTITION P6 VALUES LESS THAN(600000),
    PARTITION P7 VALUES LESS THAN(700000),
    PARTITION P8 VALUES LESS THAN(MAXVALUE)
)ENABLE ROW MOVEMENT;

Define a table and enable the SKIP_FPI_HINT function.

CREATE TABLE tpcds.warehouse_t29
(
    W_WAREHOUSE_SK            INTEGER               NOT NULL,
    W_WAREHOUSE_ID            CHAR(16)              NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)                   ,
    W_WAREHOUSE_SQ_FT         INTEGER                       ,
    W_STREET_NUMBER           CHAR(10)                      ,
    W_STREET_NAME             VARCHAR(60)                   ,
    W_STREET_TYPE             CHAR(15)                      ,
    W_SUITE_NUMBER            CHAR(10)                      ,
    W_CITY                    VARCHAR(60)                   ,
    W_COUNTY                  VARCHAR(30)                   ,
    W_STATE                   CHAR(2)                       ,
    W_ZIP                     CHAR(10)                      ,
    W_COUNTRY                 VARCHAR(20)                   ,

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 527



    W_GMT_OFFSET              DECIMAL(5,2)
) WITH (SKIP_FPI_HINT = TRUE);

Create a row-store table.

CREATE TABLE tpcds.warehouse_t30
(
    W_WAREHOUSE_SK            INTEGER               NOT NULL,
    W_WAREHOUSE_ID            CHAR(16)              NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)                   ,
    W_WAREHOUSE_SQ_FT         INTEGER                       ,
    W_STREET_NUMBER           CHAR(10)                      ,
    W_STREET_NAME             VARCHAR(60)                   ,
    W_STREET_TYPE             CHAR(15)                      ,
    W_SUITE_NUMBER            CHAR(10)                      ,
    W_CITY                    VARCHAR(60)                   ,
    W_COUNTY                  VARCHAR(30)                   ,
    W_STATE                   CHAR(2)                       ,
    W_ZIP                     CHAR(10)                      ,
    W_COUNTRY                 VARCHAR(20)                   ,
    W_GMT_OFFSET              DECIMAL(5,2)
) WITH (ORIENTATION = ROW);

Create a table that uses an auto-increment UUID as the primary key (the type of
W_UUID is SMALLSERIAL).
CREATE TABLE tpcds.warehouse_t31
(
    W_WAREHOUSE_SK            INTEGER               NOT NULL,
    W_WAREHOUSE_ID            CHAR(16)              NOT NULL,
    W_WAREHOUSE_NAME          VARCHAR(20)                   ,
    W_WAREHOUSE_SQ_FT         INTEGER                       ,
    W_STREET_NUMBER           CHAR(10)                      ,
    W_STREET_NAME             VARCHAR(60)                   ,
    W_STREET_TYPE             CHAR(15)                      ,
    W_SUITE_NUMBER            CHAR(10)                      ,
    W_CITY                    VARCHAR(60)                   ,
    W_COUNTY                  VARCHAR(30)                   ,
    W_UUID                    SMALLSERIAL                   ,
    W_ZIP                     CHAR(10)                      ,
    W_COUNTRY                 VARCHAR(20)                   ,
    W_GMT_OFFSET              DECIMAL(5,2)
) WITH (ORIENTATION = ROW);

Links

ALTER TABLE, DROP TABLE

12.49 CREATE TABLE AS

Function

CREATE TABLE AS creates a table based on the results of a query.

It creates a table and fills it with data obtained using SELECT. The table columns
have the names and data types associated with the output columns of the
SELECT. Except that you can override the SELECT output column names by giving
an explicit list of new column names.

CREATE TABLE AS queries once the source table and writes data in the new table.
The query result view changes when the source table changes. In contrast, a view
re-evaluates its defining SELECT statement whenever it is queried.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 528



Precautions
● This command cannot be used to create a partitioned table.
● If an error occurs when you create a table, after the system is recovered, the

system probably cannot automatically clear the created disk file whose size is
not 0. This problem seldom occurs.

Syntax
CREATE [ UNLOGGED ] TABLE table_name
    [ (column_name [, ...] ) ]
    [ WITH ( {storage_parameter = value} [, ... ] ) ]
    [ COMPRESS | NOCOMPRESS ]
    
    [ DISTRIBUTE BY { REPLICATION | { [HASH ] ( column_name ) } } ]
    
    AS query
    [ WITH [ NO ] DATA ];

Parameter Description
● UNLOGGED

Specifies that the table is created as an unlogged table. Data written to
unlogged tables is not written to the write-ahead log, which makes them
considerably faster than ordinary tables. However, they are not crash-safe: an
unlogged table is automatically truncated after a crash or unclean shutdown.
The contents of an unlogged table are also not replicated to standby servers.
Any indexes created on an unlogged table are automatically unlogged as well.
– Usage scenario: Unlogged tables do not ensure safe data. Users can back

up data before using unlogged tables; for example, users should back up
the data before a system upgrade.

– Troubleshooting: If data is missing in the indexes of unlogged tables due
to some unexpected operations such as an unclean shutdown, users
should re-create the indexes with errors.

● table_name
Specifies the name of the table to be created.
Value range: a string. It must comply with the naming convention.

● column_name
Specifies the name of a column to be created in the new table.
Value range: a string. It must comply with the naming convention.

● WITH ( storage_parameter [= value] [, ... ] )
Specifies an optional storage parameter for a table or an index. See details of
parameters below.
– FILLFACTOR

The fillfactor of a table is a percentage between 10 and 100. 100
(complete packing) is the default value. When a smaller fillfactor is
specified, INSERT operations pack table pages only to the indicated
percentage. The remaining space on each page is reserved for updating
rows on that page. This gives UPDATE a chance to place the updated
copy of a row on the same page, which is more efficient than placing it
on a different page. For a table whose records are never updated, setting
the fillfactor to 100 (complete packing) is the appropriate choice, but in

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 529



heavily updated tables smaller fillfactors are appropriate. The parameter
is only valid for row–store table.
Value range: 10–100

– ORIENTATION
Valid value:
COLUMN: The data will be stored in columns.
ROW (default value): The data will be stored in rows.

– COMPRESSION
Specifies the compression level of the table data. It determines the
compression ratio and time. Generally, the higher the level of
compression, the higher the ratio, the longer the time, and the lower the
level of compression, the lower the ratio, the shorter the time. The actual
compression ratio depends on the distribution characteristics of loading
table data.
Valid value:
The valid values for column-store tables are YES/NO and LOW/MIDDLE/
HIGH, and the default is LOW.
The valid values for row-store tables are YES and NO, and the default is
NO.

NO TE

The row-store table compression function is not put into commercial use. To use
this function, contact technical support engineers.

– MAX_BATCHROW
Specifies the maximum of a storage unit during data loading process. The
parameter is only valid for column-store table.
Value range: 10000 to 60000
Default value: 60000

– PARTIAL_CLUSTER_ROWS
Specifies the number of records to be partial cluster stored during data
loading process. The parameter is only valid for column-store table.
Value range: 600000 to 2147483647

– enable_delta
Specifies whether to enable delta tables in column-store tables. The
parameter is only valid for column-store tables.
Default value: off

– COLVERSION
Specifies the version of the column-store format. You can switch between
different storage formats.
Valid value:
1.0: Each column in a column-store table is stored in a separate file. The
file name is relfilenode.C1.0, relfilenode.C2.0, relfilenode.C3.0, or
similar.
2.0: All columns of a column-store table are combined and stored in a
file. The file is named relfilenode.C1.0.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 530



Default value: 2.0

NO TE

When creating a column-store table, set COLVERSION to 2.0. Compared with the
1.0 storage format, the performance is significantly improved:
1. The time required for creating a column-store wide table is significantly

reduced.
2. In the Roach data backup scenario, the backup time is significantly reduced.
3. The build and catch up time is greatly reduced.
4. The occupied disk space decreases significantly.

– SKIP_FPI_HINT
Indicates whether to skip the hint bits operation when the full-page
writes (FPW) log needs to be written during sequential scanning.
Default value: false

NO TE

If SKIP_FPI_HINT is set to true and the checkpoint operation is performed on a
table, no Xlog will be generated when the table is sequentially scanned. This
applies to intermediate tables that are queried less frequently, reducing the size
of Xlogs and improving query performance.

● COMPRESS / NOCOMPRESS
Specifies the keyword COMPRESS during the creation of a table, so that the
compression feature is triggered in the case of a bulk INSERT operation. If
this feature is enabled, a scan is performed for all tuple data within the page
to generate a dictionary and then the tuple data is compressed and stored. If
NOCOMPRESS is specified, the table is not compressed.
Default value: NOCOMPRESS, tuple data is not compressed before storage.

● DISTRIBUTE BY
Specifies how the table is distributed or replicated between DNs.
– REPLICATION: Each row in the table exists on all DNs, that is, each DN

has complete table data.
– HASH (column_name): Each row of the table will be placed into all the

DNs based on the hash value of the specified column.

NO TICE

● When DISTRIBUTE BY HASH (column_name) is specified, the primary key
and its unique index must contain the column_name column.

● When DISTRIBUTE BY HASH (column_name) in a referenced table is
specified, the foreign key of the reference table must contain the
column_name column.

Default value: HASH(column_name), the key column of column_name (if
any) or the column of distribution column supported by first data type.
column_name supports the following data types:
– Integer types: TINYINT, SMALLINT, INT, BIGINT, and NUMERIC/DECIMAL
– Character types: CHAR, BPCHAR, VARCHAR, VARCHAR2, NVARCHAR2,

and TEXT

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 531



– Date/time types: DATE, TIME, TIMETZ, TIMESTAMP, TIMESTAMPTZ,
INTERVAL, and SMALLDATETIME

● AS query
Indicates a SELECT or VALUES command, or an EXECUTE command that runs
a prepared SELECT, or VALUES query.

● [ WITH [ NO ] DATA ]
Specifies whether the data produced by the query should be copied into the
new table. By default, the data is copied. If the NO parameter is used, the
data is not copied.

Examples

Create the store_returns_t1 table and insert numbers that are greater than 4795
in the sr_item_sk column of the store_returns table.

CREATE TABLE store_returns_t1 AS SELECT * FROM store_returns WHERE sr_item_sk > '4795';

-- Copy store_returns to create the store_returns_t2 table.

CREATE TABLE store_returns_t2 AS table store_returns;

Helpful Links

CREATE TABLE, SELECT

12.50 CREATE TABLE PARTITION

Function

CREATE TABLE PARTITION creates a partitioned table. Partitioning refers to
splitting what is logically one large table into smaller physical pieces based on
specific schemes. The table based on the logic is called a partition cable, and a
physical piece is called a partition. Data is stored on these smaller physical pieces,
namely, partitions, instead of the larger logical partitioned table.

The common forms of partitioning include range partitioning, hash partitioning,
list partitioning, and value partitioning. Currently, row-store and column-store
tables support only range partitioning.

In range partitioning, the table is partitioned into ranges defined by a key column
or set of columns, with no overlap between the ranges of values assigned to
different partitions. Each range has a dedicated partition for data storage.

The partitioning policy for Range Partitioning refers to how data is inserted into
partitions. Currently, range partitioning only allows the use of the range
partitioning policy.

Range partitioning policy: Data is mapped to a created partition based on the
partition key value. If the data can be mapped to, it is inserted into the specific
partition; if it cannot be mapped to, error messages are returned. This is the most
commonly used partitioning policy.

Partitioning can provide several benefits:

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 532



● Query performance can be improved dramatically in certain situations,
particularly when most of the heavily accessed rows of the table are in a
single partition or a small number of partitions. Partitioning narrows the
range of data search and improves data access efficiency.

● When queries or updates access a large percentage of a single partition,
performance can be improved by taking advantage of sequential scan of that
partition instead of reads scattered across the whole table.

● Bulk loads and deletion can be performed by adding or removing partitions, if
that requirement is planned into the partitioning design. It also entirely avoids
the VACUUM overhead caused by a bulk DELETE (only for range
partitioning).

Precautions

A partitioned table supports unique and primary key constraints. The constraint
keys of these constraints contain all partition keys.

Syntax
CREATE TABLE [ IF NOT EXISTS ] partition_table_name
( [ 
    { column_name data_type [ COLLATE collation ] [ column_constraint [ ... ] ]
    | table_constraint
    | LIKE source_table [ like_option [...] ] }[, ... ]
] )
    [ WITH ( {storage_parameter = value} [, ... ] ) ]
    [ COMPRESS | NOCOMPRESS ]
    [ TABLESPACE tablespace_name ]
    [ DISTRIBUTE BY { REPLICATION | { [ HASH ] ( column_name ) } } ]
    [ TO { GROUP groupname | NODE ( nodename [, ... ] ) } ]
    PARTITION BY { 
        {VALUES (partition_key)} |
        {RANGE (partition_key) ( partition_less_than_item [, ... ] )} |
        {RANGE (partition_key) ( partition_start_end_item [, ... ] )}
    } [ { ENABLE | DISABLE } ROW MOVEMENT ]; 

● column_constraint is as follows:
[ CONSTRAINT constraint_name ]
{ NOT NULL |
  NULL | 
  CHECK ( expression ) | 
  DEFAULT default_expr | 
  UNIQUE index_parameters | 
  PRIMARY KEY index_parameters }
[ DEFERRABLE | NOT DEFERRABLE | INITIALLY DEFERRED | INITIALLY IMMEDIATE ]

● table_constraint is as follows:
[ CONSTRAINT constraint_name ]
{ CHECK ( expression ) | 
  UNIQUE ( column_name [, ... ] ) index_parameters | 
  PRIMARY KEY ( column_name [, ... ] ) index_parameters}
[ DEFERRABLE | NOT DEFERRABLE | INITIALLY DEFERRED | INITIALLY IMMEDIATE ]

● like_option is as follows:
{ INCLUDING | EXCLUDING } { DEFAULTS | CONSTRAINTS | INDEXES | STORAGE | COMMENTS | 
RELOPTIONS | DISTRIBUTION | ALL }

● index_parameters is as follows:
[ WITH ( {storage_parameter = value} [, ... ] ) ]
[ USING INDEX TABLESPACE tablespace_name ]

● partition_less_than_item is as follows:
PARTITION partition_name VALUES LESS THAN ( { partition_value | MAXVALUE } ) [TABLESPACE 
tablespace_name]

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 533



● partition_start_end_item is as follows:
PARTITION partition_name {
        {START(partition_value) END (partition_value) EVERY (interval_value)} |
        {START(partition_value) END ({partition_value | MAXVALUE})} |
        {START(partition_value)} |
        {END({partition_value | MAXVALUE})}
} [TABLESPACE tablespace_name]

Parameter Description
● IF NOT EXISTS

Does not throw an error if a table with the same name exists. A notice is
issued in this case.

● partition_table_name
Name of the partitioned table
Value range: a string. It must comply with the naming convention.

● column_name
Specifies the name of a column to be created in the new table.
Value range: a string. It must comply with the naming convention.

● data_type
Specifies the data type of the column.

● COLLATE collation
Assigns a collation to the column (which must be of a collatable data type). If
no collation is specified, the default collation is used.

● CONSTRAINT constraint_name
Specifies a name for a column or table constraint. The optional constraint
clauses specify constraints that new or updated rows must satisfy for an insert
or update operation to succeed.
There are two ways to define constraints:
– A column constraint is defined as part of a column definition, and it is

bound to a particular column.
– A table constraint is not bound to any particular columns but can apply

to more than one column.
● LIKE source_table [ like_option ... ]

Specifies a table from which the new table automatically copies all column
names, their data types, and their not-null constraints.
Unlike INHERITS, the new table and original table are decoupled after
creation is complete. Changes to the original table will not be applied to the
new table, and it is not possible to include data of the new table in scans of
the original table.
Default expressions for the copied column definitions will only be copied if
INCLUDING DEFAULTS is specified. The default behavior is to exclude default
expressions, resulting in the copied columns in the new table having default
values NULL.
NOT NULL constraints are always copied to the new table. CHECK constraints
will only be copied if INCLUDING CONSTRAINTS is specified; other types of
constraints will never be copied. These rules also apply to column constraints
and table constraints.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 534



Unlike INHERITS, columns and constraints copied by LIKE are not merged
with similarly named columns and constraints. If the same name is specified
explicitly or in another LIKE clause, an error is reported.

– Any indexes on the source table will not be created on the new table,
unless the INCLUDING INDEXES clause is specified.

– STORAGE settings for the copied column definitions will only be copied if
INCLUDING STORAGE is specified. The default behavior is to exclude
STORAGE settings.

– Comments for the copied columns, constraints, and indexes will only be
copied if INCLUDING COMMENTS is specified. The default behavior is to
exclude comments.

– If INCLUDING RELOPTIONS is specified, the new table will copy the
storage parameter (WITH clause of the source table) of the source table.
The default behavior is to exclude partition definition of the storage
parameter of the source table.

– If INCLUDING DISTRIBUTION is specified, the new table will copy the
distribution information of the source table, including distribution type
and column, and the new table cannot use DISTRIBUTE BY clause. The
default behavior is to exclude distribution information of the source table.

– INCLUDING ALL is an abbreviated form of INCLUDING DEFAULTS
INCLUDING CONSTRAINTS INCLUDING INDEXES INCLUDING
STORAGE INCLUDING COMMENTS INCLUDING RELOPTIONS
INCLUDING DISTRIBUTION.

● WITH ( storage_parameter [= value] [, ... ] )

Specifies an optional storage parameter for a table or an index. Optional
parameters are as follows:

– FILLFACTOR

The fillfactor of a table is a percentage between 10 and 100. 100
(complete packing) is the default value. When a smaller fillfactor is
specified, INSERT operations pack table pages only to the indicated
percentage. The remaining space on each page is reserved for updating
rows on that page. This gives UPDATE a chance to place the updated
copy of a row on the same page, which is more efficient than placing it
on a different page. For a table whose records are never updated, setting
the fillfactor to 100 (complete packing) is the appropriate choice, but in
heavily updated tables smaller fillfactors are appropriate. The parameter
has no meaning for column-store tables.

Value range: 10–100

– ORIENTATION

Determines the storage mode of the data in the table.

Valid value:

▪ COLUMN: The data will be stored in columns.

▪ ROW (default value): The data will be stored in rows.

▪ ORC: The data of the table will be stored in ORC format (only HDFS
table).

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 535



NO TICE

orientation cannot be modified.

– COMPRESSION

▪ The valid values for column-store tables are YES/NO and LOW/
MIDDLE/HIGH, and the default is LOW.

▪ The valid values for row-store tables are YES and NO, and the
default is NO.

NO TE

The row-store table compression function is not put into commercial use. To
use this function, contact technical support engineers.

– MAX_BATCHROW
Specifies the maximum of a storage unit during data loading process. The
parameter is only valid for column-store table.
Value range: 10000 to 60000
Default value: 60000

– PARTIAL_CLUSTER_ROWS
Specifies the number of records to be partial cluster stored during data
loading process. The parameter is only valid for column-store table.
Value range: The valid value is no less than 100000. The value is the
multiple of MAX_BATCHROW.

– enable_delta
Specifies whether to enable delta tables in column-store tables. The
parameter is only valid for column-store tables.
Default value: off

– DELTAROW_THRESHOLD
A reserved parameter. The parameter is only valid for column-store table.
Value range: 0 to 9999

– COLD_TABLECPACE
Specifies the OBS tablespace for the cold partitions in a hot or cold table.
This parameter is available only to partitioned column-store tables and
cannot be modified. It must be used together with storage_policy.
Valid value: a valid OBS tablespace name

– STORAGE_POLICY
Specifies the rule for switching between hot and cold partitions. This
parameter is used only for multi-temperature tables. It must be used
together with cold_tablespace.
Value range: Cold and hot switchover policy name:Cold and hot
switchover threshold. Currently, only LMT and HPN policies are
supported. LMT indicates that the switchover is performed based on the
last update time of partitions. HPN indicates the switchover is performed
based on a fixed number of reserved hot partitions.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 536



▪ LMT:[day]: Switch the hot partition data that is not updated in the
last [day] days to the OBS tablespace as cold partition data. [day] is
an integer ranging from 0 to 36500, in days.

▪ HPN:[hot_partition_num]: [hot_partition_num] indicates the number
of hot partitions (with data) to be retained. The rule is to find the
maximum sequence ID of the partitions with data. The partitions
without data whose sequence ID is greater than the maximum
sequence ID are hot partitions, and [hot_partition_num] partitions
are retained as hot partitions in descending order according to the
sequence ID. A partition whose sequence ID is smaller than the
minimum sequence ID of the retained hot partition is a cold
partition. During hot and cold partition switchover, data needs to be
migrated to the OBS tablespace. [hot_partition_num] is an integer
ranging from 0 to 1600.

– COLVERSION
Specifies the version of the column-store format. Switching between
different storage formats is supported. However, the storage format of a
partitioned table cannot be switched.
Valid value:
1.0: Each column in a column-store table is stored in a separate file. The
file name is relfilenode.C1.0, relfilenode.C2.0, relfilenode.C3.0, or
similar.
2.0: All columns of a column-store table are combined and stored in a
file. The file is named relfilenode.C1.0.
Default value: 2.0
The value of COLVERSION can only be set to 2.0 for OBS hot and cold
tables.

NO TE

When creating a column-store table, set COLVERSION to 2.0. Compared with the
1.0 storage format, the performance is significantly improved:
1. The time required for creating a column-store wide table is significantly

reduced.
2. In the Roach data backup scenario, the backup time is significantly reduced.
3. The build and catch up time is greatly reduced.
4. The occupied disk space decreases significantly.

– SKIP_FPI_HINT
Indicates whether to skip the hint bits operation when the full-page
writes (FPW) log needs to be written during sequential scanning.
Default value: false

NO TE

If SKIP_FPI_HINT is set to true and the checkpoint operation is performed on a
table, no Xlog will be generated when the table is sequentially scanned. This
applies to intermediate tables that are queried less frequently, reducing the size
of Xlogs and improving query performance.

● COMPRESS / NOCOMPRESS
Specifies the keyword COMPRESS during the creation of a table, so that the
compression feature is triggered in the case of a bulk INSERT operation. If

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 537



this feature is enabled, a scan is performed for all tuple data within the page
to generate a dictionary and then the tuple data is compressed and stored. If
NOCOMPRESS is specified, the table is not compressed.
Default value: NOCOMPRESS, tuple data is not compressed before storage.

● TABLESPACE tablespace_name
Specifies the new table will be created in tablespace_name tablespace. If not
specified, default tablespace is used. The OBS tablespace is not supported.

● DISTRIBUTE BY
Specifies how the table is distributed or replicated between DNs.
Valid value:
– REPLICATION: Each row in the table exists on all DNs, that is, each DN

has complete table data.
– HASH (column_name): Each row of the table will be placed into all the

DNs based on the hash value of the specified column.

NO TICE

● When DISTRIBUTE BY HASH (column_name) is specified, the primary key
and its unique index must contain the column_name column.

● When DISTRIBUTE BY HASH (column_name) in a referenced table is
specified, the foreign key of the reference table must contain the
column_name column.

Default value: HASH(column_name), the key column of column_name (if
any) or the column of distribution column supported by first data type.
column_name supports the following data types:
– INTEGER TYPES: TINYINT, SMALLINT, INT, BIGINT, NUMERIC/DECIMAL
– CHARACTER TYPES: CHAR, BPCHAR, VARCHAR, VARCHAR2, NVARCHAR2
– DATA/TIME TYPES: DATE, TIME, TIMETZ, TIMESTAMP, TIMESTAMPTZ,

INTERVAL, SMALLDATETIME
● TO { GROUP groupname | NODE ( nodename [, ... ] ) }

TO GROUP specifies the Node Group in which the table is created. Currently,
it cannot be used for HDFS tables. TO NODE is used for internal scale-out
tools.

● PARTITION BY RANGE(partition_key)
Creates a range partition. partition_key is the name of the partition key.
(1) Assume that the VALUES LESS THAN syntax is used.

NO TICE

In this case, a maximum of four partition keys are supported.

Data types supported by the partition keys are as follows: SMALLINT,
INTEGER, BIGINT, DECIMAL, NUMERIC, REAL, DOUBLE PRECISION,
CHARACTER VARYING(n), VARCHAR(n), CHARACTER(n), CHAR(n),

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 538



CHARACTER, CHAR, TEXT, NVARCHAR2, NAME, TIMESTAMP[(p)] [WITHOUT
TIME ZONE], TIMESTAMP[(p)] [WITH TIME ZONE], and DATE.
(2) Assume that the START END syntax is used.

NO TICE

In this case, only one partition key is supported.

Data types supported by the partition key are as follows: SMALLINT, INTEGER,
BIGINT, DECIMAL, NUMERIC, REAL, DOUBLE PRECISION, TIMESTAMP[(p)]
[WITHOUT TIME ZONE], TIMESTAMP[(p)] [WITH TIME ZONE], and DATE.

● PARTITION partition_name VALUES LESS THAN ( { partition_value |
MAXVALUE } )
Specifies the information of partitions. partition_name is the name of a
range partition. partition_value is the upper limit of range partition, and the
value depends on the type of partition_key. MAXVALUE can specify the
upper boundary of a range partition, and it is commonly used to specify the
upper boundary of the last range partition.

NO TICE

● Upper boundaries must be specified for each partition.
● The types of upper boundaries must be the same as those of partition

keys.
● In a partition list, partitions are arranged in ascending order of upper

boundary values. Therefore, a partition with a certain upper boundary
value is placed before another partition with a larger upper boundary
value.

● If a partition key consists of multiple columns, the columns are used for
partitioning in sequence. The first column is preferred to be used for
partitioning. If the values of the first columns are the same, the second
column is used. The subsequent columns are used in the same manner.

● PARTITION partition_name {START (partition_value) END
(partition_value) EVERY (interval_value)} | {START (partition_value) END
(partition_value|MAXVALUE)} | {START(partition_value)} | {END
(partition_value | MAXVALUE)}
Specifies partition definitions.
– partition_name: name or name prefix of a range partition. It is the name

prefix only in the following cases (assuming that partition_name is p1):

▪ If START+END+EVERY is used, the names of partitions will be defined
as p1_1, p1_2, and the like. For example, if PARTITION p1 START(1)
END(4) EVERY(1) is defined, the generated partitions are [1, 2), [2,
3), and [3, 4), and their names are p1_1, p1_2, and p1_3. In this
case, p1 is a name prefix.

▪ If the defined statement is in the first place and has START specified,
the range (MINVALUE, START) will be automatically used as the first

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 539



actual partition, and its name will be p1_0. The other partitions are
then named p1_1, p1_2, and the like. For example, if PARTITION p1
START(1), PARTITION p2 START(2) is defined, generated partitions
are (MINVALUE, 1), [1, 2), and [2, MAXVALUE), and their names will
be p1_0, p1_1, and p2. In this case, p1 is a name prefix and p2 is a
partition name. MINVALUE means the minimum value.

– partition_value: start point value or end point value of a range partition.
The value depends on partition_key and cannot be MAXVALUE.

– interval_value: width of each partition for dividing the [START, END)
range. It cannot be MAXVALUE. If the value of (END – START) divided by
EVERY has a remainder, the width of only the last partition is less than
the value of EVERY.

– MAXVALUE: maximum value. It is usually used to set the upper boundary
for the last range partition.

NO TICE

1. If the defined statement is in the first place and has START specified, the
range (MINVALUE, START) will be automatically used as the first actual
partition.

2. The START END syntax must comply with the following rules:
● The value of START (if any, same for the following situations) in each

partition_start_end_item must be smaller than that of END.
● In two adjacent partition_start_end_item statements, the value of

the first END must be equal to that of the second START.
● The value of EVERY in each partition_start_end_item must be a

positive number (in ascending order) and must be smaller than END
minus START.

● Each partition includes the start value (unless it is MINVALUE) and
excludes the end value. The format is as follows: [Start value, end
value).

● Partitions created by the same partition_start_end_item belong to
the same tablespace.

● If partition_name is a name prefix of a partition, the length must not
exceed 57 bytes. If there are more than 57 bytes, the prefix will be
automatically truncated.

● When creating or modifying a partitioned table, ensure that the total
number of partitions in the table does not exceed the maximum value
(32767).

3. In statements for creating partitioned tables, START END and LESS THAN
cannot be used together.

4. The START END syntax in a partitioned table creation SQL statement will
be replaced with the VALUES LESS THAN syntax when gs_dump is
executed.

● { ENABLE | DISABLE } ROW MOVEMENT
Specifies the row movement switch.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 540



If the tuple value is updated on the partition key during the UPDATE action,
the partition where the tuple is located is altered. Setting of this parameter
enables error messages to be reported or movement of the tuple between
partitions.
Valid value:
– ENABLE: Row movement is enabled.
– DISABLE (default value): Disable row movement.

● NOT NULL
Indicates that the column is not allowed to contain NULL values. ENABLE can
be omitted.

● NULL
Indicates that the column is allowed to contain NULL values. This is the
default setting.
This clause is only provided for compatibility with non-standard SQL
databases. You are advised not to use this clause.

● CHECK (condition) [ NO INHERIT ]
Specifies an expression producing a Boolean result which new or updated
rows must satisfy for an insert or update operation to succeed. Expressions
evaluating to TRUE or UNKNOWN succeed. If any row of an insert or update
operation produces a FALSE result, an error exception is raised and the insert
or update does not alter the database.
A check constraint specified as a column constraint should reference only the
column's values, while an expression appearing in a table constraint can
reference multiple columns.
A constraint marked with NO INHERIT will not propagate to child tables.
ENABLE can be omitted.

● DEFAULT default_expr
Assigns a default data value for a column. The value can be any variable-free
expressions (Subqueries and cross-references to other columns in the current
table are not allowed). The data type of the default expression must match
the data type of the column.
The default expression will be used in any insert operation that does not
specify a value for the column. If there is no default value for a column, then
the default value is NULL.

● UNIQUE index_parameters
UNIQUE ( column_name [, ... ] ) index_parameters
Specifies that a group of one or more columns of a table can contain only
unique values.
For the purpose of a unique constraint, NULL is not considered equal.

NO TE

If DISTRIBUTE BY REPLICATION is not specified, the column table that contains only
unique values must contain distribution columns.

● PRIMARY KEY index_parameters
PRIMARY KEY ( column_name [, ... ] ) index_parameters

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 541



Specifies the primary key constraint specifies that a column or columns of a
table can contain only unique (non-duplicate) and non-null values.
Only one primary key can be specified for a table.

NO TE

If DISTRIBUTE BY REPLICATION is not specified, the column set with a primary key
constraint must contain distributed columns.

● DEFERRABLE | NOT DEFERRABLE
Controls whether the constraint can be deferred. A constraint that is not
deferrable will be checked immediately after every command. Checking of
constraints that are deferrable can be postponed until the end of the
transaction using the SET CONSTRAINTS command. NOT DEFERRABLE is the
default value. Currently, only UNIQUE and PRIMARY KEY constraints of row-
store tables accept this clause. All the other constraints are not deferrable.

● INITIALLY IMMEDIATE | INITIALLY DEFERRED
If a constraint is deferrable, this clause specifies the default time to check the
constraint.
– If the constraint is INITIALLY IMMEDIATE (default value), it is checked

after each statement.
– If the constraint is INITIALLY DEFERRED, it is checked only at the end of

the transaction.
The constraint check time can be altered using the SET CONSTRAINTS
command.

● USING INDEX TABLESPACE tablespace_name
Allows selection of the tablespace in which the index associated with a
UNIQUE or PRIMARY KEY constraint will be created. If not specified,
default_tablespace is consulted, or the default tablespace in the database if
default_tablespace is empty. The OBS tablespace is not supported.

Examples
● Example 1: Create a range-partitioned table tpcds.web_returns_p1. The table

has eight partitions and the data type of their partition key is integer. The
ranges of the partitions are: wr_returned_date_sk < 2450815, 2450815 ≤
wr_returned_date_sk < 2451179, 2451179 ≤ wr_returned_date_sk < 2451544,
2451544 ≤ wr_returned_date_sk < 2451910, 2451910 ≤ wr_returned_date_sk <
2452275, 2452275 ≤ wr_returned_date_sk < 2452640, 2452640 ≤
wr_returned_date_sk < 2453005, and wr_returned_date_sk ≥ 2453005.
CREATE TABLE tpcds.web_returns_p1
(
    WR_RETURNED_DATE_SK       INTEGER                       ,
    WR_RETURNED_TIME_SK       INTEGER                       ,
    WR_ITEM_SK                INTEGER               NOT NULL,
    WR_REFUNDED_CUSTOMER_SK   INTEGER                       ,
    WR_REFUNDED_CDEMO_SK      INTEGER                       ,
    WR_REFUNDED_HDEMO_SK      INTEGER                       ,
    WR_REFUNDED_ADDR_SK       INTEGER                       ,
    WR_RETURNING_CUSTOMER_SK  INTEGER                       ,
    WR_RETURNING_CDEMO_SK     INTEGER                       ,
    WR_RETURNING_HDEMO_SK     INTEGER                       ,
    WR_RETURNING_ADDR_SK      INTEGER                       ,
    WR_WEB_PAGE_SK            INTEGER                       ,
    WR_REASON_SK              INTEGER                       ,
    WR_ORDER_NUMBER           BIGINT                NOT NULL,

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 542



    WR_RETURN_QUANTITY        INTEGER                       ,
    WR_RETURN_AMT             DECIMAL(7,2)                  ,
    WR_RETURN_TAX             DECIMAL(7,2)                  ,
    WR_RETURN_AMT_INC_TAX     DECIMAL(7,2)                  ,
    WR_FEE                    DECIMAL(7,2)                  ,
    WR_RETURN_SHIP_COST       DECIMAL(7,2)                  ,
    WR_REFUNDED_CASH          DECIMAL(7,2)                  ,
    WR_REVERSED_CHARGE        DECIMAL(7,2)                  ,
    WR_ACCOUNT_CREDIT         DECIMAL(7,2)                  ,
    WR_NET_LOSS               DECIMAL(7,2)
)
WITH (ORIENTATION = COLUMN,COMPRESSION=MIDDLE)
DISTRIBUTE BY HASH (WR_ITEM_SK)
PARTITION BY RANGE(WR_RETURNED_DATE_SK)
(
        PARTITION P1 VALUES LESS THAN(2450815),
        PARTITION P2 VALUES LESS THAN(2451179),
        PARTITION P3 VALUES LESS THAN(2451544),
        PARTITION P4 VALUES LESS THAN(2451910),
        PARTITION P5 VALUES LESS THAN(2452275),
        PARTITION P6 VALUES LESS THAN(2452640),
        PARTITION P7 VALUES LESS THAN(2453005),
        PARTITION P8 VALUES LESS THAN(MAXVALUE)
);

● Example 2: Create a range partitioned table tpcds.web_returns_p2. The table
has eight partitions and the data type of their partition key is integer. The
upper limit of the eighth partition is MAXVALUE.
The ranges of the partitions are: wr_returned_date_sk < 2450815, 2450815 ≤
wr_returned_date_sk < 2451179, 2451179 ≤ wr_returned_date_sk < 2451544,
2451544 ≤ wr_returned_date_sk < 2451910, 2451910 ≤ wr_returned_date_sk <
2452275, 2452275 ≤ wr_returned_date_sk < 2452640, 2452640 ≤
wr_returned_date_sk < 2453005, and wr_returned_date_sk ≥ 2453005.
Assume that CN and DN data directory/pg_location/mount1/path1, CN and
DN data directory/pg_location/mount2/path2, CN and DN data directory/
pg_location/mount3/path3, and CN and DN data directory/pg_location/
mount4/path4 are empty directories for which user dwsadmin has read and
write permissions.

CREATE TABLE tpcds.web_returns_p2
(
    WR_RETURNED_DATE_SK       INTEGER                       ,
    WR_RETURNED_TIME_SK       INTEGER                       ,
    WR_ITEM_SK                INTEGER               NOT NULL,
    WR_REFUNDED_CUSTOMER_SK   INTEGER                       ,
    WR_REFUNDED_CDEMO_SK      INTEGER                       ,
    WR_REFUNDED_HDEMO_SK      INTEGER                       ,
    WR_REFUNDED_ADDR_SK       INTEGER                       ,
    WR_RETURNING_CUSTOMER_SK  INTEGER                       ,
    WR_RETURNING_CDEMO_SK     INTEGER                       ,
    WR_RETURNING_HDEMO_SK     INTEGER                       ,
    WR_RETURNING_ADDR_SK      INTEGER                       ,
    WR_WEB_PAGE_SK            INTEGER                       ,
    WR_REASON_SK              INTEGER                       ,
    WR_ORDER_NUMBER           BIGINT                NOT NULL,
    WR_RETURN_QUANTITY        INTEGER                       ,
    WR_RETURN_AMT             DECIMAL(7,2)                  ,
    WR_RETURN_TAX             DECIMAL(7,2)                  ,
    WR_RETURN_AMT_INC_TAX     DECIMAL(7,2)                  ,
    WR_FEE                    DECIMAL(7,2)                  ,
    WR_RETURN_SHIP_COST       DECIMAL(7,2)                  ,
    WR_REFUNDED_CASH          DECIMAL(7,2)                  ,
    WR_REVERSED_CHARGE        DECIMAL(7,2)                  ,
    WR_ACCOUNT_CREDIT         DECIMAL(7,2)                  ,

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 543



    WR_NET_LOSS               DECIMAL(7,2)
)
DISTRIBUTE BY HASH (WR_ITEM_SK)
PARTITION BY RANGE(WR_RETURNED_DATE_SK)
(
        PARTITION P1 VALUES LESS THAN(2450815),
        PARTITION P2 VALUES LESS THAN(2451179),
        PARTITION P3 VALUES LESS THAN(2451544),
        PARTITION P4 VALUES LESS THAN(2451910),
        PARTITION P5 VALUES LESS THAN(2452275),
        PARTITION P6 VALUES LESS THAN(2452640),
        PARTITION P7 VALUES LESS THAN(2453005),
        PARTITION P8 VALUES LESS THAN(MAXVALUE) 
)
ENABLE ROW MOVEMENT;

● Example 3: Use START END to create and modify a range partitioned table.
Assume that /home/ommdbadmin/startend_tbs1, /home/ommdbadmin/
startend_tbs2, /home/ommdbadmin/startend_tbs3, and /home/
ommdbadmin/startend_tbs4 are empty directories for which user
ommdbadmin has the read/write permission.

Create a partitioned table with the partition key of type integer.
CREATE TABLE tpcds.startend_pt (c1 INT, c2 INT) 
 
DISTRIBUTE BY HASH (c1) 
PARTITION BY RANGE (c2) (
    PARTITION p1 START(1) END(1000) EVERY(200) ,
    PARTITION p2 END(2000),
    PARTITION p3 START(2000) END(2500) ,
    PARTITION p4 START(2500),
    PARTITION p5 START(3000) END(5000) EVERY(1000) 
)
ENABLE ROW MOVEMENT;

View the information of the partitioned table.
SELECT relname, boundaries FROM pg_partition p where p.parentid='tpcds.startend_pt'::regclass 
ORDER BY 1;
   relname   | boundaries
-------------+------------
 p1_0        | {1}
 p1_1        | {201}
 p1_2        | {401}
 p1_3        | {601}
 p1_4        | {801}
 p1_5        | {1000}
 p2          | {2000}
 p3          | {2500}
 p4          | {3000}
 p5_1        | {4000}
 p5_2        | {5000}
 tpcds.startend_pt |
(12 rows)

Import data and check the data volume in the partition.
INSERT INTO tpcds.startend_pt VALUES (GENERATE_SERIES(0, 4999), GENERATE_SERIES(0, 4999));
SELECT COUNT(*) FROM tpcds.startend_pt PARTITION FOR (0);
count
-------
1
(1 row)

SELECT COUNT(*) FROM tpcds.startend_pt PARTITION (p3);
count
-------
500
(1 row)

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 544



View the information of the partitioned table.
SELECT relname, boundaries FROM pg_partition p where p.parentid='tpcds.startend_pt'::regclass 
ORDER BY 1;
   relname   | boundaries
-------------+------------
 p1_0        | {1}
 p1_1        | {201}
 p1_2        | {401}
 p1_3        | {601}
 p1_4        | {801}
 p1_5        | {1000}
 p2          | {2000}
 p3          | {2500}
 p4          | {3000}
 p5_1        | {4000}
 p6_1        | {5300}
 p6_2        | {5600}
 p6_3        | {5900}
 p71         | {6000}
 q1_1        | {4250}
 q1_2        | {4500}
 q1_3        | {4750}
 q1_4        | {5000}
 tpcds.startend_pt |
(19 rows)

Links
ALTER TABLE PARTITION, DROP TABLE

12.51 CREATE TABLESPACE

Function
The feature of creating an OBS tablespace in a database is supported only by
8.1.1.

Precautions
● Only system administrators can create a tablespace.
● Do not run CREATE TABLESPACE in a transaction block.
● If the CREATE TABLESPACE command fails to be run but the internal

directory (or file) has been created, the directory (or file) will remain. You
need to manually clear it before creating the tablespace again. If there are
residual files of soft links for the tablespace in the data directory, delete the
residual files, and then perform O&M operations.

● CREATE TABLESPACE cannot be used for two-phase transactions. If it fails on
some nodes, the execution cannot be rolled back.

● You are advised to use the default tablespace default_tablespace instead of
the absolute tablespace or relative tablespace.

● For details about how to prepare for creating tablespaces, see "Parameter
Description" in this section.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 545



Syntax
CREATE TABLESPACE tablespace_name
    [ OWNER user_name ]  [ MAXSIZE 'space_size' ]
    [with_option_clause];

The with_option_clause of an OBS tablespace is as follows:
WITH ( filesystem= { 'obs'| "obs" | obs},
    address =  'endpoint', 
access_key = 'ak', secret_access_key = 'sk',
encrypt = 'on' |'off', storepath = 'rootpath')

Parameter Description
● tablespace_name

Specifies name of a tablespace to be created.
The tablespace name must be distinct from the name of any existing
tablespace in the database cluster and cannot start with pg, which are
reserved for system catalog spaces.
Value range: a string. It must comply with the naming convention.

