Data Warehouse Service

SQL Syntax
Issue 01
Date 2022-07-29

HUAWEI

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2022. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

QD

nuawer and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.

Address: Huawei Industrial Base
Bantian, Longgang
Shenzhen 518129
People's Republic of China

Website: https://www.huawei.com

Email: support@huawei.com

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. i

https://www.huawei.com
mailto:support@huawei.com

Data Warehouse Service

SQL Syntax Contents

Contents
1 GAUSSDB(DWS) SQL.....ueiieiceeceeceteceeceecseeesneesseeeseecssessssesssesssessasessessssessassssesssssssssssasssssssans 1
2 Differences Between GaussDB(DWS) and PostgreSQL.........ccoeeeerereerercceseecaeeseesaenes 2
2.1 GaussDB(DWS) gsql, PostgreSQL psql, @nd LIDPq.....cceeierereririrrieirssene et sssssssssnsanes 2
2.2 DAt TYPE DIffEIENCES. ..ottt sttt s s es s st s et s bbb ans s benens 3
2.3 FUNCLION DIffEIENCES.....cou ettt ettt bbbt 3
2.4 PostgreSQL Features Unsupported by GauSSDB(DWS).......corieririniresesirsiseessessessssassessssssssssssssssssssssssssssnes 3
B KEYWOK.....oceeieeeeeeieeecneeneesneesnesaeeseesnsessesasssssssssssssssessesssssasssssssessssssesssssssssassasssssssessssssasssssaases 5
4 DAta TYPES...cccuierrueiernienseressanssssssossasssssssosssssssasssssssssssssssassssssssssasssssssssssssssssssssssossassssasssssassssas 34
AT NUMETIC TYPES...ueiririeeirieerieieisiseaststassstasa s sstas s st ases s seassseassseassseasssesssetassetsssesassassssaeaseseastassesaesetsssetassetassesassesasssnssnsas 34
4.2 MORNELATY TYPES..o ittt tses et sesebses et ss sttt sttt st h et h e bbbttt ettt s b es bt sebsseen 39
4.3 BOOLEAN TYPC.uouiiieiieirieieeiriieisss st sas s bbbt sssss s bbb s s s s s bbb bbbt s b s bbbt eb s s s b s s s bs b s s s sssessesas 40
A4 CNATaCEEE TYPES..uuierieririeeeirersesseseestsssssssssssssssssssesssssessnssssssssssssssssnssnssasssssssasssssssans 41
4.5 BINATY DAt TYPES. .ottt tsese et s st sttt st st sttt bbbttt bttt et st setas 43
2.6 DAt/ TIME TYPES...euriueiririreiriesiiriisisissssassesssssssssssss st ss s st ssssssssssssssssssssssesssssessssas s s s s s st ess s s ssessssas s st en s st essessssassansssssnens 44
A7 GEOMELIIC TYPES. .o eieieirietrietrieiree sttt esetsese s eae ettt st seae sttt ae st st bbbt b s b st st et st sea b st st seseteseassbesasan 51
4.8 NETWOIK AQAIESS TYPES....oviviiririerieiesiieisssss s sssssssasssssssssssssessssessssssssasss s s s ssesssssssassassssssssssssssssssssassassassssssnssnsanses 54
2.9 BIl SEING TYPES ettt ess st sttt sttt sttt e b e st st s st et se et ss et assetas et s senassens 56
.10 TEXE SEAICI TYPES....u ettt sttt sttt b b enstaesessnsoe 56
.17 UUID TYPeiiieieeieeieeeretretiseese s sss st sasesss s s e s s s s es s e e s e b bbb bs et b st e b s st e sanes s 59
412 JSON TYPES..ouiviiriemeireireeseeisetseieeisesse e sesebe e tas s ts st s st bbb e et et bbbt 60
.13 HLL DAt@ TYPES...oiueuriueireueirereirereiseietseisteistesstaesseae s tsesetsesessese s s e bbbt s st s st seae st se st st ese b e st aebebass et b etaetstaetseaetneaas 60
414 ODbjJECE IAENTITIEE TYPES.... ettt sttt bbbt st sss s sss bbbt st s s s s s s sa b s st st st essesssssnsansans 63
.15 PSEUAO-TYPES....eeeeeeeiereereerissisisisetsesseesess s ssssss s ssssssesssssasssss st s sssssssesssssssssssssasssssssssssssssssssssssssssssssssssssssnsassnssssssssssssssanen 65
4.16 Data Types Supported by ColUmMN-StOre TabLES..........coverirrireirieree ettt s saeeas 66
ZT7 XMLttt ettt b bbb bbb 68
5 Constant and MacCro..........iiininiinininctncctntssssssssssssssssssssssssssssssssssssssans 70
6 FUNCtioNs and OPerators.........ciiciiininininininincniscstscsisesessesssssessessssssssssssssessens 72
6.1 LOGICAL OPEIALOIS.....cceieeierierieieiesiee et ssse sttt ssssss s st s et ss s s ba b bbb s b s s s bbbt sn s s s e s s sassan s s s s s st s sessnen 72
6.2 COMPATISON OPEIALOIS....cviueeieeirieeireieirtiei sttt ettt tas et as st b s a bt setae st s stas et etas et asseeasbeeasseesssens 72
6.3 Character Processing FUNCLIONS @Nd OPEIAtors........ccoceeuniureiriunieneisieieeeisetseesessessesessssssssessssssssessessssssssssssssees 73
6.4 Binary String FUNCLIONS @Nd OPEIAtOrS.......c.oieierieeiririeisisissessesssesseses 93

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. i

Data Warehouse Service

SQL Syntax Contents
6.5 Bit String FUNCLIONS QN OPEIAtOrS.......ccvvrieririeirrirsissesienieessisssssssessssssssssssssasssnns 96
6.6 Pattern MatChing OPEIrAtOrS. ...ttt sttt sss bbb a e ssbas bbbt s st sessssansenssnans 97
6.7 Mathematical FUNCLIONS @Nd OPEIAtOrS.......cveuieiiieieieeeeee ettt s ss s e s nseses 102
6.8 Date and Time Processing FUNCLIONS @Nd OPEIratorS........coirereereeeinisieisissississessessessssssssssssssssssssssssssssssssenes 112
6.9 TYPe CONVEISION FUNCHIONS. ..ottt ettt en 128
6.10 Geometric FUNCLIONS @NA OPEIALOIS......covieeieeeeeiririeieisieessessessssss sttt ssssssssssssssssssssssssssssssssssssssasssssnsnsnns 135
6.11 Network Address FUNCLIONS @Nd OPEIAtors.........ccucieieveirieriisissiesesseesssssssssssssessesesssssssssssssesssssssssssssssssssassansans 145
6.12 Text Search FUNCLIONS @Nd OPEIATOIS. ...ttt st essass s sttt ss s s s s sssssssenes 151
B.T3 UUID FUNCHIONS....ctitieeieieeinecereteinecesetseeseesses et esse s e ess s e ssses e st se e s st b bbbt b et e taseses 157
B.T4 JSON FUNCLIONS...... ottt ettt sttt sttt sttt bbbt sttt sttt ettt eeas 158
6.15 HLL FUNCLIONS @NA OPEIALOIS ...t ssssss s ssasssssssssssssssssssssasssssans 158
6.16 SEQUENGCE FUNCLIONS. ..ottt ettt ettt ete s s s se st esesessesesesessesesesasssesesensasesesessasesesensesesetensasesesens 169
6.17 Array FUNCLIONS @Nd OPEIAtOIS.. ...ttt issssstsessasssss s sss s st sssnes 171
6.18 RaNge FUNCLIONS @NA OPEIALOIS ...ttt sstsssssssssesss s st s st ssssssssssssasssssssesssssssssssssssassansans 175
6.19 AQQregate FUNCLIONS........cvirieierrieieceisitsste ettt sttt a st s e st s s e sssssessssssss et ssssssssessssssesssssssssnsanes 180
6.20 WINAOW FUNCLIONS. ..ottt es e ssees st ssees s st bbbt sttt 191
6.2 SECUITLY FUNCHIONS. ...ttt ettt sttt sttt eb bbbt st se sttt es bbb bbb e b st 201
6.22 Set RELUIMING FUNCLIONS. ...ttt ettt st ettt sttt 206
6.23 Conditional EXPression FUNCLIONS.........c.ccirierieiierieeeceee sttt ses s ssssss s s ssssesssssssssssssssssssssssssssesassansans 208
6.24 System INfOrmMation FUNCLIONS..........o sttt sttt s s s st nens 212
6.25 System AdMINIStration FUNCLIONS.........ccovririeirircireeinie ettt sttt ssssssssssss s s st snsssssssssssssssanssnsnns 227
6.25.1 Configuration SEttINGS FUNCLIONS........co.oirireeeeeie ittt ssses s sss st ss st snsans 227
6.25.2 UnNiversal File ACCESS FUNCLIONS. ...ttt cssessetesssessesessses st bbb et ssetseeen 227
6.25.3 Server SigNaling FUNCLIONS. ...ttt s s s bbbt s s sassss bbb s bt sesanssssaesanes 229
6.25.4 Backup and Restoration CONtrol FUNCLIONS........c.ccieiieiieeci st sseesseessee s sss s s e ssss s e sssans 230
6.25.5 Snapshot Synchronization FUNCLIONS.. ..ottt ssssssssss s sssssss s ssssssssssnssnsas 237
6.25.6 Database ODJECE FUNCLIONS. ...ttt easeasess ettt ss sttt s e snsees 237
6.25.7 AdVISOIY LOCK FUNCLIONS......veeierieeieirisieceieses sttt sssss sttt ssssssssss s st s sssssssssssssssssssssssssssessnssssssssssans 240
6.25.8 Residual File Management FUNCLIONS...........cocririeiieiieeieeeeeisie st tseesasssssas st sss s s b s sessssansans 242
6.25.9 REPLICALION FUNCLIONS. ...ttt b s bbbt sa e a e s s bbb e s s b as b saesassesasassananes 251
6.25.T0 OTNEE FUNCLIONS......oteieeieeieeieieistesieteeteseesiess sttt sse s s b bt st s s s s sas s bbbt ss s s s s s sas s s sn b st s sessnssessnsanen 259
6.25.11 Resource Management FUNCLIONS. ..ottt sttt et sttt 267
6.26 Data REdACLiON FUNCLIONS. ...ttt ses st et e et ettt 274
6.27 Statistics INfOrmMation FUNCLIONS. ..ottt sas bbb s st s s sssansans 276
6.28 THIGGEE FUNCLIONS ..ottt sttt b st e e e s s eeasseaes 291
B.29 XIMIL FUNCLIONS..c...eiieeieieieieesisee ettt s s e ss s s sas st ss st se st ss s e st sssssssssesesssssssssesasssssssssassessssesassensssensessnsssananen 291
6.30 Call Stack ReCOrdiNgG FUNCLIONS.........cuiueeerieerieeeteeeei ettt s sas s sss s s ss s ss s ssssesassesss s sassesanes 299
T EXPIrESSIONS.......occeeecueecercrneesaeeseessesesssesasessesssasssassssssssesssasssssssassssasssassssssssssssesssasssasessasssssssns 302
7.1 SIMPLE EXPIESSIONS.....evueveriecirriiereeeisrisistsstsseseesessesssss s st sssssssesssssssssss st st sssessessesssssssssssssssssssessssssssssssssssessssssnssssssssnsas 302
7.2 CONAITIONAL EXPIESSIONS.......ceeeieeieciriiisiesiesiseeesisss st tssssssssss s bbb s e s s s s ssssssbss bbb ssessesssssssasses s st ensesssssnsansanes 303
7.3 SUDQUETY EXPIESSIONS......ceieieeieeieeiseeereiseesteseasiss s sssts s easess s st essssssssessessessssssssssssesssssessessenssssssnssssssssessesssnssnsssssssnes 308
T4 ATTQY EXPIESSIONS.....ouieeieeeeieeieieeir st teeestsesetsesstseastssse st sass s st seassseassseasssesssssssssssesssssssssesassssassseassesassseasssessssssssssssssssansns 311

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. iii

Data Warehouse Service

SQL Syntax Contents
7.5 ROW EXPIESSIONS.....ctrieeireuiieeieieiteeieasesstsests sttt seastseastsesessese s ssssassetasssesssseasssesststastseassesssssstsssssssssssssssassssassssassssasscans 312
8 TYPE CONVEISION....ccueeeeeeeeeecneeceeesenesneesseessesessessansssesssesssasssassssesssasssassssssssssssasssasssassssasssans 314
8.1 OVEIVIEW...eoeieieeeieieeie sttt sttt as s s e s e se s s e s e s e s bbb st s e bbb s n s s en s en s s s st nsssrnns 314
8.2 OPBIALONS....eeee sttt ettt bttt ettt et ettt ettt et b et eae 316
8.3 FUNCLIONS....cceeiciecictreitcieie ettt ese s et st s et sttt st aes e s sasncs 318
8.4 VAlUB STOTAGE. ...ttt ettt s et et s bbb e e s enss e sens e 320
8.5 UNION, CASE, and Related CONSLIUCES........cocvivirieeeeeetctcecteeetetetetete ettt st tesesesste st s st sesssssesssssesesesesssssesans 321
O FULL TEXE SEAICR......ceeeeeeeeeceeeeceeeeceesntceeseeesessaesseesasessssanessssassssassssssesassssesassssessasssasans 324
O.T INEFOAUCTION ottt bbbttt 324
O.T.T FULL-TEXE REEFIEVAL ...cuveeriireecececeecireireticireiece ettt ees e se bbbttt sttt 324
9.1.2 WHAT IS @ DOCUMEBNT?......o ittt ittt s s ses st s ss s s ss e ss s s s s sssssnsessssesansessssesansssnsansnses 325
9.1.3 BASIC TEXE MAtCNING....coieceeeeeieeieireee sttt s bbb s bbbt s s s s s s s s s bt et sanssssansansans 326
0.1 4 CONTIGUIATIONS.....oruieieeiieierieiseisi sttt s s s s s ss s s s s s s bbbt sssa s s s s s s s b s st en s st snsessssssansansans 327
0.2 TADLE NG INAEX ettt e et b bttt 327
9.2.1 SEAICNING @ TADLE.c.oeieee ettt ettt bbb s bbb bbbt ae s s ssas 328
9.2.2 CreatiNg @N INAEX....oueecieeeieeeieieeieeeeieeetseeese sttt st s st sss s s st s s s ssessssessssesassessssesassessssessssssssssssssssssssssessssesassesans 329
9.2.3 CONSLrAINTS ON INAEX USE....coeiiririieeiereeie sttt sttt sss s ss s bttt ss s ss s bbbt ssnsassansansensns 330
9.3 CONLIOLlING TEXE SEAICH.....ceieeeeeieeirieis sttt se st s st s bbbt s s s s s st nsens st ssnssnsas 331
O.3.1 PArSiNG DOCUMENTS......cueiieritericerieee ettt sttt sttt et ettt e b e s st e searesetas 331
9.3.2 PArSING QUEKIES.....cueeeeieeeeeeteisieiestetsesee sttt astsss s st e s st sessssssse s ssssssessssssssesssssassesessssssssassssssssesssssssessnssssesnssssesesnsnes 332
9.3.3 RANKING SEAICI RESULLS.......coecveiericeceeie ittt s s bbb s e s ssassan s s st e 333
9.3.4 HighLIGOTiNG RESULES........cveiviiericeeeieieisisis ittt es s bbb sss st s s s s sss bbbt essssssssssasssss st snssssessnsansans 335
0.4 AdAItIONAL FEATUIES......cueeieeee ettt s bbbttt 337
9.4.1 MaNIPULALING ESVECETON.....cu ittt ettt st ss st a st sn st sesassassrssassnsns 337
9.4.2 MANIPULAtING QUETIES......ueueeieieireieireiriie ettt ee sttt ss st sses et e b s bsesseasesssassnstas 338
9.4.3 REWIITING QUEKIES......eieieeeiee ettt ettt ettt ettt ettt bttt bbbt s et b ettt as b e bt eas st et e s asbeseaeas 338
9.4.4 Gathering DOCUMENT SEAISTICS. ..ottt sss bbbt ss s bbbt ssssssssssanssnsas 339
O.5 PAISEIS......coiiecirecireecireee ettt ettt sttt st s s eaes 340
0.6 DiICLIONAIIES...cuceeeeeeecincrereierreieea et st et es st st s sttt a e ta s seaseasenen 344
O.6.T OVEBIVIEW..c ittt ettt ettt st as st et e s s st st easseseasesss et eas s s e s e s et etssasseseessssssseeasassesesesssssessesssnsnsaen 344
0.6.2 STOP WOKAS....ooiiiteieeiiciieiecie sttt sttt s s bbb s a b bbbt s s a b s s st b s b e s s b s sasb s b sa st s snensans 345
0.6.3 SIMPLE DICLIONAIY ...ttt s s s s s bbbt s s st s s s s s s s bbb en s st ebssssssasssnsansans 346
9.6.4 SYNONYM DICLIONAIY..u vttt ettt bbbttt et eeasseeas 347
9.6.5 THESAUIUS DICLIONAIY....uuieie ettt sttt st s s et s s st sa s s et aasensssnsas 349
0.6.6 ISPELL DICLIONAIY...ceuiirieeiriee ettt eas s e e skttt st e e st esstes 350
9.6.7 SNOWDALL DICLIONAIY ...ttt sttt bbb bbb bbb s s bbbt st sesssan 351
0.7 CONTIGUIATION EXAMPLES ...ttt sstssessse s sssss sttt ssssssss bbb st esss st sss s bbbt essessessssassansassnsnen 351
9.8 Testing and Debugging TEXt SEAICH.......o. ettt b st sssnssssnsans 353
9.8.1 TEStING @ CONTIGUIATION.....cuuiiieieeceeieieeei sttt sttt ettt se et s s s s s s s et et esssensssnsns 353
O.8.2 TESTING @ PAISEI ...ttt et et bt et ettt bbbt b etacbeeae 354
9.8.3 TESTING @ DICHIONANY.c.iiiieieeeeee ettt sttt sttt senasssnsssnns 355
0.9 LIMIEATIONS...ceieeeieicictreiseictecieee ettt seisesetae et bbb s bbb e ettt bbb ensessennes 355

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. iv

Data Warehouse Service

SQL Syntax Contents
T0 SYStemM OPEratioN..........cceecieceriienieciennecteseesnesnssssesassssssssessesasssssssssssssassssssassssssssssassssss 357
11 Controlling TranSACLIONS........ccccvieriereniereecicseennesseesnsessesanessesanssassassssssssessesassssasssssassans 358
T2 DDL SYNEAX...uuuiiiiiiiininieiininsinneiieisssissstssesssssssstsssesssessssssssessssssssssssssssssssessssssssssssssssassns 359
T2.7 DDL SYNEAX OVEIVIEW....cuiuiiieeirieeirieeieeeieesteisisistsastssss st sstaesstss s s st s ssssssassssassseassstassstassetassesassssssassssassssnsassnssnes 359
T2.2 ALTER DATABASE. ...ttt ettt sttt ettt ettt ettt eb et ae et e bt e s et seneansenas 366
12.3 ALTER FOREIGN TABLE (fOr GDS)....vtiiirierieriiririsessisinsessesiesssnsssssssssssssssanes 368
12.4 ALTER FOREIGN TABLE (fOr HDFS OF OBS).....coeieieieieieeieieeiseeeessess st isssssassssssssss st sssassssssssasssssassnsnes 369
T2.5 ALTER FUNGCTION . ..ttt ettt ettt ettt ettt ettt et st es et e bt s bees 371
T2.6 ALTER GROUP...... ettt ettt sttt sttt sttt a e st et as st et easassesesnassesenaen 374
T2.7 ALTER INDEX .ttt ettt ettt ettt sttt bttt st st sttt e et b ettt ae bt et e st ebeaeaa 374
12.8 ALTER LARGE OBJECTciiitiiiieitieeneisetisieisieeseeistsess et st sstas sttt bt et e et st stas e sesssseassens 376
12.9 ALTER REDACTION POLICY ...ttt ettt sttt ettt ettt ettt etstae s et eeacaeseteen 377
12.70 ALTER RESOURCE POOL.....cuiuiiiiriienineisitisisisieises st st tassssss s ssssss s ss s ssesssstassstsssssssssassasassnssssnssssassnes 379
T2 7T ALTER ROLE....c ettt ettt bbbttt sttt e bt ae s bt asae st ens 380
12.12 ALTER ROW LEVEL SECURITY POLICY ..ttt s esstsese et aseaesesesseasacsesssens 382
T2 3 ALTER SCHEMA ...ttt ettt ettt ettt ettt e s st easa s et easansessnens 383
T2.74 ALTER SEQUENCE......oc ottt ettt sttt ettt sttt sttt st ettt st a et sbaeaeas 385
T2.15 ALTER SERVER......co ittt sttt sttt ettt sttt sttt bbbt et bt 386
T2.16 ALTER SESSION ..ttt ettt ettt ettt ettt bttt bbbttt bbbt b et st aeae 389
T2.17 ALTER SYNONYM...cooiiirieirieirieireieististseistsesstes sttt ettt essssesessesessssssssstassesassssassstassstassstusssssssstssssssesassesassesassesas 390
12.18 ALTER SYSTEM KILL SESSION. ...ttt ettt ettt ettt sttt bbbt ae s ses 391
T2.T9 ALTER TABLE... .ttt ettt ettt ettt ettt ettt sttt bt se e sstan 392
12.20 ALTER TABLE PARTITION . ..ottt sttt ettt sttt et st s st ass e s et tassesetsensasseseen 404
12.27 ALTER TEXT SEARCH CONFIGURATION.....cottuttrietieirintceeietrteeetststece sttt sttt sttt e sesnes 409
12.22 ALTER TEXT SEARCH DICTIONARY ..ottt tsisietstsesstsessss st assassesssssssesssssssssssssssssssessssssssesssssssssasns 412
T2.23 ALTER TRIGGER ...ttt ettt sttt ettt sttt sttt et 413
T2.24 ALTER TYPE....e ettt sttt sttt bbb sttt st sttt st b e b b et et esastes 414
T2.25 ALTER USER ...ttt ettt et sttt ettt sttt sttt st aeae 417
T2.26 ALTER VIEW ...ttt sttt st sttt ettt et ettt b eeasbens 419
12.27 CLEAN CONNECTIONttt ettt ettt ettt sttt bttt et eas et et seasaesesstasassettaen 421
T2.28 CLOSE.....o ettt ettt ettt ettt bttt sttt b ettt st acaeaes 422
T2.29 CLUSTER. ...ttt ettt sttt sttt ettt st s ae st e e e e s e s et aeae s et st seassebeeaeass et et seasasseteasansessnsans 423
T2.30 COMMENT .ttt ettt ettt ettt sttt ettt e b et bbbt ettt et eae b et etaen 425
12.37 CREATE BARRIER ...ttt ettt sttt sttt bttt baes 427
T2.32 CREATE DATABASE. ...ttt ettt ettt ettt bttt ettt ettt bt aebettaen 428
12.33 CREATE FOREIGN TABLE (for GDS ImMport and EXPOIt) ...t sesesssessnesns 431
12.34 CREATE FOREIGN TABLE (SQL 0N OBS OF HAAOOP) .oviuiieeeeieneeieieiseies et ssssssassssssssssss s ssssnens 445
12.35 CREATE FOREIGN TABLE (for OBS IMport and EXPOIt)........cvrireeerersereinserienenesisssssssssssssssssssssssssssssenes 459
12.36 CREATE FUNGCTION. ...ttt ettt te sttt et tas e ettt s st seseass e s st sasses et sassssstssassssesstasassesssnsassns 470
T2.37 CREATE GROUP.....c sttt sttt sttt sttt ettt sttt bbb eas 477
T2.38 CREATE INDEX.....ciiiieieiteirieesieeisistesietsessssssststss st sstasssssssessassesessssssssessssssssessssssssesssnssssessssssssesessssssssessnssesessssssssess 478
12.39 CREATE REDACTION POLICY ...ttt ettt sttt sttt se et eae ettt stae st etasassenas 483

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. v

Data Warehouse Service

SQL Syntax Contents
12.40 CREATE ROW LEVEL SECURITY POLICY....ooiiorirririirierienisisissas 485
12.47 CREATE PROGCEDURE......cootiieiieietcictetse sttt ss st sss st sss st sssss bbb s s s sssssssssssessssessnssansesansessssanansas 489
12.42 CREATE RESOURCE POOL.....uiiiiiiieeniieiesisisissisississesssassassassassssnns 492
T2.43 CREATE ROLE.....coieeee ettt sttt sss st s st st s s s st s s st s e snssessnsanen 494
T2.44 CREATE SCHEMA ...ttt sttt sas sttt ss s st b st s b s s eb s s esas s e s st et sstenssbenssssnsessnsesansenanens 500
12.45 CREATE SEQUENQCE..........ioieieieietsetstetiesesesss st sss st ss s ssssss bbbt s s s s sas bbbt es s ssessssassansansansans 501
12.46 CREATE SERVER....... oottt sttt se st sss s sss sttt s s s s s s st es s sssasesssssssssssnssssessssnsssssssansnns 504
12.47 CREATE SYNONYMiu..ooioiiieicieisieeeisesiesesssssesssassssesssessssesssssssssssssssssssessssssssssssssssesssssssssessssesssssssssessssesssssssssssssssess 507
T2.48 CREATE TABLE......o ittt bbb sss bbbt s s s s bbb s es s s s s s b s b s en s st st s sessen 509
12.49 CREATE TABLE AS.....ooe ettt ittt ssssss st sttt ss s st s as bbbt s st s s s s sss s s st ensesssssssssns 528
12.50 CREATE TABLE PARTITION.....ceiiitriiteirteisieestesestseetssesssssssssssssssssssssssssassessssssssssssessssssssssssssessssessssessssessssnssssssssanes 532
12.57 CREATE TABLESPACE ...ttt sttt s s bbb s s ss s s s s bbbt s s s e s s st sssssssesansanes 545
12.52 CREATE TEXT SEARCH CONFIGURATION......cotririririrerrireesseseensessens 547
12.53 CREATE TEXT SEARCH DICTIONARYoovririeeriririeistsessssssssessssssssssssssssssesssssssssessssssssssssssssssssssessssessssessssessssess 550
12.54 CREATE TRIGGER........ooooiririitrieeteeeteete sttt sesssssss s s st st ss s bbbt s st et s s ss s s b s s st s sssessessssansansansans 555
T2.55 CREATE TYPE.....o ettt sttt sttt ass s s s st s s s s st essessnasessssanssnsas 560
T2.56 CREATE USER.....oiee ettt ettt sttt et ettt b s et st s s en s s s st s s senssas 568
T2.57 CREATE VIEW ...ttt sttt ss s bbbt bbbt ss sttt s s s s s s sansnsansans 569
T2.58 CURSOR.....ourireirieiretseisteseis s sss s stssssssssssssssss s ssss st s sssssssssssssssssasssssssssssssssssssssssssssssssssnssssssssssssssssasssssessssnsssssssansans 572
T2.59 DROP DATABASE ..ottt sttt ettt st sas s s s s sas s s s s sss s s s s sassesssbessssesassessssensesesansansnssssnsas 574
12.60 DROP FOREIGN TABLE.......oiieeee ettt ssssss st st ssssssssss s s s st ss st st sssssssassssssssessessssssssssansanssnsansnns 575
12.67 DROP FUNUCTION.....criririririreireissinseesessssssssisssassssssssassans 576
T2.62 DROP GROUP......coieteetrtctseetesetsists sttt st s s sttt st s s s s s st b s s b e s s s e s st s s sesas s s s sssnsnsnsns 577
12.63 DROP INDEX.....oieieieirisiieieeiesesiesisss st ssssessssssssssss s ssasssssssssssssssssssasssssassssssssesssssssansassans 577
12.64 DROP OWNED......oiiirieireirieniisesisisississessesessasssssssssssssssssssssssssssssssssssesssssssssses 578
12.65 DROP REDACTION POLICYoiiteieireeireesisisiseesseetsseessesssessssessssessssessssessssessssessssesssssnsns 578
12.66 DROP ROW LEVEL SECURITY POLICYoriiiiririieriseiseieeeessss s ssssssesssanes 579
12.67 DROP PROCEDURE.......c.irieririerieisisississesseseessnes 580
12.68 DROP RESOURCE POO.....covieeieiiririeiesieisisisissssesssssssssssssssssssssssssssessssssssssssssssssssssssssssssssssessssessssssssesssssssssesssseses 581
12.69 DROP ROLE......coiiiiiiriiieeieiiesiessisiss s tssess s st s s st ssss s sssssssssss bbbt essss s sssssssss s s st s sessesssssssansnssssnsessssnsans 581
12.70 DROP SCHEMAL........oieeeeereeisistssisstsetstessss s ssssss st sssssssss s sss s s s sssssessssas s st s sesssesesssssssssssssssssnssssessnsssssssassnssnnsns 582
12.77 DROP SEQUENCE.......oueiiteeeieesieisteesieeeetesesssseesss st tess st tsssstesssssssssessssessssssssssssssssessssessssessssessssesssssssssssessssessssesans 583
12.72 DROP SERVER ...ttt sttt sttt sss s sas bbbt ss s s s bs st st se s s s bbbt en s s s s s ebassans s sansneas 584
12.73 DROP SYNONYMu..oiririririsisisirsissessissesssassans 584
T2.74 DROP TABLE......o ittt ettt ss sttt ss s s as st se st b st bss bbb s sesen s s s s s s s snsesesssas 585
12.75 DROP TABLESPAGCE.........ooieieieieeeietee sttt sass s sss s s st sss s es s s s s s bt esssssessssasssnssnssssnsessssnsans 586
12.76 DROP TEXT SEARCH CONFIGURATION.....ooiuiereereerierenisisississtsssessssasssssenes 587
12.77 DROP TEXT SEARCH DICTIONARYcouierreietieerienieenssssssesssssssssssssssesssssssssssssssssessssssssssssssessssessssessssessssesassessssses 588
12.78 DROP TRIGGER.........oiiiiiriiiesieieeeieisietsts st ssssss s st s s s bbbt s s s s s sas s s bt es s sssssssasbsssensensssessnssnsans 589
12.79 DROP TYPE.....ooieieieirrireiseististessssssss s sssnnsans 590
T2.80 DROP USER.....coieeiiieieieisieisieeste sttt s s sss st sas e s s e s st ss s s s s s s s s s s s st b s s s s sessssessssessnsessnsnas 590
T2.8T DROP VIEW......ooeeieirieieieiseiesiseessse s sss s sss s ssssss s ss st ssssssssssssssssssssssssesssssssssssssssssssssssssssnssnsassassasssssnssssnsansansans 592

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. Vi

Data Warehouse Service

SQL Syntax Contents
T2.82 FETCH .ottt seesesesse s et sses s s s e e st e st e bbbt s e s s e e e sesncs 592
T2.83 MOVE.... ettt et et bbbttt h ettt b bt 596
T2.84 REINDEX.....ciiiriurieeeueieieineineisetseisteetsete ettt bsessese sttt st s ess s stse e st bt ae s et se st b st s ta bbb bt sebstseesesaesastncs 597
T2.85 RESET ...oiiiiieititineieieeeneeeietsessesseasese s s s ssessessessesesss s sse s stssesssssasesas s ssessessesesssssssnssesasssesssnessssesssnesnesnssnesssessesses 598
T 286 SET ittt sttt ettt s st e sk E Akttt ettt 599
12.87 SET CONSTRAINTS. ..ottt ieieesebsebsessesessetse et seb b stse st bbbt s tse bbbttt b et s baeaae bbb sebsesesssas 601
T2.88 SET ROLE..... ettt ssesstssesesss s s s sssesesas st et s st s sessase e st sesessesesssssessesasanessessssnese 602
12.89 SET SESSION AUTHORIZATION. ...ouititreirieeteeieeeieississeseiseastsses s asstsessesssssessass s ss s sssessssssssessssssssssssssssssssssssessens 603
T2.90 SHOW ..ottt sttt sesses et s bbb st bbb bbbt bbb sttt b sae et bns 605
T2.97T TRUNG CATE......coitrieeeeeerctreieeretreseeseseeisesesse et ssesstssesesae s sasssessesesssesesssssssesassssssesssssssessesasnessesssssessesssesesssssssnesssncs 605
T2.92 VACUUM ...ttt sttt s s s ettt bbb b e ene b s 607
T3 DML SYNEAX...uuuiiiiiiiiiiiniienniissueissenssnnssssenssssssssasssassssas 612
13,17 DIML SYNEAX OVEIVIEW......ceiiticiriciricireaeireaetseaetsesetsese st es st s sttt st sese st st s bbbt b sttt st seaetsesetsesesaeses 612
132 CALL ettt bbbt bbb b bbbt bbbttt 613
133 COPY ettt s R s sttt 614
T304 DELETE. ...ttt ettt te sttt st s et et 628
T35 EXPLAIN ..ottt ettt tae et bbbt bbb bbbt bbbt bbbttt 630
13.6 EXPLAIN PLAN.....cottiieieieieireietteseeseeeesesseseasessessessesesssssessesssessesssssessssssssssessesasesesssssessssessessessesassssssssnsssssessssesesnesncs 634
137 LOCK ettt s st s ettt s s e st et e tees 636
13.8 IMERGE INTO ...ttt ieietsetstisese ettt s essese s e e bbb s bbb et se b ses et sse bbb 640
13.9 INSERT @Nd UPSERT ...ttt tssesseasecs st ssess sttt st b bbbttt es 642
1391 INSERT ...ttt ettt ettt st s s e s sne s e bntees 643
13.9.2 UPSERT oottt ettt ses sttt st e e bbbt bbbttt baen 647
T3.T0 UPDATE.....vieieieieineitiseieeeeeeesesesetsessessesses s e ssessessessese s s s sasssessesssssesesassasasesessntssessanesssssassnessesnssesssnssssesnces 651
T3.TT VALUES. ...ttt et bbbt ettt sttt e bnen 654
T4 DCL SYNTAX..cciiiiuiiiieriiniinsaeinsensssatsssessassssassssssssssasssss 656
T4.T DCL SYNTAX OVEIVIEW......ueuirimieriieeteseeeistesstessees st tseaetsesetsesetsesetsese s stas s st s st staetstaetstaetsesetsesetesesssetassetassesassssacs 656
14.2 ALTER DEFAULT PRIVILEGES......ctvieieitintireineintieeisie ettt essese s st ses s st e s sessesstssssesassasssesssns 656
T4.3 ANALYZE | ANALYSE..... ittt ettt ts s asets s ssets s ettt e et ettt s s sie s 659
TA.4 DEALLOGCATE. ...ttt ettt ettt s s e st e bttt et b et aseaetansanen 662
TS DOttt s bbbt e bbbt ae bttt 662
T4.6 EXECUTE ...ttt ettt tssese s s et sss s s e et se bt es s e ettt s s as st sssesensesaces 663
T4.7 EXECUTE DIRECT ...ttt ettt ssessess s ss bt sscssesseas sttt sesstsssassassasssessssssssessesssnsssssasssssssssassans 664
TA.8 GRANT ..ottt ettt seb sttt ettt e bbb s b et bt bbbt b bt s et b bbb sbaes 665
T4.9 PREPARE.......itititeneeerceeieieinesseieteese e ssesstssess s s sttt ses s sae s e sttt ese o et bttt beeas st e bessesenssacsncs 671
T4.10 REASSIGN OWNED......oiirireirtirtietees sttt stsess s tas sttt ess st et b s es st s s sesseastnsssssesssnsens 671
TATT REVOKE.....ciiiii ettt ettt sttt s b bbbt bbb sttt bt sae bt bas 672
T5 DQL SYNTAX...uuiiiiiiiiiiineiinttinsetisetisseiessetsssstsessssssssssssssssssssssssessssasssssssssssssssassssssssssassses 676
T5.7 DQL SYNTAX OVEIVIEW.....cveeriieriieiierireieieisesisssessss e tsesssssssssssssssssssssssssssssssesssssssssessssssasssssssessssssssssssssssssssssssessses 676
T5.2 SELECT ottt essese s s s st e s st st e s bbbttt nes e s nsenen 676
T5.3 SELECT INTO ottt seasess sttt s es s e bbb sttt bbbt ene st 689

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. vii

Data Warehouse Service

SQL Syntax Contents
T6 TCL SYNEAX..uuiiiieiiiiiiineiinineisieresntessatisssessssassssssssssasssassss 691
T6.T TCL SYNTAX OVEIVIEW.....euiiueiineirieciriaeireieitaesseasestae sttt sttt et et bttt bttt e b b et et b et et beeas 691
T6.2 ABORT ...ttt tsse et esse e s st s s s s s e £ e bbbttt es 691
T6.3 BEGIN ettt s b s bbbt 692
T6.4 CHECKPOINT ... ieietrieecereeeeseetseassssesssssssssssssssssssess s sssess s s st ssssessesssessssssssssssssansssesassanessessssansssssssssnsssssssssssssssssssssnns 693
T6.5 COMMIT | END ettt sttt eese et esse s ess s ettt saseees 694
16.6 COMMIT PREPARED.......coiuitirieeireireieeireie et esseaessets s ssee st ettt e ettt ies 694
16.7 PREPARE TRANSACTION. ...ttt ts st ess st s asss st essssssesessssssssessssssssessssssssessssssssssssssssssesnsnses 695
T6.8 SAVEPOINT ...ttt tseet ettt bbb e eb s s b s s bbb bbbt sttt 696
16.9 SET TRANSACTIONcuiettterettrtereesetisttsetsetssessesesase e ssse e e ss bbbttt st et et 697
16.10 START TRANSACTION. ...ttt et sttt sttt sss st st sasssssessssssssessssssssesssssssssessssssssssnsnssssesasnes 698
TE.TT ROLLBAGCK ...ttt ettt ssses s e ssse s s e e e bbb sttt bbbt 700
16.12 RELEASE SAVEPOINT ...ttt sttt sssesssesessses s ssses s et et ettt st 700
16.13 ROLLBACK PREPARED........ooirtettrieieiieieisistss st tssstssas st sss st asssssessssssssessssssssssssssasssssssssssssesssnssssesssssssssasnsnses 701
16.74 ROLLBACK TO SAVEPOINT ...ttt s etseasessesssessesssessessesssesse s sasesss s sasesss bbb sssessessesssessesssssssssesassans 702
T7 GIN INA@XES......uceiiiriniiininrininntsnitstssssssstssasssssssssssans 704
171 INEFOAUCTION. coeetet ettt bbbt s bbbt st s s s b st s bbb s s s b s b bbb s b s ebsessesassansantans 704
17.2 SCALADILIEY .ottt s sttt s st s s n s ae s ettt enannsenas 704
17.3 I PLEIMENTATION. ..ttt s ettt s sttt b et enesassantres 707
17.4 GIN TIPS QN THICKS....eririeiiiiterieieeieieisistes ettt sse s s bt b s ss s s s s bbb bt es s ssesassssbsss st ensessessnsansans 708

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. viii

Data Warehouse Service
SQL Syntax 1 GaussDB(DWS) SQL

GaussDB(DWS) SQL

What Is SQL?

SQL is a standard computer language used to control the access to databases and
manage data in databases.

SQL provides different statements to enable you to:

e Query data.

e Insert, update, and delete rows.

e C(reate, replace, modify, and delete objects.

e Control the access to a database and its objects.

e Maintain the consistency and integrity of a database.

SQL consists of commands and functions that are used to manage databases and
database objects. SQL can also forcibly implement the rules for data types,

expressions, and texts. Therefore, section "SQL Reference" describes data types,
expressions, functions, and operators in addition to SQL syntax.

Development of SQL Standards
Released SQL standards are as follows:

e 1986: ANSI X3.135-1986, ISO/IEC 9075:1986, SQL-86

e 1989: ANSI X3.135-1989, ISO/IEC 9075:1989, SQL-89

e 1992: ANSI X3.135-1992, ISO/IEC 9075:1992, SQL-92 (SQL2)
e 1999: ISO/IEC 9075:1999, SQL:1999 (SQL3)

e 2003: ISO/IEC 9075:2003, SQL:2003 (SQL4)

e 2011:ISO/IEC 9075:200N, SQL:2011 (SQL5)

Supported SQL Standards

GaussDB(DWS) is compatible with Postgres-XC features and supports the major
features of SQL2, SQL3, and SQL4 by default.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 1

Data Warehouse Service 2 Differences Between GaussDB(DWS) and

SQL Syntax

PostgreSQL

Differences Between GaussDB(DWS)

and PostgreSQL

2.1 GaussDB(DWS) gsql, PostgreSQL psql, and libpq

GaussDB(DWS) gsql and PostgreSQL psql

GaussDB(DWS) gsql differs from PostgreSQL psql in that the former has made the
following changes to enhance security:

User passwords cannot be set by running the \password meta-command.

The \i+, \ir+, and \include_relative+ meta-commands and the input and
output parameter -k are added to encrypt imported and exported files.

Historical command lines cannot be printed to files using the \s meta-
command.

SQL statements related to sensitive operations, such as those containing
passwords, are not recorded. Users cannot see such records when they turn
pages or press up or down arrow keys to view the SQL history.

After a connection is set up, a message is displayed to inform users of
password expiration and to show version information.

gsql provides the following additional functions based on psql:

libpq

The output format parameter -r is added to allow you to adjust the focus by
pressing the Tab key or arrow keys when entering commands.

The \parallel meta-command is added to improve execution performance.

The \set RETRY meta-command is added to support retry upon statement
errors.

Slashes (/) are used as the default terminator at the end of PL/SQL
statements CREATE OR REPLACE FUNCTION/PROCEDURE.

During the development of certain GaussDB(DWS) functions such as the gsql
client connection tool, PostgreSQL libpq is greatly modified. However, the libpq

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 2

Data Warehouse Service 2 Differences Between GaussDB(DWS) and
SQL Syntax PostgreSQL

interface is not verified in application development. You are not advised to use this
set of APIs for application development, because underlying risks probably exist.
You can use the ODBC or JDBC APIs instead.

2.2 Data Type Differences

For details about supported data types by GaussDB(DWS), see Data Types.
The following PostgreSQL data type is not supported:

e Lines, a geometric type
e pg_node_tree

2.3 Function Differences

For details about the functions supported by GaussDB(DWS), see Functions and
Operators.

The following PostgreSQL functions are not supported:

e Enum support functions
e Access privilege inquiry functions
- has_sequence_privilege(user, sequence, privilege)
- has_sequence_privilege(sequence, privilege)
e System catalog information functions
- pg_get_triggerdef(trigger_oid)
- pg_get_triggerdef(trigger_oid, pretty_bool)
e Line functions
e pg_node_tree

2.4 PostgreSQL Features Unsupported by
GaussDB(DWS)

e Table inheritance
e Table creation features:

- Use REFERENCES reftable [(refcolumn)] [MATCH FULL | MATCH
PARTIAL | MATCH SIMPLE] [ON DELETE action] [ON UPDATE
action] to create a foreign key constraint for a table.

- Use EXCLUDE [USING index_method] (exclude_element WITH
operator [, ... 1) to create exclusion constraints for a table.

e Define or change the security tag of an object.
e User-defined C functions

e C(Create, modify, and delete operators.

e Create, modify, and delete operator classes.

e C(Create, modify, and delete operator families.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 3

Data Warehouse Service 2 Differences Between GaussDB(DWS) and

SQL Syntax

PostgreSQL

Create, modify, and delete text search parsers.
Create, modify, and delete text search templates.
Create, modify, and delete collations.

Create and delete rules.

Register, modify, and delete languages.

Create, modify, and delete domains.

Define, modify, and delete the conversion of character set encoding.
Define and delete casts.

Define, modify, and delete user mapping.
Generate a notification.

Listen to a notification.

Stop listening to a notification.

Load or reload a shared library file.

Release the session resources of a database.
Move a cursor backward.

The following features are disabled in GaussDB(DWS) for separation of rights:

TO PUBLIC of GRANT
COPY FROM FILE and COPY TO FILE of COPY

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 4

Data Warehouse Service
SQL Syntax

3 Keyword

Keyword

The SQL contains reserved and non-reserved words. Standards require that
reserved keywords not be used as other identifiers. Non-reserved keywords have
special meanings only in a specific environment and can be used as identifiers in

other environments.

Table 3-1 SQL keywords

Keyword GaussDB(DWS) SQL:1999 | SQL-92

ABORT Non-reserved - -

ABS - Non- -
reserved

ABSOLUTE Non-reserved Reserved | Reserved

ACCESS Non-reserved - -

ACCOUNT Non-reserved - -

ACTION Non-reserved Reserved | Reserved

ADA - Non- Non-
reserved reserved

ADD Non-reserved Reserved | Reserved

ADMIN Non-reserved Reserved | -

AFTER Non-reserved Reserved | -

AGGREGATE Non-reserved Reserved | -

ALIAS - Reserved | -

ALL Reserved Reserved | Reserved

ALLOCATE - Reserved | Reserved

ALSO Non-reserved - -

ALTER Non-reserved Reserved | Reserved

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
ALWAYS Non-reserved - -
ANALYSE Reserved - -
ANALYZE Reserved - -

AND Reserved Reserved | Reserved

ANY Reserved Reserved | Reserved

APP Non-reserved - -

ARE - Reserved | Reserved

ARRAY Reserved Reserved | -

AS Reserved Reserved | Reserved

ASC Reserved Reserved | Reserved

ASENSITIVE - Non- -
reserved

ASSERTION Non-reserved Reserved | Reserved

ASSIGNMENT Non-reserved Non- -
reserved

ASYMMETRIC Reserved Non- -
reserved

AT Non-reserved Reserved | Reserved

ATOMIC - Non- -
reserved

ATTRIBUTE Non-reserved - -

AUTHID Reserved - -

AUTHINFO Non-reserved - -

AUTHORIZATION Reserved (functions and types | Reserved | Reserved

allowed)

AUTOEXTEND Non-reserved - -

AUTOMAPPED Non-reserved - -

AVG - Non- Reserved
reserved

BACKWARD Non-reserved - -

BARRIER Non-reserved - -

BEFORE Non-reserved Reserved | -

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 6

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
BEGIN Non-reserved Reserved | Reserved
BETWEEN Non-reserved (excluding Non- Reserved

functions and types) reserved
BIGINT Non-reserved (excluding - -
functions and types)
BINARY Reserved (functions and types | Reserved | -
allowed)
BINARY_DOUBLE Non-reserved (excluding - -
functions and types)
BINARY_INTEGER Non-reserved (excluding - -
functions and types)
BIT Non-reserved (excluding Reserved | Reserved
functions and types)
BITVAR - Non- -
reserved
BIT_LENGTH - Non- Reserved
reserved
BLOB Non-reserved Reserved | -
BOOLEAN Non-reserved (excluding Reserved | -
functions and types)
BOTH Reserved Reserved | Reserved
BUCKETS Reserved - -
BREADTH - Reserved | -
BY Non-reserved Reserved | Reserved
C - Non- Non-
reserved reserved
CACHE Non-reserved - -
CALL Non-reserved Reserved | -
CALLED Non-reserved Non- -
reserved
CARDINALITY - Non- -
reserved
CASCADE Non-reserved Reserved Reserved
CASCADED Non-reserved Reserved | Reserved
CASE Reserved Reserved | Reserved
Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 7

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
CAST Reserved Reserved Reserved
CATALOG Non-reserved Reserved Reserved
CATALOG_NAME - Non- Non-

reserved reserved
CHAIN Non-reserved Non- -
reserved
CHAR Non-reserved (excluding Reserved | Reserved
functions and types)
CHARACTER Non-reserved (excluding Reserved | Reserved
functions and types)
CHARACTERISTICS Non-reserved - -
CHARACTER_LENGTH | - Non- Reserved
reserved
CHARACTER_SET_CAT | - Non- Non-
ALOG reserved reserved
CHARACTER_SET_NA - Non- Non-
ME reserved reserved
CHARACTER_SET SCH | - Non- Non-
EMA reserved reserved
CHAR_LENGTH - Non- Reserved
reserved
CHECK Reserved Reserved Reserved
CHECKED - Non- -
reserved
CHECKPOINT Non-reserved - -
CLASS Non-reserved Reserved | -
CLEAN Non-reserved - -
CLASS_ORIGIN - Non- Non-
reserved reserved
CLOB Non-reserved Reserved | -
CLOSE Non-reserved Reserved | Reserved
CLUSTER Non-reserved - -
COALESCE Non-reserved (excluding Non- Reserved
functions and types) reserved
Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 8

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
COBOL - Non- Non-

reserved reserved
COLLATE Reserved Reserved | Reserved
COLLATION Reserved (functions and types | Reserved | Reserved
allowed)
COLLATION_CATALOG | - Non- Non-
reserved reserved
COLLATION_NAME - Non- Non-
reserved reserved
COLLATION_SCHEMA | - Non- Non-
reserved reserved
COLUMN Reserved Reserved Reserved
COLUMNS Non-reserved - -
COLUMN_NAME - Non- Non-
reserved reserved
COMMAND_FUNCTIO | - Non- Non-
N reserved reserved
COMMAND_FUNCTIO | - Non- -
N_CODE reserved
COMMENT Non-reserved - -
COMMENTS Non-reserved - -
COMMIT Non-reserved Reserved | Reserved
COMMITTED Non-reserved Non- Non-
reserved reserved
COMPATIBLE_ILLEGAL | Non-reserved - -
_CHARS
COMPLETE Non-reserved - -
COMPRESS Non-reserved - -
COMPLETION - Reserved | -
CONCURRENTLY Reserved (functions and types | - -
allowed)
CONDITION - - -
CONDITION_NUMBER | - Non- Non-
reserved reserved
CONFIGURATION Non-reserved - -
Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 9

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
CONNECT - Reserved | Reserved
CONNECTION Non-reserved Reserved | Reserved
CONNECTION_NAME | - Non- Non-

reserved reserved
CONSTRAINT Reserved Reserved | Reserved
CONSTRAINTS Non-reserved Reserved | Reserved
CONSTRAINT_CATALO | - Non- Non-
G reserved reserved
CONSTRAINT_NAME - Non- Non-
reserved reserved
CONSTRAINT_SCHEM | - Non- Non-
A reserved reserved
CONSTRUCTOR - Reserved | -
CONTAINS - Non- -
reserved
CONTENT Non-reserved - -
CONTINUE Non-reserved Reserved | Reserved
CONVERSION Non-reserved - -
CONVERT - Non- Reserved
reserved
COORDINATOR Non-reserved - -
COPY Non-reserved - -
CORRESPONDING - Reserved | Reserved
COST Non-reserved - -
COUNT - Non- Reserved
reserved
CREATE Reserved Reserved | Reserved
CROSS Reserved (functions and types | Reserved | Reserved
allowed)
csv Non-reserved - -
CUBE - Reserved | -
CURRENT Non-reserved Reserved | Reserved
CURRENT_CATALOG Reserved - -
Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 10

Data Warehouse Service

functions and types)

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
CURRENT_DATE Reserved Reserved | Reserved
CURRENT_PATH - Reserved | -
CURRENT_ROLE Reserved Reserved | -
CURRENT_SCHEMA Reserved (functions and types | - -

allowed)
CURRENT_TIME Reserved Reserved | Reserved
CURRENT_TIMESTAM | Reserved Reserved | Reserved
P
CURRENT_USER Reserved Reserved | Reserved
CURSOR Non-reserved Reserved | Reserved
CURSOR_NAME - Non- Non-
reserved reserved
CYCLE Non-reserved Reserved | -
DATA Non-reserved Reserved | Non-
reserved
DATE_FORMAT Non-reserved - -
DATABASE Non-reserved - -
DATAFILE Non-reserved - -
DATE Non-reserved (excluding Reserved | Reserved
functions and types)
DATETIME_INTERVAL_ | - Non- Non-
CODE reserved reserved
DATETIME_INTERVAL_ | - Non- Non-
PRECISION reserved reserved
DAY Non-reserved Reserved | Reserved
DBCOMPATIBILITY Non-reserved - -
DEALLOCATE Non-reserved Reserved | Reserved
DEC Non-reserved (excluding Reserved | Reserved
functions and types)
DECIMAL Non-reserved (excluding Reserved | Reserved
functions and types)
DECLARE Non-reserved Reserved | Reserved
DECODE Non-reserved (excluding - -

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

11

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
DEFAULT Reserved Reserved | Reserved
DEFAULTS Non-reserved - -
DEFERRABLE Reserved Reserved | Reserved
DEFERRED Non-reserved Reserved | Reserved
DEFINED - Non- -

reserved
DEFINER Non-reserved Non- -
reserved
DELETE Non-reserved Reserved | Reserved
DELIMITER Non-reserved - -
DELIMITERS Non-reserved - -
DELTA Non-reserved - -
DEPTH - Reserved | -
DEREF - Reserved | -
DESC Reserved Reserved | Reserved
DESCRIBE - Reserved | Reserved
DESCRIPTOR - Reserved | Reserved
DESTROY - Reserved | -
DESTRUCTOR - Reserved | -
DETERMINISTIC Non-reserved Reserved | -
DIAGNOSTICS - Reserved | Reserved
DICTIONARY Non-reserved Reserved | -
DIRECT Non-reserved - -
DIRECTORY Non-reserved - -
DISABLE Non-reserved - -
DISCARD Non-reserved - -
DISCONNECT - Reserved | Reserved
DISPATCH - Non- -
reserved
DISTINCT Reserved Reserved | Reserved
DISTRIBUTE Non-reserved - -
Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 12

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
DISTRIBUTION Non-reserved - -

DO Reserved - -

DOCUMENT Non-reserved - -

DOMAIN Non-reserved Reserved | Reserved

DOUBLE Non-reserved Reserved | Reserved

DROP Non-reserved Reserved | Reserved

DYNAMIC - Reserved | -

DYNAMIC_FUNCTION | - Non- Non-
reserved reserved

DYNAMIC_FUNCTION | - Non- -

_CODE reserved

EACH Non-reserved Reserved | -

ELASTIC Non-reserved - -

ELSE Reserved Reserved | Reserved

ENABLE Non-reserved - -

ENCODING Non-reserved - -

ENCRYPTED Non-reserved - -

END Reserved Reserved | Reserved

END-EXEC - Reserved | Reserved

ENFORCED Non-reserved - -

ENUM Non-reserved - -

EOL Non-reserved - -

EQUALS - Reserved | -

ERRORS Non-reserved - -

ESCAPE Non-reserved Reserved | Reserved

ESCAPING Non-reserved - -

EVERY Non-reserved Reserved | -

EXCEPT Reserved Reserved | Reserved

EXCEPTION - Reserved | Reserved

EXCHANGE Non-reserved - -

EXCLUDE Non-reserved - -

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 13

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
EXCLUDING Non-reserved - -
EXCLUSIVE Non-reserved - -

EXEC - Reserved | Reserved

EXECUTE Non-reserved Reserved | Reserved

EXISTING - Non- -

reserved

EXISTS Non-reserved (excluding Non- Reserved
functions and types) reserved

EXPIRATION Non-reserved - -

EXPLAIN Non-reserved - -

EXTENSION Non-reserved - -

EXTERNAL Non-reserved Reserved | Reserved

EXTRACT Non-reserved (excluding Non- Reserved
functions and types) reserved

FALSE Reserved Reserved | Reserved

FAMILY Non-reserved - -

FAST Non-reserved - -

FENCED Non-reserved - -

FETCH Reserved Reserved | Reserved

FILEHEADER Non-reserved - -

FILL_MISSING_FIELDS | Non-reserved - -

FINAL - Non- -

reserved

FIRST Non-reserved Reserved | Reserved

FIXED Non-reserved Reserved | Reserved

FLOAT Non-reserved (excluding Reserved | Reserved
functions and types)

FOLLOWING Non-reserved - -

FOR Reserved Reserved | Reserved

FORCE Non-reserved - -

FOREIGN Reserved Reserved | Reserved

FORMATTER Non-reserved - -

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 14

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
FORTRAN - Non- Non-

reserved reserved
FORWARD Non-reserved - -
FOUND - Reserved | Reserved
FREE - Reserved | -
FREEZE Reserved (functions and types | - -
allowed)
FROM Reserved Reserved | Reserved
FULL Reserved (functions and types | Reserved | Reserved
allowed)
FUNCTION Non-reserved Reserved | -
FUNCTIONS Non-reserved - -
G - Non- -
reserved
GENERAL - Reserved | -
GENERATED - Non- -
reserved
GET - Reserved | Reserved
GLOBAL Non-reserved Reserved | Reserved
GO - Reserved | Reserved
GOTO - Reserved | Reserved
GRANT Reserved Reserved | Reserved
GRANTED Non-reserved Non- -
reserved
GREATEST Non-reserved (excluding - -
functions and types)
GROUP Reserved Reserved | Reserved
GROUPING - Reserved | -
HANDLER Non-reserved - -
HAVING Reserved Reserved | Reserved
HEADER Non-reserved - -
HIERARCHY - Non- -
reserved

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 15

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
HOLD Non-reserved Non- -

reserved
HOST - Reserved | -
HOUR Non-reserved Reserved | Reserved
IDENTIFIED Non-reserved - -
IDENTITY Non-reserved Reserved | Reserved
IF Non-reserved (excluding - -
functions and types)
IFNULL Non-reserved (excluding - -
functions and types)
IGNORE - Reserved | -
IGNORE_EXTRA_DATA | Non-reserved - -
ILIKE Reserved (functions and types | - -
allowed)
IMMEDIATE Non-reserved Reserved | Reserved
IMMUTABLE Non-reserved - -
IMPLEMENTATION - Non- -
reserved
IMPLICIT Non-reserved - -
IN Reserved Reserved | Reserved
INCLUDING Non-reserved - -
INCREMENT Non-reserved - -
INDEX Non-reserved - -
INDEXES Non-reserved - -
INDICATOR - Reserved | Reserved
INFIX - Non- -
reserved
INHERIT Non-reserved - -
INHERITS Non-reserved - -
INITIAL Non-reserved - -
INITIALIZE - Reserved | -
INITIALLY Reserved Reserved | Reserved
Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 16

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
INITRANS Non-reserved - -

INLINE Non-reserved - -
INNER Reserved (functions and types | Reserved | Reserved
allowed)
INOUT Non-reserved (excluding Reserved | -
functions and types)
INPUT Non-reserved Reserved | Reserved
INSENSITIVE Non-reserved Non- Reserved
reserved
INSERT Non-reserved Reserved | Reserved
INSTANCE - Non- -
reserved
INSTANTIABLE - Non- -
reserved
INSTEAD Non-reserved - -
INT Non-reserved (excluding Reserved | Reserved
functions and types)
INTEGER Non-reserved (excluding Reserved | Reserved
functions and types)
INTERNAL Reserved - -
INTERSECT Reserved Reserved | Reserved
INTERVAL Non-reserved (excluding Reserved | Reserved
functions and types)
INTO Reserved Reserved | Reserved
INVOKER Non-reserved Non- -
reserved
IS Reserved Reserved | Reserved
ISNULL Non-reserved (excluding - -
functions and types)
ISOLATION Non-reserved Reserved | Reserved
ITERATE - Reserved | -
JOIN Reserved (functions and types | Reserved | Reserved
allowed)
K - Non- -
reserved
Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 17

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
KEY Non-reserved Reserved | Reserved
KEY_MEMBER - Non- -

reserved
KEY_TYPE - Non- -
reserved
LABEL Non-reserved - -
LANGUAGE Non-reserved Reserved | Reserved
LARGE Non-reserved Reserved | -
LAST Non-reserved Reserved | Reserved
LATERAL - Reserved | -
LC_COLLATE Non-reserved - -
LC_CTYPE Non-reserved - -
LEADING Reserved Reserved | Reserved
LEAKPROOF Non-reserved - -
LEAST Non-reserved (excluding - -
functions and types)
LEFT Reserved (functions and types | Reserved | Reserved
allowed)
LENGTH - Non- Non-
reserved reserved
LESS Reserved Reserved | -
LEVEL Non-reserved Reserved | Reserved
LIKE Reserved (functions and types | Reserved | Reserved
allowed)
LIMIT Reserved Reserved | -
LISTEN Non-reserved - -
LOAD Non-reserved - -
LOCAL Non-reserved Reserved | Reserved
LOCALTIME Reserved Reserved | -
LOCALTIMESTAMP Reserved Reserved | -
LOCATION Non-reserved - -
LOCATOR - Reserved | -
Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 18

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
LOCK Non-reserved - -

LOG Non-reserved - -

LOGGING Non-reserved - -

LOGIN Non-reserved - -

LOOP Non-reserved - -

LOWER - Non- Reserved
reserved

M - Non- -
reserved

MAP - Reserved | -

MAPPING Non-reserved - -

MATCH Non-reserved Reserved | Reserved

MATCHED Non-reserved - -

MAX - Non- Reserved
reserved

MAXEXTENTS Non-reserved - -

MAXSIZE Non-reserved - -

MAXTRANS Non-reserved - -

MAXVALUE Reserved - -

MERGE Non-reserved - -

MESSAGE_LENGTH - Non- Non-
reserved reserved

MESSAGE_OCTET_LEN | - Non- Non-

GTH reserved reserved

MESSAGE_TEXT - Non- Non-
reserved reserved

METHOD - Non- -
reserved

MIN - Non- Reserved
reserved

MINEXTENTS Non-reserved - -

MINUS Reserved - -

MINUTE Non-reserved Reserved | Reserved

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 19

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
MINVALUE Non-reserved - -

MOD - Non- -
reserved
MODE Non-reserved - -
MODIFIES - Reserved | -
MODIFY Reserved Reserved | -
MODULE - Reserved | Reserved
MONTH Non-reserved Reserved | Reserved
MORE - Non- Non-
reserved reserved
MOVE Non-reserved - -
MOVEMENT Non-reserved - -
MUMPS - Non- Non-
reserved reserved
NAME Non-reserved Non- Non-
reserved reserved
NAMES Non-reserved Reserved | Reserved
NATIONAL Non-reserved (excluding Reserved | Reserved
functions and types)
NATURAL Reserved (functions and types | Reserved | Reserved
allowed)
NCHAR Non-reserved (excluding Reserved | Reserved
functions and types)
NCLOB - Reserved | -
NEW - Reserved | -
NEXT Non-reserved Reserved | Reserved
NLSSORT Reserved - -
NO Non-reserved Reserved | Reserved
NOCOMPRESS Non-reserved - -
NOCYCLE Non-reserved - -
NODE Non-reserved - -
NOLOGGING Non-reserved - -
NOLOGIN Non-reserved - -
Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 20

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
NOMAXVALUE Non-reserved - -
NOMINVALUE Non-reserved - -

NONE Non-reserved (excluding Reserved | -
functions and types)

NOT Reserved Reserved | Reserved

NOTHING Non-reserved - -

NOTIFY Non-reserved - -

NOTNULL Reserved (functions and types | - -
allowed)

NOWAIT Non-reserved - -

NULL Reserved Reserved | Reserved

NULLABLE - Non- Non-

reserved reserved

NULLIF Non-reserved (excluding Non- Reserved
functions and types) reserved

NULLS Non-reserved - -

NUMBER Non-reserved (excluding Non- Non-
functions and types) reserved reserved

NUMERIC Non-reserved (excluding Reserved | Reserved
functions and types)

NUMSTR Non-reserved - -

NVARCHAR2 Non-reserved (excluding - -
functions and types)

NVL Non-reserved (excluding - -
functions and types)

OBJECT Non-reserved Reserved | -

OCTET_LENGTH - Non- Reserved

reserved

OF Non-reserved Reserved | Reserved

OFF Non-reserved Reserved | -

OFFSET Reserved - -

OIDS Non-reserved - -

OoLD - Reserved | -

ON Reserved Reserved | Reserved

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 21

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
ONLY Reserved Reserved | Reserved
OPEN - Reserved | Reserved
OPERATION - Reserved | -
OPERATOR Non-reserved - -
OPTIMIZATION Non-reserved - -
OPTION Non-reserved Reserved | Reserved
OPTIONS Non-reserved Non- -

reserved
OR Reserved Reserved | Reserved
ORDER Reserved Reserved | Reserved
ORDINALITY - Reserved | -
ouT Non-reserved (excluding Reserved | -
functions and types)
OUTER Reserved (functions and types | Reserved | Reserved
allowed)
OUTPUT - Reserved | Reserved
OVER Non-reserved - -
OVERLAPS Reserved (functions and types | Non- Reserved
allowed) reserved
OVERLAY Non-reserved (excluding Non- -
functions and types) reserved
OVERRIDING - Non- -
reserved
OWNED Non-reserved - -
OWNER Non-reserved - -
PACKAGE Non-reserved - -
PAD - Reserved | Reserved
PARAMETER - Reserved | -
PARAMETERS - Reserved | -
PARAMETER_MODE - Non- -
reserved
PARAMETER_NAME - Non- -
reserved

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 22

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
PARAMETER_ORDINA | - Non- -
L_POSITION reserved
PARAMETER_SPECIFIC | - Non- -
_CATALOG reserved
PARAMETER_SPECIFIC | - Non- -
_NAME reserved
PARAMETER_SPECIFIC | - Non- -
_SCHEMA reserved
PARSER Non-reserved - -
PARTIAL Non-reserved Reserved | Reserved
PARTITION Non-reserved - -
PARTITIONS Non-reserved - -
PASCAL - Non- Non-

reserved reserved
PASSING Non-reserved - -
PASSWORD Non-reserved - -
PATH - Reserved | -
PCTFREE Non-reserved - -
PER Non-reserved - -
PERM Non-reserved - -
PERCENT Non-reserved - -
PERFORMANCE Reserved - -
PLACING Reserved - -
PLAN Reserved - -
PLANS Non-reserved - -
PLI - Non- Non-
reserved reserved
POLICY Non-reserved - -
POOL Non-reserved - -
POSITION Non-reserved (excluding Non- Reserved
functions and types) reserved
POSTFIX - Reserved | -
PRECEDING Non-reserved - -
Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 23

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
PRECISION Non-reserved (excluding Reserved | Reserved

functions and types)
PREFERRED Non-reserved - -
PREFIX Non-reserved Reserved | -
PREORDER - Reserved | -
PREPARE Non-reserved Reserved | Reserved
PREPARED Non-reserved - -
PRESERVE Non-reserved Reserved | Reserved
PRIMARY Reserved Reserved | Reserved
PRIOR Non-reserved Reserved | Reserved
PRIVATE Non-reserved - -
PRIVILEGE Non-reserved - -
PRIVILEGES Non-reserved Reserved | Reserved
PROCEDURAL Non-reserved - -
PROCEDURE Reserved Reserved | Reserved
PROFILE Non-reserved - -
PUBLIC - Reserved | Reserved
QUERY Non-reserved - -
QUOTE Non-reserved - -
RANGE Non-reserved - -
RAW Non-reserved - -
READ Non-reserved Reserved | Reserved
READS - Reserved | -
REAL Non-reserved (excluding Reserved | Reserved
functions and types)
REASSIGN Non-reserved - -
REBUILD Non-reserved - -
RECHECK Non-reserved - -
RECURSIVE Non-reserved Reserved | -
REF Non-reserved Reserved | -
REFRESH Non-reserved - -
Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 24

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
REFERENCES Reserved Reserved | Reserved
REFERENCING - Reserved | -
REINDEX Non-reserved - -

REJECT Reserved - -
RELATIVE Non-reserved Reserved | Reserved
RELEASE Non-reserved - -
RELOPTIONS Non-reserved - -
REMOTE Non-reserved - -
RENAME Non-reserved - -
REPEATABLE Non-reserved Non- Non-
reserved reserved
REPLACE Non-reserved - -
REPLICA Non-reserved - -
RESET Non-reserved - -
RESIZE Non-reserved - -
RESOURCE Non-reserved - -
RESTART Non-reserved - -
RESTRICT Non-reserved Reserved | Reserved
RESULT - Reserved | -
RETURN Non-reserved Reserved | -
RETURNED_LENGTH - Non- Non-
reserved reserved
RETURNED_OCTET_LE | - Non- Non-
NGTH reserved reserved
RETURNED_SQLSTATE | - Non- Non-
reserved reserved
RETURNING Reserved - -
RETURNS Non-reserved Reserved | -
REUSE Non-reserved - -
REVOKE Non-reserved Reserved | Reserved
RIGHT Reserved (functions and types | Reserved | Reserved
allowed)
Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 25

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
ROLE Non-reserved Reserved | -
ROLLBACK Non-reserved Reserved | Reserved
ROLLUP - Reserved | -
ROUTINE - Reserved | -
ROUTINE_CATALOG - Non- -

reserved
ROUTINE_NAME - Non- -

reserved
ROUTINE_SCHEMA - Non- -

reserved
ROW Non-reserved (excluding Reserved | -

functions and types)

ROWS Non-reserved Reserved | Reserved
ROW_COUNT - Non- Non-
reserved reserved
RULE Non-reserved - -
SAVEPOINT Non-reserved Reserved | -
SCALE - Non- Non-
reserved reserved
SCHEMA Non-reserved Reserved | Reserved
SCHEMA_NAME - Non- Non-
reserved reserved
SCOPE - Reserved | -
SCROLL Non-reserved Reserved | Reserved
SEARCH Non-reserved Reserved | -
SECOND Non-reserved Reserved | Reserved
SECTION - Reserved | Reserved
SECURITY Non-reserved Non- -
reserved
SELECT Reserved Reserved Reserved
SELF - Non- -
reserved
SENSITIVE - Non- -
reserved

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 26

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
SEQUENCE Non-reserved Reserved | -
SEQUENCES Non-reserved - -
SERIALIZABLE Non-reserved Non- Non-

reserved reserved
SERVER Non-reserved - -
SERVER_NAME - Non- Non-
reserved reserved
SESSION Non-reserved Reserved | Reserved
SESSION_USER Reserved Reserved | Reserved
SET Non-reserved Reserved | Reserved
SETOF Non-reserved (excluding - -
functions and types)
SETS - Reserved | -
SHARE Non-reserved - -
SHIPPABLE Non-reserved - -
SHOW Non-reserved - -
SIMILAR Reserved (functions and types | Non- -
allowed) reserved
SIMPLE Non-reserved Non- -
reserved
SIZE Non-reserved Reserved | Reserved
SMALLDATETIME Non-reserved (excluding - -

functions and types)

SMALLDATETIME_FOR | Non-reserved - -

MAT
SMALLINT Non-reserved (excluding Reserved | Reserved
functions and types)

SNAPSHOT Non-reserved - -

SOME Reserved Reserved | Reserved
SOURCE Non-reserved Non- -

reserved

SPACE - Reserved | Reserved
SPECIFIC - Reserved | -
SPECIFICTYPE - Reserved | -

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 27

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
SPECIFIC_NAME - Non- -

reserved
SPILL Non-reserved - -
SPLIT Non-reserved - -
SQL - Reserved | Reserved
SQLCODE - - Reserved
SQLERROR - - Reserved
SQLEXCEPTION - Reserved | -
SQLSTATE - Reserved | Reserved
SQLWARNING - Reserved | -
STABLE Non-reserved - -
STANDALONE Non-reserved - -
START Non-reserved Reserved | -
STATE - Reserved | -
STATEMENT Non-reserved Reserved | -
STATEMENT_ID Non-reserved - -
STATIC - Reserved | -
STATISTICS Non-reserved - -
STDIN Non-reserved - -
STDOUT Non-reserved - -
STORAGE Non-reserved - -
STORE Non-reserved - -
STRICT Non-reserved - -
STRIP Non-reserved - -
STRUCTURE - Reserved | -
STYLE - Non- -
reserved
SUBCLASS_ORIGIN - Non- Non-
reserved reserved
SUBLIST - Non- -
reserved
Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 28

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
SUBSTRING Non-reserved (excluding Non- Reserved

functions and types) reserved
SUM - Non- Reserved
reserved
SUPERUSER Non-reserved - -
SYMMETRIC Reserved Non- -
reserved
SYNONYM Non-reserved - -
SYS_REFCURSOR Non-reserved - -
SYSDATE Reserved - -
SYSID Non-reserved - -
SYSTEM Non-reserved Non- -
reserved
SYSTEM_USER - Reserved | Reserved
TABLE Reserved Reserved | Reserved
TABLES Non-reserved - -
TABLE_NAME - Non- Non-
reserved reserved
TEMP Non-reserved - -
TEMPLATE Non-reserved - -
TEMPORARY Non-reserved Reserved | Reserved
TERMINATE - Reserved | -
TEXT Non-reserved - -
THAN Non-reserved Reserved | -
THEN Reserved Reserved | Reserved
TIME Non-reserved (excluding Reserved | Reserved
functions and types)
TIME_FORMAT Non-reserved - -
TIMESTAMP Non-reserved (excluding Reserved | Reserved
functions and types)
TIMESTAMPDIFF Non-reserved (excluding - -
functions and types)
TIMESTAMP_FORMAT | Non-reserved - -
Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 29

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
TIMEZONE_HOUR - Reserved | Reserved
TIMEZONE_MINUTE - Reserved | Reserved
TINYINT Non-reserved (excluding - -

functions and types)
TO Reserved Reserved | Reserved
TRAILING Reserved Reserved | Reserved
TRANSACTION Non-reserved Reserved | Reserved
TRANSACTIONS _COM | - Non- -
MITTED reserved
TRANSACTIONS_ROLL | - Non- -
ED_BACK reserved
TRANSACTION_ACTIV | - Non- -
E reserved
TRANSFORM - Non- -
reserved
TRANSFORMS - Non- -
reserved
TRANSLATE - Non- Reserved
reserved
TRANSLATION - Reserved Reserved
TREAT Non-reserved (excluding Reserved | -
functions and types)
TRIGGER Non-reserved Reserved | -
TRIGGER_CATALOG - Non- -
reserved
TRIGGER_NAME - Non- -
reserved
TRIGGER_SCHEMA - Non- -
reserved
TRIM Non-reserved (excluding Non- Reserved
functions and types) reserved
TRUE Reserved Reserved Reserved
TRUNCATE Non-reserved - -
TRUSTED Non-reserved - -
Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 30

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
TYPE Non-reserved Non- Non-

reserved reserved
TYPES Non-reserved - -
UESCAPE - - -
UNBOUNDED Non-reserved - -
UNCOMMITTED Non-reserved Non- Non-
reserved reserved
UNDER - Reserved | -
UNENCRYPTED Non-reserved - -
UNION Reserved Reserved | Reserved
UNIQUE Reserved Reserved | Reserved
UNKNOWN Non-reserved Reserved | Reserved
UNLIMITED Non-reserved - -
UNLISTEN Non-reserved - -
UNLOCK Non-reserved - -
UNLOGGED Non-reserved - -
UNNAMED - Non- Non-
reserved reserved
UNNEST - Reserved | -
UNTIL Non-reserved - -
UNUSABLE Non-reserved - -
UPDATE Non-reserved Reserved | Reserved
UPPER - Non- Reserved
reserved
USAGE - Reserved | Reserved
USER Reserved Reserved | Reserved
USER_DEFINED_TYPE_ | - Non- -
CATALOG reserved
USER_DEFINED_TYPE_ | - Non- -
NAME reserved
USER_DEFINED_TYPE_ | - Non- -
SCHEMA reserved
USING Reserved Reserved | Reserved
Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 31

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
VACUUM Non-reserved - -

VALID Non-reserved - -

VALIDATE Non-reserved - -

VALIDATION Non-reserved - -

VALIDATOR Non-reserved - -

VALUE Non-reserved Reserved | Reserved

VALUES Non-reserved (excluding Reserved | Reserved
functions and types)

VARCHAR Non-reserved (excluding Reserved | Reserved
functions and types)

VARCHAR?2 Non-reserved (excluding - -
functions and types)

VARIABLE - Reserved | -

VARIADIC Reserved - -

VARYING Non-reserved Reserved | Reserved

VCGROUP Non-reserved - -

VERBOSE Reserved (functions and types | - -
allowed)

VERIFY Non-reserved - -

VERSION Non-reserved - -

VIEW Non-reserved Reserved | Reserved

VOLATILE Non-reserved - -

WHEN Reserved Reserved | Reserved

WHENEVER - Reserved | Reserved

WHERE Reserved Reserved | Reserved

WHITESPACE Non-reserved - -

WINDOW Reserved - -

WITH Reserved Reserved | Reserved

WITHIN Non-reserved - -

WITHOUT Non-reserved Reserved | -

WORK Non-reserved Reserved | Reserved

WORKLOAD Non-reserved - -

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 32

Data Warehouse Service

SQL Syntax 3 Keyword
Keyword GaussDB(DWS) SQL:1999 | SQL-92
WRAPPER Non-reserved - -

WRITE Non-reserved Reserved | Reserved

XML Non-reserved - -

XMLATTRIBUTES Non-reserved (excluding - -
functions and types)

XMLCONCAT Non-reserved (excluding - -
functions and types)

XMLELEMENT Non-reserved (excluding - -
functions and types)

XMLEXISTS Non-reserved (excluding - -
functions and types)

XMLFOREST Non-reserved (excluding - -
functions and types)

XMLNAMESPACES Non-reserved (excluding - -
functions and types)

XMLPARSE Non-reserved (excluding - -
functions and types)

XMLPI Non-reserved (excluding - -
functions and types)

XMLROOT Non-reserved (excluding - -
functions and types)

XMLSERIALIZE Non-reserved (excluding - -
functions and types)

XMLTABLE Non-reserved (excluding - -
functions and types)

YEAR Non-reserved Reserved | Reserved

YES Non-reserved - -

ZONE Non-reserved Reserved | Reserved

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 33

Data Warehouse Service
SQL Syntax 4 Data Types

Data Types

4.1 Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte
floating-point numbers, and selectable-precision decimals.