● OWNER user_name
Specifies the owner of the tablespace. If omitted, the default owner is the
current user.
Only system administrators can create tablespaces, but they can use the
OWNER clause to assign ownership of tablespaces to other users.
Value range: An existing user.

● filesystem
Specifies the OBS tablespace.
Valid value: OBS

● random_page_cost
Specifies the cost of randomly reading the overhead of page.
Value range: 0 to 1.79769e+308.
Default value: the value of GUC parameter random_page_cost

● seq_page_cost
Specifies the cost of reading the overhead of page in order.
Value range: 0 to 1.79769e+308.
Default value: the value of GUC parameter seq_page_cost.

● address
Specifies the endpoint of OBS.
Setting rule: address only supports IPv4 addresses in dot-decimal notation,
and an address string cannot contain spaces. An IP address and a port
number are separated by a colon (:). If you create a general tablespace, this
parameter is unavailable.

● storepath
Specifies the data storage path on the OBS.
Value range: a string
Value format: /Bucket name of the parallel file system/Path/

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 546



● access_key
Specifies the access key (AK) (obtained by users from the OBS console) used
for the OBS access protocol. When you create a foreign table, its AK value is
encrypted and saved to the metadata table of the database. This parameter is
available only when type is OBS.

● secret_access_key
Specifies the secret access key (SK) (obtained by users from the OBS console)
used for the OBS access protocol. When you create a foreign table, its SK
value is encrypted and saved to the metadata table of the database. This
parameter is available only when type is OBS.

● encrypt
– Specifies whether data is encrypted. This parameter is available only

when type is OBS. The default value is off.
Options:
on indicates that data is encrypted.
off indicates that data is not encrypted.

Examples
Create an OBS tablespace.

CREATE TABLESPACE ds_location1   WITH(filesystem=obs, address='obs URL', access_key='xxxxxx',  
secret_access_key='xxxxxx', encrypt='on', storepath='/obs_bucket/obs_tablespace');

Create user joe.

CREATE ROLE joe IDENTIFIED BY 'password1';

Create user jay.

CREATE ROLE jay IDENTIFIED BY 'password2';

Create an ordinary tablespace and set its owner to user joe.

CREATE TABLESPACE ds_location2 OWNER joe WITH(filesystem=obs, address='obs URL', 
access_key='xxxxxx',  secret_access_key='xxxxxx', encrypt='on', storepath='/obs_bucket/obs_tablespace');

Helpful Links
CREATE DATABASE, CREATE TABLE, CREATE INDEX, DROP TABLESPACE

12.52 CREATE TEXT SEARCH CONFIGURATION

Function
CREATE TEXT SEARCH CONFIGURATION creates a text search configuration. A
text search configuration specifies a text search parser that can divide a string into
tokens, plus dictionaries that can be used to determine which tokens are of
interest for searching.

Important Notes
● If only the parser is specified, then the new text search configuration initially

has no mappings from token types to dictionaries, and therefore will ignore

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 547



all words. Subsequent ALTER TEXT SEARCH CONFIGURATION commands
must be used to create mappings to make the configuration useful. If COPY
option is specified, the parser, mapping and configuration option of text
search configuration is copied automatically.

● If a schema name is specified, the text search configuration will be created in
the specified schema. Otherwise, the configuration will be created in the
current schema.

● The user who defines a text search configuration becomes its owner.

● PARSER and COPY options are mutually exclusive, because when an existing
configuration is copied, its parser selection is copied too.

Syntax
CREATE TEXT SEARCH CONFIGURATION name 
    ( PARSER = parser_name | COPY = source_config )
    [ WITH ( {configuration_option = value} [, ...] )];

Parameter Description
● name

Specifies the name of the text search configuration to be created. Specifies
the name can be schema-qualified.

● parser_name

Specifies the name of the text search parser to use for this configuration.

● source_config

Specifies the name of an existing text search configuration to copy.

● configuration_option

Specifies the configuration parameter of text search configuration is mainly
for the parser executed by parser_name or contained by source_config.

Value range: The default, ngram, and zhparser parsers are supported. The
parser of default type has no corresponding configuration_option. Table
12-24 lists configuration_option for ngram and zhparser parsers.

Table 12-24 Configuration parameters for ngram and zhparser parsers

Parse
r

Paramet
ers for
adding
an
account

Description Value Range

ngra
m

gram_size Length of word
segmentation

Integer, 1 to 4
Default value: 2

punctuati
on_ignore

Whether to ignore
punctuations

● true (default value):
Ignore punctuations.

● false: Do not ignore
punctuations.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 548



Parse
r

Paramet
ers for
adding
an
account

Description Value Range

grapsymb
ol_ignore

Whether to ignore
graphical characters

● true: Ignore graphical
characters.

● false (default value):
Do not ignore
graphical characters.

zhpar
ser

punctuati
on_ignore

Whether to ignore special
characters including
punctuations (\r and \n
will not be ignored) in the
word segmentation result

● true (default value):
Ignore all the special
characters including
punctuations.

● false: Do not ignore all
the special characters
including punctuations.

seg_with_
duality

Whether to aggregate
segments with duality

● true: Aggregate
segments with duality.

● false (default value):
Do not aggregate
segments with duality.

multi_sho
rt

Whether to execute long
words composite divide

● true (default value):
Execute long words
composite divide.

● false: Do not execute
long words composite
divide.

multi_du
ality

Whether to aggregate
segments in long words
with duality

● true: Aggregate
segments in long
words with duality.

● false (default value):
Do not aggregate
segments in long
words with duality.

multi_zm
ain

Whether to display key
single words individually

● true: Display key
single words
individually.

● false (default value):
Do not display key
single words
individually.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 549



Parse
r

Paramet
ers for
adding
an
account

Description Value Range

multi_zall Whether to display all
single words individually.

● true: Display all single
words individually.

● false (default value):
Do not display all
single words
individually.

 

Examples

Create a text search configuration.

CREATE TEXT SEARCH CONFIGURATION ngram1 (parser=ngram) WITH (gram_size = 2, grapsymbol_ignore 
= false);

Create a text search configuration.

CREATE TEXT SEARCH CONFIGURATION ngram2 (copy=ngram1) WITH (gram_size = 2, grapsymbol_ignore 
= false);

Create a text search configuration.

CREATE TEXT SEARCH CONFIGURATION english_1 (parser=default);

Helpful Links

ALTER TEXT SEARCH CONFIGURATION, DROP TEXT SEARCH CONFIGURATION

12.53 CREATE TEXT SEARCH DICTIONARY

Function

CREATE TEXT SEARCH DICTIONARY creates a full-text search dictionary. A
dictionary is used to identify and process specified words during full-text search.

Dictionaries are created by using predefined templates (defined in the
PG_TS_TEMPLATE system catalog). Five types of dictionaries can be created,
Simple, Ispell, Synonym, Thesaurus, and Snowball. Each type of dictionaries is
used to handle different tasks.

Precautions
● A user with the SYSADMIN permission can create a dictionary. Then, the user

automatically becomes the owner of the dictionary.
● A dictionary cannot be created in pg_temp mode.
● After a dictionary is created or modified, any modification to the user-defined

dictionary definition file will not affect the dictionary in the database. To

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 550



make such modifications take effect in the dictionary in the database, run the
ALTER statement to update the definition file of the dictionary.

Syntax
CREATE TEXT SEARCH DICTIONARY name (
    TEMPLATE = template
    [, option = value [, ... ]]
);

Parameter Description
● name

Specifies the name of a dictionary to be created. (If you do not specify a
schema name, the dictionary will be created in the current schema.)
Value range: a string, which complies with the identifier naming convention. A
value can contain a maximum of 63 characters.

● template
Specifies a template name.
Value range: templates (Simple, Synonym, Thesaurus, Ispell, and Snowball)
defined in the PG_TS_TEMPLATE system catalog

● option
Specifies a parameter name. Each type of dictionaries has a template
containing their custom parameters. Parameters function in a way irrelevant
to their setting sequence.
– Parameters for a Simple dictionary

▪ STOPWORDS
Specifies the name of a file listing stop words. The default file name
extension is .stop. For example, if the value of STOPWORDS is
french, the actual file name is french.stop. In the file, each line
defines a stop word. Dictionaries will ignore blank lines and spaces in
the file and convert stop-word phrases into lowercase.

▪ ACCEPT
Specifies whether to accept a non-stop word as recognized. The
default value is true.
If ACCEPT=true is set for a Simple dictionary, no token will be
passed to subsequent dictionaries. In this case, you are advised to
place the Simple dictionary at the end of the dictionary list. If
ACCEPT=false is set, you are advised to place the Simple dictionary
before at least one dictionary in the list.

▪ FILEPATH
Specifies the directory for storing the stop word file. The stop word
file can be stored locally or on the OBS server. If the file is stored
locally, the directory format is 'file://absolute_path'. If the file is
stored on the OBS server, the directory format is 'obs://bucket/path
accesskey=ak secretkey=sk region=region_name'. The directory
must be enclosed in single quotation marks ('). The default value is
the directory where predefined dictionary files are located. Both the
FILEPATH and STOPWORDS parameters need to be specified.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 551



To create a dictionary using the stop word file on the OBS server,
perform the following steps:

1) Upload the stop word file to the OBS server. For example,
upload the french.stop file to the gaussdb bucket on the OBS
server obsv3.sa-fb-1.externaldemo.com. The URL is https://
gaussdb.obsv3.sa-fb-1.externaldemo.com/french.stop. For
details about how to upload the file and query the URL, see the
OBS User Manual.

2) Add "region_name": "obs domain" to the $GAUSSHOME/etc/
region_map file. region_name can be a string consisting of
uppercase letters, lowercase letters, digits, slashes (/), or
underscores (_). obs domain indicates the domain name of the
OBS server.
For example, if region_name is set to rg, region_map is as
follows: "rg": "obsv3.sa-fb-1.externaldemo.com".

NO TICE

region_name and obs domain are enclosed in double quotation
marks. There is no space on the left of the colon and one space
on the right of the colon.

3) Run the CREATE TEXT SEARCH DICTIONARY command to
create a dictionary. The command is as follows:

   CREATE TEXT SEARCH DICTIONARY french_dict ( TEMPLATE = 
pg_catalog.simple, STOPWORDS = french, FILEPATH = 'obs://gaussdb 
accesskey=xxx secretkey=yyy region=rg' );

The french.stop file is stored in the root directory of the gaussdb
bucket. Therefore, the path is empty.

– Parameters for a Synonym dictionary

▪ SYNONYM
Specifies the name of the definition file for a Synonym dictionary.
The default file name extension is .syn.
The file is a list of synonyms. Each line is in the format of token
synonym, that is, token and its synonym separated by a space.

▪ CASESENSITIVE
Specifies whether tokens and their synonyms are case sensitive. The
default value is false, indicating that tokens and synonyms in
dictionary files will be converted into lowercase. If this parameter is
set to true, they will not be converted into lowercase.

▪ FILEPATH
Specifies the directory for storing Synonym dictionary files. The
directory can be a local directory or an OBS directory. The default
value is the directory where predefined dictionary files are located.
The directory format and the process of creating a Synonym
dictionary using a file on the OBS server are the same as those of the
FILEPATH of the Simple dictionary.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 552



– Parameters for a Thesaurus dictionary

▪ DICTFILE
Specifies the name of a dictionary definition file. The default file
name extension is .ths.
The file is a list of synonyms. Each line is in the format of sample
words : indexed words. The colon (:) is used as a separator between
a phrase and its substitute word. If multiple sample words are
matched, the TZ selects the longest one.

▪ DICTIONARY
Specifies the name of a subdictionary used for word normalization.
This parameter is mandatory and only one subdictionary name can
be specified. The specified subdictionary must exist. It is used to
identify and normalize input text before phrase matching.
If an input word cannot be recognized by the subdictionary, an error
will be reported. In this case, remove the word or update the
subdictionary to make the word recognizable. In addition, an asterisk
(*) can be placed at the beginning of an indexed word to skip the
application of a subdictionary on it, but all sample words must be
recognizable by the subdictionary.
If the sample words defined in the dictionary file contain stop words
defined in the subdictionary, use question marks (?) to replace them.
Assume that a and the are stop words defined in the subdictionary.
? one ? two : swsw

a one the two and the one a two will be matched and output as
swsw.

▪ FILEPATH
Specifies the directory for storing dictionary definition files. The
directory can be a local directory or an OBS directory. The default
value is the directory where predefined dictionary files are located.
The directory format and the process of creating a Synonym
dictionary using a file on the OBS server are the same as those of the
FILEPATH of the Simple dictionary.

– Parameters for an Ispell dictionary

▪ DICTFILE
Specifies the name of a dictionary definition file. The default file
name extension is .dict.

▪ AFFFILE
Specifies the name of an affix file. The default file name extension
is .affix.

▪ STOPWORDS
Specifies the name of a file listing stop words. The default file name
extension is .stop. The file content format is the same as that of the
file for a Simple dictionary.

▪ FILEPATH
Specifies the directory for storing dictionary files. The directory can
be a local directory or an OBS directory. The default value is the

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 553



directory where predefined dictionary files are located. The directory
format and the process of creating a Synonym dictionary using a file
on the OBS server are the same as those of the FILEPATH of the
Simple dictionary.

– Parameters for a Snowball dictionary

▪ LANGUAGE

Specifies the name of a language whose stemming algorithm will be
used. According to spelling rules in the language, the algorithm
normalizes the variants of an input word into a basic word or a stem.

▪ STOPWORDS

Specifies the name of a file listing stop words. The default file name
extension is .stop. The file content format is the same as that of the
file for a Simple dictionary.

▪ FILEPATH

Specifies the directory for storing dictionary definition files. The
directory can be a local directory or an OBS directory. The default
value is the directory where predefined dictionary files are located.
Both the FILEPATH and STOPWORDS parameters need to be
specified. The directory format and the process of creating a
Snowball dictionary using a file on the OBS server are the same as
those of the Simple dictionary.

NO TE

● The predefined dictionary file is stored in the $GAUSSHOME/share/postgresql/
tsearch_data directory.

● The name of a dictionary definition file can contain only lowercase letters,
numbers, and underscores (_).

● value
Specifies a parameter value. If the value is not an identifier or a number,
enclose it with single quotation marks (''). You can also enclose identifiers and
numbers with single quotation marks.

Examples

Create an Ispell dictionary english_ispell (the dictionary definition file is from the
open source dictionary).
CREATE TEXT SEARCH DICTIONARY english_ispell (
    TEMPLATE = ispell,
    DictFile = english,
    AffFile = english,
    StopWords = english,
    FilePath = 'obs://bucket_name/path accesskey=ak secretkey=sk region=rg' 
);

See examples in Configuration Examples.

Helpful Links

ALTER TEXT SEARCH DICTIONARY, DROP TEXT SEARCH DICTIONARY

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 554



12.54 CREATE TRIGGER

Function
CREATE TRIGGER creates a trigger. The trigger will be associated with a specified
table or view, and will execute a specified function when certain events occur.

Precautions
● Currently, triggers can be created only on ordinary row-store tables, instead of

on column-store tables, temporary tables, or unlogged tables.
● If multiple triggers of the same kind are defined for the same event, they will

be fired in alphabetical order by name.
● A trigger works only on one table. There is no limit on the number of triggers

that can be created. However, more triggers on a table consume more
performance.

● Triggers are usually used for data association and synchronization between
multiple tables. SQL execution performance is greatly affected. Therefore, you
are advised not to use this statement when a large amount of data needs to
be synchronized and performance requirements are high.

● When a trigger meets the following conditions, the trigger statement and
trigger itself can be pushed together down to a DN for execution, improving
the trigger execution performance:
– enable_trigger_shipping and enable_fast_query_shipping are both

enabled. (This is the default configuration.)
– The trigger function used by the source table is a PL/pgSQL function

(recommended).
– The source and target tables have the same type and number of

distribution keys, are both row-store tables, and belong to the same
Node Group.

– The INSERT, UPDATE, or DELETE statement on the source table contains
an expression about equality comparison between all the distribution
keys and the NEW or OLD variable.

– The INSERT, UPDATE, or DELETE statement on the source table can be
pushed down without a trigger.

– There are only six types of triggers, specified by INSERT/UPDATE/
DELETE, AFTER/BEFORE, and FOR EACH ROW, on the source table, and
all the triggers can be pushed down.

Syntax
CREATE [ CONSTRAINT ] TRIGGER trigger_name { BEFORE | AFTER | INSTEAD OF } { event [ OR ... ] }
    ON table_name
    [ FROM referenced_table_name ]
    { NOT DEFERRABLE | [ DEFERRABLE ] { INITIALLY IMMEDIATE | INITIALLY DEFERRED } }
    [ FOR [ EACH ] { ROW | STATEMENT } ]
    [ WHEN ( condition ) ]
    EXECUTE PROCEDURE function_name ( arguments );

Events include:

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 555



    INSERT
    UPDATE [ OF column_name [, ... ] ]
    DELETE
    TRUNCATE

Parameter Description
● CONSTRAINT

(Optional) Creates a constraint trigger, that is, a trigger is used as a
constraint. Such a trigger is similar to a regular trigger except that the timing
of the trigger firing can be adjusted using SET CONSTRAINTS. Constraint
triggers must be AFTER ROW triggers.

● trigger_name
Specifies the name of a new trigger. The name cannot be schema-qualified
because the trigger inherits the schema of its table. In addition, triggers on
the same table cannot be named the same. For a constraint trigger, this is
also the name to use when you modify the trigger's behavior using SET
CONSTRAINTS.
Value range: a string that complies with the identifier naming convention. A
value can contain a maximum of 63 characters.

● BEFORE
Specifies that a trigger function is called before the trigger event.

● AFTER
Specifies that a trigger function is called after the trigger event. A constraint
trigger can only be specified as AFTER.

● INSTEAD OF
Specifies that a trigger function directly replaces the trigger event.

● event
Specifies the event that will fire a trigger. Values are INSERT, UPDATE,
DELETE, and TRUNCATE. You can also specify multiple trigger events through
OR.
For UPDATE events, use the following syntax to specify a list of columns:
UPDATE OF column_name1 [, column_name2 ... ]

The trigger will only fire if at least one of the listed columns is mentioned as
a target of the UPDATE statement. INSTEAD OF UPDATE events do not
support lists of columns.

● table_name
Specifies the name of the table where a trigger needs to be created.
Value range: name of an existing table in the database

● referenced_table_name
Specifies the name of another table referenced by a constraint. This
parameter can be specified only for constraint triggers. It does not support
foreign key constraints and is not recommended for general use.
Value range: name of an existing table in the database

● DEFERRABLE | NOT DEFERRABLE
Controls whether a constraint can be deferred. The two parameters determine
the timing for firing a constraint trigger, and can be specified only for
constraint triggers.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 556



For details, see CREATE TABLE.

● INITIALLY IMMEDIATE | INITIALLY DEFERRED

If a constraint is deferrable, the two clauses specify the default time to check
the constraint, and can be specified only for constraint triggers.

For details, see CREATE TABLE.

● FOR EACH ROW | FOR EACH STATEMENT

Specifies the frequency of firing a trigger.

– FOR EACH ROW indicates that the trigger should be fired once for every
row affected by the trigger event.

– FOR EACH STATEMENT indicates that the trigger should be fired just
once per SQL statement.

If this parameter is not specified, the default value FOR EACH STATEMENT
will be used. Constraint triggers can only be specified as FOR EACH ROW.

● condition

Specifies a Boolean expression that determines whether a trigger function will
actually be executed. If WHEN is specified, the function will be called only
when condition returns true.

In FOR EACH ROW triggers, the WHEN condition can reference the columns
of old or new row values by writing OLD.column_name or
NEW.column_name, respectively. In addition, INSERT triggers cannot
reference OLD and DELETE triggers cannot reference NEW.

INSTEAD OF triggers do not support WHEN conditions.

WHEN expressions cannot contain subqueries.

For constraint triggers, evaluation of the WHEN condition is not deferred, but
occurs immediately after the update operation is performed. If the condition
does not return true, the trigger will not be queued for deferred execution.

● function_name

Specifies a user-defined function, which must be declared as taking no
parameters and returning data of the trigger type. This function is executed
when a trigger fires.

● arguments

Specifies an optional, comma-separated list of parameters to be provided to a
function when a trigger is executed. Parameters are literal string constants.
Simple names and numeric constants can also be included, but they will all be
converted to strings. Check descriptions of the implementation language of a
trigger function to find out how these parameters are accessed within the
function.

NO TE

The following details trigger types:

● INSTEAD OF triggers must be marked as FOR EACH ROW and can be defined
only on views.

● BEFORE and AFTER triggers on a view must be marked as FOR EACH
STATEMENT.

● TRUNCATE triggers must be marked as FOR EACH STATEMENT.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 557



Table 12-25 Types of triggers supported on tables and views

Trigger
Timing

Trigger Event Row-level Statement-level

BEFORE INSERT/UPDATE/
DELETE

Tables Tables and views

TRUNCATE Not supported Tables

AFTER INSERT/UPDATE/
DELETE

Tables Tables and views

TRUNCATE Not supported Tables

INSTEAD
OF

INSERT/UPDATE/
DELETE

Views Not supported

TRUNCATE Not supported Not supported

 

Table 12-26 Special variables in the functions PL/pgSQL triggers

Variable Description

NEW New tuple for INSERT/UPDATE
operations. This variable is NULL for
DELETE operations.

OLD Old tuple for UPDATE/DELETE
operations. This variable is NULL for
INSERT operations.

TG_NAME Trigger name

TG_WHEN Trigger timing (BEFORE/AFTER/
INSTEAD OF)

TG_LEVEL Trigger frequency (ROW/
STATEMENT)

TG_OP Trigger event (INSERT/UPDATE/
DELETE/TRUNCATE)

TG_RELID OID of the table where a trigger is
located

TG_RELNAME Name of the table where a trigger is
located. (This variable is now
discarded and is replaced by
TG_TABLE_NAME.)

TG_TABLE_NAME Name of the table where a trigger is
located.

TG_TABLE_SCHEMA Schema information of the table
where a trigger is located

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 558



Variable Description

TG_NARGS Number of parameters for a trigger
function

TG_ARGV[] List of parameters for a trigger
function

 

Examples
Create a source table and a target table.

CREATE TABLE test_trigger_src_tbl(id1 INT, id2 INT, id3 INT);
CREATE TABLE test_trigger_des_tbl(id1 INT, id2 INT, id3 INT);

Create the trigger function tri_insert_func().

CREATE OR REPLACE FUNCTION tri_insert_func() RETURNS TRIGGER AS
           $$
           DECLARE
           BEGIN
                   INSERT INTO test_trigger_des_tbl VALUES(NEW.id1, NEW.id2, NEW.id3);
                   RETURN NEW;
           END
           $$ LANGUAGE PLPGSQL;

Create the trigger function tri_update_func().

CREATE OR REPLACE FUNCTION tri_update_func() RETURNS TRIGGER AS
           $$
           DECLARE
           BEGIN
                   UPDATE test_trigger_des_tbl SET id3 = NEW.id3 WHERE id1=OLD.id1;
                   RETURN OLD;
           END
           $$ LANGUAGE PLPGSQL;

Create the trigger function tri_delete_func().

CREATE OR REPLACE FUNCTION tri_delete_func() RETURNS TRIGGER AS
           $$
           DECLARE
           BEGIN
                   DELETE FROM test_trigger_des_tbl WHERE id1=OLD.id1;
                   RETURN OLD;
           END
           $$ LANGUAGE PLPGSQL;

Create an INSERT trigger.

CREATE TRIGGER insert_trigger
           BEFORE INSERT ON test_trigger_src_tbl
           FOR EACH ROW
           EXECUTE PROCEDURE tri_insert_func();

Create an UPDATE trigger.

CREATE TRIGGER update_trigger
           AFTER UPDATE ON test_trigger_src_tbl  
           FOR EACH ROW
           EXECUTE PROCEDURE tri_update_func();

Create a DELETE trigger.

CREATE TRIGGER delete_trigger
           BEFORE DELETE ON test_trigger_src_tbl

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 559



           FOR EACH ROW
           EXECUTE PROCEDURE tri_delete_func();

Helpful Links
ALTER TRIGGER, DROP TRIGGER, ALTER TABLE

12.55 CREATE TYPE

Function
CREATE TYPE defines a new data type in the current database. The user who
defines a new data type becomes its owner. Types are designed only for row-store
tables.

Four types of data can be created by using CREATE TYPE: composite data, base
data, a shell data, and enumerated data.

● Composite types
A composite type is specified by a list of attribute names and data types. If
the data type of an attribute is collatable, the attribute's collation rule can
also be specified. A composite type is essentially the same as the row type of
a table. However, using CREATE TYPE avoids the need to create an actual
table when only a type needs to be defined. In addition, a standalone
composite type is useful, for example, as the parameter or return type of a
function.
To create a composite type, you must have the USAGE permission for all its
attribute types.

● Base types
You can customize a new base type (scalar type). Generally, functions
required for base types must be coded in C or another low-level language.

● Shell types
A shell type is simply a placeholder for a type to be defined later. It can be
created by delivering CREATE TYPE with no parameters except for a type
name. Shell types are needed as forward references when base types are
created.

● Enumerated types
An enumerated type is a list of enumerated values. Each value is a non-empty
string with the maximum length of 64 bytes.

Precautions
If a schema name is given, the type will be created in the specified schema.
Otherwise, it will be created in the current schema. A type name must be different
from the name of any existing type or domain in the same schema. (Since tables
have associated data types, a type name must also be different from the name of
any existing table in the same schema.)

Syntax
CREATE TYPE name AS
    ( [ attribute_name data_type [ COLLATE collation ] [, ... ] ] )

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 560



CREATE TYPE name (
    INPUT = input_function,
    OUTPUT = output_function
    [ , RECEIVE = receive_function ]
    [ , SEND = send_function ]
    [ , TYPMOD_IN =
type_modifier_input_function ]
    [ , TYPMOD_OUT =
type_modifier_output_function ]
    [ , ANALYZE = analyze_function ]
    [ , INTERNALLENGTH = { internallength |
VARIABLE } ]
    [ , PASSEDBYVALUE ]
    [ , ALIGNMENT = alignment ]
    [ , STORAGE = storage ]
    [ , LIKE = like_type ]
    [ , CATEGORY = category ]
    [ , PREFERRED = preferred ]
    [ , DEFAULT = default ]
    [ , ELEMENT = element ]
    [ , DELIMITER = delimiter ]
    [ , COLLATABLE = collatable ]
)

CREATE TYPE name

CREATE TYPE name AS ENUM
    ( [ 'label' [, ... ] ] )

Parameter Description
Composite types

● name
Specifies the name of the type to be created. It can be schema-qualified.

● attribute_name
Specifies the name of an attribute (column) for the composite type.

● data_type
Specifies the name of an existing data type to become a column of the
composite type.

● collation
Specifies the name of an existing collation rule to be associated with a
column of the composite type.

Base types

When creating a base type, you can place parameters in any order. The
input_function and output_function parameters are mandatory, and other
parameters are optional.

● input_function
Specifies the name of a function that converts data from the external text
format of a type to its internal format.
An input function can be declared as taking one parameter of the cstring type
or taking three parameters of the cstring, oid, and integer types.
– The cstring-type parameter is the input text as a C string.
– The oid-type parameter is the OID of the type (except for array types,

where the parameter is the element type OID of an array type).

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 561



– The integer-type parameter is typmod of the destination column, if
known (-1 will be passed if not known).

An input function must return a value of the data type itself. Generally, an
input function must be declared as STRICT. If it is not, it will be called with a
NULL parameter coming first when the system reads a NULL input value. In
this case, the function must still return NULL unless an error raises. (This
mechanism is designed for supporting domain input functions, which may
need to reject NULL input values.)

NO TE

Input and output functions can be declared to have the results or parameters of a new
type because they have to be created before the new type is created. The new type
should first be defined as a shell type, which is a placeholder type that has no
attributes except a name and an owner. This can be done by delivering the CREATE
TYPE name statement, with no additional parameters. Then, the C I/O functions can
be defined as referencing the shell type. Finally, CREATE TYPE with a full definition
replaces the shell type with a complete, valid type definition. After that, the new type
can be used normally.

● output_function
Specifies the name of a function that converts data from the internal format
of a type to its external text format.
An output function must be declared as taking one parameter of a new data
type. It must return data of the cstring type. Output functions are not invoked
for NULL values.

● receive_function
(Optional) Specifies the name of a function that converts data from the
external binary format of a type to its internal format.
If this function is not used, the type cannot participate in binary input. It costs
lower to convert the binary format to the internal format, more portable. (For
example, the standard integer data types use the network byte order as an
external binary representation, whereas the internal representation is in the
machine's native byte order.) This function should perform adequate checks
to ensure a valid value.
Also, this function can be declared as taking one parameter of the internal
type or taking three parameters of the internal, oid, and integer types.
– The internal-type parameter is a pointer to a StringInfo buffer holding

received byte strings.
– The oid- and integer-type parameters are the same as those of the text

input function.
A receive function must return a value of the data type itself. Generally, a
receive function must be declared as STRICT. If it is not, it will be called with
a NULL parameter coming first when the system reads a NULL input value. In
this case, the function must still return NULL unless an error raises. (This
mechanism is designed for supporting domain receive functions, which may
need to reject NULL input values.)

● send_function
(Optional) Specifies the name of a function that converts data from the
internal format of a type to its external binary format.
If this function is not used, the type cannot participate in binary output. A
send function must be declared as taking one parameter of a new data type.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 562



It must return data of the bytea type. Send functions are not invoked for
NULL values.

● type_modifier_input_function
(Optional) Specifies the name of a function that converts an array of
modifiers for a type to its internal format.

● type_modifier_output_function
(Optional) Specifies the name of a function that converts the internal format
of modifiers for a type to its external text format.

NO TE

type_modifier_input_function and type_modifier_output_function are needed if a
type supports modifiers, that is, optional constraints attached to a type declaration,
such as char(5) or numeric(30,2). GaussDB(DWS) allows user-defined types to take
one or more simple constants or identifiers as modifiers. However, this information
must be capable of being packed into a single non-negative integer value for storage
in system catalogs. Declared modifiers are passed to type_modifier_input_function in
the cstring array format. The parameter must check values for validity, throwing an
error if they are wrong. If they are correct, the parameter will return a single non-
negative integer value, which will be stored as typmod in a column. If the type does
not have type_modifier_input_function, type modifiers will be rejected.
type_modifier_output_function converts the internal integer typmod value back to a
correct format for user display. It must return a cstring value, which is the exact string
appending to the type name. For example, a numeric function may return (30,2). If
the default display format is enclosing a stored typmod integer value in parentheses,
you can omit type_modifier_output_function.

● analyze_function
(Optional) Specifies the name of a function that performs statistical analysis
for a data type.
By default, if there is a default B-tree operator class for a type, ANALYZE will
attempt to gather statistics by using the "equals" and "less-than" operators of
the type. This behavior is inappropriate for non-scalar types, and can be
overridden by specifying a custom analysis function. The analysis function
must be declared to take one parameter of the internal type and return a
boolean result.

● internallength
(Optional) Specifies a numeric constant for specifying the length in bytes of
the internal representation of a new type. By default, it is variable-length.
Although the details of the new type's internal representation are only known
to I/O functions and other functions that you create to work with the type,
there are still some attributes of the internal representation that must be
declared to GaussDB(DWS). The most important one is internallength. Base
data types can be fixed-length (when internallength is a positive integer) or
variable-length (when internallength is set to VARIABLE; internally, this is
represented by setting typlen to -1). The internal representation of all
variable-length types must start with a 4-byte integer. internallength defines
the total length.

● PASSEDBYVALUE
(Optional) Specifies that values of a data type are passed by value, rather
than by reference. Types passed by value must be fixed-length, and their
internal representation cannot be larger than the size of the Datum type (4
bytes on some machines, and 8 bytes on others).

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 563



● alignment
(Optional) Specifies the storage alignment required for a data type. It
supports values char, int2, int4, and double. The default value is int4.
The allowed values equate to alignment on 1-, 2-, 4-, or 8-byte boundaries.
Note that variable-length types must have an alignment of at least 4 since
they must contain an int4 value as their first component.

● storage
(Optional) Specifies the storage strategy for a data type.
It supports values plain, external, extended, and main. The default value is
plain.
– plain specifies that data of a type will always be stored in-line and not

compressed. (Only plain is allowed for fixed-length types.)
– extended specifies that the system will first try to compress a long data

value and will then move the value out of the main table row if it is still
too long.

– external allows a value to be moved out of the main table, but the
system will not try to compress it.

– main allows for compression, but discourages moving a value out of the
main table. (Data items with this storage strategy might still be moved
out of the main table if there is no other way to make a row fit. However,
they will be kept in the main table preferentially over extended and
external items.)
All storage values except plain imply that the functions of the data type
can handle values that have been toasted. A given value merely
determines the default TOAST storage strategy for columns of a
toastable data type. Users can choose other strategies for individual
columns by using ALTER TABLE SET STORAGE.

● like_type
(Optional) Specifies the name of an existing data type that has the same
representation as a new type. The values of internallength, passedbyvalue,
alignment, and storage are copied from this type, unless they are overridden
by explicit specifications elsewhere in the CREATE TYPE command.
Specifying representation in this way is especially useful when the low-level
implementation of a new type references an existing type.

● category
(Optional) Specifies the category code (a single ASCII character) for a type.
The default value is U for a user-defined type. You can also choose other
ASCII characters to create custom categories.

● preferred
(Optional) Specifies whether a type is preferred within its type category. If it
is, the value will be TRUE, else FALSE. The default value is FALSE. Be cautious
when creating a new preferred type within an existing type category because
this could cause great changes in behavior.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 564



NO TE

The category and preferred parameters can be used to help determine which implicit
cast excels in ambiguous situations. Each data type belongs to a category named by a
single ASCII character, and each type is either preferred or not within its category. If
this rule is helpful in resolving overloaded functions or operators, the parser will prefer
casting to preferred types (but only from other types within the same category). For
types that have no implicit casts to or from any other types, it is sufficient to leave
these parameters at their default values. However, for a group of types that have
implicit casts, mark them all as belonging to a category and select one or two of the
most general types as being preferred within the category. The category parameter is
helpful in adding a user-defined type to an existing built-in category, such as the
numeric or string type. However, you can also create new entirely-user-defined type
categories. Select any ASCII character other than an uppercase letter to name such a
category.

● default
(Optional) Specifies the default value for a data type. If this parameter is
omitted, the default value will be NULL.
A default value can be specified if you expect the columns of a data type to
default to something other than the NULL value. You can also specify a
default value using the DEFAULT keyword. (Such a default value can be
overridden by an explicit DEFAULT clause attached to a particular column.)

● element
(Optional) Specifies the type of an array element when an array type is
created. For example, to define an array of 4-byte integers (int4), set
ELEMENT to int4.

● delimiter
(Optional) Specifies the delimiter character to be used between values in
arrays made of a type.
delimiter can be set to a specific character. The default delimiter is a comma
(,). Note that a delimiter is associated with the array element type, instead of
the array type itself.

● collatable
(Optional) Specifies whether a type's operations can use collation
information. If they can, the value will be TRUE, else FALSE (default).
If collatable is TRUE, column definitions and expressions of a type may carry
collation information by using the COLLATE clause. It is the implementations
of functions operating on the type that actually use the collation information.
This use cannot be achieved merely by marking the type collatable.

● lable
(Optional) Specifies a text label associated with an enumerated value. It is a
non-empty string of up to 64 characters.

NO TE

Whenever a user-defined type is created, GaussDB(DWS) automatically creates an
associated array type whose name consists of the element type name prepended with an
underscore (_).

Example
Example 1: Create a composite type, create a table, insert data, and make a query.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 565



CREATE TYPE compfoo AS (f1 int, f2 text);
CREATE TABLE t1_compfoo(a int, b compfoo);
CREATE TABLE t2_compfoo(a int, b compfoo);
INSERT INTO t1_compfoo values(1,(1,'demo'));
INSERT INTO t2_compfoo select * from t1_compfoo;
SELECT (b).f1 FROM t1_compfoo;
SELECT * FROM t1_compfoo t1 join t2_compfoo t2 on (t1.b).f1=(t1.b).f1;

Example 2: Create an enumeration type and use it in the table definition.

CREATE TYPE bugstatus AS ENUM ('create', 'modify', 'closed');
CREATE TABLE customer (name text,current_bugstatus bugstatus);
INSERT INTO customer VALUES ('type','create');
SELECT * FROM customer WHERE current_bugstatus = 'create';

Example 3: Compile a .so file and create the shell type.

CREATE TYPE complex;

This statement creates a placeholder for the type to be created, which can then be
referenced when defining its I/O function. Now you can define an I/O function.
Note that the function must be declared in NOT FENCED mode when it is created.

CREATE FUNCTION
complex_in(cstring)
    RETURNS complex
    AS 'filename'
    LANGUAGE C IMMUTABLE STRICT not fenced;

CREATE FUNCTION
complex_out(complex)
    RETURNS cstring
    AS 'filename'
    LANGUAGE C IMMUTABLE STRICT not fenced;

CREATE FUNCTION
complex_recv(internal)
    RETURNS complex
    AS 'filename'
    LANGUAGE C IMMUTABLE STRICT not fenced;

CREATE FUNCTION
complex_send(complex)
    RETURNS bytea
    AS 'filename'
    LANGUAGE C IMMUTABLE STRICT not fenced;

Finally, provide a complete definition of the data type.

CREATE TYPE complex (
internallength = 16,
input = complex_in,
output = complex_out,
receive = complex_recv,
send = complex_send,
alignment = double
);

The C functions corresponding to the input, output, receive, and send functions
are defined as follows:

-- Define a structure body Complex:
typedef struct Complex {
    double      x;
    double      y;
} Complex;

-- Define an input function:

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 566



PG_FUNCTION_INFO_V1(complex_in);

Datum
complex_in(PG_FUNCTION_ARGS)
{
    char       *str = PG_GETARG_CSTRING(0);
    double      x,
                y;
    Complex    *result;

    if (sscanf(str, " ( %lf , %lf )", &x, &y) != 2)
        ereport(ERROR,
                (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
                 errmsg("invalid input syntax for complex: \"%s\"",
                        str)));

    result = (Complex *) palloc(sizeof(Complex));
    result->x = x;
    result->y = y;
    PG_RETURN_POINTER(result);
}

-- Define an output function:
PG_FUNCTION_INFO_V1(complex_out);

Datum
complex_out(PG_FUNCTION_ARGS)
{
        Complex    *complex = (Complex *) PG_GETARG_POINTER(0);
        char       *result;

        result = (char *) palloc(100);
        snprintf(result, 100, "(%g,%g)", complex->x, complex->y);
        PG_RETURN_CSTRING(result);
}

-- Define a receive function:
PG_FUNCTION_INFO_V1(complex_recv);

Datum
complex_recv(PG_FUNCTION_ARGS)
{
    StringInfo  buf = (StringInfo) PG_GETARG_POINTER(0);
    Complex    *result;

    result = (Complex *) palloc(sizeof(Complex));
    result->x = pq_getmsgfloat8(buf);
    result->y = pq_getmsgfloat8(buf);
    PG_RETURN_POINTER(result);
}

-- Define a send function:
PG_FUNCTION_INFO_V1(complex_send);

Datum
complex_send(PG_FUNCTION_ARGS)
{
    Complex    *complex = (Complex *) PG_GETARG_POINTER(0);
    StringInfoData buf;

    pq_begintypsend(&buf);
    pq_sendfloat8(&buf, complex->x);
    pq_sendfloat8(&buf, complex->y);
    PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}

Helpful Links
ALTER TYPE, DROP TYPE

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 567



12.56 CREATE USER

Function
CREATE USER creates a user.

Important Notes
● A user created using the CREATE USER statement has the LOGIN permission

by default.
● A schema named after the user is automatically created in the database

where the statement is executed, but not in other databases. You can run the
CREATE SCHEMA statement to create such a schema for the user in other
databases.

● The owner of an object created by a system administrator in a schema with
the same name as a common user is the common user, not the system
administrator.

● Users other than system administrators cannot create objects in a schema
named after a user, unless the users are granted with the role permissions of
that schema. For details, see After the all Permission Is Granted to the
Schema of a User, the Error Message "ERROR: current user does not have
privilege to role tom" Persists During Table Creation in Troubleshooting.

Syntax
CREATE USER user_name [ [ WITH ] option [ ... ] ] [ ENCRYPTED | UNENCRYPTED ] { PASSWORD | 
IDENTIFIED BY } { 'password' | DISABLE };

The option clause is used for setting information including permissions and
attributes.

{SYSADMIN | NOSYSADMIN}
    | {AUDITADMIN | NOAUDITADMIN}
    | {CREATEDB | NOCREATEDB}
    | {USEFT | NOUSEFT}
    | {CREATEROLE | NOCREATEROLE}
    | {INHERIT | NOINHERIT}
    | {LOGIN | NOLOGIN}
    | {REPLICATION | NOREPLICATION}
    | {INDEPENDENT | NOINDEPENDENT}
    | {VCADMIN | NOVCADMIN}
    | CONNECTION LIMIT connlimit
    | VALID BEGIN 'timestamp'
    | VALID UNTIL 'timestamp'
    | RESOURCE POOL 'respool'
    | USER GROUP 'groupuser'
    | PERM SPACE 'spacelimit'
    | TEMP SPACE 'tmpspacelimit'
    | SPILL SPACE 'spillspacelimit'
    | NODE GROUP logic_cluster_name
    | IN ROLE role_name [, ...]
    | IN GROUP role_name [, ...]
    | ROLE role_name [, ...]
    | ADMIN role_name [, ...]
    | USER role_name [, ...]
    | SYSID uid
    | DEFAULT TABLESPACE tablespace_name
    | PROFILE DEFAULT

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 568



    | PROFILE profile_name
    | PGUSER
    | AUTHINFO 'authinfo'
    | PASSWORD EXPIRATOIN period

Parameters
● user_name

Specifies the user name.
Value range: a string. It must comply with the naming convention. A value
can contain a maximum of 63 characters.

● password
Specifies the login password.
A password must:
– Contain at least eight characters. This is the default length.
– Differ from the user name or the user name spelled backwards.
– Contains at least three of the following four character types: uppercase

letters, lowercase letters, digits, and special characters, including: ~!@#$
%^&*()-_=+\|[{}];:,<.>/?. If you use characters other than the four types, a
warning is displayed, but you can still create the password.

– Be enclosed by single or double quotation marks.
Value range: a string

For details on other parameters, see CREATE ROLE Parameter Description.

Example

Create user jim.

CREATE USER jim PASSWORD 'password';

The following statements are equivalent to the above.

CREATE USER kim IDENTIFIED BY 'password';

For a user having the Create Database permission, add the CREATEDB keyword.

CREATE USER dim CREATEDB PASSWORD 'password';

Links

ALTER USER, CREATE ROLE, DROP USER

12.57 CREATE VIEW

Function

CREATE VIEW creates a view. A view is a virtual table, not a base table. A
database only stores the definition of a view and does not store its data. The data
is still stored in the original base table. If data in the base table changes, the data
in the view changes accordingly. In this sense, a view is like a window through
which users can know their interested data and data changes in the database.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 569



Precautions
None

Syntax
CREATE [ OR REPLACE ] [ TEMP | TEMPORARY ] VIEW view_name [ ( column_name [, ...] ) ]
    [ WITH ( {view_option_name [= view_option_value]} [, ... ] ) ]
    AS query;

NO TE

● You can use WITH (security_barriers) to create a relatively secure view. This prevents
attackers from printing hidden base table data by using the RAISE statement of low-
cost functions.

● When the view_independent GUC parameter is enabled, columns can be deleted from
common views. Note that if a column-level constraint exists, the corresponding column
cannot be deleted.

Parameter Description
● OR REPLACE

Redefines a view if there is already a view.
● TEMP | TEMPORARY

Creates a temporary view.
● view_name

Specifies the name of a view to be created. It is optionally schema-qualified.
Value range: A string. It must comply with the naming convention.

● column_name
Specifies an optional list of names to be used for columns of the view. If not
given, the column names are deduced from the query.
Value range: A string. It must comply with the naming convention.

● view_option_name [= view_option_value]
This clause specifies optional parameters for a view.
Currently, the only parameter supported by view_option_name is
security_barrier, which should be enabled when a view is intended to provide
row-level security.
Value range: boolean type. It can be TRUE or FALSE.

● query
A SELECT or VALUES statement which will provide the columns and rows of
the view.

NO TICE

CTE names cannot be duplicate when the view decoupling function is
enabled. The following shows an example.
CREATE TABLE t1(a1 INT, b1 INT);
CREATE TABLE t2(a2 INT, b2 INT, c2 INT);
CREATE OR REPLACE VIEW v1 AS WITH tmp AS (SELECT * FROM t2) ,tmp1 AS (SELECT b2,c2 FROM 
tmp WHERE b2 = (WITH RECURSIVE tmp(aa, bb) AS (SELECT a1,b1 FROM t1) SELECT bb FROM tmp 
WHERE aa = c2)) SELECT c2 FROM tmp1;

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 570



Examples

Create a view consisting of columns whose spcname is pg_default.

CREATE VIEW myView AS
    SELECT * FROM pg_tablespace WHERE spcname = 'pg_default';

Run the following command to redefine the existing view myView and create a
view consisting of columns whose spcname is pg_global:

CREATE OR REPLACE VIEW myView AS
    SELECT * FROM pg_tablespace WHERE spcname = 'pg_global';

Create a view consisting of rows with c_customer_sk smaller than 150.

CREATE VIEW tpcds.customer_details_view_v1 AS
    SELECT * FROM tpcds.customer
    WHERE c_customer_sk < 150;

Updatable Views

After the enable_view_update parameter is enabled, simple views that meet all
the following conditions can be updated using the INSERT, UPDATE, and DELETE
statements:

● The FROM clause in the view definition contains only one common table,
which cannot be a system table, foreign table, DFS table, delta table, TOAST
table, or error table.

● The view contains updatable columns, which are simple references to the
updatable columns of the base table.

● The view definition does not contain the WITH, DISTINCT, GROUP BY, ORDER
BY, FOR UPDATE, FOR SHARE, HAVING, TABLESAMPLE, LIMIT or OFFSET
clause.

● The view definition does not contain the UNION, INTERSECT, or EXCEPT
operation.

● The selection list of the view definition does not contain aggregate functions,
window functions, or functions that return collections.

● The view does not contain the trigger whose trigger occasion is INSTEAD OF.
● The view definition does not contain sublinks.
● The view definition does not contain functions whose attribute is VOLATILE.

The values of such functions can be changed during a table scan.
● The view definition does not set an alias for the column where the

distribution key of the table resides, or name a common column as the
distribution key column.

● When the RETURNING clause is used in the view update operation, columns
in the view definition only come from the base table.

If the definition of the updatable view contains a WHERE condition, the condition
restricts the UPDATE and DELETE statements from modifying rows on the base
table. If the WHERE condition is not met after the UPDATE statement is executed,
the updated rows cannot be queried in the view. Similarly, If the WHERE condition
is not met after the INSERT statement is executed, the inserted data cannot be
queried in the view. To insert, update, or delete data in a view, you must have the
corresponding permission on the view and tables.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 571



Helpful Links
ALTER VIEW and DROP VIEW

12.58 CURSOR

Function
CURSOR defines a cursor. This command retrieves few rows of data in a query.

To process SQL statements, the stored procedure process assigns a memory
segment to store context association. Cursors are handles or pointers to context
regions. With cursors, stored procedures can control alterations in context regions.

Precautions
● CURSOR is used only in transaction blocks.
● Generally, CURSOR and SELECT both have text returns. Since data is stored in

binary format in the system, the system needs to convert the data from the
binary format to the text format. If data is returned in text format, the client-
end application needs to convert the data back to a binary format for
processing. FETCH implements conversion between binary data and text data.

● Use a binary cursor unless necessary, since a text cursor occupies larger
storage space than a binary cursor. A binary cursor returns internal binary
data, which is easier to operate. To return data in text format, it is advisable
to retrieve data in text format, therefore reducing workload at the client end.
For example, the value 1 in an integer column of a query is returned as a
character string 1 if a default cursor is used, but is returned as a 4-byte binary
value (big-endian) if a binary cursor is used.

Syntax
CURSOR cursor_name
    [ BINARY ]  [ NO SCROLL ]  [ { WITH | WITHOUT } HOLD ]
    FOR query;

Parameter Description
● cursor_name

Specifies the name of a cursor to be created.
Value range: Its value must comply with the database naming convention.

● BINARY
Specifies that data retrieved by the cursor will be returned in binary format,
not in text format.

● NO SCROLL
Specifies the mode of data retrieval by the cursor.
– NO SCROLL: If NO SCROLL is specified, backward fetches will be rejected.
– Not stated: The system automatically determines whether the cursor can

be used for backward fetches based on the execution plan.
● WITH HOLD | WITHOUT HOLD

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 572



Specifies whether the cursor can still be used after the cursor creation event.

– WITH HOLD indicates that the cursor can still be used.

– WITHOUT HOLD indicates that the cursor cannot be used.

– If neither WITH HOLD nor WITHOUT HOLD is specified, the default
value is WITHOUT HOLD.

● query

The SELECT or VALUES clause specifies the row to return the cursor value.

Value range: SELECT or VALUES clause

Examples

Set up the cursor1 cursor.

CURSOR cursor1 FOR SELECT * FROM tpcds.customer_address ORDER BY 1;

Set up the cursor cursor2.

CURSOR cursor2 FOR VALUES(1,2),(0,3) ORDER BY 1;

An example of using the WITH HOLD cursor is as follows:

Start a transaction.

START TRANSACTION;

Set up a WITH HOLD cursor.

DECLARE cursor3 CURSOR WITH HOLD FOR SELECT * FROM tpcds.customer_address ORDER BY 1;

Fetch the first two rows from cursor3.

FETCH FORWARD 2 FROM cursor3;
 ca_address_sk |  ca_address_id   | ca_street_number |   ca_street_name   | ca_street_type  | ca_suite_number 
|     ca_city     |    ca_county    | ca_state |   ca_zip   |  ca_country   | ca_gmt_offset |   ca_location_type   
---------------+------------------+------------------+--------------------+-----------------+-----------------
+-----------------+-----------------+----------+------------+---------------+---------------+----------------------
             1 | AAAAAAAABAAAAAAA | 18               | Jackson            | Parkway         | Suite 280       | 
Fairfield       | Maricopa County | AZ       | 86192      | United States |         -7.00 | condo               
             2 | AAAAAAAACAAAAAAA | 362              | Washington 6th     | RD              | Suite 80        | 
Fairview        | Taos County     | NM       | 85709      | United States |         -7.00 | condo               
(2 rows)

End the transaction.

END;

Fetch the next row from cursor3.

FETCH FORWARD 1 FROM cursor3;
 ca_address_sk |  ca_address_id   | ca_street_number |   ca_street_name   | ca_street_type  | ca_suite_number 
|     ca_city     |    ca_county    | ca_state |   ca_zip   |  ca_country   | ca_gmt_offset |   ca_location_type   
---------------+------------------+------------------+--------------------+-----------------+-----------------
+-----------------+-----------------+----------+------------+---------------+---------------+----------------------
             3 | AAAAAAAADAAAAAAA | 585              | Dogwood Washington | Circle          | Suite Q         | 
Pleasant Valley | York County     | PA       | 12477      | United States |         -5.00 | single family       
(1 row)

Close a cursor.

CLOSE cursor3;

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 573



Helpful Links

FETCH

12.59 DROP DATABASE

Function

DROP DATABASE deletes a database.

Precautions
● Only the owner of a database or a system administrator has the permission to

run the DROP DATABASE command.

● DROP DATABASE does not take effect for the three preinstalled system
databases (postgres, TEMPLATE0, and TEMPLATE1) because they are
protected. To check databases in the current service, run the \l command of
gsql.

● This command cannot be run while the database to be deleted is associated
with a user. You can check the current database connections in the v$session
view.

● DROP DATABASE cannot be run inside a transaction block.

● If DROP DATABASE fails to be run and is rolled back, run DROP DATABASE
IF EXISTS.

● DROP DATABASE cannot be undone.

● If a "database is being accessed by other users" error is displayed when you
run DROP DATABASE, it might be that threads cannot respond to signals in a
timely manner during the CLEAN CONNECTION process. As a result,
connections are not completely cleared. In this case, you need to run CLEAN
CONNECTION again.

Syntax
DROP DATABASE [ IF EXISTS ] database_name;

Parameter Description
● IF EXISTS

Sends a notice instead of an error if the specified database does not exist.

● database_name

Specifies the name of the database to be deleted.

Value range: A string indicating an existing database name.

Examples

Delete the database named music.

DROP DATABASE music;

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 574



Links
CREATE DATABASE, ALTER DATABASE

12.60 DROP FOREIGN TABLE

Function
DROP FOREIGN TABLE deletes a specified foreign table.

Precautions
DROP FOREIGN TABLE forcibly deletes a specified table. After a table is deleted,
any indexes that exist for the table will be deleted. The functions and stored
procedures used in this table cannot be run.

Syntax
DROP FOREIGN TABLE [ IF EXISTS ] 
    table_name [, ...] [ CASCADE | RESTRICT ];

Parameter Description
● IF EXISTS

Sends a notice instead of an error if the specified table does not exist.
● table_name

Specifies the name of the table.
Value range: An existing table name.

● CASCADE | RESTRICT
– CASCADE: automatically deletes all objects (such as views) that depend

on the table to be deleted.
– RESTRICT: refuses to delete the table if any objects depend on it. This is

the default.

Examples
Delete the foreign table named customer_ft.

DROP FOREIGN TABLE customer_ft;

Helpful Links
ALTER FOREIGN TABLE (for GDS), ALTER FOREIGN TABLE (for HDFS or OBS),
CREATE FOREIGN TABLE (for GDS Import and Export), CREATE FOREIGN
TABLE (SQL on OBS or Hadoop )

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 575



12.61 DROP FUNCTION

Function

DROP FUNCTION deletes an existing function.

Precautions

If a function involves operations on temporary tables, the function cannot be
deleted by running DROP FUNCTION.

Syntax
DROP FUNCTION [ IF EXISTS ] function_name 
[ ( [ {[ argmode ] [ argname ] argtype} [, ...] ] ) [ CASCADE | RESTRICT ] ];

Parameter Description
● IF EXISTS

Sends a notice instead of an error if the function does not exist.

● function_name

Specifies the name of the function to be deleted.

Value range: An existing function name.

● argmode

Specifies the mode of a function parameter.

● argname

Specifies the name of a function parameter.

● argtype

Specifies the data types of a function parameter.

● CASCADE | RESTRICT

– CASCADE: automatically deletes all objects that depend on the function
to be deleted (such as operators).

– RESTRICT: refuses to delete the function if any objects depend on it. This
is the default.

Examples

Delete a function named add_two_number.

DROP FUNCTION add_two_number;

Helpful Links

ALTER FUNCTION, CREATE FUNCTION

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 576



12.62 DROP GROUP

Function
DROP GROUP deletes a user group.

DROP GROUP is the alias for DROP ROLE.

Precautions
DROP GROUP is the internal interface encapsulated in the gs_om tool. You are
not advised to use this interface, because doing so affects the cluster.

Syntax
DROP GROUP [ IF EXISTS ] group_name [, ...];

Parameter Description
See Examples in DROP ROLE.

Helpful Links
CREATE GROUP, ALTER GROUP, DROP ROLE

12.63 DROP INDEX

Function
DROP INDEX deletes an index.

Precautions
Only the owner of an index or a system administrator can run DROP INDEX
command.

Syntax
DROP INDEX [ IF EXISTS ] 
    index_name [, ...] [ CASCADE | RESTRICT ];

Parameter Description
● IF EXISTS

Sends a notice instead of an error if the specified index does not exist.
● index_name

Specifies the name of the index to be deleted.
Value range: An existing index.

● CASCADE | RESTRICT

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 577



– CASCADE: automatically deletes all objects that depend on the index to
be deleted.

– RESTRICT (default): refuses to delete the index if any objects depend on
it.

Examples
Delete the ds_ship_mode_t1_index2 index.

DROP INDEX tpcds.ds_ship_mode_t1_index2;

Helpful Links
ALTER INDEX, CREATE INDEX

12.64 DROP OWNED

Function
DROP OWNED deletes the database objects of a database role.

Important Notes
The role's permissions on all the database objects in the current database and
shared objects (databases and tablespaces) are revoked.

Syntax
DROP OWNED BY name [, ...] [ CASCADE | RESTRICT ];

Parameter Description
● name

Name of the role whose objects are to be deleted and whose permissions are
to be revoked.

● CASCADE | RESTRICT
– CASCADE: automatically deletes objects that depend on the affected

objects.
– RESTRICT (default): refuses to delete the objects if any other database

objects depend on one of the affected objects.

12.65 DROP REDACTION POLICY

Function
DROP REDACTION POLICY deletes a data redaction policy applied to a specified
table.

Precautions
Only the table owner has the permission to delete a data redaction policy.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 578



Syntax
DROP REDACTION POLICY [ IF EXISTS ] policy_name ON table_name;

Parameter Description
● IF EXISTS

Sends a notice instead of throwing an error if the redaction policy to be
deleted does not exist.

● policy_name
Specifies the name of a redaction policy.

● table_name
Specifies the name of the table to which the redaction policy is applied.

Examples

Delete a data masking policy.

DROP REDACTION POLICY mask_emp ON emp;

Helpful Links

ALTER REDACTION POLICY, CREATE REDACTION POLICY

12.66 DROP ROW LEVEL SECURITY POLICY

Function

DROP ROW LEVEL SECURITY POLICY deletes a row-level access control policy
from a table.

Precautions

Only the table owner or administrators can delete a row-level access control policy
from the table.

Syntax
DROP [ ROW LEVEL SECURITY ] POLICY [ IF EXISTS ] policy_name ON table_name [ CASCADE | RESTRICT ]

Parameter Description
● IF EXISTS

Reports a notice instead of an error if the specified row-level access control
policy does not exist.

● policy_name
Specifies the name of a row-level access control policy to be deleted.
– table_name

Specifies the name of a table to which a row-level access control policy is
applied.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 579



– CASCADE/RESTRICT

The two parameters are used only for syntax compatibility. No objects
depend on access control policies and thereby CASCADE is equivalent to
RESTRICT.

Examples

Delete the row-level access control policy.

DROP ROW LEVEL SECURITY POLICY all_data_rls ON all_data;

Helpful Links

ALTER ROW LEVEL SECURITY POLICY, CREATE ROW LEVEL SECURITY POLICY

12.67 DROP PROCEDURE

Function

DROP PROCEDURE deletes an existing stored procedure.

Precautions

None.

Syntax
DROP PROCEDURE [ IF EXISTS  ] procedure_name ;

Parameter Description
● IF EXISTS

Sends a notice instead of an error if the stored procedure does not exist.

● procedure_name

Specifies the name of the stored procedure to be deleted.

Value range: An existing stored procedure name.

Examples

Delete a stored procedure.

DROP PROCEDURE prc_add;

Helpful Links

CREATE PROCEDURE

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 580



12.68 DROP RESOURCE POOL

Function
DROP RESOURCE POOL deletes a resource pool.

NO TE

The resource pool cannot be deleted if it is associated with a role.

Precautions
The user must have the DROP permission in order to delete a resource pool.

Syntax
DROP RESOURCE POOL [ IF EXISTS ] pool_name;

Parameter Description
● IF EXISTS

Sends a notice instead of an error if the stored procedure does not exist.

● pool_name
Specifies the name of a created resource pool.
Value range: a string. It must comply with the naming convention.

NO TE

A resource pool can be independently deleted only when it is not associated with any users.

Example
Delete a resource pool.

DROP RESOURCE POOL pool1;

Links
ALTER RESOURCE POOL, CREATE RESOURCE POOL

12.69 DROP ROLE

Function
DROP ROLE deletes a specified role.

Precautions
If a "role is being used by other users" error is displayed when you run DROP
ROLE, it might be that threads cannot respond to signals in a timely manner

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 581



during the CLEAN CONNECTION process. As a result, connections are not
completely cleared. In this case, you need to run CLEAN CONNECTION again.

Syntax
DROP ROLE [ IF EXISTS ] role_name [, ...];

Parameter Description
● IF EXISTS

Sends a notice instead of an error if the specified role does not exist.
● role_name

Specifies the name of the role to be deleted.
Value range: An existing role.

Examples
Delete the manager role.

DROP ROLE manager;

Helpful Links
CREATE ROLE, ALTER ROLE, SET ROLE

12.70 DROP SCHEMA

Function
DROP SCHEMA deletes a schema in a database.

Precautions
Only a schema owner or a system administrator can run the DROP SCHEMA
command.

Syntax
DROP SCHEMA [ IF EXISTS ] schema_name [, ...] [ CASCADE | RESTRICT ];

Parameter Description
● IF EXISTS

Sends a notice instead of an error if the specified schema does not exist.
● schema_name

Specifies the name of a schema.
Value range: An existing schema name.

● CASCADE | RESTRICT
– CASCADE: automatically deletes all objects that are contained in the

schema to be deleted.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 582



– RESTRICT: refuses to delete the schema that contains any objects. This is
the default.

NO TICE

Do not delete the schemas with the beginning of pg_temp or pg_toast_temp.
They are internal system schemas, and deleting them may cause unexpected
errors.

NO TE

A user cannot delete the schema in use. To delete the schema in use, switch to another
schema.

Example

Delete the ds_new schema.

DROP SCHEMA ds_new;

Links

ALTER SCHEMA, CREATE SCHEMA

12.71 DROP SEQUENCE

Function

DROP SEQUENCE deletes a sequence from the current database.

Precautions

Only a sequence owner or a system administrator can delete a sequence.

Syntax
DROP SEQUENCE [ IF EXISTS ] {[schema.]sequence_name} [ , ... ] [ CASCADE | RESTRICT ];

Parameter Description
● IF EXISTS

Sends a notice instead of an error if the specified sequence does not exist.
● name

Specifies the name of the sequence.
● CASCADE

Automatically deletes objects that depend on the sequence to be deleted.
● RESTRICT

Refuses to delete the sequence if any objects depend on it. This is the default.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 583



Examples
Delete the sequence.

DROP SEQUENCE serial;

Helpful Links
CREATE SEQUENCE ALTER SEQUENCE

12.72 DROP SERVER

Function
DROP SERVER deletes an existing data server.

Precautions
Only the server owner can delete a server.

Syntax
DROP SERVER [ IF EXISTS ] server_name [ {CASCADE | RESTRICT} ] ;

Parameter Description
● IF EXISTS

Sends a notice instead of an error if the specified table does not exist.
● server_name

Specifies the name of a server.
● CASCADE | RESTRICT

– CASCADE: automatically drops objects that depend on the server to be
deleted.

– RESTRICT (default): refuses to delete the server if any objects depend on
it.

Examples
Delete the hdfs_server server.

DROP SERVER hdfs_server;

Helpful Links
CREATE SERVER, ALTER SERVER

12.73 DROP SYNONYM

Function
DROP SYNONYM is used to delete a synonym object.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 584



Precautions

Only a synonym owner or a system administrator can run the DROP SYNONYM
command.

Syntax
DROP SYNONYM [ IF EXISTS ] synonym_name [ CASCADE | RESTRICT ];

Parameter Description
● IF EXISTS

Send a notice instead of reporting an error if the specified synonym does not
exist.

● synonym_name
Name of a synonym (optionally with schema names)

● CASCADE | RESTRICT
– CASCADE: automatically deletes objects (such as views) that depend on

the synonym to be deleted.
– RESTRICT: refuses to delete the synonym if any objects depend on it. This

is the default.

Examples

Delete a synonym.

DROP SYNONYM t1;
DROP SCHEMA ot CASCADE;

Helpful Links

ALTER SYNONYM and CREATE SYNONYM

12.74 DROP TABLE

Function

DROP TABLE deletes a specified table.

Precautions

DROP TABLE forcibly deletes a specified table. After a table is deleted, any indexes
that exist for the table will be deleted; any functions or stored procedures that use
this table cannot be run. Deleting a partitioned table also deletes all partitions in
the table.

Syntax
DROP TABLE [ IF EXISTS ] 
    { [schema.]table_name } [, ...] [ CASCADE | RESTRICT ];

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 585



Parameter Description
● IF EXISTS

Sends a notice instead of an error if the specified table does not exist.

● schema

Specifies the schema name.

● table_name

Specifies the name of the table.

● CASCADE | RESTRICT

– CASCADE: automatically deletes objects (such as views) that depend on
the table to be deleted.

– RESTRICT (default): refuses to delete the table if any objects depend on
it. This is the default.

Example

Delete the warehouse_t1 table.

DROP TABLE tpcds.warehouse_t1;

Links

ALTER TABLE, CREATE TABLE

12.75 DROP TABLESPACE

Function

The feature of deleting an OBS tablespace in a database is supported only by 8.1.1
and 8.1.2.

Precautions
● Only a tablespace owner or a system administrator can run the DROP

TABLESPACE command.

● The tablespace to be deleted should not contain any database objects.
Otherwise, an error occurs.

● DROP TABLESPACE cannot be rolled back and therefore cannot be run inside
a transaction block.

● During execution of the DROP TABLESPACE command, database query by
other sessions using \db may fail and can be reattempted after command
execution.

● If DROP TABLESPACE fails to be run, run DROP TABLESPACE IF EXISTS.

Syntax
DROP TABLESPACE [ IF EXISTS ] tablespace_name;

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 586



Parameter Description
● IF EXISTS

Sends a notice instead of an error if the specified tablespace does not exist.
● tablespace_name

Specifies the name of a tablespace.
Value range: an existing tablespace name

Examples

Delete a tablespace.

DROP TABLESPACE ds_location1;

Helpful Links

CREATE TABLESPACE

12.76 DROP TEXT SEARCH CONFIGURATION

Function

DROP TEXT SEARCH CONFIGURATION deletes an existing text search
configuration.

Precautions

To run the DROP TEXT SEARCH CONFIGURATION command, you must be the
owner of the text search configuration.

Syntax
DROP TEXT SEARCH CONFIGURATION [ IF EXISTS ] name [ CASCADE | RESTRICT ];

Parameter Description
● IF EXISTS

Sends a notice instead of an error if the specified text search configuration
does not exist.

● name
Specifies the name (optionally schema-qualified) of a text search
configuration to be deleted.

● CASCADE
Automatically deletes objects that depend on the text search configuration to
be deleted.

● RESTRICT
Refuses to delete the text search configuration if any objects depend on it.
This is the default.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 587



Examples

Delete the text search configuration ngram1.

DROP TEXT SEARCH CONFIGURATION ngram1;

Helpful Links

ALTER TEXT SEARCH CONFIGURATION, CREATE TEXT SEARCH
CONFIGURATION

12.77 DROP TEXT SEARCH DICTIONARY

Function

DROP TEXT SEARCH DICTIONARY deletes a full-text retrieval dictionary.

Precautions
● DROP is not supported by predefined dictionaries.
● Only the owner of a dictionary can do DROP to the dictionary. System

administrators have this permission by default.
● Execute DROP...CASCADE only when necessary because this operation will

delete the text search configuration that uses this dictionary.

Syntax
DROP TEXT SEARCH DICTIONARY [ IF EXISTS ] name [ CASCADE | RESTRICT ]

Parameter Description
● IF EXISTS

Reports a notice instead of throwing an error if the specified full-text retrieval
dictionary does not exist.

● name
Specifies the name of a dictionary to be deleted. (If you do not specify a
schema name, the dictionary in the current schema will be deleted by
default.)
Value range: name of an existing dictionary

● CASCADE
Automatically deletes dependent objects of a dictionary and then deletes all
dependent objects of these objects in sequence.
If any text search configuration that uses the dictionary exists, DROP
execution will fail. You can add CASCADE to delete all text search
configurations and dictionaries that use the dictionary.

● RESTRICT
Rejects the deletion of a dictionary if any object depends on the dictionary.
This is the default.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 588



Examples

Delete the english dictionary.

DROP TEXT SEARCH DICTIONARY english;

Helpful Links

ALTER TEXT SEARCH DICTIONARY, CREATE TEXT SEARCH DICTIONARY

12.78 DROP TRIGGER

Function

DROP TRIGGER deletes a trigger.

Precautions

Only the owner of a trigger and system administrators can run the DROP
TRIGGER statement.

Syntax
DROP TRIGGER [ IF EXISTS ] trigger_name ON table_name [ CASCADE | RESTRICT ];

Parameter Description
● IF EXISTS

Sends a notice instead of an error if the specified trigger does not exist.
● trigger_name

Specifies the name of the trigger to be deleted.
Value range: an existing trigger

● table_name
Specifies the name of the table where the trigger to be deleted is located.
Value range: an existing table having a trigger

● CASCADE | RESTRICT
– CASCADE: Deletes objects that depend on the trigger.
– RESTRICT: Refuses to delete the trigger if any objects depend on it. This

is the default.

Examples

Delete the trigger insert_trigger.

DROP TRIGGER insert_trigger ON test_trigger_src_tbl;

Helpful Links

CREATE TRIGGER, ALTER TRIGGER, ALTER TABLE

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 589



12.79 DROP TYPE

Function
DROP TYPE deletes a user-defined data type. Only the type owner has permission
to run this statement.

Syntax
DROP TYPE [ IF EXISTS ] name [, ...] [ CASCADE | RESTRICT ]

Parameter Description
● IF EXISTS

Sends a notice instead of an error if the specified type does not exist.
● name

Specifies the name of the type to be deleted (schema-qualified).
● CASCADE

Deletes objects (such as columns, functions, and operators) that depend on
the type.
RESTRICT
Refuses to delete the type if any objects depend on it. This is the default.

Examples
Delete the compfoo type.

DROP TYPE compfoo cascade;

Helpful Links
ALTER TYPE, CREATE TYPE

12.80 DROP USER

Function
Deleting a user will also delete the schema having the same name as the user.

Precautions
● CASCADE is used to delete objects (excluding databases) that depend on the

user. CASCADE cannot delete locked objects unless the locked objects are
unlocked or the processes that lock the objects are killed.

● When deleting a user in the database, if the object that the user depends on
is in another database or the object of the dependent user is another
database, you need to manually delete the dependent objects in other
databases or delete the dependent database. Then, delete the user. Cross-
database cascading deletion cannot be performed.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 590



● In a multi-tenant scenario, the service user will also be deleted when you
delete a user group. If the specified CASCADE concatenation is deleted,
CASCADE will be specified upon the deletion of the service user. If you fail to
delete a user, an error is reported, and you cannot delete other users either.

● If the user has an error table specified when the GDS foreign table is created,
the user cannot be deleted by specifying the CASCADE keyword in the DROP
USER command.

● If a "role is being used by other users" error is displayed when you run DROP
USER, it might be that threads cannot respond to signals in a timely manner
during the CLEAN CONNECTION process. As a result, connections are not
completely cleared. In this case, you need to run CLEAN CONNECTION again.

Syntax
DROP USER [ IF EXISTS ] user_name [, ...] [ CASCADE | RESTRICT ];

Parameter Description
● IF EXISTS

Sends a notice instead of an error if the specified user does not exist.

● user_name

Specifies the name of a user to be deleted.

Value range: An existing user name.

● CASCADE | RESTRICT

– CASCADE: automatically deletes all objects (such as tables) that depend
on the user to be deleted. When a user is deleted in CASCADE mode,
objects owner by the user and the user's permissions for objects will be
deleted.

– RESTRICT: refuses to delete the user if any objects depend on it. This is
the default.

NO TE

In GaussDB(DWS), the postgresql.conf file contains the enable_kill_query parameter.
This parameter affects the action of deleting user objects using CASCADE.

● If enable_kill_query is on and CASCADE is used to delete user objects, the
processes will be automatically killed and the user will be deleted at the same
time.

● If enable_kill_query is off and CASCADE is used to delete user objects, the user
will be deleted after the processes are automatically killed.

Example

Delete user jim.

DROP USER jim CASCADE;

Links

ALTER USER, CREATE USER

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 591



12.81 DROP VIEW

Function
DROP VIEW forcibly deletes an existing view in a database.

Precautions
Only a view owner or a system administrator can run DROP VIEW command.

Syntax
DROP VIEW [ IF EXISTS ] view_name [, ...] [ CASCADE | RESTRICT ];

Parameter Description
● IF EXISTS

Sends a notice instead of an error if the specified view does not exist.
● view_name

Specifies the name of the view to be deleted.
Value range: An existing view.

● CASCADE | RESTRICT
– CASCADE: deletes objects (such as other views) that depend on a view to

be deleted.
– RESTRICT: refuses to delete the view if any objects depend on it. This is

the default.

Examples
Delete the myView view.

DROP VIEW myView;

Delete the customer_details_view_v2 view.

DROP VIEW public.customer_details_view_v2;

Helpful Links
ALTER VIEW, CREATE VIEW

12.82 FETCH

Function
FETCH retrieves data using a previously-created cursor.

A cursor has an associated position, which is used by FETCH. The cursor position
can be before the first row of the query result, on any particular row of the result,
or after the last row of the result.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 592



● When created, a cursor is positioned before the first row.
● After fetching some rows, the cursor is positioned on the row most recently

retrieved.
● If FETCH runs off the end of the available rows then the cursor is left

positioned after the last row, or before the first row if fetching backward.
● FETCH ALL or FETCH BACKWARD ALL will always leave the cursor

positioned after the last row or before the first row.

Precautions
● If NO SCROLL is defined for the cursor, a backward fetch like FETCH

BACKWARD is not allowed.
● The forms NEXT, PRIOR, FIRST, LAST, ABSOLUTE, and RELATIVE

appropriately fetch a record after moving the cursor. If the cursor is already
after the last row before being moved, an empty result is returned, and the
cursor is left positioned before the first row (backward fetch) or after the last
row (forward fetch) as appropriate.

● The forms using FORWARD and BACKWARD retrieve the indicated number
of rows moving in the forward or backward direction, leaving the cursor
positioned on the last-returned row (or after (backward fetch)/before
(forward fetch) all rows, if the count exceeds the number of rows available).

● RELATIVE 0, FORWARD 0, and BACKWARD 0 all request fetching the current
row without moving the cursor, that is, re-fetching the most recently fetched
row. This will succeed unless the cursor is positioned before the first row or
after the last row, in which case, no row is returned.

● If the cursor of FETCH involves a column-store table, backward fetches like
BACKWARD, PRIOR, and FIRST are not supported.

Syntax
FETCH [ direction { FROM | IN } ] cursor_name;

The direction clause specifies optional parameters.

NEXT
   | PRIOR
   | FIRST
   | LAST
   | ABSOLUTE count
   | RELATIVE count
   | count
   | ALL
   | FORWARD
   | FORWARD count
   | FORWARD ALL
   | BACKWARD
   | BACKWARD count
   | BACKWARD ALL

Parameter Description
● direction_clause

Defines the fetch direction.
Valid value:
– NEXT (default value)

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 593



Fetches the next row.
– PRIOR

Fetches the prior row.
– FIRST

Fetches the first row of the query (same as ABSOLUTE 1).
– LAST

Fetches the last row of the query (same as ABSOLUTE -1).
– ABSOLUTE count

Fetches the (count)'th row of the query.
ABSOLUTE fetches are not any faster than navigating to the desired row
with a relative move: the underlying implementation must traverse all the
intermediate rows anyway.
count is a possibly-signed integer constant:

▪ If count is a positive integer, fetches the (count)'th row of the query,
starting from the first row. If count is less than the current cursor
position, a rewind operation is required, which is currently not
supported.

▪ If count is a negative value or 0, a backward scanning is required,
which is currently not supported.

– RELATIVE count
Fetches the (count)'th succeeding row, or the abs(count)'th prior row if
count is negative.
count is a possibly-signed integer constant:

▪ If count is a positive integer, fetches the (count)'th succeeding row.

▪ If count is a negative value, a backward scanning is required, which
is currently not supported.

▪ RELATIVE 0 fetches the current row.

– count
Fetches the next count rows (same as FORWARD count).

– ALL
Fetches all remaining rows (same as FORWARD ALL).

– FORWARD
Fetches the next row (same as NEXT).

– FORWARD count
Fetches the next count rows (same as RELATIVE count). FORWARD 0
re-fetches the current row.

– FORWARD ALL
Fetches all remaining rows.

– BACKWARD
Fetches the prior row (same as PRIOR).

– BACKWARD count

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 594



Fetches the prior count rows (scanning backwards).

count is a possibly-signed integer constant:

▪ If count is a positive integer, fetches the (count)'th prior row.

▪ If count is a negative integer, fetches the abs(count)'th succeeding
row.

▪ BACKWARD 0 re-fetches the current row.

– BACKWARD ALL

Fetches all prior rows (scanning backwards).

● { FROM | IN } cursor_name

Specifies the cursor name using the keyword FROM or IN.

Value range: an existing cursor name.

Examples

Example 1: Run the SELECT statement to read a table using a cursor.

Set up the cursor1 cursor.

CURSOR cursor1 FOR SELECT * FROM tpcds.customer_address ORDER BY 1;

Fetch the first three rows from cursor1.

FETCH FORWARD 3 FROM cursor1;
 ca_address_sk |  ca_address_id   | ca_street_number |   ca_street_name   | ca_street_type  | ca_suite_number 
|     ca_city     |    ca_county    | ca_state |   ca_zip   |  ca_country   | ca_gmt_offset |   ca_location_type   
---------------+------------------+------------------+--------------------+-----------------+-----------------
+-----------------+-----------------+----------+------------+---------------+---------------+----------------------
             1 | AAAAAAAABAAAAAAA | 18               | Jackson            | Parkway         | Suite 280       | 
Fairfield       | Maricopa County | AZ       | 86192      | United States |         -7.00 | condo               
             2 | AAAAAAAACAAAAAAA | 362              | Washington 6th     | RD              | Suite 80        | 
Fairview        | Taos County     | NM       | 85709      | United States |         -7.00 | condo               
             3 | AAAAAAAADAAAAAAA | 585              | Dogwood Washington | Circle          | Suite Q         | 
Pleasant Valley | York County     | PA       | 12477      | United States |         -5.00 | single family       
(3 rows)

Example 2: Use a cursor to read the content in the VALUES clause.

Set up the cursor cursor2.

CURSOR cursor2 FOR VALUES(1,2),(0,3) ORDER BY 1;

Fetch the first two rows from cursor2.

FETCH FORWARD 2 FROM cursor2;
column1 | column2
---------+---------
0 |       3
1 |       2
(2 rows)

Helpful Links

CLOSE, MOVE, CURSOR

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 595



12.83 MOVE

Function

MOVE repositions a cursor without retrieving any data. MOVE works exactly like
the FETCH command, except it only repositions the cursor and does not return
rows.

Precautions

None

Syntax
MOVE [ direction [ FROM | IN ] ] cursor_name;

The direction clause specifies optional parameters.

NEXT
   | PRIOR
   | FIRST
   | LAST
   | ABSOLUTE count
   | RELATIVE count
   | count
   | ALL
   | FORWARD
   | FORWARD count
   | FORWARD ALL
   | BACKWARD
   | BACKWARD count
   | BACKWARD ALL

Parameter Description

MOVE command parameters are the same as FETCH command parameters. For
details, see Parameter Description in FETCH.

NO TE

On successful completion, a MOVE command returns a command tag of the form MOVE
count. The count is the number of rows that a FETCH command with the same parameters
would have returned (possibly zero).

Examples

Skip the first three rows of cursor1.

MOVE FORWARD 3 FROM cursor1;

Helpful Links

CLOSE, FETCH, CURSOR

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 596



12.84 REINDEX

Function

REINDEX rebuilds an index using the data stored in the index's table, replacing the
old copy of the index.

There are several scenarios in which REINDEX can be used:

● An index has become corrupted, and no longer contains valid data.
● An index has become "bloated", that is, it contains many empty or nearly-

empty pages.
● You have altered a storage parameter (such as fillfactor) for an index, and

wish to ensure that the change has taken full effect.
An index build with the CONCURRENTLY option failed, leaving an "invalid"
index.

Precautions

Index reconstruction of the REINDEX DATABASE or SYSTEM type cannot be
performed in transaction blocks.

Syntax
● Rebuild a general index.

REINDEX { INDEX |  TABLE | DATABASE | SYSTEM } name [ FORCE ];

● Rebuild an index partition.
REINDEX  { TABLE } name
    PARTITION partition_name [ FORCE  ];

Parameter Description
● INDEX

Recreates the specified index.
● TABLE

Recreates all indexes of the specified table. If the table has a secondary
TOAST table, that is reindexed as well.

● DATABASE
Recreates all indexes within the current database. Indexes on the shared
system directory will also be processed. This form of REINDEX cannot be
executed within a transaction block.

● SYSTEM
Recreates all indexes on system catalogs within the current database. Indexes
on user tables are not processed.

● name
Name of the specific index, table, or database to be reindexed. Index and
table names can be schema-qualified.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 597



NO TE

REINDEX DATABASE and SYSTEM can create indexes for only the current database.
Therefore, name must be the same as the current database name.

● FORCE
This is an obsolete option. It is ignored if specified.

● partition_name
Specifies the name of the partition or index partition to be reindexed.
Value range:
– If it is REINDEX INDEX, specify the name of an index partition.
– If it is REINDEX TABLE, specify the name of a partition.

NO TICE

Index reconstruction of the REINDEX DATABASE or SYSTEM type cannot be
performed in transaction blocks.

Examples
Rebuild a single index.

REINDEX INDEX tpcds.tpcds_customer_index1;

Rebuild all indexes on the tpcds.customer_t1 table.

REINDEX TABLE tpcds.customer_t1;

12.85 RESET

Function
RESET restores run-time parameters to their default values. The default values are
parameter default values complied in the postgresql.conf configuration file.

RESET is an alternative spelling for:

SET configuration_parameter TO DEFAULT

Precautions
RESET and SET have the same transaction behavior. Their impact will be rolled
back.

Syntax
RESET {configuration_parameter | CURRENT_SCHEMA | TIME ZONE | TRANSACTION ISOLATION LEVEL | 
SESSION AUTHORIZATION | ALL };

Parameter Description
● configuration_parameter

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 598



Specifies the name of a settable run-time parameter.
Value range: Run-time parameters. You can view them by running the SHOW
ALL command.

NO TE

Some parameters that viewed by SHOW ALL cannot be set by SET. For example,
max_datanodes.

● CURRENT_SCHEMA
Specifies the current schema.

● TIME ZONE
Specifies the time zone.

● TRANSACTION ISOLATION LEVEL
Specifies the transaction isolation level.

● SESSION AUTHORIZATION
Specifies the session authorization.

● ALL
Resets all settable run-time parameters to default values.

Examples
Reset timezone to the default value.

RESET timezone;

Set all parameters to their default values.

RESET ALL;

Helpful Links
SET, SHOW

12.86 SET

Function
SET modifies a run-time parameter.

Precautions
Most run-time parameters can be modified by executing SET. Some parameters
cannot be modified after a server or session starts.

Syntax
● Set the system time zone.