For details about numeric operators and functions, see Mathematical Functions
and Operators.

GaussDB(DWS) supports integers, arbitrary precision numbers, floating point
types, and serial integers.

Integer Types

The types TINYINT, SMALLINT, INTEGER, BINARY_INTEGER, and BIGINT store
whole numbers, that is, numbers without fractional components, of various
ranges. Saving a number with a decimal in any of the data types will result in
errors.

The type INTEGER is the common choice. Generally, use the SMALLINT type only if
you are sure that the value range is within the SMALLINT value range. The storage
speed of INTEGER is much faster. BIGINT is used only when the range of INTEGER

is not large enough.

Table 4-1 Integer types

Column Description Storag | Range

Space

TINYINT Tiny integer, also 1 byte |0~ 255
called INT1

SMALLINT | Small integer, also 2 bytes | -32,768 ~ +32,767
called INT2

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 34

Data Warehouse Service
SQL Syntax 4 Data Types

Column Description Storag | Range

Space

INTEGER Typical choice for 4 bytes | -2,147,483,648 ~ +2,147,483,647
integer, also called

INT4
BINARY_IN | INTEGER alias, 4 bytes | -2,147,483,648 ~ +2,147,483,647
TEGER compatible with
Oracle
BIGINT Big integer, also 8 bytes | -9,223,372,036,854,775,808 ~
called INT8 9,223,372,036,854,775,807

Examples:

Create a table containing TINYINT, INTEGER, and BIGINT data.
CREATE TABLE int_type_t1
(
a TINYINT,
b TINYINT,
¢ INTEGER,
d BIGINT
)

Insert data.
INSERT INTO int_type_t1 VALUES(100, 10, 1000, 10000);
View data.

SELECT * FROM int_type_t1;
alb|lc | d

100 | 10 | 1000 | 10000
(1 row)

Arbitrary Precision Types

The type NUMBER can store numbers with a very large number of digits. It is
especially recommended for storing monetary amounts and other quantities
where exactness is required. The arbitrary precision numbers require larger storage
space and have lower storage efficiency, operation efficiency, and poorer
compression ratio results than integer types.

The scale of a NUMBER value is the count of decimal digits in the fractional part,
to the right of the decimal point. The precision of a NUMBER value is the total
count of significant digits in the whole number, that is, the number of digits to
both sides of the decimal point. So the number 23.5141 has a precision of 6 and a
scale of 4. Integers can be considered to have a scale of zero.

To configure a numeric or decimal column, you are advised to specify both the
maximum precision (p) and the maximum scale (s) of the column.

If the precision or scale of a value is greater than the declared scale of the
column, the system will round the value to the specified number of fractional

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 35

Data Warehouse Service
SQL Syntax

4 Data Types

digits. Then, if the number of digits to the left of the decimal point exceeds the
declared precision minus the declared scale, an error will be reported.

Table 4-2 Any-precision types

Column

Description

Storage Space

Range

NUMERIC[
(pLsDI,
DECIMALI(
pLsD]

The value range
of p (precision) is
[1,1000], and the
value range of s
(standard) is
[0,p].

The precision is
specified by users.
Every four decimal
digits occupy two
bytes, and an extra
eight-byte overhead
is added to the
entire data.

Up to 131,072 digits
before the decimal
point; and up to 16,383
digits after the decimal
point when no
precision is specified

NUMBER[(
pLsD]

Alias for type
NUMERIC,
compatible with
Oracle

The precision is
specified by users.
Every four decimal
digits occupy two
bytes, and an extra
eight-byte overhead
is added to the
entire data.

Up to 131,072 digits
before the decimal
point; and up to 16,383
digits after the decimal
point when no
precision is specified

Examples:

Create a table with DECIMAL values.

CREATE TABLE decimal_type_t1 (DT_COL1 DECIMAL(10,4));

Insert data.

INSERT INTO decimal_type_t1 VALUES(123456.122331);

View data.

SELECT * FROM
dt_col1

123456.1223
(1 row)

Floating-Point Types

decimal_type_t1;

The floating-point type is an inexact, variable-precision numeric type. This types is
an implementation of IEEE Standard 754 for Binary Floating-Point Arithmetic
(single and double precision, respectively), to the extent that the underlying
processor, OS, and compiler support it.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

36

Data Warehouse Service
SQL Syntax

4 Data Types

Table 4-3 Floating point types

Column Description Storage Space Range
REAL, Single precision 4 bytes Six bytes of decimal
FLOAT4 floating points, digits
inexact
DOUBLE Double precision | 8 bytes 1E-307~1E+308,
PRECISION floatlng points, 15 bytes of decimal
, inexact digits
FLOAT8
FLOAT[(p) | Floating points, 4 or 8 bytes REAL or DOUBLE
] inexact. The value PRECISION is selected
range of precision as an internal identifier
(p) is [1,53]. based on different
NOTE precision (p). If no
p is the precision, precision is specified,
indi.cating.the total DOUBLE PRECISION is
decimal digits. used as the internal
identifier.
BINARY_D | DOUBLE 8 bytes 1E-307~1E+308,
OUBLE PREC|S|QN al!as, 15 bytes of decimal
compatible with digits
Oracle
DEC[(p[,s]) | The value range The precision is Up to 131,072 digits
] of p (precision) is | specified by users. before the decimal
[1,1000], and the | Every four decimal point; and up to 16,383
value range of s digits occupy two digits after the decimal
(standard) is bytes, and an extra | point when no
[0,p]. eight-byte overhead | precision is specified
NOTE is added to the
p indicates the entire data.
total digits, and s
indicates the
decimal digit.
INTEGER[(| The value range The precision is Up to 131,072 digits
pLsl)] of p (precision) is | specified by users. before the decimal
[1,1000], and the | Every four decimal point; and up to 16,383
value range of s digits occupy two digits after the decimal
(standard) is bytes, and an extra | point when no
[0,p]. eight-byte overhead | precision is specified
is added to the
entire data.
Examples:

Create a table with floating-point values.

CREATE TABLE float_type_t2

(

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

37

Data Warehouse Service

SQL Syntax

4 Data Types

FT_COL1 INTEGER,
FT_COL2 FLOAT4,
FT_COL3 FLOATS,
FT_COL4 FLOAT(3),
FT_COL5 BINARY_DOUBLE,
FT_COL6 DECIMAL(10,4),
FT_COL7 INTEGER(6,3)

) DISTRIBUTE BY HASH (ft_col1);

Insert data.

INSERT INTO float_type_t2 VALUES(10,10.365456,123456.1234,10.3214, 321.321, 123.123654, 123.123654);
View data.

SELECT * FROM float_type_t2;

ft_col1 | ft_col2 | ft_col3 | ft_cold | ft_col5 | ft_col6 | ft_col7

+

10| 10.3655 | 123456.1234 | 10.3214 | 321.321 | 123.1237 | 123.124
(1 row)

Serial Integers

SMALLSERIAL, SERIAL, and BIGSERIAL are not true types, but merely a notational
convenience for creating unique identifier columns. Therefore, an integer column
is created and its default value plans to be read from a sequencer. A NOT NULL
constraint is used to ensure NULL is not inserted. In most cases you would also
want to attach a UNIQUE or PRIMARY KEY constraint to prevent duplicate values
from being inserted unexpectedly. Lastly, the sequence is marked as "owned by"
the column, so that it will be dropped if the column or table is dropped. Currently,
the SERIAL column can be specified only when you create a table. You cannot add
the SERIAL column in an existing table. In addition, SERIAL columns cannot be
created in temporary tables. Because SERIAL is not a data type, columns cannot be
converted to this type.

Table 4-4 Sequence integer

Column Description Storage | Range
Space

SMALLSERIAL Two-byte auto- 2 bytes 1~ 32,767
incrementing
integer

SERIAL Four-byte auto- 4 bytes 1~2,147,483,647
incrementing
integer

BIGSERIAL Eight-byte auto- 8 bytes 1~
incrementing 9,223,372,036,854,775,807
integer

Examples:

Create a table with serial values.

CREATE TABLE smallserial_type_tab(a SMALLSERIAL);

Insert data.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 38

Data Warehouse Service
SQL Syntax 4 Data Types

INSERT INTO smallserial_type_tab VALUES(default);
Insert data again.

INSERT INTO smallserial_type_tab VALUES(default);

View data.

SELECT * FROM smallserial_type_tab;
a

1
2
(2 rows)

4.2 Monetary Types

The money type stores a currency amount with fixed fractional precision. The
range shown in Table 4-5 assumes there are two fractional digits. Input is
accepted in a variety of formats, including integer and floating-point literals, as
well as typical currency formatting, such as $1,000.00. Output is generally in the
latter form but depends on the locale.

Table 4-5 Monetary types

Name Storage Size | Descriptio | Range
n

money 8 bytes Currency -92233720368547758.08 to
amount +92233720368547758.07

Values of the numeric, int, and bigint data types can be cast to money.
Conversion from the real and double precision data types can be done by casting
to numeric first, for example:

SELECT '12.34":float8::numeric::money;

However, this is not recommended. Floating point numbers should not be used to
handle money due to the potential for rounding errors.

A money value can be cast to numeric without loss of precision. Conversion to
other types could potentially lose precision, and must also be done in two stages:

SELECT '52093.89"::money::numeric::float8;
When a money value is divided by another money value, the result is double

precision (that is, a pure number, not money); the currency units cancel each
other out in the division.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 39

Data Warehouse Service
SQL Syntax

4 Data Types

4.3 Boolean Type

Table 4-6 Boolean type

Name Description Storage Value
Space
BOOLEAN Boolean type | 1 byte e true
o false

e null (unknown)

Valid literal values for the "true" state are:
TRUE, 't', 'true’, 'y', 'yes', '1"
Valid literal values for the "false" state include:

FALSE, 'f', 'false’, 'n', 'no’, '0'

TRUE and FALSE are standard expressions, compatible with SQL statements.

Examples

Data type boolean is displayed with letters t and f.

-- Create a table:
CREATE TABLE bool_type_t1
(
BT_COL1 BOOLEAN,
BT_COL2 TEXT
) DISTRIBUTE BY HASH(BT_COL2);

--Insert data:
INSERT INTO bool_type_t1 VALUES (TRUE, 'sic est');

INSERT INTO bool_type_t1 VALUES (FALSE, 'non est');

-- View data:

SELECT * FROM bool_type_t1;
bt_col1 | bt_col2

_________ S SO

t | sic est
f | non est
(2 rows)

SELECT * FROM bool_type_t1 WHERE bt_col1 = 't';
bt_col1 | bt_col2

_________ S SO

t | sic est

(1 row)

-- Delete the tables:
DROP TABLE bool_type_t1;

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd.

40

Data Warehouse Service

SQL Syntax

4 Data Types

4.4 Character Types

Table 4-7 lists the character types that can be used in GaussDB(DWS). For string
operators and related built-in functions, see Character Processing Functions and

Operators.

Table 4-7 Character types

Name Description Storage Space
CHAR(n) Fixed-length string, blank padded. n The maximum
CHARACTER(n) indicates the string length. If it is not size is 10 MB.
specified, the default precision 1 is used.
NCHAR(n) The value of n is less than 10485761.
VARCHAR(Nn) Variable-length string. n indicates the The maximum
CHARACTER byte length. The value of n is less than size is 10 MB.
VARCHAR2(n) Variable-length string. It is an alias for The maximum
VARCHAR(n) type, compatible with size is 10 MB.
Oracle. n indicates the byte length. The
value of n is less than 10485761.
NVARCHAR2(n) Variable-length string. n indicates the The maximum
string length. The value of n is less than | size is 10 MB.
10485761.
CLOB A big text object. It is an alias for TEXT The maximum
type, compatible with Oracle. size is
10,7373,3621
bytes (1 GB -
8203 bytes).
TEXT Variable-length string. The maximum
size is
10,7373,3621
bytes (1 GB -
8203 bytes).
{1 NOTE

In addition to the size limitation on each column, the total size of each tuple is
1,073,733,621 bytes (1 GB - 8023 bytes).

GaussDB(DWS) has two other fixed-length character types, as listed in Table 4-8.

The name type is used only in the internal system catalog as the storage identifier.
The length of this type is 64 bytes (63 characters plus the terminator). This data
type is not recommended for common users. When the name type is aligned with
other data types (for example, in multiple branches of case when, one branch
returns the name type and other branches return the text type), the name type

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

41

Data Warehouse Service

SQL Syntax 4 Data Types
may be aligned but characters may be truncated. If you do not want to have 64-
bit truncated characters, you need to forcibly convert the name type to the text
type.

The type "char" only uses one byte of storage. It is internally used in the system
catalogs as a simplistic enumeration type.
Table 4-8 Special character types
Name Description Storage Space
name Internal type for object names 64 bytes
"char" Single-byte internal type 1 byte
Examples

-- Create a table:
CREATE TABLE char_type_t1
(
CT_COL1 CHARACTER(4)
) DISTRIBUTE BY HASH (CT_COL1);

--Insert data:
INSERT INTO char_type_t1 VALUES ('ok');

-- Query data in the table:
SELECT ct_col1, char_length(ct_col1) FROM char_type_t1;
ct_col1 | char_length

ok | 4
(1 row)

-- Delete the tables:
DROP TABLE char_type_t1;
-- Create a table:
CREATE TABLE char_type_t2
(
CT_COL1 VARCHAR(5)
) DISTRIBUTE BY HASH (CT_COL1);

--Insert data:
INSERT INTO char_type_t2 VALUES ('ok');

INSERT INTO char_type_t2 VALUES ('good');

-- Specify the type length. An error is reported if an inserted string exceeds this length.
INSERT INTO char_type_t2 VALUES ('too long');

ERROR: value too long for type character varying(5)

CONTEXT: referenced column: ct_col1

-- Specify the type length. A string exceeding this length is truncated.
INSERT INTO char_type_t2 VALUES ('too long":varchar(5));

-- Query data:

SELECT ct_col1, char_length(ct_col1) FROM char_type_t2;
ct_col1 | char_length

good | 4

ok | 2

tool | 5

(3 rows)

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd.

42

Data Warehouse Service
SQL Syntax

4 Data Types

-- Delete data:
DROP TABLE char_type_t2;

4.5 Binary Data Types

Table 4-9 lists the binary data types that can be used in GaussDB(DWS).

Table 4-9 Binary Data Types

Storage Space

The maximum size is 10,7373,3621
bytes (1 GB - 8203 bytes).

4 bytes plus the actual hexadecimal
string. The maximum size is
10,7373,3621 bytes (1 GB - 8203
bytes).

4 bytes plus the actual binary string.

The maximum size is 10,7373,3621
bytes (1 GB - 8203 bytes).

In addition to the size limitation on each column, the total size of each tuple is 8203 bytes

Nam | Description
e
BLOB | Binary large object.
Currently, BLOB only supports
the following external access
interfaces:
e DBMS_LOB.GETLENGTH
e DBMS_LOB.READ
e DBMS_LOB.WRITE
e DBMS_LOB.WRITEAPPEND
e DBMS_LOB.COPY
e DBMS_LOB.ERASE
For details about the interfaces,
see DBMS_LOB.
NOTE
Column storage cannot be used for
the BLOB type.
RAW | Variable-length hexadecimal
string
NOTE
Column storage cannot be used for
the raw type.
BYTE | Variable-length binary string
A
{10 NOTE
less than 1 GB.
Examples
-- Create a table:
CREATE TABLE blob_type_t1
(
BT_COL1 INTEGER,
BT_COL2 BLOB,
BT_COL3 RAW,
BT_COL4 BYTEA

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

43

Data Warehouse Service
SQL Syntax 4 Data Types

) DISTRIBUTE BY REPLICATION;

--Insert data:
INSERT INTO blob_type_t1 VALUES(10,empty_blob(),
HEXTORAW ('DEADBEEF'),E'\\xDEADBEEF');

-- Query data in the table:
SELECT * FROM blob_type_t1;
bt_col1 | bt_col2 | bt_col3 | bt_col4

10 | | DEADBEEF | \xdeadbeef
(1 row)

-- Delete the tables:
DROP TABLE blob_type_t1;

4.6 Date/Time Types

Table 4-10 lists date and time types supported by GaussDB(DWS). For the
operators and built-in functions of the types, see Date and Time Processing
Functions and Operators.

(11 NOTE

If the time format of another database is different from that of GaussDB(DWS), modify the
value of the DateStyle parameter to keep them consistent.

Table 4-10 Date/Time types

Name Description Storage Space
DATE In Oracle compatibility mode, it is In Oracle
equivalent to timestamp(0) and compatibility
records the date and time. mode, it occupies 8
In other modes, it records the date. | Pytes.
In Oracle

compatibility
mode, it occupies 4

bytes.
TIME [(p)] Specifies the time of day (no date). | 8 bytes
[WITHOUT TIME p indicates the precision after the
ZONE]

decimal point. The value ranges
from O to 6.

TIME [(p)] [WITH Specifies time within one day (with | 12 bytes
TIME ZONE] time zone).

p indicates the precision after the
decimal point. The value ranges

from 0 to 6.
TIMESTAMP[(p)] Specifies the date and time. 8 bytes
[WITHOUT TIME p indicates the precision after the
ZONE]

decimal point. The value ranges
from O to 6.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 44

Data Warehouse Service
SQL Syntax

4 Data Types

Name

Description

Storage Space

TIMESTAMP[(p)]

[WITH TIME ZONE]

Specifies the date and time (with
time zone). TIMESTAMP is also
called TIMESTAMPTZ.

p indicates the precision after the
decimal point. The value ranges
from O to 6.

8 bytes

SMALLDATETIME

Specifies the date and time
(without time zone).

The precision level is minute. 31s to
59s are rounded into 1 minute.

8 bytes

INTERVAL DAY (1)
TO SECOND (p)

Specifies the time interval (X days
X hours X minutes X seconds).

e L indicates the precision of days.
The value ranges from 0 to 6. To
adapt to Oracle syntax, the
precision functions are not
supported.

e p: indicates the precision of
seconds. The value ranges from
0 to 6. The digit 0 at the end of
a decimal number is not
displayed.

16 bytes

INTERVAL [FIELDS]
[(p)]

Specifies the time interval.

o fields: YEAR, MONTH, DAY,
HOUR, MINUTE, SECOND, DAY
TO HOUR, DAY TO MINUTE,
DAY TO SECOND, HOUR TO
MINUTE, HOUR TO SECOND,
and MINUTE TO SECOND.

e p: indicates the precision of
seconds. The value ranges from
0 to 6. p takes effect only when
fields are SECOND, DAY TO
SECOND, HOUR TO SECOND,
or MINUTE TO SECOND. The
digit 0 at the end of a decimal
number is not displayed.

12 bytes

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

45

Data Warehouse Service

SQL Syntax

4 Data Types

Name Description Storage Space
reltime Relative time interval. The format 4 bytes
is:

Xyears X months X days XX:XX:XX

e The Julian calendar is used. It
specifies that a year has 365.25
days and a month has 30 days.
The relative time interval needs
to be calculated based on the
input value. The output format
is POSTGRES.

For example:

--Create a table:
CREATE TABLE date_type_tab(coll date);

--Insert data:
INSERT INTO date_type_tab VALUES (date '12-10-2010');

-- View data:

SELECT * FROM date_type_tab;
coll

2010-12-10 00:00:00

(1 row)

-- Delete the tables:
DROP TABLE date_type_tab;

--Create a table:
CREATE TABLE time_type_tab (da time without time zone ,dai time with time zone,dfgh timestamp without
time zone,dfga timestamp with time zone, vbg smalldatetime);

--Insert data:
INSERT INTO time_type_tab VALUES ('21:21:21','21:21:21 pst','2010-12-12','2013-12-11 pst','2003-04-12
04:05:06');

-- View data:
SELECT * FROM time_type_tab;
da | dai | dfgh | dfga | vbg

21:21:21 | 21:21:21-08 | 2010-12-12 00:00:00 | 2013-12-11 16:00:00+08 | 2003-04-12 04:05:00
(1 row)

-- Delete the tables:
DROP TABLE time_type_tab;

--Create a table:
CREATE TABLE day_type_tab (a int,b INTERVAL DAY(3) TO SECOND (4));

--Insert data:
INSERT INTO day_type_tab VALUES (1, INTERVAL '3' DAY);

-- View data:
SELECT * FROM day_type_tab;
al b

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 46

Data Warehouse Service

SQL Syntax

4 Data Types

Date Input

-- Delete the tables:
DROP TABLE day_type_tab;

--Create a table:
CREATE TABLE year_type_tab(a int, b interval year (6));

--Insert data:
INSERT INTO year_type_tab VALUES(1,interval '2' year);

-- View data:

SELECT * FROM year_type_tab;
al b

e

1] 2 years

(1 row)

-- Delete the tables:
DROP TABLE year_type_tab;

Date and time input is accepted in almost any reasonable formats, including ISO
8601, SQL-compatible, and traditional POSTGRES. The system allows you to
customize the sequence of day, month, and year in the date input. Set the
DateStyle parameter to MDY to select month-day-year interpretation, DMY to
select day-month-year interpretation, or YMD to select year-month-day
interpretation.

Remember that any date or time literal input needs to be enclosed with single
quotes, and the syntax is as follows:

type [(p)] 'value'

The p that can be selected in the precision statement is an integer, indicating the
number of fractional digits in the seconds column. Table 4-11 shows some
possible inputs for the date type.

Table 4-11 Date input

Example Description

1999-01-08 ISO 8601 (recommended format). January 8, 1999 in any
mode

January 8, 1999 Unambiguous in any date input mode

1/8/1999 January 8 in MDY mode. August 1 in DMY mode

1/18/1999 January 18 in MDY mode, rejected in other modes

01/02/03 e January 2, 2003 in MDY mode

e February 1, 2003 in DMY mode
e February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode
Jan-08-1999 January 8 in any mode
08-Jan-1999 January 8 in any mode

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 47

Data Warehouse Service

SQL Syntax 4 Data Types
Example Description
99-Jan-08 January 8 in YMD mode, else error
08-Jan-99 January 8, except error in YMD mode
Jan-08-99 January 8, except error in YMD mode
19990108 ISO 8601. January 8, 1999 in any mode
990108 ISO 8601. January 8, 1999 in any mode
1999.008 Year and day of year
J2451187 Julian date
January 8, 99 BC Year 99 BC

For example:

--Create a table:
CREATE TABLE date_type_tab(coll date);

--Insert data:
INSERT INTO date_type_tab VALUES (date '12-10-2010');

-- View data:
SELECT * FROM date_type_tab;
coll

2010-12-10 00:00:00
(1 row)

-- View the date format:
SHOW datestyle;
DateStyle

ISO, MDY
(1 row)

-- Configure the date format:
SET datestyle='YMD;
SET

-- Insert data:
INSERT INTO date_type_tab VALUES(date '2010-12-11");

-- View data:
SELECT * FROM date_type_tab;
coll

2010-12-10 00:00:00
2010-12-11 00:00:00
(2 rows)

-- Delete the tables:
DROP TABLE date_type_tab;
Times

The time-of-day types are TIME [(p)] [WITHOUT TIME ZONE] and TIME [(p)]
[WITH TIME ZONE]. TIME alone is equivalent to TIME WITHOUT TIME ZONE.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 48

Data Warehouse Service
SQL Syntax 4 Data Types

If a time zone is specified in the input for TIME WITHOUT TIME ZONE, it is
silently ignored.

For details about the time input types, see Table 4-12. For details about time zone
input types, see Table 4-13.

Table 4-12 Time input

Example Description

05:06.8 ISO 8601

4:05:06 ISO 8601

4:05 ISO 8601

40506 ISO 8601

4:05 AM Same as 04:05. AM does not affect
value

4:05 PM Same as 16:05. Input hour must be <=
12

04:05:06.789-8 ISO 8601

04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

04:05:06 PST Time zone specified by abbreviation

2003-04-12 04:05:06 America/ Time zone specified by full name

New_York

Table 4-13 Time zone input

Example Description

PST Abbreviation (for Pacific Standard Time)
America/New_York Full time zone name

-8:00 ISO-8601 offset for PST

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

For example:

SELECT time '04:05:06";
time

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 49

Data Warehouse Service
SQL Syntax 4 Data Types

04:05:06
(1 row)

SELECT time '04:05:06 PST";
time

04:05:06
(1 row)

SELECT time with time zone '04:05:06 PST';
timetz

04:05:06-08
(1 row)

Special Values

The special values supported by GaussDB(DWS) are converted to common date/
time values when being read. For details, see Table 4-14.

Table 4-14 Special Values

Input Applicable Type Description

String

epoch date, timestamp 1970-01-01 00:00:00+00 (Unix system
time zero)

infinity timestamp Later than any other timestamps

-infinity timestamp Earlier than any other timestamps

now date, time, timestamp | Start time of the current transaction

today date, timestamp Today midnight

tomorrow date, timestamp Tomorrow midnight

yesterday date, timestamp Yesterday midnight

allballs time 00:00:00.00 UTC

Interval Input

The input of reltime can be any valid interval in TEXT format. It can be a number
(negative numbers and decimals are also allowed) or a specific time, which must
be in SQL standard format, ISO-8601 format, or POSTGRES format. In addition,
the text input needs to be enclosed with single quotation marks (").

For details, see Table 4-15.

Table 4-15 Interval input

Input Output Description

60 2 mons Numbers are used to indicate
intervals. The default unit is

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 50

Data Warehouse Service

SQL Syntax 4 Data Types
Input Output Description
31.25 1 mons 1 days 06:00:00 | day. Decimals and negative
numbers are also allowed.
-365 -12 mons -5 days

Particularly, a negative
interval syntactically means
how long before.

1 years 1 mons 8 days
12:00:00

1 years 1 mons 8 days
12:00:00

-13 months -10 hours

-1 years -25 days
-04:00:00

-2 YEARS +5 MONTHS

-1 years -6 mons -25

Intervals are in POSTGRES
format. They can contain
both positive and negative
numbers and are case-
insensitive. Output is a
simplified POSTGRES interval
converted from the input.

10 DAYS days -06:00:00
P-1.1Y10M -3 mons -5 days Intervals are in I1SO-8601
-06:00:00 format. They can contain
both positive and negative
-12H -12:00:00

numbers and are case-
insensitive. Output is a
simplified POSTGRES interval
converted from the input.

For example:

-- Create a table.

CREATE TABLE reltime_type_tab(col1 character(30), col2 reltime);

-- Insert data.

INSERT INTO reltime_type_tab VALUES ('90', '90');

INSERT INTO reltime_type_tab VALUES ('-366', '-366');
INSERT INTO reltime_type_tab VALUES ('1975.25', '1975.25');
INSERT INTO reltime_type_tab VALUES ('-2 YEARS +5 MONTHS 10 DAYS', '-2 YEARS +5 MONTHS 10 DAYS');
INSERT INTO reltime_type_tab VALUES (‘30 DAYS 12:00:00', '30 DAYS 12:00:00');

INSERT INTO reltime_type_tab VALUES (‘'P-1.1Y10M', 'P-1.1Y10M");

-- View data.
SELECT * FROM reltime_type_tab;
coll | col2
1975.25 | 5 years 4 mons 29 days

-2 YEARS +5 MONTHS 10 DAYS

| -1 years -6 mons -25 days -06:00:00

P-1.1Y10M | -3 mons -5 days -06:00:00
-366 | -1 years -18:00:00

90 | 3 mons

30 DAYS 12:00:00 | 1 mon 12:00:00

(6 rows)

-- Delete tables.
DROP TABLE reltime_type_tab;

4.7 Geometric Types

Table 4-16 lists the geometric types that can be used in GaussDB(DWS). The most
fundamental type, the point, forms the basis for all of the other types.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 51

Data Warehouse Service
SQL Syntax 4 Data Types

Table 4-16 Geometric Type

Name | Storage Description Representation
Space

point 16 bytes Point on a plane (xy)

lseg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular Box ((x1,y1),(x2,y2))

path 16+16n Closed path (similar to ((x1,y1),...)
bytes polygon)

path 16+16n Open path [(x1,y1),..]
bytes

polygon | 40+16n Polygon (similar to closed ((x1,y1),...)
bytes path)

circle 24 bytes Circle <(x,y),r> (center point

and radius)

A rich set of functions and operators is available in GaussDB(DWS) to perform
various geometric operations, such as scaling, translation, rotation, and
determining intersections. For details, see Geometric Functions and Operators.

Points

Points are the fundamental two-dimensional building block for geometric types.
Values of the point type are specified using either of the following syntaxes:

(x,y)
X,y

where x and y are the respective coordinates, as floating-point numbers.

Points are output using the first syntax.

Line Segments

Line segments (lseg) are represented by pairs of points. Values of the lseg type
are specified using any of the following syntaxes:

[(x1,y1),(x2,y2)]

((x1,y1),(x2,y2))

(x1,y1),(x2,y2)

x1,yl , x2,y2

where (x1,y1) and (x2,y2) are the end points of the line segment.

Line segments are output using the first syntax.

Rectangular Box

Boxes are represented by pairs of points that are opposite corners of the box.
Values of the box type are specified using any of the following syntaxes:

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 52

Data Warehouse Service

SQL Syntax 4 Data Types
((x1,y1),(x2,y2))
(x1,y1),(x2,y2)
x1,yl , x2,y2
where (x1,y1) and (x2,y2) are any two opposite corners of the box.
Boxes are output using the second syntax.
Any two opposite corners can be supplied on input, but in this order, the values
will be reordered as needed to store the upper right and lower left corners.

Path
Paths are represented by lists of connected points. Paths can be open, where the
first and last points in the list are considered not connected, or closed, where the
first and last points are considered connected.
Values of the path type are specified using any of the following syntaxes:
[(x1,y1),..,(xn,yn)]
((x1,y1),..,(xn,yn))
(x1,y1),..,(xn,yn)
(x1,yl ,.., xn,yn)
x1,yl ,.., xn,yn
where the points are the end points of the line segments comprising the path.
Square brackets ([]) indicate an open path, while parentheses (()) indicate a
closed path. When the outermost parentheses are omitted, as in the third through
fifth syntaxes, a closed path is assumed.
Paths are output using the first or second syntax.

Polygons
Polygons are represented by lists of points (the vertexes of the polygon). Polygons
are very similar to closed paths, but are stored differently and have their own set
of support functions.
Values of the polygon type are specified using any of the following syntaxes:
((x1,y1),..,(xn,yn))
(x1,y1),..,(xn,yn)
(x1,yl ,.., xn,yn)
x1,yl ,.., xn,yn
where the points are the end points of the line segments comprising the boundary
of the polygon.
Polygons are output using the first syntax.

Circle

Circles are represented by a center point and radius. Values of the circle type are
specified using any of the following syntaxes:

<(x,y),r>
((x,y),r)
(x,y),r
X,y ,r

where (x,y) is the center point and r is the radius of the circle.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 53

Data Warehouse Service

SQL Syntax

4 Data Types

Circles are output using the first syntax.

4.8 Network Address Types

cidr

GaussDB(DWS) offers data types to store IPv4, IPv6, and MAC addresses.

It is better to use network address types instead of plaintext types to store IPv4,
IPv6, and MAC addresses, because these types offer input error checking and
specialized operators and functions. For details, see Network Address Functions
and Operators.

Table 4-17 Network Address Types

Name Storage Space Description

cidr 7 or 19 bytes IPv4 or IPv6 networks

inet 7 or 19 bytes IPv4 or IPv6 hosts and networks
macaddr 6 bytes MAC addresses

When sorting inet or cidr data types, IPv4 addresses will always sort before IPv6
addresses, including IPv4 addresses encapsulated or mapped to IPv6 addresses,
such as ::10.2.3.4 or =:ffff:10.4.3.2.

The cidr type (Classless Inter-Domain Routing) holds an IPv4 or IPv6 network
specification. The format for specifying networks is address/y where address is
the network represented as an IPv4 or IPv6 address, and y is the number of bits in
the netmask. If y is omitted, it is calculated using assumptions from the older
classful network numbering system, except it will be at least large enough to
include all of the octets written in the input.

e Example 1: Convert a value in the CIDR format to an IP address segment.

For example, 10.0.0.0/8 is converted into a 32-bit binary address
00001010.00000000.00000000.00000000. /8 indicates an 8-bit network ID.
The first eight bits of the 32-bit binary address are fixed. The corresponding
network segment is
00001010.00000000.00000000.00000000-00001010.11111111.11111111.1111
1111. 10.0.0.0/8 indicates that the subnet mask is 255.0.0.0 and the
corresponding network segment is 10.0.0.0-10.255.255.255.

e Example 2: Convert an IP address segment to the CIDR format.

For the IP address segment 192.168.0.0-192.168.31.255, the last two
segments can be converted into a binary address
00000000.00000000-00011111.11111111. The first 19 bits (8 x 2 + 3) are
fixed. Therefore, the binary address is 192.168.0.0/19.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 54

Data Warehouse Service

SQL Syntax 4 Data Types
Table 4-18 cidr type input examples
cidr Input cidr Output abbrev (cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24
10.1.2 10.1.2.0/24 10.1.2/24
10.1 10.1.0.0/16 10.1/16
10 10.0.0.0/8 10/8
10.1.2.3/32 10.1.2.3/32 10.1.2.3/32
2001:4f8:3:ba::/64 2001:4f8:3:ba::/64 2001:4f8:3:ba::/64
2001:4f8:3:ba: 2001:4f8:3:ba: 2001:4f8:3:ba:
2e0:81ff:fe22:d1f1/128 2e0:81ff:fe22:d1f1/128 2e0:81ff:fe22:d1f1
+ffff:1.2.3.0/120 +ffff:1.2.3.0/120 «ffff:1.2.3/120
+ffff:1.2.3.0/128 +ffff:1.2.3.0/128 +ffff:1.2.3.0/128
inet
The inet type holds an IPv4 or IPv6 host address, and optionally its subnet, all in
one field. The subnet is represented by the number of network address bits
present in the host address (the "netmask"). If the netmask is 32 and the address
is IPv4, then the value does not indicate a subnet, only a single host. In IPv6, the
address length is 128 bits, so 128 bits specify a unique host address.
The input format for this type is address/y where address is an IPv4 or IPv6
address and y is the number of bits in the netmask. If the [y portion is missing,
the netmask is 32 for IPv4 and 128 for IPv6, so the value represents just a single
host. On display, the [y portion is suppressed if the netmask specifies a single
host.
The essential difference between the inet and cidr data types is that inet accepts
values with nonzero bits to the right of the netmask, whereas cidr does not.
macaddr

The macaddr type stores MAC addresses, known for example from Ethernet card
hardware addresses (although MAC addresses are used for other purposes as
well). Input is accepted in the following formats:

'08:00:2b:01:02:03'

'08-00-2b-01-02-03'

'08002b:010203'

'08002b-010203"

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 55

Data Warehouse Service
SQL Syntax 4 Data Types

'0800.2b01.0203'
'08002b010203'

These examples would all specify the same address. Upper and lower cases are
accepted for the digits a through f. Output is always in the first of the forms
shown.

4.9 Bit String Types

Bit strings are strings of 1's and 0's. They can be used to store bit masks.

GaussDB(DWS) supports two SQL bit types: bit(n) and bit varying(n), where n is
a positive integer.

The bit type data must match the length n exactly. It is an error to attempt to
store shorter or longer bit strings. The bit varying data is of variable length up to
the maximum length n; longer strings will be rejected. Writing bit without a
length is equivalent to bit(1), while bit varying without a length specification
means unlimited length.

(11 NOTE

If one explicitly casts a bit-string value to bit(n), it will be truncated or zero-padded on the
right to be exactly n bits, without raising an error.

Similarly, if one explicitly casts a bit-string value to bit varying(n), it will be truncated on
the right if it is more than n bits.

-- Create a table:

CREATE TABLE bit_type_t1

(
BT_COL1 INTEGER,
BT_COL2 BIT(3),
BT_COL3 BIT VARYING(5)

) DISTRIBUTE BY REPLICATION;

--Insert data:
INSERT INTO bit_type_t1 VALUES(1, B'101', B'00');

-- Specify the type length. An error is reported if an inserted string exceeds this length.
INSERT INTO bit_type_t1 VALUES(2, B'10', B'101");

ERROR: bit string length 2 does not match type bit(3)

CONTEXT: referenced column: bt_col2

-- Specify the type length. Data is converted if it exceeds this length.
INSERT INTO bit_type_t1 VALUES(2, B'10':bit(3), B'101');

-- View data:
SELECT * FROM bit_type_t1;
bt_col1 | bt_col2 | bt_col3

+ +
11101 |00
21100 |101

(2 rows)

-- Delete the tables:
DROP TABLE bit_type_t1;

4.10 Text Search Types

GaussDB(DWS) offers two data types that are designed to support full text search.
The tsvector type represents a document in a form optimized for text search. The
tsquery type similarly represents a text query.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 56

Data Warehouse Service

SQL Syntax

4 Data Types

tsvector

The tsvector type represents a retrieval unit, usually a textual column within a
row of a database table, or a combination of such columns. A tsvector value is a
sorted list of distinct lexemes, which are words that have been normalized to
merge different variants of the same word. Sorting and deduplication are done
automatically during input. The to_tsvector function is used to parse and
normalize a document string. The to_tsvector function is used to parse and
normalize a document string.

A tsvector value is a sorted list of distinct lexemes, which are words that have
been formatted different entries. During segmentation, tsvector automatically
performs duplicate-elimination to the entries for input in a certain order. For
example:

SELECT 'a fat cat sat on a mat and ate a fat rat":tsvector;
tsvector

'a' 'and' 'ate' 'cat' 'fat' 'mat' 'on' 'rat' 'sat
(1 row)

It can be seen from the preceding example that tsvector segments a string by
spaces, and segmented lexemes are sorted based on their length and alphabetical
order. To represent lexemes containing whitespace or punctuation, surround them
with quotes:

SELECT $$the lexeme ' ' contains spaces$$:tsvector;
tsvector

' 'contains' 'lexeme' 'spaces' 'the'
(1 row)

Use double dollar signs ($$) to mark entries containing single quotation marks (').

SELECT $$the lexeme 'Joe''s' contains a quote$$::tsvector;
tsvector

'Joe's' 'a' 'contains' 'lexeme' 'quote’ 'the'
(1 row)

Optionally, integer positions can be attached to lexemes:

SELECT 'a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11 rat:12":tsvector;
tsvector

'a':1,6,10 'and"8 'ate":9 'cat"3 'fat:2,11 'mat":7 'on"5 'rat"12 'sat':4
(1 row)

A position normally indicates the source word's location in the document.
Positional information can be used for proximity ranking. Position values range
from 1 to 16383. The default maximum value is 16383. Duplicate positions for the
same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can be A,
B, C, or D. D is the default and hence is not shown on output:

SELECT 'a:1A fat:2B,4C cat:5D':tsvector;
tsvector

'a":1A 'cat"5 'fat":2B,4C
(1 row)

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 57

Data Warehouse Service

SQL Syntax

4 Data Types

tsquery

Weights are typically used to reflect document structure, for example, by marking
title words differently from body words. Text search ranking functions can assign
different priorities to the different weight markers.

The following example is the standard usage of the tsvector type. For example:

SELECT 'The Fat Rats':tsvector;
tsvector

'Fat' 'Rats' 'The'
(1 row)

For most English-text-searching applications the above words would be considered
non-normalized, which should usually be passed through to_tsvector to normalize
the words appropriately for searching:

SELECT to_tsvector(‘english', 'The Fat Rats');
to_tsvector

'fat":2 'rat":3
(1 row)

The tsquery type represents a retrieval condition. A tsquery value stores lexemes
that are to be searched for, and combines them honoring the Boolean operators &
(AND), | (OR), and ! (NOT). Parentheses can be used to enforce grouping of the
operators. The to_tsquery and plainto_tsquery functions will normalize lexemes
before the lexemes are converted to the tsquery type.

SELECT 'fat & rat':tsquery;
tsquery

'fat' & 'rat’
(1 row)

SELECT 'fat & (rat | cat)':tsquery;
tsquery

'fat' & ('rat' | 'cat')
(1 row)

SELECT 'fat & rat & ! cat":tsquery;
tsquery

'fat' & 'rat' & !'cat’
(1 row)

In the absence of parentheses, ! (NOT) binds most tightly, and & (AND) binds
more tightly than | (OR).

Lexemes in a tsquery can be labeled with one or more weight letters, which
restrict them to match only tsvector lexemes with matching weights:

SELECT 'fat:ab & cat':tsquery;
tsquery

'fat":AB & 'cat’
(1 row)

Also, lexemes in a tsquery can be labeled with * to specify prefix matching:

SELECT 'super:*'::tsquery;
tsquery

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 58

Data Warehouse Service
SQL Syntax 4 Data Types

'super':*
(1 row)

This query will match any word in a tsvector that begins with "super".

Note that prefixes are first processed by text search configurations, which means
the following example returns true:

SELECT to_tsvector('postgraduate') @@ to_tsquery('postgres:*') AS RESULT;
result

because postgres gets stemmed to postgr:

SELECT to_tsquery('postgres:*');
to_tsquery

'postgr':*
(1 row)

which then matches postgraduate.

'Fat:ab & Cats' is normalized to the tsquery type as follows:

SELECT to_tsquery('Fat:ab & Cats');
to_tsquery

'fat":AB & 'cat’
(1 row)

4.11 UUID Type

The data type UUID stores Universally Unique Identifiers (UUID) as defined by
RFC 4122, ISO/IEF 9834-8:2005, and related standards. This identifier is a 128-bit
quantity that is generated by an algorithm chosen to make it very unlikely that
the same identifier will be generated by anyone else in the known universe using
the same algorithm.

Therefore, for distributed systems, these identifiers provide a better uniqueness
guarantee than sequence generators, which are only unique within a single
database.

A UUID is written as a sequence of lower-case hexadecimal digits, in several
groups separated by hyphens, specifically a group of 8 digits followed by three
groups of 4 digits followed by a group of 12 digits, for a total of 32 digits
representing the 128 bits. An example of a UUID in this standard form is:

a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11

GaussDB(DWS) also accepts the following alternative forms for input: use of
upper-case letters and digits, the standard format surrounded by braces, omitting
some or all hyphens, and adding a hyphen after any group of four digits.
Examples

AOEEBC99-9C0B-4EF8-BB6D-6BB9BD380A11
{a0eebc99-9c0b-4ef8-bbb6d-6bb9bd380a11}
a0eebc999c0b4ef8bb6d6bb9bd380a11
a0ee-bc99-9c0b-4ef8-bb6d-6bb9-bd38-0a11

Output is always in the standard form.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 59

Data Warehouse Service
SQL Syntax 4 Data Types

4.12 JSON Types

JSON data types are for storing JavaScript Object Notation (JSON) data. Such data
can also be stored as TEXT, but the JSON data type has the advantage of checking
that each stored value is a valid JSON value.

For functions that support the JSON data type, see JSON Functions.

4.13 HLL Data Types

HyperLoglog (HLL) is an approximation algorithm for efficiently counting the
number of distinct values in a data set. It features faster computing and lower
space usage. You only need to store HLL data structures, instead of data sets.
When new data is added to a data set, make hash calculation on the data and
insert the result to an HLL. Then, you can obtain the final result based on the HLL.

Table 4-19 compares HLL with other algorithms.

Table 4-19 Comparison between HLL and other algorithms

Item Sorting Hash Algorithm HLL
Algorithm

Time complexity O(nlogn) O(n) O(n)

Space complexity | O(n) O(n) 1280 bytes

Error rate 0 0 ~2%

Storage space Size of raw data Size of raw data 1280 bytes

requirement

HLL has advantages over others in the computing speed and storage space
requirement. In terms of time complexity, the sorting algorithm needs O(nlogn)
time for sorting, and the hash algorithm and HLL need O(n) time for full table
scanning. In terms of storage space requirements, the sorting algorithm and hash
algorithm need to store raw data before collecting statistics, whereas the HLL
algorithm needs to store only the HLL data structures rather than the raw data,
and thereby occupying a fixed space of only 1280 bytes.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 60

Data Warehouse Service

SQL Syntax

4 Data Types

NOTICE

e In default specifications, the maximum number of distinct values is 1.6e plus
12, and the maximum error rate is only 2.3%. If a calculation result exceeds the
maximum number, the error rate of the calculation result will increase, or the
calculation will fail and an error will be reported.

e When using this feature for the first time, you need to evaluate the distinct
values of the service, properly select configuration parameters, and perform
verification to ensure that the accuracy meets requirements.

When default parameter configuration is used, the calculated number of
distinct values is 1.6e plus 12. If the calculated result is NaN, you need to
adjust log2m and regwidth to accommodate more distinct values.

The hash algorithm has an extremely low probability of collision. However,
you are still advised to select 2 or 3 hash seeds for verification when using
the hash algorithm for the first time. If there is only a small difference
between the distinct values, you can select any one of the seeds as the
hash seed.

Table 4-20 describes main HLL data structures.

Table 4-20 Main HLL data structures

Data Type Description

hl

Its size is always 1280 bytes, which can be directly used to
calculate the number of distinct values.

The following describes HLL application scenarios.

Scenario 1: "Hello World"

The following example shows how to use the HLL data type:
-- Create a table with the HLL data type:
create table helloworld (id integer, set hll);

-- Insert an empty HLL to the table:
insert into helloworld(id, set) values (1, hll_empty());

-- Add a hashed integer to the HLL:
update helloworld set set = hll_add(set, hll_hash_integer(12345)) where id = 1;

-- Add a hashed string to the HLL:
update helloworld set set = hll_add(set, hll_hash_text('hello world')) where id = 1;

-- Obtain the number of distinct values of the HLL:
select hll_cardinality(set) from helloworld where id = 1;
hll_cardinality

(1 row)

Scenario 2: Collect statistics about website visitors.

The following example shows how an HLL collects statistics on the number of
users visiting a website within a period of time:

-- Create a raw data table to show that a user has visited the website at a certain time:
create table facts (

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 61

Data Warehouse Service
SQL Syntax 4 Data Types

date date,
user_id integer

)

-- Construct data to show the users who have visited the website in a day:
insert into facts values ('2019-02-20', generate_series(1,100));
insert into facts values ('2019-02-21', generate_series(1,200));
insert into facts values ('2019-02-22', generate_series(1,300));
insert into facts values ('2019-02-23', generate_series(1,400));
insert into facts values ('2019-02-24', generate_series(1,500));
insert into facts values ('2019-02-25', generate_series(1,600));
insert into facts values ('2019-02-26', generate_series(1,700));
insert into facts values ('2019-02-27', generate_series(1,800));

-- Create another table and specify an HLL column:
create table daily_uniques (

date date UNIQUE,

users hll

)

-- Group data by date and insert the data into the HLL:
insert into daily_uniques(date, users)
select date, hll_add_agg(hll_hash_integer(user_id))
from facts
group by 1;

-- Calculate the numbers of users visiting the website every day:
select date, hll_cardinality(users) from daily_uniques order by date;
date | hil_cardinality

2019-02-20 00:00:00 | 100
2019-02-21 00:00:00 | 203.813355588808
2019-02-22 00:00:00 | 308.048239950384
2019-02-23 00:00:00 | 410.529188080374
2019-02-24 00:00:00 | 513.263875705319
2019-02-25 00:00:00 | 609.271181107416
2019-02-26 00:00:00 | 702.941844662509
2019-02-27 00:00:00 | 792.249946595237
(8 rows)

-- Calculate the number of users who had visited the website in the week from February 20, 2019 to
February 26, 2019:

select hll_cardinality(hll_union_agg(users)) from daily_uniques where date >= '2019-02-20"::date and
date <= '2019-02-26'":date;

hll_cardinality

702.941844662509

(1 row)

-- Calculate the number of users who had visited the website yesterday but have not visited the
website today:
SELECT date, (#hll_union_agg(users) OVER two_days) - #users AS lost_uniques FROM daily_uniques
WINDOW two_days AS (ORDER BY date ASC ROWS 1
PRECEDING);

date | lost_uniques

+.

2019-02-20 00:00:00 |
2019-02-21 00:00:00 |
2019-02-22 00:00:00 |
2019-02-23 00:00:00 |
2019-02-24 00:00:00 |
2019-02-25 00:00:00 |
2019-02-26 00:00:00 |
2019-02-27 00:00:00 |
(8 rows)

e Scenario 3: The data to be inserted does not meet the requirements of the
HLL data structure.

[eNeoNeoNoNoNoNoNe)

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 62

Data Warehouse Service

SQL Syntax

4 Data Types

When inserting data into a column of the HLL type, ensure that the data
meets the requirements of the HLL data structure. If the data does not meet
the requirements after being parsed, an error will be reported. In the
following example, E\\1234 to be inserted does not meet the requirements of
the HLL data structure after being parsed. As a result, an error is reported.
create table test(id integer, set hll);

insert into test values(1, 'E\\1234");
ERROR: unknown schema version 4

4.14 Object Identifier Types

Object identifiers (OIDs) are used internally by GaussDB(DWS) as primary keys for
various system catalogs. OIDs are not added to user-created tables by the system.
The OID type represents an object identifier.

The OID type is currently implemented as an unsigned four-byte integer. So, using
a user-created table's OID column as a primary key is discouraged.

Table 4-21 Object identifier types

Name

Referenc
e

Description

Examples

OoID

Numeric object identifier

564182

CID

A command identifier. This
is the data type of the
system columns cmin and
cmax. Command identifiers
are 32-bit quantities.

XID

A transaction identifier. This
is the data type of the
system columns xmin and
xmax. Transaction
identifiers are also 32-bit
quantities.

TID

A row identifier. This is the
data type of the system
column ctid. Arow ID is a
pair (block number, tuple
index within block) that
identifies the physical
location of the row within
its table.

REGCONFI
G

pg_ts_conf
ig

Text search configuration

english

REGDICTIO
NARY

pg_ts_dict

Text search dictionary

simple

REGOPER

pg_operat
or

Operator name

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

63

Data Warehouse Service
SQL Syntax

4 Data Types

Name Referenc | Description Examples

e
REGOPERA | pg_operat | Operator with argument *(integer,integer) or -
TOR or types (NONE,integer)
REGPROC pg_proc Indicates the name of the sum

function.

REGPROCE | pg_proc Function with argument sum(int4)
DURE types
REGCLASS | pg_class Relation name pg_type
REGTYPE pg_type Data type name integer

The OID type is used for a column in the database system catalog.

For example:

SELECT oid FROM pg_class WHERE relname = 'pg_type";

oid

The alias type for OID is REGCLASS which allows simplified search for OID values.

For example:

SELECT attrelid,attname,atttypid,attstattarget FROM pg_attribute WHERE attrelid = 'pg_type'::REGCLASS;

attrelid | attname | atttypid | attstattarget

1247 | xc_node_id |
1247 | tableoid |

1247 | cmax
1247 | xmax
1247 | cmin
1247 | xmin
1247 | oid
1247 | ctid

1247 | typname |
1247 | typnamespace |
1247 | typowner |
1247 | typlen
1247 | typbyval |
1247 | typtype |
1247 | typcategory |
1247 | typispreferred |
1247 | typisdefined |
1247 | typdelim |
1247 | typrelid |
1247 | typelem |
1247 | typarray |
1247 | typinput |
1247 | typoutput |
1247 | typreceive |
1247 | typsend |
1247 | typmodin |
1247 | typmodout |
1247 | typanalyze |
1247 | typalign |
1247 | typstorage |

23 |
26 |
| 29|
| 28]
[29]
| 28]
| 26|
| 27|
19
26 |
26 |
| 21
16 |
18|
18]
16 |
16|
18|
26 |
26 |
26 |
24 |
24|
24 |
24 |
24 |
24|
24 |
18]
18|

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

64

Data Warehouse Service

SQL Syntax 4 Data Types

1247 | typnotnull | 16 | -1

1247 | typbasetype | 26 | -1

1247 | typtypmod | 23| -1

1247 | typndims | 23|

1247 | typcollation | 26 | -1

1247 | typdefaultbin | 194 | -1

1247 | typdefault | 25| -1

1247 | typacl | 1034 | -1

(38 rows)

4.15 Pseudo-Types

GaussDB(DWS) has a number of special-purpose entries that are collectively
called pseudo-types. A pseudo-type cannot be used as a column data type, but it
can be used to declare a function's argument or result type.

Each of the available pseudo-types is useful in situations where a function's
behavior does not correspond to simply taking or returning a value of a specific
SQL data type. Table 4-22 lists all pseudo-types.

Table 4-22 Pseudo-Types

Name Description

any Indicates that a function accepts any input data type.

anyelement Indicates that a function accepts any data type.

anyarray Indicates that a function accepts any array data type.

anynonarray Indicates that a function accepts any non-array data type.

anyenum Indicates that a function accepts any enum data type.

anyrange Indicates that a function accepts any range data type.

cstring Indicates that a function accepts or returns a null-
terminated C string.

internal Indicates that a function accepts or returns a server-

internal data type.

language_handler

Indicates that a procedural language call handler is
declared to return language_handler.

fdw_handler

Indicates that a foreign-data wrapper handler is declared
to return fdw_handler.

record Identifies a function returning an unspecified row type.

trigger Indicates that a trigger function is declared to return
trigger.

void Indicates that a function returns no value.

opaque Indicates an obsolete type name that formerly served all

the above purposes.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

65

Data Warehouse Service

SQL Syntax

4 Data Types

Functions coded in C (whether built in or dynamically loaded) can be declared to
accept or return any of these pseudo data types. It is up to the function author to
ensure that the function will behave safely when a pseudo-type is used as an
argument type.

Functions coded in procedural languages can use pseudo-types only as allowed by
their implementation languages. At present the procedural languages all forbid
use of a pseudo-type as argument type, and allow only void and record as a
result type. Some also support polymorphic functions using the anyelement,
anyarray, anynonarray, anyenum, and anyrange types.

The internal pseudo-type is used to declare functions that are meant only to be
called internally by the database system, and not by direct call in an SQL query. If
a function has at least one internal-type argument, it cannot be called from SQL.
You are not advised to create any function that is declared to return internal
unless the function has at least one internal argument.

For example:

-- Create or replace the showall() function:

CREATE OR REPLACE FUNCTION showall() RETURNS SETOF record

AS $$ SELECT count(*) from tpcds.store_sales where ss_customer_sk = 9692; $$
LANGUAGE SQL;

-- Invoke the showall() function:
SELECT showall();
showall

-- Delete the function:
DROP FUNCTION showall();

4.16 Data Types Supported by Column-Store Tables

Table 4-23 lists the data types supported by column-store tables.

Table 4-23 Data types supported by column-store tables

Category Data Type Length | Suppo
rted
Numeric types smallint 2 Yes
integer 4 Yes
bigint 8 Yes
decimal Variabl | Yes
e
length
numeric Variabl | Yes
e
length
real 4 Yes

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 66

Data Warehouse Service

SQL Syntax 4 Data Types
Category Data Type Length | Suppo
rted
double precision 8 Yes
smallserial 2 Yes
serial 4 Yes
bigserial 8 Yes
Monetary types money 8 Yes
Character types character varying(n), varchar(n) Variabl | Yes
Fength
character(n), char(n) n Yes
character, char 1 Yes
text Variabl | Yes
e
length
nvarchar2 Variabl | Yes
e
length
name 64 No
Date/time types timestamp with time zone 8 Yes
timestamp without time zone 8 Yes
date 4 Yes
time without time zone 8 Yes
time with time zone 12 Yes
interval 16 Yes
Large objects clob Variabl | Yes
fength
blob Variabl | No
e
length
Others No
Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 67

Data Warehouse Service
SQL Syntax 4 Data Types

4.17 XML

XML data type stores Extensible Markup Language (XML) formatted data. Such
data can also be stored as text, but the advantage of the XML data type is that it
checks whether each stored value is a well-formed XML value. XML can store well-
formed documents and content fragments defined by XML standards. A content
fragment can have multiple top-level elements or character nodes.

For functions that support the XML data type, see XML Functions.

Configuring XML Parameters

The syntax is as follows:

SET XML OPTION { DOCUMENT | CONTENT }
SET xmloption TO { DOCUMENT | CONTENT };

If a string value is not converted to XML using the XMLPARSE or XMLSERIALIZE
function, the XML OPTION session parameter determines the value, DOCUMENT
or CONTENT.

The default value is CONTENT, indicating that all types of XML data are allowed.

Example:

SET XML OPTION DOCUMENT;
SET
SET xmloption TO DOCUMENT;
SET

Configuring Binary Data Encoding Format

Syntax:

SET xmlbinary TO { base64 | hex};

Example:

SET xmlbinary TO base64;
SET

SELECT xmlelement(name foo, bytea 'bar');
xmlelement

<foo>YmFy</foo>
(1 row)

SET xmlbinary TO hex;
SET

SELECT xmlelement(name foo, bytea 'bar');
xmlelement

<f00>626172</foo>
(1 row)

Accessing XML Value

The XML data type is special, and it does not provide any comparison operators,
because there is no general comparison algorithm for XML data, so you cannot

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 68

Data Warehouse Service
SQL Syntax 4 Data Types

retrieve data rows by comparing an XML value with a search value. An XML data
entry is typically accompanied by an ID for retrieving. Alternatively, you can
convert XML values into character strings. However, this is not widely applicable to
common scenarios of XML value comparison.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 69

Data Warehouse Service
SQL Syntax

5 Constant and Macro

Constant and Macro

Table 5-1 lists the constants and macros that can be used in GaussDB(DWS).

Table 5-1 Constants and macros

Parameter

Description

Examples

CURRENT_CA
TALOG

Specifies the current
database.

SELECT CURRENT_CATALOG;
current_database

gaussdb

(1 row)

CURRENT_RO
LE

Current role

SELECT CURRENT_ROLE;
current_user

CURRENT_SC
HEMA

Current database model

SELECT CURRENT_SCHEMA,;
current_schema

CURRENT_US
ER

Current user

SELECT CURRENT_USER;
current_user

LOCALTIMEST
AMP

Current session time
(without time zone)

SELECT LOCALTIMESTAMP;
timestamp

2015-10-10 15:37:30.968538
(1 row)

NULL

This parameter is left
blank.

SESSION_USE
R

Current system user

SELECT SESSION_USER;
session_user

SYSDATE

Current system date

SELECT SYSDATE;
sysdate

2015-10-10 15:48:53
(1 row)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 70

Data Warehouse Service
SQL Syntax

5 Constant and Macro

Parameter

Description

Examples

USER

Current user, also called
CURRENT _USER

SELECT USER;

current_user

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

71

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Functions and Operators

6.1 Logical Operators

The usual logical operators include AND, OR, and NOT. SQL uses a three-valued
logical system with true, false, and null, which represents "unknown". Their
priorities are NOT > AND > OR.

Table 6-1 lists operation rules, where a and b represent logical expressions.

Table 6-1 Operation rules

a b a AND b Result | a OR b Result NOT a

Result
TRUE TRUE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE FALSE
TRUE NULL NULL TRUE FALSE
FALSE FALSE FALSE FALSE TRUE
FALSE NULL FALSE NULL TRUE
NULL NULL NULL NULL NULL
{11 NOTE

The operators AND and OR are commutative, that is, you can switch the left and right
operand without affecting the result.

6.2 Comparison Operators

Comparison operators are available for all data types and return Boolean values.

All comparison operators are binary operators. Only data types that are the same
or can be implicitly converted can be compared using comparison operators.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 72

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Table 6-2 describes comparison operators provided by GaussDB(DWS).

Table 6-2 Comparison operators

Operators Description

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to
= Equality

<>orl= Inequality

Comparison operators are available for all relevant data types. All comparison
operators are binary operators that returned values of Boolean type. Expressions

like 1 <2 < 3 are invalid. (Because there is no comparison operator to compare a
Boolean value with 3.)

6.3 Character Processing Functions and Operators

String functions and operators provided by GaussDB(DWS) are for concatenating
strings with each other, concatenating strings with non-strings, and matching the
patterns of strings.

bit_length(string)
Description: Specifies the number of bits occupied by a string.
Return type: int

For example:

SELECT bit_length(‘world');
bit_length

40
(1 row)

btrim(string text [, characters text])

Description: Removes the longest string consisting only of characters in
characters (a space by default) from the start and end of string.
Return type: text

For example:

SELECT btrim('sring', 'ing");
btrim

sr
(1 row)

char_length(string) or character_length(string)
Description: Number of characters in a string
Return type: int

Issue 01 (2022-07-2

9)

Copyright © Huawei Technologies Co., Ltd.

73

Data Warehouse Service

SQL Syntax

6 Functions and Operators

For example:

SELECT char_length(‘hello');
char_length

(1 row)
instr(text,text,int,int)

Description: FROM int indicates the start position of the replacement in the
first string. for int indicates the number of characters replaced in the first
string.

Return type: int

For example:

SELECT instr('abcdabcdabced', 'bed’, 2, 2);
instr

lengthb(text/bpchar)
Description: Obtains the number of bytes of a specified string.
Return type: int

For example:

SELECT lengthb('hello");
lengthb

left(str text, n int)
Description: Returns first n characters in the string.

- In the ORA- or TD-compatible mode, all but the last |[n| characters are
returned if n is negative.

- In the MySQL-compatible mode, an empty string is returned if n is
negative.

Return type: text

For example:

SELECT left(‘abcde’, 2);
left

ab
(1 row)

length(string bytea, encoding name)

Description: Number of characters in string in the given encoding. The string

must be valid in this encoding.
Return type: int

For example:

SELECT length('jose’, 'UTF8');
length

Ipad(string text, length int [, fill text])

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

74

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Description: Fills up the string to the specified length by appending the
characters fill (a space by default). If the string is already longer than length
then it is truncated (on the right).

Return type: text

For example:

SELECT lpad('hi', 5, 'xyza');
lpad

e octet_length(string)
Description: Number of bytes in a string
Return type: int

For example:

SELECT octet_length(‘jose');
octet_length

(1 row)
e overlay(string placing string FROM int [for int])

Description: Replaces substring. FROM int indicates the start position of the
replacement in the first string. for int indicates the number of characters
replaced in the first string.

Return type: text

For example:

SELECT overlay('hello' placing 'world' from 2 for 3);
overlay

hworldo
(1 row)

e position(substring in string)
Description: Location of specified substring
Return type: int

For example:

SELECT position('ing' in 'string');
position

(1 row)

e pg_client_encoding()
Description: Current client encoding name
Return type: name

For example:

SELECT pg_client_encoding();
pg_client_encoding

e quote_ident(string text)

Description: Returns the given string suitably quoted to be used as an
identifier in an SQL statement string (quotation marks are used as required).

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 75

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Quotes are added only if necessary (that is, if the string contains non-
identifier characters or would be case-folded). Embedded quotes are properly
doubled.

Return type: text

For example:

SELECT quote_ident('hello world');
quote_ident

"hello world"
(1 row)

quote_literal(string text)

Description: Returns the given string suitably quoted to be used as a string
literal in an SQL statement string (quotation marks are used as required).

Return type: text

For example:

SELECT quote_literal(‘hello');
quote_literal

'hello’
(1 row)

If command similar to the following exists, text will be escaped.

SELECT quote_Lliteral(E'O\'hello');
quote_literal

'0"hello’
(1 row)
If command similar to the following exists, backslash will be properly doubled.

SELECT quote_literal(‘O\hello');
quote_literal

E'O\\hello’
(1 row)

If the parameter is null, return NULL. If the parameter may be null, you are
advised to use quote_nullable.

SELECT quote_literal(NULL);
quote_literal

(1 row)

quote_literal(value anyelement)

Description: Coerces the given value to text and then quotes it as a literal.
Return type: text

For example:

SELECT quote_literal(42.5);
quote_literal

If command similar to the following exists, the given value will be escaped.

SELECT quote_literal(E'O\'42.5");
quote_literal

'0"42.5'
(1 row)

If command similar to the following exists, backslash will be properly doubled.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 76

Data Warehouse Service

SQL Syntax

6 Functions and Operators

SELECT quote_literal('O\42.5");
quote_literal

E'O\\42.5'
(1 row)

quote_nullable(string text)

Description: Returns the given string suitably quoted to be used as a string
literal in an SQL statement string (quotation marks are used as required).

Return type: text

For example:

SELECT quote_nullable('hello');
quote_nullable

If command similar to the following exists, text will be escaped.

SELECT quote_nullable(E'O\'hello");
quote_nullable

'O"hello’
(1 row)

If command similar to the following exists, backslash will be properly doubled.

SELECT quote_nullable('O\hello');
quote_nullable

E'O\\hello’
(1 row)

If the parameter is null, return NULL.

SELECT quote_nullable(NULL);
quote_nullable

NULL
(1 row)

quote_nullable(value anyelement)
Description: Converts the given value to text and then quotes it as a literal.
Return type: text

For example:

SELECT quote_nullable(42.5);
quote_nullable

If command similar to the following exists, the given value will be escaped.

SELECT quote_nullable(E'O\'42.5');
quote_nullable

'0"42.5'
(1 row)

If command similar to the following exists, backslash will be properly doubled.