SET [ SESSION | LOCAL ] TIME ZONE { timezone | LOCAL | DEFAULT };

● Set the schema of the table.
SET [ SESSION | LOCAL ] 
    {CURRENT_SCHEMA { TO | = } { schema | DEFAULT }
    | SCHEMA 'schema'};

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 599



● Set client encoding.
SET [ SESSION | LOCAL ] NAMES encoding_name;

● Set XML parsing mode.
SET [ SESSION | LOCAL ] XML OPTION { DOCUMENT | CONTENT };

● Set other running parameters.
SET [ LOCAL | SESSION ]
    { {config_parameter { { TO | = } { value | DEFAULT } 
                        | FROM CURRENT }}};

Parameter Description
● SESSION

Indicates that the specified parameters take effect for the current session. This
is the default value if neither SESSION nor LOCAL appears.
If SET or SET SESSION is executed within a transaction that is later aborted,
the effects of the SET command disappear when the transaction is rolled
back. Once the surrounding transaction is committed, the effects will persist
until the end of the session, unless overridden by another SET.

● LOCAL
Indicates that the specified parameters take effect for the current transaction.
After COMMIT or ROLLBACK, the session-level setting takes effect again.
The effects of SET LOCAL last only till the end of the current transaction,
whether committed or not. A special case is SET followed by SET LOCAL
within a single transaction: the SET LOCAL value will be seen until the end of
the transaction, but afterwards (if the transaction is committed) the SET
value will take effect.

● TIME ZONE timezone
Indicates the local time zone for the current session.
Value range: A valid local time zone. The corresponding run-time parameter is
TimeZone. The default value is PRC.

● CURRENT_SCHEMA
schema
Indicates the current schema.
Value range: An existing schema name.

● SCHEMA schema
Indicates the current schema. Here the schema is a string.
Example: set schema 'public';

● NAMES encoding_name
Indicates the client character encoding name. This command is equivalent to
set client_encoding to encoding_name.
Value range: A valid character encoding name. The run-time parameter
corresponding to this option is client_encoding. The default encoding is
UTF8.

● XML OPTION option
Indicates the XML resolution mode.
Value range: CONTENT (default), DOCUMENT

● config_parameter

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 600



Indicates the configurable run-time parameters. You can use SHOW ALL to
view available run-time parameters.

NO TE

Some parameters that viewed by SHOW ALL cannot be set by SET. For example,
max_datanodes.

● value
Indicates the new value of the config_parameter parameter. This parameter
can be specified as string constants, identifiers, numbers, or comma-separated
lists of these. DEFAULT can be written to indicate resetting the parameter to
its default value.

Examples
Configure the search path of the tpcds schema.

SET search_path TO tpcds, public;

Set the date style to the traditional POSTGRES style (date placed before month).

SET datestyle TO postgres;

Helpful Links
RESET, SHOW

12.87 SET CONSTRAINTS

Function
SET CONSTRAINTS sets the behavior of constraint checking within the current
transaction.

IMMEDIATE constraints are checked at the end of each statement. DEFERRED
constraints are not checked until transaction commit. Each constraint has its own
IMMEDIATE or DEFERRED mode.

Upon creation, a constraint is given one of three characteristics DEFERRABLE
INITIALLY DEFERRED, DEFERRABLE INITIALLY IMMEDIATE, or NOT
DEFERRABLE. The third class is always IMMEDIATE and is not affected by the SET
CONSTRAINTS command. The first two classes start every transaction in specified
modes, but its behaviors can be changed within a transaction by SET
CONSTRAINTS.

SET CONSTRAINTS with a list of constraint names changes the mode of just
those constraints (which must all be deferrable). If multiple constraints match a
name, the name is affected by all of these constraints. SET CONSTRAINTS ALL
changes the modes of all deferrable constraints.

When SET CONSTRAINTS changes the mode of a constraint from DEFERRED to
IMMEDIATE, the new mode takes effect retroactively: any outstanding data
modifications that would have been checked at the end of the transaction are
instead checked during the execution of the SET CONSTRAINTS command. If any
such constraint is violated, the SET CONSTRAINTS fails (and does not change the

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 601



constraint mode). Therefore, SET CONSTRAINTS can be used to force checking of
constraints to occur at a specific point in a transaction.

Only foreign key constraints are affected by this setting. Check and unique
constraints are always checked immediately when a row is inserted or modified.

Precautions
SET CONSTRAINTS sets the behavior of constraint checking only within the
current transaction. Therefore, if you execute this command outside of a
transaction block (START TRANSACTION/COMMIT pair), it will not appear to
have any effect.

Syntax
SET CONSTRAINTS  { ALL  |  { name  }  [, ...]  }  { DEFERRED  | IMMEDIATE  } ;

Parameter Description
● name

Specifies the constraint name.
Value range: an existing constraint name, which can be found in the system
catalog pg_constraint.

● ALL
Indicates all constraints.

● DEFERRED
Indicates that constraints are not checked until transaction commit.

● IMMEDIATE
Indicates that constraints are checked at the end of each statement.

Examples
Set that constraints are checked when a transaction is committed.

SET CONSTRAINTS ALL DEFERRED;

12.88 SET ROLE

Function
SET ROLE sets the current user identifier of the current session.

Precautions
● Users of the current session must be members of specified rolename, but the

system administrator can choose any roles.
● Executing this command may add rights of a user or restrict rights of a user. If

the role of a session user has the INHERITS attribute, it automatically has all
rights of roles that SET ROLE enables the role to be. In this case, SET ROLE
physically deletes all rights directly granted to session users and rights of its
belonging roles and only leaves rights of the specified roles. If the role of the

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 602



session user has the NOINHERITS attribute, SET ROLE deletes rights directly
granted to the session user and obtains rights of the specified role.

Syntax
● SET ROLE sets the current user identifier of the current session.

SET [ SESSION | LOCAL ] ROLE role_name PASSWORD 'password';

● Reset the current user identifier to that of the current session.
RESET ROLE;

Parameter Description
● SESSION

Specifies that the command takes effect only for the current session. This
parameter is used by default.

Value range: A string. It must comply with the naming convention rule.

● LOCALE

Indicates that the specified command takes effect only for the current
transaction.

● role_name

Specifies the role name.

Value range: A string. It must comply with the naming convention rule.

● password

Specifies the password of a role. It must comply with the password
convention.

● RESET ROLE

Resets the current user identifier.

Examples

Set the current user to paul.

SET ROLE paul PASSWORD 'password';

View the current session user and the current user.

SELECT SESSION_USER, CURRENT_USER;

Reset the current user.

RESET role;

12.89 SET SESSION AUTHORIZATION

Function

SET SESSION AUTHORIZATION sets the session user identifier and the current
user identifier of the current SQL session to a specified user.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 603



Precautions

The session identifier can be changed only when the initial session user has the
system administrator rights. Otherwise, the system supports the command only
when the authenticated user name is specified.

Syntax
● SET SESSION AUTHORIZATION sets the session user identifier and the

current user identifier of the current session.
SET [ SESSION | LOCAL ] SESSION AUTHORIZATION role_name PASSWORD 'password';

● Reset the identifiers of the session and current users to the initially
authenticated user names.
{SET [ SESSION | LOCAL ] SESSION AUTHORIZATION DEFAULT
    | RESET SESSION AUTHORIZATION};

Parameter Description
● SESSION

Indicates that the specified parameters take effect for the current session.
Value range: A string. It must comply with the naming convention.

● LOCALE
Indicates that the specified command takes effect only for the current
transaction.

● role_name
User name.
Value range: A string. It must comply with the naming convention.

● password
Specifies the password of a role. It must comply with the password
convention.

● DEFAULT
Reset the identifiers of the session and current users to the initially
authenticated user names.

Examples

Set the current user to paul.

SET SESSION AUTHORIZATION paul password 'password';

View the current session user and the current user.

SELECT SESSION_USER, CURRENT_USER;

Reset the current user.

RESET SESSION AUTHORIZATION;

Helpful Links

SET ROLE

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 604



12.90 SHOW

Function
SHOW shows the current value of a run-time parameter. You can use the SET
statement to set these parameters.

Precautions
Some parameters that can be viewed by SHOW are read-only. You can view but
cannot modify their values.

Syntax
SHOW 
  { 
    configuration_parameter | 
    CURRENT_SCHEMA | 
    TIME ZONE | 
    TRANSACTION ISOLATION LEVEL | 
    SESSION AUTHORIZATION | 
    ALL 
  };

Parameter Description
See Parameter Description in RESET.

Examples
Show the value of timezone.

SHOW timezone;

Show the current setting of the DateStyle parameter.

SHOW DateStyle;

Show the current setting of all parameters.

SHOW ALL;

Helpful Links
SET, RESET

12.91 TRUNCATE

Function
TRUNCATE quickly removes all rows from a database table.

It has the same effect as an unqualified DELETE on each table, but it is faster
since it does not actually scan the tables. This is most useful on large tables.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 605



TRUNCATE obtains an ACCESS EXCLUSIVE lock on each table it operates on,
which blocks all other concurrent operations on that table. If concurrent access to
the table is required, use the DELETE command instead.

Precautions
● TRUNCATE TABLE has the same function as a DELETE statement with no

WHERE clause, emptying a table.
● TRUNCATE TABLE uses less system and transaction log resources as

compared with DELETE.
– DELETE deletes a row each time, and records the deletion of each row in

the transaction log.
– TRUNCATE TABLE deletes all rows in a table by releasing the data page

storing the table data, and records the releasing of the data page only in
the transaction log.

● The differences between TRUNCATE, DELETE, and DROP are as follows:
– TRUNCATE TABLE deletes content, releases space, but does not delete

definitions.
– DELETE TABLE deletes content, but does not delete definitions nor

release space.
– DROP TABLE deletes content and definitions, and releases space.

Syntax
● TRUNCATE empties a table or set of tables.
TRUNCATE [ TABLE ] [ ONLY ] {[[database_name.]schema_name.]table_name [ * ]} [, ... ]
    [ CONTINUE IDENTITY ] [ CASCADE | RESTRICT ];

● Truncate the data in a partition.
ALTER TABLE [ IF EXISTS  ] { [ ONLY  ] [[database_name.]schema_name.]table_name  
                           | table_name *  
                           | ONLY ( table_name )  } 
    TRUNCATE PARTITION { partition_name  
                       | FOR (  partition_value  [, ...] )  } ;

Parameter Description
● ONLY

If ONLY is specified, only the specified table is cleared. Otherwise, the table
and all its subtables (if any) are cleared.

● database_name
Database name of the target table

● schema_name
Schema name of the target table

● table_name
Specifies the name (optionally schema-qualified) of a target table.
Value range: an existing table name

● CONTINUE IDENTITY
Does not change the values of sequences. This is the default.

● CASCADE | RESTRICT

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 606



– CASCADE: automatically truncates all tables that have foreign-key
references to any of the named tables, or to any tables added to the
group due to CASCADE.

– RESTRICT (default): refuses to truncate if any of the tables have foreign-
key references from tables that are not listed in the command.

● partition_name
Indicates the partition in the target partition table.
Value range: An existing partition name.

● partition_value
Specifies the value of the specified partition key.
The value specified by PARTITION FOR can uniquely identify a partition.
Value range: The partition key of the partition to be deleted.

NO TICE

When the PARTITION FOR clause is used, the entire partition where
partition_value is located is cleared.

Examples
Clear the p1 partition of the customer_address table.

ALTER TABLE tpcds.customer_address TRUNCATE PARTITION p1;

Clear a partitioned table.

TRUNCATE TABLE tpcds.customer_address;

12.92 VACUUM

Function
VACUUM reclaims storage space occupied by tables or B-tree indexes. In normal
database operation, rows that have been deleted or obsoleted by an update are
not physically removed from their table; they remain present until a VACUUM is
done. Therefore, it is necessary to execute VACUUM periodically, especially on
frequently-updated tables.

Precautions
● With no table specified, VACUUM processes all the tables that the current

user has permission to vacuum in the current database. With a table specified,
VACUUM processes only that table.

● To vacuum a table, you must ordinarily be the table's owner or the system
administrator. However, database owners are allowed to VACUUM all tables
in their databases, except shared catalogs. (The restriction for shared catalogs
means that a true database-wide VACUUM can only be executed by the
system administrator). VACUUM skips over any tables that the calling user
does not have the permission to vacuum.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 607



● VACUUM cannot be executed inside a transaction block.
● It is recommended that active production databases be vacuumed frequently

(at least nightly), in order to remove dead rows. After adding or deleting a
large number of rows, it might be a good idea to execute the VACUUM
ANALYZE command for the affected table. This will update the system
catalogs with the results of all recent changes, and allow the database query
optimizer to make better choices in planning user queries.

● VACUUM FULL reclaims all expired row space, however it requires an
exclusive lock on each table being processed, is a very expensive operation,
and might take a long time to complete on large, distributed database tables.
You are advised to do VACUUM FULL during database maintenance. FULL is
recommended only in special scenarios. An example is when you have deleted
or updated most of the rows in a table and would like the table to physically
shrink to occupy less disk space and allow faster table scans. VACUUM FULL
will usually shrink the table more than a plain VACUUM would. If the physical
space usage does not decrease after you run the command, check whether
there are other active transactions (that have started before you delete data
transactions and not ended before you run VACUUM FULL). If there are such
transactions, run this command again when the transactions quit.

● VACUUM causes a substantial increase in I/O traffic, which might cause poor
performance for other active sessions. Therefore, you are advised to do
VACUUM to the database when services are not busy.

● When VERBOSE is specified, VACUUM prints progress messages to indicate
which table is currently being processed. Various statistics about the tables
are printed as well. However, if the VERBOSE option is specified in VACUUM
executed for column-store tables, no output will be displayed.

● When the option list is surrounded by parentheses, the options can be written
in any order. If there are no brackets, the options must be given in the order
displayed in the syntax.

● VACUUM and VACUUM FULL clear deleted tuples after the delay specified by
vacuum_defer_cleanup_age.

● VACUUM ANALYZE performs a VACUUM and then an ANALYZE for each
selected table. This is a handy combination form for routine maintenance
scripts.

● Plain VACUUM (without FULL) simply reclaims space occupied by deleted
and outdated data, and makes it available for re-use. Space can be reclaimed
only if it is at the end of a table and an exclusive lock can be obtained for it.
Unused space at the start or middle of a table remains as is. For a heap table,
this form of the command can operate in parallel with normal reading and
writing of the table, as an exclusive lock is not obtained. However, extra space
is not returned to the OS in most cases; it is just kept available for re-use
within the same table. VACUUM FULL rewrites the entire contents of the
table into a new disk file with no extra space, allowing unused space to be
returned to the OS. This form is much slower and requires an exclusive lock
on each table while it is being processed.

● VACUUM FULL executes wider processing, including moving rows across
blocks to compress tables so they occupy minimum number of disk blocks.
This form is much slower and requires an ACCESS EXCLUSIVE lock on each
table while it is being processed. An ACCESS EXCLUSIVE lock ensures that the
owner is the only one that accesses a table in any way.

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 608



● When you do VACUUM to a column-store table, the following operations are
internally performed: data in the delta table is migrated to the primary table,
and the delta and desc tables of the primary table are vacuumed. VACUUM
does not reclaim the storage space of the delta table. To reclaim it, do
VACUUM DELTAMERGE to the column-store table.

● If you perform VACUUM FULL when a long-running query accesses a system
table, the long-running query may prevent VACUUM FULL from accessing the
system table. As a result, the connection times out and an error is reported.

Syntax
● Reclaim space and update statistics information, with no requirements for the

order of keywords.
VACUUM [ ( { FULL | FREEZE | VERBOSE | {ANALYZE | ANALYSE }} [,...] ) ]
    [ table_name [ (column_name [, ...] ) ] ] [ PARTITION ( partition_name ) ];

● Reclaim space, without updating statistics information.
VACUUM [ FULL [COMPACT] ] [ FREEZE ] [ VERBOSE ] [ table_name ] [ PARTITION 
( partition_name ) ];

● Reclaim space and update statistics information, with a specific order of
keywords required.
VACUUM [ FULL ] [ FREEZE ] [ VERBOSE ] { ANALYZE | ANALYSE } [ VERBOSE ] 
    [ table_name [ (column_name [, ...] ) ] ] [ PARTITION ( partition_name ) ];

● For HDFS and column-store tables, migrate data from the delta table to the
primary table.
VACUUM DELTAMERGE [ table_name ];

● For HDFS tables, delete the empty value partition directory of HDFS table in
HDFS storage.
VACUUM HDFSDIRECTORY [ table_name ];

Parameter Description
● FULL

Selects "FULL" vacuum, which can reclaim more space, but takes much longer
and exclusively locks the table. This method also requires additional disk
space, because it writes a new copy of the table and does not free the old
copy until the operation is complete. Generally, this option is used only when
a large amount of space needs to be reclaimed from a table.
FULL options can also contain the COMPACT parameter, which is only used
for the HDFS table. Specifying the COMPACT parameter improves VACUUM
FULL operation performance.
COMPACT and PARTITION cannot be used at the same time.

NO TE

Using FULL will cause statistics missing. To collect statistics, add the keyword
ANALYZE to VACUUM FULL.

● FREEZE
Is equivalent to executing VACUUM with the vacuum_freeze_min_age
parameter set to zero.

● VERBOSE
Prints a detailed vacuum activity report for each table.

● ANALYZE | ANALYSE

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 609



Updates statistics used by the planner to determine the most efficient way to
execute a query.

● table_name
Indicates the name (optionally schema-qualified) of a specific table to
vacuum.
Value range: The name of a specific table to vacuum. Defaults are all tables in
the current database.

● column_name
Indicates the name of a specific field to analyze.
Value range: Indicates the name of a specific field to analyze. Defaults are all
columns.

● PARTITION
HDFS table does not support PARTITION. COMPACT and PARTITION cannot
be used at the same time.

● partition_name
Indicates the partition name of a specific table to vacuum. Defaults are all
partitions.

● DELTAMERGE
(For HDFS and column-store tables) Migrates data from the delta table to
primary tables. If the data volume of the delta table is less than 60,000 rows,
the data will not be migrated. Otherwise, the data will be migrated to HDFS,
and the delta table will be cleared by TRUNCATE. For a column-store table,
this operation always transfers all data in the delta table to the CU.

NO TE

The following DFX functions are provided to return the data storage in the delta table
of a column-store table (for an HDFS table, it can be returned by EXPLAIN ANALYZE):

● pgxc_get_delta_info(TEXT): The input parameter is a column-store table name. The
delta table information on each node is collected and displayed, including the
number of active tuples, table size, and maximum block ID.

● get_delta_info(TEXT): The input parameter is a column-store table name. The
system summarizes the results returned from pgxc_get_delta_info and returns the
total number of active tuples, total table size, and maximum block ID in the delta
table. When querying delta information about a temporary table, you need to
specify the schema of the temporary table. Otherwise, an error is reported,
indicating that the table cannot be found.

● HDFSDIRECTORY
Deletes the empty value partition directory of HDFS table in HDFS storage for
HDFS table.

Examples

Delete all tables in the current database.

VACUUM;

Reclaim the space of partition P2 of the tpcds.web_returns_p1 table without
updating statistics.

VACUUM FULL tpcds.web_returns_p1 PARTITION(P2);

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 610



Delete all tables in the current database and collect statistics about the query
optimizer.

VACUUM ANALYZE;

Delete only the reason table.

VACUUM (VERBOSE, ANALYZE) reason;

Data Warehouse Service
SQL Syntax 12 DDL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 611



13 DML Syntax

13.1 DML Syntax Overview
Data Manipulation Language (DML) is used to perform operations on data in
database tables, such as inserting, updating, querying, or deleting data.

Insert Data

Inserting data refers to adding one or multiple records to a database table. For
details, see INSERT.

Updating Data

Modifying data refers to modifying one or multiple records in a database table.
For details, see UPDATE.

Querying Data

The database query statement SELECT is used to search required information in a
database. For details, see SELECT.

Deleting Data

For details about how to delete data that meets specified conditions from a table,
see DELETE.

Copying Data

GaussDB(DWS) provides a statement for copying data between tables and files.
For details, see COPY.

Locking a Table

GaussDB(DWS) provides multiple lock modes to control concurrent accesses to
table data. For details, see LOCK.

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 612



Run the following statement to invoke the function:
GaussDB(DWS) provides three statements for invoking functions. These
statements are the same in the syntax structure. For details, see CALL.

13.2 CALL

Function
CALL calls defined functions or stored procedures.

Precautions
None

Syntax
CALL [schema.] {func_name| procedure_name} ( param_expr );

Parameter Description
● schema

Specifies the name of the schema where a function or stored procedure is
located.

● func_name
Specifies the name of the function or stored procedure to be called.
Value range: an existing function name

● param_expr
Specifies a list of parameters in the function. Use := or => to separate a
parameter name and its value. This method allows parameters to be placed in
any order. If only parameter values are in the list, the value order must be the
same as that defined in the function or stored procedure.
Value range: names of existing function or stored procedure parameters

NO TE

The parameters include input parameters (whose name and type are separated by IN)
and output parameters (whose name and type are separated by OUT). When you run
the CALL statement to call a function or stored procedure, the parameter list must
contain an output parameter for non-overloaded functions. You can set the output
parameter to a variable or any constant. For details, see Examples. For an overloaded
package function, the parameter list can have no output parameter, but the function
may not be found. If an output parameter is contained, it must be a constant.

Examples
Create the func_add_sql function to compute the sum of two integers and return
the result.
CREATE FUNCTION func_add_sql(num1 integer, num2 integer) RETURN integer
AS
BEGIN
RETURN num1 + num2;
END;
/

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 613



Transfer based on parameter values.
CALL func_add_sql(1, 3);

Transfer based on the naming flags.
CALL func_add_sql(num1 => 1,num2 => 3);
CALL func_add_sql(num2 := 2, num1 := 3);

Delete the function.
DROP FUNCTION func_add_sql;

Create a function with output parameters.
CREATE FUNCTION func_increment_sql(num1 IN integer, num2 IN integer, res OUT integer)
RETURN integer
AS
BEGIN
res := num1 + num2;
END;
/

Set output parameters to constants.
CALL func_increment_sql(1,2,1);

Set output parameters to variables.
DECLARE
res int;
BEGIN
func_increment_sql(1, 2, res);
dbms_output.put_line(res);
END;
/

Create overloaded functions.
create or replace procedure package_func_overload(col int, col2 out int) package
as
declare
    col_type text;
begin
     col := 122;
         dbms_output.put_line('two out parameters ' || col2);
end;
/
create or replace procedure package_func_overload(col int, col2 out varchar) package
as
declare
    col_type text;
begin
     col2 := '122';
         dbms_output.put_line('two varchar parameters ' || col2);
end;
/

Call a function.
call package_func_overload(1, 'test'); 
call package_func_overload(1, 1); 

Delete a function.
DROP FUNCTION func_increment_sql;

13.3 COPY

Function

COPY copies data between tables and files.

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 614



COPY FROM copies data from a file to a table. COPY TO copies data from a table
to a file.

Important Notes
● If CNs and DNs are enabled in security mode, the COPY FROM FILENAME or

COPY TO FILENAME cannot be used. Use \copy to avoid this problem, for
details, see "FAQs > Data Import and Export > How Do I Use \copy to Import
and Export Data?" in the Data Warehouse Service User Guide.

● COPY applies to only tables and does not apply to views.

● To insert data to a table, you must have the permission to insert data.

● If a list of columns are specified, COPY will only copy the data in the specified
columns to or from the file. If there are any columns in the table that are not
in the column list, COPY FROM will insert the default values for those
columns.

● If a source data file is specified, the file must be accessible from the server. If
STDIN is specified, data is transmitted between the client and server. Separate
columns by pressing Tab. Enter \. in a new line to indicate the end of input.

● If the number of columns in a row of the data file is smaller or larger than
the expected number, COPY FROM displays an error message.

● A backslash and a period (\.) indicate the end of data. The end identifier is
not required for reading data from a file and is required for copying data
between client applications.

● In COPY FROM, "\N" indicates an empty character string, and "\\N" indicates
the actual data "\N".

● COPY FROM does not support pre-processing of data during data import, for
example, expression calculation and default value filling. If you need to
perform pre-processing during data import, you need to import the data to a
temporary table, and then run SQL statements to insert data to the table
using expression or function operations. However, this method may cause I/O
expansion, deteriorating data import performance.

● Transactions will be rolled back when data format errors occur during COPY
FROM execution. In this case, error information is insufficient so you cannot
easily locate the incorrect data from a large amount of raw data.

● COPY FROM and COPY TO apply to low concurrency and local data import
and export in small amount.

Syntax
● Copy the data from a file to a table.

COPY table_name [ ( column_name [, ...] ) ] 
    FROM { 'filename' | STDIN }
    [ [ USING ] DELIMITERS 'delimiters' ]
    [ WITHOUT ESCAPING ]
    [ LOG ERRORS ]
    [ LOG ERRORS data ]
    [ REJECT LIMIT 'limit' ]
    [ [ WITH ] ( option [, ...] ) ]
    | copy_option
    | FIXED FORMATTER ( { column_name( offset, length ) } [, ...] ) [ ( option [, ...] ) | copy_option 
[  ...] ] ];

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 615



NO TE

In the SQL syntax, FIXED, FORMATTER ( { column_name( offset, length ) } [, ...] ),
and [ ( option [, ...] ) | copy_option [ ...] ] can be in any sequence.

● Copy the data from a table to a file.
COPY table_name [ ( column_name [, ...] ) ]
    TO { 'filename' | STDOUT }
    [ [ USING ] DELIMITERS 'delimiters' ]
    [ WITHOUT ESCAPING ]
    [ [ WITH ] ( option [, ...] ) ]
    | copy_option
    | FIXED FORMATTER ( { column_name( offset, length ) } [, ...] ) [ ( option [, ...] ) | copy_option 
[  ...] ] ];

COPY query
    TO { 'filename' | STDOUT }
    [ WITHOUT ESCAPING ]
    [ [ WITH ] ( option [, ...] ) ]
    | copy_option
    | FIXED FORMATTER ( { column_name( offset, length ) } [, ...] ) [ ( option [, ...] ) | copy_option 
[  ...] ] ];

NO TE

1. The syntax constraints of COPY TO are as follows:
(query) is incompatible with [USING] DELIMITER. If the data of COPY TO comes
from a query result, COPY TO cannot specify [USING] DELIMITERS.

2. Use spaces to separate copy_option following FIXED FORMATTTER.
3. copy_option is the native parameter, while option is the parameter imported by a

compatible foreign table.
4. In the SQL syntax, FIXED, FORMATTER ( { column_name( offset, length ) }

[, ...] ), and [ ( option [, ...] ) | copy_option [ ...] ] can be in any sequence.

The syntax of the optional parameter option is as follows:
FORMAT 'format_name'
| OIDS [ boolean ]
| DELIMITER 'delimiter_character'
| NULL 'null_string'
| HEADER [ boolean ]
| FILEHEADER 'header_file_string'
| FREEZE [ boolean ]
| QUOTE 'quote_character'
| ESCAPE 'escape_character'
| EOL 'newline_character'
| NOESCAPING [ boolean ]
| FORCE_QUOTE { ( column_name [, ...] ) | * }
| FORCE_NOT_NULL ( column_name [, ...] )
| ENCODING 'encoding_name'
| IGNORE_EXTRA_DATA [ boolean ]
| FILL_MISSING_FIELDS [ boolean ]
| COMPATIBLE_ILLEGAL_CHARS [ boolean ]
| DATE_FORMAT 'date_format_string'
| TIME_FORMAT 'time_format_string'
| TIMESTAMP_FORMAT 'timestamp_format_string'
| SMALLDATETIME_FORMAT 'smalldatetime_format_string'

The syntax of optional parameter in the copy_option is as follows:
OIDS 
| NULL 'null_string' 
| HEADER 
| FILEHEADER 'header_file_string' 
| FREEZE 
| FORCE_NOT_NULL column_name [, ...]
| FORCE_QUOTE { column_name [, ...] | * }
| BINARY 
| CSV 

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 616



| QUOTE [ AS ] 'quote_character' 
| ESCAPE [ AS ] 'escape_character' 
| EOL 'newline_character'
| ENCODING 'encoding_name' 
| IGNORE_EXTRA_DATA 
| FILL_MISSING_FIELDS
| COMPATIBLE_ILLEGAL_CHARS 
| DATE_FORMAT 'date_format_string' 
| TIME_FORMAT 'time_format_string' 
| TIMESTAMP_FORMAT 'timestamp_format_string' 
| SMALLDATETIME_FORMAT 'smalldatetime_format_string'

Parameter Description
● query

Indicates that the results are to be copied.
Value range: a SELECT or VALUES command in parentheses

● table_name
Specifies the name (optionally schema-qualified) of an existing table.
Value range: an existing table name

● column_name
Indicates an optional list of columns to be copied.
Value range: If no column list is specified, all columns of the table will be
copied.

● STDIN
Indicates that the input comes from the client application.

● STDOUT
Indicates that output goes to the client application.

● FIXED
Fixes column length. When the column length is fixed, DELIMITER, NULL, and
CSV cannot be specified. When FIXED is specified, BINARY, CSV, and TEXT
cannot be specified by option or copy_option.

NO TE

The definition of fixed length:
1. The column length of each record is the same.
2. Spaces are added to short columns. Digit type columns must be left-aligned, and

character columns must be right-aligned.
3. No delimiters are used between columns.

● [USING] DELIMITER 'delimiters'
The string that separates columns within each row (line) of the file, and it
cannot be larger than 10 bytes.
Value range: The delimiter cannot include any of the following characters:
\.abcdefghijklmnopqrstuvwxyz0123456789
Value range: The default value is a tab character in text format and a comma
in CSV format.

● WITHOUT ESCAPING
In TEXT, do not escape a backslash (\) and the characters that follow it.
Value range: text only.

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 617



● LOG ERRORS
If this parameter is specified, the error tolerance mechanism for data type
errors in the COPY FROM statement is enabled. Row errors are recorded in
the public.pgxc_copy_error_log table in the database for future reference.
Value range: A value set while data is imported using COPY FROM.

NO TE

The restrictions of this error tolerance parameter are as follows:

● This error tolerance mechanism captures only the data type errors
(DATA_EXCEPTION) that occur during data parsing of COPY FROM on a CN. Other
errors, such as network errors between CNs and DNs or expression conversion
errors on DNs, are not captured.

● Before enabling error tolerance for COPY FROM for the first time in a database,
check whether the public.pgxc_copy_error_log table exists. If it does not, call the
copy_error_log_create() function to create it. If it does, copy its data elsewhere and
call the copy_error_log_create() function to create the table. For details about
columns in the public.pgxc_copy_error_log table, see Table 6-21.

● While a COPY FROM statement with specified LOG ERRORS is being executed, if
public.pgxc_copy_error_log does not exist or does not have the table definitions
compliant with the predefined in copy_error_log_create(), an error will be reported.
Ensure that the error table is created using the copy_error_log_create() function.
Otherwise, COPY FROM statements with error tolerance may fail to be run.

● If existing error tolerance parameters (for example, IGNORE_EXTRA_DATA) of the
COPY statement are enabled, the error of the corresponding type will be processed
as specified by the parameters and no error will be reported. Therefore, the error
table does not contain such error data.

● The coverage scope of this error tolerance mechanism is the same as that of a GDS
foreign table. You are advised to filter query results based on table names or the
timestamp of marking the start of COPY FROM statement execution. For details
about how to process error data, see the section about handling error tables.

● LOG ERRORS DATA
The differences between LOG ERRORS DATA and LOG ERRORS are as
follows:

a. LOG ERRORS DATA fills the rawrecord field in the error tolerance table.
b. Only users with the super permission can use the LOG ERRORS DATA

parameter.

CA UTION

If error content is too complex, it may fail to be written to the error
tolerance table by using LOG ERRORS DATA, causing the task failure.

● REJECT LIMIT 'limit'
Used with the LOG ERROR parameter to set the upper limit of the tolerated
errors in the COPY FROM statement. If the number of errors exceeds the
limit, later errors will be reported based on the original mechanism.
Value range: a positive integer (1 to INTMAX) or unlimited
Default value: If LOG ERRORS is not specified, an error will be reported. If
LOG ERRORS is specified, the default value is 0.

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 618



NO TE

Different from the GDS error tolerance mechanism, in the error tolerance mechanism
described in the description of LOG ERRORS, the count of REJECT LIMIT is calculated
based on the number of data parsing errors on the CN where the COPY FROM
statement is run, not based on the number of errors on each DN.

● FORMATTER

Defining the location of each column in the data file in fixed length mode.
Defining the place of each column in the data file based on column (offset,
length) format.

Value range:

– The value of offset must be larger than 0. The unit is byte.

– The value of length must be larger than 0. The unit is byte.

The total length of all columns must be less than 1 GB.

Replace columns that are not in the file with NULL.

● OPTION { option_name ' value ' }

Specifies all types of parameters of a compatible foreign table.

– FORMAT

Specifies the format of the source data file in the foreign table.

Value range: CSV, TEXT, FIXED, and BINARY.

▪ The CSV file can process newline characters efficiently, but cannot
process certain special characters well.

▪ The TEXT file can process special characters efficiently, but cannot
process newline character well.

▪ The FIXED file can process newline characters in data columns
efficiently, but cannot process special characters well.

▪ All data in the BINARY file is stored/read as binary format rather
than as text. It is faster than the text and CSV formats, but a binary-
format file is less portable.

Default value: TEXT

– OIDS

Copies the OID for each row.

NO TE

An error is raised if OIDs are specified for a table that does not have OIDs, or in
the case of copying a query.

Value range: true, on, false, and off

Default value: false

– DELIMITER

Specifies the character that separates columns within each row (line) of
the file.

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 619



NO TE

● A delimiter cannot be \r or \n.
● A delimiter cannot be the same as null. The delimiter for CSV cannot be same

as quote.
● The delimiter for the TEXT format data cannot contain lowercase letters,

digits, or dot (.).
● The data length of a single row should be less than 1 GB. If the delimiters are

too long and there are too many rows, the length of valid data will be
affected.

● You are advised to use multi-characters and invisible characters for delimiters.
For example, you can use multi-characters (such as $^&) and invisible
characters (such as 0x07, 0x08, and 0x1b).

● For a multi-character delimiter, do not use the same characters, for example,
---.

Value range: multi-character delimiter within 10 bytes.
Default value:

▪ A tab character in TEXT format

▪ A comma (,) in CSV format

▪ No delimiter in FIXED format

– NULL
Specifies the string that represents a null value.
Value range:

▪ The null value cannot be \r or \n. The maximum length is 100
characters.

▪ The null value cannot be the same as the delimiter or quote
parameter.

Default value:

▪ an empty string without quotation marks in CSV format

▪ \N in TEXT format

– HEADER
Specifies whether a file contains a header with the names of each column
in the file. header is available only for CSV and FIXED files.
When data is imported, if header is on, the first row of the data file will
be identified as title row and ignored. If header is off, the first row is
identified as data.
When data is exported, if header is on, fileheader must be specified. If
header is off, the exported file does not include a title row.
Value range: true, on, false, and off
Default value: false

– QUOTE
Specifies the quote character for a CSV file.
Default value: double quotation mark ("")

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 620



NO TE

● The quote parameter cannot be the same as the delimiter or null parameter.

● The quote parameter must be a single one-byte character.

● Invisible characters are recommended as quote values, such as 0x07, 0x08,
and 0x1b.

– ESCAPE
This option is allowed only when using CSV format. This must be a single
one-byte character.
Default value: the same as the value of QUOTE

– EOL 'newline_character'
Specifies the newline character style of the imported or exported data
file.
Value range: multi-character newline characters within 10 bytes.
Common newline characters include \r (0x0D), \n (0x0A), and \r\n
(0x0D0A). Special newline characters include $ and #.

NO TE

● The EOL parameter supports only the TEXT format for data import and export
and does not support the CSV or FIXED format for data import. For forward
compatibility, the EOL parameter can be set to 0x0D or 0x0D0A for data
export in the CSV and FIXED formats.

● The value of the EOL parameter cannot be the same as that of DELIMITER or
NULL.

● The EOL parameter value cannot contain lowercase letters, digits, or dot (.).

– FORCE_QUOTE { ( column_name [, ...] ) | * }
Forces quoting to be used for all non-null values in each specified
column. This option is allowed only in COPY TO, and only when using the
CSV format. NULL values are not quoted.
Value range: an existing column

– FORCE_NOT_NULL ( column_name [, ...] )
Does not match the specified columns' values against the null string. This
option is allowed only in COPY FROM, and only when using the CSV
format.
Value range: an existing column

– ENCODING
Specifies that the file is encoded in the encoding_name. If this option is
omitted, the current encoding format is used by default.

– IGNORE_EXTRA_DATA
When the number of data source files exceeds the number of foreign
table columns, whether ignoring excessive columns at the end of the row.
This parameter is available only during data importing.
Value range: true/on, false/off.

▪ When this parameter is true or on and the number of data source
files exceeds the number of foreign table columns, excessive columns
will be ignored.

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 621



▪ If the parameter is set to false or off, and the number of data source
files exceeds the number of foreign table columns, the following
error information will be displayed:
extra data after last expected column

Default value: false

NO TICE

If the newline character at the end of the row is lost, setting the
parameter to true will ignore data in the next row.

– COMPATIBLE_ILLEGAL_CHARS
Enables or disables fault tolerance on invalid characters during importing.
This parameter is available only for COPY FROM.
Value range: true, on, false, and off

▪ When the parameter is true or on, invalid characters are tolerated
and imported to the database after conversion.

▪ If the parameter is false or off, and an error occurs when there are
invalid characters, the import will be interrupted.

Default value: false or off

NO TE

The rule of error tolerance when you import invalid characters is as follows:

(1) \0 is converted to a space.

(2) Other invalid characters are converted to question marks.

(3) If compatible_illegal_chars is set to true or on, invalid characters are
tolerated. If NULL, DELIMITER, QUOTE, and ESCAPE are set to a spaces or
question marks. Errors like "illegal chars conversion may confuse COPY escape
0x20" will be displayed to prompt user to modify parameter values that cause
confusion, preventing import errors.

– FILL_MISSING_FIELD
Specifies whether to generate an error message when the last column in
a row in the source file is lost during data loading.
Value range: true, on, false, and off
Default value: false or off

– DATE_FORMAT
Imports data of the DATE type. The BINARY format is not supported.
When data of such format is imported, error "cannot specify bulkload
compatibility options in BINARY mode" will occur. The parameter is valid
only for data importing using the COPY FROM option.
Value range: any valid DATE value. For details, see Date and Time
Processing Functions and Operators.

NO TE

If ORACLE is specified as the compatible database, the DATE format is
TIMESTAMP. For details, see timestamp_format below.

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 622



– TIME_FORMAT
Imports data of the TIME type. The BINARY format is not supported.
When data of such format is imported, error "cannot specify bulkload
compatibility options in BINARY mode" will occur. The parameter is valid
only for data importing using the COPY FROM option.
Value range: Valid TIME. Time zones cannot be used. For details, see
Date and Time Processing Functions and Operators.

– TIMESTAMP_FORMAT
Imports data of the TIMESTAMP type. The BINARY format is not
supported. When data of such format is imported, error "cannot specify
bulkload compatibility options in BINARY mode" will occur. The
parameter is valid only for data importing using the COPY FROM option.
Value range: any valid TIMESTAMP value. Time zones are not supported.
For details, see Date and Time Processing Functions and Operators.

– SMALLDATETIME_FORMAT
Imports data of the SMALLDATETIME type. The BINARY format is not
supported. When data of such format is imported, error "cannot specify
bulkload compatibility options in BINARY mode" will occur. The
parameter is valid only for data importing using the COPY FROM option.
Value range: any valid SMALLDATETIME value. For details, see Date and
Time Processing Functions and Operators.

● COPY_OPTION { option_name ' value ' }
Specifies all types of native parameters of COPY.
– OIDS

Copies the OID for each row.

NO TE

An error is raised if OIDs are specified for a table that does not have OIDs, or in
the case of copying a query.

– NULL null_string
Specifies the string that represents a null value.

NO TICE

When using COPY FROM, any data item that matches this string will be
stored as a NULL value, so you should make sure that you use the same
string as you used with COPY TO.

Value range:

▪ The null value cannot be \r or \n. The maximum length is 100
characters.

▪ The null value cannot be the same as the delimiter or quote
parameter.

Default value:

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 623



▪ \N in TEXT format

▪ an empty string without quotation marks in CSV format

– HEADER
Specifies whether a file contains a header with the names of each column
in the file. header is available only for CSV and FIXED files.
When data is imported, if header is on, the first row of the data file will
be identified as title row and ignored. If header is off, the first row is
identified as data.
When data is exported, if header is on, fileheader must be specified. If
header is off, the exported file does not include a title row.

– FILEHEADER
Specifies a file that defines the content in the header for exported data.
The file contains data description of each column.

NO TICE

● This parameter is available only when header is on or true.
● fileheader specifies an absolute path.
● The file can contain only one row of header information, and ends

with a linefeed. Excess rows will be discarded. (Header information
cannot contain linefeeds.)

● The length of the file including the linefeed cannot exceed 1 MB.

– FREEZE
Sets the COPY loaded data row as frozen, like these data have executed
VACUUM FREEZE.
This is a performance option of initial data loading. The data will be
frozen only when the following three requirements are met:

▪ The table being loaded has been created or truncated in the current
subtransaction before copying.

▪ There are no cursors open in the current transaction.

▪ There are no original snapshots in the current transaction.

NO TE

When COPY is completed, all the other sessions will see the data immediately.
This violates the normal rules of MVCC visibility and users should be aware of the
potential problems this might cause.

– FORCE NOT NULL column_name [, ...]
Does not match the specified columns' values against the null string. This
option is allowed only in COPY FROM, and only when using the CSV
format.
Value range: an existing column

– FORCE QUOTE { column_name [, ...] | * }

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 624



Forces quoting to be used for all non-NULL values in each specified
column. This option is allowed only in COPY TO, and only when using the
CSV format. NULL values are not quoted.
Value range: an existing column

– BINARY
The binary format option causes all data to be stored/read as binary
format rather than as text. In binary mode, you cannot declare
DELIMITER, NULL, or CSV. After specifying BINARY, CSV, FIXED and TEXT
cannot be specified through option or copy_option.

– CSV
Enables the CSV mode. After CSV is specified, BINARY, FIXED and TEXT
cannot be specified through option or copy_option.

– QUOTE [AS] 'quote_character'
Specifies the quote character for a CSV file.
Default value: double quotation mark ("")

NO TE

● The quote parameter cannot be the same as the delimiter or null parameter.

● The quote parameter must be a single one-byte character.

● Invisible characters are recommended as quote values, such as 0x07, 0x08,
and 0x1b.

– ESCAPE [AS] 'escape_character'
This option is allowed only when using CSV format. This must be a single
one-byte character.
The default value is a double quotation mark ("). If it is the same as the
value of quote, it will be replaced with \0.

– EOL 'newline_character'
Specifies the newline character style of the imported or exported data
file.
Value range: multi-character newline characters within 10 bytes.
Common newline characters include \r (0x0D), \n (0x0A), and \r\n
(0x0D0A). Special newline characters include $ and #.

NO TE

● The EOL parameter supports only the TEXT format for data import and
export. For forward compatibility, the EOL parameter can be set to 0x0D or
0x0D0A for data export in the CSV and FIXED formats.

● The value of the EOL parameter cannot be the same as that of DELIMITER or
NULL.

● The EOL parameter value cannot contain lowercase letters, digits, or dot (.).

– ENCODING 'encoding_name'
Specifies that the file is encoded in the encoding_name.
Value range: a valid encoding format
Default value: current encoding format of the database

– IGNORE_EXTRA_DATA

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 625



When the number of data source files exceeds the number of foreign
table columns, excess columns at the end of the row are ignored. This
parameter is available only during data importing.

If you do not use this parameter, and the number of data source files
exceeds the number of foreign table columns, the following error
information will be displayed:
extra data after last expected column

– COMPATIBLE_ILLEGAL_CHARS

Specifies error tolerance for invalid characters during importing. Invalid
characters are converted before importing. No error message is displayed.
The import is not interrupted. The BINARY format is not supported. When
data of such format is imported, error "cannot specify bulkload
compatibility options in BINARY mode" will occur. The parameter is valid
only for data importing using the COPY FROM option.

If you do not use this parameter, an error occurs when there is an invalid
character, and the import stops.

NO TE

The rule of error tolerance when you import invalid characters is as follows:

(1) \0 is converted to a space.

(2) Other invalid characters are converted to question marks.

(3) Setting compatible_illegal_chars to true/on enables toleration of invalid
characters. If NULL, DELIMITER, QUOTE, and ESCAPE are set to spaces or
question marks, errors like "illegal chars conversion may confuse COPY escape
0x20" will be displayed to prompt the user to modify parameters that may cause
confusion, preventing importing errors.

– FILL_MISSING_FIELD

Specifies whether to generate an error message when the last column in
a row in the source file is lost during data loading.

Value range: true, on, false, and off

Default value: false or off

NO TICE

Do not specify this option. Currently, it does not enable error tolerance,
but will make the parser ignore the said errors during data parsing on the
CN. Such errors will not be recorded in the COPY error table (enabled
using LOG ERRORS REJECT LIMIT) but will be reported later by DNs.

– DATE_FORMAT 'date_format_string'

Imports data of the DATE type. The BINARY format is not supported.
When data of such format is imported, error "cannot specify bulkload
compatibility options in BINARY mode" will occur. The parameter is valid
only for data importing using the COPY FROM option.

Value range: any valid DATE value. For details, see Date and Time
Processing Functions and Operators.

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 626



NO TE

If ORACLE is specified as the compatible database, the DATE format is
TIMESTAMP. For details, see timestamp_format below.

– TIME_FORMAT 'time_format_string'
Imports data of the TIME type. The BINARY format is not supported.
When data of such format is imported, error "cannot specify bulkload
compatibility options in BINARY mode" will occur. The parameter is valid
only for data importing using the COPY FROM option.
Value range: Valid TIME. Time zones cannot be used. For details, see
Date and Time Processing Functions and Operators.

– TIMESTAMP_FORMAT 'timestamp_format_string'
Specifies the TIMESTAMP format for data import. The BINARY format is
not supported. When data of such format is imported, error "cannot
specify bulkload compatibility options in BINARY mode" will occur. The
parameter is valid only for data importing using the COPY FROM option.
Value range: any valid TIMESTAMP value. Time zones are not supported.
For details, see Date and Time Processing Functions and Operators.

– SMALLDATETIME_FORMAT 'smalldatetime_format_string'
Imports data of the SMALLDATETIME type. The BINARY format is not
supported. When data of such format is imported, error "cannot specify
bulkload compatibility options in BINARY mode" will occur. The
parameter is valid only for data importing using the COPY FROM option.
Value range: any valid SMALLDATETIME value. For details, see Date and
Time Processing Functions and Operators.

The following special backslash sequences are recognized by COPY FROM:
– \b: Backspace (ASCII 8)
– \f: Form feed (ASCII 12)
– \n: Newline character (ASCII 10)
– \r: Carriage return character (ASCII 13)
– \t: Tab (ASCII 9)
– \v: Vertical tab (ASCII 11)
– \digits: Backslash followed by one to three octal digits specifies the ASCII

value is the character with that numeric code.
– \xdigits: Backslash followed by an x and one or two hex digits specifies

the character with that numeric code.

Examples
Copy data from the tpcds.ship_mode file to the /home/omm/ds_ship_mode.dat
file.
COPY tpcds.ship_mode TO '/home/omm/ds_ship_mode.dat';

Write tpcds.ship_mode as output to stdout.
COPY tpcds.ship_mode TO stdout;

Create the tpcds.ship_mode_t1 table.
CREATE TABLE tpcds.ship_mode_t1
(

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 627



    SM_SHIP_MODE_SK           INTEGER               NOT NULL,
    SM_SHIP_MODE_ID           CHAR(16)              NOT NULL,
    SM_TYPE                   CHAR(30)                      ,
    SM_CODE                   CHAR(10)                      ,
    SM_CARRIER                CHAR(20)                      ,
    SM_CONTRACT               CHAR(20)
)
WITH (ORIENTATION = COLUMN,COMPRESSION=MIDDLE)
DISTRIBUTE BY HASH(SM_SHIP_MODE_SK );

Copy data from stdin to the tpcds.ship_mode_t1 table.
COPY tpcds.ship_mode_t1 FROM stdin;

Copy data from the /home/omm/ds_ship_mode.dat file to the
tpcds.ship_mode_t1 table.

COPY tpcds.ship_mode_t1 FROM '/home/omm/ds_ship_mode.dat';

Copy data from the /home/omm/ds_ship_mode.dat file to the
tpcds.ship_mode_t1 table, with the import format set to TEXT (format 'text'), the
delimiter set to \t' (delimiter E'\t'), excessive columns ignored (ignore_extra_data
'true'), and characters not escaped (noescaping 'true').

COPY tpcds.ship_mode_t1 FROM '/home/omm/ds_ship_mode.dat' WITH(format 'text', delimiter E'\t', 
ignore_extra_data 'true', noescaping 'true');

Copy data from the /home/omm/ds_ship_mode.dat file to the
tpcds.ship_mode_t1 table, with the import format set to FIXED, fixed-length
format specified (FORMATTER(SM_SHIP_MODE_SK(0, 2),
SM_SHIP_MODE_ID(2,16), SM_TYPE(18,30), SM_CODE(50,10),
SM_CARRIER(61,20), SM_CONTRACT(82,20))), excessive columns ignored
(ignore_extra_data), and headers included (header).

COPY tpcds.ship_mode_t1 FROM '/home/omm/ds_ship_mode.dat' FIXED 
FORMATTER(SM_SHIP_MODE_SK(0, 2), SM_SHIP_MODE_ID(2,16), SM_TYPE(18,30), SM_CODE(50,10), 
SM_CARRIER(61,20), SM_CONTRACT(82,20)) header ignore_extra_data;

Delete the tpcds.ship_mode_t1 table.

DROP TABLE tpcds.ship_mode_t1;

13.4 DELETE

Function

DELETE deletes rows that satisfy the WHERE clause from the specified table. If
the WHERE clause does not exist, all rows in the table will be deleted. The result
is a valid, but an empty table.

Precautions
● You must have the DELETE permission on the table to delete from it, as well

as the SELECT permission for any table in the USING clause or whose values
are read in the condition.

● DELETE can be used for row-store tables if they have primary key constraints
or if the execution plan can be pushed down.

● DELETE can be used for column-store tables only if the execution plan can be
pushed down.

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 628



● For column-store tables, the RETURNING clause is currently not supported.

Syntax
[ WITH [ RECURSIVE ] with_query [, ...] ]
DELETE FROM [ ONLY ] table_name [ * ] [ [ AS ] alias ]
    [ USING using_list ]
    [ WHERE condition | WHERE CURRENT OF cursor_name ]
    [ RETURNING { * | { output_expr [ [ AS ] output_name ] } [, ...] } ];

Parameter Description
● WITH [ RECURSIVE ] with_query [, ...]

The WITH clause allows you to specify one or more subqueries that can be
referenced by name in the primary query, equal to temporary table.
If RECURSIVE is specified, it allows a SELECT subquery to reference itself by
name.
The with_query detailed format is as follows:
with_query_name [ ( column_name [, ...] ) ] AS
( {select | values | insert | update | delete} )
-- with_query_name specifies the name of the result set generated by a
subquery. Such names can be used to access the result sets of
subqueries in a query.
column_name specifies the column name displayed in the subquery result
set.
Each subquery can be a SELECT, VALUES, INSERT, UPDATE or DELETE
statement.

● ONLY
If ONLY is specified, only that table is deleted. If ONLY is not specified, this
table and all its sub-tables are deleted.

● table_name
Specifies the name (optionally schema-qualified) of a target table.
Value range: an existing table name

● alias
Specifies the alias for the target table.
Value range: a string. It must comply with the naming convention.

● using_list
Specifies the USING clause.

● condition
Specifies an expression that returns a value of type boolean. Only rows for
which this expression returns true will be deleted.

● WHERE CURRENT OF cursor_name
Not supported currently. Only syntax interface is provided.

● output_expr
Specifies an expression to be computed and returned by the DELETE
command after each row is deleted. The expression can use any column
names of the table. Write * to return all columns.

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 629



● output_name
Specifies a name to use for a returned column.
Value range: a string. It must comply with the naming convention.

Examples
Create the tpcds.customer_address_bak table.

CREATE TABLE tpcds.customer_address_bak AS TABLE tpcds.customer_address;

Delete employees whose ca_address_sk is less than 14888 in the
tpcds.customer_address_bak table.

DELETE FROM tpcds.customer_address_bak WHERE ca_address_sk < 14888;

Delete the employees whose ca_address_sk is 14891, 14893, and 14895 from
tpcds.customer_address_bak.

DELETE FROM tpcds.customer_address_bak WHERE ca_address_sk in (14891,14893,14895);

Delete all data in the tpcds.customer_address_bak table.

DELETE FROM tpcds.customer_address_bak;

Use a subquery (to delete the row-store table tpcds.warehouse_t30) to obtain a
temporary table temp_t, and then query all data in the temporary table temp_t.

WITH temp_t AS (DELETE FROM tpcds.warehouse_t30 RETURNING *) SELECT * FROM temp_t ORDER BY 1;

13.5 EXPLAIN

Function
EXPLAIN shows the execution plan of an SQL statement.

The execution plan shows how the tables referenced by the SQL statement will be
scanned, for example, by plain sequential scan or index scan. If multiple tables are
referenced, the execution plan also shows what join algorithms will be used to
bring together the required rows from each input table.

The most critical part of the display is the estimated statement execution cost,
which is the planner's guess at how long it will take to run the statement.

The ANALYZE option causes the statement to be executed, not only planned. Then
actual runtime statistics are added to the display, including the total elapsed time
expended within each plan node (in milliseconds) and the total number of rows it
actually returned. This is useful to check whether the planner's estimates are close
to reality.

Precautions
The statement is executed when the ANALYZE option is used. To use EXPLAIN
ANALYZE on an INSERT, UPDATE, DELETE, CREATE TABLE AS, or EXECUTE
statement without letting the command affect your data, use this approach:

START TRANSACTION;
EXPLAIN ANALYZE ...;
ROLLBACK;

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 630



Syntax
● Display the execution plan of an SQL statement, which supports multiple

options and has no requirements for the order of options.
EXPLAIN [ (  option  [, ...] )  ] statement;

The syntax of the option clause is as follows:
ANALYZE [ boolean ] |
    ANALYSE [ boolean ] |
    VERBOSE [ boolean ] |
    COSTS [ boolean ] |
    CPU [ boolean ] |
    DETAIL [ boolean ] |
    NODES [ boolean ] |
    NUM_NODES [ boolean ] |
    BUFFERS [ boolean ] |
    TIMING [ boolean ] |
    PLAN [ boolean ] |
    FORMAT { TEXT | XML | JSON | YAML }

● Display the execution plan of an SQL statement, where options are in order.
EXPLAIN  { [  { ANALYZE  | ANALYSE  }  ] [ VERBOSE  ]  | PERFORMANCE  } statement;

● Display information required for reproducing the execution plan of an SQL
statement. The information is usually used for fault locating. The STATS
option must be used independently.
EXPLAIN ( STATS [ boolean ] ) statement;

Parameter Description
● statement

Specifies the SQL statement to explain.
● ANALYZE boolean | ANALYSE boolean

Displays the actual run times and other statistics.
Valid value:
– TRUE (default value): Displays the actual run times and other statistics.
– FALSE: No display.

● VERBOSE boolean
Displays additional information regarding the plan.
Valid value:
– TRUE (default value): Displays additional information.
– FALSE: No display.

● COSTS boolean
Includes information on the estimated total cost of each plan node, as well as
the estimated number of rows and the estimated width of each row.
Valid value:
– TRUE (default): Displays information on the estimated total cost of each

plan node and the estimated width of each row.
– FALSE: No display.

● CPU boolean
Prints information on CPU usage.
Valid value:

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 631



– TRUE (default value): Displays CPU usage information.
– FALSE: No display.

● DETAIL boolean
Prints DN information.
Valid value:
– TRUE (default value): Prints DN information.
– FALSE: No display.

● NODES boolean
Prints information about the nodes executed by query.
Valid value:
– TRUE (default): Prints information about executed nodes.
– FALSE: No display.

● NUM_NODES boolean
Prints the quantity of executing nodes.
Valid value:
– TRUE (default value): Prints the number of DNs.
– FALSE: No display.

● BUFFERS boolean
Includes information on buffer usage.
Valid value:
– TRUE: Displays information on buffer usage.
– FALSE (default): No display.

● TIMING boolean
Includes the startup time and the time spent on the output node.
Valid value:
– TRUE (Default): Displays the startup time and the time spent on the

output node.
– FALSE: No display.

● PLAN
Specifies whether to store the execution plan in PLAN_TABLE. If this
parameter is set to on, the execution plan is stored in PLAN_TABLE and is not
displayed on the screen. Therefore, this parameter cannot be used together
with other parameters when it is set to on.
Valid value:
– on: The execution plan is stored in PLAN_TABLE and is not printed on the

screen. It is the default value. If the plan is stored successfully, EXPLAIN
SUCCESS is returned.

– off: The execution plan is not stored in PLAN_TABLE and is printed on
the screen.

● FORMAT
Specifies the output format.
Value range: TEXT, XML, JSON, and YAML.

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 632



Default value: TEXT
● PERFORMANCE

This option prints all relevant information in execution.
● STATS boolean

Specifies whether to display information required for reproducing the
execution plan of an SQL statement, including the object definition, statistics,
and configuration parameters. The information is usually used for fault
locating.
Valid value:
– TRUE (default value): Display information required for reproducing the

execution plan of an SQL statement.
– FALSE: No display.

Examples
Create the tpcds.customer_address_p1 table.

CREATE TABLE tpcds.customer_address_p1 AS TABLE tpcds.customer_address;

Change the value of explain_perf_mode to normal.

SET explain_perf_mode=normal;

Display an execution plan for simple queries in the table.

EXPLAIN SELECT * FROM tpcds.customer_address_p1;
                   QUERY PLAN
----------------------------------------------------------------------------
 Data Node Scan on "__REMOTE_FQS_QUERY__"  (cost=0.00..0.00 rows=0 width=0)
   Node/s: All datanodes
(2 rows)

Generate an execution plan in JSON format (assume explain_perf_mode is set to
normal).

EXPLAIN(FORMAT JSON) SELECT * FROM tpcds.customer_address_p1;
                    QUERY PLAN
---------------------------------------------------
 [                                                +
   {                                              +
     "Plan": {                                    +
       "Node Type": "Data Node Scan",             +
       "RemoteQuery name": "__REMOTE_FQS_QUERY__",+
       "Alias": "__REMOTE_FQS_QUERY__",           +
       "Startup Cost": 0.00,                      +
       "Total Cost": 0.00,                        +
       "Plan Rows": 0,                            +
       "Plan Width": 0,                           +
       "Nodes": "All datanodes"                   +
     }                                            +
   }                                              +
 ]
(1 row)

If there is an index and we use a query with an indexable WHERE condition,
EXPLAIN might show a different pla.

EXPLAIN SELECT * FROM tpcds.customer_address_p1 WHERE ca_address_sk=10000;
                                  QUERY PLAN
------------------------------------------------------------------------------
 Data Node Scan on "__REMOTE_LIGHT_QUERY__"  (cost=0.00..0.00 rows=0 width=0)

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 633



   Node/s: datanode2
(2 rows)

Generate an execution plan in YAML format (assume explain_perf_mode is set to
normal).

EXPLAIN(FORMAT YAML) SELECT * FROM tpcds.customer_address_p1 WHERE ca_address_sk=10000;
                   QUERY PLAN
------------------------------------------------
 - Plan:                                       +
     Node Type: "Data Node Scan"               +
     RemoteQuery name: "__REMOTE_LIGHT_QUERY__"+
     Alias: "__REMOTE_LIGHT_QUERY__"           +
     Startup Cost: 0.00                        +
     Total Cost: 0.00                          +
     Plan Rows: 0                              +
     Plan Width: 0                             +
     Nodes: "datanode2"
(1 row)

Here is an example of an execution plan with cost estimates suppressed.

EXPLAIN(COSTS FALSE)SELECT * FROM tpcds.customer_address_p1 WHERE ca_address_sk=10000;
                 QUERY PLAN
--------------------------------------------
 Data Node Scan on "__REMOTE_LIGHT_QUERY__"
   Node/s: datanode2
(2 rows)

Here is an example of an execution plan for a query that uses an aggregate
function.

EXPLAIN SELECT SUM(ca_address_sk) FROM tpcds.customer_address_p1 WHERE ca_address_sk<10000;
                                      QUERY PLAN                                       
---------------------------------------------------------------------------------------
 Aggregate  (cost=18.19..14.32 rows=1 width=4)
   ->  Streaming (type: GATHER)  (cost=18.19..14.32 rows=3 width=4)
         Node/s: All datanodes
         ->  Aggregate  (cost=14.19..14.20 rows=3 width=4)
               ->  Seq Scan on customer_address_p1  (cost=0.00..14.18 rows=10 width=4)
                     Filter: (ca_address_sk < 10000)
(6 rows)

-- Delete the tpcds.customer_address_p1 table.

DROP TABLE tpcds.customer_address_p1;

Helpful Links
ANALYZE | ANALYSE

13.6 EXPLAIN PLAN

Function
You can run the EXPLAIN PLAN statement to save the information about an
execution plan to the PLAN_TABLE table. Different from the EXPLAIN statement,
EXPLAIN PLAN only stores plan information and does not print it on the screen.

Syntax
EXPLAIN PLAN
[ SET STATEMENT_ID = string ]
FOR statement ;

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 634



Parameter Description
● PLAN

Stores plan information in PLAN_TABLE. If the storing is successful, EXPLAIN
SUCCESS is returned.

● STATEMENT_ID
Tags a query. The tag information will be stored in PLAN_TABLE.

NO TE

If the EXPLAIN PLAN statement does not contain SET STATEMENT_ID, the value of
STATEMENT_ID is empty by default. In addition, the value of STATEMENT_ID cannot
exceed 30 bytes. Otherwise, an error will be reported.

Precautions
● EXPLAIN PLAN cannot be executed on DNs.
● Plan information cannot be collected for SQL statements that failed to be

executed.
● Data in PLAN_TABLE is in a session-level life cycle. Sessions are isolated from

users and thereby users can view data of only the current session and current
user.

● PLAN_TABLE cannot be joined with GDS foreign tables.
● For a query that cannot be pushed down, object information cannot be

collected and only such information as REMOTE_QUERY and CTE can be
collected. For details, see Example 2.

Example 1
You can perform the following steps to collect execution plans of SQL statements
by running EXPLAIN PLAN:

Step 1 Run the EXPLAN PLAN statement.

NO TE

After the EXPLAIN PLAN statement is executed, plan information is automatically stored in
PLAN_TABLE. INSERT, UPDATE, and ANALYZE cannot be performed on PLAN_TABLE.
For details about PLAN_TABLE, see the PLAN_TABLE system view.

explain plan set statement_id='TPCH-Q4' for
select
o_orderpriority,
count(*) as order_count
from
orders
where
o_orderdate >= '1993-07-01'::date
and o_orderdate < '1993-07-01'::date + interval '3 month'
and exists (
select
*
from
lineitem
where
l_orderkey = o_orderkey
and l_commitdate < l_receiptdate
)
group by

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 635



o_orderpriority
order by
o_orderpriority;

Step 2 Query PLAN_TABLE.
SELECT * FROM PLAN_TABLE;

Step 3 Delete data from PLAN_TABLE.
DELETE FROM PLAN_TABLE WHERE xxx;

----End

Example 2
For a query that cannot be pushed down, only such information as
REMOTE_QUERY and CTE can be collected from PLAN_TABLE after EXPLAIN
PLAN is executed.

Scenario 1: The optimizer generates a plan for pushing down statements. In this
case, only REMOTE_QUERY can be collected.
  explain plan set statement_id = 'test remote query' for
  select
  current_user
  from 
  customer;

Query PLAN_TABLE.
SELECT * FROM PLAN_TABLE;

13.7 LOCK

Function
LOCK TABLE obtains a table-level lock.

GaussDB(DWS) always tries to select the lock mode with minimum constraints
when automatically requesting a lock for a command referenced by a table. Use
LOCK if users need a more strict lock mode. For example, suppose an application
runs a transaction at the Read Committed isolation level and needs to ensure that
data in a table remains stable in the duration of the transaction. To achieve this,
you could obtain SHARE lock mode over the table before the query. This will
prevent concurrent data changes and ensure subsequent reads of the table see a
stable view of committed data. It is because the SHARE lock mode conflicts with
the ROW EXCLUSIVE lock acquired by writers, and your LOCK TABLE name IN
SHARE MODE statement will wait until any concurrent holders of ROW
EXCLUSIVE mode locks commit or roll back. Therefore, once you obtain the lock,

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 636



there are no uncommitted writes outstanding; furthermore none can begin until
you release the lock.

Precautions
● LOCK TABLE is useless outside a transaction block: the lock would remain

held only to the completion of the statement. If LOCK TABLE is out of any
transaction block, an error is reported.

● If no lock mode is specified, then ACCESS EXCLUSIVE, the most restrictive
mode, is used.

● LOCK TABLE ... IN ACCESS SHARE MODE requires the SELECT permission on
the target table. All other forms of LOCK require table-level UPDATE and/or
the DELETE permission.

● There is no UNLOCK TABLE command. Locks are always released at
transaction end.

● LOCK TABLE only deals with table-level locks, and so the mode names
involving ROW are all misnomers. These mode names should generally be
read as indicating the intention of the user to acquire row-level locks within
the locked table. Also, ROW EXCLUSIVE mode is a shareable table lock. Keep
in mind that all the lock modes have identical semantics so far as LOCK
TABLE is concerned, differing only in the rules about which modes conflict
with which. For details about the rules, see Table 13-1.

Syntax
LOCK [ TABLE ] {[ ONLY ] name [, ...]| {name [ * ]} [, ...]}
    [ IN {ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE | SHARE UPDATE EXCLUSIVE | SHARE | SHARE 
ROW EXCLUSIVE | EXCLUSIVE | ACCESS EXCLUSIVE} MODE ]
    [ NOWAIT ];

Parameter Description

Table 13-1 Lock mode conflicts

Reque
sted
Lock
Mode/
Curre
nt
Lock
Mode

ACCES
S
SHAR
E

ROW
SHAR
E

ROW
EXCLU
SIVE

SHAR
E
UPDA
TE
EXCLU
SIVE

SHAR
E

SHAR
E
ROW
EXCLU
SIVE

EXCLU
SIVE

ACCES
S
EXCLU
SIVE

ACCES
S
SHARE

- - - - - - - X

ROW
SHARE

- - - - - - X X

ROW
EXCLU
SIVE

- - - - X X X X

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 637



Reque
sted
Lock
Mode/
Curre
nt
Lock
Mode

ACCES
S
SHAR
E

ROW
SHAR
E

ROW
EXCLU
SIVE

SHAR
E
UPDA
TE
EXCLU
SIVE

SHAR
E

SHAR
E
ROW
EXCLU
SIVE

EXCLU
SIVE

ACCES
S
EXCLU
SIVE

SHARE
UPDA
TE
EXCLU
SIVE

- - - X X X X X

SHARE - - X X - X X X

SHARE
ROW
EXCLU
SIVE

- - X X X X X X

EXCLU
SIVE

- X X X X X X X

ACCES
S
EXCLU
SIVE

X X X X X X X X

 

LOCK parameters are as follows:

● name

The name (optionally schema-qualified) of an existing table to lock.

The tables are locked one-by-one in the order specified in the LOCK TABLE
command.

Value range: an existing table name

● ONLY

Only locks only this table. If Only is not specified, this table and all its sub-
tables are locked.

● ACCESS SHARE

ACCESS SHARE allows only read operations on a table. In general, any SQL
statements that only read a table and do not modify it will acquire this lock
mode. The SELECT command acquires a lock of this mode on referenced
tables.

● ROW SHARE

ROW SHARE allows concurrent read of a table but does not allow any other
operations on the table.

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 638



SELECT FOR UPDATE and SELECT FOR SHARE automatically acquire the
ROW SHARE lock on the target table and add the ACCESS SHARE lock to
other referenced tables except FOR SHARE and FOR UPDATE.

● ROW EXCLUSIVE
Like ROW SHARE, ROW EXCLUSIVE allows concurrent read of a table but
does not allow modification of data in the table. UPDATE, DELETE, and
INSERT automatically acquire the ROW SHARE lock on the target table and
add the ACCESS SHARE lock to other referenced tables. Generally, all
commands that modify table data acquire the ROW EXCLUSIVE lock for
tables.

● SHARE UPDATE EXCLUSIVE
This mode protects a table against concurrent schema changes and VACUUM
runs.
Acquired by VACUUM (without FULL), ANALYZE, CREATE INDEX
CONCURRENTLY, and some forms of ALTER TABLE.

● SHARE
SHARE allows concurrent queries of a table but does not allow modification
of the table.
Acquired by CREATE INDEX (without CONCURRENTLY).

● SHARE ROW EXCLUSIVE
SHARE ROW EXCLUSIVE protects a table against concurrent data changes,
and is self-exclusive so that only one session can hold it at a time.
No SQL statements automatically acquire this lock mode.

● EXCLUSIVE
EXCLUSIVE allows concurrent queries of the target table but does not allow
any other operations.
This mode allows only concurrent ACCESS SHARE locks; that is, only reads
from the table can proceed in parallel with a transaction holding this lock
mode.
No SQL statements automatically acquire this lock mode on user tables.
However, it will be acquired on some system tables in case of some
operations.

● ACCESS EXCLUSIVE
This mode guarantees that the holder is the only transaction accessing the
table in any way.
Acquired by the ALTER TABLE, DROP TABLE, TRUNCATE, REINDEX,
CLUSTER, and VACUUM FULL commands.
This is also the default lock mode for LOCK TABLE statements that do not
specify a mode explicitly.

● NOWAIT
Specifies that LOCK TABLE should not wait for any conflicting locks to be
released: if the specified lock(s) cannot be acquired immediately without
waiting, the transaction is aborted.
If NOWAIT is not specified, LOCK TABLE obtains a table-level lock, waiting if
necessary for any conflicting locks to be released.

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 639



Examples
Obtain a SHARE lock on a primary key table when going to perform inserts into a
foreign key table.

START TRANSACTION;

LOCK TABLE tpcds.reason IN SHARE MODE;

SELECT r_reason_desc FROM tpcds.reason WHERE r_reason_sk=5;
r_reason_desc
-----------
 Parts missing
(1 row)

COMMIT;

Obtain a SHARE ROW EXCLUSIVE lock on a primary key table when going to
perform a delete operation.

CREATE TABLE tpcds.reason_t1 AS TABLE tpcds.reason;

START TRANSACTION;

LOCK TABLE tpcds.reason_t1 IN SHARE ROW EXCLUSIVE MODE;

DELETE FROM tpcds.reason_t1 WHERE r_reason_desc IN(SELECT r_reason_desc FROM tpcds.reason_t1 
WHERE r_reason_sk < 6 );

DELETE FROM tpcds.reason_t1 WHERE r_reason_sk = 7;

COMMIT;

Delete the tpcds.reason_t1 table.

DROP TABLE tpcds.reason_t1;

13.8 MERGE INTO

Function
The MERGE INTO statement is used to conditionally match data in a target table
with that in a source table. If data matches, UPDATE is executed on the target
table; if data does not match, INSERT is executed. You can use this syntax to run
UPDATE and INSERT at a time for convenience.

Precautions
● To run MERGE INTO, you must have the UPDATE and INSERT permissions for

the target table, as well as the SELECT permission for the source table.
● PREPARE is not supported.
● MERGE INTO cannot be executed during redistribution.
● MERGE INTO cannot be executed for target tables that contain triggers.

Syntax
MERGE INTO table_name [ [ AS ] alias ]
USING { { table_name | view_name } | subquery } [ [ AS ] alias ]
ON ( condition )
[

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 640



  WHEN MATCHED THEN
  UPDATE SET { column_name = { expression | DEFAULT } |
          ( column_name [, ...] ) = ( { expression | DEFAULT } [, ...] ) } [, ...]
  [ WHERE condition ]
]
[
  WHEN NOT MATCHED THEN
  INSERT { DEFAULT VALUES |
  [ ( column_name [, ...] ) ] VALUES ( { expression | DEFAULT } [, ...] ) [, ...] [ WHERE condition ] }
];

Parameter Description
● INTO clause

Specifies the target table that is being updated or has data being inserted. It
cannot be a replication table.

– talbe_name

Specifies the name of the target table.

– alias

Specifies the alias of the target table.

Value range: a string. It must comply with the naming convention.

● USING clause

Specifies the source table, which can be a table, view, or subquery.

● ON clause

Specifies the condition used to match data between the source and target
tables. Columns in the condition cannot be updated.

● WHEN MATCHED clause

Performs the UPDATE operation if data in the source table matches that in
the target table based on the condition.

Distribution keys cannot be updated. System catalogs and system columns
cannot be updated.

● WHEN NOT MATCHED clause

Specifies that the INSERT operation is performed if data in the source table
does not match that in the target table based on the condition.

The INSERT clause is not allowed to contain multiple VALUES.

The order of WHEN MATCHED and WHEN NOT MATCHED clauses can be
reversed. One of them can be used by default, but they cannot be both used
at one time. Two WHEN MATCHED or WHEN NOT MATCHED clauses
cannot be specified at the same time.

● DEFAULT

Specifies the default value of a column.

It will be NULL if no specific default value has been assigned to it.

● WHERE condition

Specifies the conditions for the UPDATE and INSERT clauses. The two clauses
will be executed only when the conditions are met. The default value can be
used. System columns cannot be referenced in WHERE condition.

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 641



Examples
Create the target table products and source table newproducts, and insert data
to them.

CREATE TABLE products
(
product_id INTEGER,
product_name VARCHAR2(60),
category VARCHAR2(60)
);

INSERT INTO products VALUES (1501, 'vivitar 35mm', 'electrncs');
INSERT INTO products VALUES (1502, 'olympus is50', 'electrncs');
INSERT INTO products VALUES (1600, 'play gym', 'toys');
INSERT INTO products VALUES (1601, 'lamaze', 'toys');
INSERT INTO products VALUES (1666, 'harry potter', 'dvd');

CREATE TABLE newproducts
(
product_id INTEGER,
product_name VARCHAR2(60),
category VARCHAR2(60)
);

INSERT INTO newproducts VALUES (1502, 'olympus camera', 'electrncs');
INSERT INTO newproducts VALUES (1601, 'lamaze', 'toys');
INSERT INTO newproducts VALUES (1666, 'harry potter', 'toys');
INSERT INTO newproducts VALUES (1700, 'wait interface', 'books');

Run MERGE INTO.

MERGE INTO products p   
USING newproducts np   
ON (p.product_id = np.product_id)   
WHEN MATCHED THEN  
  UPDATE SET p.product_name = np.product_name, p.category = np.category WHERE p.product_name != 
'play gym'  
WHEN NOT MATCHED THEN  
  INSERT VALUES (np.product_id, np.product_name, np.category) WHERE np.category = 'books';
MERGE 4

Query updates.

SELECT * FROM products ORDER BY product_id;
 product_id |  product_name  | category  
------------+----------------+-----------
       1501 | vivitar 35mm   | electrncs
       1502 | olympus camera | electrncs
       1600 | play gym       | toys
       1601 | lamaze         | toys
       1666 | harry potter   | toys
       1700 | wait interface | books
(6 rows)

Delete a table.

DROP TABLE products;
DROP TABLE newproducts;

13.9 INSERT and UPSERT

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 642



13.9.1 INSERT

Function

INSERT inserts new rows into a table.

Precautions
● You must have the INSERT permission on a table in order to insert into it.

● Use of the RETURNING clause requires the SELECT permission on all columns
mentioned in RETURNING.

● If you use the query clause to insert rows from a query, you of course need to
have the SELECT permission on any table or column used in the query.

● When you connect to a database compatible to Teradata and
td_compatible_truncation is on, a long character string will be automatically
truncated. If later INSERT statements (not involving foreign tables) insert
long strings to columns of char- and varchar-typed columns in the target
table, the system will truncate the long strings to ensure no strings exceed the
maximum length defined in the target table.

NO TE

If inserting multi-byte character data (such as Chinese characters) to database with
the character set byte encoding (SQL_ASCII, LATIN1), and the character data crosses
the truncation position, the string is truncated based on its bytes instead of characters.
Unexpected result will occur in tail after the truncation. If you want correct truncation
result, you are advised to adopt encoding set such as UTF8, which has no character
data crossing the truncation position.

Syntax
[ WITH [ RECURSIVE ] with_query [, ...] ]
INSERT [ IGNORE | OVERWRITE ] INTO table_name [ AS alias ] [ ( column_name [, ...] ) ]
    { DEFAULT VALUES
    | VALUES {( { expression | DEFAULT } [, ...] ) }[, ...] 
    | query }
    [ ON DUPLICATE KEY duplicate_action | ON CONFLICT [ conflict_target ] conflict_action ]
    [ RETURNING {* | {output_expression [ [ AS ] output_name ] }[, ...]} ];

where duplicate_action can be:

    UPDATE { column_name = { expression | DEFAULT } |
             ( column_name [, ...] ) = ( { expression | DEFAULT } [, ...] )
           } [, ...]

and conflict_target can be one of:

    ( { index_column_name | ( index_expression ) } [ COLLATE collation ] [ opclass ] [, ...] ) [ WHERE 
index_predicate ]
    ON CONSTRAINT constraint_name

and conflict_action is one of:

    DO NOTHING
    DO UPDATE SET { column_name = { expression | DEFAULT } |
                    ( column_name [, ...] ) = ( { expression | DEFAULT } [, ...] )
                  } [, ...]
              [ WHERE condition ]

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 643



Parameter Description
● WITH [ RECURSIVE ] with_query [, ...]

The WITH clause allows you to specify one or more subqueries that can be
referenced by name in the primary query, equal to temporary table.
If RECURSIVE is specified, it allows a SELECT subquery to reference itself by
name.
The detailed format of with_query is as follows: with_query_name
[ (column_name [,...]) ] AS
( {select | values | insert | update | delete} )
-- with_query_name specifies the name of the result set generated by a
subquery. Such names can be used to access the result sets of
subqueries in a query.
column_name specifies the column name displayed in the subquery result
set.
Each subquery can be a SELECT, VALUES, INSERT, UPDATE or DELETE
statement.

● IGNORE
Specifies that the data that duplicates an existing primary key or unique key
value will be ignored.
For details, see UPSERT.

● OVERWRITE
Specifies the overwrite mode. After this mode is used, the original data is
cleared and only the newly inserted data exists.
You can specify the columns on which OVERWRITE takes effect, and the
other columns will keep their original data. If a column has no original data,
its value is NULL.

NO TICE

● Do not perform OVERWRITE and INSERT INTO operations at the same
time. Otherwise, data written in real time may be unexpectedly cleared.

● OVERWRITE applies to the scenario where a large amount of data is
imported. You are not advised to use OVERWRITE to insert a small
amount of data.

● If the cluster is being scaled out and data redistribution is required for the
table where INSERT OVERWRITE is performed, INSERT OVERWRITE
clears the current data and automatically distributes the inserted data to
the new nodes after scale-out. If INSERT OVERWRITE and the data
redistribution of the table are performed at the same time, INSERT
OVERWRITE will interrupt the data redistribution of the table.

● table_name
Specifies the name of the target table.
Value range: an existing table name

● AS

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 644



Specifies an alias for the target table table_name. alias indicates the alias
name.

● column_name

Specifies the name of a column in a table.

– The column name can be qualified with a subfield name or array
subscript, if needed.

– Each column not present in the explicit or implicit column list will be
filled with a default value, either its declared default value or NULL if
there is none. (Inserting into only some fields of a composite column
leaves the other fields NULL.)

– The target column names column_name can be listed in any order. If no
list of column names is given at all, the default is all the columns of the
table in their declared order.

– The target columns are the first N column names, if there are only N
columns supplied by the value clause or query.

– The values supplied by the value clause or query are associated with the
explicit or implicit column list left-to-right.

Value range: an existing column name

● expression

Specifies an expression or a value to assign to the corresponding column.

– If single-quotation marks are inserted in a column, the single-quotation
marks need to be used for escape.

– If the expression for any column is not of the correct data type,
automatic type conversion will be attempted. If the attempt fails, data
insertion fails and the system returns an error message.

Example:
create table tt01 (id int,content varchar(50));
NOTICE:  The 'DISTRIBUTE BY' clause is not specified. Using 'id' as the distribution column by default.
HINT:  Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
insert into tt01 values (1,'Jack say ''hello''');
INSERT 0 1
insert into tt01 values (2,'Rose do 50%');
INSERT 0 1
insert into tt01 values (3,'Lilei say ''world''');
INSERT 0 1
insert into tt01 values (4,'Hanmei do 100%');
INSERT 0 1
select * from tt01;
 id |      content
----+-------------------
  3 | Lilei say 'world'
  4 | Hanmei do 100%
  1 | Jack say 'hello'
  2 | Rose do 50%
(4 rows)
drop table tt01;
DROP TABLE

● DEFAULT

All columns will be filled with their default values. The value is NULL if no
specified default value has been assigned to it.

● query

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 645



Specifies a query statement (SELECT statement) that uses the query result as
the inserted data.

● ON DUPLICATE KEY
Specifies that the data that duplicates an existing primary key or unique key
value will be updated.
duplicate_action specifies the columns and data to be updated.
For details, see UPSERT.

● ON CONFLICT
Specifies that the data that duplicates an existing primary key or unique key
value will be ignored or updated.
conflict_target specifies the column name index_column_name, expression
index_expression that contains multiple column names, or constraint name
constraint_name. It is used to infer whether there is a unique index from the
column name, the expression that contains multiple column names, or the
constraint name. index_column_name and index_expression must comply with
the index column format of CREATE INDEX.
conflict_action specifies the policy to be executed upon a primary key or
unique constraint conflict. There are two available actions:
– DO NOTHING: Ignore the conflict.
– DO UPDATE SET: Update data upon a conflict. The columns and data to

be updated must be specified.
For details, see UPSERT.

● RETURNING
Returns the inserted rows. The syntax of the RETURNING list is identical to
that of the output list of SELECT.

● output_expression
An expression used to calculate the output of the INSERT command after
each row is inserted.
Value range: The expression can use any field in the table. Write * to return all
columns of the inserted row(s).

● output_name
A name to use for a returned column.
Value range: a string. It must comply with the naming convention.

Examples
Create the tpcds.reason_t2 table.

CREATE TABLE tpcds.reason_t2
(
  r_reason_sk    integer,
  r_reason_id    character(16),
  r_reason_desc  character(100)
);

Insert a record into a table.

INSERT INTO tpcds.reason_t2(r_reason_sk, r_reason_id, r_reason_desc) VALUES (1, 'AAAAAAAABAAAAAAA', 
'reason1');

Insert a record into a table. This command is equivalent to the last one.

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 646



INSERT INTO tpcds.reason_t2 VALUES (2, 'AAAAAAAABAAAAAAA', 'reason2');

Insert records into the table.

INSERT INTO tpcds.reason_t2 VALUES (3, 'AAAAAAAACAAAAAAA','reason3'),(4, 'AAAAAAAADAAAAAAA', 
'reason4'),(5, 'AAAAAAAAEAAAAAAA','reason5');

Insert records whose r_reason_sk in the tpcds.reason table is less than 5.

INSERT INTO tpcds.reason_t2 SELECT * FROM tpcds.reason WHERE r_reason_sk <5;

Clear existing data in the table and insert data to the table.

insert overwrite into tpcds.reason_t2 values (6, 'BBAAAAAAAAAAAAAA', 'reason6');

Delete the tpcds.reason_t2 table.