SELECT quote_nullable('O\42.5");
quote_nullable

E'O\\42.5'
(1 row)

If the parameter is null, return NULL.

SELECT quote_nullable(NULL);
quote_nullable

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 77

Data Warehouse Service

SQL Syntax

6 Functions and Operators

substring(string [from int] [for int])

Description: Extracts a substring. from int indicates the start position of the
truncation. for int indicates the number of characters truncated.

Return type: text

For example:

SELECT substring('Thomas' from 2 for 3);
substring

hom
(1 row)

substring(string from pattern)

Description: Extracts substring matching POSIX regular expression. It returns
the text that matches the pattern. If no match record is found, a null value is
returned.

Return type: text

For example:

SELECT substring('Thomas' from "...$");
substring

mas
(1 row)
SELECT substring(‘foobar' from 'o(.)b');
result

(1 row)
SELECT substring(‘foobar' from '(o(.)b)");
result

oob
(1 row)

(10 NOTE

If the POSIX pattern contains any parentheses, the portion of the text that matched
the first parenthesized sub-expression (the one whose left parenthesis comes first) is
returned. You can put parentheses around the whole expression if you want to use
parentheses within it without triggering this exception.

substring(string from pattern for escape)

Description: Extracts substring matching SQL regular expression. The specified
pattern must match the entire data string, or else the function fails and
returns null. To indicate the part of the pattern that should be returned on
success, the pattern must contain two occurrences of the escape character
followed by a double quote ("). The text matching the portion of the pattern
between these markers is returned.

Return type: text

For example:

SELECT substring('Thomas' from '%#"o_a#"_' for '#');
substring

oma
(1 row)

rawcat(raw,raw)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 78

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Description: Indicates the string concatenation functions.
Return type: raw

For example:

SELECT rawcat('ab','cd');
rawcat

regexp_like(text,text,text)
Description: Indicates the mode matching function of a regular expression.
Return type: bool

For example:

SELECT regexp_like('str','[ac]");
regexp_like

(1 row)
regexp_substr(text,text)

Description: Extracts substrings from a regular expression. Its function is
similar to substr. When a regular expression contains multiple parallel
brackets, it also needs to be processed.

Return type: text

For example:

SELECT regexp_substr('str','[ac]");
regexp_substr

(1 row)
regexp_matches(string text, pattern text [, flags text])

Description: Returns all captured substrings resulting from matching a POSIX
regular expression against the string. If the pattern does not match, the
function returns no rows. If the pattern contains no parenthesized sub-
expressions, then each row returned is a single-element text array containing
the substring matching the whole pattern. If the pattern contains
parenthesized sub-expressions, the function returns a text array whose nth
element is the substring matching the nth parenthesized sub-expression of
the pattern.

The optional flags argument contains zero or multiple single-letter flags that
change function behavior. i indicates that the matching is not related to
uppercase and lowercase. g indicates that each matching substring is
replaced, instead of replacing only the first one.

NOTICE

If the last parameter is provided but the parameter value is an empty string
(") and the SQL compatibility mode of the database is set to ORA, the
returned result is an empty set. This is because the ORA compatible mode
treats the empty string (") as NULL. To resolve this problem, you can:

e Change the database SQL compatibility mode to TD.

e Do not provide the last parameter or do not set the last parameter to an
empty string.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 79

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Return type: setof text[]

For example:

SELECT regexp_matches('foobarbequebaz', '(bar) (beque)');
regexp_matches

{bar,beque}

(1 row)

SELECT regexp_matches(‘foobarbequebaz’, 'barbeque');
regexp_matches

{barbeque}

(1 row)

SELECT regexp_matches('foobarbequebazilbarfbonk', '(b[Ab]+) (b[Ab]+)", 'g');
result

{bar,beque}
{bazil,barf}
(2 rows)

regexp_split_to_array(string text, pattern text [, flags text])

Description: Splits string using a POSIX regular expression as the delimiter.
The regexp_split_to_array function behaves the same as regexp_split_to_table,
except that regexp_split_to_array returns its result as an array of text.

Return type: text[]

For example:

SELECT regexp_split_to_array(‘hello world', E'\\s+");
regexp_split_to_array

{hello,world}
(1 row)

regexp_split_to_table(string text, pattern text [, flags text])

Description: Splits string using a POSIX regular expression as the delimiter. If
there is no match to the pattern, the function returns the string. If there is at
least one match, for each match it returns the text from the end of the last
match (or the beginning of the string) to the beginning of the match. When
there are no more matches, it returns the text from the end of the last match
to the end of the string.

The flags parameter is a text string containing zero or more single-letter flags
that change the function's behavior. i indicates that the matching is not
related to uppercase and lowercase. g indicates that each matching substring
is replaced, instead of replacing only the first one.

Return type: setof text

For example:

SELECT regexp_split_to_table('hello world', E'\\s+');
regexp_split_to_table

(2 rows)

repeat(string text, number int)

Description: text

Return type: string repeated for number times

For example:

SELECT repeat('Pg', 4);
repeat

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 80

Data Warehouse Service
SQL Syntax 6 Functions and Operators

PgPgPgPg
(1 row)

e replace(string text, from text, to text)

Description: Replaces all occurrences in string of substring from with
substring to.

Return type: text

For example:

SELECT replace(‘'abcdefabcedef’, 'cd', 'XXX');
replace

abXXXefabXXXef
(1 row)

e reverse(str)
Description: Returns reversed string.
Return type: text

For example:

SELECT reverse('abcde');
reverse

e right(str text, n int)
Description: Returns the last n characters in the string.

- In the ORA- or TD-compatible mode, all but the last |[n| characters are
returned if n is negative.

- In the MySQL-compatible mode, an empty string is returned if n is
negative.

Return type: text

For example:

SELECT right('abcde’, 2);
right

de
(1 row)

SELECT right('abcde’, -2);
right

cde
(1 row)

e rpad(string text, length int [, fill text])

Description: Fills up the string to length by appending the characters fill (a
space by default). If the string is already longer than length then it is
truncated.

Return type: text

For example:

SELECT rpad(‘hi', 5, 'xy");
rpad

e rtrim(string text [, characters text])

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 81

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Description: Removes the longest string containing only characters from
characters (a space by default) from the end of string.

Return type: text

For example:

SELECT rtrim("trimxxxx', 'x');
rtrim

sys_context ('namespace', 'parameter’)

Description: Obtains and returns the parameter values of a specified
namespace.

Return type: text

For example:

SELECT SYS_CONTEXT ('postgres', 'archive_mode');
sys_context

(1 row)
substrb(text,int,int)

Description: Extracts a substring. The first int indicates the start position of
the subtraction. The second int indicates the number of characters subtracted.

Return type: text

For example:

SELECT substrb('string',2,3);
substrb

(1 row)
substrb(text,int)

Description: Extracts a substring. int indicates the start position of the
subtraction.

Return type: text

For example:

SELECT substrb('string',2);
substrb

string || string
Description: Concatenates strings.
Return type: text

For example:

SELECT 'MPP'||'DB' AS RESULT;
result

string || non-string or non-string || string
Description: Concatenates strings and non-strings.
Return type: text

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 82

Data Warehouse Service

SQL Syntax

6 Functions and Operators

For example:

SELECT 'Value: '[|[42 AS RESULT;
result

Value: 42
(1 row)

split_part(string text, delimiter text, field int)

Description: Splits string on delimiter and returns the fieldth column
(counting from text of the first appeared delimiter).

Return type: text

For example:

SELECT split_part('abc~@~def~@~ghi', '~@~", 2);
split_part

strpos(string, substring)

Description: Specifies the position of a substring. It is the same as
position(substring in string). However, the parameter sequences of them are
reversed.

Return type: int

For example:

SELECT strpos('source’, 'rc');
strpos

(1 row)

to_hex(number int or bigint)

Description: Converts number to a hexadecimal expression.
Return type: text

For example:

SELECT to_hex(2147483647);
to_hex

Viiiiiiii
(1 row)

translate(string text, from text, to text)

Description: Any character in string that matches a character in the from set
is replaced by the corresponding character in the to set. If from is longer than
to, extra characters occurred in from are removed.

Return type: text

For example:

SELECT translate('12345', '143', 'ax');
translate

length(string)

Description: Obtains the number of characters in a string.
Return type: integer

For example:

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 83

Data Warehouse Service

SQL Syntax

6 Functions and Operators

SELECT length(‘abcd');
length

(1 row)
lengthb(string)

Description: Obtains the number of characters in a string. The value depends
on character sets (GBK and UTF8).

Return type: integer

For example:

SELECT lengthb('hello');
lengthb

(1 row)

substr(string,from)

Description:

Extracts substrings from a string.

from indicates the start position of the extraction.
- If from starts at 0, the value 1 is used.

- If the value of from is positive, all characters from from to the end are
extracted.

- If the value of from is negative, the last n characters in the string are
extracted, in which n indicates the absolute value of from.

Return type: varchar
For example:

If the value of from is positive:

SELECT substr('ABCDEF',2);
substr

If the value of from is negative:

SELECT substr('ABCDEF',-2);
substr

EF
(1 row)

substr(string,from,count)

Description:

Extracts substrings from a string.

from indicates the start position of the extraction.
"count" indicates the length of the extracted substring.
- If from starts at 0, the value 1 is used.

- If the value of from is positive, extract count characters starting from
from.

- If the value of from is negative, extract the last n count characters in the
string, in which n indicates the absolute value of from.

- If the value of "count" is smaller than 1, null is returned.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 84

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Return type: varchar
For example:

If the value of from is positive:

SELECT substr('ABCDEF',2,2);
substr

BC
(1 row)

If the value of from is negative:

SELECT substr('ABCDEF',-3,2);
substr

DE
(1 row)

substrb(string,from)

Description: The functionality of this function is the same as that of
SUBSTR(string,from). However, the calculation unit is byte.

Return type: bytea

For example:

SELECT substrb('ABCDEF',-2);
substrb

EF
(1 row)

substrb(string,from,count)

Description: The functionality of this function is the same as that of
SUBSTR(string,from,count). However, the calculation unit is byte.

Return type: bytea

For example:

SELECT substrb('ABCDEF',2,2);
substrb

BC
(1 row)

trim([leading |trailing |both] [characters] from string)

Description: Removes the longest string containing only the characters (a
space by default) from the start/end/both ends of the string.

Return type: varchar

For example:

SELECT trim(BOTH 'x' FROM 'xTomxx');
btrim

(1 row)
SELECT trim(LEADING 'x' FROM 'xTomxx');
ltrim

(1 row)

rtrim

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

85

Data Warehouse Service

SQL Syntax

6 Functions and Operators

rtrim(string [, characters])

Description: Removes the longest string containing only characters from
characters (a space by default) from the end of string.

Return type: varchar

For example:

SELECT rtrim('TRIMxxxx','x');
rtrim

ltrim(string [, characters])

Description: Removes the longest string containing only characters from
characters (a space by default) from the start of string.

Return type: varchar

For example:

SELECT ltrim ('xxxxTRIM','x');
ltrim

upper(string)
Description: Converts the string into the uppercase.
Return type: varchar

For example:

SELECT upper('tom');
upper

lower(string)
Description: Converts the string into the lowercase.
Return type: varchar

For example:

SELECT lower('TOM");
lower

rpad(string varchar, length int [, fill varchar])

Description: Fills up the string to length by appending the characters fill (a

space by default). If the string is already longer than length then it is
truncated.

length in GaussDB(DWS) indicates the character length. One Chinese
character is counted as one character.

Return type: varchar

For example:

SELECT rpad(‘hi',5,'xyza');
rpad

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

86

Data Warehouse Service

SQL Syntax

6 Functions and Operators

SELECT rpad('hi',5,'abcdefg');
rpad

instr(string,substring[,position,occurrence])

Description: Queries and returns the value of the substring position that
occurs the occurrence (first by default) times from the position (1 by default)
in the string.

- If the value of "position" is 0, 0 is returned.

- If the value of position is negative, searches backwards from the last nth
character in the string, in which n indicates the absolute value of
position.

In this function, the calculation unit is character. One Chinese character is one
character.
Return type: integer

For example:

SELECT instr('corporate floor','or', 3);
instr

(1 row)
SELECT instr('corporate floor','or',-3,2);
instr

(1 row)

initcap(string)

Description: The first letter of each word in the string is converted into the
uppercase and the other letters are converted into the lowercase.

Return type: text

For example:

SELECT initcap('hi THOMAS');
initcap

Hi Thomas
(1 row)

ascii(string)
Description: Indicates the ASCII code of the first character in the string.
Return type: integer

For example:

SELI?.CT ascii('xyz');

ascli

(1 row)

replace(string varchar, search_string varchar, replacement_string varchar)
Description: Replaces all search-string in the string with replacement_string.
Return type: varchar

For example:

SELECT replace(‘jack and jue'j','bl');
replace

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 87

Data Warehouse Service

SQL Syntax

6 Functions and Operators

black and blue
(1 row)

Ipad(string varchar, length int[, repeat_string varchar])

Description: Adds a series of repeat_string (a space by default) on the left of

the string to generate a new string with the total length of n.

If the length of the string is longer than the specified length, the function
truncates the string and returns the substrings with the specified length.

Return type: varchar

For example:

SELECT lpad('PAGE 1',15,™%.");
lpad
*****PAGE 1
(1 row)
SELECT lpad(‘hello world',5,'abcd’);
lpad

concat(str1,str2)
Description: Connects str1 and str2 and returns the string.

- In the ORA- or TD-compatible mode, a combination of all the non-null
strings is returned.

- In the MySQL-compatible mode, NULL is returned if an input string is
NULL.

Return type: varchar

For example:

SELECT concat('Hello', ' World!");
concat

Hello World!
(1 row)

chr(integer)
Description: Specifies the character of the ASCII code.
Return type: varchar

For example:

SELECT chr(65);
chr

(1 row)

regexp_substr(source_char, pattern)

Description: Extracts substrings from a regular expression.
Return type: varchar

For example:

SELECT regexp_substr('500 Hello World, Redwood Shores, CA', ',[A,]1+,') "REGEXPR_SUBSTR";
REGEXPR_SUBSTR

, Redwood Shores,
(1 row)

regexp_replace(string, pattern, replacement [,flags])

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

88

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Description: Replaces substring matching POSIX regular expression. The
source string is returned unchanged if there is no match to the pattern. If
there is a match, the source string is returned with the replacement string
substituted for the matching substring.

The replacement string can contain \n, where n is 1 through 9, to indicate
that the source substring matching the nth parenthesized sub-expression of
the pattern should be inserted, and it can contain \& to indicate that the
substring matching the entire pattern should be inserted.

The optional flags argument contains zero or multiple single-letter flags that
change function behavior. The following table lists the options of the flags
argument.

Table 6-3 Options of the flags argument

Op | Description
tio
n

g Replace all the matched substrings. (By default, only the first
matched substring is replaced.)

B Preferentially use the boost regex regular expression library and its
regular expression syntax. By default, the Henry Spencer's regular
expression library and its regular expression syntax are used.

In the following cases, the Henry Spencer's regular expression library
and its regular expression syntax will be used even if this option is
specified:

e One or multiple characters of p, q, w, and x are specified for flags.
e The string or pattern parameter contains multi-byte characters.

b Use POSIX Basic Regular Expressions (BREs) for matching.

C Case-sensitive matching

e Use POSIX Extended Regular Expressions (EREs) for matching. If
neither b nor e is specified and the Henry Spencer's regular
expression library is used, Advanced Regular Expressions (AREs),
similar to Perl Compatible Regular Expressions (PCREs), are used for
matching; if neither b nor e is specified and the boost regex regular
expression library is used, PCREs are used for matching.

i Case-insensitive matching

m Line feed-sensitive matching, which has the same meaning as option
n

n Line feed-sensitive matching. When this option takes effect, the line
separator affects the matching of metacharacters (., A, $, and [7).

p Partial line feed-sensitive matching. When this option takes effect,
the line separator affects the matching of metacharacters (. and [*).

q Reset the regular expression to a text string enclosed in double
quotation marks ("") and consisting of only common characters.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 89

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Op | Description
tio

s Non-line feed-sensitive matching

t Compact syntax (default). When this option takes effect, all
characters matter.

w Reverse partial line feed-sensitive matching. When this option takes
effect, the line separator affects the matching of metacharacters (A
and $).

X Extended syntax In contrast to the compact syntax, whitespace
characters in regular expressions are ignored in the extended syntax.
Whitespace characters include spaces, horizontal tabs, new lines, and
any other characters in the space character table.

Return type: varchar

For example:

SELECT regexp_replace('Thomas', .[mN]a.!, 'M');
regexp_replace

(1 row)
SELECT regexp_replace('foobarbaz','b(..)!, E'’X\\1Y', 'g') AS RESULT;
result

fooXarYXazY
(1 row)

concat_ws(sep text, str"any" [, str'"any" [, ..]1 1)

Description: The first parameter is used as the separator, which is associated
with all following parameters.

Return type: text

For example:

SELECT concat_ws(',', '"ABCDE', 2, NULL, 22);
concat_ws

ABCDE,2,22
(1 row)

convert(string bytea, src_encoding name, dest_encoding name)
Description: Converts the bytea string to dest_encoding. src_encoding

specifies the source code encoding. The string must be valid in this encoding.

Return type: bytea

For example:

SELECT convert('text_in_utf8', 'UTF8', 'GBK');
convert

\x746578745f696e5f75746638
(1 row)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

90

Data Warehouse Service
SQL Syntax 6 Functions and Operators

(11 NOTE

If the rule for converting between source to target encoding (for example, GBK and
LATIN1) does not exist, the string is returned without conversion. See the
pg_conversion system catalog for details.

For example:

show server_encoding;
server_encoding

LATIN1
(1 row)

SELECT convert_from('some text', 'GBK');
convert_from

some text
(1 row)

db_latin1=# SELECT convert_to('some text', 'GBK');
convert_to

\x736f6d652074657874
(1 row)

db_latin1=# SELECT convert('some text', 'GBK', 'LATIN1");
convert

\x736f6d652074657874
(1 row)

e convert_from(string bytea, src_encoding name)
Description: Converts the long bytea using the coding mode of the database.

src_encoding specifies the source code encoding. The string must be valid in
this encoding.

Return type: text

For example:

SELECT convert_from('text_in_utf8', 'UTF8');
convert_from

text_in_utf8
(1 row)

e convert_to(string text, dest_encoding name)
Description: Converts string to dest_encoding.
Return type: bytea

For example:

SELECT convert_to('some text', 'UTF8');
convert_to

\x736f6d652074657874
(1 row)

e string [NOT] LIKE pattern [ESCAPE escape-character]
Description: Pattern matching function

If the pattern does not include a percentage sign (%) or an underscore (_),
this mode represents itself only. In this case, the behavior of LIKE is the same
as the equal operator. The underscore (_) in the pattern matches any single
character while one percentage sign (%) matches no or multiple characters.

To match with underscores (_) or percent signs (%), corresponding characters
in pattern must lead escape characters. The default escape character is a

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 91

Data Warehouse Service

SQL Syntax

6 Functions and Operators

backward slash (\) and can be specified using the ESCAPE clause. To match
with escape characters, enter two escape characters.

Return type: boolean

For example:

SELECT 'AA_BBCC' LIKE '%A@_B%' ESCAPE '@' AS RESULT;
result

(1 row)
SELECT 'AA_BBCC' LIKE '%A@_B%' AS RESULT;
result

(1 row)
SELECT 'AA@_BBCC' LIKE '%A@_B%' AS RESULT;
result

REGEXP_LIKE (source_string, pattern [, match_parameter])
Description: Indicates the mode matching function of a regular expression.

source_string indicates the source string and pattern indicates the matching
pattern of the regular expression. match_parameter indicates the matching
items and the values are as follows:

i,

- i'": case-insensitive

"ean,

- c

- n": allowing the metacharacter ".
with a linefeed.

case-sensitive
in a regular expression to be matched

- "m": allows source_string to be regarded as multiple rows.

If match_parameter is ignored, case-sensitive is enabled by default, "." is not
matched with a linefeed, and source_string is regarded as a single row.

Return type: boolean

For example:

SELECT regexp_like('ABC', '[A-Z]');
regexp_like

(1 row)
SELECT regexp_like('ABC', '[D-Z]');
regexp_like

(1 row)
SELECT regexp_like("ABC', '[A-Z]",'i");
regexp_like

(1 row)
SELECT regexp_like('ABC', '[A-Z]');
regexp_like

format(formatstr text [, str"any" [, ..]1 1)
Description: Formats a string.
Return type: text

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 92

Data Warehouse Service
SQL Syntax 6 Functions and Operators

For example:

SELECT format('Hello %s, %1$s', 'World');
format

Hello World, World
(1 row)

e md5(string)
Description: Encrypts a string in MD5 mode and returns a value in
hexadecimal form.

(1] NOTE

MDS5 is insecure and is not recommended.
Return type: text

For example:

SELECT md5('ABC');
md5

902fbdd2b1df0c4f70b4a5d23525e932
(1 row)

e decode(string text, format text)
Description: Decodes binary data from textual representation.
Return type: bytea

For example:

SELECT decode('MTIzZAAE=', 'base64');
decode

\x3132330001
(1 row)

e encode(data bytea, format text)
Description: Encodes binary data into a textual representation.
Return type: text

For example:

SELECT encode(E'123\\000\\001', 'base64');
encode

MTIzAAE=
(1 row)

(10 NOTE

e For a string containing newline characters, for example, a string consisting of a newline
character and a space, the value of length and lengthb in GaussDB(DWS) is 2.

e In GaussDB(DWS), n of the CHAR(n) type indicates the number of characters. Therefore,
for multiple-octet coded character sets, the length returned by the LENGTHB function
may be longer than n.

6.4 Binary String Functions and Operators

String operators

SQL defines some string functions that use keywords, rather than commas, to
separate arguments.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 93

Data Warehouse Service

SQL Syntax

6 Functions and Operators

octet_length(string)
Description: Number of bytes in binary string
Return type: int

For example:

SELECT octet_length(E'jo\\000se'::bytea) AS RESULT;
result

overlay(string placing string from int [for int])
Description: Replaces substring.
Return type: bytea

For example:

SELECT overlay(E'Th\\OOOomas'":bytea placing E'\\002\\003"::bytea from 2 for 3) AS RESULT;
result

\x5402036d6173
(1 row)

position(substring in string)
Description: Location of specified substring
Return type: int

For example:

SELECT position(E'\\0O0OOom'::bytea in E'Th\\0O0Oomas':bytea) AS RESULT;
result

substring(string [from int] [for int])
Description: Truncates substring.
Return type: bytea

For example:

SELECT substring(E'Th\\000omas':bytea from 2 for 3) AS RESULT;
result

\x68006f
(1 row)

trim([both] bytes from string)

Description: Removes the longest string containing only bytes from bytes

from the start and end of string.
Return type: bytea

For example:

SELECT trim(E'\\000'::bytea from E'\\0O00Tom\\000"::bytea) AS RESULT;
result

\x546f6d
(1 row)

Other Binary String Functions

GaussDB(DWS) also provides the common syntax used for invoking functions.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

94

Data Warehouse Service

SQL Syntax

6 Functions and Operators

btrim(string bytea,bytes bytea)

Description: Removes the longest string containing only bytes from bytes

from the start and end of string.
Return type: bytea
For example:

SELECT btrim(E"\\00O0trim\\000"::bytea, E'\\000"::bytea) AS RESULT;

result

\x7472696d
(1 row)

get_bit(string, offset)
Description: Extracts bit from string.
Return type: int

For example:

SELECT get_bit(E'Th\\00Oomas':bytea, 45) AS RESULT;
result

(1 row)

get_byte(string, offset)

Description: Extracts byte from string.
Return type: int

For example:

SELECT get_byte(E'Th\\OOOomas':bytea, 4) AS RESULT;
result

(1 row)

set_bit(string,offset, newvalue)
Description: Sets bit in string.
Return type: bytea

For example:

SELECT set_bit(E'Th\\0OOOomas'":bytea, 45, 0) AS RESULT;
result

\x5468006f6d4173
(1 row)

set_byte(string,offset, newvalue)
Description: Sets byte in string.
Return type: bytea

For example:

SELECT set_byte(E'Th\\00Oomas':bytea, 4, 64) AS RESULT;
result

\x5468006f406173
(1 row)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

95

Data Warehouse Service

SQL Syntax

6 Functions and Operators

6.5 Bit String Functions and Operators

Bit string operators

Aside from the usual comparison operators, the following operators can be used.
Bit string operands of &, |, and # must be of equal length. When bit shifting, the
original length of the string is preserved by zero padding (if necessary).

Description: Connects bit strings.

For example:

SELECT B'10001' || B'011" AS RESULT;
result

10001011
(1 row)

&
Description: AND operation between bit strings

For example:

SELECT B'10001"' & B'01101" AS RESULT;
result

Description: OR operation between bit strings

For example:

SELECT B'10001' | B'01101" AS RESULT;
result

Description: OR operation between bit strings if they are inconsistent. If the
same positions in the two bit strings are both 1 or 0, the position returns 0.
For example:

SELECT B'10001"' # B'01101" AS RESULT;
result

Description: NOT operation between bit strings

For example:

SELECT ~B'10001'AS RESULT;
result

Description: binary left shift

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 96

Data Warehouse Service
SQL Syntax 6 Functions and Operators

For example:
SELECT B'10001' << 3 AS RESULT;
result

Description: binary right shift
For example:

SELECT B'10001' >> 2 AS RESULT;
result

The following SQL-standard functions work on bit strings as well as character
strings: length, bit_length, octet_length, position, substring, and overlay.

The following functions work on bit strings as well as binary strings: get_bit and
set_bit. When working with a bit string, these functions number the first
(leftmost) bit of the string as bit 0.

In addition, it is possible to convert between integral values and type bit. For

example:
SELECT 44:bit(10) AS RESULT;
result

0000101100
(1 row)

SELECT 44:bit(3) AS RESULT;
result

SELECT cast(-44 as bit(12)) AS RESULT;
result

111111010100
(1 row)

SELECT '1110":bit(4)::integer AS RESULT;
result

14
(1 row)

(11 NOTE

Casting to just "bit" means casting to bit(1), and so will deliver only the least significant bit
of the integer.

6.6 Pattern Matching Operators

There are three separate approaches to pattern matching provided by the
database: the traditional SQL LIKE operator, the more recent SIMILAR TO operator,
and POSIX-style regular expressions. Besides these basic operators, functions can
be used to extract or replace matching substrings and to split a string at matching
locations.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 97

Data Warehouse Service

SQL Syntax

6 Functions and Operators

LIKE

Description: checks whether the string matches the mode string following
LIKE. The LIKE expression returns true if the string matches the supplied
pattern. (As expected, the NOT LIKE expression returns false if LIKE returns
true, and vice versa.

Matching rule:

a.

®

f.

This operator can succeed only when its pattern matches the entire
string. If you want to match a sequence in any position within the string,
the pattern must begin and end with a percent sign.

The underscore (_) represents (matching) any single character.
Percentage (%) indicates the wildcard character of any string.

To match a literal underscore or percent sign without matching other
characters, the respective character in pattern must be preceded by the
escape character. The default escape character is the backslash but a
different one can be selected by using the ESCAPE clause.

To match the escape character itself, write two escape characters. For
example: To write a pattern constant containing a backslash (\), you
need to enter two backslashes in SQL statements.

(11 NOTE

When standard_conforming_strings is set to off, any backslashes you write in
literal string constants will need to be doubled. Therefore, writing a pattern
matching a single backslash is actually going to write four backslashes in the
statement. You can avoid this by selecting a different escape character by using
ESCAPE, so that the backslash is no longer a special character of LIKE. But the
backslash is still the special character of the character text analyzer, so you still
need two backslashes.) You can also select no escape character by writing
ESCAPE ". This effectively disables the escape mechanism, which makes it
impossible to turn off the special meaning of underscore and percent signs in the
pattern.

The keyword ILIKE can be used instead of LIKE to make the match case-
insensitive.

Operator ~~ is equivalent to LIKE, and operator ~~* corresponds to ILIKE.

For example:

SELECT 'abc' LIKE 'abc' AS RESULT;
result

(1 row)
SELECT 'abc' LIKE 'a%'" AS RESULT;
result

(1 row)
SELECT 'abc' LIKE '_b_' AS RESULT;
result

(1 row)
SELECT 'abc' LIKE 'c' AS RESULT;
result

SIMILAR TO

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 98

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Description: The SIMILAR TO operator returns true or false depending on
whether the pattern matches the given string. It is similar to LIKE, except that
it interprets the pattern using the SQL standard's definition of a regular

expression.

Matching rule:

a. Like LIKE, this operator succeeds only when its pattern matches the entire
string. If you want to match a sequence in any position within the string,
the pattern must begin and end with a percent sign.

b. The underscore (_) represents (matching) any single character.
Percentage (%) indicates the wildcard character of any string.

¢. SIMILAR TO supports these pattern-matching metacharacters borrowed

from POSIX regular expressions:

Metacharacter

Description

Specifies alternation (either of
two alternatives).

Specifies repetition of the previous
item zero or more times.

Specifies repetition of the previous
item one or more times.

Specifies repetition of the previous
item zero or one time.

{m}

Specifies repetition of the previous
item exactly m times.

{m,}

Specifies repetition of the previous
item m or more times.

{m,n}

Specifies repetition of the previous
item at least m times and does
not exceed n times.

0

Specifies that parentheses () can
be used to group items into a
single logical item.

[...]

Specifies a character class, just as
in POSIX regular expressions.

d. A preamble escape character disables the special meaning of any of these
metacharacters. The rules for using escape characters are the same as

those for LIKE.

Regular expressions:

The substring function with three parameters, substring(string from pattern
for escape), provides extraction of a substring that matches an SQL regular

expression pattern.
Example:

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

99

Data Warehouse Service
SQL Syntax 6 Functions and Operators

SELECT 'abc' SIMILAR TO 'abc' AS RESULT;
result

(1 row)
SELECT 'abc' SIMILAR TO 'a' AS RESULT;
result

(1 row)
SELECT 'abc' SIMILAR TO '%(b|d)%' AS RESULT;
result

(1 row)
SELECT 'abc' SIMILAR TO '(b|c)%' AS RESULT;
result

e POSIX regular expressions

Description: A regular expression is a character sequence that is an
abbreviated definition of a set of strings (a regular set). If a string is a
member of a regular expression described by a regular expression, the string
matches the regular expression. POSIX regular expressions provide a more
powerful means for pattern matching than the LIKE and SIMILAR TO
operators. Table 1 Regular expression match operators lists all available
operators for pattern matching using POSIX regular expressions.

Table 6-4 Regular expression match operators

Operator Description Example

~ Matches regular '‘thomas' ~ '*thomas.*
expression, which is
case-sensitive.

~* Matches regular '‘thomas' ~* '*Thomas.*
expression, which is
case-insensitive.

I~ Does not match regular | 'thomas' !~ '*Thomas.*
expression, which is
case-sensitive.

I ~* Does not match regular | 'thomas' !~* '*vadim.*
expression, which is
case-insensitive.

Matching rule:

a. Unlike LIKE patterns, a regular expression is allowed to match anywhere
within a string, unless the regular expression is explicitly anchored to the
beginning or end of the string.

b. Besides the metacharacters mentioned above, POSIX regular expressions
also support the following pattern matching metacharacters:

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 100

Data Warehouse Service
SQL Syntax

6 Functions and Operators

Metacharacter Description

A Specifies the match starting with a
string.

$ Specifies the match at the end of
a string.
Matches any single character.

Regular expressions:

POSIX regular expressions support the following functions:

The substring(string from pattern) function provides a method for
extracting a substring that matches the POSIX regular expression pattern.

The regexp_replace function provides the function of replacing the
substring matching the POSIX regular expression pattern with the new
text.

The regexp_matches function returns a text array consisting of all
captured substrings that match a POSIX regular expression pattern.

The regexp_split_to_table function splits a string using a POSIX regular
expression pattern as a delimiter.

The regexp_split_to_array function behaves the same as
regexp_split_to_table, except that regexp_split_to_array returns its result
as an array of text.

(11 NOTE

The regular expression split functions ignore zero-length matches, which occur at
the beginning or end of a string or after the previous match. This is contrary to
the strict definition of regular expression matching. The latter is implemented by
regexp_matches, but the former is usually the most commonly used behavior in
practice.

For example:
SELECT 'abc’ ~ 'Abc’ AS RESULT;

result

(1 row)
SELECT 'abc' ~* 'Abc' AS RESULT;
result

(1 row)
SELECT 'abc' !~ 'Abc' AS RESULT;
result

(1 row)
SELECT 'abc'!'~* 'Abc' AS RESULT;
result

(1 row)
SELECT 'abc' ~ 'Aa' AS RESULT;
result

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 101

Data Warehouse Service

SQL Syntax

6 Functions and Operators

SELECT 'abc' ~ '(b|d)'AS RESULT;
result

(1 row)
SELECT 'abc' ~ 'A(b|c)'AS RESULT;
result

(1 row)

Although most regular expression searches can be executed quickly, the time
and memory for regular expression processing can still be manually
controlled. It is not recommended that you accept the regular expression
search mode from the non-security mode source. If you must do this, you are
advised to add the statement timeout limit. The search with the SIMILAR TO
mode has the same security risks as the SIMILAR TO provides many
capabilities that are the same as those of the POSIX- style regular expression.
The LIKE search is much simpler than the other two options. Therefore, it is
more secure to accept the non-secure mode source search.

6.7 Mathematical Functions and Operators

Numeric operators

+
Description: Addition

For example:

SELECT 2+3 AS RESULT;
result

Description: Subtraction

For example:

SELECT 2-3 AS RESULT;
result

Description: multiply
For example:

SELECT 2*3 AS RESULT;
result

Description: Division (The result is not rounded.)

For example:

SELECT 4/2 AS RESULT;
result

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

102

Data Warehouse Service

SQL Syntax

6 Functions and Operators

2

(1 row)

SELECT 4/3 AS RESULT;
result

1.33333333333333
(1 row)

+/-
Description: Positive/negative

For example:

SELECT -2 AS RESULT;
result

Description: Model (to obtain the remainder)

For example:

SELECT 5%4 AS RESULT;
result

Description: Absolute value

For example:

SELECT @ -5.0 AS RESULT;
result

5.0
(1 row)

AN

Description: Power (exponent calculation)

In MySQL-compatible mode, this operator means exclusive or. For details, see
operator # in Bit String Functions and Operators.
For example:

SELECT 2.0A3.0 AS RESULT;
result

8.0000000000000000
(1 row)

|/
Description: Square root

For example:

SELECT |/ 25.0 AS RESULT;
result

I/
Description: Cubic root

For example:

SELECT ||/ 27.0 AS RESULT;
result

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 103

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Description: Factorial

For example:

SELECT 5! AS RESULT;
result

Description: Factorial (prefix operator)

For example:

SELECT !'5 AS RESULT;
result

Description: Binary AND

For example:

SELECT 91&15 AS RESULT;
result

11
(1 row)

|
Description: Binary OR

For example:

SELECT 32|3 AS RESULT;
result

Description: Binary XOR

For example:

SELECT 17#5 AS RESULT,
result

Description: Binary NOT

For example:

SELECT ~1 AS RESULT;
result

““:;
(1 row)

<<

Description: Binary shift left

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

104

Data Warehouse Service

SQL Syntax

6 Functions and Operators

For example:

SELECT 1<<4 AS RESULT;
result

16
(1 row)

>>
Description: Binary shift right
For example:

SELECT 8>>2 AS RESULT;
result

Numeric operation functions

abs(x)
Description: Absolute value
Return type: same as the input

For example:

SELECT abs(-17.4);
abs

(1 row)

acos(x)

Description: Arc cosine
Return type: double precision

For example:

SELECT acos(-1);
acos

3.14159265358979
(1 row)

asin(x)
Description: Arc sine
Return type: double precision

For example:

SELECT asin(0.5);
asin

.523598775598299
(1 row)

atan(x)
Description: Arc tangent
Return type: double precision

For example:

SELECT atan(1);
atan

.785398163397448
(1 row)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

105

Data Warehouse Service
SQL Syntax 6 Functions and Operators

e atan2(y, x)
Description: Arc tangent of y/x
Return type: double precision

For example:

SELECT atan2(2, 1);
atan2

1.10714871779409
(1 row)

e bitand(integer, integer)
Description: Performs AND (&) operation on two integers.
Return type: bigint

For example:

SELECT bitand(127, 63);
bitand

63
(1 row)

e cbrt(dp)
Description: Cubic root
Return type: double precision

For example:

SELECT cbrt(27.0);
cbrt

e ceil(x)
Description: Minimum integer greater than or equal to the parameter
Return type: integer

For example:

SELECT ceil(-42.8);
ceil

-42
(1 row)

e ceiling(dp or numeric)
Description: Minimum integer (alias of ceil) greater than or equal to the
parameter
Return type: same as the input
For example:

SELECT ceiling(-95.3);
ceiling

-95
(1 row)

e cos(x)
Description: Cosine
Return type: double precision
For example:

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 106

Data Warehouse Service
SQL Syntax 6 Functions and Operators

SELECT cos(-3.1415927);
cos

-.999999999999999
(1 row)

e cot(x)
Description: Cotangent
Return type: double precision

For example:

SELECT cot(1);
cot

.642092615934331
(1 row)

e degrees(dp)
Description: Converts radians to angles.
Return type: double precision

For example:

SELECT degrees(0.5);
degrees

28.6478897565412
(1 row)

e div(y numeric, x numeric)
Description: Integer part of y/x
Return type: numeric

For example:
SELECT div(9,4);
div
(1 row)
e exp(x)
Description: Natural exponent
Return type: same as the input
For example:

SELECT exp(1.0);
exp

2.7182818284590452
(1 row)

e floor(x)
Description: Not larger than the maximum integer of the parameter
Return type: same as the input

For example:

SELECT floor(-42.8);
floor

(1 row)
e radians(dp)
Description: Converts angles to radians.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 107

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Return type: double precision

For example:

SELECT radians(45.0);
radians

.785398163397448
(1 row)

random()

Description: Random number between 0.0 and 1.0

Return type: double precision

For example:

SELECT random();
random

.824823560658842
(1 row)

n(x)
Description: Natural logarithm
Return type: same as the input

For example:

SELECT [n(2.0);
In

.6931471805599453
(1 row)

log(x)
Description: Logarithm with 10 as the base

- In the ORA- or TD-compatible mode, this operator means the logarithm

with 10 as the base.

- In the MySQL-compatible mode, this operator means the natural

logarithm.
Return type: same as the input

For example:

-- ORA-compatible mode
SELECT log(100.0);

log
2.0000000000000000
(1 row)
-- TD-compatible mode
SELECT log(100.0);

log
2.0000000000000000
(1 row)
-- MySQL-compatible mode
SELECT log(100.0);

log
4.6051701859880914
(1 row)

log(b numeric, x numeric)
Description: Logarithm with b as the base
Return type: numeric

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

108

Data Warehouse Service

SQL Syntax

6 Functions and Operators

For example:

SELECT log(2.0, 64.0);
log

6.0000000000000000
(1 row)

mod(x,y)

Description:

Remainder of x/y (model)

If x equals to 0, y is returned.

Return type: same as the parameter type

For example:

SELECT mod(9,4);
mod

(1 row)
SELECT mod(9,0);
mod

(1 row)

pi()

Description: 1t constant value
Return type: double precision

For example:

SELECT pi();
pi

3.14159265358979
(1 row)

power(a double precision, b double precision)
Description: b power of a
Return type: double precision

For example:

SELECT power(9.0, 3.0);
power

729.0000000000000000
(1 row)

round(x)

Description: Integer closest to the input parameter

Return type: same as the input

For example:

SELECT round(42.4);
round

42
(1 row)

SELECT round(42.6);
round

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

109

Data Warehouse Service

SQL Syntax

6 Functions and Operators

(11 NOTE

When the round function is invoked, the numeric type is rounded to zero. While on
most computers, the real number and the double-precision number are rounded to the
nearest even number.

round(v numeric, s int)
Description: s digits are kept after the decimal point.
Return type: numeric

For example:

SELECT round(42.4382, 2);
round

setseed(dp)

Description: Sets seed for the following random() invoking (between -1.0 and
1.0, inclusive).

Return type: void

For example:

SELECT setseed(0.54823);
setseed

(1 row)

sign(x)

Description: returns symbols of this parameter.

The return value type:-1 indicates negative. 0 indicates 0, and 1 indicates a
positive number.

For example:

SELECT sign(-8.4);
sign

-1
(1 row)

sin(x)
Description: Sine
Return type: double precision

For example:
SELECT sin(1.57079);
sin

.999999999979986
(1 row)

sqrt(x)
Description: Square root
Return type: same as the input

For example:

SELECT sqrt(2.0);
sqrt

1.414213562373095
(1 row)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 110

Data Warehouse Service
SQL Syntax 6 Functions and Operators

e tan(x)
Description: Tangent
Return type: double precision

For example:

SELECT tan(20);
tan

2.23716094422474
(1 row)

e trunc(x)
Description: truncates (the integral part).
Return type: same as the input

For example:

SELECT trunc(42.8);
trunc

42
(1 row)

e trunc(v numeric, s int)
Description: Truncates a number with s digits after the decimal point.
Return type: numeric

For example:

SELECT trunc(42.4382, 2);
trunc

e width_bucket(op numeric, b1 numeric, b2 numeric, count int)
Description: Returns a bucket to which the operand will be assigned in an
equidepth histogram with count buckets, ranging from b1 to b2.

Return type: int

For example:

SELECT width_bucket(5.35, 0.024, 10.06, 5);
width_bucket

(1 row)
e width_bucket(op dp, b1 dp, b2 dp, count int)
Description: Returns a bucket to which the operand will be assigned in an
equidepth histogram with count buckets, ranging from b1 to b2.
Return type: int
For example:

SELECT width_bucket(5.35, 0.024, 10.06, 5);
width_bucket

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 111

Data Warehouse Service
SQL Syntax 6 Functions and Operators

6.8 Date and Time Processing Functions and Operators

Date and Time Operators

When the user uses date/time operators, explicit type prefixes are modified for
corresponding operands to ensure that the operands parsed by the database are
consistent with what the user expects, and no unexpected results occur.

For example, abnormal mistakes will occur in the following example without an
explicit data type.
SELECT date '2001-10-01' - '7' AS RESULT;

Table 6-5 Time and date operators

Ope | Examples

rato
rs
+ SELECT date '2001-09-28' + integer '7' AS RESULT;
result
2001-10-05 00:00:00
(1 row)

SELECT date '2001-09-28' + interval '1 hour' AS RESULT;
result

2001-09-28 01:00:00
(1 row)

SELECT date '2001-09-28' + time '03:00' AS RESULT;
result

2001-09-28 03:00:00
(1 row)

SELECT interval '1 day' + interval '1 hour' AS RESULT;
result

1 day 01:00:00
(1 row)

SELECT timestamp '2001-09-28 01:00' + interval '23 hours' AS RESULT;
result

2001-09-29 00:00:00
(1 row)

SELECT time '01:00' + interval '3 hours' AS RESULT;
result

04:00:00
(1 row)

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 112

Data Warehouse Service
SQL Syntax

6 Functions and Operators

Ope
rato
rs

Examples

SELECT date '2001-10-01' - date '2001-09-28' AS RESULT;
result

SELECT date '2001-10-01' - integer '7' AS RESULT;
result

2001-09-24 00:00:00
(1 row)

SELECT date '2001-09-28' - interval '1 hour' AS RESULT;
result

2001-09-27 23:00:00
(1 row)

SELECT time '05:00' - time '03:00' AS RESULT;
result

02:00:00
(1 row)

SELECT time '05:00' - interval '2 hours' AS RESULT;
result

03:00:00
(1 row)

SELECT timestamp '2001-09-28 23:00' - interval '23 hours' AS RESULT;
result

2001-09-28 00:00:00
(1 row)

SELECT interval '1 day' - interval '1 hour' AS RESULT;
result

23:00:00
(1 row)

SELECT timestamp '2001-09-29 03:00' - timestamp '2001-09-27 12:00' AS RESULT;
result

1 day 15:00:00
(1 row)

SELECT 900 * interval '1 second' AS RESULT;
result

00:15:00
(1 row)

SELECT 21 * interval '1 day' AS RESULT;
result

SELECT double precision '3.5' * interval '1 hour' AS RESULT;
result

03:30:00
(1 row)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

113

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Ope | Examples

rato
rs
/ SELECT interval '1 hour' / double precision '1.5' AS RESULT;
result
00:40:00
(1 row)

Time/Date functions
e age(timestamp, timestamp)
Description: Subtracts arguments, producing a result in YYYY-MM-DD format.
If the result is negative, the returned result is also negative.
Return type: interval
For example:

SELECT age(timestamp '2001-04-10', timestamp '1957-06-13');
age

43 years 9 mons 27 days
(1 row)

e age(timestamp)
Description: Subtracts from current_date
Return type: interval

For example:

SELECT age(timestamp '1957-06-13');
age

60 years 2 mons 18 days
(1 row)

e timestampdiff(field, timestamp1, timestamp?2)
Description: Subtracts timestamp1 from timestamp2 and returns the
difference in the unit of field. If the difference is negative, this function

returns it normally. The field can be day, month, quarter, day, week, hour,
minute, second, or microsecond.

Return type: bigint

For example:

SELECT timestampdiff(day, timestamp '2001-02-01', timestamp '2003-05-01 12:05:55');
timestampdiff

(1 row)

e clock_timestamp()
Description: Specifies the current timestamp of the real-time clock.
Return type: timestamp with time zone

For example:

SELECT clock_timestamp();
clock_timestamp

2017-09-01 16:57:36.636205+08
(1 row)

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 114

Data Warehouse Service
SQL Syntax 6 Functions and Operators

e current_date
Description: Current date
Return type: date

For example:

SELECT current_date;
date

2017-09-01
(1 row)

e current_time
Description: Current time
Return type: time with time zone

For example:

SELECT current_time;
timetz

16:58:07.086215+08
(1 row)

e current_timestamp
Description: Specifies the current date and time.
Return type: timestamp with time zone

For example:

SELECT current_timestamp;
pg_systimestamp

2017-09-01 16:58:19.22173+08
(1 row)

e date_part(text, timestamp)
Description:
Description: Obtains the hour.
Equivalent to extract(field from timestamp).
Return type: double precision

For example:

SELECT date_part(‘hour', timestamp '2001-02-16 20:38:40');
date_part

20
(1 row)

e date_part(text, interval)
Description:

Obtains the month. If the value is greater than 12, obtain the remainder after
it is divided by 12.

Equivalent to extract(field from timestamp).
Return type: double precision

For example:

SELECT date_part('month’, interval '2 years 3 months');
date_part

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 115

Data Warehouse Service

SQL Syntax

6 Functions and Operators

date_trunc(text, timestamp)

Description: Truncates to the precision specified by text.

Return type: timestamp

For example:

SELECT date_trunc(‘hour', timestamp '2001-02-16 20:38:40");
date_trunc

2001-02-16 20:00:00
(1 row)

trunc(timestamp)

Description: By default, the data is intercepted by day.

For example:
SELECT trunc(timestamp '2001-02-16
20:38:40');

trunc

2001-02-16 00:00:00
(1 row)

extract(field from timestamp)
Description: Obtains the hour.
Return type: double precision

For example:

SELECT extract(hour from timestamp '2001-02-16 20:38:40');
date_part

20
(1 row)

extract(field from interval)

Description: Obtains the month. If the value is greater than 12, obtain the

remainder after it is divided by 12.
Return type: double precision
For example:

SELECT extract(month from interval '2 years 3 months');
date_part

(1 row)

isfinite(date)

Description: Tests for valid date.
Return type: boolean

For example:

SELECT isfinite(date '2001-02-16");

isfinite

(1 row)

isfinite(timestamp)

Description: Tests for valid timestamp.
Return type: boolean

For example:

SELECT isfinite(timestamp '2001-02-16 21:28:30');
isfinite

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

116

Data Warehouse Service

SQL Syntax

6 Functions and Operators

isfinite(interval)
Description: Tests for valid interval.
Return type: boolean

For example:

SELECT isfinite(interval '4 hours');
isfinite

justify_days(interval)

Description: Adjusts interval to 30-day time periods are represented as
months

Return type: interval

For example:

SELECT justify_days(interval '35 days');
justify_days

1 mon 5 days
(1 row)

justify_hours(interval)
Description: Adjusts interval to 24-hour time periods are represented as days
Return type: interval

For example:

SELECT JUSTIFY_HOURS(INTERVAL '27 HOURS');
justify_hours

1 day 03:00:00
(1 row)

justify_interval(interval)
Description: Adjusts interval using justify_days and justify_hours.
Return type: interval

For example:

SELECT JUSTIFY_INTERVAL(INTERVAL '1 MON -1 HOUR');
justify_interval

29 days 23:00:00
(1 row)

localtime
Description: Current time
Return type: time

For example:

SELECT localtime AS RESULT;
result

16:05:55.664681
(1 row)

localtimestamp
Description: Specifies the current date and time.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 117

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Return type: timestamp

For example:

SELECT localtimestamp;
timestamp

2017-09-01 17:03:30.781902
(1 row)

e now()
Description: Timestamp indicating the start of the current transaction.
Return type: timestamp with time zone

For example:

SELECT now();
now

2017-09-01 17:03:42.549426+08
(1 row)

e numtodsinterval(num, interval_unit)

Description: Converts a number to the interval type. num is a numeric-typed
number. interval_unit is a string in the following format: 'DAY' | 'HOUR' |
'MINUTE' | 'SECOND'

You can set the IntervalStyle parameter to oracle to be compatible with the
interval output format of the function in the Oracle database.

For example:

SELECT numtodsinterval(100, 'HOUR');
numtodsinterval

100:00:00
(1 row)

SET intervalstyle = oracle;

SET

SELECT numtodsinterval(100, 'HOUR');
numtodsinterval

+000000004 04:00:00.000000000
(1 row)

e pg_sleep(seconds)
Description: Specifies the delay time of the server thread in unit of second.
Return type: void

For example:

SELECT pg_sleep(10);
pg_sleep

(1 row)

e statement_timestamp()
Description: Specifies the current date and time.
Return type: timestamp with time zone

For example:

SELECT statement_timestamp();
statement_timestamp

2017-09-01 17:04:39.119267+08
(1 row)

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 118

Data Warehouse Service
SQL Syntax 6 Functions and Operators

e sysdate
Description: Specifies the current date and time.
Return type: timestamp

For example:

SELECT sysdate;
sysdate

2017-09-01 17:04:49
(1 row)

e timeofday()

Description: Current date and time (like clock_timestamp, but returned as a
text string)

Return type: text

For example:

SELECT timeofday();
timeofday

Fri Sep 01 17:05:01.167506 2017 CST
(1 row)

e transaction_timestamp()
Description: Current date and time (equivalent to current_timestamp)
Return type: timestamp with time zone

For example:

SELECT transaction_timestamp();
transaction_timestamp

2017-09-01 17:05:13.534454+08
(1 row)

e add_months(d,n)
Description: Calculates the time point day and time of nth months.
Return type: timestamp

For example:

SELECT add_months(to_date('2017-5-29', 'yyyy-mm-dd'), 11) FROM dual;
add_months

2018-04-29 00:00:00
(1 row)

e last_day(d)
Description: Calculates the time of the last day in the month.
- In the ORA- or TD-compatible mode, the return type is timestamp.
- In the MySQL-compatible mode, the return type is date.

For example:

select last_day(to_date('2017-01-01', 'YYYY-MM-DD')) AS cal_result;
cal_result

2017-01-31 00:00:00
(1 row)

e next_day(x,y)

Description: Calculates the time of the next week y started from x
- In the ORA- or TD-compatible mode, the return type is timestamp.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 119

Data Warehouse Service

SQL Syntax

6 Functions and Operators

EXTRACT

- In the MySQL-compatible mode, the return type is date.

For example:

select next_day(timestamp '2017-05-25 00:00:00','Sunday')AS cal_result;
cal_result

2017-05-28 00:00:00
(1 row)

to_days(timestamp)

Description: Returns the number of days from the first day of year 0 to a
specified date.

Return type: int

For example:

SELECT to_days(timestamp '2008-10-07");
to_days

733687
(1 row)

EXTRACT (field FROM source)

The extract function retrieves subcolumns such as year or hour from date/time
values. source must be a value expression of type timestamp, time, or interval.
(Expressions of type date are cast to timestamp and can therefore be used as
well.) field is an identifier or string that selects what column to extract from the
source value. The extract function returns values of type double precision. The
following are valid field names:

century
Century

The first century starts at 0001-01-01 00:00:00 AD. This definition applies to
all Gregorian calendar countries. There is no century number 0. You go from
-1 century to 1 century.

For example:

SELECT EXTRACT(CENTURY FROM TIMESTAMP '2000-12-16 12:21:13');
date_part

20
(1 row)

day

- For timestamp values, the day (of the month) column (1-31)
SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40");
date_part

16
(1 row)

- For interval values, the number of days
SELECT EXTRACT(DAY FROM INTERVAL '40 days 1 minute');
date_part

40
(1 row)

decade
Year column divided by 10

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 120

Data Warehouse Service

SQL Syntax

6 Functions and Operators

SELECT EXTRACT (DECADE FROM TIMESTAMP '2001-02-16 20:38:40');
date_part

Day of the week as Sunday(0) to Saturday (6)

SELECT EXTRACT(DOW FROM TIMESTAMP '2001-02-16 20:38:40'");
date_part

doy

Day of the year (1-365 or 366)

SELECT EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40');
date_part

47
(1 row)

epoch

- For timestamp with time zone values, the number of seconds since
1970-01-01 00:00:00 UTC (can be negative);

for date and timestamp values, the number of seconds since 1970-01-01
00:00:00 local time;

for interval values, the total number of seconds in the interval.

SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40.12-08');
date_part
982384720.12
(1 row)
SELECT EXTRACT(EPOCH FROM INTERVAL '5 days 3 hours');
date_part
442800
(1 row)

- Way to convert an epoch value back to a timestamp
SELECT TIMESTAMP WITH TIME ZONE 'epoch' + 982384720.12 * INTERVAL '1 second' AS
RESULT;
result

2001-02-17 12:38:40.12+08
(1 row)

hour

Hour column (0-23)

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40');
date_part

20
(1 row)

isodow
Day of the week (1-7)
Monday is 1 and Sunday is 7.

(10 NOTE

This is identical to dow except for Sunday.

SELECT EXTRACT (ISODOW FROM TIMESTAMP '2001-02-18 20:38:40');
date_part

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 121

Data Warehouse Service

SQL Syntax

6 Functions and Operators

(1 row)
isoyear
The ISO 8601 year that the date falls in (not applicable to intervals).

Each ISO year begins with the Monday of the week containing the 4th of
January, so in early January or late December the ISO year may be different
from the Gregorian year. See the week column for more information.

SELECT EXTRACT (ISOYEAR FROM DATE '2006-01-01");
date_part

(1 row)
SELECT EXTRACT (ISOYEAR FROM DATE '2006-01-02");
date_part

microseconds

The seconds column, including fractional parts, multiplied by 1,000,000

SELECT EXTRACT (MICROSECONDS FROM TIME '17:12:28.5");
date_part

28500000
(1 row)

millennium
Millennium
Years in the 1900s are in the second millennium. The third millennium started

from January 1, 2001.

SELECT EXTRACT (MILLENNIUM FROM TIMESTAMP '2001-02-16 20:38:40'");
date_part

(1 row)
milliseconds

The seconds column, including fractional parts, multiplied by 1000. Note that
this includes full seconds.

SELECT EXTRACT (MILLISECONDS FROM TIME '17:12:28.5");
date_part

minute

Minutes column (0-59)

SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40");
date_part

38
(1 row)

month

For timestamp values, the number of the month within the year (1-12);

SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40'");
date_part

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 122

Data Warehouse Service

SQL Syntax

6 Functions and Operators

For interval values, the number of months, modulo 12 (0-11)

SELECT EXTRACT(MONTH FROM INTERVAL '2 years 13 months');
date_part

quarter

Quarter of the year (1-4) that the date is in

SELECT EXTRACT(QUARTER FROM TIMESTAMP '2001-02-16 20:38:40');
date_part

second

Seconds column, including fractional parts (0-59)

SELECT EXTRACT (SECOND FROM TIME '17:12:28.5');
date_part

timezone

The time zone offset from UTC, measured in seconds. Positive values
correspond to time zones east of UTC, negative values to zones west of UTC.

timezone_hour

The hour component of the time zone offset
timezone_minute

The minute component of the time zone offset
week

The number of the week of the year that the day is in. By definition (ISO
8601), the first week of a year contains January 4 of that year. (The 1ISO-8601
week starts on Monday.) In other words, the first Thursday of a year is in
week 1 of that year.

Because of this, it is possible for early January dates to be part of the 52nd or
53rd week of the previous year, and late December dates to be part of the 1st
week of the next year. For example, 2005-01-01 is part of the 53rd week of
year 2004, 2006-01-01 is part of the 52nd week of year 2005, and
2012-12-31 is part of the 1st week of year 2013. You are advised to use the
columns isoyear and week together to ensure consistency.

SELECT EXTRACT(WEEK FROM TIMESTAMP '2001-02-16 20:38:40');
date_part

year

Year column

SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40");
date_part

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 123

Data Warehouse Service

SQL Syntax

6 Functions and Operators

date_part

The date_part function is modeled on the traditional Ingres equivalent to the
SQL-standard function extract:

date_part('field, source)

Note that the field must be a string, rather than a name. The valid field names
are the same as those for extract. For details, see EXTRACT.

For example:

SELECT date_part('day', TIMESTAMP '2001-02-16 20:38:40'");
date_part

16
(1 row)
SELECT date_part(‘hour', INTERVAL '4 hours 3 minutes');
date_part

The following table describes the patterns of date and time values. They can be
used for the to_date, to_timestamp, and to_char functions, and the
nls_timestamp_format parameter.

Table 6-6 Schemas for formatting date and time

Category | Format Description
Hours HH Number of hours in one day (01-12)
HH12 Number of hours in one day (01-12)
HH24 Number of hours in one day (00-23)
Minute MI Minute (00-59)
Seconds SS Second (00-59)
FF Microsecond (000000-999999)
SSSSS Second after midnight (0-86399)
Morning | AM or AM. Morning identifier
:?t(::rnoon PM or PM. Afternoon identifier
Year YYYY Year with comma (with four digits or more)
SYYYY Year with four digits BC
YYYY Year (with four digits or more)
YYY Last three digits of a year
YY Last two digits of a year
Y Last one digit of a year

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

124

Data Warehouse Service
SQL Syntax

6 Functions and Operators

Category | Format Description
IYyy ISO year (with four digits or more)
Yy Last three digits of an ISO year
Iy Last two digits of an ISO year
I Last one digit of an ISO year
RR Last two digits of a year (A year of the 20th
century can be stored in the 21st century.)
RRRR Capable of receiving a year with four digits or
two digits. If there are 2 digits, the value is
the same as the returned value of RR. If there
are 4 digits, the value is the same as YYYY.
e BCorB.C. Era indicator Before Christ (BC) and After
e AD or AD. Christ (AD)
Month MONTH Full spelling of a month in uppercase (9
characters are filled in if the value is empty.)
MON Month in abbreviated format in uppercase
(with three characters)
MM Month (01-12)
RM Month in Roman numerals (I-XII; I=JAN) and
uppercase
Day DAY Full spelling of a date in uppercase (9
characters are filled in if the value is empty.)
DY Day in abbreviated format in uppercase (with
three characters)
DDD Day in a year (001-366)
DD Day in a month (01-31)
D Day in a week (1-7.
Week w Week in a month (1-5) (The first week starts
from the first day of the month.)
wWw Week in a year (1-53) (The first week starts
from the first day of the year.)
W Week in an ISO year (The first Thursday is in
the first week.)
Century cC Century (with two digits) (The 21st century
starts from 2001-01-01.)
Julian J Julian date (starting from January 1 of 4712
date BC)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 125

Data Warehouse Service

SQL Syntax

6 Functions and Operators

date_format

Category | Format Description
Quarter Q Quarter
O NOTE

In the table, the rules for RR to calculate years are as follows:
e If the range of the input two-digit year is between 00 and 49:

If the last two digits of the current year are between 00 and 49, the first two digits of
the returned year are the same as the first two digits of the current year.

If the last two digits of the current year are between 50 and 99, the first two digits of
the returned year equal to the first two digits of the current year plus 1.

e If the range of the input two-digit year is between 50 and 99:

If the last two digits of the current year are between 00 and 49, the first two digits of
the returned year equal to the first two digits of the current year minus 1.

If the last two digits of the current year are between 50 and 99, the first two digits of
the returned year are the same as the first two digits of the current year.

date_format(timestamp, fmt)
Converts a date into a string in the format specified by fmt.

For example:

SELECT date_format('2009-10-04 22:23:00', '%M %D %W');
date_format

October 4th Sunday

(1 row)

SELECT date_format('2021-02-20 08:30:45', '%Y-%m-%d %H:%i:%S');
date_format

2021-02-20 08:30:45

(1 row)

SELECT date_format('2021-02-20 18:10:15', '%r-%T');
date_format

06:10:15 PM-18:10:15
(1 row)

The following table describes the patterns of date parameter values. They can be
used for the date_format, time_format, str_to_date, str_to_time, and
from_unixtime functions.

Table 6-7 Output formats of date_format

Format | Description Value
%a Abbreviated week name Sun...Sat
%b Abbreviated month name Jan...Dec
%c Month 0..12

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 126

Data Warehouse Service
SQL Syntax

6 Functions and Operators

Format | Description Value
%D Date with a suffix Oth, 1st, 2nd, 3rd, ...
%d Day in a month (two digits) 00...31
%e Day in a month 0..31
%f Microsecond 000000...999999
%H Hour, in 24-hour format 00..23
%h Hour, in 12-hour format 01..12
%I Hour, in 12-hour format, 01..12
same as %h
%i Minute 00...59
%j Day in a year 001...366
%k Hour, in 24-hour format, 0..23
same as %H
%l Hour, in 12-hour format, 1..12
same as %h
%M Month name January...December
%m Month (two digits) 00...12
%p Morning and afternoon AM PM
%r Time, in 12-hour format hh:mm:ss AM/PM
%S Second 00...59
%s Second, same as %S 00...59
%T Time, in 24-hour format hh:mm::ss
%U Week (Sunday is the first day | 00..53
of a week)
%u Week (Monday is the first 00..53
day of a week)
%V Week (Sunday is the first day | 01..53
of a week). It is used
together with %X.
%V Week (Monday is the first 01..53
day of a week). It is used
together with %x.
%W Week name Sunday...Saturday
%w Day of a week. The value is 0 | 0...6
for Sunday.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

127

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Format | Description Value

%X

Year (four digits). It is used -
together with %V. Sunday is
the first day of a week.

%X Year (four digits). It is used -
together with %v. Monday is
the first day of a week.
%Y Year (four digits) -
%y Year (two digits) -
%% Character '%' Character '%'
%x 'X: any character apart from | Character 'x

the preceding ones

NOTICE

In the preceding table, %U, %u, %V, %v, %X, and %x are not supported currently.

6.9 Type Conversion Functions

Type Conversion Functions

cast(x as y)
Description: Converts x into the type specified by y.

For example:

SELECT cast('22-oct-1997' as timestamp);
timestamp

1997-10-22 00:00:00
(1 row)

hextoraw(string)
Description: Converts a string in hexadecimal format into binary format.
Return type: raw

For example:

SELECT hextoraw('7D');
hextoraw

7D
(1 row)

numtoday(numeric)

Description: Converts values of the number type into the timestamp of the
specified type.

Return type: timestamp
For example:

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 128

Data Warehouse Service

SQL Syntax

6 Functions and Operators

SELECT numtoday(2);
numtoday

pg_systimestamp()
Description: Obtains the system timestamp.
Return type: timestamp with time zone

For example:

SELECT pg_systimestamp();
pg_systimestamp

2015-10-14 11:21:28.317367+08
(1 row)

rawtohex(string)

Description: Converts a string in binary format into hexadecimal format.
The result is the ACSII code of the input characters in hexadecimal format.
Return type: varchar

For example:

SELECT rawtohex('1234567');
rawtohex

31323334353637
(1 row)

to_char (datetime/interval [, fmt])

Description: Converts a DATETIME or INTERVAL value of the DATE/
TIMESTAMP/TIMESTAMP WITH TIME ZONE/TIMESTAMP WITH LOCAL TIME
ZONE type into the VARCHAR type according to the format specified by fmt.

- The optional parameters fmt include the following types: date, time,
week, quarter, and century. Each type has a unique template. The
templates can be combined together. Common templates include: HH,
MM, SS, YYYY, MM, and DD.

- A template may have a modification word. FM is a common modification
word and is used to suppress the preceding zero or the following blank
spaces.

Return type: varchar

For example:

SELECT to_char(current_timestamp,'HH12:MI:SS');
to_char

10:19:26

(1 row)
SELECT to_char(current_timestamp,'FMHH12:FMMI:FMSS');
to_char

10:19:46
(1 row)

to_char(double precision, text)

Description: Converts the values of the double-precision type into the strings
in the specified format.

Return type: text
For example:

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 129

Data Warehouse Service
SQL Syntax 6 Functions and Operators

SELECT to_char(125.8:real, '999D99');
to_char

e to_char (integer/number[, fmt])

Descriptions: Converts an integer or a value in floating point format into a
string in specified format.

- Optional parameters fmt include the following types: decimal characters,
grouping characters, positive/negative sign and currency sign. Each type
has a unique template. The templates can be combined together.
Common templates include: 9, 0, millesimal sign (,), and decimal point
().

- A template can have a modification word, similar to FM. However, FM
does not suppress 0 which is output according to the template.

- Use the template X or x to convert an integer value into a string in
hexadecimal format.

Return type: varchar

For example:

SELECT to_char(1485,'9,999'");
to_char

(1 row)
SELECT to_char(1148.5,'9,999.999');
to_char

1,148.500

(1 row)

SELECT to_char(148.5,'990999.909");
to_char

0148.500
(1 row)
SELECT to_char(123,'XXX");
to_char

7B
(1 row)

e to_char(interval, text)

Description: Converts the values of the time interval type into the strings in
the specified format.

Return type: text

For example:

SELECT to_char(interval '15h 2m 12s', 'HH24:MI:SS");
to_char

15:02:12
(1 row)

e to_char(int, text)
Description: Converts the values of the integer type into the strings in the
specified format.
Return type: text
For example:

SELECT to_char(125, '999');
to_char

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 130

Data Warehouse Service
SQL Syntax 6 Functions and Operators

(1 row)
e to_char(numeric, text)

Description: Converts the values of the numeric type into the strings in the
specified format.

Return type: text

For example:

SELECT to_char(-125.8, '999D99S");
to_char

e to_char (string)

Description: Converts the CHAR/VARCHAR/VARCHAR2/CLOB type into the
VARCHAR type.

If this function is used to convert data of the CLOB type, and the value to be
converted exceeds the value range of the target type, an error is returned.

Return type: varchar

For example:

SELECT to_char('01110');
to_char

e to_char(timestamp, text)

Description: Converts the values of the timestamp type into the strings in the
specified format.

Return type: text

For example:

SELECT to_char(current_timestamp, 'HH12:MI:SS');
to_char

10:55:59
(1 row)

e to_clob(char/nchar/varchar/nvarchar/varchar2/nvarchar2/text/raw)

Description: Convert the RAW type or text character set type CHAR/NCHAR/
VARCHAR/VARCHAR2/NVARCHAR2/TEXT into the CLOB type.

Return type: clob

For example:

SELECT to_clob('ABCDEF'::RAW(10));
to_clob

ABCDEF

(1 row)

SELECT to_clob('hello111":CHAR(15));
to_clob

hello111

(1 row)

SELECT to_clob('gauss123'::NCHAR(10));
to_clob

gauss123

(1 row)

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 131

Data Warehouse Service

SQL Syntax

6 Functions and Operators

SELECT to_clob('gauss234'::VARCHAR(10));
to_clob

gauss234

(1 row)

SELECT to_clob('gauss345'::VARCHAR2(10));
to_clob

gauss345

(1 row)

SELECT to_clob('gauss456'::NVARCHAR2(10));
to_clob

gauss456

(1 row)

SELECT to_clob('World222!"::TEXT);
to_clob

World222!
(1 row)

to_date(text)

Description: Converts values of the text type into the timestamp in the
specified format.

Return type: timestamp

For example:

SELECT to_date('2015-08-14");
to_date

2015-08-14 00:00:00
(1 row)

to_date(text, text)

Description: Converts the values of the string type into the dates in the
specified format.

Return type: timestamp

For example:

SELECT to_date('05 Dec 2000, 'DD Mon YYYY');
to_date

2000-12-05 00:00:00
(1 row)

to_date(string, fmt)

Description:

Converts a string into a value of the DATE type according to the format
specified by fmt.

This function cannot support the CLOB type directly. However, a parameter of
the CLOB type can be converted using implicit conversion.

Return type: date

For example:

SELECT TO_DATE('05 Dec 2010','DD Mon YYYY');
to_date

2010-12-05 00:00:00
(1 row)

to_number (expr [, fmt])

Description: Converts expr into a value of the NUMBER type according to the
specified format.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 132

Data Warehouse Service

SQL Syntax

6 Functions and Operators

For details about the type conversion formats, see Table 6-8.

If a hexadecimal string is converted into a decimal number, the hexadecimal
string can include a maximum of 16 bytes if it is to be converted into a sign-
free number.

During the conversion from a hexadecimal string to a decimal digit, the
format string cannot have a character other than x or X. Otherwise, an error
is reported.

Return type: number

For example:

SELECT to_number('12,454.8-', '99G999D9S');
to_number

-12454.8
(1 row)

to_number(text, text)

Description: Converts the values of the string type into the numbers in the
specified format.

Return type: numeric

For example:

SELECT to_number('12,454.8-', '99G999D9S');
to_number

-12454.8
(1 row)

to_timestamp(double precision)
Description: Converts a UNIX century into a timestamp.
Return type: timestamp with time zone

For example:

SELECT to_timestamp(1284352323);
to_timestamp

2010-09-13 12:32:03+08
(1 row)

to_timestamp(string [,fmt])

Description: Converts a string into a value of the timestamp type according to
the format specified by fmt. When fmt is not specified, perform the
conversion according to the format specified by nls_timestamp_format.

In to_timestamp in GaussDB(DWS):
- If the input year YYYYis 0O, an error will be reported.

- If the input year YYYY<O0 to specify SYYYY in fmt, the year with the value
of n (an absolute value) BC is output correctly.

Characters in the fmt must match the schema for formatting the data and
time. Otherwise, an error is reported.