DROP TABLE tpcds.reason_t2;

13.9.2 UPSERT

Function

UPSERT inserts rows into a table. When a row duplicates an existing primary key
or unique key value, the row will be ignored or updated.

NO TICE

The UPSERT syntax is supported only in 8.1.1 and later.

Syntax

For details, see Syntax of INSERT. The following table describes the syntax of
UPSERT.

Table 13-2 UPSERT syntax

Syntax Update Data Upon Conflict Ignore Data Upon
Conflict

Syntax 1: No
index is
specified.

INSERT INTO ON DUPLICATE KEY UPDATE INSERT IGNORE
INSERT INTO ON CONFLICT 
DO NOTHING

Syntax 2: The
unique key
constraint can
be inferred
from the
specified
column name
or constraint
name.

INSERT INTO ON CONFLICT(...) DO UPDATE SET
INSERT INTO ON CONFLICT ON CONSTRAINT 
con_name DO UPDATE SET

INSERT INTO ON 
CONFLICT(...) DO NOTHING
INSERT INTO ON CONFLICT 
ON CONSTRAINT con_name 
DO NOTHING

 

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 647



In syntax 1, no index is specified. The system checks for conflicts on all primary
keys or unique indexes. If a conflict exists, the system ignores or updates the
corresponding data.

In syntax 2, a specified index is used for conflict check. The primary key or unique
index is inferred from the column name, the expression that contains column
names, or the constraint name specified in the ON CONFLICT clause.

● Unique index inference
Syntax 2 infers the primary key or unique index by specifying the column
name or constraint name. You can specify a single column name or multiple
column names by using an expression, for example, (column1, column2,
column3).
collation and opclass can be specified when you create an index. Therefore,
you can also specify them after the column name for index inference.
COLLATE collation specifies the collation of a column, and opclass specifies
the name of the operator class. For details, see CREATE INDEX.
When inferring the unique index from an expression that includes multiple
column names, the system checks whether there is a unique index that
exactly contains all the column names specified by conflict_target.
– If collation and opclass are not specified, a match is considered found as

long as a column has the same name as the specified single column or
multiple columns have the same names as those specified by the column
expression (regardless of the values of collation and opclass specified for
the index column).

– If collation and opclass are specified, their values must also match the
collation and opclass of the index.

● UPDATE clause

The UPDATE clause can use VALUES(colname) or EXCLUDED.colname to
reference inserted data. EXCLUDED indicates the rows that should be excluded
due to conflicts. An example is as follows:

CREATE TABLE t1(id int PRIMARY KEY, a int, b int);
INSERT INTO t1 VALUES(1,1,1);
-- Upon a conflicting row, change the value in column a to the value in column a of the target table plus 1, 
which, in this example, is (1,2,1).
INSERT INTO t1 VALUES(1,10,20) ON CONFLICT(id) DO UPDATE SET a = a + 1;
-- EXCLUDED.a is used to reference the value of column a that is originally proposed for insertion. In this 
example, the value is 10.
-- Upon a conflicting row, change the value of column a to that of the referenced column plus 1. In this 
example, the value is updated to (1,11,1).
INSERT INTO t1 VALUES(1,10,20) ON CONFLICT(id) DO UPDATE SET a = EXCLUDED.a + 1;

● WHERE clause
– The WHERE clause is used to determine whether a specified condition is

met when data conflict occurs. If yes, update the conflict data. Otherwise,
ignore it.

– Only syntax 2 of Update Data Upon Conflict can specify the WHERE
clause, that is, INSERT INTO ON CONFLICT(...) DO UPDATE SET
WHERE.

Note the following when using the syntax:
● Syntax 1 and syntax 2 described in Table 13-2 cannot be used together in the

same statement.

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 648



● The WITH clause cannot be used at the same time.
● INSERT OVERWRITE cannot be used at the same time.
● The UPDATE clause and its WHERE clause do not support subqueries.
● VALUES(colname) in the UPDATE clause does not support outer nested

functions. That is, the usage similar to sqrt(VALUES(colname)) is not
supported. To support this function, use the EXCLUDED.colname syntax.

● INSERT INTO ON CONFLICT(...) DO UPDATE must contain conflict_target.
That is, a column or constraint name must be specified.

Precautions
● When running UPSERT on a column-store table, you are advised to enable

the DELTA table. If the DELTA table is disabled, concurrency will be affected
and the space will be incurred.

● Only users with the INSERT or UPDATE permission on a table can run the
UPSERT statement to insert data to or update data in the table.

● The UPSERT statement of updating data upon conflict can be executed only
when the target table contains a primary key or unique index.

● The UPSERT statement of updating data upon conflict cannot be executed if
no unique indexes are available. You can execute the statement only after the
indexes are rebuilt.

● A distributed deadlock may occur, resulting in query hanging.

NO TE

For example, multiple UPSERT statements are executed in batches in a transaction or
through JDBC (setAutoCommit(false)). Multiple similar tasks are executed at the
same time.

Possible result: The update sequences of different threads may vary depending on
nodes. As a result, a deadlock may occur when the same row is concurrently updated.

Solution:

1. Decrease the value of the GUC parameter lockwait_timeout. The default value is
20 minutes. A distributed deadlock error will be reported after waiting for the
value of lockwait_timeout. You can decrease the value of this parameter to
reduce the service waiting time caused by a deadlock.

2. Ensure that data with the same primary key is imported from only one database to
the database. UPSERT statements can be executed concurrently.

3. Only one UPSERT statement is executed in each transaction. UPSERT statements
can be executed concurrently.

4. Multiple UPSERT statements can be executed in a single thread. UPSERT
statements cannot be executed concurrently.

In the preceding solution, method 1 can only reduce the waiting time but cannot solve
the deadlock problem. If there are UPSERT statements in the service, you are advised
to decrease the value of this parameter. Methods 2, 3, and 4 can solve the deadlock
problem, but method 2 is recommended because its performance is better than
another two methods.

● The distribution column cannot be updated. (Exception: Update is allowed if
the distribution key is the same as the updated value.)
CREATE TABLE t1(dist_key int PRIMARY KEY, a int, b int);
INSERT INTO t1 VALUES(1,2,3) ON CONFLICT(dist_key) DO UPDATE SET dist_key = 
EXCLUDED.dist_key, a = EXCLUDED.a + 1;
INSERT INTO t1 VALUES(1,2,3) ON CONFLICT(dist_key) DO UPDATE SET dist_key = dist_key, a = 
EXCLUDED.a + 1;

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 649



● The UPSERT statement cannot be executed on the target table that contains
a trigger (with the INSERT or UPDATE trigger event).

● The UPSERT statement is not supported for updatable views.
● The UPDATE clause, the WHERE clause of UPDATE, and the index condition

expression should not contain functions that cannot be pushed down.
● Unique indexes cannot be deferred.
● The update data upon conflict statement of UPSERT cannot be executed on

column-store replication tables.
● When performing the update operation of UPSERT using INSERT INTO

SELECT, pay attention to the query result sequence of SELECT. In a
distributed environment, if the ORDER BY statement is not used, the
sequence of returned results may be different each time the same SELECT
statement is executed. As a result, the execution result of the UPSERT
statement does not meet the expectation.

● Multiple updates are not supported. An error will be reported if the inserted
multiple groups of data conflict with each other. (Exception: No error will be
reported if the query plan is a PGXC plan.)
CREATE TABLE t1(id int PRIMARY KEY, a int, b int);
-- Use the stream query plan:
EXPLAIN (COSTS OFF) INSERT INTO t1 VALUES(1,2,3),(1,5,6) ON CONFLICT(id) DO UPDATE SET a = 
EXCLUDED.a + 1;
                 QUERY PLAN
---------------------------------------------
 Streaming (type: GATHER)
   Node/s: All datanodes
   ->  Insert on t1
         Conflict Resolution: UPDATE
         Conflict Arbiter Indexes: t1_pkey
         ->  Streaming(type: REDISTRIBUTE)
               Spawn on: datanode2
               ->  Values Scan on "*VALUES*"
(8 rows)
INSERT INTO t1 VALUES(1,2,3),(1,5,6) ON CONFLICT(id) DO UPDATE SET a = EXCLUDED.a + 1;
ERROR:  INSERT ON CONFLICT DO UPDATE command cannot affect row a second time
HINT:  Ensure that no rows proposed for insertion within the same command have duplicate 
constrained values.
-- Disable the stream plan and generate a PGXC plan:
set enable_stream_operator = off;
EXPLAIN (COSTS OFF) INSERT INTO t1 VALUES(1,2,3),(1,5,6) ON CONFLICT(id) DO UPDATE SET a = 
EXCLUDED.a + 1;
             QUERY PLAN
-------------------------------------
 Insert on t1
   Conflict Resolution: UPDATE
   Conflict Arbiter Indexes: t1_pkey
   Node/s: All datanodes
   Node expr: id
   ->  Values Scan on "*VALUES*"
(6 rows)
INSERT INTO t1 VALUES(1,2,3),(1,5,6) ON CONFLICT(id) DO UPDATE SET a = EXCLUDED.a + 1;
INSERT 0 2

Examples
Create the reason_t1 table.
CREATE TABLE reason_t1
(
  r_reason_sk    integer primary key,
  r_reason_id    character(16),
  r_reason_desc  character(100)
);

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 650



Insert two records into the table.

INSERT INTO reason_t1 VALUES (2, 'AAAAAAAABAAAAAAA', 'reason2'),(3, 
'AAAAAAAACAAAAAAA','reason3');

Insert two records into the table. A record to be inserted conflicts with an existing
record. This record is updated, and another one is inserted.

INSERT INTO reason_t1 VALUES (2, 'BBBBBBBBBBBBB','reason2_new'),(4, 'AAAAAAAADAAAAAAA', 'reason4')
ON CONFLICT(r_reason_sk) DO UPDATE SET r_reason_id = EXCLUDED.r_reason_id, r_reason_desc = 
EXCLUDED.r_reason_desc;
SELECT * FROM reason_t1 ORDER BY 1;
 r_reason_sk |   r_reason_id    |                                            r_reason_desc
-------------+------------------
+------------------------------------------------------------------------------------------------------
           2 | BBBBBBBBBBBBB    | reason2_new
           3 | AAAAAAAACAAAAAAA | reason3
           4 | AAAAAAAADAAAAAAA | reason4
(3 rows)

Insert two records into the table. A record to be inserted conflicts with an existing
record. This record is updated, and another one is inserted.

INSERT INTO reason_t1 VALUES (2, 'CCCCCCCCCCCC','reason2_new2'),(5, 'AAAAAAAADAAAAAAA', 
'reason5') 
ON CONFLICT(r_reason_sk) DO NOTHING;
INSERT 0 1
SELECT * FROM reason_t1 ORDER BY 1;
 r_reason_sk |   r_reason_id    |                                            r_reason_desc
-------------+------------------
+------------------------------------------------------------------------------------------------------
           2 | BBBBBBBBBBBBB    | reason2_new
           3 | AAAAAAAACAAAAAAA | reason3
           4 | AAAAAAAADAAAAAAA | reason4
           5 | AAAAAAAADAAAAAAA | reason5
(4 rows)

Delete the reason_t1 table.

DROP TABLE reason_t1;

13.10 UPDATE

Function
UPDATE updates data in a table. UPDATE changes the values of the specified
columns in all rows that satisfy the condition. The WHERE clause clarifies
conditions. The columns to be modified need be mentioned in the SET clause;
columns not explicitly modified retain their previous values.

Precautions
● You must have the UPDATE permission on a table to be updated.
● You must have the SELECT permission on all tables involved in the

expressions or conditions.
● The distribution column of a table cannot be modified.
● For column-store tables, the RETURNING clause is currently not supported.
● Column-store tables do not support non-deterministic update. If you update

data in one row with multiple rows of data in a column-store table, an error
is reported.

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 651



● Memory space that records update operations in column-store tables is not
reclaimed. You need to clean it by executing VACUUM FULL table_name.

● Currently, UPDATE cannot be used in column-store replication tables.
● You are not advised to create a table that needs to be frequently updated as a

replication table.
● Column-store tables support lightweight UPDATE operations. Lightweight

UPDATE operations only rewrite the updated columns to reduce space usage.
Lightweight UPDATE for column-store tables is controlled by GUC parameter
enable_light_colupdate.

● Column-store lightweight UPDATE is unavailable and automatically changes
to the regular UPDATE operation in the following scenarios: updating an
index column, updating a primary key column, updating a partition column,
updating a PCK column, and online scaling.

Syntax
UPDATE [ ONLY ] table_name [ * ] [ [ AS ] alias ]
SET {column_name = { expression | DEFAULT } 
    |( column_name [, ...] ) = {( { expression | DEFAULT } [, ...] ) |sub_query }}[, ...]
    [ FROM from_list] [ WHERE condition ]
    [ RETURNING {* 
                | {output_expression [ [ AS ] output_name ]} [, ...] }];

where sub_query can be:
SELECT [ ALL | DISTINCT [ ON ( expression [, ...] ) ] ]
{ * | {expression [ [ AS ] output_name ]} [, ...] }
[ FROM from_item [, ...] ]
[ WHERE condition ]
[ GROUP BY grouping_element [, ...] ]
[ HAVING condition [, ...] ]

Parameter Description
● table_name

Name (optionally schema-qualified) of the table to be updated.
Value range: an existing table name

● alias
Specifies the alias for the target table.
Value range: a string. It must comply with the naming convention.

● column_name
Renames a column.
You can refer to this column by specifying the table name and column name
of the target table. Example:
UPDATE foo SET foo.col_name = 'GaussDB';
You can refer to this column by specifying the target table alias and the
column name. For example:
UPDATE foo AS f SET f.col_name = 'GaussDB';
Value range: an existing column name

● expression
An expression or value to assign to the column.

● DEFAULT

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 652



Sets the column to its default value.
The value is NULL if no specified default value has been assigned to it.

● sub_query
Specifies a subquery.
This command can be executed to update a table with information for other
tables in the same database. For details about clauses in the SELECT
statement, see SELECT.

● from_list
A list of table expressions, allowing columns from other tables to appear in
the WHERE condition and the update expressions. This is similar to the list of
tables that can be specified in the FROM clause of a SELECT statement.

NO TICE

Note that the target table must not appear in the from_list, unless you intend
a self-join (in which case it must appear with an alias in the from_list).

● condition
An expression that returns a value of type boolean. Only rows for which this
expression returns true are updated.

● output_expression
An expression to be computed and returned by the UPDATE command after
each row is updated.
Value range: The expression can use any column names of the table named
by table_name or table(s) listed in FROM. Write * to return all columns.

● output_name
A name to use for a returned column.

Examples
Create the student1 table.

CREATE TABLE student1
(
   stuno     int,
   classno   int 
) 
DISTRIBUTE BY hash(stuno);

Insert data.

INSERT INTO student1 VALUES(1,1);
INSERT INTO student1 VALUES(2,2);
INSERT INTO student1 VALUES(3,3);

View data.

SELECT * FROM student1;

Update the values of all records.

UPDATE student1 SET classno = classno*2;

View data.

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 653



SELECT * FROM student1;

Delete a table.

DROP TABLE student1;

13.11 VALUES

Function
VALUES computes a row or a set of rows based on given values. It is most
commonly used to generate a constant table within a large command.

Precautions
● VALUES lists with large numbers of rows should be avoided, as you might

encounter out-of-memory failures or poor performance. VALUES appearing
within INSERT is a special case, because the desired column types are known
from the INSERT's target table, and need not be inferred by scanning the
VALUES list. In this case, VALUE can handle larger lists than are practical in
other contexts.

● If more than one row is specified, all the rows must have the same number of
elements.

Syntax
VALUES {( expression [, ...] )} [, ...]
    [ ORDER BY { sort_expression [ ASC | DESC | USING operator ] } [, ...] ]
    [ { [ LIMIT { count | ALL } ] [ OFFSET start [ ROW | ROWS ] ] } | { LIMIT start, { count | ALL } } ]
    [ FETCH { FIRST | NEXT } [ count ] { ROW | ROWS } ONLY ];

Parameter Description
● expression

Specifies a constant or expression to compute and insert at the indicated
place in the resulting table or set of rows.
In a VALUES list appearing at the top level of an INSERT, an expression can
be replaced by DEFAULT to indicate that the destination column's default
value should be inserted. DEFAULT cannot be used when VALUES appears in
other contexts.

● sort_expression
Specifies an expression or integer constant indicating how to sort the result
rows.

● ASC
Indicates ascending sort order.

● DESC
Indicates descending sort order.

● operator
Specifies a sorting operator.

● count
Specifies the maximum number of rows to return.

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 654



● start
Specifies the number of rows to skip before starting to return rows.

● FETCH { FIRST | NEXT } [ count ] { ROW | ROWS } ONLY
The FETCH clause restricts the total number of rows starting from the first
row of the return query result, and the default value of count is 1.

Examples
Create the tpcds.reason_t2 table.

CREATE TABLE tpcds.reason_t2
(
  r_reason_sk    integer,
  r_reason_id    character(16),
  r_reason_desc  character(100)
);

Insert a record into a table.

INSERT INTO tpcds.reason_t2(r_reason_sk, r_reason_id, r_reason_desc) VALUES (1, 'AAAAAAAABAAAAAAA', 
'reason1');

Insert a record into a table. This command is equivalent to the last one.

INSERT INTO tpcds.reason_t2 VALUES (2, 'AAAAAAAABAAAAAAA', 'reason2');

Insert records into the table.

INSERT INTO tpcds.reason_t2 VALUES (3, 'AAAAAAAACAAAAAAA','reason3'),(4, 'AAAAAAAADAAAAAAA', 
'reason4'),(5, 'AAAAAAAAEAAAAAAA','reason5');

Insert records whose r_reason_sk in the tpcds.reason table is less than 5.

INSERT INTO tpcds.reason_t2 SELECT * FROM tpcds.reason WHERE r_reason_sk <5;

Clear existing data in the table and insert data to the table.

insert overwrite into tpcds.reason_t2 values (6, 'BBAAAAAAAAAAAAAA', 'reason6');

Delete the tpcds.reason_t2 table.

DROP TABLE tpcds.reason_t2;

Data Warehouse Service
SQL Syntax 13 DML Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 655



14 DCL Syntax

14.1 DCL Syntax Overview
Data control language (DCL) is used to set or modify database users or role rights.

Authorization
GaussDB(DWS) provides a statement for granting rights to data objects and roles.
For details, see GRANT.

Revoking Rights
GaussDB(DWS) provides a statement for revoking rights. For details, see REVOKE.

Setting Default Rights
GaussDB(DWS) allows users to set rights for objects that will be created. For
details, see ALTER DEFAULT PRIVILEGES.

14.2 ALTER DEFAULT PRIVILEGES

Function
ALTER DEFAULT PRIVILEGES allows you to set the permissions that will be used
for objects to be created. It does not affect permissions assigned to existing
objects. To isolate permissions, GaussDB(DWS) disables the WITH GRANT
OPTION syntax.

Precautions
Only the permissions for tables (including views), sequences, functions, and types
(including domains) can be altered.

Syntax
ALTER DEFAULT PRIVILEGES
    [ FOR { ROLE | USER } target_role [, ...] ]

Data Warehouse Service
SQL Syntax 14 DCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 656



    [ IN SCHEMA schema_name [, ...] ]
    abbreviated_grant_or_revoke;

● abbreviated_grant_or_revoke grants or revokes permissions on certain
objects.
grant_on_tables_clause
  | grant_on_functions_clause
  | grant_on_types_clause
  | grant_on_sequences_clause
  | revoke_on_tables_clause
  | revoke_on_functions_clause
  | revoke_on_types_clause
  | revoke_on_sequences_clause

● grant_on_tables_clause grants permissions on tables.
GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER | ANALYZE | 
ANALYSE } 
    [, ...] | ALL [ PRIVILEGES ] }
    ON TABLES 
    TO { [ GROUP ] role_name | PUBLIC } [, ...]
    [ WITH GRANT OPTION ]

● grant_on_functions_clause grants permissions on functions.
GRANT { EXECUTE | ALL [ PRIVILEGES ] }
    ON FUNCTIONS 
    TO { [ GROUP ] role_name | PUBLIC } [, ...]
    [ WITH GRANT OPTION ]

● grant_on_types_clause grants permissions on types.
GRANT { USAGE | ALL [ PRIVILEGES ] }
    ON TYPES 
    TO { [ GROUP ] role_name | PUBLIC } [, ...]
    [ WITH GRANT OPTION ]

● grant_on_sequences_clause grants permissions on sequences.
GRANT { { USAGE | SELECT | UPDATE }
    [, ...] | ALL [ PRIVILEGES ] }
    ON SEQUENCES 
    TO { [ GROUP ] role_name | PUBLIC } [, ...]
    [ WITH GRANT OPTION ]

● revoke_on_tables_clause revokes permissions on tables.
REVOKE [ GRANT OPTION FOR ]
    { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER | ANALYZE | 
ANALYSE } 
    [, ...] | ALL [ PRIVILEGES ] }
    ON TABLES 
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT | CASCADE CONSTRAINTS ]

● revoke_on_functions_clause revokes permissions on functions.
REVOKE [ GRANT OPTION FOR ]
    { EXECUTE | ALL [ PRIVILEGES ] }
    ON FUNCTIONS 
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT | CASCADE CONSTRAINTS ]

● revoke_on_types_clause revokes permissions on types.
REVOKE [ GRANT OPTION FOR ]
    { USAGE | ALL [ PRIVILEGES ] }
    ON TYPES 
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT | CASCADE CONSTRAINTS ]

● revoke_on_sequences_clause revokes permissions on sequences.
REVOKE [ GRANT OPTION FOR ]
    { { USAGE | SELECT | UPDATE }
    [, ...] | ALL [ PRIVILEGES ] }
    ON SEQUENCES 
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT | CASCADE CONSTRAINTS ]

Data Warehouse Service
SQL Syntax 14 DCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 657



Parameter Description
● target_role

Specifies the name of an existing role. If FOR ROLE/USER is omitted, the
current role or user is assumed.

Value range: An existing role name.

● schema_name

Specifies the name of an existing schema.

target_role must have the CREATE permissions for schema_name.

Value range: An existing schema name.

● role_name

Specifies the name of an existing role whose permissions are to be granted or
revoked.

Value range: An existing role name.

NO TICE

To drop a role for which the default permissions have been assigned, to reverse
the changes in its default permissions or use DROP OWNED BY to get rid of the
default privileges entry for the role.

Examples
● Grant the SELECT permission on all the tables (and views) in tpcds to every

user.
ALTER DEFAULT PRIVILEGES IN SCHEMA tpcds GRANT SELECT ON TABLES TO PUBLIC;

● Grant the INSERT permission on all the tables in tpcds to the user jack.
ALTER DEFAULT PRIVILEGES IN SCHEMA tpcds GRANT INSERT ON TABLES TO jack;

● Revoke the preceding permissions.
ALTER DEFAULT PRIVILEGES IN SCHEMA tpcds REVOKE SELECT ON TABLES FROM PUBLIC; 
ALTER DEFAULT PRIVILEGES IN SCHEMA tpcds REVOKE INSERT ON TABLES FROM jack;

● Assume that there are two users test1 and test2. If you require that user
test2 can query tables created by user test1, execute the following
statements.

– Grant user test2 the schema permission of user test1.
grant usage, create on schema test1 to test2;

– Grant user test2 the table query permission of user test1.
ALTER DEFAULT PRIVILEGES FOR USER test1 IN SCHEMA test1 GRANT SELECT ON tables TO 
test2;

– Create a table as user test1.
set role test1 password 'password';
create table test3( a int, b int);

– Run the following statement as user test2.
set role test2 password 'password';
select * from test1.test3;
 a | b
---+---
(0 rows)

Data Warehouse Service
SQL Syntax 14 DCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 658



Helpful Links

GRANT, REVOKE

14.3 ANALYZE | ANALYSE

Function

ANALYZE collects statistics about ordinary tables in a database, and stores the
results in the PG_STATISTIC system catalog. The execution plan generator uses
these statistics to determine which one is the most effective execution plan.

If no parameters are specified, ANALYZE analyzes each table and partitioned table
in the current database. You can also specify table_name, column, and
partition_name to limit the analysis to a specified table, column, or partitioned
table.

Users who can execute ANALYZE on a specific table include the owner of the
table, the owner of the database where the table resides, users who are granted
the ANALYZE permission on the table through GRANT, and users who have the
SYSADMIN attribute.

To collect statistics using percentage sampling, you must have the ANALYZE and
SELECT permissions.

ANALYZE and ANALYSE VERIFY are used to check whether data files of common
tables (row-store and column-store tables) in a database are damaged. Currently,
this function does not support HDFS tables.

Precautions

In the current version, the ANALYZE operation can be performed on a single table
in an anonymous block, transaction block, function, or stored procedure. However,
for analyzing an entire database, the ANALYZE operation of each table is in
different transactions. Therefore, the current version does not support the
ANALYZE execution for the entire database in anonymous blocks, transaction
blocks, functions, or stored procedures. Statistics updates of PG_CLASS related
columns cannot be rolled back.

Most ANALYZE VERIFY operations are used for abnormal scenario detection, and
require a release version. Remote read is not triggered in the ANALYZE VERIFY
scenario. Therefore, the remote read parameter does not take effect. If the system
detects that the page is damaged due to an error in the key system table, the
system reports an error and stops the detection.

Syntax
● Collect statistics information about a table.

{ ANALYZE | ANALYSE } [ VERBOSE ]
    [ table_name [ ( column_name [, ...] ) ] ];

● Collect statistics about a partitioned table.
{ ANALYZE | ANALYSE } [ VERBOSE ]
    [ table_name [ ( column_name [, ...] ) ] ]
    PARTITION ( patrition_name ) ;

Data Warehouse Service
SQL Syntax 14 DCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 659



NO TE

An ordinary partitioned table supports the syntax but not the function of collecting
statistics about specified partitions. Run the ANALYZE command on a specified
partition. A warning message is displayed.

● Collect statistics about a foreign table.
{ ANALYZE | ANALYSE } [ VERBOSE ]
    { foreign_table_name | FOREIGN TABLES };

● Collect statistics about multiple columns.
{ANALYZE | ANALYSE} [ VERBOSE ]
    table_name (( column_1_name, column_2_name [, ...] ));

NO TE

● To sample data in percentage, set default_statistics_target to a negative number.
● The statistics about a maximum of 32 columns can be collected at a time.
● You are not allowed to collect statistics about multiple columns in system catalogs

or HDFS foreign tables.

● Check the data files in the current database.
{ANALYZE | ANALYSE} VERIFY {FAST|COMPLETE};

NO TE

● All operations on the database are supported. Because many tables are involved,
you are advised to save the result in redirection mode: gsql -d database -p port -f
"verify.sql"> verify_warning.txt 2>&1.

● HDFS tables (internal and foreign tables), temporary tables, and unlog tables are
not supported.

● Note: Only visible tables are checked. Internal table check involves foreign tables
on which the internal tables depend and are not displayed or presented externally.

● This command can be used to process tolerant errors. The assert operation in a
debug version may cause the core to fail to execute commands. Therefore, you are
advised to perform this operation in a release version.

● If a key system table is damaged during a full database operation, an error is
reported and the operation stops.

● Check the data files of tables and indexes.
{ANALYZE | ANALYSE} VERIFY {FAST|COMPLETE} table_name|index_name [CASCADE];

NO TE

● You can perform operations on common tables and index tables, but cannot
perform CASCADE operations on index tables. The reason is that CASCADE is used
to process all index tables of the primary table. When the index table is checked
separately, CASCADE is not required.

● HDFS tables (internal and foreign tables), temporary tables, and unlog tables are
not supported.

● When the primary table is checked, the internal tables of the primary table, such
as the toast table and cudesc table, are also checked.

● When the system displays a message indicating that the index table is damaged,
you are advised to run the reindex command to recreate the index.

● Check the data file of the table partition.
{ANALYZE | ANALYSE} VERIFY {FAST|COMPLETE} table_name PARTITION {(partition_name)}[CASCADE];

Data Warehouse Service
SQL Syntax 14 DCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 660



NO TE

● You can detect a single partition of a table, but cannot perform the CASCADE operation
on index tables.

● HDFS tables (internal and foreign tables), temporary tables, and unlog tables are not
supported.

Parameter Description
● VERBOSE

Enables the display of progress messages.

NO TE

If this parameter is specified, progress information is displayed by ANALYZE to indicate
the table that is being processed, and statistics about the table are printed.

● table_name
Specifies the name (possibly schema-qualified) of a specific table to analyze.
If omitted, all regular tables (but not foreign tables) in the current database
are analyzed.
Currently, you can use ANALYZE to collect statistics about row-store tables,
column-store tables, HDFS tables, ORC- or CARBONDATA-formatted OBS
foreign tables, and foreign tables for collaborative analysis.
Value range: an existing table name

● column_name, column_1_name, column_2_name
Specifies the name of a specific column to analyze. All columns are analyzed
by default.
Value range: an existing column name

● partition_name
Assumes the table is a partitioned table. You can specify partition_name
following the keyword PARTITION to analyze the statistics of this table.
Currently the partitioned table supports the syntax of analyzing a partitioned
table, but does not execute this syntax.
Value range: a partition name in a table

● foreign_table_name
Specifies the name (possibly schema-qualified) of a specific table to analyze.
The data of the table is stored in HDFS.
Value range: an existing table name

● FOREIGN TABLES
Analyzes HDFS foreign tables stored in HDFS and accessible to the current
user.

● index_name
Name of the index table to be analyzed. The name may contain the schema
name.
Value range: an existing table name

● FAST|COMPLETE
For row-store tables, the CRC and page header of row-store tables are verified
in FAST mode. If the verification fails, an alarm is reported. In COMPLETE

Data Warehouse Service
SQL Syntax 14 DCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 661



mode, parse and verify the pointers and tuples of row-store tables. For
column-store tables, the CRC and magic of column-store tables are verified in
FAST mode. If the verification fails, an alarm is reported. In COMPLETE mode,
parse and verify CU of column-store tables.

● CASCADE
In CASCADE mode, all indexes of the current table are checked.

Examples
● Do ANALYZE to update statistics in the customer_info table.

ANALYZE customer_info;

● Do ANALYZE VERBOSE to update statistics and display table information in
the customer_info table.
ANALYZE VERBOSE customer_info;
INFO:  analyzing "cstore.pg_delta_3394584009"(cn_5002 pid=53078)
INFO:  analyzing "public.customer_info"(cn_5002 pid=53078)
INFO:  analyzing "public.customer_info" inheritance tree(cn_5002 pid=53078)
ANALYZE

14.4 DEALLOCATE

Function
DEALLOCATE deallocates a previously prepared statement. If you do not explicitly
deallocate a prepared statement, it is deallocated when the session ends.

The PREPARE key word is always ignored.

Precautions
None

Syntax
DEALLOCATE [ PREPARE ] { name | ALL };

Parameter Description
● name

Specifies the name of the prepared statement to deallocate.
● ALL

Deallocates all prepared statements.

Examples
None

14.5 DO

Function
DO executes an anonymous code block.

Data Warehouse Service
SQL Syntax 14 DCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 662



A code block is a function body without parameters that returns void. It is
analyzed and executed at the same time.

Precautions
● Before using a programming language, install it in the current database using

CREATE LANGUAGE. If no language is specified, plpgsql is installed by
default.

● To use an untrusted language, you must be a system administrator or have
the USAGE permission for programming languages.

Syntax
DO [ LANGUAGE lang_name ] code;

Parameter Description
● lang_name

Parses the programming language used by the code. If not specified, the
default value plpgsql is used.

● code
Specifies executable programming language code. The language is specified
as a string.

Examples
Grant user webuser all the operation permissions on views in the tpcds schema.
DO $$DECLARE r record;
BEGIN
    FOR r IN SELECT c.relname,n.nspname FROM pg_class c,pg_namespace n 
             WHERE c.relnamespace = n.oid AND n.nspname = 'tpcds' AND relkind IN ('r','v')
    LOOP
        EXECUTE 'GRANT ALL ON ' || quote_ident(r.table_schema) || '.' || quote_ident(r.table_name) || ' TO 
webuser';
    END LOOP;
END$$;

14.6 EXECUTE

Function
EXECUTE executes a prepared statement. A prepared statement only exists in the
lifecycle of a session. Therefore, only prepared statements created using PREPARE
earlier in the session can be executed.

Precautions
If the PREPARE statement creating the prepared statement declares certain
parameters, the parameter set transferred to the EXECUTE statement must be
compatible. Otherwise, an error occurs.

Syntax
EXECUTE name [ ( parameter [, ...] ) ];

Data Warehouse Service
SQL Syntax 14 DCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 663



Parameter Description
● name

Specifies the name of the statement to be executed.
● parameter

Specifies a parameter of the prepared statement. It must be an expression
that generates a value compatible with the data type specified when the
prepared statement is created.

Examples
Create and run a prepared statement for the INSERT statement.
PREPARE insert_reason(integer,character(16),character(100)) AS INSERT INTO tpcds.reason_t1 
VALUES($1,$2,$3);
EXECUTE insert_reason(52, 'AAAAAAAADDAAAAAA', 'reason 52'); 

Helpful Links
PREPARE

14.7 EXECUTE DIRECT

Function
EXECUTE DIRECT executes an SQL statement on a specified node. Generally, the
cluster automatically allocates an SQL statement to proper nodes. EXECUTE
DIRECT is mainly used for database maintenance and testing.

Precautions
● Only a system administrator can run the EXECUTE DIRECT statement.
● To ensure data consistency across nodes, only the SELECT statement can be

used. Transaction statements, DDL, and DML cannot be used.
● When the AVG aggregation calculation is performed on the specified DN

using such statements, the result set is returned in array, for example, {4,2}.
The result of sum is 4, and that of count is 2.

● Do not run the SELECT statement on nodes where CNs reside because user
table data is not stored there.

● EXECUTE DIRECT cannot be nested. If the inner SQL statement to be
executed is also EXECUTE DIRECT, run only the bottom-layer EXECUTE
DIRECT statement.

Syntax
EXECUTE DIRECT ON ( nodename [, ... ] ) query ;

Parameter Description
● nodename

Specifies the node name.
Value range: An existing node.

Data Warehouse Service
SQL Syntax 14 DCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 664



● query
Specifies the query SQL statement that you want to execute.

Examples
Query records in table tpcds.customer_address on the dn_6001_6002 node.
EXECUTE DIRECT ON(dn_6001_6002) 'select count(*) from tpcds.customer_address';
 count 
-------
 16922
(1 row)

14.8 GRANT

Function
GRANT grants permissions to roles and users.

GRANT is used in the following scenarios:

● Granting system permissions to roles or users
System permissions are also called user attributes, including SYSADMIN,
CREATEDB, CREATEROLE, AUDITADMIN, and LOGIN.
They can be specified only by the CREATE ROLE or ALTER ROLE syntax. The
SYSADMIN permission can be granted and revoked using GRANT ALL
PRIVILEGE and REVOKE ALL PRIVILEGE, respectively. System permissions
cannot be inherited by a user from a role, and cannot be granted using
PUBLIC.

● Granting database object permissions to roles or users
Grant permissions related to database objects (tables, views, specified
columns, databases, functions, and schemas) to specified roles or users.
GRANT grants specified database object permissions to one or more roles.
These permissions are appended to those already granted, if any.
GaussDB(DWS) grants the permissions for objects of certain types to PUBLIC.
By default, permissions for tables, table columns, sequences, external data
sources, external servers, schemas, and tablespace are not granted to PUBLIC.
However, permissions for the following objects are granted to PUBLIC:
CONNECT and CREATE TEMP TABLE permissions for databases, EXECUTE
permission for functions, and USAGE permission for languages and data types
(including domains). An object owner can revoke the default permissions
granted to PUBLIC and grant permissions to other users as needed. For
security purposes, you are advised to create an object and set permissions for
it in the same transaction so that other users do not have time windows to
use the object. In addition, you can run the ALTER DEFAULT PRIVILEGES
statement to modify the initial default permissions.

● Granting a role's or user's permissions to other roles or users
Grant a role's or user's permissions to one or more roles or users. In this case,
every role or user can be regarded as a set of one or more database
permissions.
If WITH ADMIN OPTION is specified, the member can in turn grant
permissions in the role to others, and revoke permissions in the role as well. If

Data Warehouse Service
SQL Syntax 14 DCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 665



a role or user granted with certain permissions is changed or revoked, the
permissions inherited from the role or user also change.
A database administrator can grant permissions to and revoke them from any
role or user. Roles having CREATEROLE permission can grant or revoke
membership in any role that is not an administrator.

Precautions

To isolate permissions, GaussDB(DWS) disables WITH GRANT OPTION and TO
PUBLIC.

Syntax
● Grant the table or view access permission to a specified role or user. Do not

perform GRANT on a table partition. Otherwise, an alarm will be generated.
GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER | ANALYZE | 
ANALYSE } [, ...] 
      | ALL [ PRIVILEGES ] }
    ON { [ TABLE ] table_name [, ...]
       | ALL TABLES IN SCHEMA schema_name [, ...] }
    TO { [ GROUP ] role_name | PUBLIC } [, ...] 
    [ WITH GRANT OPTION ];

● Grant the column access permission to a specified role or user.
GRANT { {{ SELECT | INSERT | UPDATE | REFERENCES } ( column_name [, ...] )} [, ...] 
      | ALL [ PRIVILEGES ] ( column_name [, ...] ) }
    ON [ TABLE ] table_name [, ...]
    TO { [ GROUP ] role_name | PUBLIC } [, ...]
    [ WITH GRANT OPTION ];

● Grant the database access permission to a specified role or user.
GRANT { { CREATE | CONNECT | TEMPORARY | TEMP } [, ...]
      | ALL [ PRIVILEGES ] }
    ON DATABASE database_name [, ...]
    TO { [ GROUP ] role_name | PUBLIC } [, ...]
    [ WITH GRANT OPTION ];

● Grant the domain access permission to a specified role or user.
GRANT { USAGE | ALL [ PRIVILEGES ] }
    ON DOMAIN domain_name [, ...]
    TO { [ GROUP ] role_name | PUBLIC } [, ...]
    [ WITH GRANT OPTION ];

NO TE

The current version does not support granting the domain access permission.

● Grant the external data source access permission to a specified role or user.
GRANT { USAGE | ALL [ PRIVILEGES ] }
    ON FOREIGN DATA WRAPPER fdw_name [, ...]
    TO { [ GROUP ] role_name | PUBLIC } [, ...]
    [ WITH GRANT OPTION ];

● Grant the external server access permission to a specified role or user.
GRANT { USAGE | ALL [ PRIVILEGES ] }
    ON FOREIGN SERVER server_name [, ...]
    TO { [ GROUP ] role_name | PUBLIC } [, ...]
    [ WITH GRANT OPTION ];

● Grant the function access permission to a specified role or user.
GRANT { EXECUTE | ALL [ PRIVILEGES ] }
    ON { FUNCTION {function_name ( [ {[ argmode ] [ arg_name ] arg_type} [, ...] ] )} [, ...]
       | ALL FUNCTIONS IN SCHEMA schema_name [, ...] }
    TO { [ GROUP ] role_name | PUBLIC } [, ...]
    [ WITH GRANT OPTION ];

Data Warehouse Service
SQL Syntax 14 DCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 666



● Grant the procedural language access permission to a specified role or user.
GRANT { USAGE | ALL [ PRIVILEGES ] }
    ON LANGUAGE lang_name [, ...]
    TO { [ GROUP ] role_name | PUBLIC } [, ...]
    [ WITH GRANT OPTION ];

NO TE

The current version does not support granting the procedural language access
permission.

● Grant the large object access permission to a specified role or user.
GRANT { { SELECT | UPDATE } [, ...] | ALL [ PRIVILEGES ] }
    ON LARGE OBJECT loid [, ...]
    TO { [ GROUP ] role_name | PUBLIC } [, ...]
    [ WITH GRANT OPTION ];

NO TE

The current version does not support granting the large object access permission.

● Grant the sequence access permission to a specified role or user.
GRANT { { SELECT | UPDATE | USAGE } [, ...] | ALL [ PRIVILEGES ] }
    ON { SEQUENCE sequence_name [, ...] 
         | ALL SEQUENCES IN SCHEMA schema_name [, ...] }
    TO { [ GROUP ] role_name | PUBLIC } [, ...]
    [ WITH GRANT OPTION ];

● Grant the sub-cluster access permission to a specified role or user. Common
users cannot perform GRANT or REVOKE operations on node groups.
GRANT { CREATE | USAGE | COMPUTE | ALL [ PRIVILEGES ] }
    ON NODE GROUP group_name [, ...]
    TO { [ GROUP ] role_name | PUBLIC } [, ...]
    [ WITH GRANT OPTION ];

● Grant the schema access permission to a specified role or user.
GRANT { { CREATE | USAGE } [, ...] | ALL [ PRIVILEGES ] }
    ON SCHEMA schema_name [, ...]
    TO { [ GROUP ] role_name | PUBLIC } [, ...]
    [ WITH GRANT OPTION ];

NO TE

When you grant table or view rights to other users, you also need to grant the USAGE
permission for the schema that the tables and views belong to. Without this
permission, the users granted with the table or view rights can only see the object
names, but cannot access them.

● Grant the type access permission to a specified role or user.
GRANT { USAGE | ALL [ PRIVILEGES ] }
    ON TYPE type_name [, ...]
    TO { [ GROUP ] role_name | PUBLIC } [, ...]
    [ WITH GRANT OPTION ];

NO TE

The current version does not support granting the type access permission.

● Grant a role's rights to other users or roles.
GRANT role_name [, ...]
   TO role_name [, ...]
   [ WITH ADMIN OPTION ];

● Grant the SYSADMIN permission to a specified role.
GRANT ALL { PRIVILEGES | PRIVILEGE }
   TO role_name;

Data Warehouse Service
SQL Syntax 14 DCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 667



Parameter Description
GRANT grants the following permissions:

● SELECT
Allows SELECT from any column, or the specific columns listed, of the
specified table, view, or sequence.