Return type: timestamp without time zone

For example:

SHOW nls_timestamp_format;
nls_timestamp_format

DD-Mon-YYYY HH:MI:SS.FF AM
(1 row)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 133

Data Warehouse Service

SQL Syntax

6 Functions and Operators

SELECT to_timestamp('12-sep-2014');
to_timestamp
2014-09-12 00:00:00
(1 row)
SELECT to_timestamp('12-Sep-10 14:10:10.123000','DD-Mon-YY HH24:MI:SS.FF');
to_timestamp

2010-09-12 14:10:10.123

(1 row)

SELECT to_timestamp('-1','SYYYY');
to_timestamp

0001-01-01 00:00:00 BC

(1 row)

SELECT to_timestamp('98','RR");
to_timestamp

1998-01-01 00:00:00

(1 row)

SELECT to_timestamp('01','RR");
to_timestamp

2001-01-01 00:00:00
(1 row)

to_timestamp(text, text)

Description: Converts values of the string type into the timestamp of the
specified type.

Return type: timestamp

For example:

SELECT to_timestamp('05 Dec 2000', 'DD Mon YYYY');
to_timestamp

2000-12-05 00:00:00
(1 row)

The following table describes the value formats of the to_number function.

Table 6-8 Template patterns for numeric formatting

Schema Description

9 Value with specified digits

0 Values with leading zeros

Period (.) Decimal point

Comma (,) Group (thousand) separator

PR Negative values in angle brackets

S Sign anchored to number (uses locale)

L Currency symbol (uses locale)

D Decimal point (uses locale)

G Group separator (uses locale)

Ml Minus sign in the specified position (if the number is
less than 0)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 134

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Schema Description

PL

greater than 0)

Plus sign in the specified position (if the number is

SG Plus or minus sign in the specified position

RN Roman numerals (the input values are between 1 and
3999)

TH or th Ordinal number suffix

\Y Shifts specified number of digits (decimal)

6.10 Geometric Functions and Operators

Geometric Operators

+
Description: Translation

For example:

SELECT box '((0,0),(1,1))' + point '(2.0,0)' AS RESULT;
result

(3,1),(2,0)
(1 row)

Description: Translation

For example:

SELECT box '((0,0),(1,1))" - point '(2.0,0)' AS RESULT;
result

('1 11):('210)
(1 row)

*

Description: Scaling out/rotation

For example:

SELECT box '((0,0),(1,1))"' * point '(2.0,0)' AS RESULT;
result

(2,2),(0,0)
(1 row)

/

Description: Scaling in/rotation

For example:

SELECT box '((0,0),(2,2))' / point '(2.0,0)' AS RESULT;
result

(1,1),(0,0)
(1 row)

#

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

135

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Description: Point or box of intersection

For example:

SELECT box'((1,-1),(-1,1))" # box'((1,1),(-1,-1))" AS RESULT;
result

(1,1),(-1,-1)

(1 row)
#
Description: Number of paths or polygon vertexs

For example:

SELECT # path'((1,0),(0,1),(-1,0))" AS RESULT;
result

(1 row)
@-@
Description: Length or circumference

For example:

SELECT @-@ path '((0,0),(1,0))' AS RESULT;
result

@@
Description: Center of box

For example:

SELECT @@ circle '((0,0),10)" AS RESULT;
result

Description: Closest point to first figure on second figure.

For example:

SELECT point '(0,0)" ## box '((2,0),(0,2))' AS RESULT;
result

Description: Distance between the two figures.

For example:

SELECT circle '((0,0),1)' <-> circle '((5,0),1)" AS RESULT;
result

Description: Overlaps? (One point in common makes this true.)

For example:

SELECT box '((0,0),(1,1))" && box '((0,0),(2,2))' AS RESULT;
result

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

136

Data Warehouse Service
SQL Syntax 6 Functions and Operators

t
(1 row)

o <<
Description: Is strictly left of (no common horizontal coordinate)?

For example:

SELECT circle '((0,0),1)"' << circle '((5,0),1)" AS RESULT;
result

Description: Is strictly right of (no common horizontal coordinate)?

For example:

SELECT circle '((5,0),1)' >> circle '((0,0),1)" AS RESULT;
result

Description: Does not extend to the right of?

For example:

SELECT box '((0,0),(1,1))" &< box '((0,0),(2,2))' AS RESULT;
result

Description: Does not extend to the left of?

For example:

SELECT box '((0,0),(3,3))' &> box '((0,0),(2,2))' AS RESULT;
result

Description: Is strictly below (no common horizontal coordinate)?

For example:

SELECT box '((0,0),(3,3))' <<| box '((3,4),(5,5))' AS RESULT;
result

o |>>
Description: Is strictly above (no common horizontal coordinate)?

For example:

SELECT box '((3,4),(5,5))"' |>> box '((0,0),(3,3))' AS RESULT;
result

o &<|
Description: Does not extend above?
For example:

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 137

Data Warehouse Service

SQL Syntax

6 Functions and Operators

SELECT box '((0,0),(1,1))"' &<| box '((0,0),(2,2))"' AS RESULT;
result

| &>
Description: Does not extend below?

For example:

SELECT box '((0,0),(3,3))' |&> box '((0,0),(2,2))" AS RESULT;
result

Description: Is below (allows touching)?

For example:

SELECT box '((0,0),(-3,-3))' <A box '((0,0),(2,2))' AS RESULT;
result

Description: Is above (allows touching)?

For example:

SELECT box '((0,0),(2,2))' >A box '((0,0),(-3,-3))" AS RESULT;
result

Description: Intersect?

For example:

SELECT lseg '((-1,0),(1,0))" ?# box '((-2,-2),(2,2))' AS RESULT;
result

Description: Is horizontal?

For example:

SELECT ?- Iseg '((-1,0),(1,0))' AS RESULT;
result

Description: Are horizontally aligned?

For example:

SELECT point '(1,0)' ?- point '(0,0)' AS RESULT;
result

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

138

Data Warehouse Service

SQL Syntax

6 Functions and Operators

?|
Description: Is vertical?

For example:

SELECT ?| lseg '((-1,0),(1,0))" AS RESULT;
result

?|
Description: Are vertically aligned?

For example:

SELECT point '(0,1)' ?| point '(0,0)' AS RESULT;
result

(1 row)

>

Description: Are perpendicular?

For example:

SELECT lseg '((0,0),(0,1))" ?-| lseg '((0,0),(1,0))" AS RESULT;
result

2|l
Description: Are parallel?

For example:

SELECT lseg '((-1,0),(1,0))" ?|| lseg '((-1,2),(1,2))' AS RESULT;
result

Description: Contains?

For example:

SELECT circle '((0,0),2)" @> point '(1,1)' AS RESULT;
result

Description: Contained in or on?

For example:

SELECT point '(1,1)' <@ circle '((0,0),2)' AS RESULT;
result

Description: Same as?
For example:

SELECT polygon '((0,0),(1,1))' ~= polygon '((1,1),(0,0))' AS RESULT;

result

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

139

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Geometric Functions

area(object)
Description: Area calculation
Return type: double precision

For example:

SELECT area(box '((0,0),(1,1))") AS RESULT;
result

center(object)
Description: Figure center calculation
Return type: point

For example:

SELECT center(box '((0,0),(1,2))') AS RESULT;
result

diameter(circle)
Description: Circle diameter calculation
Return type: double precision

For example:

SELECT diameter(circle '((0,0),2.0)") AS RESULT;
result

height(box)
Description: Vertical size of box
Return type: double precision

For example:

SELECT height(box '((0,0),(1,1))') AS RESULT;
result

isclosed(path)
Description: A closed path?
Return type: boolean

For example:

SELECT isclosed(path '((0,0),(1,1),(2,0))') AS RESULT;
result

(1 row)

isopen(path)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

140

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Description: An open path?
Return type: boolean

For example:

SELECT isopen(path '[(0,0),(1,1),(2,0)]") AS RESULT;
result

(1 row)

length(object)

Description: Length calculation
Return type: double precision

For example:

SELECT length(path '((-1,0),(1,0))") AS RESULT;
result

npoints(path)
Description: Number of points in path
Return type: int

For example:

SELECT npoints(path '[(0,0),(1,1),(2,0)]') AS RESULT;
result

(1 row)

npoints(polygon)

Description: Number of points in polygon
Return type: int

For example:

SELECT npoints(polygon '((1,1),(0,0))") AS RESULT;
result

(1 row)

pclose(path)

Description: Converts path to closed.
Return type: path

For example:

SELECT pclose(path '[(0,0),(1,1),(2,0)]") AS RESULT;
result

((0,0),(1,1),(2,0))

(1 row)

popen(path)

Description: Converts path to open.
Return type: path

For example:

SELECT popen(path '((0,0),(1,1),(2,0))") AS RESULT;
result

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

141

Data Warehouse Service
SQL Syntax 6 Functions and Operators

((0,0),(1,1),(2,0)]

(1 row)

e radius(circle)
Description: Circle diameter calculation
Return type: double precision

For example:

SELECT radius(circle '((0,0),2.0)') AS RESULT;
result

(1 row)

e width(box)
Description: Horizontal size of box
Return type: double precision

For example:

SELECT width(box '((0,0),(1,1))') AS RESULT;
result

Geometric Type Conversion Functions
e box(circle)
Description: Circle to box
Return type: box

For example:

SELECT box(circle '((0,0),2.0)') AS RESULT;
result

(1.41421356237309,1.41421356237309),(-1.41421356237309,-1.41421356237309)
(1 row)

e box(point, point)
Description: Points to box
Return type: box

For example:

SELECT box(point '(0,0)', point '(1,1)') AS RESULT;
result

(1,1),(0,0)
(1 row)

e box(polygon)
Description: Polygon to box
Return type: box

For example:

SELECT box(polygon '((0,0),(1,1),(2,0))') AS RESULT;
result

(2,1),(0,0)
(1 row)

e circle(box)
Description: Box to circle

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 142

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Return type: circle

For example:

SELECT circle(box '((0,0),(1,1))") AS RESULT;
result

<(0.5,0.5),0.707106781186548>
(1 row)

circle(point, double precision)
Description: Center and radius to circle
Return type: circle

For example:

SELECT circle(point '(0,0)', 2.0) AS RESULT;
result

circle(polygon)
Description: Polygon to circle
Return type: circle

For example:

SELECT circle(polygon '((0,0),(1,1),(2,0))') AS RESULT;
result

<(1,0.333333333333333),0.924950591148529>
(1 row)

lseg(box)
Description: Box diagonal to line segment
Return type: lseg

For example:

SELECT lseg(box '((-1,0),(1,0))') AS RESULT;
result

[(1,0),(-1,0)]

(1 row)

lseg(point, point)

Description: Points to line segment
Return type: lseg

For example:

SELECT lseg(point '(-1,0)', point '(1,0)') AS RESULT;
result

[('110)1(110)]

(1 row)

path(polygon)

Description: Polygon to path
Return type: path

For example:

SELECT path(polygon '((0,0),(1,1),(2,0))") AS RESULT;
result

((0,0),(1,1),(2,0))
(1 row)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

143

Data Warehouse Service

SQL Syntax

6 Functions and Operators

point(double precision, double precision)
Description: Points
Return type: point

For example:

SELECT point(23.4, -44.5) AS RESULT;
result

(23.4,-44.5)
(1 row)

point(box)
Description: Center of box
Return type: point

For example:

SELECT point(box '((-1,0),(1,0))') AS RESULT;
result

point(circle)
Description: Center of circle
Return type: point

For example:

SELECT point(circle '((0,0),2.0)') AS RESULT;
result

point(lseg)
Description: Center of line segment
Return type: point

For example:

SELECT point(lseg '((-1,0),(1,0))') AS RESULT;
result

point(polygon)
Description: Center of polygon
Return type: point

For example:

SELECT point(polygon '((0,0),(1,1),(2,0))') AS RESULT;
result

(1,0.333333333333333)
(1 row)

polygon(box)
Description: Box to 4-point polygon
Return type: polygon

For example:

SELECT polygon(box '((0,0),(1,1))") AS RESULT;
result

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

144

Data Warehouse Service

SQL Syntax

6 Functions and Operators

((0,0),(0,1),(1,1),(1,0))
(1 row)

polygon(circle)

Description: Circle to 12-point polygon
Return type: polygon

For example:

SELECT polygon(circle '((0,0),2.0)') AS RESULT;

result

((-2,0),(-1.73205080756888,1),(-1,1.73205080756888),(-1.22464679914735e-16,2),
(1,1.73205080756888),(1.73205080756888,1),(2,2.44929359829471e-16),
(1.73205080756888,-0.999999999999999),(1,-1.73205080756888),(3.67394039744206e-16,-2),
(-0.999999999999999,-1.73205080756888),(-1.73205080756888,-1))

(1 row)

polygon(npts, circle)

Description: Circle to npts-point polygon
Return type: polygon

For example:

SELECT polygon(12, circle '((0,0),2.0)") AS RESULT;

result

((-2,0),(-1.73205080756888,1),(-1,1.73205080756888),(-1.22464679914735e-16,2),
(1,1.73205080756888),(1.73205080756888,1),(2,2.44929359829471e-16),
(1.73205080756888,-0.999999999999999),(1,-1.73205080756888),(3.67394039744206e-16,-2),
(-0.999999999999999,-1.73205080756888),(-1.73205080756888,-1))

(1 row)

polygon(path)
Description: Path to polygon
Return type: polygon

For example:

SELECT polygon(path '((0,0),(1,1),(2,0))") AS RESULT;
result

((0,0),(1,1),(2,0))
(1 row)

6.11 Network Address Functions and Operators

cidr and inet Operators

The operators <<, <<=, >>, and >>= test for subnet inclusion. They consider only
the network parts of the two addresses (ignoring any host part) and determine
whether one network is identical to or a subnet of the other.

<
Description: Is less than

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 145

Data Warehouse Service

SQL Syntax

6 Functions and Operators

For example:

SELECT inet '192.168.1.5' < inet '192.168.1.6' AS RESULT;
result

Description: Is less than or equals

For example:

SELECT inet '192.168.1.5' <= inet '192.168.1.5' AS RESULT;
result

Description: Equals

For example:

SELECT inet '192.168.1.5' = inet '192.168.1.5' AS RESULT;
result

Description: Is greater than or equals

For example:

SELECT inet '192.168.1.5' >= inet '192.168.1.5' AS RESULT;
result

Description: Is greater than

For example:

SELECT inet '192.168.1.5' > inet '192.168.1.4' AS RESULT;
result

Description: Does not equal to

For example:

SELECT inet '192.168.1.5' <> inet '192.168.1.4' AS RESULT;
result

Description: Is contained in

For example:

SELECT inet '192.168.1.5' << inet '192.168.1/24' AS RESULT;
result

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

146

Data Warehouse Service

SQL Syntax

6 Functions and Operators

<<=
Description: Is contained in or equals

For example:

SELECT inet '192.168.1/24' <<= inet '192.168.1/24"' AS RESULT;
result

Description: Contains

For example:

SELECT inet '192.168.1/24' >> inet '192.168.1.5' AS RESULT;
result

>>=
Description: Contains or equals

For example:

SELECT inet '192.168.1/24' >>= inet '192.168.1/24' AS RESULT;
result

Description: Bitwise NOT

For example:

SELECT ~ inet '192.168.1.6' AS RESULT;
result

63.87.254.249
(1 row)

&

Description: The AND operation is performed on each bit of the two network
addresses.

For example:

SELECT inet '192.168.1.6' & inet '10.0.0.0' AS RESULT;
result

Description: The OR operation is performed on each bit of the two network
addresses.

For example:

SELECT inet '192.168.1.6' | inet '10.0.0.0' AS RESULT;
result

202.168.1.6
(1 row)

—+

Description: Addition

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 147

Data Warehouse Service

SQL Syntax

6 Functions and Operators

For example:

SELECT inet '192.168.1.6' + 25 AS RESULT;
result

192.168.1.31
(1 row)

Description: Subtraction

For example:

SELECT inet '192.168.1.43' - 36 AS RESULT;
result

192.168.1.7
(1 row)

Description: Subtraction

For example:

SELECT inet '192.168.1.43' - inet '192.168.1.19' AS RESULT;
result

cidr and inet Functions

The abbrev, host, and text functions are primarily intended to offer alternative
display formats.

abbrev(inet)
Description: Abbreviated display format as text
Return type: text

For example:

SELECT abbrev(inet '10.1.0.0/16') AS RESULT;
result

10.1.0.0/16
(1 row)

abbrev(cidr)
Description: Abbreviated display format as text
Return type: text

For example:

SELECT abbrev(cidr '10.1.0.0/16') AS RESULT;
result

10.1/16
(1 row)

broadcast(inet)
Description: Broadcast address for network
Return type: inet

For example:

SELECT broadcast('192.168.1.5/24') AS RESULT;
result

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

148

Data Warehouse Service

SQL Syntax

6 Functions and Operators

192.168.1.255/24
(1 row)

family(inet)

Description: Extracts family of address; 4 for IPv4, 6 for IPv6

Return type: int

For example:

SELECT family(":1') AS RESULT;
result

(1 row)

host(inet)

Description: Extracts IP address as text.
Return type: text

For example:

SELECT host('192.168.1.5/24") AS RESULT;
result

192.168.1.5
(1 row)

hostmask(inet)
Description: Constructs host mask for network.
Return type: inet

For example:

SELECT hostmask('192.168.23.20/30') AS RESULT;
result

masklen(inet)
Description: Extracts subnet mask length.
Return type: int

For example:

SELECT masklen('192.168.1.5/24') AS RESULT,
result

24
(1 row)

netmask(inet)

Description: Constructs a subnet mask for the network.

Return type: inet

For example:

SELECT netmask('192.168.1.5/24') AS RESULT;
result

255.255.255.0
(1 row)

network(inet)

Description: Extracts network part of address.
Return type: cidr

For example:

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

149

Data Warehouse Service

SQL Syntax

6 Functions and Operators

SELECT network('192.168.1.5/24') AS RESULT;
result

192.168.1.0/24
(1 row)

set_masklen(inet, int)
Description: Sets subnet mask length for inet value.
Return type: inet

For example:

SELECT set_masklen('192.168.1.5/24', 16) AS RESULT;
result

192.168.1.5/16
(1 row)

set_masklen(cidr, int)
Description: Sets subnet mask length for cidr value.
Return type: cidr

For example:

SELECT set_masklen('192.168.1.0/24":cidr, 16) AS RESULT;
result

192.168.0.0/16
(1 row)

text(inet)
Description: Extracts IP address and subnet mask length as text.
Return type: text

For example:

SELECT text(inet '192.168.1.5') AS RESULT;
result

192.168.1.5/32
(1 row)

Any cidr value can be cast to inet implicitly or explicitly; therefore, the functions
shown above as operating on inet also work on cidr values. An inet value can be
cast to cidr. After the conversion, any bits to the right of the subnet mask are
silently zeroed to create a valid cidr value. In addition, you can cast a text string to
inet or cidr using normal casting syntax. For example, inet(expression) or
colname::cidr.

macaddr Functions

The function trunc(macaddr) returns a MAC address with the last 3 bytes set to
zero.

trunc(macaddr)
Description: Sets last 3 bytes to zero.
Return type: macaddr

For example:

SELECT trunc(macaddr '12:34:56:78:90:ab') AS RESULT;

result

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 150

Data Warehouse Service

SQL Syntax

6 Functions and Operators

12:34:56:00:00:00
(1 row)

The macaddr type also supports the standard relational operators (such as > and
<=) for lexicographical ordering, and the bitwise arithmetic operators (~, & and |)
for NOT, AND and OR.

6.12 Text Search Functions and Operators

Text Search Operators

@@

Description: Specifies whether the tsvector-typed words match the tsquery-

typed words.

For example:

SELECT to_tsvector('fat cats ate rats') @@ to_tsquery('cat & rat') AS RESULT;
result

@@@
Description: Synonym for @@

For example:

SELECT to_tsvector('fat cats ate rats') @@@ to_tsquery('cat & rat') AS RESULT;
result

Description: Connects two tsvector-typed words.

For example:

SELECT 'a:1 b:2":tsvector || 'c:1 d:2 b:3":tsvector AS RESULT;
result

'a:1'b"2,5'c:3'd"4
(1 row)

&&

Description: Performs the AND operation on two tsquery-typed words.

For example:

SELECT 'fat | rat":tsquery && 'cat":tsquery AS RESULT;
result

('fat' | 'rat') & 'cat'
(1 row)

I
Description: Performs the OR operation on two tsquery-typed words.

For example:

SELECT 'fat | rat':tsquery || 'cat':tsquery AS RESULT;
result

('fat'| 'rat') | 'cat'
(1 row)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

151

Data Warehouse Service

SQL Syntax

6 Functions and Operators

I
Description: NOT a tsquery

For example:

SELECT !! 'cat"::tsquery AS RESULT;
result

Description: Specifies whether a tsquery-typed word contains another
tsquery-typed word.

For example:

SELECT 'cat'::itsquery @> 'cat & rat':tsquery AS RESULT;
result

Description: Specifies whether a tsquery-typed word is contained in another
tsquery-typed word.

For example:

SELECT 'cat":tsquery <@ 'cat & rat":tsquery AS RESULT;
result

In addition to the preceding operators, the ordinary B-tree comparison operators
(including = and <) are defined for types tsvector and tsquery.

Text search functions

get_current_ts_config()
Description: Gets default text search configuration.
Return type: regconfig

For example:

SELECT get_current_ts_config();
get_current_ts_config

english
(1 row)

length(tsvector)
Description: Number of lexemes in a tsvector-typed word.
Return type: integer

For example:

SELECT length('fat:2,4 cat:3 rat:5A"::tsvector);
length

(1 row)

numnode (tsquery)

Description: Number of lexemes plus tsquery operators
Return type: integer

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 152

Data Warehouse Service

SQL Syntax

6 Functions and Operators

For example:

SELECT numnode('(fat & rat) | cat'::tsquery);
numnode

plainto_tsquery([config regconfig ,] query text)
Description: Generates tsquery lexemes without punctuation.
Return type: tsquery

For example:

SELECT plainto_tsquery(‘english’, 'The Fat Rats');
plainto_tsquery

far &t

(1 row)

querytree(query tsquery)

Description: Gets indexable part of a tsquery.
Return type: text

For example:

SELECT querytree('foo & ! bar':tsquery);
querytree

setweight(tsvector, "char")
Description: Assigns weight to each element of tsvector.
Return type: tsvector

For example:

SELECT setweight('fat:2,4 cat:3 rat:5B":tsvector, 'A');
setweight

'cat":3A 'fat':2A 4A 'rat.5A
(1 row)

strip(tsvector)
Description: Removes positions and weights from tsvector.
Return type: tsvector

For example:

SELECT strip('fat:2,4 cat:3 rat:5A":tsvector);
strip

'cat' 'fat' 'rat’
(1 row)

to_tsquery([config regconfig ,] query text)
Description: Normalizes words and converts them to tsquery.
Return type: tsquery

For example:

SELECT to_tsquery(‘english’, 'The & Fat & Rats');
to_tsquery

'fat' & 'rat'
(1 row)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 153

Data Warehouse Service

SQL Syntax

6 Functions and Operators

to_tsvector([config regconfig ,] document text)
Description: Reduces document text to tsvector.
Return type: tsvector

For example:

SELECT to_tsvector('english', 'The Fat Rats');
to_tsvector

'fat":2 'rat":3
(1 row)

ts_headline([config regconfig,] document text, query tsquery [, options
text])

Description: Highlights a query match.

Return type: text

For example:

SELECT ts_headline('x y z', 'z'":tsquery);
ts_headline

x y z
(1 row)

ts_rank([weights float4[],] vector tsvector, query tsquery [, normalization
integer])

Description: Ranks document for query.
Return type: float4

For example:

SELECT ts_rank('hello world":tsvector, 'world":tsquery);
ts_rank

.0607927
(1 row)

ts_rank_cd([weights float4[],] vector tsvector, query tsquery [, normalization
integer])

Description: Ranks document for query using cover density.
Return type: float4

For example:

SELECT ts_rank_cd('hello world":tsvector, 'world":tsquery);
ts_rank_cd

(1 row)

ts_rewrite(query tsquery, target tsquery, substitute tsquery)
Description: Replaces tsquery-typed word.

Return type: tsquery

For example:

SELECT ts_rewrite('a & b':tsquery, 'a":tsquery, 'foo|bar':tsquery);
ts_rewrite

'b' & ('foo' | 'bar')
(1 row)

ts_rewrite(query tsquery, select text)

Description: Replaces tsquery data in the target with the result of a SELECT
command.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 154

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Return type: tsquery

For example:

SELECT ts_rewrite('world":tsquery, 'select "world"::tsquery, "hello"::itsquery');
ts_rewrite

'hello’
(1 row)

Text Search Debugging Functions

ts_debug([config regconfig,] document text, OUT alias text, OUT description
text, OUT token text, OUT dictionaries regdictionary[], OUT dictionary
regdictionary, OUT lexemes text[])

Description: Tests a configuration.
Return type: setof record

For example:

SELECT ts_debug('english’, 'The Brightest supernovaes');
ts_debug

(asciiword,"Word, all ASCII",The,{english_stem},english_stem,{})

(blank,"Space symbols"," " {},,)

(asciiword,"Word, all ASCII",Brightest,{english_stem},english_stem,{brightest})
(blank,"Space symbols"," " {},,)

(asciiword,"Word, all ASCII",supernovaes,{english_stem},english_stem,{supernova})
(5 rows)

ts_lexize(dict regdictionary, token text)
Description: Tests a data dictionary.
Return type: text[]

For example:

SELECT ts_lexize('english_stem’, 'stars');
ts_lexize

{star}

(1 row)

ts_parse(parser_name text, document text, OUT tokid integer, OUT token
text)

Description: Tests a parser.
Return type: setof record

For example:

SELECT ts_parse('default’, 'foo - bar');
ts_parse

(1,foo)
(1 2," ll)
(1 2,"_ |l)
(1,bar)
(4 rows)

ts_parse(parser_oid oid, document text, OUT tokid integer, OUT token text)
Description: Tests a parser.
Return type: setof record

For example:

SELECT ts_parse(3722, 'foo - bar');
ts_parse

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 155

Data Warehouse Service

SQL Syntax

6 Functions and Operators

(1,foo)
(—I 2," H)
(—I 2,"_ H)
(1,bar)
(4 rows)

ts_token_type(parser_name text, OUT tokid integer, OUT alias text, OUT

description text)
Description: Gets token types defined by parser.
Return type: setof record

For example:

SELECT ts_token_type('default');
ts_token_type

(1,asciiword,"Word, all ASCII")

(2,word,"Word, all letters")

(3,numword,"Word, letters and digits")
(4,email,"Email address")

(5,url,URL)

(6,host,Host)

(7,sfloat,"Scientific notation")

(8,version,"Version number")
(9,hword_numpart,"Hyphenated word part, letters and digits")
(10,hword_part,"Hyphenated word part, all letters")
(11,hword_asciipart,"Hyphenated word part, all ASCII")
(12,blank,"Space symbols")

(13,tag,"XML tag")

(14,protocol,"Protocol head")
(15,numhword,"Hyphenated word, letters and digits")
(16,asciihword,"Hyphenated word, all ASCII")
(17,hword,"Hyphenated word, all letters")
(18,url_path,"URL path")

(19,file,"File or path name")

(20,float,"Decimal notation")

(21,int,"Signed integer")

(22,uint,"Unsigned integer")

(23,entity,"XML entity")

(23 rows)

ts_token_type(parser_oid oid, OUT tokid integer, OUT alias text, OUT

description text)
Description: Gets token types defined by parser.
Return type: setof record

For example:

SELECT ts_token_type(3722);
ts_token_type

(1,asciiword,"Word, all ASCII")

(2,word,"Word, all letters")

(3,numword,"Word, letters and digits")

(4,email,"Email address")

(5,url,URL)

(6,host,Host)

(7,sfloat,"Scientific notation")

(8,version,"Version number")
(9,hword_numpart,"Hyphenated word part, letters and digits")
(10,hword_part,"Hyphenated word part, all letters")
(11,hword_asciipart,"Hyphenated word part, all ASCII")
(12,blank,"Space symbols")

(13,tag,"XML tag")

(14,protocol,"Protocol head")
(15,numhword,"Hyphenated word, letters and digits")
(16,asciihword,"Hyphenated word, all ASCII")
(17,hword,"Hyphenated word, all letters")
(18,url_path,"URL path")

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

156

Data Warehouse Service
SQL Syntax 6 Functions and Operators

(19,file,"File or path name")
(20,float,"Decimal notation")
(21,int,"Signed integer")
(22,uint,"Unsigned integer")
(23,entity,"XML entity")

(23 rows)

e ts_stat(sqglquery text, [weights text,] OUT word text, OUT ndoc integer, OUT
nentry integer)

Description: Gets statistics of a tsvector column.
Return type: setof record

For example:

SELECT ts_stat('select "hello world"::tsvector');
ts_stat

(world,1,1)
(hello,1,1)
(2 rows)

6.13 UUID Functions

UUID functions are used to generate UUID data (see UUID Type).

e uuid_generate_v1()
Description: Generates a UUID sequence number.
Return type: UUID

Example:

SELECT uuid_generate_v1();
uuid_generate_v1

c71ceaca-al175-11e9-a920-797ff7000001
(1 row)

(11 NOTE

The uuid_generate_v1 function generates UUIDs based on the time information,
cluster node ID, and thread ID that generates the sequence. Each UUID is globally
unique in a cluster, but there is a low probability that a UUID is duplicated among
multiple clusters.

e sys_guid()
Description: Generate a sequence number that is the same as the sequence
number generated by the Oracle sys_guid method.
Return type: text
Example:

SELECT sys_guid();
sys_guid

4EBD3C74A17A11E9A1BF797FF7000001
(1 row)

(11 NOTE

The data generation principle of the sys_guid function is the same as that of the
uuid_generate_v1 function.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 157

Data Warehouse Service

SQL Syntax

6 Functions and Operators

6.14 JSON Functions

JSON functions are used to generate JSON data (see JSON Types).

array_to_json(anyarray [, pretty_bool])

Description: Returns the array as JSON. A multi-dimensional array becomes a
JSON array of arrays. Line feeds will be added between dimension-1 elements
if pretty_bool is true.

Return type: json

For example:

SELECT array_to_json('{{1,5},{99,100}}"::int[]);
array_to_json

[[1,51,[99,100]1]
(1 row)

row_to_json(record [, pretty_bool])

Description: Returns the row as JSON. Line feeds will be added between
level-1 elements if pretty_bool is true.

Return type: json

For example:

SELECT row_to_json(row(1,'foo"));
row_to_json

{!If1 II:‘I ,!If2|I:I|fooll}

(1 row)

6.15 HLL Functions and Operators

Hash Functions

hll_hash_boolean(bool)
Description: Hashes data of the bool type.
Return type: hll_hashval

For example:
SELECT hll_hash_boolean(FALSE);
hll_hash_boolean

5048724184180415669
(1 row)

hll_hash_boolean(bool, int32)

Description: Configures a hash seed (that is, change the hash policy) and
hashes data of the bool type.

Return type: hll_hashval

For example:

SELECT hll_hash_boolean(FALSE, 10);
hll_hash_boolean

391264977436098630
(1 row)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 158

Data Warehouse Service

SQL Syntax

6 Functions and Operators

hll_hash_smallint(smallint)
Description: Hashes data of the smallint type.
Return type: hll_hashval

For example:

SELECT hll_hash_smallint(100::smallint);
hll_hash_smallint

4631120266694327276
(1 row)

(11 NOTE

If parameters with the same numeric value are hashed using different data types, the data
will differ, because hash functions select different calculation policies for each type.

hll_hash_smallint(smallint, int32)

Description: Configures a hash seed (that is, change the hash policy) and
hashes data of the smallint type.

Return type: hll_hashval

For example:

SELECT hll_hash_smallint(100::smallint, 10);
hll_hash_smallint

8349353095166695771
(1 row)

hll_hash_integer(integer)
Description: Hashes data of the integer type.
Return type: hll_hashval

For example:

SELECT hll_hash_integer(0);
hll_hash_integer

-3485513579396041028
(1 row)

hll_hash_integer(integer, int32)

Description: Hashes data of the integer type and configures a hash seed (that
is, change the hash policy).

Return type: hll_hashval

For example:

SELECT hll_hash_integer(0, 10);
hll_hash_integer

183371090322255134
(1 row)

hll_hash_bigint(bigint)
Description: Hashes data of the bigint type.
Return type: hll_hashval

For example:

SELECT hll_hash_bigint(100::bigint);
hll_hash_bigint

8349353095166695771
(1 row)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 159

Data Warehouse Service
SQL Syntax 6 Functions and Operators

e hll_hash_bigint(bigint, int32)
Description: Hashes data of the bigint type and configures a hash seed (that
is, change the hash policy).
Return type: hll_hashval

For example:

SELECT hll_hash_bigint(100::bigint, 10);
hll_hash_bigint

4631120266694327276
(1 row)

e hll_hash_bytea(bytea)
Description: Hashes data of the bytea type.
Return type: hll_hashval

For example:

SELECT hll_hash_bytea(E'\\x');
hll_hash_bytea

(1 row)
e hll_hash_bytea(bytea, int32)

Description: Hashes data of the bytea type and configures a hash seed (that
is, change the hash policy).

Return type: hll_hashval

For example:

SELECT hll_hash_bytea(E'\\x', 10);
hll_hash_bytea

6574525721897061910
(1 row)

e hll_hash_text(text)
Description: Hashes data of the text type.
Return type: hll_hashval

For example:

SELECT hll_hash_text('AB");
hll_hash_text

5365230931951287672
(1 row)

e hll_hash_text(text, int32)

Description: Hashes data of the text type and configures a hash seed (that is,
change the hash policy).

Return type: hll_hashval

For example:

SELECT hll_hash_text('AB', 10);
hll_hash_text

7680762839921155903
(1 row)

e hll_hash_any(anytype)
Description: Hashes data of any type.
Return type: hll_hashval

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 160

Data Warehouse Service

SQL Syntax

6 Functions and Operators

For example:

select hll_hash_any(1);
hll_hash_any

-8604791237420463362
(1 row)

select hll_hash_any('08:00:2b:01:02:03":macaddr);
hll_hash_any

-4883882473551067169
(1 row)

hll_hash_any(anytype, int32)

Description: Hashes data of any type and configures a hash seed (that is,
change the hash policy).

Return type: hll_hashval

For example:

select hll_hash_any(1, 10);
hll_hash_any

-1478847531811254870
(1 row)

hll_hashval_eq(hll_hashval, hll_hashval)

Description: Compares two pieces of data of the hll_hashval type to check
whether they are the same.

Return type: bool

For example:

select hll_hashval_eq(hll_hash_integer(1), hll_hash_integer(1));
hll_hashval_eq

(1 row)
hll_hashval_ne(hll_hashval, hll_hashval)

Description: Compares two pieces of data of the hll_hashval type to check
whether they are different.

Return type: bool

For example:

select hll_hashval_ne(hll_hash_integer(1), hll_hash_integer(1));
hll_hashval_ne

Precision Functions

hll_schema_version(hll)
Description: Checks the schema version in the current HLL.
For example:

HLL supports explicit, sparse, and full modes. explicit and sparse excel when the
data scale is small, and barely produce errors in calculation results. When the
number of distinct values increases, full becomes more suitable, but produces
some errors. The following functions are used to view precision parameters in
HLLs.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

161

Data Warehouse Service

SQL Syntax

6 Functions and Operators

select hll_schema_version(hll_empty());
hll_schema_version

(1 row)
hll_type(hll)
Description: Checks the type of the current HLL.

For example:

select hll_type(hll_empty());
hll_type

(1 row)
hll_log2m (hll)

Description: Check the value of log2m of the current HLL. This value affects
the error rate in calculating the number of distinct values by the HLL. The
formula for calculating the error rate is as follows:

b 1'04/\/2 Alog2m

For example:

select hll_log2m(hll_empty());
hll_log2m

11
(1 row)

hll_regwidth(hll)
Description: Checks the number of bits of buckets in a hll data structure.

For example:

select hll_regwidth(hll_empty());
hll_regwidth

(1 row)
hll_expthresh(hll)

Description: Obtains the size of expthresh in the current HLL. An HLL usually
switches from the explicit mode to the sparse mode and then to the full
mode. This process is called the promotion hierarchy policy. You can change
the value of expthresh to change the policy. For example, if expthresh is 0,
an HILL will skip the explicit mode and directly enter the sparse mode. If the
value of expthresh is explicitly set to a value ranging from 1 to 7, this
function returns 2expthresh,

For example:

select hll_expthresh(hll_empty());
hll_expthresh

(-1,160)
(1 row)

select hll_expthresh(hll_empty(11,5,3));
hll_expthresh

hll_sparseon(hll)

Description: Specifies whether to enable the sparse mode. 0 indicates off and
1 indicates on.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 162

Data Warehouse Service
SQL Syntax 6 Functions and Operators

For example:

select hll_sparseon(hll_empty());
hll_sparseon

Aggregation Functions
e hll_add_agg(hll_hashval)
Description: Groups hashed data into HLL.
Return type: hll

For example:

-- Prepare data:

create table t_id(id int);

insert into t_id values(generate_series(1,500));
create table t_data(a int, c text);

insert into t_data select mod(id,2), id from t_id;

-- Create another table and specify an HLL column:
create table t_a_c_hll(a int, c hll);

-- Use GROUP BY on column a to group data, and insert the data to the HLL:
insert into t_a_c_hll select a, hll_add_agg(hll_hash_text(c)) from t_data group by a;

-- Calculate the number of distinct values for each group in the HLL:
select a, #c as cardinality from t_a_c_hll order by a;

a| cardinality

- b e

0| 250.741759091658

1]250.741759091658

(2 rows)

e hll_add_agg(hll_hashval, int32 log2m)

Description: Groups hashed data into HLL and sets the log2m parameter. The
parameter value ranges from 10 to 16.

Return type: hll

For example:

Select hll_cardinality(hll_add_agg(hll_hash_text(c), 10)) from t_data;
hll_cardinality

503.932348927339
(1 row)

e hll_add_agg(hll_hashval, int32 log2m, int32 regwidth)

Description: Groups hashed data into HLL and sets the log2m and regwidth
parameters in sequence. The value of regwidth ranges from 1 to 5.

Return type: hll

For example:

Select hll_cardinality(hll_add_agg(hll_hash_text(c), NULL, 1)) from t_data;
hll_cardinality

496.628982624022
(1 row)

e hll_add_agg(hll_hashval, int32 log2m, int32 regwidth, int64 expthresh)
Description: Groups hashed data into HLL and sets the parameters log2m,

regwidth, and expthresh in sequence. The value of expthresh is an integer
ranging from -1 to 7. expthresh is used to specify the threshold for switching

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 163

Data Warehouse Service

SQL Syntax

6 Functions and Operators

from the explicit mode to the sparse mode. -1 indicates the auto mode; 0
indicates that the explicit mode is skipped; a value from 1 to 7 indicates that
the mode is switched when the number of distinct values reaches 2expthresh,

Return type: hll

For example:

Select hll_cardinality(hll_add_agg(hll_hash_text(c), NULL, 1, 4)) from t_data;
hll_cardinality

496.628982624022

(1 row)

hll_add_agg(hll_hashval, int32 log2m, int32 regwidth, int64 expthresh, int32
sparseon)

Description: Groups hashed data into HLL and sets the log2m, regwidth,
expthresh, and sparseon parameters in sequence. The value of sparseon is 0
or 1.

Return type: hll

For example:

Select hll_cardinality(hll_add_agg(hll_hash_text(c), NULL, 1, 4, 0)) from t_data;
hll_cardinality

496.628982624022
(1 row)

hll_union_agg(hll)

Description: Perform the UNION operation on multiple pieces of data of the
hll type to obtain one HLL.

Return type: hll

For example:

-- Perform the UNION operation on data of the hll type in each group to obtain one HLL, and
calculate the number of distinct values:
select #hll_union_agg(c) as cardinality from t_a_c_hll;

cardinality

496.628982624022
(1 row)

(10 NOTE

To perform UNION on data in multiple HLLs, ensure that the HLLs have the same
precision. Otherwise, UNION cannot be performed. This restriction also applies to the
hll_union(hll, hll) function.

Functional Functions

hll_print(hll)
Description: Prints some debugging parameters of an HLL.

For example:

select hll_print(hll_empty());
hll_print

EMPTY, nregs=2048, nbits=5, expthresh=-1(160), sparseon=1gongne
(1 row)

hil_empty()
Description: Creates an empty HLL.
Return type: hll

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 164

Data Warehouse Service
SQL Syntax 6 Functions and Operators

For example:

select hll_empty();
hll_empty

\x118b7f
(1 row)

e hll_empty(int32 log2m)

Description: Creates an empty HLL and sets the log2m parameter. The
parameter value ranges from 10 to 16.

Return type: hll

For example:

select hll_empty(10);
hll_empty

\x118a7f
(1 row)

e hll_empty(int32 log2m, int32 regwidth)

Description: Creates an empty HLL and sets the log2m and regwidth
parameters in sequence. The value of regwidth ranges from 1 to 5.

Return type: hll

For example:

select hll_empty(10, 4);
hll_empty

\x116a7f
(1 row)

e hll_empty(int32 log2m, int32 regwidth, int64 expthresh)

Description: Creates an empty HLL and sets the log2m, regwidth, and
expthresh parameters. The value of expthresh is an integer ranging from -1
to 7. This parameter specifies the threshold for switching from the explicit
mode to the sparse mode. -1 indicates the auto mode; 0 indicates that the
explicit mode is skipped; a value from 1 to 7 indicates that the mode is
switched when the number of distinct values reaches 2expthresh,

Return type: hll

For example:

select hll_empty(10, 4, 7);
hll_empty

\x116a48
(1 row)

e hll_empty(int32 log2m, int32 regwidth, int64 expthresh, int32 sparseon)

Description: Creates an empty HLL and sets the log2m, regwidth, expthresh,
and sparseon parameters. The value of sparseon is 0 or 1.

Return type: hll

For example:

select hll_empty(10,4,7,0);
hll_empty

\x116a08
(1 row)

e hll_add(hll, hll_hashval)
Description: Adds hll_hashval to an HLL.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 165

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Return type: hll

For example:

select hll_add(hll_empty(), hll_hash_integer(1));
hll_add

\x128b7f8895a3f5af28cafe
(1 row)

hll_add_rev(hll_hashval, hll)

Description: Adds hll_hashval to an HLL. This function works the same as
hll_add, except that the positions of parameters are switched.

Return type: hll

For example:

select hll_add_rev(hll_hash_integer(1), hll_empty());
hll_add_rev

\x128b7f8895a3f5af28cafe
(1 row)

hll_eq(hll, hll)
Description: Compares two HLLs to check whether they are the same.
Return type: bool

For example:

select hll_eq(hll_add(hll_empty(), hll_hash_integer(1)), hll_add(hll_empty(), hll_hash_integer(2)));
hll_eq

(1 row)

hll_ne(hll, hll)

Description: Compares two HLLs to check whether they are different.
Return type: bool

For example:

select hll_ne(hll_add(hll_empty(), hll_hash_integer(1)), hll_add(hll_empty(), hll_hash_integer(2)));
hll_ne

(1 row)

hll_cardinality(hll)

Description: Calculates the number of distinct values of an HLL.
Return type: int

For example:

select hll_cardinality (hll_empty() || hll_hash_integer(1));
hll_cardinality

(1 row)

hll_union(hll, hll)

Description: Performs the UNION operation on two HLL data structures to
obtain one HLL.

Return type: hll

For example:

select hll_union(hll_add(hll_empty(), hll_hash_integer(1)), hll_add (hll_empty(), hll_hash_integer(2)));
hll_union

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 166

Data Warehouse Service

SQL Syntax

6 Functions and Operators

\x128b7f8895a3f5af28cafedalce907e4355b60

(1 row)

Built-in Functions

HLL has a series of built-in functions for internal data processing. Generally, users
do not need to know how to use these functions. For details, see Table 6-9.

Table 6-9 Built-in functions

Function Description

hll in Receives hll data in string format.

hll_out Sends hll data in string format.

hll_recv Receives hll data in bytea format.

hll_send Sends hll data in bytea format.

hll_trans_in Receives hll_trans_type data in string format.

hll_trans_out

Sends hll_trans_type data in string format.

hll_trans_recv

Receives hll_trans_type data in bytea format.

hll_trans_send

Sends hll_trans_type data in bytea format.

hll_typmod_in

Receives typmod data.

hll_typmod_out

Sends typmod data.

hll_hashval_in

Receives hll_hashval data.

hll_hashval_out

Sends hll_hashval data.

hll_add_transO

Works similar to hll_add, and is used on the first phase of
DNs in distributed aggregation operations.

hll_union_trans

Works similar to hll_union, and is used on the first phase of
DNs in distributed aggregation operations.

hll_union_collect

Works similar to hll_union, and is used on the second phase
of CNs in distributed aggregation operations to summarize
the results of each DN.

hll_pack Is used on the third phase of CNs in distributed aggregation
operations to convert a user-defined type hll_trans_type to
the hll type.

hll Converts a hll type to another hll type. Input parameters

can be specified.

hll_hashval

Converts the bigint type to the hll_hashval type.

hll_hashval_int4

Converts the int4 type to the hll_hashval type.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

167

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Operators

Description: Compares the values of hll and hll_hashval types to check
whether they are the same.

Return type: bool

For example:

--hll
select (hll_empty() || hll_hash_integer(1)) = (hll_empty() || hll_hash_integer(1));
column

--hll_hashval
select hll_hash_integer(1) = hll_hash_integer(1);
?column?

<>or!l=

Description: Compares the values of hll and hll_hashval types to check
whether they are different.

Return type: bool

For example:

--hll
select (hll_empty() || hll_hash_integer(1)) <> (hll_empty() || hll_hash_integer(2));
?column?

--hll_hashval
select hll_hash_integer(1) <> hll_hash_integer(2);
?column?

Description: Represents the functions of hll_add, hll_union, and hll_add_rev.
Return type: hll

For example:

--hll_add
select hll_empty() || hll_hash_integer(1);
?column?

\x128b7f8895a3f5af28cafe
(1 row)

--hll_add_rev
select hll_hash_integer(1) || hll_empty();
?column?

\x128b7f8895a3f5af28cafe
(1 row)

--hll_union
select (hll_empty() || hll_hash_integer(1)) || (hll_empty() || hll_hash_integer(2));
?column?

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 168

Data Warehouse Service

SQL Syntax

6 Functions and Operators

\x128b7f8895a3f5af28cafedalce907e4355b60
(1 row)

#

Description: Calculates the number of distinct values of an HLL. It works the
same as the hll_cardinality function.

Return type: int

For example:

select #(hll_empty() || hll_hash_integer(1));
?column?

6.16 SEQUENCE Functions

The sequence functions provide a simple method to ensure security of multiple
users for users to obtain sequence values from sequence objects.

(11 NOTE

e The hybrid data warehouse (standalone) does not support SEQUENCE and related
functions.

nextval(regclass)
Specifies an increasing sequence and returns a new value.

(1] NOTE

e To avoid blocking of concurrent transactions that obtain numbers from the same
sequence, a nextval operation is never rolled back; that is, once a value has been
fetched it is considered used, even if the transaction that did the nextval later
aborts. This means that aborted transactions may leave unused "holes" in the
sequence of assigned values. Therefore, sequences in GaussDB(DWS) cannot be
used to obtain sequence without gaps.

e If the nextval function is pushed to DNs, each DN will automatically connect to the
GTM and requests the next value. For example, in the insert into t1 select xxx
statement, a column in table t1 needs to invoke the nextval function. If maximum
number of connections on the GTM is 8192, this type of pushed statements
occupies too many GTM connections. Therefore, the number of concurrent
connections for these statements is limited to 7000 divided by the number of
cluster DNs. The other 1192 connections are reserved for other statements.

Return type: bigint

The nextval function can be invoked in either of the following ways: (In
example 2, the Oracle syntax is supported. Currently, the sequence name
cannot contain a dot.)

Example 1:

select nextval('seqDemo');
nextval

(1 row)

Example 2:

select seqDemo.nextval;
nextval

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 169

Data Warehouse Service
SQL Syntax 6 Functions and Operators

2
(1 row)

e currval(regclass)
Returns the last value of nextval for a specified sequence in the current
session. If nextval has not been invoked for the specified sequence in the
current session, an error is reported when currval is invoked. By default,

currval is disabled. To enable it, set enable_beta_features to true. After
currval is enabled, nextval will not be pushed down.

Return type: bigint

The currval function can be invoked in either of the following ways: (In
example 2, the Oracle syntax is supported. Currently, the sequence name
cannot contain a dot.)

Example 1:

select currval('seq1');
currval

(1 row)

Example 2:

select seq1.currval seq1;
currval

e lastval()

Returns the last value of nextval in the current session. This function is
equivalent to currval, but lastval does not have a parameter. If nextval has
not been invoked in the current session, an error is reported when lastval is
invoked.

By default, lastval is disabled. To enable it, set enable_beta_features or
lastval_supported to true. After lastval is enabled, nextval will not be
pushed down.

Return type: bigint
For example:

select lastval();
lastval

e setval(regclass, bigint)
Sets the current value of a sequence.
Return type: bigint
For example:

select setval('seqDemo’,1);
setval

(1 row)

e setval(regclass, bigint, boolean)
Sets the current value of a sequence and the is_called sign.
Return type: bigint

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 170

Data Warehouse Service

SQL Syntax

6 Functions and Operators

For example:

select setval('seqDemo’,1,true);
setval

(10 NOTE

The current session and GTM will take effect immediately after setval is performed. If
other sessions have buffered sequence values, setval will take effect only after the
values are used up. Therefore, to prevent sequence value conflicts, you are advised to
use setval with caution.

Because the sequence is non-transactional, changes made by setval will not be
canceled when a transaction rolled back.

6.17 Array Functions and Operators

Array Operators

Description: Specifies whether two arrays are equal.

For example:

SELECT ARRAY[1.1,2.1,3.1]::int[] = ARRAY[1,2,3] AS RESULT ;
result

Description: Specifies whether two arrays are not equal.

For example:

SELECT ARRAY[1,2,3] <> ARRAY[1,2,4] AS RESULT;
result

Description: Specifies whether an array is less than another.

For example:

SELECT ARRAY[1,2,3] < ARRAY[1,2,4] AS RESULT;
result

Description: Specifies whether an array is greater than another.

For example:

SELECT ARRAY[1,4,3] > ARRAY[1,2,4] AS RESULT;
result

Description: Specifies whether an array is less than another.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 171

Data Warehouse Service

SQL Syntax

6 Functions and Operators

For example:

SELECT ARRAY[1,2,3] <= ARRAY[1,2,3] AS RESULT;
result

Description: Specifies whether an array is greater than or equal to another.

For example:

SELECT ARRAY[1,4,3] >= ARRAY[1,4,3] AS RESULT;
result

Description: Specifies whether an array contains another.

For example:

SELECT ARRAY[1,4,3] @> ARRAY[3,1] AS RESULT;
result

<@
Description: Specifies whether an array is contained in another.

For example:

SELECT ARRAY[2,7] <@ ARRAY[1,7,4,2,6] AS RESULT;
result

Description: Specifies whether an array overlaps another (have common
elements).

For example:

SELECT ARRAY[1,4,3] && ARRAY[2,1] AS RESULT;
result

Description: Array-to-array concatenation

For example:

SELECT ARRAY[1,2,3] || ARRAY[4,5,6] AS RESULT;
result

{1,2,3,4,5,6}

(1 row)

SELECT ARRAY[1,2,3] || ARRAY[[4,5,6],[7,8,9]] AS RESULT;
result

{{1,2,3},{4,5,6},{7,8,9}}
(1 row)

Description: Element-to-array concatenation

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 172

Data Warehouse Service

SQL Syntax

6 Functions and Operators

For example:

SELECT 3 || ARRAY[4,5,6] AS RESULT;
result

{3,4,5,6}
(1 row)

Description: Array-to-element concatenation

For example:

SELECT ARRAY[4,5,6] || 7 AS RESULT;
result

{4,5,6,7}
(1 row)

Array comparisons compare the array contents element-by-element, using the
default B-tree comparison function for the element data type. In multidimensional
arrays, the elements are accessed in row-major order. If the contents of two arrays
are equal but the dimensionality is different, the first difference in the
dimensionality information determines the sort order.

Array Functions

array_append(anyarray, anyelement)

Description: Appends an element to the end of an array, and only supports
dimension-1 arrays.

Return type: anyarray

For example:

SELECT array_append(ARRAY[1,2], 3) AS RESULT;
result

array_prepend(anyelement, anyarray)

Description: Appends an element to the beginning of an array, and only
supports dimension-1 arrays.

Return type: anyarray

For example:

SELECT array_prepend(1, ARRAY[2,3]) AS RESULT;
result

array_cat(anyarray, anyarray)
Description: Concatenates two arrays, and supports multi-dimensional arrays.
Return type: anyarray

For example:

SELECT array_cat(ARRAY[1,2,3], ARRAY[4,5]) AS RESULT;
result

{1,2,3,4,5}
(1 row)

SELECT array_cat(ARRAY[[1,2],[4,5]], ARRAY[6,7]) AS RESULT;

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 173

Data Warehouse Service
SQL Syntax 6 Functions and Operators

result

{{1,23,{4,5},{6,7}}

(1 row)

e array_ndims(anyarray)
Description: Returns the number of dimensions of the array.
Return type: int

For example:

SELECT array_ndims(ARRAY[[1,2,3], [4,5,6]]) AS RESULT;
result

(1 row)

e array_dims(anyarray)
Description: Returns a text representation of array's dimensions.
Return type: text

For example:

SELECT array_dims(ARRAY[[1,2,3], [4,5,6]]) AS RESULT;
result

[1:2][1:3]
(1 row)

e array_length(anyarray, int)
Description: Returns the length of the requested array dimension.
Return type: int

For example:

SELECT array_length(array[1,2,3], 1) AS RESULT;
result

(1 row)

e array_lower(anyarray, int)
Description: Returns lower bound of the requested array dimension.
Return type: int

For example:

SELECT array_lower('[0:2]={1,2,3}"::int[], 1) AS RESULT;
result

(1 row)

e array_upper(anyarray, int)
Description: Returns upper bound of the requested array dimension.
Return type: int

For example:

SELECT array_upper(ARRAY[1,8,3,7], 1) AS RESULT;
result

(1 row)
e array_to_string(anyarray, text [, text])

Description: Uses the first text as the new delimiter and the second text to
replace NULL values.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 174

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Return type: text

For example:

SELECT array_to_string(ARRAY[1, 2, 3, NULL, 5], ',, "*') AS RESULT;
result

string_to_array(text, text [, text])

Description: Uses the second text as the new delimiter and the third text as
the substring to be replaced by NULL values. A substring can be replaced by
NULL values only when it is the same as the third text.

Return type: text[]

For example:

SELECT string_to_array ('xx~A~yy~A~zz', '~A~' 'yy') AS RESULT;
result

{xx,NULL,zz}

(1 row)

SELECT string_to_array('xx~A~yy~A~zz', '~A~' 'y') AS RESULT;
result

{xx,yy,zz}
(1 row)

unnest(anyarray)
Description: Expands an array to a set of rows.
Return type: setof anyelement

For example:

SELECT unnest(ARRAY[1,2]) AS RESULT;
result

(2 rows)

In string_to_array, if the delimiter parameter is NULL, each character in the input
string will become a separate element in the resulting array. If the delimiter is an
empty string, then the entire input string is returned as a one-element array.
Otherwise the input string is split at each occurrence of the delimiter string.

In string_to_array, if the null-string parameter is omitted or NULL, none of the
substrings of the input will be replaced by NULL.

In array_to_string, if the null-string parameter is omitted or NULL, any null
elements in the array are simply skipped and not represented in the output string.

6.18 Range Functions and Operators

Range Operators

Description: Equals

For example:

SELECT int4range(1,5) = '[1,4]":int4range AS RESULT;
result

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 175

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Description: Does not equal to

For example:

SELECT numrange(1.1,2.2) <> numrange(1.1,2.3) AS RESULT;
result

Description: Is less than

For example:

SELECT int4range(1,10) < int4range(2,3) AS RESULT;
result

Description: Is greater than

For example:

SELECT int4range(1,10) > int4range(1,5) AS RESULT;
result

Description: Is less than or equals

For example:

SELECT numrange(1.1,2.2) <= numrange(1.1,2.2) AS RESULT;
result

Description: Is greater than or equals

For example:

SELECT numrange(1.1,2.2) >= numrange(1.1,2.0) AS RESULT;
result

Description: Contains range

For example:

SELECT int4range(2,4) @> int4range(2,3) AS RESULT;
result

Description: Contains element

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

176

Data Warehouse Service

SQL Syntax

6 Functions and Operators

For example:

SELECT '[2011-01-01,2011-03-01)":tsrange @> '2011-01-10":timestamp AS RESULT;

result

<@
Description: Range is contained by

For example:

SELECT int4range(2,4) <@ int4range(1,7) AS RESULT;
result

<@
Description: Element is contained by

For example:

SELECT 42 <@ int4range(1,7) AS RESULT;
result

Description: Overlap (have points in common)

For example:

SELECT int8range(3,7) && int8range(4,12) AS RESULT;
result

Description: Strictly left of

For example:

SELECT int8range(1,10) << int8range(100,110) AS RESULT;
result

Description: Strictly right of

For example:

SELECT int8range(50,60) >> int8range(20,30) AS RESULT;
result

Description: Does not extend to the right of

For example:

SELECT int8range(1,20) &< int8range(18,20) AS RESULT;
result

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

177

Data Warehouse Service

SQL Syntax

6 Functions and Operators

&>
Description: Does not extend to the left of

For example:

SELECT int8range(7,20) &> int8range(5,10) AS RESULT;
result

Description: Is adjacent to

For example:

SELECT numrange(1.1,2.2) -|- numrange(2.2,3.3) AS RESULT;
result

Description: Union

For example:

SELECT numrange(5,15) + numrange(10,20) AS RESULT;
result

Description: Intersection

For example:

SELECT int8range(5,15) * int8range(10,20) AS RESULT;
result

[10,15)
(1 row)

Description: Difference

For example:

SELECT int8range(5,15) - int8range(10,20) AS RESULT;
result

The simple comparison operators <, >, <=, and >= compare the lower bounds first,
and only if those are equal, compare the upper bounds.

The <<, >>, and -|- operators always return false when an empty range is involved;
that is, an empty range is not considered to be either before or after any other
range.

The union and difference operators will fail if the resulting range would need to
contain two disjoint sub-ranges.

Range Functions

lower(anyrange)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 178

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Description: Lower bound of range
Return type: Range's element type

For example:

SELECT lower(numrange(1.1,2.2)) AS RESULT;
result

1.1
(1 row)

upper(anyrange)
Description: Upper bound of range
Return type: Range's element type

For example:

SELECT upper(numrange(1.1,2.2)) AS RESULT;
result

2.2
(1 row)

isempty(anyrange)
Description: Is the range empty?
Return type: boolean

For example:

SELECT isempty(numrange(1.1,2.2)) AS RESULT;
result

(1 row)

lower_inc(anyrange)

Description: Is the lower bound inclusive?
Return type: boolean

For example:

SELECT lower_inc(numrange(1.1,2.2)) AS RESULT;
result

(1 row)

upper_inc(anyrange)

Description: Is the upper bound inclusive?
Return type: boolean

For example:

SELECT upper_inc(numrange(1.1,2.2)) AS RESULT;
result

(1 row)

lower_inf(anyrange)

Description: Is the lower bound infinite?
Return type: boolean

For example:

SELECT lower_inf('(,)"::daterange) AS RESULT;
result

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

179

Data Warehouse Service
SQL Syntax 6 Functions and Operators

t
(1 row)

e upper_inf(anyrange)
Description: Is the upper bound infinite?
Return type: boolean

For example:

SELECT upper_inf('(,)':daterange) AS RESULT;
result

The lower and upper functions return null if the range is empty or the requested
bound is infinite. The lower_inc, upper_inc, lower_inf, and upper_inf functions all
return false for an empty range.

6.19 Aggregate Functions

Aggregate Functions
e sum(expression)
Description: Sum of expression across all input values
Return type:

Generally, same as the argument data type. In the following cases, type
conversion occurs:

- BIGINT for SMALLINT or INT arguments
- NUMBER for BIGINT arguments
- DOUBLE PRECISION for floating-point arguments

For example:

SELECT SUM(ss_ext_tax) FROM tpcds.STORE_SALES;
sum

213267594.69
(1 row)

e max(expression)

Description: Specifies the maximum value of expression across all input
values.

Argument types: any array, numeric, string, or date/time type
Return type: same as the argument type

For example:

SELECT MAX(inv_quantity_on_hand) FROM tpcds.inventory;
max

1000000
(1 row)

e min(expression)

Description: Specifies the minimum value of expression across all input
values.

Argument types: any array, numeric, string, or date/time type
Return type: same as the argument type

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 180

Data Warehouse Service
SQL Syntax 6 Functions and Operators

For example:

SELECT MIN(inv_quantity_on_hand) FROM tpcds.inventory;
min

(1 row)

e avg(expression)
Description: Average (arithmetic mean) of all input values
Return type:
NUMBER for any integer-type argument.
DOUBLE PRECISION for floating-point parameters.
otherwise the same as the argument data type.

For example:

SELECT AVG(inv_quantity_on_hand) FROM tpcds.inventory;
avg

500.0387129084044604
(1 row)

e median(expression)

Description: Median of all input values Currently, only the numeric and
interval types are supported. Null values are not used for calculation.

Return type: If all input values are integers, a median of the NUMERIC type is
returned; otherwise, a median of the same type as the input values is
returned.

In the Teradata-compatible mode, if the input values are integers, the
returned median is rounded to the nearest integer.

For example:

SELECT MEDIAN (inv_quantity_on_hand) FROM tpcds.inventory;
median

(1 row)
e percentile_cont(const) within group(order by expression)

Description: returns a value corresponding to the specified percentile in the
ordering, interpolating between adjacent input items if needed. Null values
are not used for calculation.

Input: const indicates a number ranging from 0 to 1. Currently, only numeric
and interval expressions are supported.

Return type: If all input values are integers, a median of the NUMERIC type is
returned; otherwise, a median of the same type as the input values is
returned.

In the Teradata-compatible mode, if the input values are integers, the
returned median is rounded to the nearest integer.

For example:

select percentile_cont(0.3) within group(order by x) from (select generate_series(1,5) as x) as t;
percentile_cont

2.2

(1 row)

select percentile_cont(0.3) within group(order by x desc) from (select generate_series(1,5) as x) as t;
percentile_cont

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 181

Data Warehouse Service

SQL Syntax

6 Functions and Operators

38
(1 row)

percentile_disc(const) within group(order by expression)

Description: returns the first input value whose position in the ordering equals
or exceeds the specified percentile.

Input: const indicates a number ranging from 0 to 1. Currently, only numeric
and interval expressions are supported. Null values are not used for
calculation.

Return type: If all input values are integers, a median of the NUMERIC type is
returned; otherwise, a median of the same type as the input values is
returned.

For example:

select percentile_disc(0.3) within group(order by x) from (select generate_series(1,5) as x) as t;
percentile_disc

(1 row)
select percentile_disc(0.3) within group(order by x desc) from (select generate_series(1,5) as x) as t;
percentile_disc

(1 row)
count(expression)

Description: Number of input rows for which the value of expression is not
null

Return type: bigint

For example:

SELECT COUNT (inv_quantity_on_hand) FROM tpcds.inventory;
count

11158087
(1 row)

count(*)
Description: Number of input rows
Return type: bigint

For example:

SELECT COUNT(*) FROM tpcds.inventory;
count

11745000
(1 row)

array_agg(expression)
Description: Input values, including nulls, concatenated into an array
Return type: array of the argument type

For example:

SELECT ARRAY_AGG(sr_fee) FROM tpcds.store_returns WHERE sr_customer_sk = 2;
array_agg

{22.18,63.21}
(1 row)

string_agg(expression, delimiter)
Description: Input values concatenated into a string, separated by delimiter

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 182

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Return type: same as the argument type

For example:

SELECT string_agg(sr_item_sk, ',') FROM tpcds.store_returns where sr_item_sk < 3;
string_agg

1,2,1,221,1,221,2121,1,1,21,1,1,1,1,21,1,1,1,1,2,2,1,1,1,1,1,1,1,1,1,2,
2,1,1,1,1,1,1,2,2,1,1,2,1,1,1
(1 row)

listagg(expression [, delimiter]) WITHIN GROUP(ORDER BY order-list)

Description: Aggregation column data sorted according to the mode specified
by WITHIN GROUP, and concatenated to a string using the specified
delimiter

- expression: Mandatory. It specifies an aggregation column name or a
column-based, valid expression. It does not support the DISTINCT
keyword and the VARIADIC parameter.

- delimiter: Optional. It specifies a delimiter, which can be a string
constant or a deterministic expression based on a group of columns. The
default value is empty.

- order-list: Mandatory. It specifies the sorting mode in a group.
Return type: text

(10 NOTE

listagg is a column-to-row aggregation function, compatible with Oracle Database
11g Release 2. You can specify the OVER clause as a window function. When listagg is
used as a window function, the OVER clause does not support the window sorting or
framework of ORDER BY, so as to avoid ambiguity in listagg and ORDER BY of the
WITHIN GROUP clause.

For example:

The aggregation column is of the text character set type.

SELECT deptno, listagg(ename, ',') WITHIN GROUP(ORDER BY ename) AS employees FROM emp
GROUP BY deptno;
deptno | employees

10 | CLARK,KING,MILLER

20 | ADAMS,FORD,JONES,SCOTT,SMITH

30 | ALLEN,BLAKE,JAMES,MARTIN,TURNER,WARD
(3 rows)

The aggregation column is of the integer type.

SELECT deptno, listagg(mgrno, ',') WITHIN GROUP(ORDER BY mgrno NULLS FIRST) AS mgrnos FROM
emp GROUP BY deptno;
deptno | mgrnos
+

10| 7782,7839

20 | 7566,7566,7788,7839,7902

30 | 7698,7698,7698,7698,7698,7839
(3 rows)

The aggregation column is of the floating point type.

SELECT job, listagg(bonus, '($); ') WITHIN GROUP(ORDER BY bonus DESC) || '($)' AS bonus FROM
emp GROUP BY job;
job | bonus
CLERK | 10234.21($); 2000.80($); 1100.00($); 1000.22($)
PRESIDENT | 23011.88($)
ANALYST | 2002.12($); 1001.01($)
MANAGER | 10000.01($); 2399.50($); 999.10($)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 183

Data Warehouse Service
SQL Syntax 6 Functions and Operators

SALESMAN | 1000.01($); 899.00($); 99.99(%); 9.00($)
(5 rows)

The aggregation column is of the time type.

SELECT deptno, listagg(hiredate, ', ') WITHIN GROUP(ORDER BY hiredate DESC) AS hiredates FROM
emp GROUP BY deptno;
deptno | hiredates

10 | 1982-01-23 00:00:00, 1981-11-17 00:00:00, 1981-06-09 00:00:00

20 | 2001-04-02 00:00:00, 1999-12-17 00:00:00, 1987-05-23 00:00:00, 1987-04-19 00:00:00,
1981-12-03 00:00:00

30 | 2015-02-20 00:00:00, 2010-02-22 00:00:00, 1997-09-28 00:00:00, 1981-12-03 00:00:00,
1981-09-08 00:00:00, 1981-05-01 00:00:00
(3 rows)

The aggregation column is of the time interval type.

SELECT deptno, listagg(vacationTime, '; ') WITHIN GROUP(ORDER BY vacationTime DESC) AS
vacationTime FROM emp GROUP BY deptno;
deptno | vacationtime

10 | 1 year 30 days; 40 days; 10 days

20 | 70 days; 36 days; 9 days; 5 days

30| 1 year 1 mon; 2 mons 10 days; 30 days; 12 days 12:00:00; 4 days 06:00:00; 24:00:00
(3 rows)

By default, the delimiter is empty.

SELECT deptno, listagg(job) WITHIN GROUP(ORDER BY job) AS jobs FROM emp GROUP BY deptno;
deptno | jobs
+
10 | CLERKMANAGERPRESIDENT
20 | ANALYSTANALYSTCLERKCLERKMANAGER
30 | CLERKMANAGERSALESMANSALESMANSALESMANSALESMAN
(3 rows)

When listagg is used as a window function, the OVER clause does not
support the window sorting of ORDER BY, and the listagg column is an
ordered aggregation of the corresponding groups.

SELECT deptno, mgrno, bonus, listagg(ename,’; ') WITHIN GROUP(ORDER BY hiredate)
OVER(PARTITION BY deptno) AS employees FROM emp;
deptno | mgrno | bonus | employees

10| 7839 | 10000.01 | CLARK; KING; MILLER

10| | 23011.88 | CLARK; KING; MILLER

10| 7782 | 10234.21 | CLARK; KING; MILLER

20| 7566 | 2002.12 | FORD; SCOTT; ADAMS; SMITH; JONES

20| 7566 | 1001.01 | FORD; SCOTT; ADAMS; SMITH; JONES

20| 7788 | 1100.00 | FORD; SCOTT; ADAMS; SMITH; JONES

20| 7902 | 2000.80 | FORD; SCOTT; ADAMS; SMITH; JONES

20| 7839 | 999.10 | FORD; SCOTT; ADAMS; SMITH; JONES

30| 7839 | 2399.50 | BLAKE; TURNER; JAMES; MARTIN; WARD; ALLEN

30| 7698 | 9.00 | BLAKE; TURNER; JAMES; MARTIN; WARD; ALLEN

30| 7698 | 1000.22 | BLAKE; TURNER; JAMES; MARTIN; WARD; ALLEN

30| 7698 | 99.99 | BLAKE; TURNER; JAMES; MARTIN; WARD; ALLEN

30| 7698 | 1000.01 | BLAKE; TURNER; JAMES; MARTIN; WARD; ALLEN

30| 7698 | 899.00 | BLAKE; TURNER; JAMES; MARTIN; WARD; ALLEN
(14 rows)

e covar_pop(Y, X)
Description: Overall covariance
Return type: double precision

For example:

SELECT COVAR_POP(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
covar_pop

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 184

Data Warehouse Service
SQL Syntax 6 Functions and Operators

829.749627587403
(1 row)

e covar_samp(Y, X)
Description: Sample covariance
Return type: double precision

For example:

SELECT COVAR_SAMP(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
covar_samp

830.052235037289
(1 row)

e stddev_pop(expression)
Description: Overall standard difference

Return type: double precision for floating-point arguments, otherwise
numeric

For example:

SELECT STDDEV_POP(inv_quantity_on_hand) FROM tpcds.inventory WHERE inv_warehouse_sk = 1;
stddev_pop

289.224294957556
(1 row)

e stddev_samp(expression)
Description: Sample standard deviation of the input values

Return type: double precision for floating-point arguments, otherwise
numeric

For example:

SELECT STDDEV_SAMP(inv_quantity_on_hand) FROM tpcds.inventory WHERE inv_warehouse_sk = 1;
stddev_samp

289.224359757315
(1 row)

e var_pop(expression)

Description: Population variance of the input values (square of the population
standard deviation)

Return type: double precision for floating-point arguments, otherwise
numeric

For example:

SELECT VAR_POP(inv_quantity_on_hand) FROM tpcds.inventory WHERE inv_warehouse_sk = 1;
var_pop

83650.692793695475
(1 row)

e var_samp(expression)

Description: Sample variance of the input values (square of the sample
standard deviation)

Return type: double precision for floating-point arguments, otherwise
numeric

For example:

SELECT VAR_SAMP(inv_quantity_on_hand) FROM tpcds.inventory WHERE inv_warehouse_sk = 1;
var_samp

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 185

Data Warehouse Service

SQL Syntax

6 Functions and Operators

83650.730277028768
(1 row)

bit_and(expression)
Description: The bitwise AND of all non-null input values, or null if none
Return type: same as the argument type

For example:

SELECT BIT_AND(inv_quantity_on_hand) FROM tpcds.inventory WHERE inv_warehouse_sk = 1;
bit_and

(1 row)

bit_or(expression)

Description: The bitwise OR of all non-null input values, or null if none
Return type: same as the argument type

For example:

SELECT BIT_OR(inv_quantity_on_hand) FROM tpcds.inventory WHERE inv_warehouse_sk = 1;
bit_or

bool_and(expression)
Description: Its value is true if all input values are true, otherwise false.
Return type: bool

For example:

SELECT bool_and(100 <2500);
bool_and

(1 row)
bool_or(expression)

Description: Its value is true if at least one input value is true, otherwise
false.