● INSERT
Allows INSERT of a new row into the specified table.

● UPDATE
Allows UPDATE of any column, or the specific columns listed, of the specified
table. SELECT ... FOR UPDATE and SELECT ... FOR SHARE also require this
permission on at least one column, in addition to the SELECT permission.

● DELETE
Allows DELETE of a row from the specified table.

● TRUNCATE
Allows TRUNCATE on the specified table.

● REFERENCES
To create a foreign key constraint, it is necessary to have this permission on
both the referencing and referenced columns.

● TRIGGER
To create a trigger, you must have the TRIGGER permission on the table or
view.

● ANALYZE | ANALYSE
To perform the ANALYZE | ANALYSE operation on a table to collect statistics
data, you must have the ANALYZE | ANALYSE permission on the table.

● CREATE
– For databases, allows new schemas to be created within the database.
– For schemas, allows new objects to be created within the schema. To

rename an existing object, you must own the object and have this
permission for the schema where the object is located.

– For sub-clusters, allows tables to be created.
● CONNECT

Allows the user to connect to the specified database.
● EXECUTE

Allows the use of the specified function and the use of any operators that are
implemented on top of the function.

● USAGE
– For procedural languages, allows the use of the specified language for

the creation of functions in that language.
– For schemas, allows access to objects contained in the specified schema.

Without this permission, it is still possible to see the object names.
– For sequences, allows the use of the nextval function.
– For sub-clusters, allows users who can access objects contained in the

specified schema to access tables in a specified sub-cluster.

Data Warehouse Service
SQL Syntax 14 DCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 668



● COMPUTE
Allows users to perform elastic computing in a computing sub-cluster that
they have the compute permission on.

● ALL PRIVILEGES
Grants all of the available permissions at once. Only system administrators
have permission to run GRANT ALL PRIVILEGES.

GRANT parameters are as follows:

● role_name
Specifies an existing user name.

● table_name
Specifies an existing table name.

● column_name
Specifies an existing column name.

● schema_name
Specifies an existing schema name.

● database_name
Specifies an existing database name.

● function_name
Specifies an existing function name.

● sequence_name
Specifies an existing sequence name.

● domain_name
Specifies an existing domain type.

● fdw_name
Specifies an existing foreign data wrapper name.

● lang_name
Specifies an existing language name.

● type_name
Specifies an existing type name.

● group_name
Specifies an existing sub-cluster name.

● argmode
Specifies the parameter mode.
Value range: a string. It must comply with the naming convention.

● arg_name
Indicates the parameter name.
Value range: a string. It must comply with the naming convention.

● arg_type
Specifies the parameter type.
Value range: a string. It must comply with the naming convention.

Data Warehouse Service
SQL Syntax 14 DCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 669



● loid

Identifier of the large object that includes this page

Value range: a string. It must comply with the naming convention.

● directory_name

Specifies a directory name.

Value range: a string. It must comply with the naming convention.

Examples
● Grant system permissions to a user or role.

– Grant all available permissions of user sysadmin to user joe.
GRANT ALL PRIVILEGES TO joe;

Afterward, user joe has the sysadmin permissions.

● Grant object permissions to a user or role.

– Grant the usage permission on the tpcds schema and all the permissions
on the tpcds.reason table to the user joe.
GRANT USAGE ON SCHEMA tpcds TO joe;
GRANT ALL PRIVILEGES ON tpcds.reason TO joe;

After the granting succeeds, user joe has all the permissions of the
tpcds.reason table, including the add, delete, modify, and query
permissions.

– Grant the query permission for the r_reason_sk, r_reason_id, and
r_reason_desc columns and the update permission for the r_reason_desc
column in the tpcds.reason table to user joe.
GRANT select (r_reason_sk,r_reason_id,r_reason_desc),update (r_reason_desc) ON tpcds.reason 
TO joe;

After the granting succeeds, user joe immediately has the query
permission of the r_reason_sk and r_reason_id columns in the
tpcds.reason table.
GRANT select (r_reason_sk, r_reason_id) ON tpcds.reason TO joe ;

– Grant the postgres database connection permission and schema creation
permission to user joe.
GRANT create,connect on database postgres TO joe ;

– Grant the tpcds schema access permission and object creation permission
to this role, but do not enable it to grant these permissions to others.
GRANT USAGE,CREATE ON SCHEMA tpcds TO tpcds_manager;

● Grant the permissions of a user or role to other users or roles.

– Grant the permissions of user joe to user manager, and allow manager
to grant these permissions to others.
GRANT joe TO manager WITH ADMIN OPTION;

– Grant the permissions of user manager to user senior_manager.
GRANT manager TO senior_manager;

Helpful Links

REVOKE, ALTER DEFAULT PRIVILEGES

Data Warehouse Service
SQL Syntax 14 DCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 670



14.9 PREPARE

Function
PREPARE creates a prepared statement.

A prepared statement is a performance optimizing object on the server. When the
PREPARE statement is executed, the specified query is parsed, analyzed, and
rewritten. When the EXECUTE is executed, the prepared statement is planned and
executed. This avoids repetitive parsing and analysis. After the PREPARE statement
is created, it exists throughout the database session. Once it is created (even if in a
transaction block), it will not be deleted when a transaction is rolled back. It can
only be deleted by explicitly invoking DEALLOCATE or automatically deleted when
the session ends.

Precautions
None

Syntax
PREPARE name [ ( data_type [, ...] ) ] AS statement;

Parameter Description
● name

Specifies the name of a prepared statement. It must be unique in the current
session.

● data_type
Specifies the type of a parameter.

● statement
Specifies a SELECT, INSERT, UPDATE, DELETE, or VALUES statement.

Examples
Create and run a prepared statement for the INSERT statement.
PREPARE insert_reason(integer,character(16),character(100)) AS INSERT INTO tpcds.reason_t1 
VALUES($1,$2,$3); 
EXECUTE insert_reason(52, 'AAAAAAAADDAAAAAA', 'reason 52'); 

Helpful Links
DEALLOCATE, EXECUTE

14.10 REASSIGN OWNED

Function
REASSIGN OWNED changes the owner of a database.

Data Warehouse Service
SQL Syntax 14 DCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 671



REASSIGN OWNED requires that the system change owners of all the database
objects owned by old_roles to new_role.

Precautions
● REASSIGN OWNED is often executed before deleting a rule.

● You must have the permissions on the original and target roles to execute it.

● The resource management module does not monitor the data switch of the
syntax. You need to call select gs_wlm_readjust_user_space(0) to manually
calibrate the monitoring data.

Syntax
REASSIGN OWNED BY old_role [, ...] TO new_role;

Parameter Description
● old_role

Specifies the role name of the old owner.

● new_role

Specifies the role name of the new owner.

Examples

Reassign all database objects owned by the joe and jack roles to admin.

REASSIGN OWNED BY joe, jack TO admin;

14.11 REVOKE

Function

REVOKE revokes rights from one or more roles.

Precautions

If a non-owner user of an object attempts to REVOKE rights on the object, the
command is executed based on the following rules:

● If the user has no right whatsoever on the object, the command will fail
outright.

● If some permissions are available, the command proceeds, but it revokes only
those rights for which the user has grant options.

● The REVOKE ALL PRIVILEGES forms will issue an error message if no grant
options are held, while the other forms will issue a warning if grant options
for any of the rights named in the command are not held.

● Do not perform REVOKE to a table partition. Performing REVOKE to a
partitioned table incurs an alarm.

Data Warehouse Service
SQL Syntax 14 DCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 672



Syntax
● Revoke the permission of specified table and view.

REVOKE [ GRANT OPTION FOR ]
    { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER | ANALYZE | 
ANALYSE }[, ...] 
    | ALL [ PRIVILEGES ] }
    ON { [ TABLE ] table_name [, ...]
       | ALL TABLES IN SCHEMA schema_name [, ...] }
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ];

● Revoke the permission of specified fields on the table.
REVOKE [ GRANT OPTION FOR ]
    { {{ SELECT | INSERT | UPDATE | REFERENCES } ( column_name [, ...] )}[, ...] 
    | ALL [ PRIVILEGES ] ( column_name [, ...] ) }
    ON [ TABLE ] table_name [, ...]
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ];

● Revoke the permission of a specified database.
REVOKE [ GRANT OPTION FOR ]
    { { CREATE | CONNECT | TEMPORARY | TEMP } [, ...] 
    | ALL [ PRIVILEGES ] }
    ON DATABASE database_name [, ...]
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ];

● Revoke the permission of a specified function.
REVOKE [ GRANT OPTION FOR ]
    { EXECUTE | ALL [ PRIVILEGES ] }
    ON { FUNCTION {function_name ( [ {[ argmode ] [ arg_name ] arg_type} [, ...] ] )} [, ...]
       | ALL FUNCTIONS IN SCHEMA schema_name [, ...] }
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ];

● Revoke the permission of a specified large object.
REVOKE [ GRANT OPTION FOR ]
    { { SELECT | UPDATE } [, ...] | ALL [ PRIVILEGES ] }
    ON LARGE OBJECT loid [, ...]
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ];

● Revoke the permission on a specified sequence.
REVOKE [ GRANT OPTION FOR ]
    { { SELECT | UPDATE | USAGE } [, ...] | ALL [ PRIVILEGES ] }
    ON SEQUENCE sequence_name [, ...]
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ];

● Revoke the permission of a specified schema.
REVOKE [ GRANT OPTION FOR ]
    { { CREATE | USAGE } [, ...] | ALL [ PRIVILEGES ] }
    ON SCHEMA schema_name [, ...]
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ];

● Revoke the permission of a specified sub-cluster.
REVOKE [ GRANT OPTION FOR ]
    { CREATE | USAGE | COMPUTE | ALL [ PRIVILEGES ] }
    ON NODE GROUP group_name [, ...]
    FROM { [ GROUP ] role_name | PUBLIC } [, ...]
    [ CASCADE | RESTRICT ];

● Revoke the permission of roles based on roles.
REVOKE [ ADMIN OPTION FOR ]
    role_name [, ...] FROM role_name [, ...]
    [ CASCADE | RESTRICT ];

● Revoke the sysadmin permission of roles.
REVOKE ALL { PRIVILEGES | PRIVILEGE } FROM role_name;

Data Warehouse Service
SQL Syntax 14 DCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 673



Parameter Description
The keyword PUBLIC indicates an implicitly defined group that contains all roles.

See Parameter Description of the GRANT command for the meaning of the
privileges and related parameters.

Permissions of a role include the permissions directly granted to the role,
permissions inherited from the parent role, and permissions granted to PUBLIC.
Therefore, revoking the SELECT permission on an object from PUBLIC does not
necessarily mean that such permission has been revoked from all roles, because
the SELECT permission directly granted to roles or inherited from parent roles
remains. Similarly, if the SELECT permission is revoked from a user but is not
revoked from PUBLIC, the user can still run the SELECT statement.

If GRANT OPTION FOR is specified, only the grant option for the right is revoked,
not the right itself.

If user A holds the UPDATE rights on a table and the WITH GRANT OPTION and
has granted them to user B, the rights that user B holds are called dependent
rights. If the rights or the grant option held by user A is revoked, the dependent
rights still exist. Those dependent rights are also revoked if CASCADE is specified.

A user can only revoke rights that were granted directly by that user. If, for
example, user A has granted a right with grant option (WITH ADMIN OPTION) to
user B, and user B has in turned granted it to user C, then user A cannot revoke
the right directly from C. However, user A can revoke the grant option held by user
B and use CASCADE. In this manner, the rights held by user C are automatically
revoked. For another example, if both user A and user B have granted the same
right to C, A can revoke his own grant but not B's grant, so C will still effectively
have the right.

If the role executing REVOKE holds rights indirectly via more than one role
membership path, it is unspecified which containing role will be used to execute
the command. In such cases, it is best practice to use SET ROLE to become the
specific role you want to do the REVOKE as, and then execute REVOKE. Failure to
do so may lead to deleting rights not intended to delete, or not deleting any rights
at all.

Examples
Revoke all permissions of user joe.
REVOKE ALL PRIVILEGES FROM joe;

Revoke the permissions granted in a specified schema.
REVOKE USAGE,CREATE ON SCHEMA tpcds FROM tpcds_manager;

Revoke the CONNECT privilege from user joe.

REVOKE CONNECT FROM joe;

Revoke the membership of role admins from user joe.

REVOKE admins FROM joe;

Revoke all the privileges of user joe for the myView view.

REVOKE ALL PRIVILEGES ON myView FROM joe;

Revoke the public insert permission on the customer_t1 table.

Data Warehouse Service
SQL Syntax 14 DCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 674



REVOKE INSERT ON customer_t1 FROM PUBLIC;

Revoke user joe's permission for the tpcds schema.

REVOKE USAGE ON SCHEMA tpcds FROM joe;

Revoke the query permissions for r_reason_sk and r_reason_id in the
tpcds.reason table from user joe.

REVOKE select (r_reason_sk, r_reason_id) ON tpcds.reason FROM joe;

Links
GRANT

Data Warehouse Service
SQL Syntax 14 DCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 675



15 DQL Syntax

15.1 DQL Syntax Overview
Data Query Language (DQL) can obtain data from tables or views.

Query

GaussDB(DWS) provides statements for obtaining data from tables or views. For
details, see SELECT.

Defining a New Table Based on Query Results

GaussDB(DWS) provides a statement for creating a table based on query results
and inserting the queried data into the table. For details, see SELECT INTO.

15.2 SELECT

Function

SELECT retrieves data from a table or view.

Serving as an overlaid filter for a database table, SELECT using SQL keywords
retrieves required data from data tables.

Precautions
● Using SELECT can join HDFS and ordinary tables, but cannot join ordinary

and GDS foreign tables. That is, a SELECT statement cannot contain both
ordinary and GDS foreign tables.

● The user must have the SELECT permission on every column used in the
SELECT command.

● UPDATE permission is required when using FOR UPDATE or FOR SHARE.

Data Warehouse Service
SQL Syntax 15 DQL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 676



Syntax
● Querying data
[ WITH [ RECURSIVE ] with_query [, ...] ]
SELECT [/*+ plan_hint */] [ ALL | DISTINCT [ ON ( expression [, ...] ) ] ]
{ * | {expression [ [ AS ] output_name ]} [, ...] }
[ FROM from_item [, ...] ]
[ WHERE condition ]
[ GROUP BY grouping_element [, ...] ]
[ HAVING condition [, ...] ]
[ WINDOW {window_name AS ( window_definition )} [, ...] ]
[ { UNION | INTERSECT | EXCEPT | MINUS } [ ALL | DISTINCT ] select ]
[ ORDER BY {expression [ [ ASC | DESC | USING operator ] | nlssort_expression_clause ] [ NULLS { FIRST | 
LAST } ]} [, ...] ]
[ { [ LIMIT { count | ALL } ] [ OFFSET start [ ROW | ROWS ] ] } | { LIMIT start, { count | ALL } } ]
[ FETCH { FIRST | NEXT } [ count ] { ROW | ROWS } ONLY ]
[ {FOR { UPDATE | SHARE } [ OF table_name [, ...] ] [ NOWAIT ]} [...] ];

NO TE

In condition and expression, you can use the aliases of expressions in targetlist in
compliance with the following rules:

● Reference only in the same level.

● Only reference aliases in targetlist.

● Reference a prior expression in a subsequent expression.

● The volatile function cannot be used.

● The Window function cannot be used.

● Do not reference an alias in the join on condition.

● An error is reported if targetlist contains multiple referenced aliases.

● The subquery with_query is as follows:
with_query_name [ ( column_name [, ...] ) ]
    AS ( {select | values | insert | update | delete} )

● The specified query source from_item is as follows:
{[ ONLY ] table_name [ * ] [ partition_clause ] [ [ AS ] alias [ ( column_alias [, ...] ) ] ]
|( select ) [ AS ] alias [ ( column_alias [, ...] ) ]
|with_query_name [ [ AS ] alias [ ( column_alias [, ...] ) ] ]
|function_name ( [ argument [, ...] ] ) [ AS ] alias [ ( column_alias [, ...] | column_definition [, ...] ) ]
|function_name ( [ argument [, ...] ] ) AS ( column_definition [, ...] )
|from_item [ NATURAL ] join_type from_item [ ON join_condition | USING ( join_column [, ...] ) ]}

● The group clause is as follows:
( )
| expression
| ( expression [, ...] )
| ROLLUP ( { expression | ( expression [, ...] ) } [, ...] )
| CUBE ( { expression | ( expression [, ...] ) } [, ...] )
| GROUPING SETS ( grouping_element [, ...] )

● The specified partition partition_clause is as follows:
PARTITION { ( partition_name ) | 
        FOR (  partition_value [, ...] ) }

NO TE

Partitions can be specified only for ordinary tables.

● The sorting order nlssort_expression_clause is as follows:
NLSSORT ( column_name, ' NLS_SORT = { SCHINESE_PINYIN_M | generic_m_ci } ' )

● Simplified query syntax, equivalent to select * from table_name.
TABLE { ONLY {(table_name)| table_name} | table_name [ * ]};

Data Warehouse Service
SQL Syntax 15 DQL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 677



Parameter Description
● WITH [ RECURSIVE ] with_query [, ...]

The WITH clause allows you to specify one or more subqueries that can be
referenced by name in the primary query, equal to temporary table.
If RECURSIVE is specified, it allows a SELECT subquery to reference itself by
name.
The detailed format of with_query is as follows: with_query_name
[ ( column_name [, ...] ) ] AS ( {select | values | insert | update | delete} )
– with_query_name specifies the name of the result set generated by a

subquery. Such names can be used to access the result sets of subqueries
in a query.

– column_name specifies a column name displayed in the subquery result
set.

– Each subquery can be a SELECT, VALUES, INSERT, UPDATE or DELETE
statement.

● plan_hint clause
Follows the SELECT keyword in the /*+<Plan hint> */ format. It is used to
optimize the plan of a SELECT statement block. For details, see section "Hint-
based Tuning."

● ALL
Specifies that all rows meeting the requirements are returned. This is the
default behavior, so you can omit this keyword.

● DISTINCT [ ON ( expression [, ...] ) ]
Removes all duplicate rows from the SELECT result set.
ON ( expression [, ...] ) is only reserved for the first row among all the rows
with the same result calculated using given expressions.

NO TICE

DISTINCT ON expression is explained with the same rule of ORDER BY.
Unless you use ORDER BY to guarantee that the required row appears first,
you cannot know what the first row is.

● SELECT list
Indicates columns to be queried. Some or all columns (using wildcard
character *) can be queried.
You may use the AS output_name clause to give an alias for an output
column. The alias is used for the displaying of the output column.
Column names may be either of:
– Manually input column names which are spaced using commas (,).
– Fields computed in the FROM clause.

● FROM clause
Indicates one or more source tables for SELECT.
The FROM clause can contain the following elements:

Data Warehouse Service
SQL Syntax 15 DQL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 678



– table_name
Indicates the name (optionally schema-qualified) of an existing table or
view, for example, schema_name.table_name.

– alias
Gives a temporary alias to a table to facilitate the quotation by other
queries.
An alias is used for brevity or to eliminate ambiguity for self-joins. When
an alias is provided, it completely hides the actual name of the table or
function.

– column_alias
Specifies the column alias.

– PARTITION
Queries data in the specified partition of a partitioned table.

– partition_name
Specifies the name of a partition.

– partition_value
Specifies the value of the specified partition key. If there are many
partition keys, use the PARTITION FOR clause to specify the value of the
only partition key you want to use.

– subquery
Performs a subquery in the FROM clause. A temporary table is created to
save subquery results.

– with_query_name
WITH clause can also be the source of FROM clause and can be
referenced with the name queried by executing WITH.

– function_name
Function name. Function calls can appear in the FROM clause.

– join_type
There are five types below:

▪ [ INNER ] JOIN
A JOIN clause combines two FROM items. Use parentheses if
necessary to determine the order of nesting. In the absence of
parentheses, JOIN nests left-to-right.
In any case, JOIN binds more tightly than the commas separating
FROM items.

▪ LEFT [ OUTER ] JOIN
Returns all rows in the qualified Cartesian product (all combined
rows that pass its join condition), and pluses one copy of each row in
the left-hand table for which there was no right-hand row that
passed the join condition. This left-hand row is extended to the full
width of the joined table by inserting NULL values for the right-hand
columns. Note that only the JOIN clause's own condition is
considered while deciding which rows have matches. Outer
conditions are applied afterwards.

Data Warehouse Service
SQL Syntax 15 DQL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 679



▪ RIGHT [ OUTER ] JOIN
Returns all the joined rows, plus one row for each unmatched right-
hand row (extended with NULL on the left).
This is just a notational convenience, since you could convert it to a
LEFT OUTER JOIN by switching the left and right inputs.

▪ FULL [ OUTER ] JOIN
Returns all the joined rows, pluses one row for each unmatched left-
hand row (extended with NULL on the right), and pluses one row for
each unmatched right-hand row (extended with NULL on the left).

▪ CROSS JOIN
CROSS JOIN is equivalent to INNER JOIN ON (TRUE), which means
no rows are removed by qualification. These join types are just a
notational convenience, since they do nothing you could not do with
plain FROM and WHERE.

NO TE

For the INNER and OUTER join types, a join condition must be specified,
namely exactly one of NATURAL ON, join_condition, or USING
(join_column [, ...]). For CROSS JOIN, none of these clauses can appear.

CROSS JOIN and INNER JOIN produce a simple Cartesian product, the
same result as you get from listing the two items at the top level of
FROM.

– ON join_condition
A join condition to define which rows have matches in joins. Example: ON
left_table.a = right_table.a

– USING(join_column[, ...])
ON left_table.a = right_table.a AND left_table.b = right_table.b ...
abbreviation. Corresponding columns must have the same name.

– NATURAL
NATURAL is a shorthand for a USING list that mentions all columns in
the two tables that have the same names.

– from item
Specifies the name of the query source object connected.

● WHERE clause
The WHERE clause forms an expression for row selection to narrow down the
query range of SELECT. The condition is any expression that evaluates to a
result of Boolean type. Rows that do not satisfy this condition will be
eliminated from the output.
In the WHERE clause, you can use the operator (+) to convert a table join to
an outer join. However, this method is not recommended because it is not the
standard SQL syntax and may raise syntax compatibility issues during
platform migration. There are many restrictions on using the operator (+):

a. It can appear only in the WHERE clause.
b. If a table join has been specified in the FROM clause, the operator (+)

cannot be used in the WHERE clause.

Data Warehouse Service
SQL Syntax 15 DQL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 680



c. The operator (+) can work only on columns of tables or views, instead of
on expressions.

d. If table A and table B have multiple join conditions, the operator (+)
must be specified in all the conditions. Otherwise, the operator (+) will
not take effect, and the table join will be converted into an inner join
without any prompt information.

e. Tables specified in a join condition where the operator (+) works cannot
cross queries or subqueries. If tables where the operator (+) works are
not in the FROM clause of the current query or subquery, an error will be
reported. If a peer table for the operator (+) does not exist, no error will
be reported and the table join will be converted into an inner join.

f. Expressions where the operator (+) is used cannot be directly connected
through OR.

g. If a column where the operator (+) works is compared with a constant,
the expression becomes a part of the join condition.

h. A table cannot have multiple foreign tables.
i. The operator (+) can appear only in the following expressions:

comparison, NOT, ANY, ALL, IN, NULLIF, IS DISTINCT FROM, and IS OF
expressions. It is not allowed in other types of expressions. In addition,
these expressions cannot be connected through AND or OR.

j. The operator (+) can be used to convert a table join only to a left or right
outer join, instead of a full join. That is, the operator (+) cannot be
specified on both tables of an expression.

NO TICE

For the WHERE clause, if a special character % _ or \ is queried in LIKE, add
the slash (\) before each character.

Example:
create table tt01 (id int,content varchar(50));
NOTICE:  The 'DISTRIBUTE BY' clause is not specified. Using 'id' as the distribution column by default.
HINT:  Please use 'DISTRIBUTE BY' clause to specify suitable data distribution column.
CREATE TABLE
insert into tt01 values (1,'Jack say ''hello''');
INSERT 0 1
insert into tt01 values (2,'Rose do 50%');
INSERT 0 1
insert into tt01 values (3,'Lilei say ''world''');
INSERT 0 1
insert into tt01 values (4,'Hanmei do 100%');
INSERT 0 1
select * from tt01;
 id |      content
----+-------------------
  3 | Lilei say 'world'
  4 | Hanmei do 100%
  1 | Jack say 'hello'
  2 | Rose do 50%
(4 rows)

select * from tt01 where content like '%''he%';
 id |     content
----+------------------
  1 | Jack say 'hello'

Data Warehouse Service
SQL Syntax 15 DQL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 681



(1 row)

select * from tt01 where content like '%50\%%';
 id |   content
----+-------------
  2 | Rose do 50%
(1 row)

drop table tt01;
DROP TABLE

● GROUP BY clause
Condenses query results into a single row or selected rows that share the
same values for the grouped expressions.
– CUBE ( { expression | ( expression [, ...] ) } [, ...] )

A CUBE grouping is an extension to the GROUP BY clause that creates
subtotals for all of the possible combinations of the given list of grouping
columns (or expressions). In terms of multidimensional analysis, CUBE
generates all the subtotals that could be calculated for a data cube with
the specified dimensions. For example, given three expressions (n=3) in
the CUBE clause, the operation results in 2n = 23 = 8 groupings. Rows
grouped on the values of n expressions are called regular rows, and the
rest are called superaggregate rows.

– GROUPING SETS ( grouping_element [, ...] )
GROUPING SETS is another extension to the GROUP BY clause. It allows
users to specify multiple GROUP BY clauses. This improves efficiency by
trimming away unnecessary data. After you specify the set of groups that
you want to create using a GROUPING SETS expression within a GROUP
BY clause, the database does not need to compute a whole ROLLUP or
CUBE.

NO TICE

If the SELECT list expression quotes some ungrouped fields and no aggregate
function is used, an error is displayed. This is because multiple values may be
returned for ungrouped fields.

● HAVING clause
Selects special groups by working with the GROUP BY clause. The HAVING
clause compares some attributes of groups with a constant. Only groups that
matching the logical expression in the HAVING clause are extracted.

● WINDOW clause
The general format is WINDOW window_name AS ( window_definition )
[, ...]. window_name is a name can be referenced by window_definition.
window_definition can be expressed in the following forms:
[ existing_window_name ]
[ PARTITION BY expression [, ...] ]
[ ORDER BY expression [ ASC | DESC | USING operator ] [ NULLS { FIRST |
LAST } ] [, ...] ]
[ frame_clause ]
frame_clause defines a window frame for the window function. The window
function (not all window functions) depends on window frame and window

Data Warehouse Service
SQL Syntax 15 DQL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 682



frame is a set of relevant rows of the current query row. frame_clause can be
expressed in the following forms:
[ RANGE | ROWS ] frame_start
[ RANGE | ROWS ] BETWEEN frame_start AND frame_end
frame_start and frame_end can be expressed in the following forms:
UNBOUNDED PRECEDING
value PRECEDING (not supported for RANGE)
CURRENT ROW
value FOLLOWING (not supported for RANGE)
UNBOUNDED FOLLOWING

NO TICE

For the query of column storage table, only row_number window function is
supported, frame_clause is not supported.

● UNION clause
Computes the set union of the rows returned by the involved SELECT
statements.
The UNION clause has the following constraints:
– By default, the result of UNION does not contain any duplicate rows

unless the ALL option is specified.
– Multiple UNION operators in the same SELECT statement are evaluated

left to right, unless otherwise specified by parentheses.
– FOR UPDATE cannot be specified either for a UNION result or for any

input of a UNION.
General expression:
select_statement UNION [ALL] select_statement
– select_statement can be any SELECT statement without an ORDER BY,

LIMIT, FOR UPDATE, or FOR SHARE statement.
– ORDER BY and LIMIT in parentheses can be attached in a sub-

expression.
● INTERSECT clause

Computes the set intersection of rows returned by the involved SELECT
statements. The result of INTERSECT does not contain any duplicate rows.
The INTERSECT clause has the following constraints:
– Multiple INTERSECT operators in the same SELECT statement are

evaluated left to right, unless otherwise specified by parentheses.
– Processing INTERSECT preferentially when UNION and INTERSECT

operations are executed for results of multiple SELECT statements.
General format:
select_statement INTERSECT select_statement
select_statement can be any SELECT statement without a FOR UPDATE
clause.

Data Warehouse Service
SQL Syntax 15 DQL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 683



● EXCEPT clause
EXCEPT clause has the following common form:
select_statement EXCEPT [ ALL ] select_statement
select_statement can be any SELECT statement without a FOR UPDATE
clause.
The EXCEPT operator computes the set of rows that are in the result of the
left SELECT statement but not in the result of the right one.
The result of EXCEPT does not contain any duplicate rows unless the ALL
option is specified. To execute ALL, a row that has m duplicates in the left
table and n duplicates in the right table will appear MAX(m–n, 0) times in the
result set.
Multiple EXCEPT operators in the same SELECT statement are evaluated left
to right, unless parentheses dictate otherwise. EXCEPT binds at the same level
as UNION.
Currently, FOR UPDATE and FOR SHARE cannot be specified either for an
EXCEPT result or for any input of an EXCEPT.

● MINUS clause
Has the same function and syntax as EXCEPT clause.

● ORDER BY clause
Sorts data retrieved by SELECT in descending or ascending order. If the
ORDER BY expression contains multiple columns:
– If two columns are equal according to the leftmost expression, they are

compared according to the next expression and so on.
– If they are equal according to all specified expressions, they are returned

in an implementation-dependent order.
– Columns sorted by ORDER BY must be contained in the result set

retrieved by SELECT.

NO TICE

● If ORDER BY is not specified, the query results are returned following the
generation sequence in the database system.

● You can add the keyword ASC (in ascending order) or DESC (in descending
order) next to any expression in the ORDER BY clause. If the keyword is
not specified, ASC is used by default.

● To sort query results by case-insensitive Chinese pinyin, specify the UTF-8
or GBK encoding mode during database initialization. Run either of the
following commands:
initdb –E UTF8 –D ../data –locale=zh_CN.UTF-8 or initdb –E GBK –D ../
data –locale=zh_CN.GBK

● [ { [ LIMIT { count | ALL } ] [ OFFSET start [ ROW | ROWS ] ] } | { LIMIT
start, { count | ALL } } ]
The LIMIT clause consists of two independent LIMIT clauses, an OFFSET
clause, and a LIMIT clause with multiple parameters.
LIMIT { count | ALL }

Data Warehouse Service
SQL Syntax 15 DQL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 684



OFFSET start [ ROW | ROWS ]
LIMIT start, { count | ALL }
count in the clauses specifies the maximum number of rows to return, while
start specifies the number of rows to skip before starting to return rows.
When both are specified, start rows are skipped before starting to count the
count rows to be returned. A multi-parameter LIMIT clause cannot be used
together with a single-parameter LIMIT or OFFSET clause.

● FETCH { FIRST | NEXT } [ count ] { ROW | ROWS } ONLY
If count is omitted in a FETCH clause, it defaults to 1.

● FOR UPDATE clause
Locks rows retrieved by SELECT. This ensures that the rows cannot be
modified or deleted by other transactions until the current transaction ends.
That is, other transactions that attempt UPDATE, DELETE, or SELECT FOR
UPDATE of these rows will be blocked until the current transaction ends.
To avoid waiting for the committing of other transactions, you can apply
NOWAIT. Rows to which NOWAIT applies cannot be immediately locked.
After SELECT FOR UPDATE NOWAIT is executed, an error is reported.
FOR SHARE behaves similarly, except that it acquires a shared rather than
exclusive lock on each retrieved row. A share lock blocks other transaction
from performing UPDATE, DELETE, or SELECT FOR UPDATE on these rows,
but it does not prevent them from performing SELECT FOR SHARE.
If specified tables are named in FOR UPDATE or FOR SHARE, then only rows
coming from those tables are locked; any other tables used in SELECT are
simply read as usual. Otherwise, locking all tables in the command.
If FOR UPDATE or FOR SHARE is applied to a view or sub-query, it affects all
tables used in the view or sub-query.
Multiple FOR UPDATE and FOR SHARE clauses can be written if it is
necessary to specify different locking behaviors for different tables.
If the same table is mentioned (or implicitly affected) by both FOR UPDATE
and FOR SHARE clauses, it is processed as FOR UPDATE. Similarly, a table is
processed as NOWAIT if that is specified in any of the clauses affecting it.

NO TICE

● For SQL statements containing FOR UPDATE or FOR SHARE, their
execution plans will be pushed down to DNs. If the pushdown fails, an
error will be reported.

● The query of column storage table does not support for update/share.

● NLS_SORT
Indicates a field to be ordered in a special mode. Currently, only the Chinese
Pinyin order and case insensitive order are supported.
Valid value:
– SCHINESE_PINYIN_M, sorted by Pinyin order. To use this sort method,

specify GBK as the encoding format when you create the database. If you
do not do so, this value is invalid.

Data Warehouse Service
SQL Syntax 15 DQL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 685



– generic_m_ci, case-insensitive order.
● PARTITION clause

Queries data in the specified partition of a partitioned table.

Examples
Obtain the temp_t temporary table by a subquery and query all records in this
table.

WITH temp_t(name,isdba) AS (SELECT usename,usesuper FROM pg_user) SELECT * FROM temp_t;

Query all the r_reason_sk records in the tpcds.reason table and de-duplicate
them.

SELECT DISTINCT(r_reason_sk) FROM tpcds.reason;

Example of a LIMIT clause: Obtain a record from the table.

SELECT * FROM tpcds.reason LIMIT 1;

Example of a LIMIT clause: Obtain the third record from the table.

SELECT * FROM tpcds.reason LIMIT 1 OFFSET 2;
SELECT * FROM tpcds.reason LIMIT 2;

Query all records and sort them in alphabetic order.

SELECT r_reason_desc FROM tpcds.reason ORDER BY r_reason_desc;

Use table aliases to obtain data from the pg_user and pg_user_status tables.

SELECT a.usename,b.locktime FROM pg_user a,pg_user_status b WHERE a.usesysid=b.roloid;

Example of the FULL JOIN clause: Join data in the pg_user and pg_user_status
tables.

SELECT a.usename,b.locktime,a.usesuper FROM pg_user a FULL JOIN pg_user_status b on 
a.usesysid=b.roloid;

Example of the GROUP BY clause: Filter data based on query conditions, and
group the results.

SELECT r_reason_id, AVG(r_reason_sk) FROM tpcds.reason GROUP BY r_reason_id HAVING 
AVG(r_reason_sk) > 25;

Example of the GROUP BY CUBE clause: Filter data based on query conditions,
and group the results.

SELECT r_reason_id,AVG(r_reason_sk) FROM tpcds.reason GROUP BY CUBE(r_reason_id,r_reason_sk);

Example of the GROUP BY GROUPING SETS clause: Filter data based on query
conditions, and group the results.

SELECT r_reason_id,AVG(r_reason_sk) FROM tpcds.reason GROUP BY GROUPING 
SETS((r_reason_id,r_reason_sk),r_reason_sk);

Example of the UNION clause: Merge the names started with W and N in the
r_reason_desc column in the tpcds.reason table.

SELECT r_reason_sk, tpcds.reason.r_reason_desc
    FROM tpcds.reason
    WHERE tpcds.reason.r_reason_desc LIKE 'W%'
UNION
SELECT r_reason_sk, tpcds.reason.r_reason_desc
    FROM tpcds.reason
    WHERE tpcds.reason.r_reason_desc LIKE 'N%';

Data Warehouse Service
SQL Syntax 15 DQL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 686



Example of the NLS_SORT clause: Sort by Chinese Pinyin.

SELECT * FROM tpcds.reason ORDER BY NLSSORT( r_reason_desc, 'NLS_SORT = SCHINESE_PINYIN_M');

Case-insensitive order:

SELECT * FROM tpcds.reason ORDER BY NLSSORT( r_reason_desc, 'NLS_SORT = generic_m_ci');

Create the table tpcds.reason_p.

CREATE TABLE tpcds.reason_p
(
  r_reason_sk integer,
  r_reason_id character(16),
  r_reason_desc character(100)
)
PARTITION BY RANGE (r_reason_sk)
(
  partition P_05_BEFORE values less than (05),
  partition P_15 values less than (15),
  partition P_25 values less than (25),
  partition P_35 values less than (35),
  partition P_45_AFTER values less than (MAXVALUE)
);

Insert data.

INSERT INTO tpcds.reason_p values(3,'AAAAAAAABAAAAAAA','reason 1'),
(10,'AAAAAAAABAAAAAAA','reason 2'),(4,'AAAAAAAABAAAAAAA','reason 3'),
(10,'AAAAAAAABAAAAAAA','reason 4'),(10,'AAAAAAAABAAAAAAA','reason 5'),
(20,'AAAAAAAACAAAAAAA','reason 6'),(30,'AAAAAAAACAAAAAAA','reason 7');

Example of the PARTITION clause: Obtain data from the P_05_BEFORE partition
in the tpcds.reason_p table.

SELECT * FROM tpcds.reason_p PARTITION (P_05_BEFORE);
 r_reason_sk |   r_reason_id    |   r_reason_desc                   
-------------+------------------+------------------------------------
           4 | AAAAAAAABAAAAAAA | reason 3                          
           3 | AAAAAAAABAAAAAAA | reason 1                          
(2 rows)

Example of the GROUP BY clause: Group records in the tpcds.reason_p table by
r_reason_id, and count the number of records in each group.

SELECT COUNT(*),r_reason_id FROM tpcds.reason_p GROUP BY r_reason_id;
 count |   r_reason_id    
-------+------------------
     2 | AAAAAAAACAAAAAAA
     5 | AAAAAAAABAAAAAAA
(2 rows)

Example of the GROUP BY CUBE clause: Filter data based on query conditions,
and group the results.

SELECT * FROM tpcds.reason GROUP BY  CUBE (r_reason_id,r_reason_sk,r_reason_desc);

Example of the GROUP BY GROUPING SETS clause: Filter data based on query
conditions, and group the results.

SELECT * FROM tpcds.reason GROUP BY  GROUPING SETS ((r_reason_id,r_reason_sk),r_reason_desc);

Example of the HAVING clause: Group records in the tpcds.reason_p table by
r_reason_id, count the number of records in each group, and display only values
whose number of r_reason_id is greater than 2.

SELECT COUNT(*) c,r_reason_id FROM tpcds.reason_p GROUP BY r_reason_id HAVING c>2;
 c |   r_reason_id    

Data Warehouse Service
SQL Syntax 15 DQL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 687



---+------------------
 5 | AAAAAAAABAAAAAAA
(1 row)

Example of the IN clause: Group records in the tpcds.reason_p table by
r_reason_id, count the number of records in each group, and display only the
numbers of records whose r_reason_id is AAAAAAAABAAAAAAA or
AAAAAAAADAAAAAAA.

SELECT COUNT(*),r_reason_id FROM tpcds.reason_p GROUP BY r_reason_id HAVING r_reason_id 
IN('AAAAAAAABAAAAAAA','AAAAAAAADAAAAAAA'); 
count |   r_reason_id    
-------+------------------
     5 | AAAAAAAABAAAAAAA
(1 row)

Example of the INTERSECT clause: Query records whose r_reason_id is
AAAAAAAABAAAAAAA and whose r_reason_sk is smaller than 5.

SELECT * FROM tpcds.reason_p WHERE r_reason_id='AAAAAAAABAAAAAAA' INTERSECT SELECT * FROM 
tpcds.reason_p WHERE r_reason_sk<5;
 r_reason_sk |   r_reason_id    |     r_reason_desc                 
-------------+------------------+------------------------------------
           4 | AAAAAAAABAAAAAAA | reason 3                           
           3 | AAAAAAAABAAAAAAA | reason 1                           
(2 rows)

Example of the EXCEPT clause: Query records whose r_reason_id is
AAAAAAAABAAAAAAA and whose r_reason_sk is greater than or equal to 4.

SELECT * FROM tpcds.reason_p WHERE r_reason_id='AAAAAAAABAAAAAAA' EXCEPT SELECT * FROM 
tpcds.reason_p WHERE r_reason_sk<4;
r_reason_sk |   r_reason_id    |      r_reason_desc                  
-------------+------------------+------------------------------------
          10 | AAAAAAAABAAAAAAA | reason 2                          
          10 | AAAAAAAABAAAAAAA | reason 5                          
          10 | AAAAAAAABAAAAAAA | reason 4                          
           4 | AAAAAAAABAAAAAAA | reason 3                          
(4 rows)

Specify the operator (+) in the WHERE clause to indicate a left join.

select t1.sr_item_sk ,t2.c_customer_id from store_returns t1, customer t2 where t1.sr_customer_sk  = 
t2.c_customer_sk(+) 
order by 1 desc limit 1;
 sr_item_sk | c_customer_id
------------+---------------
      18000 |
(1 row)

Specify the operator (+) in the WHERE clause to indicate a right join.

select t1.sr_item_sk ,t2.c_customer_id from store_returns t1, customer t2 where t1.sr_customer_sk(+)  = 
t2.c_customer_sk 
order by 1 desc limit 1;
 sr_item_sk |  c_customer_id
------------+------------------
            | AAAAAAAAJNGEBAAA
(1 row)

Specify the operator (+) in the WHERE clause to indicate a left join and add a join
condition.

select t1.sr_item_sk ,t2.c_customer_id from store_returns t1, customer t2 where t1.sr_customer_sk  = 
t2.c_customer_sk(+) and t2.c_customer_sk(+) < 1 order by 1  limit 1;
 sr_item_sk | c_customer_id
------------+---------------
          1 |
(1 row)

Data Warehouse Service
SQL Syntax 15 DQL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 688



If the operator (+) is specified in the WHERE clause, do not use expressions
connected through AND/OR.

select t1.sr_item_sk ,t2.c_customer_id from store_returns t1, customer t2 where not(t1.sr_customer_sk  = 
t2.c_customer_sk(+) and t2.c_customer_sk(+) < 1);
ERROR:  Operator "(+)" can not be used in nesting expression.
LINE 1: ...tomer_id from store_returns t1, customer t2 where not(t1.sr_...
                                                             ^

If the operator (+) is specified in the WHERE clause which does not support
expression macros, an error will be reported.

select t1.sr_item_sk ,t2.c_customer_id from store_returns t1, customer t2 where (t1.sr_customer_sk  = 
t2.c_customer_sk(+))::bool;
ERROR:  Operator "(+)" can only be used in common expression.