Return type: bool

For example:

SELECT bool_or(100 <2500);
bool_or

(1 row)

corr(Y, X)

Description: Correlation coefficient
Return type: double precision

For example:

SELECT CORR(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
corr

.0381383624904186
(1 row)

every(expression)
Description: Equivalent to bool_and
Return type: bool

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 186

Data Warehouse Service
SQL Syntax 6 Functions and Operators

For example:

SELECT every(100 <2500);
every

e rank(expression)

Description: The tuples in different groups are sorted non-consecutively by
expression.

Return type: bigint

For example:

SELECT d_moy, d_fy_week_seq, rank() OVER(PARTITION BY d_moy ORDER BY d_fy_week_seq) FROM
tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;
d_moy | d_fy_week_seq | rank
+ +

00 00 0000000 —= == a2 3 2

NNNNNMNNMNNMNNNNS & 0 0 a3 3 3 3)) 3 3 3) 3) 3 3 3 3)

N
—_
(6]

OO0 VUV UUURDBDMBREDIMBEDRIMBRWWWWWWWNNNNNNRN= 2 2 2 o

[)e) o) o) e) o) B o) BENECNENE I

2|
(42 rows)

e regr_avgx(Y, X)
Description: Average of the independent variable (sum(X)/N)
Return type: double precision

For example:

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 187

Data Warehouse Service

SQL Syntax

6 Functions and Operators

SELECT REGR_AVGX(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
regr_avgx

578.606576740795
(1 row)

regr_avgy(Y, X)
Description: Average of the dependent variable (sum(Y)/N)
Return type: double precision

For example:

SELECT REGR_AVGY (sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
regr_avgy

50.0136711629602
(1 row)

regr_count(Y, X)
Description: Number of input rows in which both expressions are non-null
Return type: bigint

For example:

SELECT REGR_COUNT ((sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
regr_count

regr_intercept(Y, X)

Description: y-intercept of the least-squares-fit linear equation determined by
the (X, Y) pairs

Return type: double precision

For example:

SELECT REGR_INTERCEPT (sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk <
1000;
regr_intercept

49.2040847848607
(1 row)

regr_r2(Y, X)
Description: Square of the correlation coefficient
Return type: double precision

For example:

SELECT REGR_R2(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
regr_r2

.00145453469345058
(1 row)

regr_slope(Y, X)

Description: Slope of the least-squares-fit linear equation determined by the
(X, Y) pairs

Return type: double precision

For example:

SELECT REGR_SLOPE(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
regr_slope

.00139920009665259
(1 row)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 188

Data Warehouse Service

SQL Syntax

6 Functions and Operators

regr_sxx(Y, X)

Description: sum(XA2) - sum(X)A2/N (sum of squares of the independent
variables)

Return type: double precision

For example:

SELECT REGR_SXX(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
regr_sxx

1626645991.46135
(1 row)

regr_sxy(Y, X)

Description: sum(X*Y) - sum(X) * sum(Y)/N ("sum of products" of
independent times dependent variable)

Return type: double precision

For example:

SELECT REGR_SXY(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
regr_sxy

2276003.22847225
(1 row)

regr_syy(Y, X)

Description: sum(YA2) - sum(Y)A2/N ("sum of squares" of the dependent
variable)

Return type: double precision

For example:

SELECT REGR_SYY(sr_fee, sr_net_loss) FROM tpcds.store_returns WHERE sr_customer_sk < 1000;
regr_syy

2189417.6547314
(1 row)

stddev(expression)
Description: Alias of stddev_samp

Return type: double precision for floating-point arguments, otherwise
numeric

For example:

SELECT STDDEV (inv_quantity_on_hand) FROM tpcds.inventory WHERE inv_warehouse_sk = 1;
stddev

289.224359757315
(1 row)

variance(expexpression,ression)
Description: Alias of var_samp

Return type: double precision for floating-point arguments, otherwise
numeric

For example:

SELECT VARIANCE(inv_quantity_on_hand) FROM tpcds.inventory WHERE inv_warehouse_sk = 1;
variance

83650.730277028768
(1 row)

checksum(expression)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 189

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Description: Returns the CHECKSUM value of all input values. This function
can be used to check whether the data in the tables before and after
GaussDB(DWS) data restoration or migration is the same. Other databases
cannot be checked by using this function. Before and after database backup,
database restoration, or data migration, you need to manually run SQL
commands to obtain the execution results. Compare the obtained execution
results to check whether the data in the tables before and after the backup or
migration is the same.

(11 NOTE

e For large tables, the CHECKSUM function may take a long time.

e If the CHECKSUM values of two tables are different, it indicates that the contents
of the two tables are different. Using the hash function in the CHECKSUM function
may incur conflicts. There is low possibility that two tables with different contents
may have the same CHECKSUM value. The same problem may occur when
CHECKSUM is used for columns.

e If the time type is timestamp, timestamptz, or smalldatetime, ensure that the time
zone settings are the same when calculating the CHECKSUM value.

- If the CHECKSUM value of a column is calculated and the column type
can be changed to TEXT by default, set expression to the column name.

- If the CHECKSUM value of a column is calculated and the column type
cannot be changed to TEXT by default, set expression to Column
name::TEXT.

- If the CHECKSUM value of all columns is calculated, set expression to
Table name:TEXT.

The following types of data can be converted into TEXT types by default: char,
name, int8, int2, int1, int4, raw, pg_node_tree, float4, float8, bpchar, varchar,
nvarchar2, date, timestamp, timestamptz, numeric, and smalldatetime. Other
types need to be forcibly converted to TEXT.

Return type: numeric
For example:

The following shows the CHECKSUM value of a column that can be converted
to the TEXT type by default:

SELECT CHECKSUM (inv_quantity_on_hand) FROM tpcds.inventory;
checksum

24417258945265247
(1 row)

The following shows the CHECKSUM value of a column that cannot be
converted to the TEXT type by default: The CHECKSUM parameter is set to
Column name:TEXT.

SELECT CHECKSUM ((inv_quantity_on_hand:: TEXT) FROM tpcds.inventory;
checksum

24417258945265247
(1 row)

The following shows the CHECKSUM value of all columns in a table. Note
that the CHECKSUM parameter is set to 7able name:TEXT. The table name is
not modified by its schema.

SELECT CHECKSUM(inventory:TEXT) FROM tpcds.inventory;
checksum

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 190

Data Warehouse Service
SQL Syntax 6 Functions and Operators

25223696246875800
(1 row)

6.20 Window Functions

Regular aggregate functions return a single value calculated from values in a row,
or group all rows into a single output row. Window functions perform a
calculation across a set of rows and return a value for each row.

e A window function call represents the application of an aggregate-like
function over some portion of the rows selected by a query. Therefore,
aggregate functions (Aggregate Functions) can also be used as window
functions. In addition, window functions are able to scan all the rows and
divide the query rows into a partition by using the PARTITION BY clause.

e Column-store tables support only the window functions rank (expression)
and row_number (expression) and the aggregate functions sum, count, avg,
min, and max. Row-store tables do not have such restrictions.

e Invoking a window function requires special syntax using the OVER clause to
specify a window. The OVER clause is used for grouping data and sorting the
elements in a group. Window functions are used for generating sequence
numbers for the values in the group.

e order by in a window function must be followed by a column name. If it is
followed by a number, the number is processed as a constant value and the
target column is not ranked.

Syntax of a Window Function

function_name ([expression [, expression ...]]) OVER (window_definition) function_name ([expression [,
expression ... 1) OVER window_namefunction_name (*) OVER (window_definition) function_name (*)
OVER window_name

window_definition is defined as follows:

[existing_window_name] [PARTITION BY expression [, ...]] [ORDER BY expression [ASC | DESC | USING
operator] [NULLS { FIRST | LAST } 1 [, ...]] [frame_clause]

frame_clause is defined as follows:

[RANGE | ROWS] frame_start [RANGE | ROWS] BETWEEN frame_start AND frame_end

You can use RANGE and ROWS to specify the window frame. ROWS specifies the
window in physical units (rows). RANGE specifies the window as a logical offset.

In RANGE and ROWS, you can use BETWEEN frame_start AND frame_end to
specify the window's first and last rows. If frame_end is left blank, it defaults to
CURRENT ROW.

The value options of BETWEEN frame_start AND frame_end are as follows:

e CURRENT ROW: The current row is used as the window frame's start or end
point.

e N PRECEDING: The window frame starts from the nth row to the current row.

e UNBOUNDED PRECEDING: The window frame starts at the first row of the
partition.

e N FOLLOWING: The window frame starts from the current row to the rth
row.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 191

Data Warehouse Service
SQL Syntax 6 Functions and Operators

e UNBOUNDED FOLLOWING: The window frame ends with the last row of the
partition.

frame_start cannot be UNBOUNDED FOLLOWING, frame_end cannot be
UNBOUNDED PRECEDING, and frame_end cannot be earlier than frame_start For
example, RANGE BETWEEN CURRENT ROW AND value PRECEDING is not
allowed.

Window Functions
e RANK()

Description: The RANK function is used for generating non-consecutive
sequence numbers for the values in each group. The same values have the
same sequence number.

Return type: bigint

For example:

SELECT d_moy, d_fy_week_seq, rank() OVER(PARTITION BY d_moy ORDER BY d_fy_week_seq) FROM
tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;
d_moy | d_fy_week_seq | rank
+ +ommme

00 0000000000 —= == a3

NNNNNMNNMNNMNNNNS O O O a0 3 e 3 3 3 3 o)) 3 3)

N
N
N

OOV UUVVIUUVURADNBRADNDRAWWWWWWWRNNNNNNNS = = o o s

[e)) <) Ie) i) o) Be) BENE N NE I

2]
(42 rows)

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 192

Data Warehouse Service
SQL Syntax 6 Functions and Operators

e ROW_NUMBER()

Description: The ROW_NUMBER function is used for generating consecutive
sequence numbers for the values in each group. The same values have
different sequence numbers.

Return type: bigint

For example:

SELECT d_moy, d_fy_week_seq, Row_number() OVER(PARTITION BY d_moy ORDER BY
d_fy_week_seq) FROM tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;
d_moy | d_fy_week_seq | row_number

+
t

OCoOoONOOTUTAWN =

NNNNNMNNNNNNS & 0 0 3 3 3 3) 3 3 3 3))) 3 3 3 3)) 3

N
MO UUUVINUUVURADRNADNMDNADNWWWWWWWNNNNNNRN-S = o 5 o

N
N

2|
(42 rows)

e DENSE_RANK()

Description: The DENSE_RANK function is used for generating consecutive
sequence numbers for the values in each group. The same values have the
same sequence number.

Return type: bigint

For example:

SELECT d_moy, d_fy_week_seq, dense_rank() OVER(PARTITION BY d_moy ORDER BY d_fy_week_seq)
FROM tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;
d_moy | d_fy_week_seq | dense_rank

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 193

Data Warehouse Service
SQL Syntax 6 Functions and Operators

NNNNNNMNNMNNMNNNS O O O a0 3 3 3 3 3 3 3)) 3 3 3

N
MNNNNNNN-S 220 S UBRDBMAMDRARADNWWWWWWWNNNNNNNS 2 o o

DOV UUVIUUUVUDRNBRADRNDADRNWWWWWWWNNNNNNRNS = o o oo

2]
(42 rows)

e PERCENT_RANK()

Description: The PERCENT_RANK function is used for generating
corresponding sequence numbers for the values in each group. That is, the
function calculates the value according to the formula Sequence number =
(Rank - 1)/(Total rows - 1). Rank is the corresponding sequence number
generated based on the RANK function for the value and Total rows is the
total number of elements in a group.

Return type: double precision

For example:

SELECT d_moy, d_fy_week_seq, percent_rank() OVER(PARTITION BY d_moy ORDER BY d_fy_week_seq)
FROM tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;
d_moy | d_fy_week_seq| percent_rank

_
[eNeoNeoNoNoNoNo)

| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 2].

241379310344828

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 194

Data Warehouse Service

SQL Syntax

6 Functions and Operators

NNNNNNNNNN= @ @@ @Q@@Q@O@Q@Q@@

2| .241379310344828
2| .241379310344828
2| .241379310344828
2| .241379310344828
2| .241379310344828
2| .241379310344828
3].482758620689655
3].482758620689655
3].482758620689655
3].482758620689655
3].482758620689655
3].482758620689655
3].482758620689655
4|.724137931034483
4|.724137931034483
4|.724137931034483
4|.724137931034483
4|.724137931034483
4|.724137931034483
4|.724137931034483
5| .96551724137931
5| .96551724137931

5] 0
5] 0
5] 0
5] 0
5] 0

6 | .454545454545455
6 | .454545454545455
6 | .454545454545455
6 | .454545454545455
6 | .454545454545455

2| 6 | .454545454545455
2| 6 | .454545454545455
(42 rows)
CUME_DIST()

Description: The CUME_DIST function is used for generating accumulative
distribution sequence numbers for the values in each group. That is, the

function calculates the value according to the following formula: Sequence
number = Number of rows preceding or peer with current row/Total rows.

Return type: double precision

For example:

SELECT d_moy, d_fy_week_seq, cume_dist() OVER(PARTITION BY d_moy ORDER BY d_fy_week_seq)
FROM tpcds.date_dim e_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;

d_moy | d_fy_week_seq| cume_dist

N N QU G N U (U QU (U W

1.233333333333333
1.233333333333333
1.233333333333333
1.233333333333333
1.233333333333333
1.233333333333333
1.233333333333333
2| .466666666666667
2 | .466666666666667
2 | .466666666666667
2 | .466666666666667
2 | .466666666666667
2 | .466666666666667
2 | .466666666666667

3] 7
3] 7
3] 7
3] 7
3] 7
3] 7

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

195

Data Warehouse Service
SQL Syntax 6 Functions and Operators

3] 7

4.933333333333333
4.933333333333333
4.933333333333333
4.933333333333333
4.933333333333333
4.933333333333333
4.933333333333333
5] 1

5] 1

51 .416666666666667
51 .416666666666667
51 .416666666666667
51 .416666666666667
51.416666666666667
6| 1

NNNMNNNMNNMNNNMNNN=S a0 aa

N
()}
__

2 | 6 |
(42 rows)

e NTILE(num_buckets integer)
Description: The NTILE function is used for equally allocating sequential data
sets to the buckets whose quantity is specified by num_buckets according to
num_buckets integer and allocating the bucket number to each row. Divide
the partition as equally as possible.
Return type: integer

For example:

SELECT d_moy, d_fy_week_seq, ntile(3) OVER(PARTITION BY d_moy ORDER BY d_fy_week_seq) FROM
tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;
d_moy | d_fy_week_seq | ntile

S, WWWWWWWWWWNNNNNNNNNN_222 a2

NN = 8 8 0 3 3 3 3) e 3 3 3 e e e e e S
VUUVURADADRNDEADNWWWWWWWNNNRNNNRNS = o 5 o

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 196

Data Warehouse Service

SQL Syntax

6 Functions and Operators

2| 51 1
2| 51 1
2| 5] 2
2| 6] 2
2| 6] 2
2| 6] 2
2 | 6| 3
2| 6| 3
2| 6| 3
2| 6| 3
(42 rows)

LAG (value any [, offset integer [, default any 1)

Description: The LAG function is used for generating lag values for the
corresponding values in each group. That is, the value of the row obtained by
moving forward the row corresponding to the current value by offset
(integer) is the sequence number. If the row does not exist after the moving,
the result value is the default value. If omitted, offset defaults to 1 and
default to null.

Return type: same as the parameter type

For example:

SELECT d_moy, d_fy_week_seq, lag(d_moy,3,null) OVER(PARTITION BY d_moy ORDER BY
d_fy_week_seq) FROM tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;
d_moy | d_fy_week_seq | lag

_ e e e e e e e e e)) e e e e))) e e e e e e

MOV UUUVVUUADRNMDNADRNDDNWWWWWWWNNNNNNNS = = o

NNNNONNMNNMNNNNNN=S & 0 0 3 3 3 3) 3 3 3 3 3)) 3 3 3 3 3))) 3

NNNNNNNN

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 197

Data Warehouse Service

SQL Syntax

6 Functions and Operators

2| 6| 2
(42 rows)

LEAD(value any [, offset integer [, default any 1])

Description: The LEAD function is used for generating leading values for the
corresponding values in each group. That is, the value of the row obtained by
moving backward the row corresponding to the current value by offset
(integer) is the sequence number. If the number of rows after the moving
exceeds the total number for the current group, the result value is the default
value. If omitted, offset defaults to 1 and default to null.

Return type: same as the parameter type

For example:

SELECT d_moy, d_fy_week_seq, lead(d_fy_week_seq,2) OVER(PARTITION BY d_moy ORDER BY
d_fy_week_seq) FROM tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY
1,2; d_moy | d_fy_week_seq | lead

+ +

GO BAEABRARBEBREDREREDRDWWWWWWWNNNNNNN= =2 2 2

NNNNNMNNMNNMNNNNS & 0 0 3 3 3 3 3) 3 3 3 3) 3 e 3 3 3 3 3

OOV UUVIVNUUVURADNADRNADNDNDRNWWWWWWWNNNRNNNRN-S = 2 0 o
DO oo Uuu

N

2|
(42 rows)

FIRST_VALUE(value any)

Description: The FIRST_VALUE function is used for returning the first value of
each group.

Return type: same as the parameter type

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 198

Data Warehouse Service
SQL Syntax 6 Functions and Operators

For example:

SELECT d_moy, d_fy_week_seq, first_value(d_fy_week_seq) OVER(PARTITION BY d_moy ORDER BY
d_fy_week_seq) FROM tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 7 ORDER BY 1,2;
d_moy | d_fy_week_seq | first_value

+ +

NNNNNMNNMNNMNNNNS O O 0 a3 3 3 3 3 3 3 3)) 3 3 3) 3

N
UV UTUTUTUTUT m m 3 3) e e) 3))) e e e e 3 3) e e) 3

OO0 VUV UUURDBDMBRERDMEDRIMPRERWWWWWWWNNNNNNN= 2 2 2 o

2|
(42 rows)

e LAST_VALUE(value any)
Description: Returns the last value of each group.
Return type: same as the parameter type

For example:

SELECT d_moy, d_fy_week_seq, last_value(d_moy) OVER(PARTITION BY d_moy ORDER BY
d_fy_week_seq) FROM tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 6 ORDER BY 1,2;
d_moy | d_fy_week_seq | last_value

+
t

N N I W (U (P Y
N Y W W L I Gy

NNN= 2 o

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 199

Data Warehouse Service
SQL Syntax 6 Functions and Operators

NN RN = & 3 8 3 3 3 3 3 3 8 3 3 3 e

N
NNNNN = & 8 8 8 8 8 8 3 8 3 3 3 3 3 3 3 s 3

uUuuUuuUuuuubs,bbBBBRARBRBRDRDWWWWWWWNNNDNN

2|
(35 rows)

e NTH_VALUE(value any, nth integer)

Description: The nth row for a group is the returned value. If the row does not
exist, NULL is returned by default.

Return type: same as the parameter type

For example:

SELECT d_moy, d_fy_week_seq, nth_value(d_fy_week_seq,6) OVER(PARTITION BY d_moy ORDER BY
d_fy_week_seq) FROM tpcds.date_dim WHERE d_moy < 4 AND d_fy_week_seq < 6 ORDER BY 1,2;
d_moy | d_fy_week_seq | nth_value

-, s S e e e e e e S S S
-, e S e S S S

GUARABRERERERERRERPRPWWWWWWWNNNNNNN=S =22 2 2

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 200

Data Warehouse Service

SQL Syntax

6 Functions and Operators

2| 5|

2| 5|

2| 5|

2| 5|

2| 5]
(35 rows)

6.21 Security Functions

Security Functions

gs_encrypt(encryptstr, keystr, cryptotype, cryptomode, hashmethod)

Description: Encrypts an encryptstr string using the keystr key based on the
encryption algorithm specified by cryptotype and cryptomode and the
HMAC algorithm specified by hashmethod, and returns the encrypted string.
cryptotype can be aes128, aes192, aes256, or sm4. cryptomode is cbc.
hashmethod can be sha256, sha384, sha512, or sm3. Currently, the
following types of data can be encrypted: numerals supported in the
database; character type; RAW in binary type; and DATE, TIMESTAMP, and
SMALLDATETIME in date/time type. The keystr length is related to the
encryption algorithm and contains 1 to KeyLen bytes. If cryptotype is aes128
or sm4, KeyLen is 16; if cryptotype is aes192, KeyLen is 24; if cryptotype is
aes256, KeyLen is 32.

Return type: text

Length of the return value: at least 4 x [(maclen + 56)/3] bytes and no more
than 4 x [(Len + maclen + 56)/3] bytes, where Len indicates the string length
(in bytes) before the encryption and maclen indicates the length of the
HMAC value. If hashmethod is sha256 or sm3, maclen is 32; if hashmethod
is sha384, maclen is 48; if hashmethod is sha512, maclen is 64. That is, if
hashmethod is sha256 or sm3, the returned string contains 120 to 4 x [(Len
+ 88)/3] bytes; if hashmethod is sha384, the returned string contains 140 to
4 x [(Len + 104)/3] bytes; if hashmethod is sha512, the returned string
contains 160 to 4 x [(Len + 120)/3] bytes.

Example:

SELECT gs_encrypt('GaussDB(DWS)', '1234', 'aes128', 'cbc', 'sha256');
gs_encrypt

AAAAAAAAAACCF]DcCSbop7D87s0a2nxTFrkE9RIQGK34ypgrOPsFllgggl8tl
+eMDcQYT3p0o98wPCC7VBfhv7mdBy71VnzdrpOrdMrD6/zTI8wOv9/s20A==
(1 row)

(10 NOTE

e This function is supported by version 8.1.1 or later clusters.

e A decryption password is required during the execution of this function. For
security purposes, the gsql tool does not record this function in the execution
history. That is, the execution history of this function cannot be found in gsql by
paging up and down.

e Do not use the ge_encrypt and gs_encrypt_aes128 functions for the same data
table.

gs_decrypt(decryptstr, keystr, cryptotype, cryptomode, hashmethod)

Description: Decrypts a decryptstr string using the keystr key based on the
encryption algorithm specified by cryptotype and cryptomode and the

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 201

Data Warehouse Service

SQL Syntax

6 Functions and Operators

HMAC algorithm specified by hashmethod, and returns the decrypted string.
The keystr used for decryption must be consistent with that used for
encryption. keystr cannot be empty.

Return type: text

Example:

SELECT gs_decrypt('AAAAAAAAAACCF]DcCSbop7D87s0a2nxTFrkE9RIQGK34ypgrOPsFJIqggl8tl
+eMDcQYT3po98wPCC7VBfhv7mdBy71VnzdrpOrdMrD6/zTI8w0Ov9/s20A==", '1234', 'aes128', 'cbc/,
'sha256');

gs_decrypt

GaussDB(DWS)
(1 row)

(11 NOTE

e This function is supported by version 8.1.1 or later clusters.

e A decryption password is required during the execution of this function. For
security purposes, the gsql tool does not record this function in the execution
history. That is, the execution history of this function cannot be found in gsql by
paging up and down.

e This function works with the gs_encrypt function, and the two functions must use
the same encryption algorithm and HMAC algorithm.

gs_encrypt_aes128(encryptstr,keystr)

Description: Encrypts encryptstr strings using keystr as the key and returns
encrypted strings. The length of keystr ranges from 1 to 16 bytes. Currently,
the following types of data can be encrypted: numerals supported in the

database; character type; RAW in binary type; and DATE, TIMESTAMP, and
SMALLDATETIME in date/time type.

Return type: text

Length of the return value: At least 92 bytes and no more than (4*[Len/
3]+68) bytes, where Len indicates the length of the data before encryption
(unit: byte).

Examples

SELECT gs_encrypt_aes128('MPPDB','1234");

gs_encrypt_aes128

gwditQLQG8NhFw40uoKhhQJoXojhFLlYkjeG0aYdSCtLCnIUgkNwvYI04KbuhmcGZp8jWizBdR1vU9Cspjuzl
0lbz12A=
(1 row)

(11 NOTE

e A decryption password is required during the execution of this function. For
security purposes, the gsql tool does not record this function in the execution
history. That is, the execution history of this function cannot be found in gsql by
paging up and down.

e Do not use the ge_encrypt and gs_encrypt_aes128 functions for the same data
table.

gs_decrypt_aes128(decryptstr,keystr)

Description: Decrypts a decryptstr string using the keystr key and returns the
decrypted string. The keystr used for decryption must be consistent with that
used for encryption. keystr cannot be empty.

Return type: text
Examples:

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 202

Data Warehouse Service

SQL Syntax

6 Functions and Operators

SELECT
gs_decrypt_aes128('gwditQLQG8NhFw40OuoKhhQJoXojhFlYkjeG0aYdSCtLCnIUgkNwvYI04KbuhmcGZp8j
WizBdR1vU9CspjuzlOlbz12A=",'1234");

gs_decrypt_aes128

e A decryption password is required during the execution of this function. For
security purposes, the gsql tool does not record this function in the execution
history. That is, the execution history of this function cannot be found in gsql by
paging up and down.

e This function works with the gs_encrypt_aes128 function.
gs_password_deadline()

Description: Indicates the number of remaining days before the password of
the current user expires. After the password expires, the system prompts the
user to change the password. This parameter is related to the GUC parameter
password_effect_time.

Return type: interval

Examples:

SELECT gs_password_deadline();
gs_password_deadline

83 days 17:44:32.196094
(1 row)

gs_password_expiration()
Description: Indicates the number of remaining days before the password of
the current user expires. After the password expires, the user cannot log in to

the database. This parameter is related to the DDL statement PASSWORD
EXPIRATION period used for creating a user.

Return type: interval

Examples:

SELECT gs_password_expiration();
gs_password_expiration

29 days 23:59:49.731482
(1 row)

gs_hash(hashstr, hashmethod)

Description: Obtains the digest string of a hashstr string based on the
algorithm specified by hashmethod. hashmethod can be sha256, sha384,
sha512, or sm3. This function is supported by version 8.1.1 or later clusters.

Return type: text

Length of the return value: 64 bytes if hashmethod is sha256 or sm3; 96
bytes if hashmethod is sha384; 128 bytes if hashmethod is sha512
Example:

SELECT gs_hash('GaussDB(DWS)', 'sha256');
gs_hash

€59069daa6541ae20af7c747662702c731b26b8abd7a788f4d15611aa0db608efdbb5587ba90789a983f8
5dd51766609
(1 row)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 203

Data Warehouse Service

SQL Syntax

6 Functions and Operators

login_audit_messages(flag boolean)

Description: Queries login information about a login user.
Return type: tuple

Examples:

- Checks the date, time, and IP address successfully authenticated during

the last login.
SELECT * FROM login_audit_messages(true);

username | database | logintime | type | result | client_conninfo
+ + + + +
dbadmin | postgres | 2017-06-02 15:28:34+08 | login_success | ok | gsql@[local]
(1 row)

- Checks the date, time, and IP address that failed to be authenticated

during the last login.
SELECT * FROM login_audit_messages(false) ORDER BY logintime desc limit 1;
username | database | logintime | type |result| client_conninfo

+ +
t t

(0 rows)

- Checks the number of failed attempts, date, and time since the previous

successful authentication.
SELECT * FROM login_audit_messages(false);
username | database | logintime | type |result| client_conninfo

ats S

(0 rows)
login_audit_messages_pid(flag boolean)
Description: Queries login information about a login user. Different from
login_audit_messages, this function queries login information based on
backendid. Information about subsequent logins of the same user does not
alter the query result of previous logins and cannot be found using this
function.
Return type: tuple
Examples:

- Checks the date, time, and IP address successfully authenticated during

the last login.
SELECT * FROM login_audit_messages_pid(true);

username | database | logintime | type | result | client_conninfo | backendid
dbadmin | gaussdb | 2017-06-02 15:28:34+08 | login_success | ok | gsql@[local] |
140311900702464
(1 row)

- Checks the date, time, and IP address that failed to be authenticated

during the last login.
SELECT * FROM login_audit_messages_pid(false) ORDER BY logintime desc limit 1;
username | database | logintime | type |result| client_conninfo | backendid

+

Ar TR ot

(0 rows)

- Checks the number of failed attempts, date, and time since the previous

successful authentication.
SELECT * FROM login_audit_messages_pid(false);
username | database | logintime | type |result| client_conninfo | backendid
+ + + + +

(0 rows)
inet_server_addr()
Description: Displays the server IP address.
Return type: inet
Examples:

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 204

Data Warehouse Service
SQL Syntax 6 Functions and Operators

SELECT inet_server_addr();
inet_server_addr

10.10.0.13
(1 row)

L] NOTE
e The client IP address 10.10.0.50 and server IP address 10.10.0.13 are used as an
example.
e If the database is connected to the local PC, the value is empty.
e inet_client_addr()
Description: Displays the client IP address.
Return type: inet

Examples:

SELECT inet_client_addr();
inet_client_addr

10.10.0.50
(1 row)

(10 NOTE

e The client IP address 10.10.0.50 and server IP address 10.10.0.13 are used as an
example.

e If the database is connected to the local PC, the value is empty.
e pg_query_audit()
Description: Displays audit logs of the CN.
Return type: SETOF record
The following table describes return columns.

Column Type Description
begintime timestamp Operation start time
with time
zone
endtime timestamp Operation end time
with time
zone
operation_ty | text Operation type
pe
audit_type text Audit type
result text Operation result
username text Name of the user who performs the
operation
database text Database name
client_conni | text Client connection information
nfo
object_name | text Object name

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 205

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Column Type Description

command_t | text Command used to perform the operation. In

ext versions earlier than 8.1.1, the audit content
of this column is contained in detail _info.

detail_info text Operation details

transaction_ | text Transaction ID

xid

query_id text Query ID

node_name | text Node name

thread_id text Thread ID

local_port text Local port

remote_port | text Remote port

For details about how to use the function and details about function
examples, see section "Querying Audit Results."

pgxc_query_audit()
Description: Displays audit logs of all CNs.
Return type: record

The return fields of this function are the same as those of the
pg_query_audit function.

For details about how to use the function, see "Querying Audit Results" in the
Developer Guide.

pg_delete_audit() Description: Deletes audit logs in a specified period. Return
type: void
(1O NOTE

For database security concerns, this function is unavailable. If you call it, the following
message is displayed: "ERROR: For security purposes, it is not allowed to manually
delete audit logs."

6.22 Set Returning Functions

Series Generating Functions

generate_series(start, stop)

Description: Generates a series of values, from start to stop with a step size
of one.

Parameter type: int, bigint, or numeric

Return type: setof int, setof bigint, or setof numeric (same as the argument
type)
generate_series(start, stop, step)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 206

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Description: Generates a series of values, from start to stop with a step size
of step.

Parameter type: int, bigint, or numeric

Return type: setof int, setof bigint, or setof numeric (same as the argument
type)
e generate_series(start, stop, step interval)

Description: Generates a series of values, from start to stop with a step size
of step.

Parameter type: timestamp or timestamp with time zone

Return type: setof timestamp or setof timestamp with time zone (same as
argument type)

When step is positive, zero rows are returned if start is greater than stop.
Conversely, when step is negative, zero rows are returned if start is less than stop.
Zero rows are also returned for NULL inputs. It is an error for step to be zero.

For example:

SELECT * FROM generate_series(2,4);
generate_series

(3 rows)

SELECT * FROM generate_series(5,1,-2);
generate_series

(3 rows)

SELECT * FROM generate_series(4,3);
generate_series

(0 rows)

-- this example relies on the date-plus-integer operator

SELECT current_date + s.a AS dates FROM generate_series(0,14,7) AS s(a);
dates

2017-06-02

2017-06-09

2017-06-16

(3 rows)

SELECT * FROM generate_series('2008-03-01 00:00'::timestamp, '2008-03-04 12:00', '10 hours');
generate_series

2008-03-01 00:00:00
2008-03-01 10:00:00
2008-03-01 20:00:00
2008-03-02 06:00:00
2008-03-02 16:00:00
2008-03-03 02:00:00
2008-03-03 12:00:00
2008-03-03 22:00:00
2008-03-04 08:00:00
(9 rows)

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 207

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Subscript Generating Functions
generate_subscripts(array anyarray, dim int)

Description: Generates a series comprising the given array's subscripts.

Return type: setof int

generate_subscripts(array anyarray, dim int, reverse boolean)
Description: Generates a series comprising the given array's subscripts. When

reverse is true, the series is returned in reverse order.

Return type: setof int

generate_subscripts is a function that generates the set of valid subscripts for the
specified dimension of the given array. Zero rows are returned for arrays that do
not have the requested dimension, or for NULL arrays (but valid subscripts are
returned for NULL array elements). For example:

-- basic usage
SELECT generate_subscripts('{NULL,1,NULL,2}":int[], 1) AS's;

(4 rows)

-- unnest a 2D array

CREATE OR REPLACE FUNCTION unnest2(anyarray)

RETURNS SETOF anyelement AS $$

SELECT $1[il[j]
FROM generate_subscripts($1,1) g1(i),

generate_subscripts($1,2) g2(j);

$$ LANGUAGE sql IMMUTABLE;

SELECT * FROM unnest2(ARRAY([[1,2],[3,411);
unnest2

(4 rows)

-- Delete the function:
DROP FUNCTION unnest2;

6.23 Conditional Expression Functions

Conditional Expression Functions
coalesce(expr1, expr2, ..., exprn)
Description: Returns the first argument that is not NULL in the argument list.

COALESCE(expr1, expr2) is equivalent to CASE WHEN expr1 IS NOT NULL
THEN expr1 ELSE expr2 END.
For example:

SELECT coalesce(NULL,'hello");

coalesce

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

208

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Note:
- NULL is returned only if all parameters are NULL.
- This value is replaced by the default value when data is displayed.

- Like a CASE expression, COALESCE only evaluates the parameters that are
needed to determine the result. That is, parameters to the right of the
first non-null parameter are not evaluated.

decode(base_expr, compare1, valuel, Compare2,value2, ... default)

Description: Compares base_expr with each compare(n) and returns value(n)
if they are matched. If base_expr does not match each compare(n), the
default value is returned.

For example:

SELECT decode('A','A',1,'B',2,0);
case

(1 row)

if(bool_expr, expr1, expr2)

Description: Returns expr1 or expr2. If the value of bool_expr is true, expr1
is returned. Otherwise, expr2 is returned.

This function is equivalent to CASE WHEN bool_expr = true THEN expr1
ELSE expr2 END.
Example:

SELECT if(1 < 2, 'yes', 'no');
if

Note: expr1 and expr2 can be of any type. For details about the available
types, see UNION, CASE, and Related Constructs.

ifnull(expr1, expr2)

Description: Returns expr1 or expr2. If expr1 is not NULL, expr1 is returned.
Otherwise, expr2 is returned.

This function is logically equivalent to CASE WHEN expr1 IS NOT NULL
THEN expr1 ELSE expr2 END.
Example:

SELECT ifnull(NULL,'hello");
ifnull

Note: expr1 and expr2 can be of any type. For details about the available
types, see UNION, CASE, and Related Constructs.

isnull(expr)

Description: Checks whether expr is NULL. If it is NULL, true is returned.
Otherwise, false is returned.

This function is logically equivalent to expr IS NULL.

Example:

SELECT isnull(NULL), isnull('abc');
isnull | isnull
________ | ————

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 209

Data Warehouse Service

SQL Syntax

6 Functions and Operators

t | f
(1 row)

nullif(expr1, expr2)

Description: Returns NULL or expr1. If expr1 is equal to expr2, NULL is
returned. Otherwise, expr1 is returned.

nullif(expr1, expr2) is equivalent to CASE WHEN expr1 = expr2 THEN NULL
ELSE expr1 END.

For example:

SELECT nullif('hello’,'world");
nullif

Assume the two parameter data types are different:

- If implicit conversion exists between the two data types, implicitly convert
the parameter of lower priority to this data type using the data type of
higher priority. If the conversion succeeds, computation is performed.

Otherwise, an error is returned. For example:
SELECT nullif('1234':VARCHAR,123:INT4);
nullif

(1 row)
SELECT nullif('1234":VARCHAR,'2012-12-24":DATE);
ERROR: invalid input syntax for type timestamp: "1234"
- If implicit conversion is not applied between two data types, an error is

displayed. For example:
SELECT nullif(TRUE::BOOLEAN,'2012-12-24"::DATE);
ERROR: operator does not exist: boolean = timestamp without time zone

LINE 1: SELECT nullif(TRUE:BOOLEAN,'2012-12-24":DATE) FROM DUAL;
A

HINT: No operator matches the given name and argument type(s). You might need to add
explicit type casts.

nvl(exprl, expr2)
Returns expr1 or expr2. If expr1 is NULL, expr2 is returned. Otherwise, expr1
is returned.

For example:

SELECT nvl('hello','world");
nvl

Parameters expr1 and expr2 can be of any data type. If expr1 and expr2 are
of different data types, NVL checks whether expr2 can be implicitly converted
to expr1. If it can, the expr1 data type is returned. If epr2 cannot be implicitly
converted to expr1 but epr1 can be implicitly converted to expr2, the expr2
data type is returned. If no implicit type conversion exists between the two
parameters and the parameters are different data types, an error is reported.

sys_context('namespace' , 'parameter")

Description: Obtains and returns the parameter values of a specified
namespace.

Return type: VARCHAR
For example:

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 210

Data Warehouse Service

SQL Syntax

6 Functions and Operators

SELECT sys_context("USERENV', 'CURRENT_SCHEMA');
sys_context

The result varies according to the current actual schema.

Note: Currently, only the following formats are supported:
SYS_CONTEXT('USERENV', 'CURRENT_SCHEMA'") and
SYS_CONTEXT('USERENV', 'CURRENT_USER').

greatest(expr1 [, ...])
Description: Selects the largest value from a list of any number of expressions.
Return type:

For example:

SELECT greatest(1*2,2-3,4-1);
greatest

(1 row)
SELECT greatest('ABC', 'BCD', 'CDE');
greatest

(1 row)
least(expr1 [, ...])

Description: Selects the smallest value from a list of any number of
expressions.

For example:

SELECT least(1*2,2-3,4-1);
least

(1 row)
SELECT least('ABC','BCD','CDE');
least

EMPTY_BLOB()

Description: Initiates a BLOB variable in an INSERT or an UPDATE statement
to a NULL value.

Return type: BLOB
For example:

-- Create a table:

CREATE TABLE blob_tb(b blob,id int) DISTRIBUTE BY REPLICATION;
-- Insert data:

INSERT INTO blob_tb VALUES (empty_blob(),1);

--Delete the table.

DROP TABLE blob_tb;

Note: The length is 0 obtained using DBMS.GETLENGTH in a parallel mode.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 211

Data Warehouse Service

SQL Syntax

6 Functions and Operators

6.24 System Information Functions

Session Information Functions

current_catalog

Description: Name of the current database (called "catalog" in the SQL
standard)

Return type: name

For example:

SELECT current_catalog;
current_database

gaussdb
(1 row)

current_database()
Description: Name of the current database
Return type: name

For example:

SELECT current_database();
current_database

gaussdb
(1 row)

current_query()

Description: Text of the currently executing query, as submitted by the client
(might contain more than one statement)

Return type: text

For example:

SELECT current_query();
current_query

SELECT current_query();
(1 row)

current_schemal()]
Description: Name of current schema
Return type: name

For example:

SELECT current_schema();
current_schema

Remarks: current_schema returns the first valid schema name in the search
path. (If the search path is empty or contains no valid schema name, NULL is
returned.) This is the schema that will be used for any tables or other named
objects that are created without specifying a target schema.

current_schemas(boolean)
Description: Names of schemas in search path
Return type: name[]

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 212

Data Warehouse Service

SQL Syntax

6 Functions and Operators

For example:

SELECT current_schemas(true);
current_schemas

{pg_catalog,public}
(1 row)

Note:
current_schemas(boolean) returns an array of the names of all schemas
presently in the search path. The Boolean option determines whether

implicitly included system schemas such as pg_catalog are included in the
returned search path.

(11 NOTE

The search path can be altered at run time. The command is:
SET search_path TO schema [, schema, ...]

current_user
Description: User name of current execution context
Return type: name

For example:

SELECT current_user;
current_user

dbadmin
(1 row)

Note: current_user is the user identifier that is applicable for permission
checking. Normally it is equal to the session user, but it can be changed with
SET ROLE. It also changes during the execution of functions with the attribute
SECURITY DEFINER.

inet_client_addr()

Description: Remote connection address. inet_client_addr returns the IP
address of the current client.

(10 NOTE

It is available only in remote connection mode.
Return type: inet

For example:

SELECT inet_client_addr();
inet_client_addr

10.10.0.50
(1 row)

inet_client_port()
Description: Remote connection port. And inet_client_port returns the port
number of the current client.

(11 NOTE

It is available only in remote connection mode.
Return type: int

For example:

SELECT inet_client_port();
inet_client_port

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 213

Data Warehouse Service

SQL Syntax

6 Functions and Operators

(1 row)
inet_server_addr()

Description: Local connection address. inet_server_addr returns the IP address
on which the server accepted the current connection.

(10 NOTE

It is available only in remote connection mode.
Return type: inet

For example:

SELECT inet_server_addr();
inet_server_addr

10.10.0.13
(1 row)

inet_server_port()
Description: Local connection port. inet_server_port returns the port number.

All these functions return NULL if the current connection is via a Unix-domain
socket.

(11 NOTE

It is available only in remote connection mode.
Return type: int

For example:

SELECT inet_server_port();
inet_server_port

pg_backend_pid()
Description: Process ID of the server process attached to the current session
Return type: int

For example:

SELECT pg_backend_pid();
pg_backend_pid

140229352617744
(1 row)

pg_conf_load_time()

Description: Configures load time. pg_conf_load_time returns the timestamp
with time zone when the server configuration files were last loaded.

Return type: timestamp with time zone

For example:

SELECT pg_conf_load_time();
pg_conf_load_time

2017-09-01 16:05:23.89868+08
(1 row)

pg_my_temp_schema()

Description: OID of the temporary schema of a session. The value is 0 if the
OID does not exist.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 214

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Return type: OID

For example:

SELECT pg_my_temp_schema();
pg_my_temp_schema

(1 row)

Note: pg_my_temp_schema returns the OID of the current session's
temporary schema, or zero if it has none (because it has not created any
temporary tables). pg_is_other_temp_schema returns true if the given OID is
the OID of another session's temporary schema.
pg_is_other_temp_schema(oid)

Description: Whether the schema is the temporary schema of another session.
Return type: boolean

For example:

SELECT pg_is_other_temp_schema(25356);
pg_is_other_temp_schema

f
(1 row)

pg_listening_channels()
Description: Channel names that the session is currently listening on
Return type: setof text

For example:

SELECT pg_listening_channels();
pg_listening_channels

Note: pg_listening_channels returns a set of names of channels that the
current session is listening to.

pg_postmaster_start_time()

Description: Server start time pg_postmaster_start_time returns the
timestamp with time zone when the server started.

Return type: timestamp with time zone

For example:

SELECT pg_postmaster_start_time();
pg_postmaster_start_time

2017-08-30 16:02:54.99854+08
(1 row)

pg_trigger_depth()
Description: Current nesting level of triggers
Return type: int

For example:

SELECT pg_trigger_depth();
pg_trigger_depth

(1 row)
pgxc_version()
Description: Postgres-XC version information

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 215

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Return type: text

For example:

SELECT pgxc_version();
pgxc_version

Postgres-XC 1.1 on x86_64-unknown-linux-gnu, based on PostgreSQL 9.2.4, compiled by g++ (GCC)
5.4.0, 64-bit
(1 row)

session_user

Description: Session user name
Return type: name

For example:

SELECT session_user;
session_user

Note: session_user is usually the user who initiated the current database
connection, but administrators can change this setting with SET SESSION
AUTHORIZATION.

user
Description: Is equivalent to current_user.
Return type: name

For example:

SELECT user;
current_user

dbadmin
(1 row)

version()

Description: version information. version returns a string describing a server's
version.
Return type: text

For example:

SELECT version();
version

PostgreSQL 9.2.4 gsqgl ((GaussDB 8.1.1 build af002019) compiled at 2020-01-10 05:43:20 commit
6995 last mr 11566) on x86_64-unknown-linux-gnu, compiled by g++ (GCC) 5.4.0, 64-bit
(1 row)

Access Privilege Inquiry Functions

has_any_column_privilege(user, table, privilege)

Description: Queries whether a specified user has permission for any column
of table.

Return type: boolean
has_any_column_privilege(table, privilege)

Description: Queries whether the current user has permission for any column
of table.

Return type: boolean

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 216

Data Warehouse Service

SQL Syntax

6 Functions and Operators

has_any_column_privilege checks whether a user can access any column of a
table in a particular way. Its parameter possibilities are analogous to
has_table_privilege, except that the desired access permission type must be
some combination of SELECT, INSERT, UPDATE, or REFERENCES.

(10 NOTE

Note that having any of these permissions at the table level implicitly grants it for
each column of the table, so has_any_column_privilege will always return true if
has_table_privilege does for the same parameters. But has_any_column_privilege
also succeeds if there is a column-level grant of the permission for at least one
column.

has_column_privilege(user, table, column, privilege)

Description: Queries whether a specified user has permission for column.
Return type: boolean

has_column_privilege(table, column, privilege)

Description: Queries whether the current user has permission for column.
Return type: boolean

has_column_privilege checks whether a user can access a column in a
particular way. Its argument possibilities are analogous to
has_table_privilege, with the addition that the column can be specified
either by name or attribute number. The desired access permission type must
evaluate to some combination of SELECT, INSERT, UPDATE, or REFERENCES.

(1] NOTE

Note that having any of these permissions at the table level implicitly grants it for
each column of the table.

has_database_privilege(user, database, privilege)

Description: Queries whether a specified user has permission for database.
Return type: boolean

has_database_privilege(database, privilege)

Description: Queries whether the current user has permission for database.
Return type: boolean

Note: has_database_privilege checks whether a user can access a database
in a particular way. Its argument possibilities are analogous to
has_table_privilege. The desired access permission type must evaluate to
some combination of CREATE, CONNECT, TEMPORARY, or TEMP (which is
equivalent to TEMPORARY).

has_foreign_data_wrapper_privilege(user, fdw, privilege)

Description: Queries whether a specified user has permission for foreign-data
wrapper.

The fdw parameter indicates the name or ID of the foreign data wrapper.
Return type: boolean
has_foreign_data_wrapper_privilege(fdw, privilege)

Description: Queries whether the current user has permission for foreign-data
wrapper.

Return type: boolean

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 217

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Note: has_foreign_data_wrapper_privilege checks whether a user can access
a foreign-data wrapper in a particular way. Its argument possibilities are
analogous to has_table_privilege. The desired access permission type must
evaluate to USAGE.

has_function_privilege(user, function, privilege)

Description: Queries whether a specified user has permission for function.
Return type: boolean

has_function_privilege (function, privilege)

Description: Queries whether the current user has permission for function.
Return type: boolean

Note: has_function_privilege checks whether a user can access a function in
a particular way. Its argument possibilities are analogous to
has_table_privilege. When a function is specified by a text string rather than
by OID, the allowed input is the same as that for the regprocedure data type
(see Object Identifier Types). The desired access permission type must
evaluate to EXECUTE.

has_language_privilege(user, language, privilege)

Description: Queries whether a specified user has permission for language.
Return type: boolean

has_language_privilege(language, privilege)

Description: Queries whether the current user has permission for language.
Return type: boolean

Note: has_language_privilege checks whether a user can access a procedural
language in a particular way. Its argument possibilities are analogous to
has_table_privilege. The desired access permission type must evaluate to
USAGE.

has_schema_privilege(user, schema, privilege)

Description: Queries whether a specified user has permission for schema.
Return type: boolean

has_schema_privilege(schema, privilege)

Description: Queries whether the current user has permission for schema.
Return type: boolean

Note: has_schema_privilege checks whether a user can access a schema in a
particular way. Its argument possibilities are analogous to
has_table_privilege. The desired access permission type must evaluate to
some combination of CREATE or USAGE.

has_server_privilege(user, server, privilege)

Description: Queries whether a specified user has permission for foreign
server.

Return type: boolean
has_server_privilege(server, privilege)

Description: Queries whether the current user has permission for foreign
server.

Return type: boolean

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 218

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Note: has_server_privilege checks whether a user can access a foreign server
in a particular way. Its argument possibilities are analogous to
has_table_privilege. The desired access permission type must evaluate to
USAGE.

has_table_privilege(user, table, privilege)

Description: Queries whether a specified user has permission for table.
Return type: boolean

has_table_privilege(table, privilege)

Description: Queries whether the current user has permission for table.
Return type: boolean

has_table_privilege checks whether a user can access a table in a particular
way. The user can be specified by name, by OID (pg_authid.oid), public to
indicate the PUBLIC pseudo-role, or if the argument is omitted current_user
is assumed. The table can be specified by name or by OID. When specifying by
name, the name can be schema-qualified if necessary. The desired access
permission type is specified by a text string, which must be one of the values
SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES, or TRIGGER.
Optionally, WITH GRANT OPTION can be added to a permission type to test
whether the permission is held with grant option. Also, multiple permission

types can be listed separated by commas, in which case the result will be true
if any of the listed permissions is held.

For example:

SELECT has_table_privilege('tpcds.web_site', 'select');
has_table_privilege

SELECT has_table_privilege('dbadmin’, 'tpcds.web_site', 'select,INSERT WITH GRANT OPTION ');
has_table_privilege

(1 row)

pg_has_role(user, role, privilege)

Description: Queries whether a specified user has permission for role.
Return type: boolean

pg_has_role(role, privilege)

Description: Specifies whether the current user has permission for role.
Return type: boolean

Note: pg_has_role checks whether a user can access a role in a particular
way. Its argument possibilities are analogous to has_table_privilege, except
that public is not allowed as a user name. The desired access permission type
must evaluate to some combination of MEMBER or USAGE. MEMBER
denotes direct or indirect membership in the role (that is, the right to do SET
ROLE), while USAGE denotes the permissions of the role are available
without doing SET ROLE.

Schema Visibility Inquiry Functions

Each function performs the visibility check for one type of database object. For
functions and operators, an object in the search path is visible if there is no object

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 219

Data Warehouse Service

SQL Syntax

6 Functions and Operators

of the same name and argument data type(s) earlier in the path. For operator
classes, both name and associated index access method are considered.

All these functions require OIDs to identify the objects to be checked. If you want
to test an object by name, it is convenient to use the OID alias types (regclass,
regtype, regprocedure, regoperator, regconfig, or regdictionary).

For example, a table is said to be visible if its containing schema is in the search
path and no table of the same name appears earlier in the search path. This is
equivalent to the statement that the table can be referenced by name without
explicit schema qualification. For example, to list the names of all visible tables:

SELECT relname FROM pg_class WHERE pg_table_is_visible(oid);

pg_collation_is_visible(collation_oid)

Description: Queries whether the collation is visible in search path.
Return type: boolean

pg_conversion_is_visible(conversion_oid)

Description: Queries whether the conversion is visible in search path.
Return type: boolean

pg_function_is_visible(function_oid)

Description: Queries whether the function is visible in search path.
Return type: boolean

pg_opclass_is_visible(opclass_oid)

Description: Queries whether the operator class is visible in search path.
Return type: boolean

pg_operator_is_visible(operator_oid)

Description: Queries whether the operator is visible in search path.
Return type: boolean

pg_opfamily_is_visible(opclass_oid)

Description: Queries whether the operator family is visible in search path.
Return type: boolean

pg_table_is_visible(table_oid)

Description: Queries whether the table is visible in search path.
Return type: boolean

pg_ts_config_is_visible(config_oid)

Description: Queries whether the text search configuration is visible in search
path.

Return type: boolean
pg_ts_dict_is_visible(dict_oid)

Description: Queries whether the text search dictionary is visible in search
path.

Return type: boolean

pg_ts_parser_is_visible(parser_oid)

Description: Queries whether the text search parser is visible in search path.
Return type: boolean

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 220

Data Warehouse Service

SQL Syntax

6 Functions and Operators

pg_ts_template_is_visible(template_oid)

Description: Queries whether the text search template is visible in search path.
Return type: boolean

pg_type_is_visible(type_oid)

Description: Queries whether the type (or domain) is visible in search path.
Return type: boolean

System Catalog Information Functions

format_type(type_oid, typemod)
Description: Gets SQL name of a data type.
Return type: text

Note:

format_type returns the SQL name of a data type that is identified by its type
OID and possibly a type modifier. Pass NULL for the type modifier if no
specific modifier is known. Certain type modifiers are passed for data types
with length limitations. The SQL name returned from format_type contains
the length of the data type, which can be calculated by taking sizeof(int32)
from actual storage length [actual storage len - sizeof(int32)] in the unit of
bytes. 32-bit space is required to store the customized length set by users. So
the actual storage length contains 4 bytes more than the customized length.
In the following example, the SQL name returned from format_type is
character varying(6), indicating the length of varchar type is 6 bytes. So the
actual storage length of varchar type is 10 bytes.

SELECT format_type((SELECT oid FROM pg_type WHERE typname='varchar’), 10);
format_type

character varying(6)
(1 row)

pg_check_authid(role_oid)

Description: Checks whether a role name with given OID exists.
Return type: bool

pg_describe_object(catalog_id, object_id, object_sub_id)
Description: Gets description of a database object.

Return type: text

Note: pg_describe_object returns a description of a database object specified
by catalog OID, object OID and a (possibly zero) sub-object ID. This is useful
to determine the identity of an object as stored in the pg_depend catalog.

pg_get_constraintdef(constraint_oid)

Description: Gets definition of a constraint.
Return type: text
pg_get_constraintdef(constraint_oid, pretty_bool)
Description: Gets definition of a constraint.
Return type: text

Note: pg_get_constraintdef and pg_get_indexdef respectively reconstruct
the creating command for a constraint and an index.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 221

Data Warehouse Service

SQL Syntax

6 Functions and Operators

pg_get_expr(pg_node_tree, relation_oid)

Description: Decompiles internal form of an expression, assuming that any
Vars in it refer to the relationship indicated by the second parameter.

Return type: text
pg_get_expr(pg_node_tree, relation_oid, pretty_bool)

Description: Decompiles internal form of an expression, assuming that any
Vars in it refer to the relationship indicated by the second parameter.

Return type: text

Note: pg_get_expr decompiles the internal form of an individual expression,
such as the default value for a column. It can be useful when examining the
contents of system catalogs. If the expression might contain Vars, specify the
OID of the relationship they refer to as the second parameter; if no Vars are
expected, zero is sufficient.

pg_get_functiondef(func_oid)

Description: Gets definition of a function.

Return type: text

pg_get_function_arguments(func_oid)

Description: Gets argument list of function's definition (with default values).
Return type: text

Note: pg_get_function_arguments returns the argument list of a function, in
the form it would need to appear in within CREATE FUNCTION.

pg_get_function_identity_arguments(func_oid)
Description: Gets argument list to identify a function (without default values).
Return type: text

Note: pg_get_function_identity_arguments returns the argument list
necessary to identify a function, in the form it would need to appear in within
ALTER FUNCTION. This form omits default values.

pg_get_function_result(func_oid)
Description: Gets RETURNS clause for function.
Return type: text

Note: pg_get_function_result returns the appropriate RETURNS clause for
the function.

pg_get_indexdef(index_oid)

Description: Gets CREATE INDEX command for index.
Return type: text

pg_get_indexdef(index_oid, column_no, pretty_bool)

Description: Gets CREATE INDEX command for index, or definition of just one
index column when column_no is not zero.

Return type: text

Note: pg_get_functiondef returns a complete CREATE OR REPLACE
FUNCTION statement for a function.

pg_get_keywords()
Description: Gets list of SQL keywords and their categories.
Return type: setof record

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 222

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Note: pg_get_keywords returns a set of records describing the SQL keywords
recognized by the server. The word column contains the keyword. The
catcode column contains a category code: U for unreserved, C for column
name, T for type or function name, or R for reserved. The catdesc column
contains a possibly-localized string describing the category.

pg_get_ruledef(rule_oid)

Description: Gets CREATE RULE command for a rule.
Return type: text

pg_get_ruledef(rule_oid, pretty_bool)

Description: Gets CREATE RULE command for a rule.
Return type: text

pg_get_userbyid(role_oid)

Description: Gets role name with given OID.

Return type: name

Note: pg_get_userbyid extracts a role's name given its OID.
pg_get_viewdef(viewname text [, pretty bool [, fullflag bool]])
Description: gets underlying SELECT command for views.
Return type: text

Note:

- pg_get_viewdef reconstructs the SELECT query that defines a view. If the
value of pretty bool is set to true, the display format is suitable for
printing and more readable. The default value of pretty bool is false, and
the display format is not readable. Use the default format for dump
purposes whenever possible. The pretty bool parameter can be applied
only to valid views.

- When fullflag bool is set to true, the complete definition of the view is
displayed. The default value is false.

pg_get_viewdef(viewoid oid [, pretty bool [, fullflag bool]])
Description: gets underlying SELECT command for views.
Return type: text

pg_get_viewdef(view_oid, wrap_column_int)

Description: Gets underlying SELECT command for view, wrapping lines with
columns as specified, printing is implied.

Return type: text

pg_get_tabledef(table_oid)

Description: Obtains a table definition based on table_oid.
Return type: text

pg_get_tabledef(table_name)

Description: Obtains a table definition based on table_name.
Return type: text

Remarks: pg_get_tabledef reconstructs the CREATE statement of the table
definition, including the table definition, index information, and comments.
Users need to create the dependent objects of the table, such as groups,
schemas, tablespaces, and servers. The table definition does not include the
statements for creating these dependent objects.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 223

Data Warehouse Service

SQL Syntax

6 Functions and Operators

pg_options_to_table(reloptions)
Description: Gets the set of storage option name/value pairs.
Return type: setof record

Note: pg_options_to_table returns the set of storage option name/value pairs
(option_name/option_value) when passing pg_class.reloptions or
pg_attribute.attoptions.

pg_typeof(any)

Description: Gets the data type of any value.
Return type: regtype

Note:

pg_typeof returns the OID of the data type of the value that is passed to it.
This can be helpful for troubleshooting or dynamically constructing SQL
queries. The function is declared as returning regtype, which is an OID alias
type (see Object Identifier Types). This means that it is the same as an OID
for comparison purposes but displays as a type name.

For example:

SELECT pg_typeof(33);
pg_typeof

integer
(1 row)

SELECT typlen FROM pg_type WHERE oid = pg_typeof(33);
typlen

collation for (any)

Description: Gets the collation of the parameter.

Return type: text

Note:

The expression collation for returns the collation of the value that is passed

to it. For example:

SELECT collation for (description) FROM pg_description LIMIT 1;
pg_collation_for

"default"
(1 row)

The value might be quoted and schema-qualified. If no collation is derived for
the argument expression, then a null value is returned. If the parameter is not
of a collectable data type, then an error is thrown.

getdistributekey(table_name)
Description: Gets a distribution column for a hash table.
Return type: text

For example:

SELECT getdistributekey(‘item');
getdistributekey

i_item_sk

(1 row)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 224

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Comment Information Functions

col_description(table_oid, column_number)
Description: Gets comment for a table column.
Return type: text

Note: col_description returns the comment for a table column, which is
specified by the OID of its table and its column number.

obj_description(object_oid, catalog_name)
Description: Gets comment for a database object.
Return type: text

Note: The two-parameter form of obj_description returns the comment for a
database object specified by its OID and the name of the containing system
catalog. For example, obj_description(123456,'pg_class') would retrieve the
comment for the table with OID 123456. The one-parameter form of
obj_description requires only the object OID.

obj_description cannot be used for table columns since columns do not have
OIDs of their own.

obj_description(object_oid)

Description: Gets comment for a database object.

Return type: text

shobj_description(object_oid, catalog_name)

Description: Gets comment for a shared database object.
Return type: text

Note: shobj_description is used just like obj_description except the former is
used for retrieving comments on shared objects. Some system catalogs are
global to all databases within each cluster, and the comments for objects in
them are stored globally as well.

Transaction IDs and Snapshots

The following functions provide server transaction information in an exportable
form. The main use of these functions is to determine which transactions were
committed between two snapshots.

pgxc_is_committed(transaction_id)

Description: Determines whether the given XID is committed or ignored. NULL
indicates the unknown status (such as running, preparing, and freezing).

Return type: bool

txid_current()

Description: Gets current transaction ID.

Return type: bigint

txid_current_snapshot()

Description: Gets current snapshot.

Return type: txid_snapshot
txid_snapshot_xip(txid_snapshot)

Description: Gets in-progress transaction IDs in snapshot.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 225

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Return type: setof bigint

e txid_snapshot_xmax(txid_snapshot)
Description: Gets xmax of snapshot.
Return type: bigint

e txid_snapshot_xmin(txid_snapshot)
Description: Gets xmin of snapshot.
Return type: bigint

e txid_visible_in_snapshot(bigint, txid_snapshot)

Description: Queries whether the transaction ID is visible in snapshot. (do not
use with subtransaction ids)

Return type: boolean

The internal transaction ID type (xid) is 32 bits wide and wraps around every 4
billion transactions. txid_snapshot, the data type used by these functions, stores
information about transaction ID visibility at a particular moment in time. Table
6-10 describes its components.

Table 6-10 Snapshot components

Name Description

Xxmin Earliest transaction ID (txid) that is still active. All earlier transactions
will either be committed and visible, or rolled back.

Xmax First as-yet-unassigned txid. All txids greater than or equal to this are
not yet started as of the time of the snapshot, so they are invisible.

xip_list | Active txids at the time of the snapshot. The list includes only those
active txids between xmin and xmax; there might be active txids
higher than xmax. A txid that is xmin <= txid < xmax and not in this
list was already completed at the time of the snapshot, and is either
visible or dead according to its commit status. The list does not
include txids of subtransactions.

txid_snapshot's textual representation is xmin:xmax:xip_list.

For example: 10:20:10,14,15 means xmin=10, xmax=20, xip_list=10, 14, 15.

Computing Node Group Function
pv_compute_pool_workload()
Description: Load status of a computing Node Group.
Return type: void

For example:

SELECT * from pv_compute_pool_workload();
nodename | rpinuse | maxrp | nodestate

+ + +

datanode1 | 0| 1000 | normal

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 226

Data Warehouse Service

SQL Syntax

6 Functions and Operators

datanode?2 | 0] 1000 | normal
(2 rows)

Lock Information Function

pgxc_get_lock_conflicts()

Description: Obtains information about conflicting locks in the cluster. When a
lock is waiting for another lock or another lock is waiting for it, a lock conflict
occurs.

Return type: setof record

6.25 System Administration Functions

6.25.1 Configuration Settings Functions

Configuration setting functions are used for querying and modifying configuration
parameters during running.

current_setting(setting_name)

Description: Specifies the current setting.

Return type: text

Note: current_setting obtains the current setting of setting_name by query.
It is equivalent to the SHOW statement. For example:

SELECT current_setting('datestyle');

current_setting

ISO, MDY
(1 row)

set_config(setting_name, new_value, is_local)
Description: Sets the parameter and returns a new value.
Return type: text

Note: set_config sets the parameter setting_name to new_value. If is_local
is true, the new value will only apply to the current transaction. If you want
the new value to apply for the current session, use false instead. The function
corresponds to the SET statement. For example:

SELECT set_config('log_statement_stats', 'off', false);

set_config

off
(1 row)

6.25.2 Universal File Access Functions

Universal file access functions provide local access interfaces for files on a
database server. Only files in the database cluster directory and the log_directory
directory can be accessed. Use a relative path for files in the cluster directory, and
a path matching the log_directory configuration setting for log files. Only
database system administrators can use these functions.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 227

Data Warehouse Service

SQL Syntax

6 Functions and Operators

pg_ls_dir(dirname text)
Description: Lists files in a directory.
Return type: setof text

Note: pg_ls_dir returns all the names in the specified directory, except the

special entries "." and "..".

For example:

SELECT pg_ls_dir('./");
pg_ls_dir

.postgresqgl.conf.swp

postgresql.conf

pg_tblspc

PG_VERSION

pg_ident.conf

core

server.crt

pg_serial

pg_twophase

postgresql.conf.lock

pg_stat_tmp

pg_notify

pg_subtrans

pg_ctl.lock

pg_xlog

pg_clog
base

pg_snapshots
postmaster.opts
postmaster.pid
server.key.rand
server.key.cipher
pg_multixact
pg_errorinfo
server.key
pg_hba.conf
pg_replslot
.pg_hba.conf.swp
cacert.pem
pg_hba.conf.lock
global
gaussdb.state
(32 rows)

pg_read_file(filename text, offset bigint, length bigint)

Description: Returns the content of a text file.
Return type: text

Note: pg_read_file returns part of a text file. It can return a maximum of
length bytes from offset. The actual size of fetched data is less than length if
the end of the file is reached first. If offset is negative, it is the length rolled
back from the file end. If offset and length are omitted, the entire file is

returned.

For example:
SELECT pg_read_file('postmaster.pid',0,100);

pg_read_file
53078 +
/srv/BigData/hadoop/datal/coordinator+
1500022474 +
253088000 +
/var/run/Fusioninsight +
localhost +

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

228

Data Warehouse Service

SQL Syntax

6 Functions and Operators

2
(1 row)

pg_read_binary_file(filename text [, offset bigint, length bigint,missing_ok
boolean])

Description: Returns the content of a binary file.
Return type: bytea

Note: pg_read_binary_file is similar to pg_read_file, except that the result is
a bytea value; accordingly, no encoding checks are performed. In combination
with the convert_from function, this function can be used to read a file in a
specified encoding:

SELECT convert_from(pg_read_binary_file(' filename'), 'UTF8');

pg_stat_file(filename text)

Description: Returns status information about a file.

Return type: record

Note: pg_stat_file returns a record containing the file size, last access
timestamp, last modification timestamp, last file status change timestamp,
and a boolean value indicating if it is a directory. Typical use cases are as
follows:

SELECT * FROM pg_stat_file(' filename');
SELECT (pg_stat_file('filename')).modification;

Examples:
SELECT * FROM pg_stat_file('postmaster.pid');

size | access | modification | change
| creation | isdir
+ + +
oo Fommee
117 | 2017-06-05 11:06:34+08 | 2017-06-01 17:18:08+08 | 2017-06-01 17:18:08+08
| | f
(1 row)
SELECT (pg_stat_file(‘postmaster.pid')).modification;
modification

2017-06-01 17:18:08+08
(1 row)

6.25.3 Server Signaling Functions

Server signaling functions send control signals to other server processes. Only
system administrators can use these functions.

pg_cancel_backend(pid int)
Description: Cancels the current query of a backend.
Return type: boolean

Note: pg_cancel_backend sends a query cancellation (SIGINT) signal to the
backend process identified by pid. The PID of an active backend process can
be found in the pid column of the pg_stat_activity view, or can be found by
listing the database process using ps on the server.

pg_reload_conf()
Description: Causes all server processes to reload their configuration files.
Return type: boolean

Note: pg_reload_conf sends a SIGHUP signal to the server. As a result, all
server processes reload their configuration files.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 229

Data Warehouse Service
SQL Syntax 6 Functions and Operators

e pg_rotate_logfile()
Description: Rotates the log files of the server.
Return type: boolean

Note: pg_rotate_logfile instructs the log file manager to immediately switch
to a new output file. This function is valid only if the built-in log collector is
running.

e pg_terminate_backend(pid int)
Description: Terminates a backend thread.
Return type: boolean

Note: Each of these functions returns true if they are successful and false
otherwise.

For example:

SELECT pid from pg_stat_activity;
pid

140657876268816
140433774061312
140433587902208
140433656592128
140433723717376
140433637189376
140433552770816
140433481983744
140433349310208
(1 rows)

SELECT pg_terminate_backend(140657876268816);
pg_terminate_backend

6.25.4 Backup and Restoration Control Functions

Backup Control Functions
Backup control functions help online backup.

e pg_create_restore_point(name text)

Description: Creates a named point for performing the restore operation
(restricted to system administrators).

Return type: text

Note: pg_create_restore_point creates a named transaction log record that
can be used as a restoration target, and returns the corresponding transaction
log location. The given name can then be used with recovery_target_name
to specify the point up to which restoration will proceed. Avoid creating
multiple restoration points with the same name, since restoration will stop at
the first one whose name matches the restoration target.

e pg_current_xlog_location()
Description: Obtains the write position of the current transaction log.
Return type: text

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 230

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Note: pg_current_xlog_location displays the write position of the current
transaction log in the same format as those of the previous functions. Read-
only operations do not require rights of the system administrator.

pg_current_xlog_insert_location()
Description: Obtains the insert position of the current transaction log.
Return type: text

Note: pg_current_xlog_insert_location displays the insert position of the
current transaction log. The insertion point is the logical end of the
transaction log at any instant, while the write location is the end of what has
been written out from the server's internal buffers. The write position is the
end that can be detected externally from the server. This operation can be
performed to archive only some of completed transaction log files. The insert
position is mainly used for commissioning the server. Read-only operations do
not require rights of the system administrator.

pg_start_backup(label text [, fast boolean])

Description: Starts executing online backup (restricted to system
administrators or replication roles).

Return type: text

Note: pg_start_backup receives a user-defined backup label (usually the
name of the position where the backup dump file is stored). This function
writes a backup label file to the data directory of the database cluster and
then returns the starting position of backed up transaction logs in text mode.

SELECT pg_start_backup('label_goes_here');
pg_start_backup

0/3000020
(1 row)

pg_stop_backup()

Description: Completes online backup (restricted to system administrators or
replication roles).

Return type: text

Note: pg_stop_backup deletes the label file created by pg_start_backup and
creates a backup history file in the transaction log archive area. The history
file includes the label given to pg_start_backup, the starting and ending
transaction log locations for the backup, and the starting and ending times of
the backup. The return value is the backup's ending transaction log location.
After the ending position is calculated, the insert position of the current
transaction log automatically goes ahead to the next transaction log file. This
way, the ended transaction log file can be immediately archived so that
backup is complete.

pg_switch_xlog()

Description: Switches to a new transaction log file (restricted to system
administrators).

Return type: text

Note: pg_switch_xlog moves to the next transaction log file so that the
current log file can be archived (if continuous archive is used). The return
value is the ending transaction log location + 1 within the just-completed
transaction log file. If there has been no transaction log activity since the last
transaction log switchover, pg_switch_xlog will do nothing but return the
start location of the transaction log file currently in use.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 231

Data Warehouse Service

SQL Syntax

6 Functions and Operators

pg_xlogfile_name(location text)

Description: Converts the position string in a transaction log to a file name.
Return type: text

Note: pg_xlogfile_name extracts only the transaction log file name. If the
given transaction log position is the transaction log file border, a transaction
log file name will be returned for both the two functions. This is usually the

desired behavior for managing transaction log archiving, since the preceding
file is the last one that currently needs to be archived.

pg_xlogfile_name_offset(location text)

Description: Converts the position string in a transaction log to a file name
and returns the byte offset in the file.

Return type: text, integer
Note: pg_xlogfile_name_offset can extract transaction log file names and
byte offsets from the returned results of the preceding functions. For example:

SELECT * FROM pg_xlogfile_name_offset(pg_stop_backup());
NOTICE: pg_stop_backup cleanup done, waiting for required WAL segments to be archived
NOTICE: pg_stop_backup complete, all required WAL segments have been archived

file_name | file_offset
000000010000000000000003 | 272
(1 row)

pg_xlog_location_diff(location text, location text)

Description: pg_xlog_location_diff calculates the difference in bytes between
two transaction log locations.

Return type: numeric

pg_cbm_tracked_location()

Description: Queries for the LSN location parsed by CBM.
Return type: text

pg_cbm_get_merged_file(startLSNArg text, endLSNArg text)

Description: Combines CBM files within the specified LSN range into one and
returns the name of the combined file.

Return type: text
pg_cbm_get_changed_block(startLSNArg text, endLSNArg text)

Description: Combines CBM files within the specified LSN range into a table
and return records of this table.

Return type: record

Note: The table columns include the start LSN, end LSN, tablespace OID,
database OID, table relfilenode, table fork number, whether the table is
deleted, whether the table is created, whether the table is truncated, number
of pages in the truncated table, number of modified pages, and list of No. of
modified pages.

pg_cbm_recycle_file(slotName name, targetLSNArg text)

Description: Deletes the CBM files that are no longer used and returns the
first LSN after the deletion. If slotName is empty, targetLSNArg is used as
the recycling point. During backup and DR, you need to specify a slot name
due to parallelism. Record the targetLSNArg value of the task to the slot,
traverse all backup slots, and find the smallest LSN as the recycling point.

Return type: text

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 232

Data Warehouse Service

SQL Syntax

6 Functions and Operators

pg_cbm_force_track(targetLSNArg text,timeOut int)

Description: Forcibly executes the CBM trace to the specified Xlog position and
returns the Xlog position of the actual trace end point.

Return type: text
pg_enable_delay_ddl_recycle()

Description: Enables DDL delay and returns the Xlog position of the enabling
point.

Return type: text
pg_disable_delay_ddl_recycle(barrierLSNArg text, isForce bool)

Description: Disables DDL delay and returns the Xlog range where DDL delay
takes effect.

Return type: record
pg_enable_delay_xlog_recycle()
Description: Enables Xlog recycle delay.
Return type: void
pg_disable_delay_xlog_recycle()
Description: Disables Xlog recycle delay.
Return type: void

pgxc_get_senders_catchup_time()

Description: Displays the catchup information of the currently active primary/
standby instance sending thread on all DNs.

Return type: record
The following information is returned:

Table 6-11 pgxc_get_senders_catchup_time() columns

Name Type Description

node_name text Node name

lwpid integer Current sender lwpid

local_role text Local role

peer_role text Peer role

state text Current sender's
replication status

sender text Current sender type

catchup_start

timestamp with time
zone

Startup time of a
catchup task

catchup_end

timestamp with time
zone

End time of a catchup
task

catchup_type

text

Catchup task type, full
or incremental

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

233

Data Warehouse Service

SQL Syntax 6 Functions and Operators
Name Type Description
catchup_bcm_filename | text BCM file executed by

the current catchup
task
catchup_bcm_finished integer Number of BCM files

completed by a
catchup task

catchup_bcm_total integer Total number of BCM
files to be operated by
a catchup task

catchup_percent text Completion percentage
of a catchup task

catchup_remaining_tim | text Estimated remaining

e time of a catchup task

Restoration Control Functions

Restoration control functions provide information about the status of standby
nodes. These functions may be executed both during restoration and in normal
running.

e pg_is_in_recovery()

Description: Returns true if restoration is still in progress.
Return type: bool
e pg_last_xlog_receive_location()

Description: Gets the last transaction log location received and synchronized
to disk by streaming replication. While streaming replication is in progress,
this will increase monotonically. If restoration has completed, then this value
will remain static at the value of the last WAL record received and
synchronized to disk during restoration. If streaming replication is disabled or
if not yet started, the function return will return NULL.

Return type: text
e pg_last_xlog_replay_location()

Description: Gets last transaction log location replayed during restoration. If
restoration is still in progress, this will increase monotonically. If restoration
has completed, then this value will remain static at the value of the last WAL
record received during that restoration. When the server has been started
normally without restoration, the function returns NULL.

Return type: text
e pg_last_xact_replay_timestamp()

Description: Gets the timestamp of last transaction replayed during
restoration. This is the time to commit a transaction or abort a WAL record on
the primary node. If no transactions have been replayed during restoration,
this function will return NULL. Otherwise, if restoration is still in progress, this
will increase monotonically. If restoration has completed, then this value will

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 234

Data Warehouse Service
SQL Syntax 6 Functions and Operators

remain static at the value of the last WAL record received during that
restoration. If the server normally starts without manual intervention, this
function will return NULL.

Return type: timestamp with time zone
Restoration control functions control restoration processes. These functions may
be executed only during restoration.
e pg_is_xlog_replay_paused()
Description: Returns true if restoration is paused.
Return type: bool
e pg_xlog_replay_pause()
Description: Pauses restoration immediately.
Return type: void
e pg_xlog_replay_resume()
Description: Restarts restoration if it was paused.
Return type: void
While restoration is paused, no further database changes are applied. In hot
standby mode, all new queries will see the same consistent snapshot of the

database, and no further query conflicts will be generated until restoration is
resumed.

If streaming replication is disabled, the paused state may continue indefinitely
without problem. While streaming replication is in progress, WAL records will
continue to be received, which will eventually fill available disk space. This
progress depends on the duration of the pause, the rate of WAL generation, and
available disk space.
e pg_xlog_replay_completion()

Description: Displays the progress of xlog redo on the current DN.

Return type: record

The following information is returned:

Table 6-12 pg_xlog_replay_completion() columns

Column Type Description

replay_start integer Start LSN of xlog redo

replay_current integer LSN of the current replay of xlog
redo

replay_end integer Maximum LSN that requires xlog
redo

replay_percent integer Completion percentage of xlog redo

e pg_data_sync_from_dummy_completion()

Description: Displays the progress of data page file synchronization during the
failover on the current DN.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 235

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Return type: record
The following information is returned:

Table 6-13 pg_data_sync_from_dummy_completion() columns

Column Type Description

start_index integer Start LSN of data page
file synchronization

current_index integer Current LSN of data
page file
synchronization

total_index integer Maximum LSN of data
page file

synchronization

sync_percent integer Completion percentage
of data page files

e gs_roach_stop_backup(backupid text)

Description: Stops a backup started by the internal backup tool GaussRoach
and returns the position where the current log is inserted. This function is
similar to pg_stop_backup, but is more lightweight.

Return type: text
e gs_roach_enable_delay_ddl_recycle(backupid name)

Description: Enables DDL delay and returns the log position of the enabling
point. This function is similar to pg_enable_delay_ddl_recycle, but is more
lightweight. In addition, this function allows you to enable DDL delay for
multiple backups.

Return type: text
e gs_roach_disable_delay_ddl_recycle(backupid text)

Description: Disables DDL delay, returns the logs for which DDL delay takes
effect, and deletes the physical files of the column-store tables that have
been deleted by the user. This function is similar to
pg_enable_delay_ddl_recycle, but is more lightweight. In addition, this
function allows you to disable DDL delay for multiple backups.

Return type: record
e gs_roach_switch_xlog(request_ckpt bool)

Description: Switches the currently used log segment file and returns the
position of the segment log. If the value of request_ckpt is true, a full check
point is triggered.

Return type: text
e pg_resume_bkp_flag(backupid name)

Description: Resumes the delay xlog flag from a specified backup and returns
start_backup_flag boolean, to_delay boolean, ddl_delay_recycle_ptr text,
and rewind_time text.

Return type: record

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 236

Data Warehouse Service

SQL Syntax

6 Functions and Operators

6.25.5 Snapshot Synchronization Functions

Snapshot synchronization functions save the current snapshot and return its
identifier.

pg_export_snapshot()

Description: Saves the current snapshot and returns its identifier.

Return type: text

Note: pg_export_snapshot saves the current snapshot and returns a text string
identifying the snapshot. This string must be passed to clients that want to import
the snapshot. A snapshot can be imported when the set transaction snapshot
snapshot_id; command is executed. Doing so is possible only when the
transaction is set to the REPEATABLE READ isolation level. The output of the
function cannot be used as the input of set transaction snapshot.

6.25.6 Database Object Functions

Database Object Size Functions

Database object size functions calculate the actual disk space used by database
objects.

pg_column_size(any)

Description: Specifies the number of bytes used to store a particular value
(possibly compressed).

Return type: int

Note: pg_column_size displays the space for storing an independent data
value.

SELECT pg_column_size(1);
pg_column_size

(1 row)
pg_database_size(oid)

Description: Specifies the disk space used by the database with the specified
OID.

Return type: bigint
pg_database_size(name)

Description: Specifies the disk space used by the database with the specified
name.

Return type: bigint

Note: pg_database_size receives the OID or name of a database and returns
the disk space used by the corresponding object.

For example:

SELECT pg_database_size('gaussdb');
pg_database_size

51590112
(1 row)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 237

Data Warehouse Service

SQL Syntax

6 Functions and Operators

pg_relation_size(oid)

Description: Specifies the disk space used by the table with a specified OID or
index.

Return type: bigint

get_db_source_datasize()

Description: Estimates the total size of non-compressed data in the current
database.

Return type: bigint

Note: (1) ANALYZE must be performed before this function is called. (2)
Calculate the total size of non-compressed data by estimating the
compression rate of column-store tables.

For example:

analyze;

ANALYZE

select get_db_source_datasize();
get_db_source_datasize

35384925667
(1 row)

pg_relation_size(text)

Description: Specifies the disk space used by the table with a specified name
or index. The table name can be schema-qualified.

Return type: bigint
pg_relation_size(relation regclass, fork text)

Description: Specifies the disk space used by the specified bifurcating tree
('main', 'fsm', or 'vm') of a certain table or index.

Return type: bigint

pg_relation_size(relation regclass)

Description: Is an abbreviation of pg_relation_size(..., 'main').
Return type: bigint

Note: pg_relation_size receives the OID or name of a table, index, or
compressed table, and returns the size.

pg_partition_size(oid,oid)

Description: Specifies the disk space used by the partition with a specified
OID. The first oid is the OID of the table and the second oid is the OID of the
partition.

Return type: bigint
pg_partition_size(text, text)

Description: Specifies the disk space used by the partition with a specified
name. The first text is the table name and the second text is the partition
name.

Return type: bigint
pg_partition_indexes_size(oid,oid)

Description: Specifies the disk space used by the index of the partition with a
specified OID. The first oid is the OID of the table and the second oid is the
OID of the partition.

Return type: bigint

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 238

Data Warehouse Service

SQL Syntax

6 Functions and Operators

pg_partition_indexes_size(text,text)

Description: Specifies the disk space used by the index of the partition with a
specified name. The first text is the table name and the second text is the
partition name.

Return type: bigint
pg_indexes_size(regclass)

Description: Specifies the total disk space used by the index appended to the
specified table.

Return type: bigint
pg_size_pretty(bigint)

Description: Converts the calculated byte size into a size readable to human
beings.

Return type: text
pg_size_pretty(numeric)

Description: Converts the calculated byte size indicated by a numeral into a
size readable to human beings.

Return type: text

Note: pg_size_pretty formats the results of other functions into a human-
readable format. KB/MB/GB/TB can be used.

pg_table_size(regclass)

Description: Specifies the disk space used by the specified table, excluding
indexes (but including TOAST, free space mapping, and visibility mapping).

Return type: bigint
pg_total_relation_size(oid)

Description: Specifies the disk space used by the table with a specified OID,
including the index and the compressed data.

Return type: bigint
pg_total_relation_size(regclass)

Description: Specifies the total disk space used by the specified table,
including all indexes and TOAST data.

Return type: bigint
pg_total_relation_size(text)

Description: Specifies the disk space used by the table with a specified name,
including the index and the compressed data. The table name can be schema-
qualified.

Return type: bigint

Note: pg_total_relation_size receives the OID or name of a table or a
compressed table, and returns the sizes of the data, related indexes, and the
compressed table in bytes.

Database Object Position Functions

pg_relation_filenode(relation regclass)
Description: Specifies the ID of a filenode with the specified relationship.
Return type: oid

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 239

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Description: pg_relation_filenode receives the OID or name of a table, index,
sequence, or compressed table, and returns the filenode number allocated to
it. The filenode is the basic component of the file name used by the
relationship. For most tables, the result is the same as that of
pg_class.relfilenode. For the specified system directory, relfilenode is 0 and
this function must be used to obtain the correct value. If a relationship that is
not stored is transmitted, such as a view, this function returns NULL.

e pg_relation_filepath(relation regclass)
Description: Specifies the name of a file path with the specified relationship.
Return type: text

Description: pg_relation_filepath is similar to pg_relation_filenode, except
that pg_relation_filepath returns the whole file path name for the
relationship (relative to the data directory PGDATA of the database cluster).

6.25.7 Advisory Lock Functions

Advisory lock functions manage advisory locks. These functions are only for
internal use currently.
e pg_advisory_lock(key bigint)

Description: Obtains an exclusive session-level advisory lock.

Return type: void

Note: pg_advisory_lock locks resources defined by an application. The
resources can be identified using a 64-bit or two nonoverlapped 32-bit key
values. If another session locks the resources, the function blocks the
resources until they can be used. The lock is exclusive. Multiple locking
requests are pushed into the stack. Therefore, if the same resource is locked
three times, it must be unlocked three times so that it is released to another
session.

e pg_advisory_lock(key1 int, key2 int)
Description: Obtains an exclusive session-level advisory lock.
Return type: void

e pg_advisory_lock_shared(key bigint)
Description: Obtains a shared session-level advisory lock.
Return type: void

e pg_advisory_lock_shared(key1 int, key2 int)
Description: Obtains a shared session-level advisory lock.
Return type: void

Note: pg_advisory_lock_shared works in the same way as pg_advisory_lock,
except the lock can be shared with other sessions requesting shared locks.
Only would-be exclusive lockers are locked out.

e pg_advisory_unlock(key bigint)
Description: Releases an exclusive session-level advisory lock.
Return type: boolean

e pg_advisory_unlock(key1 int, key2 int)
Description: Releases an exclusive session-level advisory lock.
Return type: boolean

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 240

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Note: pg_advisory_unlock releases the obtained exclusive advisory lock. If the
release is successful, the function returns true. If the lock was not held, it will
return false. In addition, a SQL warning will be reported by the server.

pg_advisory_unlock_shared(key bigint)

Description: Releases a shared session-level advisory lock.
Return type: boolean

pg_advisory_unlock_shared(key1 int, key2 int)
Description: Releases a shared session-level advisory lock.
Return type: boolean

Note: pg_advisory_unlock_shared works in the same way as
pg_advisory_unlock, except it releases a shared session-level advisory lock.

pg_advisory_unlock_all()
Description: Releases all advisory locks owned by the current session.
Return type: void

Note: pg_advisory_unlock_all releases all advisory locks owned by the
current session. The function is implicitly invoked when the session ends even
if the client is abnormally disconnected.

pg_advisory_xact_lock(key bigint)

Description: Obtains an exclusive transaction-level advisory lock.
Return type: void

pg_advisory_xact_lock(key1 int, key2 int)

Description: Obtains an exclusive transaction-level advisory lock.
Return type: void

Note: pg_advisory_xact_lock works in the same way as pg_advisory_lock,
except the lock is automatically released at the end of the current transaction
and cannot be released explicitly.

pg_advisory_xact_lock_shared(key bigint)

Description: Obtains a shared transaction-level advisory lock.
Return type: void

pg_advisory_xact_lock_shared(key1 int, key2 int)

Description: Obtains a shared transaction-level advisory lock.
Return type: void

Note: pg_advisory_xact_lock_shared works in the same way as
pg_advisory_lock_shared, except the lock is automatically released at the
end of the current transaction and cannot be released explicitly.

pg_try_advisory_lock(key bigint)
Description: Obtains an exclusive session-level advisory lock if available.
Return type: boolean

Note: pg_try_advisory_lock is similar to pg_advisory_lock, except
pg_try_advisory_lock does not block the resource until the resource is
released. pg_try_advisory_lock either immediately obtains the lock and
returns true or returns false, which indicates the lock cannot be performed
currently.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 241

Data Warehouse Service

SQL Syntax

6 Functions and Operators

pg_try_advisory_lock(key1 int, key2 int)

Description: Obtains an exclusive session-level advisory lock if available.
Return type: boolean

pg_try_advisory_lock_shared(key bigint)

Description: Obtains a shared session-level advisory lock if available.
Return type: boolean

pg_try_advisory_lock_shared(key1 int, key2 int)

Description: Obtains a shared session-level advisory lock if available.
Return type: boolean

Note: pg_try_advisory lock_shared is similar to pg_try_advisory_lock, except
pg_try_advisory_lock_shared attempts to obtain a shared lock instead of an
exclusive lock.

pg_try_advisory_xact_lock(key bigint)

Description: Obtains an exclusive transaction-level advisory lock if available.
Return type: boolean

pg_try_advisory_xact_lock(key1 int, key2 int)

Description: Obtains an exclusive transaction-level advisory lock if available.
Return type: boolean

Note: pg_try_advisory_xact_lock works in the same way as
pg_try_advisory_lock, except the lock, if acquired, is automatically released at
the end of the current transaction and cannot be released explicitly.

pg_try_advisory_xact_lock_shared(key bigint)

Description: Obtains a shared transaction-level advisory lock if available.
Return type: boolean

pg_try_advisory_xact_lock_shared(key1 int, key2 int)

Description: Obtains a shared transaction-level advisory lock if available.
Return type: boolean

Note: pg_try_advisory xact_lock_shared works in the same way as
pg_try_advisory_lock_shared, except the lock, if acquired, is automatically
released at the end of the current transaction and cannot be released
explicitly.

6.25.8 Residual File Management Functions

Functions for Obtaining the Residual File List

pg_get_residualfiles()

Description: Obtains all residual file records of the current node. This function
is an instance-level function and is irrelevant to the current database. It can
run on any instance.

Parameter type: none
Return type: record
The following table describes return columns.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 242

Data Warehouse Service

SQL Syntax 6 Functions and Operators
Column Type Description
isverified bool Verified or not
isdeleted bool Deleted or not
dbname text Database name
residualfile | text Data file path
filepath text Residual file path
notes text Notes
Example:

select * from pg_get_residualfiles();
isverified | isdeleted | dbname | residualfile | filepath | notes

+ + + + +

f | f | db2 | base/49155/114691 | pgrf_20200908160211441546 |
f | f | db2 | base/49155/114694 | pgrf_20200908160211441546 |
f | f | db2 | base/49155/114696 | pgrf_20200908160211441546 |
(3 rows)

e pgxc_get_residualfiles()

Description: Unified CN query function of pg_get_residualfiles() This function
is a cluster-level function and is irrelevant to the current database. It runs on
CNs.

Parameter type: none
Return type: record
The following table describes return columns.

Column Type Description

nodename text Node name

isverified bool Verified or not

isdeleted bool Deleted or not

dbname text Database name

residualfile | text Data file path

filepath text Residual file path

notes text Notes
Example:
select * from pgxc_get_residualfiles();

nodename | isverified | isdeleted | dbname | residualfile | filepath | notes
cn_5001 | f | f | gaussdb | base/15092/32803 | pgrf_20200910170129360401 |
dn_6001_6002 | f | f | db2 | base/49155/114691 | pgrf_20200908160211441546 |
dn_6001_6002 | f | f | db2 | base/49155/114694 | pgrf 20200908160211441546 |

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 243

Data Warehouse Service
SQL Syntax 6 Functions and Operators

dn_6001_6002 | f | f | db2 | base/49155/114696 | pgrf_20200908160211441546 |
(4 rows)

Functions for Verifying Residual Files
e pg_verify_residualfiles(filepath)

Description: Verifies whether the file recorded in the parameter specified file
is a residual file. This function is an instance-level function and is related to
the current database. It can run on any instance.

Parameter type: text
Return type: bool
The following table describes return columns.

Column Type Description

isverified bool Verification completed or not

Example:

select * from pg_verify_residualfiles('pgrf_20200908160211441546');
isverified

(10 NOTE

This function only verifies whether the recorded file is a residual file in the current
database. If the recorded file is not in the current database, the verification is not
applicable.

e pg_verify_residualfiles()

Description: Verifies whether recorded files on all residual file lists of the
current instance are residual files. This function is an instance-level function
and is related to the current database. It can run on any instance.

Parameter type: none
Return type: record
The following table describes return columns.

Column Type Description
result bool Verification completed or not
filepath text Residual file path
notes text Notes
Example:
select * from pg_verify_residualfiles();
result | filepath | notes

+ +

t | pgrf_20200908160211441546 |
(1 row)

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 244

Data Warehouse Service

SQL Syntax

6 Functions and Operators

(11 NOTE

This function only verifies whether the recorded file is a residual file in the current
database. If the recorded file is not in the current database, the verification is not
applicable.

pgxc_verify_residualfiles()

Description: Unified CN query function of pg_verify_residualfiles() This
function is a cluster-level function and is related to the current database. It
runs on CNs.

Parameter type: none
Return type: record
The following table describes return columns.

Column Type Description
nodename text Node name
result bool Verification completed or not
filepath text Residual file path
notes text Notes
Example:
select * from pgxc_verify_residualfiles();
nodename | result | filepath | notes

cn_5001 |t | pgrf_20200910170129360401 |
dn_6001_6002 | t | pgrf_20200908160211441546 |
(2 rows)

(1] NOTE

This function only verifies whether the recorded file is a residual file in the current
database. If the recorded file is not in the current database, the verification is not
applicable.

pg_is_residualfiles(residualfile)

Description: Queries whether a specified relfilenode is a residual file in the
current database. This function is an instance-level function and is related to
the current database. It can run on any instance.

Parameter type: text
Return type: bool
The following table describes return columns.

Column Type Description

result bool Residual file or not
Example:
select * from pg_is_residualfiles('base/49155/114691');

result

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 245

Data Warehouse Service
SQL Syntax 6 Functions and Operators

This function only verifies whether the recorded file is a residual file in the current
database. If the recorded file is not in the current database, it is verified as a residual
file.

For example, the file base/15092/14790 is not regarded as a residual file in a
postgres database, but it is regarded as a residual file in other databases.

select * from pg_is_residualfiles('base/15092/14790");
result

(1 row)

\c db2
db2=# select * from pg_is_residualfiles(‘base/15092/14790');

result

Functions for Deleting Residual Files
e pg_rm_residualfiles(filepath)

Description: Deletes files from a specified residual file list on the current
instance. This function is an instance-level function and is irrelevant to the
current database. It can run on any instance.

Parameter type: text
Return type: record
The following table describes return columns.

Column Type Description

result bool Deletion completed or not

Example:

select * from pg_rm_residualfiles('pgrf_20200908160211441599');
result

(11 NOTE

1. Residual files can be deleted only after verification using the
pg_verify_residualfiles() function.

2. All verified files, regardless which database they are in, will be deleted.

3. If all files recorded in the specified file have been deleted, the specified file will be
removed and backed up in the SPGDATA/pg_residualfile/backup directory.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 246

Data Warehouse Service

SQL Syntax

6 Functions and Operators

pg_rm_residualfiles()

Description: Deletes all files recorded on all residual file lists on the current
instance. This function is an instance-level function and is irrelevant to the
current database. It can run on any instance.

Parameter type: none
Return type: record
The following table describes return columns.

Column Type Description
result bool Deleted or not
filepath text Residual file path
notes text Notes
Example:
select * from pg_rm_residualfiles();
result | filepath | notes
+ +
t | pgrf_20200908160211441546 |
(1 row)
(O NOTE

e Residual files can be deleted only after verification using the
pg_verify_residualfiles() function.

e All verified files, regardless which database they are in, will be deleted.

e If all files recorded in the specified file have been deleted, the specified file will be
removed and backed up in the SPGDATA/pg_residualfile/backup directory.

pgxc_rm_residualfiles()

Description: Unified CN query function of pgxc_rm_residualfiles. This function
is a cluster-level function and is irrelevant to the current database. It runs on
CNs.

Parameter type: none
Return type: record
The following table describes return columns.

Column Type Description
nodename text Node name
result bool Deletion completed or not
filepath text Residual file path
notes text Notes
Example:
select * from pgxc_rm_residualfiles();
nodename | result | filepath | notes

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 247

Data Warehouse Service
SQL Syntax 6 Functions and Operators

cn_5001 |t | pgrf_20200910170129360401 |
dn_6001_6002 | t | pgrf_20200908160211441546 |
(2 rows)

Using the Residual File Management Function:
Procedure:

Step 1 Call the pgxc_get_residualfiles() function to obtain the name of the database
that has residual files.

Step 2 Go to the databases where residual files exist and call the
pgxc_verify_residualfiles() function to verify the residual files recorded in the
current database.

Step 3 Call the pgxc_rm_residualfiles() function to delete all the verified residual files.

--—-End

(11 NOTE

The pgxc residual file management function only operates on the CN and the current
primary DN, and does not verify or clear residual files on the standby DN. Therefore, after
the primary DN is cleared, you need to clear residual files on the standby DN or build the
standby DN in a timely manner. This prevents residual files on the standby DN from being
copied back to the primary DN due to incremental build after a primary/standby
switchover.

Example:
The following example uses two user-created databases, db1 and db2.
postgres=# 41

List of databases
Encoding Collate | Cty : rivileges

fp181e
fpi8le

I

I

postgres fpigle . | C

templated | fpisleo sC C | C =c/fpiB8le
| fp18le=CTc/fpi810
| =c/fp1810 +
| fpi8le=CTc/fpiBlE

templatel | fpi816

(5 rows)

1. Run the following command to obtain all residual file records of the cluster

on the CNs:
db1=# select * from pgxc_get_residualfiles() order by 4, 6; -- order by is optional.

dbl=# select * from pg> residualfiles() order by 4
nodename | d eleted | dbname | fi | notes

+
I
I
I
I
I
I
I
I
I
I

—h —h —=h —h —h —h —h —h —h —h

£
£
£
£
£
£
£
£
£
£

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 248

Data Warehouse Service

SQL Syntax

6 Functions and Operators

In the current cluster:

- Residual file records exist in the db1 and db2 databases on the
dn_6001 6002 node (active node instance).

- Residual files are displayed in the residualfile column.

- The filepath column lists the files that record residual files. These files

are stored in the pg_residualfiles directory under the instance data
directory.

Call the pgxc_verify_residualfiles() function to verify the db1 database.
db1=# select * from pgxc_verify_residualfiles();

postgres=¢ \c dbl
Mon-SSL connection (SSL connection is recommended when requiring high-security)
You are now connected to database "dbl" as user "fpiBla”.
dbl=# select * from pgxc_verify_residualfiles();
nodename | t1lepath | notes

Verification functions are at the database level. Therefore, when a verification
function is called in the db1 database, it only verifies residual files in db1.
You can call the get function again to check whether the verification is
complete.

db1=# select * from pgxc_get_residualfiles() order by 4, 6;

idualfiles() order by 4, 6;
dbname | residualfile filepath | notes

—h = =h = —h —h —h =k

As shown in the preceding figure, the residual files in the db1 database have
been verified, and the residual files in the db2 database are not verified.

Call the pgxc_rm_residualfiles() function to delete residual files.
db1=# select * from pgxc_rm_residualfiles();

dbl=¢ select * from pgxc_mm_residualfiles(});
nodename | result | filepath | notes

dn_60
(2 rows

dbl=# select * f sidualfiles() order by 6;
nodename / dbname | residualfile | notes
bonmm e s -- B

—h —h —h —h —h —h —h —h| +
o e e e

+
|
|
|
|
|
I
|
|
I

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 249

Data Warehouse Service
SQL Syntax 6 Functions and Operators

The result shows that the residual files in the db1 database are deleted

(isdeleted is marked as t) and the residual files in the db2 database are not
deleted.

In addition, nine query results are displayed. Compared with the previous
query results, a record for the residual file ending with 9438 is missing. This is
because the record file that records the residual file ending with 9438
contains only one record, which is deleted in step 3. If all residual files in a
record file are deleted, the record file is also deleted. Deleted files are backed
up in the pg_residualfiles/backup directory.

pendingdeletesfile |pgrf 0211536

02-168-244-162 | pg_residualfiles]s
33355979438 bak

5. To delete files from the db2 database, you need to call the verify function in
the db2 database and then call the rm function.

a. Go to the db2 database and call the verification function.

dbl=# \c db2
Non-SSL connection {SSL connection 1s recommended when requiring high-security)
You are now connected to database “d user "fpigle”.
db2=# select * from pgxc_verify_residu s();
nodename | resuit |
______________ +________+______
: | pgrf_:

db2=# select * from pgxc_get_residualfiles() order by ¢
nodename | i eleted | dbname |

db2=# select * from pgxc_mm_residualfiles(};
nodename result | filepath

db2=#¢ select * from pgxc_get_residualfiles(} order by 4, 6;
nodename | 1f1 isdeleted | dbname | residualfile | filepath | notes

All residual files recorded in the record file whose name ends with 8342
have been deleted, so the record file is deleted and backed up in the
backup directory. As a result, no records are found.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 250

Data Warehouse Service
SQL Syntax 6 Functions and Operators

[fpiﬁlﬁéhnat-lQE-155-244-152 pg_residualfiles]s 1s
pendingdeletesfile

16 -162 pg_residualfil Ls backup/
)8 bak pgrf 20200921153512088342 bak

6.25.9 Replication Functions

A replication function synchronizes logs and data between instances. It is a
statistics or operation method provided by the system to implement HA.

(11 NOTE

Replication functions except statistics queries are internal functions. You are not advised to
use them directly.

e pg_create_logical_replication_slot('slot_name', 'plugin_name')
Description: Creates a logical replication slot.
Parameter:
- slot_ name
Indicates the name of the streaming replication slot.

Value range: a string, supporting only letters, digits, and the following
special characters: _?-.

- plugin_name

Indicates the name of the plugin.

Value range: a string, supporting only mppdb_decoding
Return type: name, text

Note: The first return value is the slot name, and the second is the start LSN
position for decoding in the logical replication slot.

e pg_create_physical_replication_slot ('slot_name', isDummyStandby)
Description: Creates a physical replication slot.
Parameter:
- slot_name
Indicates the name of the streaming replication slot.

Value range: a string, supporting only letters, digits, and the following
special characters: _?.-

- isDummyStandby
Indicates whether the replication slot is the secondary one.
Value range: a boolean value, true or false

Return type: name, text

Note: The first return value is the slot name, and the second is the start LSN
position for decoding in the physical replication slot.

e pg_get_replication_slots()
Description: Displays information about all replication slots on the current DN.
Return type: record
The following information is returned:

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 251

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Table 6-14 pg_get_replication_slots() fields

Field Type Description

slot_name text Replication slot name

plugin name Name of the output plug-in of the
logical replication slot

slot_type text Replication slot type

datoid oid Replication slot's database OID

active boolean Whether the replication slot is active

Xmin xid Transaction ID of the replication slot

catalog_xmin text ID of the earliest-decoded

restart lsn text transaction corresponding to the

dummy_standby | boolean

logical replication slot.

Xlog file information on the
replication slot.

Indicates whether the replication
slot is the secondary one.

pg_drop_replication_slot('slot_name')

Description: Deletes a streaming replication slot.

Parameter:

slot_name
Indicates the name of the streaming replication slot.

Value range: a string, supporting only letters, digits, and the following
special characters: _?-.

Return type: void

pg_logical_slot_peek_changes('slot_name', 'LSN', upto_nchanges,
'options_name', 'options_value')

Description: Performs decoding but does not go to the next streaming
replication slot. (The decoding result will be returned again on future calls.)

Parameter:

slot_name
Indicates the name of the streaming replication slot.

Value range: a string, supporting only letters, digits, and the following
special characters: _?-.

LSN

Indicates a target LSN. Decoding is performed only when an LSN is less
than or equal to this value.

Value range: a string, in the format of xlogid/xrecoff, for example,
'"1/2AAFC60' (If this parameter is set to NULL, the target LSN indicating
the end position of decoding is not specified.)

upto_nchanges

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 252

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Indicates the number of decoded records (including the begin and

commit timestamps). Assume that there are three transactions, which

involve 3, 5, and 7 records, respectively. If upto_nchanges is 4, 8 records

of the first two transactions will be decoded. Specifically, decoding is
stopped when the number of decoded records exceeds 4 after decoding
in the first two transactions is finished.

Value range: a non-negative integer

{11 NOTE

If any of the LSN and upto_nchanges values are reached, decoding ends.

options (optional)

include-xids

Indicates whether the decoded data column contains XID
information.

Valid value: 0 and 1. The default value is 1.
o 0: The decoded data column does not contain XID information.
o 1: The decoded data column contains XID information.

skip-empty-xacts

Indicates whether to ignore empty transaction information during
decoding.

Valid value: 0 and 1. The default value is 0.

o 0: The empty transaction information is not ignored during
decoding.

o 1: The empty transaction information is ignored during
decoding.
include-timestamp

Indicates whether decoding information contains the commit
timestamp.

Valid value: 0 and 1. The default value is 0.

o 0: The decoding information does not contain the commit
timestamp.

o 1: The decoding information contains the commit timestamp.

Return type: text, uint, text

Note: The function returns the decoding result. Each decoding result contains
three columns, corresponding to the above return types and indicating the
LSN position, XID, and decoded content, respectively.

pg_logical_slot_get_changes('slot_name', 'LSN', upto_nchanges,
'options_name', 'options_value')

Description: Performs decoding and goes to the next streaming replication

slot.

Parameter: This function has the same parameters as
pg_logical_slot_peek_changes. For details, see pg_logical_slot_peek_ch....

pg_replication_slot_advance ('slot_name', 'LSN')

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 253

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Description: Directly goes to the streaming replication slot for a specified LSN,
without outputting any decoding result.

Parameter:

slot_name
Indicates the name of the streaming replication slot.

Value range: a string, supporting only letters, digits, and the following
special characters: _?-.

LSN

Indicates a target LSN. Next decoding will be performed only in
transactions whose commission position is greater than this value. If an
input LSN is smaller than the position recorded in the current streaming
replication slot, the function directly returns. If the input LSN is greater
than the LSN of the current physical log, the latter LSN will be directly
used for decoding.

Value range: a string, in the format of xlogid/xrecoff

Return type: name, text

Note: A return result contains the slot name and LSN that is actually used for

decoding.

pg_stat_get_data_senders()

Description: Displays statistics about replication sending threads on all data
page on the current DN.

Return type: record
The following information is returned:

Table 6-15 pg_stat_get_data_senders() fields

Field Type Description

pid bigint Thread PID

sender_pid integer Current sender PID

local_role text Local role

peer_role text Peer role

state text Current sender's replication status

catchup_start

timestamp with
time zone

Startup time of a catchup task

catchup_end

timestamp with

End time of a catchup task

time zone
queue_size text Data queue size
queue_lower_tail | text Position of data queue tail 1
queue_header text Position of data queue header
queue_upper_tail | text Position of data queue tail 2

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

254

Data Warehouse Service

SQL Syntax 6 Functions and Operators

Field Type Description

send_position text Sending position of the sender

receive_position text Receiving position of the receiver

catchup_type text Catchup task type, full or
incremental

catchup_bcm_file | text BCM file executed by the current

name catchup task

catchup_bcm_finis | integer Number of BCM files completed by a

hed catchup task

catchup_bcm_tota | integer Total number of BCM files to be

[operated by a catchup task

catchup_percent | text Completion percentage of a catchup
task

catchup_remainin | text Estimated remaining time of a

g_time catchup task

e pg_stat_get wal_senders()

Description: Displays statistics about replication sending threads on all WALs
on the current DN.

Return type: record
The following information is returned:

Table 6-16 pg_stat_get_wal_senders() fields

Field Type Description

pid bigint Thread PID

sender_pid integer Current sender PID

local_role text Local role

peer_role text Peer role

peer_state text Peer status

state text Current sender's replication status

catchup_start timestamp with | Startup time of a catchup task
time zone

catchup_end timestamp with End time of a catchup task
time zone

sender_sent_loca | text Location where the sender sends

tion LSNs

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 255

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Field Type

Description

sender_write_loc | text
ation

Location where the sender writes
LSNs

sender_flush_loc | text
ation

Location where the sender flushes
LSNs

sender_replay_lo | text
cation

Location where the sender replays
LSNs

receiver_received | text
_location

Location where the receiver receives
LSNs

receiver_write_lo | text
cation

Location where the receiver writes
LSNs

receiver_flush _lo | text
cation

Location where the receiver flushes
LSNs

receiver_replay_l | text

Location where the receiver replays

ocation LSNs

sync_percent text Specifies the synchronization
percentage.

sync_state text Synchronization state (asynchronous
duplication, synchronous duplication,
or potential synchronization)

sync_priority integer Priority of synchronous duplication

(0 indicates asynchronization)

sync_most_availa | text

Whether to block the active node

ble when the synchronization on the
standby node fails
channel text WALSender channel information

pg_stat_get_wal_receiver()

Description: Displays statistics about replication receiving threads on all WALs

on the current DN.
Return type: record
The following information is returned:

Table 6-17 pg_stat_get_wal_receiver()

Field Type Description
receiver_pid integer Current receiver PID
local_role text Local role

peer_role text Peer role

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 256

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Field Type Description

peer_state text Peer status

state text Current receiver's replication status

sender_sent_loca | text Location where the sender sends

tion LSNs

sender_write_loc | text Location where the sender writes

ation LSNs

sender_flush_loc | text Location where the sender flushes

ation LSNs

sender_replay_lo | text Location where the sender replays

cation LSNs

receiver_received | text Location where the receiver receives

_location LSNs

receiver_write_lo | text Location where the receiver writes

cation LSNs

receiver_flush_lo | text Location where the receiver flushes

cation LSNs

receiver_replay_| | text Location where the receiver replays

ocation LSNs

sync_percent text Specifies the synchronization
percentage.

channel text WALReceiver channel information

pg_stat_get_stream_replications()

Description: Displays information about all replication statistics on the current

DN.

Return type: record
The following information is returned:

Table 6-18 pg_stat_get_stream_replications()

n

Field Type Description
local_role text Local role
static_connection | integer Connection statistics
s

db_state text Database status
detail_informatio | text Detail information

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 257

Data Warehouse Service

SQL Syntax

6 Functions and Operators

pg_stat_xlog_space()

Description: Displays the Xlog space usage on the current DN.
Return type: record

The following information is returned:

Table 6-19 pg_stat_xlog_space()

Column Type Description

xlog_files bigint Number of all identified xlog files in
the pg_xlog directory, excluding the
backup and archive_status
subdirectories.

xlog_size bigint Total size (MB) of all identified xlog
files in the pg_xlog directory,
excluding the backup and
archive_status subdirectories.

other_size bigint Total size (MB) of files in the
backup and archive_status
subdirectories of the pg_xlog

directory.

pgxc_stat_xlog_space()

Description: Displays the Xlog space usage on all active DNs.
Return type: record

The following information is returned:

Table 6-20 pgxc_stat_xlog_space()

Column Type Description
node_name name Node name
xlog_files bigint Number of all identified xlog files in

the pg_xlog directory, excluding the
backup and archive_status
subdirectories.

xlog_size bigint Total size (MB) of all identified xlog
files in the pg_xlog directory,
excluding the backup and
archive_status subdirectories.

other_size bigint Total size (MB) of files in the
backup and archive_status
subdirectories of the pg_xlog
directory.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 258

Data Warehouse Service

SQL Syntax

6 Functions and Operators

6.25.10 Other Functions

pgxc_pool_check()

Description: Checks whether the connection data buffered in the pool is
consistent with pgxc_node.

Return type: boolean

pgxc_pool_reload()

Description: Updates the connection information buffered in the pool.
Return type: boolean

pgxc_lock_for_backup()

Description: Locks the cluster before backup. Backup is performed to restore
data on new nodes.

Return type: boolean

(10 NOTE

pgxc_lock_for_backup locks a cluster before gs_dump or gs_dumpall is used to back
up the cluster. After a cluster is locked, operations changing the system structure are
not allowed. This function does not affect DML statements.

pg_pool_validate(clear boolean, co_node_name cstring)

Description: Clears invalid backend threads on a CN. (These backend threads
hold invalid pooler connections to standby DNs.)

Return type: record

pg_nodes_memory()

Description: queries the memory usage of all nodes.

Return type: record

table_skewness(text)

Description: queries the percentage of table data among all nodes.

Parameter: Indicates that the type of the name of the to-be-queried table is
text.

Return type: record
table_skewness(table_name text, column_name text[, row_num text])

Description: Queries the proportion of column data distributed on each node
based on the hash distribution rule. The results are sorted based on the data
volumes of the nodes.

Parameters: table_name indicates a table name, column_name indicates a
column name, and row_num indicates that all data in the current column is
returned. The default value is 0. A value other than 0 indicates the number of
data records whose statistics are sampled. (Records are randomly sampled.)

Return type: record

Example:

Distribute data by hash based on the a column in the tx table. Seven records
are distributed on DN 1, two records on DN 2, and one record on DN 0.

select table_skewness('tx','a");
table_skewness

(1,7,70.000%)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 259

Data Warehouse Service

SQL Syntax

6 Functions and Operators

(2,2,20.000%)
(0,1,10.000%)
(3 rows)

table_data_skewness(data_row record, locatorType "char")

Description: Calculates the bucket distribution index for the records
concatenated using the columns in a specified table.

Parameters: data_row indicates the record concatenated using columns in the
specified table. locatorType indicates the distribution rule. You are advised to
set locatorType to H, indicating hash distribution.

Return type: smallint
Example:

Calculates the bucket distribution index based on the hash distribution rule
for the records combined concatenated using the columns in the tx table.

select a, table_data_skewness(row(a), 'H') from tx;
a | table_data_skewness

3] 0
6| 2
7| 2
4| 1
5| 1
(5 rows)

table_distribution(schemaname text, tablename text)

Description: queries the storage space occupied by a specified table on each
node.

Parameter: Indicates that the types of the schema name and table name for
the table to be queried are both text.

Return type: record
(1O NOTE

e To query for the storage distribution of a specified table by using this function, you
must have the SELECT permission for the table.

e The performance of table_distribution is better than that of table_skewness.
Especially in a large cluster with a large amount of data, table_distribution is
recommended.

e When you use table_distribution and want to view the space usage, you can use
dnsize or (sum(dnsize) over ()) to view the percentage.
table_distribution(regclass)

Description: queries the storage space occupied by a specified table on each
node.

Parameter: indicates the name or OID of the table to be queried. The table
name can be defined by the schema name. Parameter type: regclass

Return type: record
(1 NOTE

e To query for the storage distribution of a specified table by using this function, you
must have the SELECT permission for the table.

e The performance of table_distribution is better than that of table_skewness.
Especially in a large cluster with a large amount of data, table_distribution is
recommended.

e When you use table_distribution and want to view the space usage, you can use
dnsize or (sum(dnsize) over ()) to view the percentage.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 260

Data Warehouse Service

SQL Syntax

6 Functions and Operators

table_distribution()

Description: queries the storage distribution of all tables in the current
database.

Return type: record

(11 NOTE

e This function involves the query for information about all tables in the database.
To execute this function, you must have the administrator rights.

e Based on the table_distribution() function, GaussDB(DWS) provides the
PGXC_GET_TABLE_SKEWNESS view as an alternative way to query for data skew.
You are advised to use this view when the number of tables in the database is less
than 10000.

pgxc_get_stat_dirty_tables(int dirty_percent, int n_tuples)

Description: Obtains information about insertion, update, and deletion
operations on tables and the dirty page rate of tables. This function optimizes
the performance of the PGXC_GET_STAT_ALL_TABLES view. It can quickly
filter out tables whose dirty page rate is greater than dirty_percent and
number of dead tuples is greater than n_tuples.

Return type: SETOF record
The following table describes return columns.

Name Type Description

relid oid Table OID

relname name Table name

schemaname name Schema name of the table

n_tup_ins bigint Number of inserted tuples

n_tup_upd bigint Number of updated tuples

n_tup_del bigint Number of deleted tuples

n_live_tup bigint Number of live tuples

n_dead_tup bigint Number of dead tuples

dirty_page_rate n;,lmeric(S, Dirty page rate (%) of a table
2

pgxc_get_stat_dirty_tables(int dirty_percent, int n_tuples, text schema)

Description: Obtains information about insertion, update, and deletion
operations on tables and the dirty page rate of tables. This function can
quickly filter out tables whose dirty page rate is greater than page_dirty_rate,
number of dead tuples is greater than n_tuples, and schema name is
schema.

Return type: SETOF record

The return columns of the function are the same as those of the
pgxc_get_stat_dirty_tables(int dirty_percent, int n_tuples) function.

plan_seed()

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 261

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Description: Obtains the seed value of the previous query statement (internal
use).

Return type: int
pg_stat_get_env()

Description: Obtains the environment variable information about the current
node.

Return type: record
pg_stat_get_thread()

Description: Provides information about the status of all threads under the
current node.

Return type: record
pgxc_get_os_threads()

Description: Provides information about the status of threads under all normal
nodes in a cluster.

Return type: record
pg_stat_get_sql_count()

Description: Provides statistics on the number of SELECT/UPDATE/INSERT/
DELETE/MERGE INTO statements executed by all users on the current node,
response time, and the number of DDL, DML, and DCL statements.

Return type: record

pgxc_get_sql_count()

Description: Provides statistics on the number of SELECT/UPDATE/INSERT/
DELETE/MERGE INTO statements executed by all users on all nodes of the

current cluster, response time, and the number of DDL, DML, and DCL
statements.

Return type: record
pgxc_get_workload_sqgl_count()

Description: Provides statistics on the number of SELECT/UPDATE/INSERT/
DELETE statements executed in all workload Cgroup on all CNs of the current
cluster and the number of DDL, DML, and DCL statements.

Return type: record
pgxc_get_workload_sql_elapse_time()

Description: Provides statistics on response time of SELECT/UPDATE/INSERT/
DELETE statements executed in all workload Cgroup on all CNs of the current
cluster.

Return type: record
get_instr_unique_sql()

Description: Provides information about Unique SQL statistics collected on the
current node. If the node is a CN, the system returns the complete
information about the Unique SQL statistics collected on the CN. That is, the
system collects and summarizes the information about the Unique SQL
statistics on other CNs and DNs. If the node is a DN, the Unique SQL statistics
on the DN is returned. For details, see GS_INSTR_UNIQUE_SQL.

Return type: record
reset_instr_unique_sql(cstring, cstring, INT8)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 262

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Description: Clears collected Unique SQL statistics. The input parameters are
described as follows:

- GLOBAL/LOCAL: Data is cleared from all nodes or the current node.
- ALL/BY_USERID/BY_CNID/BY_GUC: ALL indicates that all data is cleared.
BY_USERID/BY_CNID indicates that data is cleared by USERID or CNID.

BY_GUC indicates that the clearance operation is caused by the decrease
of the value of the GUC parameter instr_unique_sql_count.

- The third parameter corresponds to the second parameter. The parameter
is invalid for ALL/BY_GUC.

Return type: bool

pgxc_get_instr_unique_sql()

Description: Provides complete information about Unique SQL statistics

collected on all CNs in a cluster. This function can be executed only on CNs.

Return type: record

get_instr_unique_sql_remote_cns()

Description: Provides complete information about Unique SQL statements
collected on all CNs in the cluster, except the CN on which the function is
being executed. This function can be executed only on CNs.

Return type: record

pgxc_get_node_env()

Description: Provides the environment variable information about all nodes in
a cluster.

Return type: record

gs_switch_relfilenode()

Description: Exchanges meta information of two tables or partitions. (This is
only used for the redistribution tool. An error message is displayed when the
function is directly used by users).

Return type: int
copy_error_log_create()

Description: Creates the error table (public.pgxc_copy_error_log) required for
creating the COPY FROM error tolerance mechanism.

Return type: boolean
(0 NOTE

e This function attempts to create the public.pgxc_copy_error_log table. For details
about the table, see Table 6-21.

e Create the B-tree index on the relname column and execute REVOKE ALL on
public.pgxc_copy_error_log FROM public to manage permissions for the error
table (the permissions are the same as those of the COPY statement).

e public.pgxc_copy_error_log is a row-store table. Therefore, this function can be
executed and COPY FROM error tolerance is available only when row-store tables
can be created in the cluster. After the GUC parameter enable_hadoop_env is
enabled, row-based tables cannot be created in the cluster. The default value is off.

e Same as the error table and the COPY statement, the function requires sysadmin
or higher permissions.

e If the public.pgxc_copy_error_log table or the copy_error_log_relname_idx index
already exists before the function creates it, the function will report an error and
roll back.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 263

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Table 6-21 Error table public.pgxc_copy_error_log

Column Type Description

relname varchar Table name in the form of Schema
name.Table name

begintime timestamp with | Time when a data format error was

time zone reported

filename character varying | Name of the source data file where
a data format error occurs

rownum bigint Number of the row where a data
format error occurs in a source data
file

rawrecord text Raw record of a data format error in
the source data file To prevent a
field from being too long, the length
of the field cannot exceed 1024
bytes.

detail text Error details

pv_compute_pool_workload()

Description: Provides the current load information about computing Node

Groups on cloud.
Return type: record

pg_stat_get_status(tid, num_node_display)

Description: Queries for the blocking and waiting status of the backend
threads and auxiliary threads in the current instance. For details about the
returned results, see the PG_THREAD_WAIT_STATUS view. The input

parameters are described as follows:

- tid: thread ID, which is of the bigint type. If this parameter is null, the
waiting statuses of all backend threads and auxiliary threads are
returned. Otherwise, only the waiting statuses of threads with the

specified IDs are returned.

- num_node_display: integer type. Specifies the maximum number of
waiting nodes displayed in the wait_status column for records whose

waiting status is wait node.

" |f this parameter is left empty or set to a value less than or equal to
0, only one waiting node is displayed.

" |f the value is greater than 20, a maximum number of nodes can be

displayed is 20.

® |f the value is greater than 0 and less than or equal to 20, the
smaller value between num_node_display and the actual number of
waiting nodes is displayed. Use the SELECT * from
pg_stat_get_status(NULL, 10) query for example. If the number of
waiting nodes is greater than 10, the names of only 10 nodes are
displayed randomly. If the number of waiting nodes is less than or

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

264

Data Warehouse Service

SQL Syntax

6 Functions and Operators

equal to 10, the names of all waiting nodes are displayed. If the
number of waiting nodes is greater than the number of displayed
nodes, the displayed node names are randomly selected.

Return type: record
pgxc_get_thread_wait_status(num_node_display)

Description: Queries for the call hierarchy between threads generated by all
SQL statements on each node in a cluster, as well as the block waiting status
of each thread. For details about the returned results, see the
PGXC_THREAD_WAIT_STATUS view. The type and meaning of the input
parameter num_node_display are the same as those of the
pg_stat_get_status function.

Return type: record
pgxc_os_run_info()

Description: Obtains the running status of the operating system on each node
in a cluster. For details about the returned results, see "System Catalogs >
System Views >PV_OS_RUN_INFO" in the Developer Guide.

Return type: record
get_instr_wait_event()

Description: Obtains the waiting status and events of the current instance. For
details about the returned results, see "System Catalogs > System Views >
GS_WAIT_EVENTS" in the Developer Guide. If the GUC parameter
enable_track_wait_event is off, this function returns 0.

Return type: record
pgxc_wait_events()

Description: queries statistics about waiting status and events on each node in
a cluster. For details about the returned results, see "System Catalogs >
System Views > PGXC_WAIT_EVENTS" in the Developer Guide. If the GUC
parameter enable_track_wait_event is off, this function returns 0.

Return type: record
pgxc_stat_bgwriter()

Description: queries statistics about backend write processes on each node in
a cluster. For details about the returned results, see "System Catalogs >
System Views > PG_STAT_BGWRITER" in the Developer Guide.

Return type: record
pgxc_stat_replication()

Description: queries information about the log synchronization status on each
node in a cluster, such as the location where the logs are sent and received.
For details about the returned results, see "System Catalogs > System Views >
PG_STAT_REPLICATION" in the Developer Guide.

Return type: record
pgxc_replication_slots()

Description: queries the replication status on each DN in a cluster. For details
about the returned results, see "System Catalogs > System Views >
PG_REPLICATION_SLOTS" in the Developer Guide.

Return type: record
pgxc_settings()

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 265

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Description: queries information about runtime parameters on each node in a
cluster. For details about the returned results, see "System Catalogs > System
Views > PG_SETTINGS" in the Developer Guide.

Return type: record
pgxc_instance_time()

Description: queries the running time statistics of each node in a cluster and
the time consumed in each execution phase. For details about the returned
results, see "System Catalogs > System Views > PV_INSTANCE_TIME" in the
Developer Guide.

Return type: record
pg_stat_get_redo_stat()

Description: queries Xlog redo statistics on the current node. For details about
the returned results, see "System Catalogs > System Views > PV_REDO_STAT"
in the Developer Guide.

Return type: record
pgxc_redo_stat()

Description: queries the Xlog redo statistics of each node in a cluster. For
details about the returned results, see "System Catalogs > System Views >
PV_REDO_STAT" in the Developer Guide.

Return type: record
get_local_rel_iostat()

Description: Obtains the disk I/O statistics of the current instance. For details
about the returned results, see "System Catalogs > System Views >
GS_REL_IOSTAT" in the Developer Guide.

Return type: record
pgxc_rel_iostat()

Description: queries the disk 1/O statistics on each node in a cluster. For
details about the returned result, see "System Catalogs > System Views >
GS_REL_IOSTAT" in the Developer Guide.

Return type: record
get_node_stat_reset_time()

Description: Obtains the time when statistics of the current instance were
reset.

Return type: timestamptz
pgxc_node_stat_reset_time()

Description: queries the time when the statistics of each node in a cluster are
reset. For details about the returned result, see "System Catalogs > System
Views > GS_NODE_STAT_RESET_TIME" in the Developer Guide.

Return type: record

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 266

Data Warehouse Service
SQL Syntax 6 Functions and Operators

(11 NOTE

When an instance is running, its statistics keep rising. In the following cases, the
statistical values in the memory will be reset to 0:

. The instance is restarted or a cluster switchover occurs.
e The database is deleted.

e A reset operation is performed. For example, the statistics counter in the
database is reset using the pgstat_recv_resetcounter function or the Unique
SQL statements are cleared using the reset_instr_unique_sql function.

If any of the preceding events occurs, GaussDB(DWS) will record the time when the
statistics are reset. You can query the time using the get_node_stat_reset_time
function.

6.25.11 Resource Management Functions

This section describes the functions of the resource management module.

e gs_wlm_readjust_user_space(oid)

Description: This function calibrates the permanent storage space of a user.
The input parameter is the user OID. If the input parameter is set to 0, the
permanent storage space of all users is calibrated.

Return type: text
Example:

select gs_wlm_readjust_user_space(0);
gs_wlm_readjust_user_space

Exec Success
(1 row)

e pgxc_wlm_readjust_schema_space()

Description: This function calibrates the permanent storage space of a
schema.

Return type: text
Example:

select pgxc_wlm_readjust_schema_space();
pgxc_wlm_readjust_schema_space

Exec Success
(1 row)

e pgxc_wlm_get_schema_space(cstring)

Description: Obtains the schema space of each instance in a specified logical
cluster on the CN.

Return type: record
The following table describes return columns.

Column Type Description
schemaname text Schema name
schemaid oid Schema OID
databasename text Database name
databaseid oid Database OID

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 267

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Column Type Description
nodename text Instance name
nodegroup text Name of the node
group
usedspace bigint Size of the used space
permspace bigint Upper limit of the
space
Example:

select * from pgxc_wlm_get_schema_space('group1');
schemaname | schemaid | databasename | databaseid | nodename | nodegroup | usedspace
| permspace

+. + + + + + +
y t t t t

pg_catalog | 11 | test1 | 16384 | datanode1 | installation | 9469952 | -1

public | 2200 | gaussdb | 15253 | datanode1 | installation | 25280512 | -1
pg_toast | 99 | test1 | 16384 | datanode1 | installation | 1859584 | -1
cstore | 100 | test1 | 16384 | datanode1 | installation | 0| -1
data_redis | 18106 | gaussdb | 15253 | datanode1 | installation | 655360 | -1
data_redis | 18116 | test1 | 16384 | datanode1 | installation | 0| -1
public | 2200 | test1 | 16384 | datanode1 | installation| 16384 | -1
dbms_om | 3987 | gaussdb | 15253 | datanode1 | installation | 0| -1
dbms_job | 3988 | gaussdb | 15253 | datanode1 | installation | 0| -1
dbms_om | 3987 | test1 | 16384 | datanode1 | installation | 0| -1
dbms_job | 3988 | test1 | 16384 | datanode1 | installation | 0| -1
sys | 11693 | gaussdb | 15253 | datanode1 | installation | 0| -1

sys | 11693 | test1 | 16384 | datanode1 | installation | 0| -1
utl_file | 14644 | gaussdb | 15253 | datanode1 | installation | 0| -1
utl_raw | 14669 | gaussdb | 15253 | datanode1 | installation | 0| -1
dbms_sql | 14674 | gaussdb | 15253 | datanode1 | installation | 0| -1
dbms_output | 14662 | gaussdb | 15253 | datanode1 | installation | 0| -1
dbms_random | 14666 | gaussdb | 15253 | datanode1 | installation | 0| -1
dbms_lob | 14701 | gaussdb | 15253 | datanode1 | installation | 0| -1
information_schema | 14300 | gaussdb | 15253 | datanode1 | installation | 294912 |
-1

information_schema | 14300 | test1 | 16384 | datanode1 | installation | 294912 | -1
utl_file | 14644 | test1 | 16384 | datanode1 | installation | 0| -1
dbms_output | 14662 | test1 | 16384 | datanode1 | installation | 0| -1
dbms_random | 14666 | test1 | 16384 | datanode1 | installation | 0| -1
utl_raw | 14669 | test1 | 16384 | datanode1 | installation | 0| -1
dbms_sql | 14674 | test1 | 16384 | datanode1 | installation | 0| -1
dbms_lob | 14701 | test1 | 16384 | datanode1 | installation | 0| -1
pg_catalog | 11 | gaussdb | 15253 | datanode1 | installation | 13049856 | -1
redisuser | 16387 | gaussdb | 15253 | datanode1 | installation | 630784 | -1
pg_toast | 99 | gaussdb | 15253 | datanode1 | installation | 3080192 | -1
cstore | 100 | gaussdb | 15253 | datanode1 | installation | 2408448 | -1
pg_catalog | 11 | test1 | 16384 | datanode2 | installation | 9469952 | -1
public | 2200 | gaussdb | 15253 | datanode2 | installation | 25214976 | -1
pg_toast | 99 | test1 | 16384 | datanode2 | installation | 1859584 | -1
cstore | 100 | test1 | 16384 | datanode2 | installation | 0| -1
data_redis | 18106 | gaussdb | 15253 | datanode2 | installation | 655360 | -1
data_redis | 18116 | test1 | 16384 | datanode2 | installation | 0| -1
public | 2200 | test1 | 16384 | datanode2 | installation | 16384 | -1
dbms_om | 3987 | gaussdb | 15253 | datanode2 | installation | 0| -1
dbms_job | 3988 | gaussdb | 15253 | datanode2 | installation | 0| -1
dbms_om | 3987 | test1 | 16384 | datanode2 | installation | 0| -1
dbms_job | 3988 | test1 | 16384 | datanode2 | installation | 0| -1

pgxc_wlm_analyze_schema_space(cstring)
Description: Obtains the schema space of a specified logical cluster on the CN.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 268

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Return type: record
The following table describes return columns.

Column Type Description

schemaname | text Schema name

databasena text Database name

me

nodegroup text Name of the node group

total_value bigint Total cluster space in the current schema

avg_value bigint Average space of instances in the current
schema

skew_percent | integer Skew ratio

extend_info text Extended information, including the
maximum space of a single instance,
minimum space of a single instance, and
name of the instance with the maximum or
minimum space

Example:

select * from pgxc_wlm_analyze_schema_space('group1');
schemaname | databasename | nodegroup | total_value | avg_value | skew_percent

| extend_info

pg_catalog | test1 | installation | 56819712 | 9469952 | 0 | min:9469952
datanode1,max:9469952 datanode1

public | gaussdb | installation | 150495232 | 25082538 | 0 | min:24903680
datanode6,max:25280512 datanode1

pg_toast | test1 | installation | 11157504 | 1859584 | 0 | min:1859584
datanode1,max:1859584 datanode1

cstore | test1 | installation | 0| 0] 0 | min:0 datanode1,max:0
datanode1

data_redis | gaussdb | installation| 1966080 | 327680 | 50 | min:0 datanode4,max:
655360 datanode1

data_redis | test1 | installation | 0| 0] 0 | min:0 datanodel,max:0
datanode1

public | test1 | installation | 98304 | 16384 | 0 | min:16384 datanode1,max:
16384 datanode1

dbms_om | gaussdb | installation | 0| 0| 0 | min:0 datanode1,max:0
datanode1

dbms_job | gaussdb | installation | 0| 0| 0 | min:0 datanode1,max:0
datanode1

dbms_om | test1 | installation | 0| 0| 0 | min:0 datanode1,max:0
datanode1

dbms_job | test1 | installation | 0| 0| 0 | min:0 datanode1,max:0
datanode1

sys | gaussdb | installation | 0| 0| 0 | min:0 datanode1,max:0
datanode1

sys | test1 | installation | 0| 0| 0 | min:0 datanodel,max:0
datanode1

utl_file | gaussdb | installation | 0| 0] 0 | min:0 datanode1,max:0
datanode1

utl_raw | gaussdb | installation | 0] 0| 0 | min:0 datanode1,max:0
datanode1

dbms_sql | gaussdb | installation | 0| 0] 0 | min:0 datanode1,max:0

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 269

Data Warehouse Service

SQL Syntax 6 Functions and Operators
datanode1
dbms_output | gaussdb | installation | 0] 0] 0 | min:0 datanode1,max:0
datanode1
dbms_random | gaussdb | installation | 0] 0] 0 | min:0 datanode1,max:0
datanode1
dbms_lob | gaussdb | installation | 0] 0] 0 | min:0 datanode1,max:0
datanode1
information_schema | gaussdb | installation | 1769472 | 294912 | 0 | min:294912
datanode1,max:294912 datanode1
information_schema | test1 | installation | 1769472 | 294912 | 0 | min:294912
datanode1,max:294912 datanode1
utl_file | test1 | installation | 0] 0] 0 | min:0 datanode1,max:0
datanode1
dbms_output | test1 | installation | 0] 0] 0 | min:0 datanode1,max:0
datanode1
dbms_random | test1 | installation | 0] 0] 0 | min:0 datanode1,max:0
datanode1
utl_raw | test1 | installation | 0] 0] 0 | min:0 datanode1,max:0
datanode1
dbms_sql | test1 | installation | 0] 0] 0 | min:0 datanode1,max:0
datanode1
dbms_lob | test1 | installation | 0] 0] 0 | min:0 datanode1,max:0
datanode1
pg_catalog | gaussdb | installation | 75431936 | 12571989 | 3| min:12124160
datanode4,max:13049856 datanode1
redisuser | gaussdb | installation| 1884160 | 314026 | 50 | min:16384
datanode4,max:630784 datanode1
pg_toast | gaussdb | installation | 17154048 | 2859008 | 7 | min:2637824
datanode4,max:3080192 datanode1
cstore | gaussdb | installation | 15294464 | 2549077 | 5 | min:2408448
datanode1,max:2703360 datanode6
(31 rows)

e gs_wlm_set_queryband_action(cstring,cstring,int4)
Description: Sets the action and query order of query_band.
Return type: boolean
The following table describes the input parameters.

Name Type Description
gband cstring Query band key-value pair. The maximum
length is 63 characters.
action cstring Action associated to a query band
order int4 Query band query order. The default value is
-1.
Example:

select * from gs_wlm_set_queryband_action(‘a=1','respool=p1');
gs_wlm_set_queryband_action

t

(1 row)

select * from gs_wlm_set_queryband_action('a=3','respool=p1;priority=rush',1);
gs_wlm_set_queryband_action

t
(1 row)

e gs_wlm_set_queryband_order(cstring,int4)
Description: Sets the query_band query order.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 270

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Return type: boolean
The following table describes the input parameters.

Name Type Description
gband cstring query_band key-value pairs
order int4 query_band query order. The default value
is -1.
Example:

select * from gs_wlm_set_queryband_order('a=1',2);

gs_wlm_set_queryband_action

t
(1 row)

gs_wlm_get_queryband_action(cstring)
Description: Obtains the action and query order of query_band.

Return type: record

The following table describes return columns.

Column Type Description
gband cstring query_band key-value pairs
respool_id Oid OID of the resource pool associated with
query_band
respool text Name of the resource pool associated with
query_band
priority text Intra-queue priority associated with
query_band
gborder int4 query_band query order
Example:
select * from gs_wlm_get_queryband_action('a=1");
gband | respool_id | respool | priority | gborder
+ + +
a=1 | 16388 | p1 | Medium | -1
(1 row)

gs_cgroup_reload_conf()

Description: This function loads the Cgroup configuration file online on the
current instance.

Return type: record

The following table describes return columns.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

271

Data Warehouse Service

SQL Syntax 6 Functions and Operators
Column Type Description
node_name | text Instance name
node_host text IP address of the node where the instance is
located
result text Whether Cgroup online loading is successful
Example:

select * from gs_cgroup_reload_conf();
node_name | node_host | result

o +.

cn_5001 |192.168.178.35 | success
e pgxc_cgroup_reload_conf()

Description: This function loads the Cgroup configuration file online on all
instances of the system.

Return type: record
The following table describes return columns.

Column Type Description

node_name | text Instance name

node_host text IP address of the node where the instance is

located

result text Whether Cgroup online loading is successful
Example:
select * from pgxc_cgroup_reload_conf();

node_name | node_host | result

+ +

dn_6025_6026 | 192.168.178.177 | success
dn_6049_6050 | 192.168.179.79 | success
dn_6051_6052 | 192.168.179.79 | success
dn_6055_6056 | 192.168.179.79 | success
dn_6067_6068 | 192.168.181.57 | success
dn_6023_6024 | 192.168.178.39 | success
dn_6009_6010 | 192.168.181.21 | success
dn_6011_6012 | 192.168.181.21 | success
dn_6015_6016 | 192.168.181.21 | success
dn_6029_6030 | 192.168.178.177 | success
dn_6031_6032 | 192.168.178.177 | success
dn_6045_6046 | 192.168.179.45 | success
cn_5001 | 192.168.178.35 | success

cn_5003 | 192.168.178.39 | success

dn_6061_6062 | 192.168.181.179 | success
cn_5006 | 192.168.179.45 | success

cn_5004 | 192.168.178.177 | success

cn_5002 | 192.168.181.21 | success

cn_5005 | 192.168.178.187 | success

dn_6019_6020 | 192.168.178.39 | success
dn_6007_6008 | 192.168.178.35 | success
dn_6071_6072 | 192.168.181.57 | success
dn_6003_6004 | 192.168.178.35 | success

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 272

Data Warehouse Service
SQL Syntax 6 Functions and Operators

dn_6013_6014 | 192.168.181.21 | success
dn_6035_6036 | 192.168.178.187 | success
dn_6037_6038 | 192.168.178.187 | success
dn_6001_6002 | 192.168.178.35 | success
dn_6063_6064 | 192.168.181.179 | success
dn_6005_6006 | 192.168.178.35 | success
dn_6057_6058 | 192.168.181.179 | success
dn_6069_6070 | 192.168.181.57 | success
dn_6027_6028 | 192.168.178.177 | success
dn_6059_6060 | 192.168.181.179 | success
dn_6041_6042 | 192.168.179.45 | success
dn_6043_6044 | 192.168.179.45 | success
dn_6047_6048 | 192.168.179.45 | success
dn_6033_6034 | 192.168.178.187 | success
dn_6065_6066 | 192.168.181.57 | success
dn_6021_6022 | 192.168.178.39 | success
dn_6017_6018 | 192.168.178.39 | success
dn_6039_6040 | 192.168.178.187 | success
dn_6053_6054 | 192.168.179.79 | success
(42 rows)

e pgxc_cgroup_reload_conf(text)

Description: This function loads the Cgroup configuration file online on a
node. The input parameter is the IP address of the node.

Return type: record
The following table describes return columns.

Column Type Description
node_name | text Instance name
node_host text IP address of the node where the instance is
located
result text Whether Cgroup online loading is successful
Example:

select * from pgxc_cgroup_reload_conf('192.168.178.35');
node_name | node_host | result

+ +

cn_5001 | 192.168.178.35 | success
dn_6007_6008 | 192.168.178.35 | success
dn_6003_6004 | 192.168.178.35 | success
dn_6001_6002 | 192.168.178.35 | success
dn_6005_6006 | 192.168.178.35 | success
(5 rows)

e pg_wlm_jump_queue(pid int)
Description: Moves a task to the top of the CN queue.
Return type: Boolean

Note: Each of these functions returns true if they are successful and false
otherwise.

e gs_wlm_switch_cgroup(pid int, cgroup text)
Description: Moves a job to other Cgroup to improve the job priority.
Return type: Boolean

Note: Each of these functions returns true if they are successful and false
otherwise.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 273

Data Warehouse Service

SQL Syntax

6 Functions and Operators

gs_wlm_node_recover(boolean isForce)

Description: Updates and restores job information and counts on the CCN in
dynamic resource management mode. This function can be executed only by
administrators, and is usually used to restore a faulty CN after it was
restarted. This function is called by the Cluster Manager (CM). Its usage are
as follows:

- If this function is executed by CN, it instructs the CCN to clear job
information and counts on the CN.

- If this function is executed by CCN, it resets job counts and obtains the
latest slow lane job information from the CN.

Return type: bool
gs_wlm_node_clean(cstring nodename)

Description: On the CCN in dynamic resource management mode, clears the
job information and counts of a specified CN. This function can be executed
only by administrators, and is usually used to restore a faulty CN after it was
restarted. This function is called by the Cluster Manager (CM). Generally,
users are not advised to call it.