If the operator (+) is specified on both sides of an expression in the WHERE
clause, an error will be reported.

select t1.sr_item_sk ,t2.c_customer_id from store_returns t1, customer t2 where t1.sr_customer_sk(+)  = 
t2.c_customer_sk(+);
ERROR:  Operator "(+)" can't be specified on more than one relation in one join condition
HINT:  "t1", "t2"...are specified Operator "(+)" in one condition.

15.3 SELECT INTO

Function

SELECT INTO defines a new table based on a query result and insert data
obtained by query to the new table.

Different from SELECT, data found by SELECT INTO is not returned to the client.
The table columns have the same names and data types as the output columns of
the SELECT.

Precautions

CREATE TABLE AS provides functions similar to SELECT INTO in functions and
provides a superset of functions provided by SELECT INTO. You are advised to use
CREATE TABLE AS, because SELECT INTO cannot be used in a stored procedure.

Syntax
[ WITH [ RECURSIVE ] with_query [, ...] ]
SELECT [ ALL | DISTINCT [ ON ( expression [, ...] ) ] ]
    { * | {expression [ [ AS ] output_name ]} [, ...] }
    INTO [ UNLOGGED ] [ TABLE ] new_table
    [ FROM from_item [, ...] ]
    [ WHERE condition ]
    [ GROUP BY expression [, ...] ]
    [ HAVING condition [, ...] ]
    [ WINDOW {window_name AS ( window_definition )} [, ...] ]
    [ { UNION | INTERSECT | EXCEPT | MINUS } [ ALL | DISTINCT ] select ]
    [ ORDER BY {expression [ [ ASC | DESC | USING operator ] | nlssort_expression_clause ] [ NULLS { FIRST | 
LAST } ]} [, ...] ]
    [ { [ LIMIT { count | ALL } ] [ OFFSET start [ ROW | ROWS ] ] } | { LIMIT start, { count | ALL } } ]
    [ FETCH { FIRST | NEXT } [ count ] { ROW | ROWS } ONLY ]
    [ {FOR { UPDATE | SHARE } [ OF table_name [, ...] ] [ NOWAIT ]} [...] ];

Data Warehouse Service
SQL Syntax 15 DQL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 689



Parameter Description
INTO [ UNLOGGED ] [ TABLE ] new_table

UNLOGGED indicates that the table is created as an unlogged table. Data written
to unlogged tables is not written to the write-ahead log, which makes them
considerably faster than ordinary tables. However, they are not crash-safe: an
unlogged table is automatically truncated after a crash or unclean shutdown. The
contents of an unlogged table are also not replicated to standby servers. Any
indexes created on an unlogged table are automatically unlogged as well.

new_table specifies the name of a new table, which can be schema-qualified.

NO TE

For details about other SELECT INTO parameters, see Parameter Description in SELECT.

Example
Add values that are less than 5 in the r_reason_sk column in the tpcds.reason
table to the new table.

SELECT * INTO tpcds.reason_t1 FROM tpcds.reason WHERE r_reason_sk < 5;
INSERT 0 6

Delete the tpcds.reason_t1 table.

DROP TABLE tpcds.reason_t1;

Helpful Links
SELECT

Data Warehouse Service
SQL Syntax 15 DQL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 690



16 TCL Syntax

16.1 TCL Syntax Overview
Transaction Control Language (TCL) controls the time and effect of database
transactions and monitors the database.

Commit

GaussDB(DWS) uses the COMMIT or END statement to commit transactions. For
details, see COMMIT | END.

Setting a Savepoint

GaussDB(DWS) creates a new savepoint in the current transaction. For details, see
SAVEPOINT.

Rollback

GaussDB(DWS) rolls back the current transaction to the last committed state. For
details, see ROLLBACK.

16.2 ABORT

Function

ABORT rolls back the current transaction and cancels the changes in the
transaction.

This command is equivalent to ROLLBACK, and is present only for historical
reasons. Now ROLLBACK is recommended.

Precautions

ABORT has no impact outside a transaction, but will provoke a warning.

Data Warehouse Service
SQL Syntax 16 TCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 691



Syntax
ABORT [ WORK | TRANSACTION ] ;

Parameter Description

WORK | TRANSACTION

Optional keyword has no effect except increasing readability.

Examples

Abort a transaction. Performed update operations will be undone.

ABORT; 

Helpful Links

SET TRANSACTION, COMMIT | END, ROLLBACK

16.3 BEGIN

Function

BEGIN may be used to initiate an anonymous block or a single transaction. This
section describes the syntax of BEGIN used to initiate an anonymous block. For
details about the BEGIN syntax that initiates transactions, see START
TRANSACTION.

An anonymous block is a structure that can dynamically create and execute stored
procedure code instead of permanently storing code as a database object in the
database.

Precautions

None

Syntax
● Enable an anonymous block:

[DECLARE [declare_statements]] 
BEGIN
execution_statements  
END;
/

● -- Start a transaction:
BEGIN [ WORK | TRANSACTION ]
  [ 
    { 
       ISOLATION LEVEL { READ COMMITTED | READ UNCOMMITTED | SERIALIZABLE | REPEATABLE 
READ }
       | { READ WRITE | READ ONLY }
      } [, ...] 
  ];

Data Warehouse Service
SQL Syntax 16 TCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 692



Parameter Description
● declare_statements

Declares a variable, including its name and type, for example, sales_cnt int.
● execution_statements

Specifies the statement to be executed in an anonymous block.
Value range: an existing function name

Examples
● Start a transaction block.

BEGIN;

● Start a transaction block at the REPEATABLE READ isolation level.
BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;

● Generate a string using an anonymous block.
BEGIN
dbms_output.put_line('Hello');
END;

Helpful Links
START TRANSACTION

16.4 CHECKPOINT

Function
A checkpoint is a point in the transaction log sequence at which all data files have
been updated to reflect the information in the log. All data files will be flushed to
a disk.

CHECKPOINT forces a transaction log checkpoint. By default, WALs periodically
specify checkpoints in a transaction log. You may use gs_guc to specify run-time
parameters checkpoint_segments and checkpoint_timeout to adjust the
atomized checkpoint intervals.

Precautions
● Only a system administrator has the permission to call CHECKPOINT.
● CHECKPOINT forces an immediate checkpoint when the related command is

issued, without waiting for a regular checkpoint scheduled by the system.

Syntax
CHECKPOINT;

Parameter Description
None

Examples
Set a checkpoint.

Data Warehouse Service
SQL Syntax 16 TCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 693



CHECKPOINT;

16.5 COMMIT | END

Function
COMMIT or END commits all operations of a transaction.

Precautions
Only the transaction creators or system administrators can run the COMMIT
command. The creation and commit operations must be in different sessions.

Syntax
{ COMMIT | END } [ WORK | TRANSACTION ] ;

Parameter Description
● COMMIT | END

Commits the current transaction and makes all changes made by the
transaction become visible to others.

● WORK | TRANSACTION
Optional keyword has no effect except increasing readability.

Examples
Commit the transaction to make all changes permanent.

COMMIT;

Helpful Links
ROLLBACK

16.6 COMMIT PREPARED

Function
COMMIT PREPARED commits a prepared two-phase transaction.

Precautions
● The function is only available in maintenance mode (when GUC parameter

xc_maintenance_mode is on). Exercise caution when enabling the mode. It is
used by maintenance engineers for troubleshooting. Common users should
not use the mode.

● Only the transaction creators or system administrators can run the COMMIT
command. The creation and commit operations must be in different sessions.

● The transaction function is maintained automatically by the database, and
should be not visible to users.

Data Warehouse Service
SQL Syntax 16 TCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 694



Syntax
COMMIT PREPARED transaction_id ;
COMMIT PREPARED transaction_id WITH CSN;

Parameter Description
● transaction_id

Specifies the identifier of the transaction to be submitted. The identifier must
be different from those for current prepared transactions.

● CSN(commit sequence number)
Specifies the sequence number of the transaction to be committed. It is a 64-
bit, incremental, unsigned number.

Helpful Links
PREPARE TRANSACTION, ROLLBACK PREPARED

16.7 PREPARE TRANSACTION

Function
PREPARE TRANSACTION prepares the current transaction for two-phase commit.

After this command, the transaction is no longer associated with the current
session; instead, its state is fully stored on disk, and there is a high probability that
it can be committed successfully, even if a database crash occurs before the
commit is requested.

Once prepared, a transaction can later be committed or rolled back with COMMIT
PREPARED or ROLLBACK PREPARED, respectively. Those commands can be issued
from any session, not only the one that executed the original transaction.

From the point of view of the issuing session, PREPARE TRANSACTION is not
unlike a ROLLBACK command: after executing it, there is no active current
transaction, and the effects of the prepared transaction are no longer visible. (The
effects will become visible again if the transaction is committed.)

If the PREPARE TRANSACTION command fails for any reason, it becomes a
ROLLBACK and the current transaction is canceled.

Precautions
● The transaction function is maintained automatically by the database, and

should be not visible to users.
● When running the PREPARE TRANSACTION command, increasing the value

of max_prepared_transactions in configuration file postgresql.conf. You are
advised to set max_prepared_transactions to a value not less than that of
max_connections so that one pending prepared transaction is available for
each session.

Syntax
PREPARE TRANSACTION transaction_id;

Data Warehouse Service
SQL Syntax 16 TCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 695



Parameter Description

transaction_id

An arbitrary identifier that later identifies this transaction for COMMIT PREPARED
or ROLLBACK PREPARED. The identifier must be different from those for current
prepared transactions.

Value range: The identifier must be written as a string literal, and must be less
than 200 bytes long.

Helpful Links

COMMIT PREPARED, ROLLBACK PREPARED

16.8 SAVEPOINT

Function

SAVEPOINT establishes a new savepoint within the current transaction.

A savepoint is a special mark inside a transaction that rolls back all commands
that are executed after the savepoint was established, restoring the transaction
state to what it was at the time of the savepoint.

Precautions
● Use ROLLBACK TO SAVEPOINT to roll back to a savepoint. Use RELEASE

SAVEPOINT to destroy a savepoint but keep the effects of the commands
executed after the savepoint was established.

● Savepoints can only be established when inside a transaction block. There can
be multiple savepoints defined within a transaction.

● SAVEPOINT cannot be used for functions, anonymous blocks, or stored
procedures.

● In the case of an unexpected termination of a distributed thread or process
caused by a node or connection failure, or of an error caused by the
inconsistency between source and destination table structures in a COPY
FROM operation, the transaction cannot be rolled back to the established
savepoint. Instead, the entire transaction will be rolled back.

● According to the SQL standard, a savepoint is destroyed automatically when
another savepoint with the same name is established. In GaussDB(DWS), old
savepoints are kept, though only the most recent one will be used for rollback
or release. Releasing the newer savepoint with RELEASE SAVEPOINT will
cause the older one to again become accessible to ROLLBACK TO
SAVEPOINT and RELEASE SAVEPOINT. Except for this, SAVEPOINT is fully
SQL conforming.

Syntax
SAVEPOINT savepoint_name;

Data Warehouse Service
SQL Syntax 16 TCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 696



Parameter Description

savepoint_name

Specifies the name of a new savepoint.

Examples
● Create a savepoint and undo all commands executed after the savepoint is

created.
START TRANSACTION;
INSERT INTO table1 VALUES (1);
SAVEPOINT my_savepoint;
INSERT INTO table1 VALUES (2);
ROLLBACK TO SAVEPOINT my_savepoint;
INSERT INTO table1 VALUES (3);
COMMIT;

Query the table content, which should contain 1 and 3 but not 2, because 2
has been rolled back.

● Create and then destroy a savepoint.
START TRANSACTION;
INSERT INTO table1 VALUES (3);
SAVEPOINT my_savepoint;
INSERT INTO table1 VALUES (4);
RELEASE SAVEPOINT my_savepoint;
COMMIT;

Query the table content, which should contain both 3 and 4.

Helpful Links

RELEASE SAVEPOINT, ROLLBACK TO SAVEPOINT

16.9 SET TRANSACTION

Function

SET TRANSACTION sets the characteristics of the current transaction. It has no
effect on any subsequent transactions. Available transaction characteristics include
the transaction separation level and transaction access mode (read/write or read
only).

Precautions

None

Syntax

Set the isolation level and access mode of the transaction.
{ SET [ LOCAL ] TRANSACTION|SET SESSION CHARACTERISTICS AS TRANSACTION }
  { ISOLATION LEVEL { READ COMMITTED | READ UNCOMMITTED | SERIALIZABLE | REPEATABLE READ }
  | { READ WRITE | READ ONLY } } [, ...]

Parameter Description
● LOCAL

Data Warehouse Service
SQL Syntax 16 TCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 697



Indicates that the specified command takes effect only for the current
transaction.

● SESSION
Indicates that the specified parameters take effect for the current session.
Value range: a string. It must comply with the naming convention.

● ISOLATION_LEVEL_CLAUSE
Specifies the transaction isolation level that determines the data that a
transaction can view if other concurrent transactions exist.

NO TE

● The isolation level of a transaction cannot be reset after the first clause (INSERT,
DELETE, UPDATE, FETCH, COPY) for modifying data is executed in the transaction.

Valid value:
– READ COMMITTED: Only committed data is read. This is the default.
– READ UNCOMMITTED: GaussDB(DWS) does not support READ

UNCOMMITTED. If READ UNCOMMITTED is set, READ COMMITTED is
executed instead.

– REPEATABLE READ: Only the data committed before transaction start is
read. Uncommitted data or data committed in other concurrent
transactions cannot be read.

– SERIALIZABLE: GaussDB(DWS) does not support SERIALIZABLE. If
SERIALIZABLE is set, REPEATABLE READ is executed instead.

● READ WRITE | READ ONLY
Specifies the transaction access mode (read/write or read only).

Examples
Set the isolation level of the current transaction to READ COMMITTED and the
access mode to READ ONLY.

START TRANSACTION;
SET LOCAL TRANSACTION ISOLATION LEVEL READ COMMITTED READ ONLY;
COMMIT;

16.10 START TRANSACTION

Function
START TRANSACTION starts a transaction. If the isolation level, read/write mode,
or deferrable mode is specified, a new transaction will have those characteristics.
You can also specify them using SET TRANSACTION.

Precautions
None

Syntax
Format 1: START TRANSACTION

Data Warehouse Service
SQL Syntax 16 TCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 698



START TRANSACTION
  [ 
    { 
       ISOLATION LEVEL { READ COMMITTED | READ UNCOMMITTED | SERIALIZABLE | REPEATABLE READ }
       | { READ WRITE | READ ONLY }
     } [, ...] 
  ];

Format 2: BEGIN

BEGIN [ WORK | TRANSACTION ]
  [ 
    { 
       ISOLATION LEVEL { READ COMMITTED | READ UNCOMMITTED | SERIALIZABLE | REPEATABLE READ }
       | { READ WRITE | READ ONLY }
      } [, ...] 
  ];

Parameter Description
● WORK | TRANSACTION

Optional keyword in BEGIN format without functions.

● ISOLATION LEVEL

Specifies the transaction isolation level that determines the data that a
transaction can view if other concurrent transactions exist.

NO TE

The isolation level of a transaction cannot be reset after the first clause (INSERT,
DELETE, UPDATE, FETCH, COPY) for modifying data is executed in the transaction.

Valid value:

– READ COMMITTED: Only committed data is read. This is the default.

– READ UNCOMMITTED: GaussDB(DWS) does not support READ
UNCOMMITTED. If READ UNCOMMITTED is set, READ COMMITTED is
executed instead.

– REPEATABLE READ: Only the data committed before transaction start is
read. Uncommitted data or data committed in other concurrent
transactions cannot be read.

– SERIALIZABLE: GaussDB(DWS) does not support SERIALIZABLE. If
SERIALIZABLE is set, REPEATABLE READ is executed instead.

● READ WRITE | READ ONLY

Specifies the transaction access mode (read/write or read only).

Examples
● Start a transaction in default mode.

START TRANSACTION;
SELECT * FROM tpcds.reason;
END;

● Start a transaction with the isolation level being READ COMMITTED and the
access mode being READ WRITE.
START TRANSACTION ISOLATION LEVEL READ COMMITTED READ WRITE;
SELECT * FROM tpcds.reason;
COMMIT;

Data Warehouse Service
SQL Syntax 16 TCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 699



Helpful Links
COMMIT | END, ROLLBACK, SET TRANSACTION

16.11 ROLLBACK

Function
Rolls back the current transaction and backs out all updates in the transaction.

ROLLBACK backs out of all changes that a transaction makes to a database if the
transaction fails to be executed due to a fault.

Precautions
If a ROLLBACK statement is executed out of a transaction, no error occurs, but a
warning information is displayed.

Syntax
ROLLBACK [ WORK | TRANSACTION ];

Parameter Description
WORK | TRANSACTION

Optional keyword that more clearly illustrates the syntax.

Examples
Undo all changes in the current transaction.

ROLLBACK;

Helpful Links
COMMIT | END

16.12 RELEASE SAVEPOINT

Function
RELEASE SAVEPOINT destroys a savepoint previously defined in the current
transaction.

Destroying a savepoint makes it unavailable as a rollback point, but it has no
other user visible behavior. It does not undo the effects of commands executed
after the savepoint was established. To do that, use ROLLBACK TO SAVEPOINT.
Destroying a savepoint when it is no longer needed allows the system to reclaim
some resources earlier than transaction end.

RELEASE SAVEPOINT also destroys all savepoints that were established after the
named savepoint was established.

Data Warehouse Service
SQL Syntax 16 TCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 700



Precautions
● Specifying a savepoint name that was not previously defined causes an error.
● It is not possible to release a savepoint when the transaction is in an aborted

state.
● If multiple savepoints have the same name, only the one that was most

recently defined is released.

Syntax
RELEASE [ SAVEPOINT ] savepoint_name;

Parameter Description

savepoint_name

Specifies the name of the savepoint you want to destroy.

Examples

Create and then destroy a savepoint.

BEGIN;
    INSERT INTO tpcds.table1 VALUES (3);
    SAVEPOINT my_savepoint;
    INSERT INTO tpcds.table1 VALUES (4);
    RELEASE SAVEPOINT my_savepoint;
COMMIT;

Helpful Links

SAVEPOINT, ROLLBACK TO SAVEPOINT

16.13 ROLLBACK PREPARED

Function

ROLLBACK PREPARED cancels a transaction ready for two-phase committing.

Precautions
● The function is only available in maintenance mode (when GUC parameter

xc_maintenance_mode is on). Exercise caution when enabling the mode. It is
used by maintenance engineers for troubleshooting. Common users should
not use the mode.

● Only the user that initiates a transaction or the system administrator can roll
back the transaction.

● The transaction function is maintained automatically by the database, and
should be not visible to users.

Syntax
ROLLBACK PREPARED transaction_id ;

Data Warehouse Service
SQL Syntax 16 TCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 701



Parameter Description
transaction_id

Specifies the identifier of the transaction to be submitted. The identifier must be
different from those for current prepared transactions.

Helpful Links
COMMIT PREPARED, PREPARE TRANSACTION

16.14 ROLLBACK TO SAVEPOINT

Function
ROLLBACK TO SAVEPOINT rolls back to a savepoint. It implicitly destroys all
savepoints that were established after the named savepoint.

Rolls back all commands that were executed after the savepoint was established.
The savepoint remains valid and can be rolled back to again later, if needed.

Precautions
● Specifying a savepoint name that has not been established is an error.
● Cursors have somewhat non-transactional behavior with respect to

savepoints. Any cursor that is opened inside a savepoint will be closed when
the savepoint is rolled back. If a previously opened cursor is affected by a
FETCH or MOVE command inside a savepoint that is later rolled back, the
cursor remains at the position that FETCH left it pointing to (that is, the
cursor motion caused by FETCH is not rolled back). Closing a cursor is not
undone by rolling back, either. A cursor whose execution causes a transaction
to abort is put in a cannot-execute state, so while the transaction can be
restored using ROLLBACK TO SAVEPOINT, the cursor can no longer be used.

● Use ROLLBACK TO SAVEPOINT to roll back to a savepoint. Use RELEASE
SAVEPOINT to destroy a savepoint but keep the effects of the commands
executed after the savepoint was established.

Syntax
ROLLBACK [ WORK | TRANSACTION ] TO [ SAVEPOINT ] savepoint_name;

Parameter Description
savepoint_name

Rolls back to a savepoint.

Examples
Undo the effects of the commands executed after my_savepoint was established.

ROLLBACK TO SAVEPOINT my_savepoint;

Cursor positions are not affected by savepoint rollback.

Data Warehouse Service
SQL Syntax 16 TCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 702



BEGIN;
DECLARE foo CURSOR FOR SELECT 1 UNION SELECT 2;
SAVEPOINT foo;
FETCH 1 FROM foo;
 ?column? 
----------
        1
ROLLBACK TO SAVEPOINT foo;
FETCH 1 FROM foo;
 ?column? 
----------
        2
COMMIT;

Helpful Links
SAVEPOINT, RELEASE SAVEPOINT

Data Warehouse Service
SQL Syntax 16 TCL Syntax

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 703



17 GIN Indexes

17.1 Introduction
Generalized Inverted Index (GIN) is designed for handling cases where the items
to be indexed are composite values, and the queries to be handled by the index
need to search for element values that appear within the composite items. For
example, the items could be documents, and the queries could be searches for
documents containing specific words.

We use the word "item" to refer to a composite value that is to be indexed, and
the word "key" to refer to an element value. GIN stores and searches for keys, not
item values.

A GIN index stores a set of (key, posting list) key-value pairs, where a posting list
is a set of row IDs in which the key occurs. The same row ID can appear in
multiple posting lists, since an item can contain more than one key. Each key
value is stored only once, so a GIN index is very compact for cases where the same
key appears many times.

GIN is generalized in the sense that the GIN access method code does not need to
know the specific operations that it accelerates. Instead, it uses custom strategies
defined for particular data types. The strategy defines how keys are extracted from
indexed items and query conditions, and how to determine whether a row that
contains some of the key values in a query actually satisfies the query.

17.2 Scalability
The GIN interface has a high level of abstraction, requiring the access method
implementer only to implement the semantics of the data type being accessed.
The GIN layer itself takes care of concurrency, logging and searching the tree
structure.

All it takes to get a GIN access method working is to implement multiple user-
defined methods, which define the behavior of keys in the tree and the
relationships between keys, indexed items, and indexable queries. In short, GIN
combines extensibility with generality, code reuse, and a clean interface.

There are four methods that an operator class for GIN must provide:

Data Warehouse Service
SQL Syntax 17 GIN Indexes

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 704



● int compare(Datum a, Datum b)
Compares two keys (not indexed items) and returns an integer less than zero,
zero, or greater than zero, indicating whether the first key is less than, equal
to, or greater than the second. Null keys are never passed to this function.

● Datum *extractValue(Datum itemValue, int32 *nkeys, bool **nullFlags)
Returns a palloc'd array of keys given an item to be indexed. The number of
returned keys must be stored into *nkeys. If any of the keys can be null, also
palloc an array of *nkeys bool fields, store its address at *nullFlags, and set
these null flags as needed. *nullFlags can be left NULL (its initial value) if all
keys are non-null. The returned value can be NULL if the item contains no
keys.

● Datum *extractQuery(Datum query, int32 *nkeys, StrategyNumber n, bool
**pmatch, Pointer **extra_data, bool **nullFlags, int32 *searchMode)
Returns a palloc'd array of keys given a value to be queried; that is, query is
the value on the right-hand side of an indexable operator whose left-hand
side is the indexed column. n is the strategy number of the operator within
the operator class. Often, extractQuery will need to consult n to determine
the data type of query and the method it should use to extract key values.
The number of returned keys must be stored into *nkeys. If any of the keys
can be null, also palloc an array of *nkeys bool fields, store its address at
*nullFlags, and set these null flags as needed. *nullFlags can be left NULL
(its initial value) if all keys are non-null. The returned value can be NULL if
the query contains no keys.
searchMode is an output argument that allows extractQuery to specify
details about how the search will be done. If *searchMode is set to
GIN_SEARCH_MODE_DEFAULT (which is the value it is initialized to before
call), only items that match at least one of the returned keys are considered
candidate matches. If *searchMode is set to
GIN_SEARCH_MODE_INCLUDE_EMPTY, then in addition to items containing
at least one matching key, items that contain no keys at all are considered
candidate matches. (This mode is useful for implementing is-subset-of
operators, for example.) If *searchMode is set to GIN_SEARCH_MODE_ALL,
then all non-null items in the index are considered candidate matches,
whether they match any of the returned keys or not.
pmatch is an output argument for use when partial match is supported. To
use it, extractQuery must allocate an array of *nkeys Booleans and store its
address at *pmatch. Each element of the array should be set to TRUE if the
corresponding key requires partial match, FALSE if not. If *pmatch is set to
NULL then GIN assumes partial match is not required. The variable is
initialized to NULL before call, so this argument can simply be ignored by
operator classes that do not support partial match.
extra_data is an output argument that allows extractQuery to pass
additional data to the consistent and comparePartial methods. To use it,
extractQuery must allocate an array of *nkeys pointers and store its address
at *extra_data, then store whatever it wants to into the individual pointers.
The variable is initialized to NULL before call, so this argument can simply be
ignored by operator classes that do not require extra data. If *extra_data is
set, the whole array is passed to the consistent method, and the appropriate
element to the comparePartial method.

● bool consistent(bool check[], StrategyNumber n, Datum query, int32 nkeys,
Pointer extra_data[], bool *recheck, Datum queryKeys[], bool nullFlags[])

Data Warehouse Service
SQL Syntax 17 GIN Indexes

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 705



Returns TRUE if an indexed item satisfies the query operator with
StrategyNumber n (or might satisfy it, if the recheck indication is returned).
This function does not have direct access to the indexed item's value, since
GIN does not store items explicitly. Rather, what is available is knowledge
about which key values extracted from the query appear in a given indexed
item. The check array has length nkeys, which is the same as the number of
keys previously returned by extractQuery for this query datum. Each element
of the check array is TRUE if the indexed item contains the corresponding
query key, for example, if (check[i] == TRUE), the i-th key of the extractQuery
result array is present in the indexed item. The original query datum is passed
in case the consistent method needs to consult it, and so are the
queryKeys[] and nullFlags[] arrays previously returned by extractQuery.
extra_data is the extra-data array returned by extractQuery, or NULL if
none.

When extractQuery returns a null key in queryKeys[], the corresponding
check[] element is TRUE if the indexed item contains a null key; that is, the
semantics of check[] are like IS NOT DISTINCT FROM. The consistent
function can examine the corresponding nullFlags[] element if it needs to tell
the difference between a regular value match and a null match.

On success, *recheck should be set to TRUE if the heap tuple needs to be
rechecked against the query operator, or FALSE if the index test is exact. That
is, a FALSE return value guarantees that the heap tuple does not match the
query; a TRUE return value with *recheck set to FALSE guarantees that the
heap tuple does match the query; and a TRUE return value with *recheck set
to TRUE means that the heap tuple might match the query, so it needs to be
fetched and rechecked by evaluating the query operator directly against the
originally indexed item.

Optionally, an operator class for GIN can supply the following method:

● int comparePartial(Datum partial_key, Datum key, StrategyNumber n, Pointer
extra_data)

Compares a partial-match query key to an index key. Returns an integer
whose sign indicates the result: less than zero means the index key does not
match the query, but the index scan should continue; zero means that the
index key matches the query; greater than zero indicates that the index scan
should stop because no more matches are possible. The strategy number n of
the operator that generated the partial match query is provided, in case its
semantics are needed to determine when to end the scan. Also, extra_data is
the corresponding element of the extra-data array made by extractQuery, or
NULL if none. Null keys are never passed to this function.

To support "partial match" queries, an operator class must provide the
comparePartial method, and its extractQuery method must set the pmatch
parameter when a partial-match query is encountered. For details, see Partial
Match Algorithm.

The actual data types of the various Datum values mentioned in this section vary
depending on the operator class. The item values passed to extractValue are
always of the operator class's input type, and all key values must be of the class's
STORAGE type. The type of the query argument passed to extractQuery,
consistent and triConsistent is whatever is specified as the right-hand input type
of the class member operator identified by the strategy number. This need not be

Data Warehouse Service
SQL Syntax 17 GIN Indexes

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 706



the same as the item type, so long as key values of the correct type can be
extracted from it.

17.3 Implementation
Internally, a GIN index contains a B-tree index constructed over keys, where each
key is an element of one or more indexed items (a member of an array, for
example) and where each tuple in a leaf page contains either a pointer to a B-tree
of heap pointers (a "posting tree"), or a simple list of heap pointers (a "posting
list") when the list is small enough to fit into a single index tuple along with the
key value.

Multi-column GIN indexes are implemented by building a single B-tree over
composite values (column number, key value). The key values for different
columns can be of different types.

GIN Fast Update Technique

Updating a GIN index tends to be slow because of the intrinsic nature of inverted
indexes: inserting or updating one heap row can cause many inserts into the
index. After the table is vacuumed or if the pending list becomes larger than
work_mem, the entries are moved to the main GIN data structure using the same
bulk insert techniques used during initial index creation. This greatly increases the
GIN index update speed, even counting the additional vacuum overhead.
Moreover the overhead work can be done by a background process instead of in
foreground query processing.

The main disadvantage of this approach is that searches must scan the list of
pending entries in addition to searching the regular index, and so a large list of
pending entries will slow searches significantly. Another disadvantage is that,
while most updates are fast, an update that causes the pending list to become
"too large" will incur an immediate cleanup cycle and be much slower than other
updates. Proper use of autovacuum can minimize both of these problems.

If consistent response time (of entity cleanup and of update) is more important
than update speed, use of pending entries can be disabled by turning off the
fastupdate storage parameter for a GIN index. For details, see the CREATE
INDEX.

Partial Match Algorithm

GIN can support "partial match" queries, in which the query does not determine
an exact match for one or more keys, but the possible matches fall within a
narrow range of key values (within the key sorting order determined by the
compare support method). The extractQuery method, instead of returning a key
value to be matched exactly, returns a key value that is the lower bound of the
range to be searched, and sets the pmatch flag true. The key range is then
scanned using the comparePartial method. comparePartial must return zero for
a matching index key, less than zero for a non-match that is still within the range
to be searched, or greater than zero if the index key is past the range that could
match.

Data Warehouse Service
SQL Syntax 17 GIN Indexes

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 707



17.4 GIN Tips and Tricks
Create vs. Insert

Insertion into a GIN index can be slow due to the likelihood of many keys being
inserted for each item. So, for bulk insertions into a table, it is advisable to drop
the GIN index and recreate it after finishing the bulk insertions. GUC parameters
related to GIN index creation and query performance as follows:

● maintenance_work_mem
Build time for a GIN index is very sensitive to the maintenance_work_mem
setting.

● work_mem
During a series of insertions into an existing GIN index that has fastupdate
enabled, the system will clean up the pending-entry list whenever the list
grows larger than work_mem. To avoid fluctuations in observed response
time, it is desirable to have pending-list cleanup occur in the background
(that is, via autovacuum). Foreground cleanup operations can be avoided by
increasing work_mem or making autovacuum more aggressive. However, if
work_mem is increased, a foreground cleanup (if any) will take a longer time.

● gin_fuzzy_search_limit
The primary goal of developing GIN indexes is to create support for highly
scalable full-text search in GaussDB(DWS). However, a very large set of
results may be returned by a full-text query for words that frequently occur. In
addition, reading many tuples from the disk and sorting them will consume
large numbers of resources, which is unacceptable for production.
To facilitate controlled execution of such queries, GIN has a configurable soft
upper limit on the number of rows returned: the gin_fuzzy_search_limit
configuration parameter. It is set to 0 (meaning no limit) by default. If a non-
zero limit is set, then the returned set is a subset of the whole result set,
chosen at random.

Data Warehouse Service
SQL Syntax 17 GIN Indexes

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 708


	Contents
	1 GaussDB(DWS) SQL
	2 Differences Between GaussDB(DWS) and PostgreSQL
	2.1 GaussDB(DWS) gsql, PostgreSQL psql, and libpq
	2.2 Data Type Differences
	2.3 Function Differences
	2.4 PostgreSQL Features Unsupported by GaussDB(DWS)

	3 Keyword
	4 Data Types
	4.1 Numeric Types
	4.2 Monetary Types
	4.3 Boolean Type
	4.4 Character Types
	4.5 Binary Data Types
	4.6 Date/Time Types
	4.7 Geometric Types
	4.8 Network Address Types
	4.9 Bit String Types
	4.10 Text Search Types
	4.11 UUID Type
	4.12 JSON Types
	4.13 HLL Data Types
	4.14 Object Identifier Types
	4.15 Pseudo-Types
	4.16 Data Types Supported by Column-Store Tables
	4.17 XML

	5 Constant and Macro
	6 Functions and Operators
	6.1 Logical Operators
	6.2 Comparison Operators
	6.3 Character Processing Functions and Operators
	6.4 Binary String Functions and Operators
	6.5 Bit String Functions and Operators
	6.6 Pattern Matching Operators
	6.7 Mathematical Functions and Operators
	6.8 Date and Time Processing Functions and Operators
	6.9 Type Conversion Functions
	6.10 Geometric Functions and Operators
	6.11 Network Address Functions and Operators
	6.12 Text Search Functions and Operators
	6.13 UUID Functions
	6.14 JSON Functions
	6.15 HLL Functions and Operators
	6.16 SEQUENCE Functions
	6.17 Array Functions and Operators
	6.18 Range Functions and Operators
	6.19 Aggregate Functions
	6.20 Window Functions
	6.21 Security Functions
	6.22 Set Returning Functions
	6.23 Conditional Expression Functions
	6.24 System Information Functions
	6.25 System Administration Functions
	6.25.1 Configuration Settings Functions
	6.25.2 Universal File Access Functions
	6.25.3 Server Signaling Functions
	6.25.4 Backup and Restoration Control Functions
	6.25.5 Snapshot Synchronization Functions
	6.25.6 Database Object Functions
	6.25.7 Advisory Lock Functions
	6.25.8 Residual File Management Functions
	6.25.9 Replication Functions
	6.25.10 Other Functions
	6.25.11 Resource Management Functions

	6.26 Data Redaction Functions
	6.27 Statistics Information Functions
	6.28 Trigger Functions
	6.29 XML Functions
	6.30 Call Stack Recording Functions

	7 Expressions
	7.1 Simple Expressions
	7.2 Conditional Expressions
	7.3 Subquery Expressions
	7.4 Array Expressions
	7.5 Row Expressions

	8 Type Conversion
	8.1 Overview
	8.2 Operators
	8.3 Functions
	8.4 Value Storage
	8.5 UNION, CASE, and Related Constructs

	9 Full Text Search
	9.1 Introduction
	9.1.1 Full-Text Retrieval
	9.1.2 What Is a Document?
	9.1.3 Basic Text Matching
	9.1.4 Configurations

	9.2 Table and index
	9.2.1 Searching a Table
	9.2.2 Creating an Index
	9.2.3 Constraints on Index Use

	9.3 Controlling Text Search
	9.3.1 Parsing Documents
	9.3.2 Parsing Queries
	9.3.3 Ranking Search Results
	9.3.4 Highlighting Results

	9.4 Additional Features
	9.4.1 Manipulating tsvector
	9.4.2 Manipulating Queries
	9.4.3 Rewriting Queries
	9.4.4 Gathering Document Statistics

	9.5 Parsers
	9.6 Dictionaries
	9.6.1 Overview
	9.6.2 Stop Words
	9.6.3 Simple Dictionary
	9.6.4 Synonym Dictionary
	9.6.5 Thesaurus Dictionary
	9.6.6 Ispell Dictionary
	9.6.7 Snowball Dictionary

	9.7 Configuration Examples
	9.8 Testing and Debugging Text Search
	9.8.1 Testing a Configuration
	9.8.2 Testing a Parser
	9.8.3 Testing a Dictionary

	9.9 Limitations

	10 System Operation
	11 Controlling Transactions
	12 DDL Syntax
	12.1 DDL Syntax Overview
	12.2 ALTER DATABASE
	12.3 ALTER FOREIGN TABLE (for GDS)
	12.4 ALTER FOREIGN TABLE (for HDFS or OBS)
	12.5 ALTER FUNCTION
	12.6 ALTER GROUP
	12.7 ALTER INDEX
	12.8 ALTER LARGE OBJECT
	12.9 ALTER REDACTION POLICY
	12.10 ALTER RESOURCE POOL
	12.11 ALTER ROLE
	12.12 ALTER ROW LEVEL SECURITY POLICY
	12.13 ALTER SCHEMA
	12.14 ALTER SEQUENCE
	12.15 ALTER SERVER
	12.16 ALTER SESSION
	12.17 ALTER SYNONYM
	12.18 ALTER SYSTEM KILL SESSION
	12.19 ALTER TABLE
	12.20 ALTER TABLE PARTITION
	12.21 ALTER TEXT SEARCH CONFIGURATION
	12.22 ALTER TEXT SEARCH DICTIONARY
	12.23 ALTER TRIGGER
	12.24 ALTER TYPE
	12.25 ALTER USER
	12.26 ALTER VIEW
	12.27 CLEAN CONNECTION
	12.28 CLOSE
	12.29 CLUSTER
	12.30 COMMENT
	12.31 CREATE BARRIER
	12.32 CREATE DATABASE
	12.33 CREATE FOREIGN TABLE (for GDS Import and Export)
	12.34 CREATE FOREIGN TABLE  (SQL on OBS or Hadoop )
	12.35 CREATE FOREIGN TABLE (for OBS Import and Export)
	12.36 CREATE FUNCTION
	12.37 CREATE GROUP
	12.38 CREATE INDEX
	12.39 CREATE REDACTION POLICY
	12.40 CREATE ROW LEVEL SECURITY POLICY
	12.41 CREATE PROCEDURE
	12.42 CREATE RESOURCE POOL
	12.43 CREATE ROLE
	12.44 CREATE SCHEMA
	12.45 CREATE SEQUENCE
	12.46 CREATE SERVER
	12.47 CREATE SYNONYM
	12.48 CREATE TABLE
	12.49 CREATE TABLE AS
	12.50 CREATE TABLE PARTITION
	12.51 CREATE TABLESPACE
	12.52 CREATE TEXT SEARCH CONFIGURATION
	12.53 CREATE TEXT SEARCH DICTIONARY
	12.54 CREATE TRIGGER
	12.55 CREATE TYPE
	12.56 CREATE USER
	12.57 CREATE VIEW
	12.58 CURSOR
	12.59 DROP DATABASE
	12.60 DROP FOREIGN TABLE
	12.61 DROP FUNCTION
	12.62 DROP GROUP
	12.63 DROP INDEX
	12.64 DROP OWNED
	12.65 DROP REDACTION POLICY
	12.66 DROP ROW LEVEL SECURITY POLICY
	12.67 DROP PROCEDURE
	12.68 DROP RESOURCE POOL
	12.69 DROP ROLE
	12.70 DROP SCHEMA
	12.71 DROP SEQUENCE
	12.72 DROP SERVER
	12.73 DROP SYNONYM
	12.74 DROP TABLE
	12.75 DROP TABLESPACE
	12.76 DROP TEXT SEARCH CONFIGURATION
	12.77 DROP TEXT SEARCH DICTIONARY
	12.78 DROP TRIGGER
	12.79 DROP TYPE
	12.80 DROP USER
	12.81 DROP VIEW
	12.82 FETCH
	12.83 MOVE
	12.84 REINDEX
	12.85 RESET
	12.86 SET
	12.87 SET CONSTRAINTS
	12.88 SET ROLE
	12.89 SET SESSION AUTHORIZATION
	12.90 SHOW
	12.91 TRUNCATE
	12.92 VACUUM

	13 DML Syntax
	13.1 DML Syntax Overview
	13.2 CALL
	13.3 COPY
	13.4 DELETE
	13.5 EXPLAIN
	13.6 EXPLAIN PLAN
	13.7 LOCK
	13.8 MERGE INTO
	13.9 INSERT and UPSERT
	13.9.1 INSERT
	13.9.2 UPSERT

	13.10 UPDATE
	13.11 VALUES

	14 DCL Syntax
	14.1 DCL Syntax Overview
	14.2 ALTER DEFAULT PRIVILEGES
	14.3 ANALYZE | ANALYSE
	14.4 DEALLOCATE
	14.5 DO
	14.6 EXECUTE
	14.7 EXECUTE DIRECT
	14.8 GRANT
	14.9 PREPARE
	14.10 REASSIGN OWNED
	14.11 REVOKE

	15 DQL Syntax
	15.1 DQL Syntax Overview
	15.2 SELECT
	15.3 SELECT INTO

	16 TCL Syntax
	16.1 TCL Syntax Overview
	16.2 ABORT
	16.3 BEGIN
	16.4 CHECKPOINT
	16.5 COMMIT | END
	16.6 COMMIT PREPARED
	16.7 PREPARE TRANSACTION
	16.8 SAVEPOINT
	16.9 SET TRANSACTION
	16.10 START TRANSACTION
	16.11 ROLLBACK
	16.12 RELEASE SAVEPOINT
	16.13 ROLLBACK PREPARED
	16.14 ROLLBACK TO SAVEPOINT

	17 GIN Indexes
	17.1 Introduction
	17.2 Scalability
	17.3 Implementation
	17.4 GIN Tips and Tricks