Return type: bool

6.26 Data Redaction Functions

Data redaction functions are used to mask and protect sensitive data. Generally,
you are advised to bind these functions to the columns to be redacted based on
the data redaction syntax, rather than use them directly on query statements.

mask_none(column_name)

Description: Masks no data (for internal tests only).
Return type: same as column_name
mask_full(column_name)

Description: Replaces all data with a fixed value. The fixed value varies
depending on the data type of the redacted column.

Return type: same as column_name
mask_partial(column_name, mask_digital, mask_from[, mask_to])

Description: Replaces the digits from the mask_from to mask_to position in a
number with the digit specified by mask_digital. The default value of
mask_to can be used, which indicates that the digits from the mask_from
position to the end of the number are replaced. mask_digital can only be a
digit from 0 to 9.

Return type: same as column_name

mask_partial(column_name [, input_format, output_format], mask_char,
mask_from[, mask_to])

Description: Replaces the digits from the mask_from to mask_to position in a
string with the character specified by mask_char based on the given input
and output formats.

Parameter description:
- input_format

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 274

Data Warehouse Service

SQL Syntax

6 Functions and Operators

The input format is a character string of V and F, whose length is the
same as that of the data in the redacted column. Characters in positions
corresponding to V may be masked, and characters in positions
corresponding to F are skipped. The V character string specifies which
characters are to be masked. The input and output formats apply to data
with a fixed length, such as bank card numbers, ID card numbers, and
phone numbers.

- output_format

The output format is a character string of V and any other character,
whose length is the same as that of the data in the redacted column. V
characters correspond to those in the input_format, and other characters
correspond to the F characters in the input_format.

For parameters input_format and output_format, you can use their
default values or set them to "". In this case, there is no requirement for
the input or output format, and the whole string will be masked.

- mask_char

Masking character, which can be any one character, for example, an
asterisk (*) or a number sign (#).

- mask_from

First character in the string that will be masked. The value must be
greater than 0.

- mask_to

Last character in the string that will be masked. The default value can be
used, which indicates that the character from the mask_from position to
the last character of the string will be masked.

Return type: same as column_name

mask_partial(column_name, mask_field1, mask_value1, mask_field2,
mask_value2, mask_field3, mask_value3)

Description: Masks a date or time based on three specified fields. If
mask_value is -1, the corresponding mask_field is not masked. mask_field
can be month, day, year, hour, minute, or second. The value range of each
field must be within that of the actual time unit.

Return type: same as column_name

(11 NOTE

Redaction functions are recommended if you want to create redaction policies.

For details about how to use data redaction functions, see the examples in .

User-Defined Redaction Functions

You can use the PL/pgSQL language to customize redaction functions.

User-defined redaction functions must meet the following requirements:

The return type must be the same as the data type of the redacted column.
The functions can be pushed down.

In addition to the redaction format, only one column can be specified in the
argument list for data redaction.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 275

Data Warehouse Service
SQL Syntax 6 Functions and Operators

e The functions only implement the formatting for specific data types and do
not involve complex association operations with other table objects.

If either of the first two requirements is not met, an error will be reported when
you create a redaction policy. If either of the last two requirements is not met,
unexpected problems may occur in query execution results.

6.27 Statistics Information Functions

Statistics information functions are divided into the following two categories:
functions that access databases, using the OID of each table or index in a
database to mark the database for which statistics are generated; functions that
access servers, identified by the server process ID, whose value ranges from 1 to
the number of currently active servers.

e pg_stat_get_db_numbackends(oid)

Description: Obtains the number of active server threads of a specified
database on the current instance.

Return type: integer
e pg_stat_get_db_total_numbackends(oid)

Description: Obtains the total number of active server threads of a specified
database on all CNs in a cluster (if this function is executed on a CN), or
obtains the number of active server threads of a specified database on the
current instance (if this function is executed on a DN).

Return type: integer
e pg_stat_get_db_xact_commit(oid)

Description: Obtains the number of committed transactions in a specified
database on the current instance.

Return type: bigint
e pg_stat_get_db_total_xact_commit(oid)

Description: Obtains the total number of committed transactions in a
specified database on all CNs in a cluster (if this function is executed on a
CN), or obtains the number of committed transactions in a specified database
on the current instance (if this function is executed on a DN).

Return type: bigint
e pg_stat_get_db_xact_rollback(oid)

Description: Obtains the number of rollback transactions in a specified
database on the current instance.

Return type: bigint
e pg_stat_get_db_total_xact_rollback(oid)

Description: Obtains the total number of rollback transactions in a specified
database on all CNs in a cluster (if this function is executed on a CN), or
obtains the number of rollback transactions in a specified database on the
current instance (if this function is executed on a DN).
Return type: bigint

e pg_stat_get_db_blocks_fetched(oid)

Description: Obtains the number of disk block fetch requests in a specified
database on the current instance.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 276

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Return type: bigint
pg_stat_get_db_total_blocks_fetched(oid)

Description: Obtains the total number of disk block fetch requests in a
specified database on all DNs in a cluster (if this function is executed on a
CN), or obtains the number of disk block fetch requests in a specified
database on the current instance (if this function is executed on a DN).

Return type: bigint
pg_stat_get_db_blocks_hit(oid)

Description: Obtains the number of requested disk blocks found in the cache
in a specified database on the current instance.

Return type: bigint
pg_stat_get_db_total_blocks_hit(oid)

Description: Obtains the total number of requested disk blocks found in the
cache in a specified database on all DNs in a cluster (if this function is
executed on a CN), or obtains the number of requested disk blocks found in
the cache in a specified database on the current instance (if this function is
executed on a DN).

Return type: bigint
pg_stat_get_db_tuples_returned(oid)

Description: Obtains the number of tuples returned for a specified database
on the current instance.

Return type: bigint
pg_stat_get_db_total_tuples_returned(oid)

Description: Obtains the total number of tuples returned for a specified
database on all DNs in a cluster (if this function is executed on a CN), or
obtains the number of tuples returned for a specified database on the current
instance (if this function is executed on a DN).

Return type: bigint
pg_stat_get_db_tuples_fetched(oid)

Description: Obtains the number of tuples read from a specified database on
the current instance.

Return type: bigint
pg_stat_get_db_total_tuples_fetched(oid)

Description: Obtains the total number of tuples read from a specified
database on all DNs in a cluster (if this function is executed on a CN), or
obtains the number of tuples read from a specified database on the current
instance (if this function is executed on a DN).

Return type: bigint
pg_stat_get_db_tuples_inserted(oid)

Description: Obtains the number of tuples inserted into a specified database
on the current instance.

Return type: bigint
pg_stat_get_db_total_tuples_inserted(oid)

Description: Obtains the total number of tuples inserted into a specified
database on all DNs in a cluster (if this function is executed on a CN), or

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 277

Data Warehouse Service

SQL Syntax

6 Functions and Operators

obtains the number of tuples inserted into a specified database on the current
instance (if this function is executed on a DN).

Return type: bigint
pg_stat_get_db_tuples_updated(oid)

Description: Obtains the number of updated tuples in a specified database on
the current instance.

Return type: bigint
pg_stat_get_db_total_tuples_updated(oid)

Description: Obtains the total number of updated tuples in a specified
database on all DNs in a cluster (if this function is executed on a CN), or
obtains the number of updated tuples in a specified database on the current
instance (if this function is executed on a DN).

Return type: bigint
pg_stat_get_db_tuples_deleted(oid)

Description: Obtains the number of tuples deleted from a specified database
on the current instance.

Return type: bigint
pg_stat_get_db_total_tuples_deleted(oid)

Description: Obtains the total number of tuples deleted from a specified
database on all DNs in a cluster (if this function is executed on a CN), or
obtains the number of tuples deleted from a specified database on the
current instance (if this function is executed on a DN).

Return type: bigint
pg_stat_get_db_conflict_lock(oid)

Description: Obtains the total number of conflicting locks in a specified
database on all CNs and DNs in a cluster (if this function is executed on a
CN), or obtains the number of conflicting locks in a specified database on the
current instance (if this function is executed on a DN).

Return type: bigint
pg_stat_get_db_deadlocks(oid)

Description: Obtains the number of deadlocks in a specified database on the
current instance.

Return type: bigint
pg_stat_get_db_total_deadlocks(oid)

Description: Obtains the total number of deadlocks in a specified database on
all CNs and DNs in a cluster (if this function is executed on a CN), or obtains
the number of deadlocks in a specified database on the current instance (if
this function is executed on a DN).

Return type: bigint
pg_stat_get_db_conflict_all(oid)

Description: Obtains the number of conflict recoveries in a specified database
on the current instance.

Return type: bigint
pg_stat_get_db_total_conflict_all(oid)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 278

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Description: Obtains the total number of conflict recoveries in a specified
database on all CNs and DNs in a cluster (if this function is executed on a
CN), or obtains the number of conflict recoveries in a specified database on
the current instance (if this function is executed on a DN).

Return type: bigint
e pg_stat_get_db_temp_files(oid)

Description: Obtains the number of temporary files created in a specified
database on the current instance.

Return type: bigint
e pg_stat_get_db_total_temp_files(oid)

Description: Obtains the total number of temporary files created in a specified
database on all DNs in a cluster (if this function is executed on a CN), or
obtains the number of temporary files created in a specified database on the
current instance (if this function is executed on a DN).

Return type: bigint
e pg_stat_get_db_temp_bytes(oid)

Description: Obtains the number of bytes of the temporary files created in a
specified database on the current instance.

Return type: bigint
e pg_stat_get_db_total_temp_bytes(oid)

Description: Obtains the total number of bytes of the temporary files created
in a specified database on all DNs in a cluster (if this function is executed on
a CN), or obtains the number of bytes of the temporary files created in a
specified database on the current instance (if this function is executed on a
DN).

Return type: bigint
e pg_stat_get_db_blk_read_time(oid)

Description: Obtains the time required for reading data blocks from a
specified database on the current instance.

Return type: double
e pg_stat_get_db_total_blk_read_time(oid)

Description: Obtains the total time required for reading data blocks from a
specified database on all DNs in a cluster (if this function is executed on a
CN), or obtains the time required for reading data blocks from a specified

database on the current instance (if this function is executed on a DN).

Return type: double
e pg_stat_get_db_blk_write_time(oid)

Description: Obtains the time required for writing data blocks to a specified
database on the current instance.

Return type: double
e pg_stat_get_db_total_blk_write_time(oid)

Description: Obtains the total time required for writing data blocks to a
specified database on all DNs in a cluster (if this function is executed on a
CN), or obtains the time required for writing data blocks to a specified
database on the current instance (if this function is executed on a DN).

Return type: double

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 279

Data Warehouse Service
SQL Syntax 6 Functions and Operators

e pg_stat_get_numscans(oid)
Description: Number of sequential row scans done if parameters are in a table
or number of index scans done if parameters are in an index
Return type: bigint

e pg_stat_get_tuples_returned(oid)
Description: Number of sequential row scans done if parameters are in a table
or number of index entries returned if parameters are in an index
Return type: bigint

e pg_stat_get_tuples_fetched(oid)

Description: Number of table rows fetched by bitmap scans if parameters are
in a table,

or table rows fetched by simple index scans using the index if parameters are
in an index

Return type: bigint

e pg_stat_get_tuples_inserted(oid)
Description: Number of rows inserted into table
Return type: bigint

e pg_stat_get_tuples_updated(oid)
Description: Number of rows updated in table
Return type: bigint

e pg_stat_get_tuples_deleted(oid)
Description: Number of rows deleted from table
Return type: bigint

e pg_stat_get_tuples_changed(oid)

Description: Total number of inserted, updated, and deleted rows after the
table was last analyzed or autoanalyzed

Return type: bigint
e pg_stat_get_tuples_hot_updated(oid)
Description: Number of rows HOT-updated in table
Return type: bigint
e pg_stat_get_live_tuples(oid)
Description: Number of live rows in table
Return type: bigint
e pg_stat_get_dead_tuples(oid)
Description: Number of dead rows in table
Return type: bigint
e pg_stat_get_blocks_fetched(oid)
Description: Number of disk block fetch requests for table or index
Return type: bigint
e pg_stat_get_blocks_hit(oid)
Description: Number of disk block requests found in cache for table or index

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 280

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Return type: bigint

pg_stat_get_partition_tuples_inserted(oid)

Description: Number of rows in the corresponding table partition
Return type: bigint

pg_stat_get_partition_tuples_updated(oid)

Description: Number of rows that have been updated in the corresponding
table partition

Return type: bigint

pg_stat_get_partition_tuples_deleted(oid)

Description: Number of rows deleted from the corresponding table partition
Return type: bigint

pg_stat_get_partition_tuples_changed(oid)

Description: Total number of inserted, updated, and deleted rows after the
table partition was last analyzed or autoanalyzed

Return type: bigint
pg_stat_get_partition_live_tuples(oid)

Description: Number of live rows in a table partition
Return type: bigint
pg_stat_get_partition_dead_tuples(oid)

Description: Number of dead rows in a table partition
Return type: bigint
pg_stat_get_xact_tuples_inserted(oid)

Description: Number of tuple inserted into the active subtransactions related
to the table.

Return type: bigint
pg_stat_get_xact_tuples_deleted(oid)

Description: Number of deleted tuples in the active subtransactions related to
a table

Return type: bigint
pg_stat_get_xact_tuples_hot_updated(oid)

Description: Number of hot updated tuples in the active subtransactions
related to a table

Return type: bigint
pg_stat_get_xact_tuples_updated(oid)

Description: Number of updated tuples in the active subtransactions related
to a table

Return type: bigint
pg_stat_get_xact_partition_tuples_inserted(oid)

Description: Number of inserted tuples in the active subtransactions related to
a table partition

Return type: bigint
pg_stat_get_xact_partition_tuples_deleted(oid)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 281

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Description: Number of deleted tuples in the active subtransactions related to
a table partition

Return type: bigint
pg_stat_get_xact_partition_tuples_hot_updated(oid)

Description: Number of hot updated tuples in the active subtransactions
related to a table partition

Return type: bigint
pg_stat_get_xact_partition_tuples_updated(oid)

Description: Number of updated tuples in the active subtransactions related
to a table partition

Return type: bigint
pg_stat_get_last_vacuum_time(oid)

Description: Last time when the autovacuum thread is manually started to
clear a table

Return type: timestamptz
pg_stat_get_last_autovacuum_time(oid)

Description: Time of the last vacuum initiated by the autovacuum daemon on
this table

Return type: timestamptz
pg_stat_get_vacuum_count(oid)

Description: Number of times a table is manually cleared
Return type: bigint

pg_stat_get_autovacuum_count(oid)

Description: Number of times the autovacuum daemon is started to clear a
table

Return type: bigint
pg_stat_get_last_analyze_time(oid)

Description: Last time when a table starts to be analyzed manually or by the
autovacuum thread

Return type: timestamptz
pg_stat_get_last_autoanalyze_time(oid)

Description: Time of the last analysis initiated by the autovacuum daemon on
this table

Return type: timestamptz

pg_stat_get_analyze_count(oid)

Description: Number of times a table is manually analyzed

Return type: bigint

pg_stat_get_autoanalyze_count(oid)

Description: Number of times the autovacuum daemon analyzes a table
Return type: bigint

pg_total_autovac_tuples(bool)

Description: Gets the tuple records related to total autovac, such as
nodename, nspname, relname, and the IUD information of tuples.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 282

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Return type: SETOF record
pg_autovac_status(oid)

Description: Returns autovac information, such as nodename, nspname,
relname, analyze, vacuum, thresholds of analyze and vacuum, and the
number of analyzed or vacuumed tuples.

Return type: SETOF record
pg_autovac_timeout(oid)

Description: Returns the number of consecutive timeouts during the autovac
operation on a table. If the table information is invalid or the node
information is abnormal, NULL will be returned.

Return type: bigint
pg_autovac_coordinator(oid)

Description: Returns the name of the CN performing the autovac operation on
a table. If the table information is invalid or the node information is
abnormal, NULL will be returned.

Return type: text

pgxc_get_wlm_session_info_bytime(text, timestamp without time zone,
timestamp without time zone, int)

Description: The query performance of the PGXC_WLM_SESSION_INFO view is
poor if the view contains a large number of records. In this case, you are
advised to use this function to filter the query. The input parameters are time
column (start_time or finish_time), start time, end time, and maximum
number of records returned for each CN. The return result is a subset of
records in the GS_WLM_SESSION_HISTORY view.

Return type: SETOF record
pgxc_get_wlm_current_instance_info(text, int default null)

Description: Queries the current resource usage of each node in the cluster on
the CN and reads the data that is not stored in the
GS_WLM_INSTANCE_HISTORY system catalog in the memory. The input
parameters are the node name (ALL, C, D, or /instance name) and the
maximum number of records returned by each node. The returned value is
GS_WLM_INSTANCE_HISTORY.

Return type: SETOF record

pgxc_get_wlm_history_instance_info(text, TIMESTAMP, TIMESTAMP, int default
null)

Description: Queries the historical resource usage of each cluster node on the
CN node and reads data from the GS_WLM_INSTANCE_HISTORY system
catalog. The input parameters are as follows: node name (ALL, C, D, or
instance name), start time, end time, and maximum number of records
returned for each instance. The returned value is
GS_WLM_INSTANCE_HISTORY.

Return type: SETOF record
pg_stat_get_last_data_changed_time(oid)

Description: Returns the time when INSERT, UPDATE, DELETE, or
EXCHANGE/TRUNCATE/DROP PARTITION was performed last time on a
table. The data in the last_data_changed column of the
PG_STAT_ALL_TABLES view is calculated by using this function. The

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 283

Data Warehouse Service

SQL Syntax

6 Functions and Operators

performance of obtaining the last modification time by using the view is poor
when the table has a large amount of data. In this case, you are advised to
use the function.

Return type: timestamptz
pg_stat_set_last_data_changed_time(oid)

Description: Manually changes the time when INSERT, UPDATE, DELETE, or
EXCHANGE/TRUNCATE/DROP PARTITION was performed last time.

Return type: void
pv_session_time()

Description: Collects statistics on the running time of each session thread on
the current node and the time consumed in each execution phase.

Return type: record
pv_instance_time()

Description: Collects statistics on the running time of the current node and
the time consumed in each execution phase.

Return type: record
pg_stat_get_activity(integer)

Description: Returns a record about the backend with the specified PID. A
record for each active backend in the system is returned if NULL is specified.
The return result is a subset of records (excluding the connection_info
column) in the PG_STAT_ACTIVITY view.

Return type: SETOF record
pg_stat_get_activity_with_conninfo(integer)

Description: Returns a record about the backend with the specified PID. A
record for each active backend in the system is returned if NULL is specified.
The return result is a subset of records in the PG_STAT_ACTIVITY view.

Return type: SETOF record
pg_user_iostat(text)

Description: Displays the 1/O load management information about the job
currently executed by the user.

Return type: record
The following table describes return fields.

Name Type Description

userid oid User ID

min_curr_iop | int4 Minimum |/O of the current user across DNs.

s The IOPS is counted by ones for column storage
and by thousands for row storage.

max_curr_iop | int4 Maximum |/O of the current user across DNs.

s The IOPS is counted by ones for column storage
and by thousands for row storage.

min_peak_io | int4 Minimum peak 1/O of the current user across

ps DNs. The IOPS is counted by ones for column

storage and by thousands for row storage.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 284

Data Warehouse Service

SQL Syntax 6 Functions and Operators
Name Type Description
max_peak_io | int4 Maximum peak I/O of the current user across
ps DNs. The IOPS is counted by ones for column

storage and by thousands for row storage.

io_limits int4 io_limits set for the resource pool specified by
the user. The IOPS is counted by ones for
column storage and by thousands for row
storage.

io_priority text io_priority set for the user. The IOPS is counted
by ones for column storage and by thousands
for row storage.

e pg_stat_get_function_calls(oid)
Description: Number of times the function has been called
Return type: bigint

e pg_stat_get_function_total_time(oid)

Description: Gets the total wall-clock time spent on a function, in
microseconds. The time spent on calling this function is included.

Return type: double precision
e pg_stat_get_function_self_time(oid)

Description: Gets the time spent only on this function in the current
transaction. The time spent on calling this function is not included.

Return type: double precision
e pg_stat_get_backend_idset()

Description: Set of currently active server process numbers (from 1 to the
number of active server processes)

Return type: SETOF integer
e pg_stat_get_backend_pid(integer)
Description: Thread ID of the given server thread

Return type: bigint

SELECT pg_stat_get_backend_pid(1);
pg_stat_get_backend_pid

139706243217168
(1 row)

e pg_stat_get_backend_dbid(integer)
Description: ID of the database connected to the given server process
Return type: OID
e pg_stat_get_backend_userid(integer)
Description: User ID of the given server process
Return type: OID
e pg_stat_get_backend_activity(integer)

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 285

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Description: Active command of the given server process, but only if the
current user is a system administrator or the same user as that of the session
being queried and track_activities is on

Return type: text
pg_stat_get_backend_waiting(integer)

Description: True if the given server process is waiting for a lock, but only if
the current user is a system administrator or the same user as that of the
session being queried and track_activities is on

Return type: boolean
pg_stat_get_backend_activity_start(integer)

Description: The time at which the given server process's currently executing
query was started, but only if the current user is a system administrator or the
same user as that of the session being queried and track_activities is on

Return type: timestamp with time zone
pg_stat_get_backend_xact_start(integer)

Description: The time at which the given server process's currently executing

transaction was started, but only if the current user is a system administrator
or the same user as that of the session being queried and track_activities is

on

Return type: timestamp with time zone
pg_stat_get_backend_start(integer)

Description: The time at which the given server process was started, or NULL
if the current user is neither a system administrator nor the same user as that
of the session being queried

Return type: timestamp with time zone
pg_stat_get_backend_client_addr(integer)
Description: IP address of the client connected to the given server process.

If the connection is over a Unix domain socket, or if the current user is neither
a system administrator nor the same user as that of the session being
queried, NULL will be returned.

Return type: inet

Note: An IP address used as an input parameter of this function cannot
contain periods (.). For example, 192.168.100.128 should be written as
192168100128.

pg_stat_get_backend_client_port(integer)

Description: TCP port number of the client connected to the given server
process

If the connection is over a Unix domain socket, -1 will be returned. If the
current user is neither a system administrator nor the same user as that of
the session being queried, NULL will be returned.

Return type: integer
pg_stat_get_bgwriter_timed_checkpoints()

Description: The number of times the background writer has started timed
checkpoints (because the checkpoint_timeout time has expired)

Return type: bigint

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 286

Data Warehouse Service

SQL Syntax

6 Functions and Operators

pg_stat_get_bgwriter_requested_checkpoints()

Description: The number of times the background writer has started
checkpoints based on requests from the backend because
checkpoint_segments has been exceeded or the CHECKPOINT command has
been executed

Return type: bigint
pg_stat_get_bgwriter_buf_written_checkpoints()

Description: The number of buffers written by the background writer during
checkpoints

Return type: bigint
pg_stat_get_bgwriter_buf_written_clean()

Description: The number of buffers written by the background writer for
routine cleaning of dirty pages

Return type: bigint
pg_stat_get_bgwriter_maxwritten_clean()

Description: The number of times the background writer has stopped its
cleaning scan because it has written more buffers than specified in the
bgwriter_lru_maxpages parameter

Return type: bigint
pg_stat_get_buf_written_backend()

Description: The number of buffers written by the backend because they
needed to allocate a new buffer

Return type: bigint

pg_stat_get_buf_alloc()

Description: The total number of buffer allocations
Return type: bigint

pg_stat_clear_snapshot()

Description: Discards the current statistics snapshot.
Return type: void

pg_stat_reset()

Description: Resets all statistics counters for the current database to zero
(requires system administrator permissions).

Return type: void
pg_stat_reset_shared(text)

Description: Resets all statistics counters for the current database in each
node in a shared cluster to zero (requires system administrator permissions).

Return type: void
pg_stat_reset_single_table_counters(oid)

Description: Resets statistics for a single table or index in the current database
to zero (requires system administrator permissions).

Return type: void
pg_stat_reset_single_function_counters(oid)

Description: Resets statistics for a single function in the current database to
zero (requires system administrator permissions).

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 287

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Return type: void
pg_stat_session_cu(int, int, int)

Description: Obtains the compression unit (CU) hit statistics of sessions
running on the current node.

Return type: record

gs_get_stat_session_cu(text, int, int, int)

Description: Obtains the CU hit statistics of all sessions running in a cluster.
Return type: record

gs_get_stat_db_cu(text, text, int, int, int)

Description: Obtains the CU hit statistics of a database in a cluster.

Return type: record

pg_stat_get_cu_mem_hit(oid)

Description: Obtains the number of CU memory hits of a column storage
table in the current database of the current node.

Return type: bigint
pg_stat_get_cu_hdd_sync(oid)

Description: Obtains the times CU is synchronously read from a disk by a
column storage table in the current database of the current node.

Return type: bigint
pg_stat_get_cu_hdd_asyn(oid)

Description: Obtains the times CU is asynchronously read from a disk by a
column storage table in the current database of the current node.

Return type: bigint

pg_stat_get_db_cu_mem_hit(oid)

Description: Obtains the CU memory hit in a database of the current node.
Return type: bigint

pg_stat_get_db_cu_hdd_sync(oid)

Description: Obtains the times CU is synchronously read from a disk by a
database of the current node.

Return type: bigint
pg_stat_get_db_cu_hdd_asyn(oid)

Description: Obtains the times CU is asynchronously read from a disk by a
database of the current node.

Return type: bigint

pgxc_fenced_udf_process()

Description: Shows the number of UDF Master and Work processes.
Return type: record

pgxc_terminate_all_fenced_udf_process()

Description: Kills all UDF Work processes.

Return type: bool
GS_ALL_NODEGROUP_CONTROL_GROUP_INFO(text)

Description: Provides Cgroup information for all logical clusters. Before
invoking this function, you need to specify the name of a logical cluster to be

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 288

Data Warehouse Service

SQL Syntax

6 Functions and Operators

queried. For example, to query the Cgroup information for the installation

logical cluster, run the following command:
SELECT * FROM GS_ALL_NODEGROUP_CONTROL_GROUP_INFO('installation’)

Return type: record
The following table describes return fields.

Name Type Description

name text Name of a Cgroup

type text Type of the Cgroup

gid bigint Cgroup 1D

classgid bigint ID of the Class Cgroup where a Workload
Cgroup belongs

class text Class Cgroup

workload text Workload Cgroup

shares bigint CPU quota allocated to a Cgroup

limits bigint Limit of CPUs allocated to a Cgroup

wdlevel bigint Workload Cgroup level

cpucores text Usage of CPU cores in a Cgroup

gs_get_nodegroup_tablecount(name)

Description: Total number of user tables in all the databases in a logical
cluster

Return type: integer
pgxc_max_datanode_size(name)

Description: Maximum disk space occupied by database files in all the DNs of
a logical cluster. The unit is byte.

Return type: bigint
gs_check_logic_cluster_consistency()

Description: Checks whether the system information of all logical clusters in
the system is consistent. If no record is returned, the information is consistent.
Otherwise, the Node Group information on CNs and DNs in the logical cluster
is inconsistent. This function cannot be invoked during redistribution in a
scale-in or scale-out.

Return type: record
gs_check_tables_distribution()

Description: Checks whether the user table distribution in the system is
consistent. If no record is returned, table distribution is consistent. This
function cannot be invoked during redistribution in a scale-in or scale-out.

Return type: record

pg_stat_bad_block(text, int, int, int, int, int, timestamp with time zone,
timestamp with time zone)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 289

Data Warehouse Service
SQL Syntax

6 Functions and Operators

Description: Obtains damage information about pages or CUs after the
current node is started.

Return type: record

e pgxc_stat_bad_block(text, int, int, int, int, int, timestamp with time zone,
timestamp with time zone)

Description: Obtains damage information about pages or CUs after all the
nodes in the cluster are started.

Return type: record

e pg_stat_bad_block_clear()

Description: Deletes the page and CU damage information that is read and
recorded on the node. (System administrator rights are required.)

Return type: void

e pgxc_stat_bad_block_clear()

Description: Deletes the page and CU damage information that is read and
recorded on all the nodes in the cluster. (System administrator rights are

required.)

Return type: void

e gs_respool_exception_info(pool text)

Description: Queries for the query rule of a specified resource pool.

Return type: record

e gs_control_group_info(pool text)

Description: Queries for information about Cgroups associated with a resource

pool.

Return type: record

The following information is displayed:

Attribute Value Description
name class_a:workload_a | Class name and workload name
1

class class_a Class Cgroup name

workload workload_a1 Workload Cgroup name

type DEFWD Cgroup type (Top, CLASS,
BAKWD, DEFWD, and TSWD)

gid 87 Cgroup ID

shares 30 Percentage of CPU resources to
those on the parent node

limits 0 Percentage of CPU cores to
those on the parent node

rate 0 Allocation ratio in Timeshare

cpucores 0-3 Number of CPU cores

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 290

Data Warehouse Service
SQL Syntax 6 Functions and Operators

e gs_wlm_user_resource_info(name text)
Description: Queries for a user's resource quota and resource usage.
Return type: record

6.28 Trigger Functions

e pg_get_triggerdef(oid)
Description: Obtains the definition information of a trigger.
Parameter: OID of the trigger to be queried
Return type: text

Example:

select pg_get_triggerdef(oid) from pg_trigger;
pg_get_triggerdef

CREATE TRIGGER insert_trigger BEFORE INSERT ON test_trigger_src_tbl FOR EACH ROW EXECUTE
PROCEDURE tri_insert_func()
(1 row)

e pg_get_triggerdef(oid, boolean)
Description: Obtains the definition information of a trigger.

Parameter: OID of the trigger to be queried and whether it is displayed in
pretty mode

Return type: text
(O NOTE

The Boolean parameters take effect only when the WHEN condition is specified during
trigger creation.

Example:

select pg_get_triggerdef(oid,true)from pg_trigger;
pg_get_triggerdef

CREATE TRIGGER insert_trigger BEFORE INSERT ON test_trigger_src_tbl FOR EACH ROW EXECUTE
PROCEDURE tri_insert_func()
(1 row)

select pg_get_triggerdef(oid,false)from pg_trigger;
pg_get_triggerdef

CREATE TRIGGER insert_trigger BEFORE INSERT ON test_trigger_src_tbl FOR EACH ROW EXECUTE
PROCEDURE tri_insert_func()
(1 row)

6.29 XML Functions

Generating XML Content
e XMLPARSE ({ DOCUMENT | CONTENT } value)

Description: Generates an XML value from character data.
Return type: XML

Example:

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 291

Data Warehouse Service

SQL Syntax

6 Functions and Operators

SELECT xmlparse(document '<foo>bar</foo>');
xmlparse

<foo>bar</foo>
(1 row)

e XMLSERIALIZE ({ DOCUMENT | CONTENT } value AS type
Description: Generates a string from XML values.
Return type: type, which can be character, character varying, or text (or its alias)

Example:

SELECT xmlserialize(content 'good' AS CHAR(10));
xmlserialize

e xmlcomment(text)

Description: Creates an XML note that uses the specified text as the content. The
text cannot contain two consecutive hyphens (--) or end with a hyphen (-). If the
parameter is null, the result is also null.

Return type: XML

Example:

SELECT xmlcomment('hello');
xmlcomment

<!--hello-->
(1 row)

e xmlconcat(xml], ...])

Description: Concatenates a list of XML values into a single value. Null values are
ignored. If all parameters are null, the result is also null.

Return type: XML

Example:

SELECT xmlconcat('<abc/>', '<bar>foo</bar>');
xmlconcat

<abc/><bar>foo</bar>
(1 row)

Note: If XML declarations exist and they are the same XML version, the result will
use the version. Otherwise, the result does not use any version. If all XML values
have the standalone attribute whose status is yes, the standalone attribute in the
result is yes. If at least one XML value's standalone attribute is no, the
standalone attribute in the result is no. Otherwise, the result does not contain the
standalone attribute.

Example:

SELECT xmlconcat('<?xml version="1.1"?><foo/>', '<?xml version="1.1" standalone="no"?><bar/>');
xmlconcat

<?xml version="1.1"?><foo/><bar/>

(1 row)
e xmlelement(name name [, xmlattributes(value [AS attname] [, ... 1)1 [,
content, ...])

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 292

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Description: Generates an XML element with the given name, attribute, and
content.

Return type: XML

Example:

SELECT xmlelement(name foo, xmlattributes(current_date as bar), 'cont’, 'ent’);
xmlelement

<foo bar="2020-08-15">content</foo>
(1 row)

e xmlforest(content [AS name] [, ...])

Description: Generates an XML forest (sequence) of an element with a given name
and content.

Return type: XML

Example:

SELECT xmlforest(‘abc' AS foo, 123 AS bar);
xmlforest

<foo>abc</foo><bar>123</bar>
(1 row)

e xmlpi(name target [, content])

Description: Creates an XML processing instruction. The content cannot contain
the character sequence of ?>.

Return type: XML

Example:

SELECT xmlpi(name php, 'echo "hello world";");
xmlpi

<?php echo "hello world";?>
(1 row)

e xmlroot(xml, version text | no value [, standalone yes|no|no value])

Description: Modifies the attributes of the root node of an XML value. If a version
is specified, it replaces the value in the version declaration of the root node. If a
standalone value is specified, it replaces the standalone value in the root node.

Return type: XML
Example:
SELECT xmlroot(xmlparse(document '<?xml version="1.0" standalone="no"?><content>abc</content>'),

version '1.1', standalone yes);
xmlroot

<?xml version="1.1" standalone="yes"?><content>abc</content>
(1 row)

e xmlagg(xml)

Description: The xmlagg function is an aggregate function that concatenates
input values.

Return type: XML

Example:

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 293

Data Warehouse Service
SQL Syntax 6 Functions and Operators

CREATE TABLE test (y int, x xml);

INSERT INTO test VALUES (1, '<foo>abc</foo>');
INSERT INTO test VALUES (2, '<bar/>');

SELECT xmlagg(x) FROM test;

xmlagg

<foo>abc</foo><bar/>
(1 row)

To determine the concatenation sequence, you can add an ORDER BY clause for
an aggregate call, for example:

SELECT xmlagg(x ORDER BY y DESC) FROM test;
xmlagg

<bar/><foo>abc</foo>
(1 row)

XML Predicates
e xmlIS DOCUMENT

Description: IS DOCUMENT returns true if the XML value of the parameter is a
correct XML document; if the XML document is incorrect, false is returned. If the
parameter is null, a null value is returned.

Return type: bool
e xml IS NOT DOCUMENT

Description: Returns true if the XML value of the parameter is not a correct XML
document. If the XML document is correct, false is returned. If the parameter is
null, a null value is returned.

Return type: bool
e XMLEXISTS(text PASSING [BY REF] xml [BY REF])

Description: If the xpath expression in the first parameter returns any node, the
XMLEXISTS function returns true. Otherwise, the function returns false. (If any

parameter is null, the result is null.) The BY REF clause is invalid and is used to

maintain SQL compatibility.

Return type: bool
Example:
SELECT xmlexists('//town[text() = "Toronto"]' PASSING BY REF '<towns><town>Toronto</

town><town>Ottawa</town></towns>');
xmlexists

e xml is_well_formed(text)

Description: Checks whether a text string is a well-formatted XML value and
returns a Boolean result. If the xmloption parameter is set to DOCUMENT, the
document is checked. If the xmloption parameter is set to CONTENT, the content
is checked.

Return type: bool

Example:

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 294

Data Warehouse Service

SQL Syntax

6 Functions and Operators

SELECT xml_is_well_formed('<abc/>");
xml_is_well_formed

e xmlis_well_formed_document(text)

Description: Checks whether a text string is a well-formatted text and returns a
Boolean result.

Return type: bool

Example:

SELECT xml_is_well_formed_document('<test:foo xmlns:test="http://test.com/test">bar</test:foo>');
xml_is_well_formed_document

t
(1 row)

e xml is_well formed_content(text)

Description: Checks whether a text string is a well-formatted content and returns
a Boolean result.

Return type: bool

Example:

SELECT xml_is_well_formed_content('content’);
xml_is_well_formed_content

t
(1 row)

Processing XML

e xpath(xpath, xml [, nsarray])

Description: Returns an array of XML values corresponding to the set of nodes
produced by the xpath expression. If the xpath expression returns a scalar value
instead of a set of nodes, an array of individual elements is returned. The second
parameter xml must be a complete XML document, which must have a root node
element. The third parameter is an array map of a namespace. The array should
be a two-dimensional text array, and the length of the second dimension should
be 2. (It should be an array of arrays, each containing exactly two elements). The
first element of each array item is the alias of the namespace name, and the
second element is the namespace URI. The alias provided in this array does not
have to be the same as the alias used in the XML document itself. In other words,
in the context of both XML documents and xpath functions, aliases are local.

Return type: XML value array

Example:

SELECT xpath('/my:a/text()’, '<my:a xmlns:my="http://example.com">test</my:a>', ARRAY[ARRAY['my',
'http://example.com']]);
xpath

e xpath_exists(xpath, xml [, nsarray])

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 295

Data Warehouse Service

SQL Syntax

6 Functions and Operators

Description: The xpath_exists function is a special form of the xpath function.
This function does not return an XML value that satisfies the xpath function; it
returns a Boolean value indicating whether the query is satisfied. This function is
equivalent to the standard XMLEXISTS predicate, but it also provides support for a
namespace mapping parameter.

Return type: bool

Example:

SELECT xpath_exists('/my:a/text()', '<my:a xmlns:my="http://example.com">test</my:a>",
ARRAY[ARRAY['my', 'http://example.com']]);
xpath_exists

(1 row)

e xmltable

Description: Generates a table based on the input XML data, XPath expression,
and column definition. An xmltable is similar to a function in syntax, but it can
appear only as a table in the FROM clause of a query.

Return value: setof record

Syntax:

XMLTABLE ([XMLNAMESPACES (namespace_uri AS namespace_name [, ..]),]
row_expression PASSING [BY { REF | VALUE }]
document_expression [BY { REF | VALUE }]
COLUMNS name { type [PATH column_expression]| [DEFAULT default expression] [NOT NULL |
NULL] | FOR ORDINALITY }
[..]
)

Parameter:

e The optional XMLNAMESPACES clause is a comma-separated list of
namespace definitions, where each namespace_uri is a text-type expression
and each namespace_name is a simple identifier. XMLNAMESPACES specifies
the XML namespaces used in the document and their aliases. The default
namespace declaration is not supported.

e The mandatory parameter row_expression is an XPath 1.0 expression. This
expression calculates the sequence of XML nodes based on the provided XML
document document_expression. The sequence is the sequence of converting
xmltable to output lines. If the document_expression value is NULL or an
empty node set generated by row_expression, no line is returned.

e The document_expression parameter is used to input an XML document. The
input document must be in the XML format. XML fragment data or XML
documents in incorrect format are not accepted. The BY REF and BY VALUE
clauses do not take effect. They are used only to implement SQL standard
compatibility.

e The COLUMNS clause specifies the column list definition in the output table.

The column name and column data type are mandatory, and the path,
default value, and whether the clause is empty are optional.

- column_expression of a column is an XPath 1.0 expression used to
calculate the value of the column extracted from the current row based
on row_expression. |If column_expression is not specified, the field name
is used as an implicit path.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 296

Data Warehouse Service

SQL Syntax

6 Functions and Operators

- A column can be marked as NOT NULL. If column_expression in the
NOT NULL column does not return any data, and there is no DEFAULT
clause or the calculation result of default_expression is NULL, an error is
reported.

- The columns marked as FOR ORDINALITY are filled with row numbers
starting from 1. The sequence is the node sequence retrieved from the
row_expression result set. A maximum of one column can be marked as
FOR ORDINALITY.

NOTICE

XPath 1.0 does not specify the order for nodes, so the order in which
results are returned depends on the order in which data is obtained.

Example:

SELECT * FROM XMLTABLE('/ROWS/ROW'

PASSING '<ROWS><ROW id="1"><COUNTRY_ID>AU</COUNTRY_ID><COUNTRY_NAME>Australia</
COUNTRY_NAME></ROW><ROW id="2"><COUNTRY_ID>FR</COUNTRY_ID><COUNTRY_NAME>France</
COUNTRY_NAME></ROW><ROW id="3"><COUNTRY_ID>SG</
COUNTRY_ID><COUNTRY_NAME>Singapore</COUNTRY_NAME></ROW></ROWS>'

COLUMNS id INT PATH '@id',

_id FOR ORDINALITY,

country_id TEXT PATH 'COUNTRY_ID',

country_name TEXT PATH 'COUNTRY_NAME' NOT NULL);

id | _id | country_id | country_name
———eteeeet +

1] 1] AU | Australia

2| 2| FR | France

3] 3|SG | Singapore
(3 rows)

Mapping a Table to XML

e table_to_xml(tbl regclass, nulls boolean, tableforest boolean, targetns text)
Description: Maps the contents of a table to XML values.
Return type: XML

e table_to_xmlschema(tbl regclass, nulls boolean, tableforest boolean, targetns
text)

Description: Maps a relational table schema to an XML schema document.
Return type: XML

e table_to_xml_and_xmlschema(tbl regclass, nulls boolean, tableforest boolean,
targetns text)

Description: Maps a relational table to XML values and schema documents.
Return type: XML

e query_to_xml(query text, nulls boolean, tableforest boolean, targetns text)
Description: Maps the contents of an SQL query to XML values.

Return type: XML

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 297

Data Warehouse Service
SQL Syntax 6 Functions and Operators

e query_to_xmlschema(query text, nulls boolean, tableforest boolean, targetns
text)

Description: Maps an SQL query into an XML schema document.
Return type: XML

e query_to_xml_and_xmlschema(query text, nulls boolean, tableforest boolean,
targetns text)

Description: Maps SQL queries to XML values and schema documents.
Return type: XML

e cursor_to_xml(cursor refcursor, count int, nulls boolean, tableforest boolean,
targetns text)

Description: Maps a cursor query to an XML value.
Return type: XML

e cursor_to_xmlschema(cursor refcursor, nulls boolean, tableforest boolean,
targetns text)

Description: Maps a cursor query to an XML schema document.
Return type: XML

e schema_to_xml(schema name, nulls boolean, tableforest boolean, targetns
text)

Description: Maps a table in a schema to an XML value.
Return type: XML

e schema_to_xmlschema(schema name, nulls boolean, tableforest boolean,
targetns text)

Description: Maps a table in a schema to an XML schema document.
Return type: XML

e schema_to_xml_and_xmlschema(schema name, nulls boolean, tableforest
boolean, targetns text)

Description: Maps a table in a schema to an XML value and a schema document.
Return type: XML

e database_to_xml(nulls boolean, tableforest boolean, targetns text)
Description: Maps a database table to an XML value.

Return type: XML

e database_to_xmlschema(nulls boolean, tableforest boolean, targetns text)
Description: Maps a database table to an XML schema document.

Return type: XML

e database_to_xml_and_xmlschema(nulls boolean, tableforest boolean, targetns
text)

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 298

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Description: Maps database tables to XML values and schema documents.

Return type: XML

(1 NOTE

The parameters for mapping a table to an XML value are described as follows:
e tbl: table name.

e nulls: indicates whether the output contains null values. If the value is true, the null
value in the column is <columnname xsi:nil="true"/>. If the value is false, the columns
containing null values are omitted from the output.

e tableforest: If this parameter is set to true, XML fragments are generated. If this
parameter is set to false, XML files are generated.

e targetns: specifies the XML namespace of the desired result. If this parameter is not
specified, an empty string is passed.

e query: SQL query statement
e Cursor: cursor name
e count: amount of data obtained from the cursor

e schema: schema name

6.30 Call Stack Recording Functions

The pv_memory_profiling(type int) and environment variable MALLOC_CONF
are used by GaussDB(DWS) to control the enabling and disabling of the memory
allocation call stack recording module and the output of the memory call stack.
The following figure illustrates the process.

Output memory statistics.
select pv_memory_profiling(2);

Record memory
trace.

Use the jeprof to
check and analyze.

Dynamically enable the memory
call stack recording module.
select pv_memory_profiling(1);

Do not record Output memory statistics. Ve throuenyi
export MALLOC_CONF=profitrue d::b'::e memory trace. select pv_memory_profiling(3); (it vilik

Dynamically disable the memory
call stack recording module.
select pv_memory_profiling(0);

MALLOC_CONF

The environment variable MALLOC_CONF is used to enable the monitoring
module. It is in the S{BIGDATA_HOME}/mppdb/.mppdbgs_profile file and is
enabled by default. Note the following points:

e Restart the database after modifying this environment variable.

e If om_monitor is enabled in the cluster, restart the om_monitor process and
then the database after setting this environment variable, so that the setting
can take effect.

e This environment variable can be set on all servers in the cluster or on some
servers where the module needs to be enabled. For the GaussDB process, each
process determines whether to enable the module based on the
MALLOC_CONF environment variable.

Commands for enabling and disabling MALLOC_CONF:

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 299

Data Warehouse Service
SQL Syntax

6 Functions and Operators

e Enabling the monitoring module:
export MALLOC_CONF=prof:true

e Disabling the monitoring module:
export MALLOC_CONF=prof:false

pv_memory_profiling (type int)

Parameter description: Controls the backtrace recording and output of memory
allocation functions such as malloc in the kernel.

Value range: a positive integer from 0 to 3.

Table 6-22 Values and descriptions of pv_memory_profiling

pv_memory_profil
ing
Value

Description

0

Disables the memory trace function and does not record
information of call stacks such as malloc.

Enables the memory trace function to record information
of call stacks such as malloc.

Outputs trace logs of call stacks such as malloc.

e Output path: /proc/pid/cwd directory. pid indicates the
ID of the GaussDB process.

e Output log name format: jeprof.<pic>.*heap, where
pidindicates the ID of the GaussDB process and *
indicates the unique sequence number of the output
trace log, for example, jeprof.195473.0.u0.heap.

Outputs memory statistics.

e Output path: /proc/pid/cwd directory. pid indicates the
ID of the GaussDB process.

e Log name format: Node name + Process ID + Time +
heap_stats + .out. You can use vim to open the file.

Return type: Boolean

Note:

e If the function is called successfully, true is returned. Otherwise, false is

returned.

e If Memory profiling failed, check if SMALLOC_CONF contain 'prof:true’. is
displayed, it indicates that the module is used when
MALLOC_CONF=prof:true is not set. In this case, you need to set the
environment variable.

e If Type %d is not supported. The valid range is 0-3. is displayed, the
parameter value is incorrect. The correct values are 0, 1, 2, and 3.

e If Memory profiling failed, inputed type is %d, failed number is %d. is
displayed, contact technical support for assistance.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 300

Data Warehouse Service
SQL Syntax 6 Functions and Operators

Outputting Memory Call Stack Information
Procedure:

Step 1 Execute the following statement to output the memory call stack information and
output the trace file in the directory where the GaussDB process is located:

select * from pv_memory_profiling(2);
Step 2 Use the jeprof tool provided by jemalloc to parse log information.

Method 1: Output in text format.
jeprof --text --show_bytes $GAUSSHOME/bin/gaussdb trace file 1 >prof.txt

Method 2: Export the report in PDF format.
jeprof --pdf --show_bytes $GAUSSHOME/bin/gaussdb trace file 1 > prof.pdf

(11 NOTE

e To parse the memory call stack information, you need to use the GaussDB source code
for analysis. You need to send the trace file to R&D engineers for analysis.

e To analyze the trace file, you need to use the jeprof tool, which is generated by
jemalloc. The Perl environment is required for using the tool. To generate PDF calling
diagrams, you need to install the Graphviz tool that matches the OS.

--—-End

Example

-- Log in as the system administrator, set environment variables, and start the database.
export MALLOC_CONF=prof:true

-- Disable the memory trace recording function when the database is running.
select pv_memory_profiling(0);
pv_memory_profiling

t
(1 row)

-- Enable the memory trace recording function when the database is running.
select pv_memory_profiling(1);
pv_memory_profiling

t
(1 row)

-- Output memory trace records.
select pv_memory_profiling(2);
pv_memory_profiling

t
(1 row)

-- Generate the trace file in text or PDF format in the directory where the GaussDB process is located.
jeprof --text --show_bytes $GAUSSHOME/bin/gaussdb trace file 1 >prof.txt
jeprof --pdf --show_bytes $GAUSSHOME/bin/gaussdb trace file 1 > prof.pdf

-- Output memory statistics.

Execute the following statement to generate the memory statistics file in the directory where the GaussDB
process is located. The file can be directly read.

select pv_memory_profiling(3);

pv_memory_profiling

t
(1 row)

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 301

Data Warehouse Service

SQL Syntax

7 Expressions

Expressions

7.1 Simple Expressions

Logical Expressions

Logical Operators lists the operators and calculation rules of logical expressions.

Comparative Expressions

Comparison Operators lists the common comparative operators.

In addition to comparative operators, you can also use the following sentence
structure:

Examples

BETWEEN operator

a BETWEEN x AND y is equivalent to a >= x AND a <=y.
a NOT BETWEEN x AND y is equivalenttoa<x OR a >y.
To check whether a value is null, use:

expression IS NULL

expression IS NOT NULL

or an equivalent (non-standard) sentence structure:
expression ISNULL

expression NOTNULL

NOTICE

Do not write expression=NULL or expression<>(!=)NULL, because NULL
represents an unknown value, and these expressions cannot determine
whether two unknown values are equal.

SELECT 2 BETWEEN 1 AND 3 AS RESULT;
result

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 302

Data Warehouse Service

SQL Syntax

7 Expressions

result

result

result

result

result

result

result

result

result

7.2 Conditional Expressions

Data that meets the requirements specified by conditional expressions are filtered
during SQL statement execution.

Conditional expressions include the following types:

CASE

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

303

Data Warehouse Service

SQL Syntax

7 Expressions

CASE expressions are similar to the CASE statements in other coding
languages.

Figure 7-1 shows the syntax of a CASE expression.

Figure 7-1 case:=

—{ CASE }T{W'HEN F+ condition |-+ THEN }+{ result]—f]
%-[ELSE J-+{sesult }—+{(END }<+[CASE |—

A CASE clause can be used in a valid expression. condition is an expression
that returns a value of Boolean type.

- If the result is true, the result of the CASE expression is the required
result.

- If the result is false, the following WHEN or ELSE clauses are processed in
the same way.

- If every WHEN condition is false, the result of the expression is the result
of the ELSE clause. If the ELSE clause is omitted and has no match
condition, the result is NULL.

Examples:
CREATE TABLE tpcds.case_when_t1(CW_COL1 INT) DISTRIBUTE BY HASH (CW_COL1);

INSERT INTO tpcds.case_when_t1 VALUES (1), (2), (3);

SELECT * FROM tpcds.case_when_t1;
a

1
2
3
(3 rows)

SELECT CW_COL1, CASE WHEN CW_COL1=1 THEN 'one' WHEN CW_COL1=2 THEN 'two' ELSE 'other'
END FROM tpcds.case_when_t1;

a | case
- b

3 | other

1| one

2 | two

(3 rows)

DROP TABLE tpcds.case_when_t1;
DECODE

Figure 7-2 shows the syntax of a DECODE expression.

Figure 7-2 decode::=

(decode }+(0+{base_sxpr 1)
(compare J+{}+{value -+,

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 304

Data Warehouse Service
SQL Syntax 7 Expressions

Compare each following compare(n) with base_expr, value(n) is returned if
a compare(n) matches the base_expr expression. If base_expr does not
match each compare(n), the default value is returned.

Conditional Expression Functions describes the examples.

SELECT DECODE('A''A',1,'B',2,0);
case

e COALESCE
Figure 7-3 shows the syntax of a COALESCE expression.

Figure 7-3 coalesce::=

COALESCE returns its first non-NULL value. If all the arguments are NULL,
return NULL. This value is replaced by the default value when data is
displayed. Like a CASE expression, COALESCE only evaluates the parameters
that are needed to determine the result. That is, parameters to the right of
the first non-null parameter are not evaluated.

Example:

CREATE TABLE tpcds.c_tabl(description varchar(10), short_description varchar(10), last_value
varchar(10))
DISTRIBUTE BY HASH (last_value);

INSERT INTO tpcds.c_tabl VALUES(‘abc!, 'efg’, '123');
INSERT INTO tpcds.c_tabl VALUES(NULL, 'efg', '123");

INSERT INTO tpcds.c_tabl VALUES(NULL, NULL, '123');
SELECT description, short_description, last_value, COALESCE (description, short_description, last_value)

FROM tpcds.c_tabl ORDER BY 1, 2, 3, 4;
description | short_description | last_value | coalesce

+ + +

abc | efg | 123 | abc

| efg | 123 | efg
| | 123 | 123
(3 rows)

DROP TABLE tpcds.c_tabl;

If description is not NULL, the value of description is returned. Otherwise,
parameter short_description is calculated. If short_description is not NULL,
the value of short_description is returned. Otherwise, parameter last_value
is calculated. If last_value is not NULL, the value of last_value is returned.
Otherwise, none is returned.

SELECT COALESCE(NULL,'Hello World');
coalesce

Hello World
(1 row)

e NULLIF
Figure 7-4 shows the syntax of a NULLIF expression.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 305

Data Warehouse Service
SQL Syntax 7 Expressions

Figure 7-4 nullif:=

NULLIF [+ (}+{ valuel }+{, J+{ value2 }+{) |

Only if value1 is equal to value2 can NULLIF return the NULL value.
Otherwise, value1 is returned.

Examples

CREATE TABLE tpcds.null_if_t1 (
NI_VALUE1 VARCHAR(10),
NI_VALUE2 VARCHAR(10)

) DISTRIBUTE BY HASH (NI_VALUET);

INSERT INTO tpcds.null_if_t1 VALUES('abc', 'abc');
INSERT INTO tpcds.null_if_t1 VALUES('abc', 'efg');

SELECT NI_VALUE1, NI_VALUE2, NULLIF(NI_VALUE1, NI_VALUE2) FROM tpcds.null_if t1 ORDER BY 1,
2,3;

ni_value1 | ni_value2 | nullif

+ +
1 t

abc | abc |
abc | efg | abc
(2 rows)

DROP TABLE tpcds.null_if_t1;

If value1 is equal to value2, NULL is returned. Otherwise, value1 is returned.

SELECT NULLIF('Hello','Hello World');
nullif

e GREATEST (maximum value) and LEAST (minimum value)
Figure 7-5 shows the syntax of a GREATEST expression.

Figure 7-5 greatest::=
—~{GREATEST '.
8

You can select the maximum value from any numerical expression list.

SELECT greatest(9000,155555,2.01);
greatest

155555
(1 row)

Figure 7-6 shows the syntax of a LEAST expression.

Figure 7-6 least::=

o

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 306

Data Warehouse Service
SQL Syntax 7 Expressions

You can select the minimum value from any numerical expression list.

Each of the preceding numeric expressions can be converted into a common
data type, which will be the data type of the result.

The NULL values in the list will be ignored. The result is NULL only if the
results of all expressions are NULL.

SELECT least(9000,2);
least

Conditional Expression Functions describes the examples.
e NVL

Figure 7-7 shows the syntax of an NVL expression.

Figure 7-7 nvl::=

NVL{({(alie] () +{aluel 1+()

If the value of value1 is NULL, value2 is returned. Otherwise, value1 is
returned.
For example:

SELECT nvl(null,1);
NVL

(1 row)
SELECT nvl ('Hello World' ,1);
nvl

Hello World
(1 row)

e |F

Figure 7-8 shows the syntax of an IF expression.

Figure 7-8 if::=

I O s My B ey Wy By

If the value of bool_expr is true, expr1 is returned. Otherwise, expr2 is
returned.

Conditional Expression Functions describes the examples.
e |IFNULL
Figure 7-9 shows the syntax of a NULLIF expression.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 307

Data Warehouse Service
SQL Syntax 7 Expressions

Figure 7-9 ifnull::=

(NG o Cf et o {2 -

Only if value1 is equal to value2 can NULLIF return the NULL value.
Otherwise, value1 is returned.

Conditional Expression Functions describes the examples.

7.3 Subquery Expressions

Subquery expressions include the following types:

e EXISTS/NOT EXISTS
Figure 7-10 shows the syntax of an EXISTS/NOT EXISTS expression.

Figure 7-10 EXISTS/NOT EXISTS::=

EXISTS

NOT }+ EXISTS

The parameter of an EXISTS expression is an arbitrary SELECT statement, or
subquery. The subquery is evaluated to determine whether it returns any
rows. If it returns at least one row, the result of EXISTS is "true". If the
subquery returns no rows, the result of EXISTS is "false".

The subquery will generally only be executed long enough to determine
whether at least one row is returned, not all the way to completion.

For example:

SELECT sr_reason_sk,sr_customer_sk FROM tpcds.store_returns WHERE EXISTS (SELECT d_dom FROM

tpcds.date_dim WHERE d_dom = store_returns.sr_reason_sk and sr_customer_sk <10);

sr_reason_sk | sr_customer_sk
13 |
22|
17 |
25|
3|
31
7|
14 |
20|
5]
10 |
1]
15 |
4|
26 |

(15 rows)

e IN/NOTIN

W= NV wpraoYuNuvwuNn

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 308

Data Warehouse Service

SQL Syntax

7 Expressions

Figure 7-11 shows the syntax of an IN/NOT IN expression.

Figure 7-11 IN/NOT IN::=

The right-hand side is a parenthesized subquery, which must return exactly
one column. The left-hand expression is evaluated and compared to each row
of the subquery result. The result of IN is "true" if any equal subquery row is
found. The result is "false" if no equal row is found (including the case where
the subquery returns no rows).

This is in accordance with SQL's normal rules for Boolean combinations of
null values. If the columns corresponding to two rows equal and are not
empty, the two rows are equal to each other. If any columns corresponding to
the two rows do not equal and are not empty, the two rows are not equal to
each other. Otherwise, the result is NULL. If there are no equal right-hand
values and at least one right-hand row yields null, the result of IN will be null,
not false.

For example:

SELECT sr_reason_sk,sr_customer_sk FROM tpcds.store_returns WHERE sr_customer_sk IN (SELECT

d_dom FROM tpcds.date_dim WHERE d_dom < 10);

sr_reason_sk | sr_customer_sk
10 |
26|
22
31
1]
32
32
4|
15 |
13|
33|
20 |
33|
5|
14 |
17 |
3|
25|
7|

(19 rows)

ANY/SOME
Figure 7-12 shows the syntax of an ANY/SOME expression.

NuYvyuoQomaprnvNnw—_“vouYVooww

Figure 7-12 any/some::=

—+{ expression |+ operator ANY

SOME

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 309

Data Warehouse Service

SQL Syntax

7 Expressions

The right-hand side is a parenthesized subquery, which must return exactly
one column. The left-hand expression is evaluated and compared to each row
of the subquery result using the given operator, which must yield a Boolean
result. The result of ANY is "true" if any true result is obtained. The result is
"false" if no true result is found (including the case where the subquery
returns no rows). SOME is a synonym of ANY. IN can be equivalently replaced
with ANY.

For example:

SELECT sr_reason_sk,sr_customer_sk FROM tpcds.store_returns WHERE sr_customer_sk < ANY

(SELECT d_dom FROM tpcds.date_dim WHERE d_dom < 10);

sr_reason_sk | sr_customer_sk
26|
17 |
32
32
13 |
31
25|
5|
7|
10 |
1]
14 |
4|
3|
22 |
33|
20 |
33|
15 |

(19 rows)

ALL
Figure 7-13 shows the syntax of an ALL expression.

N~V YYIgqUuNMOOIN W

Figure 7-13 all:=

—{ expression }+{ operator |+{ ALL

The right-hand side is a parenthesized subquery, which must return exactly
one column. The left-hand expression is evaluated and compared to each row
of the subquery result using the given operator, which must yield a Boolean
result. The result of ALL is "true" if all rows yield true (including the case
where the subquery returns no rows). The result is "false" if any false result is
found.

Example:

SELECT sr_reason_sk,sr_customer_sk FROM tpcds.store_returns WHERE sr_customer_sk < all(SELECT
d_dom FROM tpcds.date_dim WHERE d_dom < 10);
sr_reason_sk | sr_customer_sk

+
t

(0 rows)

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 310

Data Warehouse Service

SQL Syntax

7 Expressions

7.4 Array Expressions

IN

NOT IN

expression IN (value [, ...])

The parentheses on the right contain an expression list. The expression result on
the left is compared with the content in the expression list. If the content in the
list meets the expression result on the left, the result of IN is true. If no result
meets the requirements, the result of IN is false.

Example:

SELECT 8000+500 IN (10000, 9000) AS RESULT;
result

(1 NOTE

If the expression result is null or the expression list does not meet the expression conditions
and at least one empty value is returned for the expression list on the right, the result of IN
is null rather than false. This method is consistent with the Boolean rules used when SQL
statements return empty values.

expression NOT IN (value [, ...])

The parentheses on the right contain an expression list. The expression result on
the left is compared with the content in the expression list. If the content in the
list does not meet the expression result on the left, the result of NOT IN is true. If
any content meets the expression result, the result of NOT IN is false.

Example:

SELECT 8000+500 NOT IN (10000, 9000) AS RESULT;
result

(1 NOTE

If the query statement result is null or the expression list does not meet the expression
conditions and at least one empty value is returned for the expression list on the right, the
result of NOT IN is null rather than false. This method is consistent with the Boolean rules
used when SQL statements return empty values.

In all situations, X NOT IN Y equals to NOT(X IN Y).

ANY/SOME (array)

expression operator ANY (array expression)

expression operator SOME (array expression)

SELECT 8000+500 < SOME (array[10000,9000]) AS RESULT;
result

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 311

Data Warehouse Service

SQL Syntax

7 Expressions

ALL (array)

(1 row)
SELECT 8000+500 < ANY (array[10000,9000]) AS RESULT;
result

The parentheses on the right contain an array expression, which must generate an
array value. The result of the expression on the left uses operators to compute and
compare the results in each row of the array expression. The comparison result
must be a Boolean value.

e If at least one comparison result is true, the result of ANY is true.
e If no comparison result is true, the result of ANY is false.

(11 NOTE

If no comparison result is true and the array expression generates at least one null value,
the value of ANY is NULL, rather than false. This method is consistent with the Boolean
rules used when SQL statements return empty values.

SOME is a synonym of ANY.

expression operator ALL (array expression)

The parentheses on the right contain an array expression, which must generate an
array value. The result of the expression on the left uses operators to compute and
compare the results in each row of the array expression. The comparison result
must be a Boolean value.

e The result of ALL is "true" if all comparisons yield true (including the case
where the array has zero elements).

e The result is false if any false result is found.

If the array expression yields a null array, the result of ALL will be null. If the left-
hand expression yields null, the result of ALL is ordinarily null (though a non-strict
comparison operator could possibly yield a different result). Also, if the right-hand
array contains any null elements and no false comparison result is obtained, the
result of ALL will be null, not true (again, assuming a strict comparison operator).
This method is consistent with the Boolean rules used when SQL statements
return empty values.

SELECT 8000+500 < ALL (array[10000,9000]) AS RESULT;
result

7.5 Row Expressions

Syntax:
row_constructor operator row_constructor

Both sides of the row expression are row constructors. The values of both rows
must have the same number of fields and they are compared with each other. The

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 312

Data Warehouse Service
SQL Syntax 7 Expressions

row comparison allows operators including =, <>, <, <=, and >= or a similar
operator.

The use of operators =<> is slightly different from other operators. If all fields of
two rows are not empty and equal, the two rows are equal. If any field in two
rows is not empty and not equal, the two rows are not equal. Otherwise, the
comparison result is null.

For operators <, <=, >, and > =, the fields in rows are compared from left to right
until a pair of fields that are not equal or are empty are detected. If the pair of
fields contains at least one null value, the comparison result is null. Otherwise, the
comparison result of this pair of fields is the final result.

For example:

SELECT ROW(1,2,NULL) < ROW(1,3,0) AS RESULT;
result

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 313

Data Warehouse Service

SQL Syntax

8 Type Conversion

Type Conversion

8.1 Overview

Context

SQL is a typed language. That is, every data item has an associated data type
which determines its behavior and allowed usage. GaussDB(DWS) has an
extensible type system that is more general and flexible than other SQL
implementations. Hence, most type conversion behavior in GaussDB(DWS) is
governed by general rules. This allows the use of mixed-type expressions.

The GaussDB(DWS) scanner/parser divides lexical elements into five fundamental
categories: integers, floating-point numbers, strings, identifiers, and keywords.
Constants of most non-numeric types are first classified as strings. The SQL
language definition allows specifying type names with constant strings. For
example, the query:

SELECT text 'Origin' AS "label", point '(0,0)" AS "value";

label | value
________ oo

Origin | (0,0)
(1 row)

has two literal constants, of type text and point. If a type is not specified for a
string literal, then the placeholder type unknown is assigned initially.

There are four fundamental SQL constructs requiring distinct type conversion rules
in the GaussDB(DWS) parser:

e Function calls

Much of the SQL type system is built around a rich set of functions. Functions
can have one or more arguments. Since SQL permits function overloading, the
function name alone does not uniquely identify the function to be called. The
parser must select the right function based on the data types of the supplied
arguments.

e Operators

SQL allows expressions with prefix and postfix unary (one-argument)
operators, as well as binary (two-argument) operators. Like functions,

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 314

Data Warehouse Service

SQL Syntax

8 Type Conversion

operators can be overloaded, so the same problem of selecting the right
operator exists.

e Value Storage

SQL INSERT and UPDATE statements place the results of expressions into a
table. The expressions in the statement must be matched up with, and
perhaps converted to, the types of the target columns.

e UNION, CASE, and related constructs

Since all query results from a unionized SELECT statement must appear in a
single set of columns, the types of the results of each SELECT clause must be
matched up and converted to a uniform set. Similarly, the result expressions
of a CASE construct must be converted to a common type so that the CASE
expression as a whole has a known output type. The same holds for ARRAY
constructs, and for the GREATEST and LEAST functions.

The system catalog pg_cast stores information about which conversions, or casts,
exist between which data types, and how to perform those conversions. For
details, see PG_CAST.

The return type and conversion behavior of an expression are determined during
semantic analysis. Data types are divided into several basic type categories,
including boolean, numeric, string, bitstring, datetime, timespan, geometric,
and network. Within each category there can be one or more preferred types,
which are preferred when there is a choice of possible types. With careful selection
of preferred types and available implicit casts, it is possible to ensure that
ambiguous expressions (those with multiple candidate parsing solutions) can be
resolved in a useful way.

All type conversion rules are designed based on the following principles:

e Implicit conversions should never have surprising or unpredictable outcomes.

e There should be no extra overhead in the parser or executor if a query does
not need implicit type conversion. That is, if a query is well-formed and the
types already match, then the query should execute without spending extra
time in the parser and without introducing unnecessary implicit conversion
calls in the query.

e Additionally, if a query usually requires an implicit conversion for a function,
and if then the user defines a new function with the correct argument types,
the parser should use this new function.

Converting Empty Strings to Numeric Values in TD-Compatible Mode

e Different from the Oracle database, which processes an empty string as NULL,
Teradata database converts an empty string to 0 by default. Therefore, when
an empty string is queried, value 0 is found. Similarly, in TD-compatible mode,
the empty string is converted to 0 of the corresponding numeric type by
default. In addition, '-', '+', and ' ' are converted to 0 by default in TD-

compatible mode, but an error is reported for a decimal point string. Example:
create table t1(no int,col varchar);

insert into t1 values(1,");

insert into t1 values(2,null);

select * from t1 where col is null;

no | col

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 315

Data Warehouse Service

SQL Syntax

8 Type Conversion

select * from t1 where col=";
no | col
R S,

1]

(1 row)

The method of converting an empty string into a numeric value in MySQL-
compatible mode is the same as that in TD-compatible mode.

8.2 Operators

Operator Type Resolution

1.

Examples

Select the operators to be considered from the pg_operator system catalog.
Considered operators are those with the matching name and argument count.
If the search path finds multiple available operators, only the most suitable
one is considered.

Look for the best match.

a.

Discard candidate operators for which the input types do not match and
cannot be converted (using an implicit conversion) to match. unknown
literals are assumed to be convertible to anything for this purpose. If only
one candidate remains, use it; else continue to the next step.

Run through all candidates and keep those with the most exact matches
on input types. Domains are considered the same as their base type for
this purpose. Keep all candidates if there are no exact matches. If only
one candidate remains, use it; else continue to the next step.

Run through all candidates and keep those that accept preferred types
(of the input data type's type category) at the most positions where type
conversion will be required. Keep all candidates if none accepts preferred
types. If only one candidate remains, use it; else continue to the next
step.

If any input arguments are of unknown types, check the type categories
accepted at those argument positions by the remaining candidates. At
each position, select the string category if any candidate accepts that
category. (This bias towards string is appropriate since an unknown-type
literal looks like a string.) Otherwise, if all the remaining candidates
accept the same type category, select that category; otherwise fail
because the correct choice cannot be deduced without more clues. Now
discard candidates that do not accept the selected type category.
Furthermore, if any candidate accepts a preferred type in that category,
discard candidates that accept non-preferred types for that argument.
Keep all candidates if none survives these tests. If only one candidate
remains, use it; else continue to the next step.

If there are both unknown and known-type arguments, and all the
known-type arguments have the same type, assume that the unknown
arguments are also of that type, and check which candidates can accept
that type at the unknown-argument positions. If exactly one candidate
passes this test, use it. Otherwise, an error is reported.

Example 1: factorial operator type resolution. There is only one factorial operator
(postfix !) defined in the system catalog, and it takes an argument of type bigint.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 316

Data Warehouse Service

SQL Syntax

8 Type Conversion

The scanner assigns an initial type of bigint to the argument in this query
expression:

SELECT 40 ! AS "40 factorial";

40 factorial

815915283247897734345611269596115894272000000000
(1 row)

So the parser does a type conversion on the operand and the query is equivalent
to:

SELECT CAST (40 AS bigint) ! AS "40 factorial";

Example 2: string concatenation operator type resolution. A string-like syntax is
used for working with string types and for working with complex extension types.
Strings with unspecified type are matched with likely operator candidates. An
example with one unspecified argument:

SELECT text 'abc' || 'def' AS "text and unknown";
text and unknown

In this example, the parser looks for an operator whose parameters are of the text
type. Such an operator is found.

Here is a concatenation of two values of unspecified types:

SELECT 'abc' || 'def' AS "unspecified";
unspecified

In this case there is no initial hint for which type to use, since no types are specified in the
query. So, the parser looks for all candidate operators and finds that there are candidates
accepting both string-category and bit-string-category inputs. Since string category is
preferred when available, that category is selected, and then the preferred type for strings,
text, is used as the specific type to resolve the unknown-type literals.

Example 3: absolute-value and negation operator type resolution. The
GaussDB(DWS) operator catalog has several entries for the prefix operator @. All
the entries implement absolute-value operations for various numeric data types.
One of these entries is for type float8, which is the preferred type in the numeric
category. Therefore, GaussDB(DWS) will use that entry when faced with an
unknown input:

SELECT @ '-4.5' AS "abs";
abs

45
(1 row)

Here the system has implicitly resolved the unknown-type literal as type float8
before applying the chosen operator.

Example 4: array inclusion operator type resolution. The following is an example
of resolving an operator with one known and one unknown input:

SELECT array[1,2] <@ '{1,2,3}' as "is subset";
is subset

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 317

Data Warehouse Service

SQL Syntax

8 Type Conversion

In the pg_operator table of GaussDB(DWS), several entries correspond to the infix operator
<@, but the only two that may accept an integer array on the left-hand side are array
inclusion (anyarray <@ anyarray) and range inclusion (anyelement <@ anyrange).
Because none of these polymorphic pseudo-types (see Pseudo-Types) is considered
preferred, the parser cannot resolve the ambiguity on that basis. However, 2.e tells it to
assume that the unknown-type literal is of the same type as the other input, that is, integer
array. Now only one of the two operators can match, so array inclusion is selected. (If you
select range inclusion, an error will be reported because the string does not have the right
format to be a range literal.)

8.3 Functions

Function Type Resolution

1.

Select the functions to be considered from the pg_proc system catalog. If a
non-schema-qualified function name was used, the functions in the current
search path are considered. If a qualified function name was given, only
functions in the specified schema are considered.

If the search path finds multiple functions of different argument types, a
proper function in the path is considered.

Check for a function accepting exactly the input argument types. If the
function exists, use it. Cases involving unknown will never find a match at
this step.

If no exact match is found, see if the function call appears to be a special type
conversion request.

Look for the best match.

a. Discard candidate functions for which the input types do not match and
cannot be converted (using an implicit conversion) to match. unknown
literals are assumed to be convertible to anything for this purpose. If only
one candidate remains, use it; else continue to the next step.

b. Run through all candidates and keep those with the most exact matches
on input types. Domains are considered the same as their base type for
this purpose. Keep all candidates if none has exact matches. If only one
candidate remains, use it; else continue to the next step.

¢. Run through all candidates and keep those that accept preferred types at
the most positions where type conversion will be required. Keep all
candidates if none accepts preferred types. If only one candidate remains,
use it; else continue to the next step.

d. If any input arguments are of unknown types, check the type categories
accepted at those argument positions by the remaining candidates. At
each position, select the string category if any candidate accepts that
category. (This bias towards string is appropriate since an unknown-type
literal looks like a string.) Otherwise, if all the remaining candidates
accept the same type category, select that category; otherwise fail
because the correct choice cannot be deduced without more clues. Now
discard candidates that do not accept the selected type category.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 318

Data Warehouse Service

SQL Syntax

8 Type Conversion

Examples

Furthermore, if any candidate accepts a preferred type in that category,
discard candidates that accept non-preferred types for that argument.
Keep all candidates if none survives these tests. If only one candidate
remains, use it; else continue to the next step.

e. If there are both unknown and known-type arguments, and all the
known-type arguments have the same type, assume that the unknown
arguments are also of that type, and check which candidates can accept
that type at the unknown-argument positions. If exactly one candidate
passes this test, use it. Otherwise, fail.

Example 1: Use the rounding function argument type resolution as the first
example. There is only one round function that takes two arguments; it takes a
first argument of type numeric and a second argument of type integer. So the
following query automatically converts the first argument of type integer to
numeric:

SELECT round(4, 4);
round

That query is converted by the parser to:

SELECT round(CAST (4 AS numeric), 4);

Since numeric constants with decimal points are initially assigned the type
numeric, the following query will require no type conversion and therefore might
be slightly more efficient:

SELECT round(4.0, 4);

Example 2: Use the substring function type resolution as the second example.
There are several substr functions, one of which takes types text and integer. If
called with a string constant of unspecified type, the system chooses the candidate
function that accepts an argument of the preferred category string (namely of
type text).

SELECT substr('1234', 3);
substr

34
(1 row)

If the string is declared to be of type varchar, as might be the case if it comes
from a table, then the parser will try to convert it to become text:

SELECT substr(varchar '1234', 3);
substr

34
(1 row)

This is transformed by the parser to effectively become:

SELECT substr(CAST (varchar '1234' AS text), 3);

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 319

Data Warehouse Service

SQL Syntax

8 Type Conversion

(11 NOTE

The parser learns from the pg_cast catalog that text and varchar are binary-compatible,
meaning that one can be passed to a function that accepts the other without doing any
physical conversion. Therefore, no type conversion is inserted in this case.

And, if the function is called with an argument of type integer, the parser will try
to convert that to text:

SELECT substr(1234, 3);
substr

34
(1 row)

This is transformed by the parser to effectively become:

SELECT substr(CAST (1234 AS text), 3);
substr

8.4 Value Storage

Value Storage Type Resolution

Examples

Search for an exact match with the target column.

2. Try to convert the expression to the target type. This will succeed if there is a
registered cast between the two types. If the expression is an unknown-type
literal, the content of the literal string will be fed to the input conversion
routine for the target type.

3. Check to see if there is a sizing cast for the target type. A sizing cast is a cast
from that type to itself. If one is found in the pg_cast catalog, apply it to the
expression before storing into the destination column. The implementation
function for such a cast always takes an extra parameter of type integer. The
parameter receives the destination column's atttypmod value (typically its
declared length, although the interpretation of atttypmod varies for different
data types), and may take a third boolean parameter that says whether the
cast is explicit or implicit. The cast function is responsible for applying any
length-dependent semantics such as size checking or truncation.

Use the character storage type conversion as an example. For a target column
declared as character(20) the following statement shows that the stored value is

sized correctly:
CREATE TABLE x1
(

customer_sk integer,
customer_id char(20),
first_name char(6),
last_name char(8)

)
with (orientation = column,compression=middle)
distribute by hash (last_name);

INSERT INTO x1(customer_sk, customer_id, first_name) VALUES (3769, 'abcdef', 'Grace');

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 320

Data Warehouse Service

SQL Syntax

8 Type Conversion

SELECT customer_id, octet_length(customer_id) FROM x1;

customer_id | octet_length

abcdef | 20
(1 row)
DROP TABLE x1;

(11 NOTE

What has really happened here is that the two unknown literals are resolved to text by
default, allowing the || operator to be resolved as text concatenation. Then the text result
of the operator is converted to bpchar ("blank-padded char”, the internal name of the
character data type) to match the target column type. Since the conversion from text to
bpchar is binary-coercible, this conversion does not insert any real function call. Finally, the
sizing function bpchar(bpchar, integer, boolean) is found in the system catalog and used
for the operator's result and the stored column length. This type-specific function performs
the required length check and addition of padding spaces.

8.5 UNION, CASE, and Related Constructs

SQL UNION constructs must match up possibly dissimilar types to become a single
result set. Since all query results from a SELECT UNION statement must appear in
a single set of columns, the types of the results of each SELECT clause must be
matched up and converted to a uniform set. Similarly, the result expressions of a
CASE construct must be converted to a common type so that the CASE expression
as a whole has a known output type. The same holds for ARRAY constructs, and
for the GREATEST and LEAST functions.

Type Resolution for UNION, CASE, and Related Constructs

If all inputs are of the same type, and it is not unknown, resolve as that type.

If all inputs are of type unknown, resolve as type text (the preferred type of
the string category). Otherwise, unknown inputs are ignored.

If the non-unknown inputs are not all of the same type category, fail. (Type
unknown is not included.)

If the non-unknown inputs are all of the same type category, choose the first
non-unknown input type which is a preferred type in that category, if there is
one. (Exception: The UNION operation regards the type of the first branch as
the selected type.)

(1] NOTE

typcategory in the pg_type system catalog indicates the data type category.
typispreferred indicates whether a type is preferred in typcategory.
All the input is converted to the selected type. (The original length of a string
is retained). Fail if there is not an implicit conversion from a given input to the
selected type.

If the input contains the json, txid_snapshot, sys_refcursor, or geometry type,
UNION cannot be performed.

Type Resolution for CASE, COALESCE, IF, and IFNULL in TD-Compatible Mode

If all inputs are of the same type, and it is not unknown, resolve as that type.
If all inputs are of type unknown, resolve as type text.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 321

Data Warehouse Service

SQL Syntax

8 Type Conversion

e If inputs are of string type (including unknown which is resolved as type
text) and digit type, resolve as the string type. If the inputs are not of the two
types, fail.

e |If the non-unknown inputs are all of the same type category, choose the input
type which is a preferred type in that category, if there is one.

e Convert all inputs to the selected type. Fail if there is not an implicit
conversion from a given input to the selected type.

Type Resolution for CASE, COALESCE, IF, and IFNULL in MySQL-Compatible

Mode

Examples

e If all inputs are of the same type, and it is not unknown, resolve as that type.
e If all inputs are of type unknown, resolve as type text.

e If some inputs are of type unknown and the others are of a non-unknown
type, resolve as that non-unknown type.

e If the inputs are of different non-unknown types, treat type enum as type
text for comparison.

e If the non-unknown inputs are all of the same type, choose a preferred type,
if there is one. If the inputs are of different types, resolve as type text.

e Convert all inputs to the selected type. Fail if there is not an implicit
conversion from a given input to the selected type.

Example 1: Use type resolution with unknown types in a union as the first
example. Here, the unknown-type literal 'b' will be resolved to type text.

SELECT text 'a' AS "text" UNION SELECT 'b;
text

(2 rows)

Example 2: Use type resolution in a simple union as the second example. The
literal 1.2 is of type numeric, and the integer value 1 can be cast implicitly to
numeric, so that type is used.

SELECT 1.2 AS "numeric" UNION SELECT 1;
numeric

1.2
(2 rows)

Example 3: Use type resolution in a transposed union as the third example. Here,
since type real cannot be implicitly cast to integer, but integer can be implicitly
cast to real, the union result type is resolved as real.

SELECT 1 AS "real" UNION SELECT CAST('2.2' AS REAL);
real

2.2
(2 rows)

Example 4: Use type resolution in the COALESCE function with input values of
types int and varchar as the fourth example. Type resolution fails in ORA-

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 322

Data Warehouse Service

SQL Syntax

8 Type Conversion

compatible mode. The types are resolved as type varchar in TD-compatible mode,
and as type text in MySQL-compatible mode.

Create the ora_db, td_db, and mysql_db databases by setting dbcompatibility to
ORA, TD, and MySQL, respectively.
CREATE DATABASE ora_db dbcompatibility = 'ORA";

CREATE DATABASE td_db dbcompatibility = 'TD";
CREATE DATABASE mysql_db dbcompatibility = 'MySQL';

Switch to the ora_db database.

postgres=# \c ora_db

Create table t1. Show the execution plan of a statement for querying the
types int and varchar of input parameters for COALESCE.

ora_db=# CREATE TABLE t1(a int, b varchar(10));

ora_db=# EXPLAIN SELECT coalesce(a, b) FROM t1;

ERROR: COALESCE types integer and character varying cannot be matched
CONTEXT: referenced column: coalesce

Switch to the td_db database.

ora_db=# \c td_db

Create table t2. Show the execution plan of a statement for querying the
types int and varchar of input parameters for COALESCE.

td_db=# CREATE TABLE t2(a int, b varchar(10));
td_db=# EXPLAIN VERBOSE select coalesce(a, b) from t2;

QUERY PLAN
id | operation | E-rows | E-distinct | E-width | E-costs
-—t + + + +
1|-> Data Node Scan on "__REMOTE_FQS_QUERY_"| 0] | 0 0.00

Targetlist Information (identified by plan id)

1 --Data Node Scan on "__REMOTE_FQS_QUERY__"
Output: (COALESCE((t2.a)::character varying, t2.b))
Node/s: All datanodes
Remote query: SELECT COALESCE(a::character varying, b) AS "coalesce" FROM public.t2
(10 rows)

Switch to the mysql_db database.

td_db=# \c mysqgl_db

Create table t3. Show the execution plan of a statement for querying the
types int and varchar of input parameters for COALESCE.

mysql_db=# CREATE TABLE t3(a int, b varchar(10));
mysql_db=# EXPLAIN VERBOSE select coalesce(a, b) from t3;
QUERY PLAN

id | operation | E-rows | E-distinct | E-width | E-costs

+
t

1|-> Data Node Scan on "__REMOTE_FQS_QUERY__" | 0| | 0 0.00

Targetlist Information (identified by plan id)

1 --Data Node Scan on "__REMOTE_FQS_QUERY__"
Output: (COALESCE((t3.a):text, (t3.b):text))
Node/s: All datanodes
Remote query: SELECT COALESCE (a:text, b::itext) AS "coalesce" FROM public.t3
(10 rows)

Switch to the postgres database.
mysql_db=# \c postgres

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 323

Data Warehouse Service

SQL Syntax

9 Full Text Search

Full Text Search

9.1 Introduction

9.1.1 Full-Text Retrieval

Textual search operators have been used in databases for years. GaussDB(DWS)
has ~, ~* LIKE, and ILIKE operators for textual data types, but they lack many
essential properties required by modern information systems. They can be
supplemented by indexes and dictionaries.

(10 NOTE

The hybrid data warehouse (standalone) does not support full-text search.

Text search lacks the following essential properties required by information
systems:

There is no linguistic support, even for English.

Regular expressions are not sufficient because they cannot easily handle
derived words. For example, you might miss documents that contain satisfies,
although you probably would like to find them when searching for satisfy. It
is possible to use OR to search for multiple derived forms, but this is tedious
and error-prone, because some words can have several thousand derivatives.

They provide no ordering (ranking) of search results, which makes them
ineffective when thousands of matching documents are found.

They tend to be slow because there is no index support, so they must process
all documents for every search.

Full text indexing allows documents to be preprocessed and an index is saved for
later rapid searching. Preprocessing includes:

Parsing documents into tokens

It is useful to identify various classes of tokens, for example, numbers, words,
complex words, and email addresses, so that they can be processed
differently. In principle, token classes depend on the specific application, but
for most purposes it is adequate to use a predefined set of classes.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 324

Data Warehouse Service
SQL Syntax 9 Full Text Search

e Converting tokens into lexemes

A lexeme is a string, just like a token, but it has been normalized so that
different forms of the same word are made alike. For example, normalization
almost always includes folding upper-case letters to lower-case, and often
involves removal of suffixes (such as s or es in English) This allows searches
to find variant forms of the same word, without tediously entering all the
possible variants. Also, this step typically eliminates stop words, which are
words that are so common that they are useless for searching. (In short,
tokens are raw fragments of the document text, while lexemes are words that
are believed useful for indexing and searching.) GaussDB(DWS) uses
dictionaries to perform this step and provides various standard dictionaries.

e Storing preprocessed documents optimized for searching

For example, each document can be represented as a sorted array of
normalized lexemes. Along with the lexemes, it is often desirable to store
positional information for proximity ranking. Therefore, a document that
contains a more "dense" region of query words is assigned with a higher rank
than the one with scattered query words.

Dictionaries allow fine-grained control over how tokens are normalized. With
appropriate dictionaries, you can define stop words that should not be indexed.

A data type tsvector is provided for storing preprocessed documents, along with a
type tsquery for storing query conditions. For details, see Text Search Types. For
details about the functions and operators available for these data types, see Text
Search Functions and Operators. The match operator @@, which is the most
important among those functions and operators, is introduced in Basic Text
Matching.

9.1.2 What Is a Document?

A document is the unit of searching in a full text search system; for example, a
magazine article or email message. The text search engine must be able to parse
documents and store associations of lexemes (keywords) with their parent
document. Later, these associations are used to search for documents that contain
query words.

For searches within GaussDB(DWS), a document is normally a textual column
within a row of a database table, or possibly a combination (concatenation) of
such columns, perhaps stored in several tables or obtained dynamically. In other
words, a document can be constructed from different parts for indexing and it
might not be stored anywhere as a whole. For example:

SELECT d_dow || '-' || d_dom || '-' || d_fy_week_seq AS identify_serials FROM tpcds.date_dim WHERE
d_fy_week_seq = 1;
identify_serials

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 325

Data Warehouse Service

SQL Syntax

9 Full Text Search

9.1.3 Basic

NOTICE

Actually, in these example queries, coalesce should be used to prevent a single
NULL attribute from causing a NULL result for the whole document.

Another possibility is to store the documents as simple text files in the file system.
In this case, the database can be used to store the full text index and to execute
searches, and some unique identifier can be used to retrieve the document from
the file system. However, retrieving files from outside the database requires
system administrator permissions or special function support, so this is less
convenient than keeping all the data inside the database. Also, keeping everything
inside the database allows easy access to document metadata to assist in indexing
and display.

For text search purposes, each document must be reduced to the preprocessed
tsvector format. Searching and relevance-based ranking are performed entirely on
the tsvector representation of a document. The original text is retrieved only
when the document has been selected for display to a user. We therefore often
speak of the tsvector as being the document, but it is only a compact
representation of the full document.

Text Matching

Full text search in GaussDB(DWS) is based on the match operator @@, which
returns true if a tsvector (document) matches a tsquery (query). It does not
matter which data type is written first:

SELECT 'a fat cat sat on a mat and ate a fat rat":tsvector @@ 'cat & rat":tsquery AS RESULT;
result

(1 row)
SELECT 'fat & cow'":tsquery @@ 'a fat cat sat on a mat and ate a fat rat":tsvector AS RESULT;
result

As the above example suggests, a tsquery is not raw text, any more than a
tsvector is. A tsquery contains search terms, which must be already-normalized
lexemes, and may combine multiple terms using AND, OR, and NOT operators.
For details, see Text Search Types. There are functions to_tsquery and
plainto_tsquery that are helpful in converting user-written text into a proper
tsquery, for example by normalizing words appearing in the text. Similarly,
to_tsvector is used to parse and normalize a document string. So in practice a text
search match would look more like this:

SELECT to_tsvector('fat cats ate fat rats') @@ to_tsquery('fat & rat') AS RESULT;
result

Observe that this match would not succeed if written as follows:

SELECT 'fat cats ate fat rats':tsvector @@ to_tsquery('fat & rat')AS RESULT;
result

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 326

Data Warehouse Service

SQL Syntax

9 Full Text Search

In the preceding match, no normalization of the word rats will occur. Therefore,
rats does not match rat.

The @@ operator also supports text input, allowing explicit conversion of a text
string to tsvector or tsquery to be skipped in simple cases. The variants available
are:

tsvector @@ tsquery
tsquery @@ tsvector

text @@ tsquery
text @@ text

We already saw the first two of these. The form text @@ tsquery is equivalent to
to_tsvector(text) @@ tsquery. The form text @@ text is equivalent to
to_tsvector(text) @@ plainto_tsquery(text).

9.1.4 Configurations

Full text search functionality includes the ability to do many more things: skip
indexing certain words (stop words), process synonyms, and use sophisticated
parsing, for example, parse based on more than just white space. This
functionality is controlled by text search configurations. GaussDB(DWS) comes
with predefined configurations for many languages, and you can easily create your
own configurations. (The \dF command of gsql shows all available
configurations.)

During installation an appropriate configuration is selected and
default_text_search_config is set accordingly in postgresql.conf. If you are using
the same text search configuration for the entire cluster you can use the value in
postgresql.conf. To use different configurations throughout the cluster but the
same configuration within any one database, use ALTER DATABASE ... SET.
Otherwise, you can set default_text_search_config in each session.

Each text search function that depends on a configuration has an optional
argument, so that the configuration to use can be specified explicitly.
default_text_search_config is used only when this argument is omitted.

To make it easier to build custom text search configurations, a configuration is
built up from simpler database objects. GaussDB(DWS)'s text search facility
provides the following types of configuration-related database objects:

e Text search parsers break documents into tokens and classify each token (for
example, as words or numbers).

e Text search dictionaries convert tokens to normalized form and reject stop
words.

e Text search templates provide the functions underlying dictionaries. (A
dictionary simply specifies a template and a set of parameters for the
template.)

e Text search configurations select a parser and a set of dictionaries to use to
normalize the tokens produced by the parser.

9.2 Table and index

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 327

Data Warehouse Service

SQL Syntax

9 Full Text Search

9.2.1 Searching a Table

It is possible to do a full text search without an index.

A simple query to print each row that contains the word science in its body

column is as follows:
DROP SCHEMA IF EXISTS tsearch CASCADE;

CREATE SCHEMA tsearch;
CREATE TABLE tsearch.pgweb(id int, body text, title text, last_mod_date date);

INSERT INTO tsearch.pgweb VALUES(1, 'Philology is the study of words, especially the history and
development of the words in a particular language or group of languages.', 'Philology', '2010-1-1");

INSERT INTO tsearch.pgweb VALUES(2, 'Mathematics is the science that deals with the logic of shape,
quantity and arrangement.', 'Mathematics', '2010-1-1');

INSERT INTO tsearch.pgweb VALUES(3, 'Computer science is the study of processes that interact with
data and that can be represented as data in the form of programs.', 'Computer science', '2010-1-1");

INSERT INTO tsearch.pgweb VALUES(4, 'Chemistry is the scientific discipline involved with elements
and compounds composed of atoms, molecules and ions.', 'Chemistry', '2010-1-1');

INSERT INTO tsearch.pgweb VALUES(5, 'Geography is a field of science devoted to the study of the
lands, features, inhabitants, and phenomena of the Earth and planets.', 'Geography', '2010-1-1');

INSERT INTO tsearch.pgweb VALUES(6, 'History is a subject studied in schools, colleges, and
universities that deals with events that have happened in the past.', 'History', '2010-1-1');

INSERT INTO tsearch.pgweb VALUES(7, 'Medical science is the science of dealing with the
maintenance of health and the prevention and treatment of disease.', '"Medical science', '2010-1-1');

INSERT INTO tsearch.pgweb VALUES(8, 'Physics is one of the most fundamental scientific disciplines,
and its main goal is to understand how the universe behaves.', 'Physics', '2010-1-1');

SELECT id, body, title FROM tsearch.pgweb WHERE to_tsvector('english’, body) @@
to_tsquery(‘english', 'science');
id | body | title

+.
y

T S

2 | Mathematics is the science that deals with the logic of shape, quantity and

arrangement. | Mathematics

3 | Computer science is the study of processes that interact with data and that can be represented as
data in the form of programs. | Computer science

5 | Geography is a field of science devoted to the study of the lands, features, inhabitants, and
phenomena of the Earth and planets. | Geography

7 | Medical science is the science of dealing with the maintenance of health and the prevention and
treatment of disease. | Medical science

(4 rows)

This will also find related words, such as science, since all these are reduced
to the same normalized lexeme.

The query above specifies that the english configuration is to be used to
parse and normalize the strings. Alternatively we could omit the configuration
parameters, and use the configuration set by default_text_search_config.

SHOW default_text_search_config;
default_text_search_config

pg_catalog.english
(1 row)

SELECT id, body, title FROM tsearch.pgweb WHERE to_tsvector(body) @@ to_tsquery('science');
id | body | title

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 328

Data Warehouse Service

SQL Syntax

9 Full Text Search

2 | Mathematics is the science that deals with the logic of shape, quantity and

arrangement. | Mathematics

3 | Computer science is the study of processes that interact with data and that can be represented as
data in the form of programs. | Computer science

5 | Geography is a field of science devoted to the study of the lands, features, inhabitants, and
phenomena of the Earth and planets. | Geography

7 | Medical science is the science of dealing with the maintenance of health and the prevention and
treatment of disease. | Medical science

(4 rows)

e A more complex example to select the ten most recent documents that

contain treatment and science in the title or body column is as follows:
SELECT title FROM tsearch.pgweb WHERE to_tsvector(title || ' ' || body) @@ to_tsquery('treatment &
science') ORDER BY last_mod_date DESC LIMIT 10;

title

Medical science

(1 rows)

For clarity we omitted the coalesce function calls which would be needed to
find rows that contain NULL in one of the two columns.

The preceding examples show queries without using indexes. Most
applications will find this approach too slow. Therefore, practical use of text
searching usually requires creating an index, except perhaps for occasional ad-
hoc searches.

9.2.2 Creating an Index

You can create a GIN index to speed up text searches:

CREATE INDEX pgweb_idx_1 ON tsearch.pgweb USING gin(to_tsvector(‘english', body));
The to_tsvector() function accepts one or two augments.

If the one-augment version of the index is used, the system will use the
configuration specified by default_text_search_config by default.

To create an index, the two-augment version must be used, or the index content
may be inconsistent. Only the text search functions that specify a configuration
name can be used in expression indexes. Index content is not affected by
default_text_search_config, because different entries could contain tsvectors
that were created with different text search configurations, and there would be no
way to guess which was which. It would be impossible to dump and restore such
an index correctly.

Because the two-argument version of to_tsvector was used in the index above,
only a query reference that uses the two-argument version of to_tsvector with the
same configuration name will use that index. That is, WHERE
to_tsvector('english’, body) @@ 'a & b' can use the index, but WHERE
to_tsvector(body) @@ 'a & b' cannot. This ensures that an index will be used
only with the same configuration used to create the index entries.

More complex expression indexes can be set up when the configuration name of
the index is specified by another column. For example:

CREATE INDEX pgweb_idx_2 ON tsearch.pgweb USING gin(to_tsvector('zhparser', body));

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 329

Data Warehouse Service

SQL Syntax

9 Full Text Search

(11 NOTE

In this example, zhparser supports only the UTF-8 or GBK database encoding format. If the
SQL_ASCII encoding is used, an error will be reported.

body is a column in the pgweb table. This allows mixed configurations in the
same index while recording which configuration was used for each index entry.
This would be useful, for example, if the document collection contained
documents in different languages. Again, queries that are meant to use the index
must be phrased to match, for example, WHERE to_tsvector(config_name, body)
@@ 'a & b' must match to_tsvector in the index.

Indexes can even concatenate columns:

CREATE INDEX pgweb_idx_3 ON tsearch.pgweb USING gin(to_tsvector('english’, title || ' ' || body));

Another approach is to create a separate tsvector column to hold the output of
to_tsvector. This example is a concatenation of title and body, using coalesce to
ensure that one column will still be indexed when the other is NULL:

ALTER TABLE tsearch.pgweb ADD COLUMN textsearchable_index_col tsvector;
UPDATE tsearch.pgweb SET textsearchable_index_col = to_tsvector('english’, coalesce(title,”) || "' ||
coalesce(body,"));

Then, create a GIN index to speed up the search:

CREATE INDEX textsearch_idx_4 ON tsearch.pgweb USING gin(textsearchable_index_col);

Now you are ready to perform a fast full text search:

SELECT title

FROM tsearch.pgweb

WHERE textsearchable_index_col @@ to_tsquery('science & Computer')
ORDER BY last_mod_date DESC

LIMIT 10;

Computer science
(1 rows)

One advantage of the separate-column approach over an expression index is that
it is unnecessary to explicitly specify the text search configuration in queries in
order to use the index. As shown in the preceding example, the query can depend
on default_text_search_config. Another advantage is that searches will be faster,
since it will not be necessary to redo the to_tsvector calls to verify index matches.
The expression-index approach is simpler to set up, however, and it requires less
disk space since the tsvector representation is not stored explicitly.

9.2.3 Constraints on Index Use

The following is an example of using an index. Run the following statements in a
database that uses the UTF-8 or GBK encoding:

create table table1 (c_int int,c_bigint bigint,c_varchar varchar,c_text text) with(orientation=row);

create text search configuration ts_conf_1(parser=POUND);
create text search configuration ts_conf_2(parser=POUND) with(split_flag='%");

set default_text_search_config="ts_conf_1";
create index idx1 on table1 using gin(to_tsvector(c_text));

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 330

Data Warehouse Service

SQL Syntax

9 Full Text Search

Constraints

set default_text_search_config="ts_conf_2';
create index idx2 on table1 using gin(to_tsvector(c_text));

select c_varchar,to_tsvector(c_varchar) from table1 where to_tsvector(c_text) @@ plainto_tsquery('"¥#@......
&**') and to_tsvector(c_text) @@
plainto_tsquery('Company') and c_varchar is not null order by 1 desc limit 3;

In this example, table1 has two GIN indexes created on the same column c_text,
idx1 and idx2, but these two indexes are created under different settings of
default_text_search_config. Differences between this example and the scenario
where one table has common indexes created on the same column are as follows:

e GIN indexes use different parsers (that is, different delimiters). In this case,
the index data of idx1 is different from that of idx2.

e In the specified scenario, the index data of multiple common indexes created
on the same column is the same.

As a result, using idx1 and idx2 for the same query returns different results.

In the preceding example, when:

e Multiple GIN indexes are created on the same column of the same table.
e The GIN indexes use different parsers (that is, different delimiters).

e The column is used in a query, and an index scan is used in the execution
plan.

To avoid different query results caused by different GIN indexes, ensure that
only one GIN index is available on a column of the physical table.

9.3 Controlling Text Search

9.3.1 Parsing Documents

GaussDB(DWS) provides function to_tsvector for converting a document to the
tsvector data type.

to_tsvector([config regconfig,] document text) returns tsvector

to_tsvector parses a textual document into tokens, reduces the tokens to lexemes,
and returns a tsvector, which lists the lexemes together with their positions in the
document. The document is processed according to the specified or default text
search configuration. Here is a simple example:

SELECT to_tsvector(‘english’, 'a fat cat sat on a mat - it ate a fat rats');
to_tsvector

‘ate':9 'cat":3 'fat':2,11 'mat"7 'rat:12 'sat':4

In the preceding example we see that the resulting tsvector does not contain the
words a, on, or it, the word rats became rat, and the punctuation sign (-) was
ignored.

The to_tsvector function internally calls a parser which breaks the document text
into tokens and assigns a type to each token. For each token, a list of dictionaries
is consulted. where the list can vary depending on the token type. The first

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 331

Data Warehouse Service

SQL Syntax

9 Full Text Search

dictionary that recognizes the token emits one or more normalized lexemes to
represent the token. For example:

e rats became rat because one of the dictionaries recognized that the word
rats is a plural form of rat.

e Some words are recognized as stop words (see Stop Words), which causes
them to be ignored since they occur too frequently to be useful in searching.
In our example these are a, on, and it.

e If no dictionary in the list recognizes the token then it is also ignored. In this
example that happened to the punctuation sign (-) because there are in fact
no dictionaries assigned for its token type (Space symbols), meaning space
tokens will never be indexed.

The choices of parser, dictionaries and which types of tokens to index are
determined by the selected text search configuration. It is possible to have many
different configurations in the same database, and predefined configurations are
available for various languages. In our example we used the default configuration
english for the English language.

The function setweight can be used to label the entries of a tsvector with a given
weight, where a weight is one of the letters A, B, C, or D. This is typically used to
mark entries coming from different parts of a document, such as title versus body.
Later, this information can be used for ranking of search results.

Because to_tsvector(NULL) will return NULL, you are advised to use coalesce
whenever a column might be NULL. Here is the recommended method for
creating a tsvector from a structured document:

CREATE TABLE tsearch.tt (id int, title text, keyword text, abstract text, body text, ti tsvector);

INSERT INTO tsearch.tt(id, title, keyword, abstract, body) VALUES (1, 'book’, 'literature', 'Ancient
poetry','Tang poem Song jambic verse');

UPDATE tsearch.tt SET ti =
setweight(to_tsvector(coalesce(title,")), 'A") ||
setweight(to_tsvector(coalesce(keyword,")), 'B") ||
setweight(to_tsvector(coalesce(abstract,")), 'C') ||
setweight(to_tsvector(coalesce(body,")), 'D');

DROP TABLE tsearch.tt;

Here we have used setweight to label the source of each lexeme in the finished
tsvector, and then merged the labeled tsvector values using the tsvector
concatenation operator ||. For details about these operations, see Manipulating
tsvector.

9.3.2 Parsing Queries

GaussDB(DWS) provides functions to_tsquery and plainto_tsquery for converting
a query to the tsquery data type. to_tsquery offers access to more features than
plainto_tsquery, but is less forgiving about its input.

to_tsquery([config regconfig,] querytext text) returns tsquery

to_tsquery creates a tsquery value from querytext, which must consist of single
tokens separated by the Boolean operators & (AND), | (OR), and ! (NOT). These
operators can be grouped using parentheses. In other words, the input to
to_tsquery must already follow the general rules for tsquery input, as described
in Text Search Types. The difference is that while basic tsquery input takes the
tokens at face value, to_tsquery normalizes each token to a lexeme using the

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 332

Data Warehouse Service

SQL Syntax

9 Full Text Search

specified or default configuration, and discards any tokens that are stop words
according to the configuration. For example:

SELECT to_tsquery(‘english’, 'The & Fat & Rats');
to_tsquery

'fat' & 'rat’
(1 row)

As in basic tsquery input, weight(s) can be attached to each lexeme to restrict it
to match only tsvector lexemes of those weight(s). For example:

SELECT to_tsquery(‘english’, 'Fat | Rats:AB');
to_tsquery

'fat' | 'rat":AB
(1 row)

Also, the asterisk (*) can be attached to a lexeme to specify prefix matching:

SELECT to_tsquery('supern:*A & star:A*B');
to_tsquery

'supern"*A & 'star':*AB
(1 row)

Such a lexeme will match any word having the specified string and weight in a
tsquery.

plainto_tsquery([config regconfig,] querytext text) returns tsquery

plainto_tsquery transforms unformatted text querytext to tsquery. The text is
parsed and normalized much as for to_tsvector, then the & (AND) Boolean
operator is inserted between surviving words.

For example:

SELECT plainto_tsquery(‘english', 'The Fat Rats');
plainto_tsquery

'fat' & 'rat’
(1 row)

Note that plainto_tsquery cannot recognize Boolean operators, weight labels, or
prefix-match labels in its input:

SELECT plainto_tsquery(‘english', 'The Fat & Rats:C');
plainto_tsquery

'fat' & 'rat' & 'c'
(1 row)

Here, all the input punctuation was discarded as being space symbols.

9.3.3 Ranking Search Results

Ranking attempts to measure how relevant documents are to a particular query,
so that when there are many matches the most relevant ones can be shown first.
GaussDB(DWS) provides two predefined ranking functions. which take into
account lexical, proximity, and structural information; that is, they consider how
often the query terms appear in the document, how close together the terms are
in the document, and how important is the part of the document where they
occur. However, the concept of relevancy is vague and application-specific.
Different applications might require additional information for ranking, for

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 333

Data Warehouse Service

SQL Syntax

9 Full Text Search

example, document modification time. The built-in ranking functions are only
examples. You can write your own ranking functions and/or combine their results
with additional factors to fit your specific needs.

The two ranking functions currently available are:

ts_rank([weights float4[],] vector tsvector, query tsquery [, normalization integer]) returns float4

Ranks vectors based on the frequency of their matching lexemes.

ts_rank_cd([weights float4[],] vector tsvector, query tsquery [, normalization integer]) returns
float4

This function requires positional information in its input. Therefore, it will not
work on "stripped" tsvector values. It will always return zero.

For both these functions, the optional weights argument offers the ability to
weigh word instances more or less heavily depending on how they are labeled.
The weight arrays specify how heavily to weigh each category of word, in the
order:

{D-weight, C-weight, B-weight, A-weight}
If no weights are provided, then these defaults are used: {0.1, 0.2, 0.4, 1.0}

Typically weights are used to mark words from special areas of the document, like
the title or an initial abstract, so they can be treated with more or less importance
than words in the document body.

Since a longer document has a greater chance of containing a query term it is
reasonable to take into account document size. For example, a hundred-word
document with five instances of a search word is probably more relevant than a
thousand-word document with five instances. Both ranking functions take an
integer normalization option that specifies whether and how a document's length
should impact its rank. The integer option controls several behaviors, so it is a bit
mask: you can specify one or more behaviors using a vertical bar (|) (for example,
2|4).

0 (the default) ignores the document length
e 1 divides the rank by (1 + Logarithm of the document length)
e 2 divides the rank by the document length

e 4 divides the rank by the mean harmonic distance between extents (this is
implemented only by ts_rank_cd)

e 8 divides the rank by the number of unique words in document

e 16 divides the rank by (1 + Logarithm of the number of unique words in
document)

e 32 divides the rank by (itself + 1)

If more than one flag bit is specified, the transformations are applied in the order
listed.

It is important to note that the ranking functions do not use any global
information, so it is impossible to produce a fair normalization to 1% or 100% as
sometimes desired. Normalization option 32 (rank/(rank+1)) can be applied to
scale all ranks into the range zero to one, but of course this is just a cosmetic
change; it will not affect the ordering of the search results.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 334

Data Warehouse Service

SQL Syntax

9 Full Text Search

The following example selects the top 10 matches. Run the following statements
in a database that uses the UTF-8 or GBK encoding:

SELECT id, title, ts_rank_cd(to_tsvector(body), query) AS rank
FROM tsearch.pgweb, to_tsquery('science') query
WHERE query @@ to_tsvector(body)
ORDER BY rank DESC
LIMIT 10;
id | title | rank
N —— o
11 | Philology | .2
2 | Mathematics | .1
12 | Geography | .1
13 | Computer science | .1
(4 rows)

This is the same example using normalized ranking:

SELECT id, title, ts_rank_cd(to_tsvector(body), query, 32 /* rank/(rank+1) */) AS rank
FROM tsearch.pgweb, to_tsquery('science') query
WHERE query @@ to_tsvector(body)
ORDER BY rank DESC
LIMIT 10;
id | title | rank
e H o
11 | Philology | .166667
2 | Mathematics | .0909091
12 | Geography | .0909091
13 | Computer science |.0909091
(4 rows)

The following example sorts query by Chinese word segmentation:

CREATE TABLE tsearch.ts_zhparser(id int, body text);
INSERT INTO tsearch.ts_zhparser VALUES (1, 'Chinese');
INSERT INTO tsearch.ts_zhparser VALUES (2, 'Chinese search');
INSERT INTO tsearch.ts_zhparser VALUES (3 'Search Chinese');
-- Accurate match
SELECT id, body, ts_rank_cd (to_tsvector ('zhparser', body), query) AS rank FROM tsearch.ts_zhparser,
to_tsquery ('Chinese') query WHERE query @@ to_tsvector (body);
id | body | rank
| S |
1| Chinese | .1
(1 row)

-- Fuzzy match

SELECT id, body, ts_rank_cd (to_tsvector ('zhparser', body), query) AS rank FROM tsearch.ts_zhparser,
to_tsquery ('Chinese') query WHERE query @@ to_tsvector ('zhparser', body);

id| body |rank

| S e
3 | Search Chinese | .1
1| Chinese | .1
2 | Chinese search | .1

(3 rows)

Ranking can be expensive since it requires consulting the tsvector of each
matching document, which can be 1/O bound and therefore slow. Unfortunately, it
is almost impossible to avoid since practical queries often result in large numbers
of matches.

9.3.4 Highlighting Results

To present search results it is ideal to show a part of each document and how it is
related to the query. Usually, search engines show fragments of the document
with marked search terms. GaussDB(DWS) provides function ts_headline that
implements this functionality.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 335

Data Warehouse Service

SQL Syntax

9 Full Text Search

ts_headline([config regconfig,] document text, query tsquery [, options text]) returns text

ts_headline accepts a document along with a query, and returns an excerpt from
the document in which terms from the query are highlighted. The configuration to
be used to parse the document can be specified by config. If config is omitted,
the default_text_search_config configuration is used.

If an options string is specified it must consist of a comma-separated list of one or
more option=value pairs. The available options are:

StartSel, StopSel: The strings with which to delimit query words appearing in
the document, to distinguish them from other excerpted words. You must
double-quote these strings if they contain spaces or commas.

MaxWords, MinWords: These numbers determine the longest and shortest
headlines to output.

ShortWord: Words of this length or less will be dropped at the start and end
of a headline. The default value of three eliminates common English articles.

HighlightAll: Boolean flag. If true the whole document will be used as the
headline, ignoring the preceding three parameters.

MaxFragments: Maximum number of text excerpts or fragments to display.
The default value of zero selects a non-fragment-oriented headline
generation method. A value greater than zero selects fragment-based
headline generation. This method finds text fragments with as many query
words as possible and stretches those fragments around the query words. As a
result query words are close to the middle of each fragment and have words
on each side. Each fragment will be of at most MaxWords and words of
length ShortWord or less are dropped at the start and end of each fragment.
If not all query words are found in the document, then a single fragment of
the first MinWords in the document will be displayed.

FragmentDelimiter: When more than one fragment is displayed, the
fragments will be separated by this string.

Any unspecified options receive these defaults:

StartSel=, StopSel=,
MaxWords=35, MinWords=15, ShortWord=3, HighlightAll=FALSE,
MaxFragments=0, FragmentDelimiter=" ... "

For example:

SELECT ts_headline('english’,

'The most common type of search

is to find all documents containing given query terms
and return them in order of their similarity to the
query.’,

to_tsquery(‘english’, 'query & similarity"));

ts_headline

containing given query terms

and return them in order of their similarity to the
query.

(1 row)

SELECT ts_headline('english’,

'The most common type of search

is to find all documents containing given query terms
and return them in order of their similarity to the
query.’,

to_tsquery(‘english’, 'query & similarity'),

'StartSel = <, StopSel = >');

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 336

Data Warehouse Service

SQL Syntax

9 Full Text Search

ts_headline

containing given <query> terms

and return them in order of their <similarity> to the
<query>.

(1 row)

ts_headline uses the original document, not a tsvector summary, so it can be
slow and should be used with care.

9.4 Additional Features

9.4.1 Manipulating tsvector

GaussDB(DWS) provides functions and operators that can be used to manipulate
documents that are already in tsvector type.

tsvector || tsvector

The tsvector concatenation operator returns a new tsvector which combines
the lexemes and positional information of the two tsvectors given as
arguments. Positions and weight labels are retained during the concatenation.
Positions appearing in the right-hand tsvector are offset by the largest
position mentioned in the left-hand tsvector, so that the result is nearly
equivalent to the result of performing to_tsvector on the concatenation of
the two original document strings. (The equivalence is not exact, because any
stop-words removed from the end of the left-hand argument will not affect
the result, whereas they would have affected the positions of the lexemes in
the right-hand argument if textual concatenation were used.)

One advantage of using concatenation in the tsvector form, rather than
concatenating text before applying to_tsvector, is that you can use different
configurations to parse different sections of the document. Also, because the
setweight function marks all lexemes of the given tsvector the same way, it is
necessary to parse the text and do setweight before concatenating if you
want to label different parts of the document with different weights.

setweight(vector tsvector, weight "char") returns tsvector

setweight returns a copy of the input tsvector in which every position has
been labeled with the given weight, either A, B, C, or D. (D is the default for
new tsvectors and as such is not displayed on output.) These labels are
retained when tsvectors are concatenated, allowing words from different
parts of a document to be weighted differently by ranking functions.

NOTICE

Note that weight labels apply to positions, not lexemes. If the input tsvector
has been stripped of positions then setweight does nothing.

length(vector tsvector) returns integer
Returns the number of lexemes stored in the vector.
strip(vector tsvector) returns tsvector

Returns a tsvector which lists the same lexemes as the given tsvector, but
which lacks any position or weight information. While the returned tsvector is

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 337

Data Warehouse Service

SQL Syntax

9 Full Text Search

much less useful than an unstripped tsvector for relevance ranking, it will
usually be much smaller.

9.4.2 Manipulating Queries

GaussDB(DWS) provides functions and operators that can be used to manipulate
queries that are already in tsquery type.

tsquery && tsquery

Returns the AND-combination of the two given tsqueries.
tsquery || tsquery

Returns the OR-combination of the two given tsqueries.
I tsquery

Returns the negation (NOT) of the given tsquery.
numnode(query tsquery) returns integer

Returns the number of nodes (lexemes plus operators) in a tsquery. This
function is useful to determine if the query is meaningful (returns > 0), or
contains only stop words (returns 0). For example:

SELECT numnode(plainto_tsquery('the any'));

NOTICE: text-search query contains only stop words or doesn't contain lexemes, ignored

CONTEXT: referenced column: numnode
numnode

SELECT numnode('foo & bar':tsquery);
numnode

querytree(query tsquery) returns text

Returns the portion of a tsquery that can be used for searching an index. This
function is useful for detecting unindexable queries, for example those
containing only stop words or only negated terms. For example:

SELECT querytree(to_tsquery('!defined'));
querytree

9.4.3 Rewriting Queries

The ts_rewrite family of functions searches a given tsquery for occurrences of a
target subquery, and replace each occurrence with a substitute subquery. In
essence this operation is a tsquery specific version of substring replacement. A
target and substitute combination can be thought of as a query rewrite rule. A
collection of such rewrite rules can be a powerful search aid. For example, you can
expand the search using synonyms (that is, new york, big apple, nyc, gotham) or
narrow the search to direct the user to some hot topic.

ts_rewrite (query tsquery, target tsquery, substitute tsquery) returns tsquery
This form of ts_rewrite simply applies a single rewrite rule: target is replaced
by substitute wherever it appears in query. For example:

SELECT ts_rewrite('a & b':tsquery, 'a":tsquery, 'c':tsquery);
ts_rewrite

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 338

Data Warehouse Service
SQL Syntax 9 Full Text Search

b & 'c'
e ts_rewrite (query tsquery, select text) returns tsquery

This form of ts_rewrite accepts a starting query and a SQL select command,
which is given as a text string. The select must yield two columns of tsquery
type. For each row of the select result, occurrences of the first column value

(the target) are replaced by the second column value (the substitute) within
the current query value.

(10 NOTE

Note that when multiple rewrite rules are applied in this way, the order of application
can be important; so in practice you will want the source query to ORDER BY some
ordering key.

Consider a real-life astronomical example. We will expand query supernovae
using table-driven rewriting rules:

CREATE TABLE tsearch.aliases (id int, t tsquery, s tsquery);
INSERT INTO tsearch.aliases VALUES(1, to_tsquery('supernovae'), to_tsquery('supernovaelsn'));
SELECT ts_rewrite(to_tsquery('supernovae & crab'), 'SELECT t, s FROM tsearch.aliases');

ts_rewrite

'crab' & ('supernova' | 'sn')
We can change the rewriting rules just by updating the table:

UPDATE tsearch.aliases

SET s = to_tsquery('supernovae|sn & !nebulae')

WHERE t = to_tsquery('supernovae');

SELECT ts_rewrite(to_tsquery('supernovae & crab'), 'SELECT t, s FROM tsearch.aliases');

ts_rewrite

'crab' & ('supernova' | 'sn' & !'nebula')

Rewriting can be slow when there are many rewriting rules, since it checks
every rule for a possible match. To filter out obvious non-candidate rules we
can use the containment operators for the tsquery type. In the example
below, we select only those rules which might match the original query:

SELECT ts_rewrite('a & b":tsquery, 'SELECT t,s FROM tsearch.aliases WHERE "a & b"::tsquery @> t');

ts_rewrite

lbl & lal
(1 row)
DROP TABLE ts_rewrite;

9.4.4 Gathering Document Statistics

The function ts_stat is useful for checking your configuration and for finding stop-
word candidates.

ts_stat(sqlquery text, [weights text,]
OUT word text, OUT ndoc integer,
OUT nentry integer) returns setof record

sqlquery is a text value containing an SQL query which must return a single
tsvector column. ts_stat executes the query and returns statistics about each
distinct lexeme (word) contained in the tsvector data. The columns returned are

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 339

Data Warehouse Service

SQL Syntax

9 Full Text Search

e word text: the value of a lexeme
e ndoc integer: number of documents (tsvectors) the word occurred in
e nentry integer: total number of occurrences of the word

If weights are supplied, only occurrences having one of those weights are
counted. For example, to find the ten most frequent words in a document
collection:

SELECT * FROM ts_stat('SELECT to_tsvector("english", sr_reason_sk) FROM tpcds.store_returns WHERE
sr_customer_sk < 10') ORDER BY nentry DESC, ndoc DESC, word LIMIT 10;;

word | ndoc | nentry
______ B T,

32 | 2| 2
2

L

—_—_

22 |
(10 rows)

The same, but counting only word occurrences with weight A or B:

SELECT * FROM ts_stat('SELECT to_tsvector("english", sr_reason_sk) FROM tpcds.store_returns WHERE
sr_customer_sk < 10", 'a') ORDER BY nentry DESC, ndoc DESC, word LIMIT 10;

word | ndoc | nentry

______ O SO

(0 rows)

9.5 Parsers

Text search parsers are responsible for splitting raw document text into tokens and
identifying each token's type, where the set of types is defined by the parser itself.
Note that a parser does not modify the text at all — it simply identifies plausible
word boundaries. Because of this limited scope, there is less need for application-
specific custom parsers than there is for custom dictionaries.

Currently, GaussDB(DWS) provides the following built-in parsers:
pg_catalog.default for English configuration, and pg_catalog.ngram,
pg_catalog.zhparser, and pg_catalog.pound for full text search in texts containing
Chinese, or both Chinese and English.

The built-in parser is named pg_catalog.default. It recognizes 23 token types,
shown in Table 9-1.

Table 9-1 Default parser's token types

Alias Description Examples
asciiword Word, all ASCII letters elephant
word Word, all letters mafnana
numword Word, letters and digits beta1l
asciihword Hyphenated word, all ASCIl | up-to-date

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 340

Data Warehouse Service
SQL Syntax

9 Full Text Search

Alias Description Examples

hword Hyphenated word, all légico-matematica
letters

numhword Hyphenated word, letters postgresql-beta1

and digits

hword_asciipart

Hyphenated word part, all

ASCII

postgresql in the context
postgresql-beta1

hword_part

Hyphenated word part, all

letters

l6gico or matematica in the
context légico-matematica

hword_numpart

Hyphenated word part,

letters and digits

beta1l in the context
postgresql-beta1

email Email address foo@example.com

protocol Protocol head http://

url URL example.com/stuff/index.html

host Host example.com

url_path URL path /stuff/index.html, in the
context of a URL

file File or path name Jusr/local/foo.txt, if not
within a URL

sfloat Scientific notation -1.23E+56

float Decimal notation -1.234

int Signed integer -1234

uint Unsigned integer 1234

version Version number 8.3.0

tag XML tag

entity XML entity &

blank Space symbols (any whitespace or

punctuation not otherwise
recognized)

Note: The parser's notion of a "letter" is determined by the database's locale
setting, specifically lc_ctype. Words containing only the basic ASCII letters are
reported as a separate token type, since it is sometimes useful to distinguish them.
In most European languages, token types word and asciiword should be treated

alike.

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 341

Data Warehouse Service

SQL Syntax

9 Full Text Search

email does not support all valid email characters as defined by RFC 5322.
Specifically, the only non-alphanumeric characters supported for email user names
are period, dash, and underscore.

It is possible for the parser to identify overlapping tokens in the same piece of
text. As an example, a hyphenated word will be reported both as the entire word
and as each component:

SELECT alias, description, token FROM ts_debug(‘english','foo-bar-beta1');

alias | description | token
numhword | Hyphenated word, letters and digits | foo-bar-beta1l
hword_asciipart | Hyphenated word part, all ASCII | foo
blank | Space symbols | -
hword_asciipart | Hyphenated word part, all ASCII | bar
blank | Space symbols | -

hword_numpart | Hyphenated word part, letters and digits | beta1l

This behavior is desirable since it allows searches to work for both the whole
compound word and for components. Here is another instructive example:

SELECT alias, description, token FROM ts_debug('english’,'http://example.com/stuff/index.html');
alias | description | token
+ +
protocol | Protocol head | http://
url | URL | example.com/stuff/index.html
host | Host | example.com
url_path | URL path | /stuff/index.html

N-gram is a mechanical word segmentation method, and applies to no semantic
Chinese segmentation scenarios. The N-gram segmentation method ensures the
completeness of the segmentation. However, to cover all the possibilities, it but
adds unnecessary words to the index, resulting in a large number of index items.
N-gram supports Chinese coding, including GBK and UTF-8. Six built-in token
types are shown in Table 9-2.

Table 9-2 Token types

Alias Description
zh_words chinese words
en_word english word
numeric numeric data
alnum alnum string
grapsymbol graphic symbol
multisymbol multiple symbol

Zhparser is a dictionary-based semantic word segmentation method. The bottom-
layer calls the Simple Chinese Word Segmentation (SCWS) algorithm (https://
github.com/hightman/scws), which applies to Chinese segmentation scenarios.
SCWS is a term frequency and dictionary-based mechanical Chinese words engine.
It can split a whole paragraph Chinese text into words. The two Chinese coding
formats, GBK and UTF-8, are supported. The 26 built-in token types are shown in
Table 9-3.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 342

Data Warehouse Service
SQL Syntax

9 Full Text Search

Table 9-3 Token types

Alias

Description

Adjective

Differentiation

Conjunction

Adverb

Exclamation

Position

Lexeme

I({a|mmjio|(ln|w|>»

Preceding element

Idiom

Acronyms and abbreviations

Subsequent element

—

Common words

Numeral

Noun

Onomatopoeia

Preposition

Quantifiers

Pronoun

Space

Time

Auxiliary word

Verb

Punctuation

Unknown

Interjection

NI<|X|s|<|c|d|v|m|Oo|7|0|z2|Z

Status words

Pound segments words in a fixed format. It is used to segment to-be-parsed
nonsense Chinese and English words that are separated by fixed separators. It
supports Chinese encoding (including GBK and UTF8) and English encoding
(including ASCII). Pound has six pre-configured token types (as listed in Table

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd.

343

Data Warehouse Service
SQL Syntax

9 Full Text Search

9-4) and supports five separators (as listed in Table 9-5). The default, the
separator is #. Pound The maximum length of a token is 256 characters.

Table 9-4 Token types

Alias Description
zh_words chinese words
en_word english word
numeric numeric data
alnum alnum string
grapsymbol graphic symbol
multisymbol multiple symbol

Table 9-5 Separator types

Delimiter Description

@ Special character
Special character
$ Special character
% Special character
/ Special character

9.6 Dictionaries

9.6.1 Overview

A dictionary is used to define stop words, that is, words to be ignored in full-text

retrieval.

A dictionary can also be used to normalize words so that different derived forms
of the same word will match. A normalized word is called a lexeme.

In addition to improving retrieval quality, normalization and removal of stop
words can reduce the size of the tsvector representation of a document, thereby
improving performance. Normalization and removal of stop words do not always
have linguistic meaning. Users can define normalization and removal rules in

dictionary definition files based on application environments.

A dictionary is a program that receives a token as input and returns:

e An array of lexemes if the input token is known to the dictionary (note that

one token can produce more than one lexeme).

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd.

344

Data Warehouse Service

SQL Syntax

9 Full Text Search

e Asingle lexeme to replace the original token with a new token to be passed
to subsequent dictionaries (a dictionary that does this is called a filtering
dictionary).

e An empty array if the input token is known to the dictionary but is a stop
word.

e NULL if the dictionary does not recognize the token.

GaussDB(DWS) provides predefined dictionaries for many languages and also
provides five predefined dictionary templates, Simple, Synonym, Thesaurus,
Ispell, and Snowball. These templates can be used to create new dictionaries with
custom parameters.

When using full-text retrieval, you are advised to:

e In the text search configuration, configure a parser together with a set of
dictionaries to process the parser's output tokens. For each token type that
the parser can return, a separate list of dictionaries is specified by the
configuration. When a token of that type is found by the parser, each
dictionary in the list is consulted in turn, until a dictionary recognizes it as a
known word. If it is identified as a stop word, or no dictionary recognizes the
token, it will be discarded and not indexed or searched for. Generally, the first
dictionary that returns a non-NULL output determines the result, and any
remaining dictionaries are not consulted. However, a filtering dictionary can
replace the input token with a modified one, which is then passed to
subsequent dictionaries.

e The general rule for configuring a list of dictionaries is to place first the most
narrow, most specific dictionary, then the more general dictionaries, finishing
with a very general dictionary, like a Snowball stemmer dictionary or a
Simple dictionary, which recognizes everything. In the following example, for
an astronomy-specific search (astro_en configuration), you can configure the
token type asciiword (ASCIl word) with a Synonym dictionary of
astronomical terms, a general English Ispell dictionary, and a Snowball
English stemmer dictionary:

ALTER TEXT SEARCH CONFIGURATION astro_en

ADD MAPPING FOR asciiword WITH astro_syn, english_ispell, english_stem;
A filtering dictionary can be placed anywhere in the list, except at the end
where it would be useless. Filtering dictionaries are useful to partially
normalize words to simplify the task of later dictionaries.

9.6.2 Stop Words

Stop words are words that are very common, appear in almost every document,
and have no discrimination value. Therefore, they can be ignored in the context of
full text searching. Each type of dictionaries treats stop words in different ways.
For example, Ispell dictionaries first normalize words and then check the list of
stop words, while Snowball dictionaries first check the list of stop words.

For example, every English text contains words like a and the, so it is useless to
store them in an index. However, stop words affect the positions in tsvector,
which in turn affect ranking.

SELECT to_tsvector(‘english','in the list of stop words');
to_tsvector

'list':3 'stop':5 'word":6

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 345

Data Warehouse Service

SQL Syntax

9 Full Text Search

The missing positions 1, 2, and 4 are because of stop words. Ranks calculated for
documents with and without stop words are quite different:

SELECT ts_rank_cd (to_tsvector(‘'english','in the list of stop words'), to_tsquery('list & stop'));
ts_rank_cd

SELECT ts_rank_cd (to_tsvector(‘'english’,'list stop words'), to_tsquery('list & stop'));
ts_rank_cd

9.6.3 Simple Dictionary

Precautions

Procedure

Step 1

Step 2

A Simple dictionary operates by converting the input token to lower case and
checking it against a list of stop words. If the token is found in the list, an empty
array will be returned, causing the token to be discarded. If it is not found, the
lower-cased form of the word is returned as the normalized lexeme. In addition,
you can set Accept to false for Simple dictionaries (default: true) to report non-
stop-words as unrecognized, allowing them to be passed on to the next dictionary
in the list.

e Most types of dictionaries rely on dictionary configuration files. The name of a
configuration file can only be lowercase letters, digits, and underscores (_).

e A dictionary cannot be created in pg_temp mode.

e Dictionary configuration files must be stored in UTF-8 encoding. They will be
translated to the actual database encoding, if that is different, when they are
read into the server.

e Generally, a session will read a dictionary configuration file only once, when it
is first used within the session. To modify a configuration file, run the ALTER
TEXT SEARCH DICTIONARY statement to update and reload the file.

Create a Simple dictionary.

CREATE TEXT SEARCH DICTIONARY public.simple_dict (
TEMPLATE = pg_catalog.simple,
STOPWORDS = english

)

english.stop is the full name of a file of stop words. For details about the syntax
and parameters for creating a Simple dictionary, see CREATE TEXT SEARCH
DICTIONARY.

Use the Simple dictionary.

SELECT ts_lexize('public.simple_dict','YeS');
ts_lexize

SELECT ts_lexize('public.simple_dict','The');
ts_lexize

¢

(1 row)

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 346

Data Warehouse Service
SQL Syntax 9 Full Text Search

Step 3 Set Accept=false so that the Simple dictionary returns NULL instead of a lower-
cased non-stop word.

ALTER TEXT SEARCH DICTIONARY public.simple_dict (Accept = false);
SELECT ts_lexize('public.simple_dict','YeS');
ts_lexize

(1 row)

SELECT ts_lexize('public.simple_dict','The');
ts_lexize

3

(1 row)

----End

9.6.4 Synonym Dictionary

A synonym dictionary is used to define, identify, and convert synonyms of tokens.
Phrases are not supported (use the thesaurus dictionary in Thesaurus Dictionary).

Examples

e A synonym dictionary can be used to overcome linguistic problems, for
example, to prevent an English stemmer dictionary from reducing the word
"Paris" to "pari". It is enough to have a Paris paris line in the synonym

dictionary and put it before the english_stem dictionary.
SELECT * FROM ts_debug(‘english’, 'Paris');
alias | description |token | dictionaries | dictionary | lexemes

+ +. +. + +

asciiword | Word, all ASCII | Paris | {english_stem} | english_stem | {pari}
(1 row)

CREATE TEXT SEARCH DICTIONARY my_synonym (

TEMPLATE = synonym,

SYNONYMS = my_synonyms,

FILEPATH = ‘obs.//bucket01/obs.xxx.myhuaweicloud.com accesskey=xxxxx secretkey=xxxxx
region=xx-xx-xx'

)i

ALTER TEXT SEARCH CONFIGURATION english
ALTER MAPPING FOR asciiword
WITH my_synonym, english_stem;

SELECT * FROM ts_debug(‘english’, 'Paris');
alias | description | token | dictionaries | dictionary | lexemes

+ +. +. + +

asciiword | Word, all ASCII | Paris | {my_synonym,english_stem} | my_synonym | {paris}
(1 row)

SELECT * FROM ts_debug('english’, 'paris');
alias | description | token | dictionaries | dictionary | lexemes

+. +. +. + +

asciiword | Word, all ASCII | Paris | {my_synonym,english_stem} | my_synonym | {paris}
(1 row)

ALTER TEXT SEARCH DICTIONARY my_synonym (CASESENSITIVE=true);
SELECT * FROM ts_debug(‘english’, 'Paris');

alias | description | token | dictionaries | dictionary | lexemes

+. +.
t

asciiword | Word, all ASCII | Paris | {my_synonym,english_stem} | my_synonym | {paris}
(1 row)

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 347

Data Warehouse Service
SQL Syntax 9 Full Text Search

SELECT * FROM ts_debug('english’, 'paris');
alias | description | token | dictionaries | dictionary | lexemes

+. +.

asciiword | Word, all ASCII | Paris | {my_synonym,english_stem} | my_synonym | {pari}

(1 row)

The full name of the synonym dictionary file is my_synonyms.syn, and the
dictionary is stored in 'obs://bucket01/obs.xxx.myhuaweicloud.com
accesskey=xxxxx secretkey=xxxxx region=xx-xx-xx'. For details about the
syntax and parameters for creating a synonym dictionary, see CREATE TEXT
SEARCH DICTIONARY.

e An asterisk (*) can be placed at the end of a synonym in the configuration
file. This indicates that the synonym is a prefix. The asterisk is ignored when
the entry is used in to_tsvector(), but when it is used in to_tsquery(), the
result will be a query item with the prefix match marker (see Manipulating
Queries).

Assume that the content in the dictionary file synonym_sample.syn is as
follows:

postgres pgsql
postgresql pgsql
postgre pgsql
gogle googl
indices index*

Create and use a dictionary.

CREATE TEXT SEARCH DICTIONARY syn (
TEMPLATE = synonym,
SYNONYMS = synonym_sample

i

SELECT ts_lexize('syn','indices');
ts_lexize

{index}
(1 row)

CREATE TEXT SEARCH CONFIGURATION tst (copy=simple);
ALTER TEXT SEARCH CONFIGURATION tst ALTER MAPPING FOR asciiword WITH syn;

SELECT to_tsvector('tst','indices');
to_tsvector

SELECT to_tsquery('tst','indices');
to_tsquery

SELECT 'indexes are very useful':tsvector;
tsvector

'are' 'indexes' 'useful' 'very'
(1 row)

SELECT 'indexes are very useful':tsvector @@ to_tsquery('tst','indices');
?column?

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 348

Data Warehouse Service

SQL Syntax

9 Full Text Search

9.6.5 Thesaurus Dictionary

Precautions

Procedure

Step 1

Step 2

Step 3

A thesaurus dictionary (sometimes abbreviated as TZ) is a collection of words that
include relationships between words and phrases, such as broader terms (BT),
narrower terms (NT), preferred terms, non-preferred terms, and related terms. A
thesaurus dictionary replaces all non-preferred terms by one preferred term and,
optionally, preserves the original terms for indexing as well. A thesaurus dictionary
is an extension of the synonym dictionary with added phrase support.

e A thesaurus dictionary has the capability to recognize phrases. Therefore, it
must remember its state and interact with the parser to check whether it
should handle the next token or stop accumulation. The thesaurus dictionary
must be configured carefully. For example, if the thesaurus dictionary is
assigned to handle only the asciiword token, then a thesaurus dictionary
definition like one 7 will not work because token type uint is not assigned to
the thesaurus dictionary.

e Thesauruses are used during indexing. Any change in the thesaurus
dictionary's parameters requires reindexing. For most other dictionary types,
small changes such as adding or removing stop words does not force
reindexing.

Create a TZ named thesaurus_astro.

thesaurus_astro is a simple astronomical TZ that defines two astronomical word

combinations (word+synonym).
supernovae stars : sn
crab nebulae : crab

Run the following statement to create the TZ:

CREATE TEXT SEARCH DICTIONARY thesaurus_astro (
TEMPLATE = thesaurus,
DictFile = thesaurus_astro,
Dictionary = pg_catalog.english_stem,
FILEPATH = ‘obs.//bucket01/obs.xxx.myhuaweicloud.com accesskey=xxxxx secretkey=xxxxx region=xx-xx-

1

XX

)

The full name of the dictionary file is thesaurus_astro.ths, and the dictionary is
stored in 'obs://bucket01/obs.xxx.myhuaweicloud.com accesskey=xxxxx
secretkey=xxxxx region=xx-xx-xx. pg_catalog.english_stem is the subdictionary
(a Snowball English stemmer) used for input normalization. The subdictionary
has its own configuration (for example, stop words), which is not shown here. For
details about the syntax and parameters for creating a TZ, see CREATE TEXT
SEARCH DICTIONARY.

Bind the TZ to the desired token types in the text search configuration.

ALTER TEXT SEARCH CONFIGURATION english
ALTER MAPPING FOR asciiword, asciihword, hword_asciipart
WITH thesaurus_astro, english_stem;

Use the TZ.
e Test the TZ.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 349

Data Warehouse Service

SQL Syntax

9 Full Text Search

The ts_lexize function is not very useful for testing the TZ because the
function processes its input as a single token. Instead, you can use the
plainto_tsquery, to_tsvector, or to_tsquery function which will break their
input strings into multiple tokens.

SELECT plainto_tsquery(‘english','supernova star');
plainto_tsquery

s’
(1 row)

SELECT to_tsvector(‘english','supernova star');
to_tsvector

SELECT to_tsquery(‘english',"'supernova star"');
to_tsquery

sy

(1 row)

supernova star matches supernovae stars in thesaurus_astro because the
english_stem stemmer is specified in the thesaurus_astro definition. The
stemmer removed e and s.

e To index the original phrase, include it in the right-hand part of the definition.
supernovae stars : sn supernovae stars

ALTER TEXT SEARCH DICTIONARY thesaurus_astro (
DictFile = thesaurus_astro,
FILEPATH = 'file:///home/dicts/');

SELECT plainto_tsquery('english','supernova star');
plainto_tsquery

'sn' & 'supernova' & 'star’
(1 row)

--—-End

9.6.6 Ispell Dictionary

Procedure

Step 1

The Ispell dictionary template supports morphological dictionaries, which can
normalize many different linguistic forms of a word into the same lexeme. For
example, an English Ispell dictionary can match all declensions and conjugations
of the search term bank, such as banking, banked, banks, banks', and bank's.

GaussDB(DWS) does not provide any predefined Ispell dictionaries or dictionary
files. The .dict files and .affix files support multiple open-source dictionary formats,
including Ispell, MySpell, and Hunspell.

Obtain the dictionary definition file (.dict) and affix file (.affix).

You can use an open-source dictionary. The name extensions of the open-source
dictionary may be .aff and .dic. In this case, you need to change them to .affix
and .dict. In addition, for some dictionary files (for example, Norwegian dictionary
files), you need to run the following commands to convert the character encoding
to UTF-8:

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 350

Data Warehouse Service
SQL Syntax 9 Full Text Search

iconv -f ISO_8859-1 -t UTF-8 -0 nn_no.affix nn_NO.aff
iconv -f ISO_8859-1 -t UTF-8 -0 nn_no.dict nn_NO.dic

Step 2 Create an Ispell dictionary.

CREATE TEXT SEARCH DICTIONARY norwegian_ispell (
TEMPLATE = ispell,
DictFile = nn_no,
AffFile = nn_no,
FilePath = 'obs://bucket_name/path accesskey=ak secretkey=sk region=rg'

)

The full name of the Ispell dictionary file is nn_no.dict and nn_no.affix, and the
dictionary is stored in the 'obs://bucket01/obs.xxx.myhuaweicloud.com
accesskey=xxxxx secretkey=xxxxx region=xx-xx-xx. For details about the syntax
and parameters for creating an Ispell dictionary, see CREATE TEXT SEARCH
DICTIONARY.

Step 3 Use the Ispell dictionary to split compound words.

SELECT ts_lexize('norwegian_ispell', 'sjokoladefabrikk');
ts_lexize

{sjokolade,fabrikk}
(1 row)

MySpell does not support compound words. Hunspell supports compound words.
GaussDB(DWS) supports only the basic compound word operations of Hunspell.
Generally, an Ispell dictionary recognizes a limited set of words, so they should be
followed by another broader dictionary, for example, a Snowball dictionary, which
recognizes everything.

--—-End

9.6.7 Snowball Dictionary

A Snowball dictionary is based on a project by Martin Porter and is used for stem
analysis, providing stemming algorithms for many languages. GaussDB(DWS)
provides predefined Snowball dictionaries of many languages. You can query the
PG_TS_DICT system catalog to view the predefined Snowball dictionaries and
supported stemming algorithms.

A Snowball dictionary recognizes everything, no matter whether it is able to
simplify the word. Therefore, it should be placed at the end of the dictionary list. It
is useless to place it before any other dictionary because a token will never pass it
through to the next dictionary.

For details about the syntax of Snowball dictionaries, see CREATE TEXT SEARCH
DICTIONARY.

9.7 Configuration Examples

Text search configuration specifies the following components required for
converting a document into a tsvector:

e A parser, decomposes a text into tokens.
e Dictionary list, converts each token into a lexeme.

Each time when the to_tsvector or to_tsquery function is invoked, a text search
configuration is required to specify a processing procedure. The GUC parameter

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 351

Data Warehouse Service

SQL Syntax

9 Full Text Search

Procedure

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

default_text_search_config specifies the default text search configuration, which
will be used if the text search function does not explicitly specify a text search
configuration.

GaussDB(DWS) provides some predefined text search configurations. You can also
create user-defined text search configurations. In addition, to facilitate the
management of text search objects, multiple gsql meta-commands are provided
to display related information. For details, see "Meta-Command Reference" in the
Tool Guide.

Create a text search configuration ts_conf by copying the predefined text search
configuration english.

CREATE TEXT SEARCH CONFIGURATION ts_conf (COPY = pg_catalog.english);
CREATE TEXT SEARCH CONFIGURATION

Create a Synonym dictionary.

Assume that the definition file pg_dict.syn of the Synonym dictionary contains
the following contents:

postgres pg

pgsql pg

postgresgl pg

Run the following statement to create the Synonym dictionary:

CREATE TEXT SEARCH DICTIONARY pg_dict (

TEMPLATE = synonym,

SYNONYMS = pg_dict,

FILEPATH = ‘obs.//bucket01/obs.xxx.myhuaweicloud.com accesskey=xxxxx secretkey=xxxxx region=xx-xx-

XX

)i

Create an Ispell dictionary english_ispell (the dictionary definition file is from the
open source dictionary).

CREATE TEXT SEARCH DICTIONARY english_ispell (
TEMPLATE = ispell,
DictFile = english,
AffFile = english,
StopWords = english,
FILEPATH = ‘obs.//bucket01/obs.xxx.myhuaweicloud.com accesskey=xxxxx secretkey=xxxxx region=xx-xx-

i

XX

)

Modify the text search configuration ts_conf and change the dictionary list for
tokens of certain types. For details about token types, see Parsers.

ALTER TEXT SEARCH CONFIGURATION ts_conf
ALTER MAPPING FOR asciiword, asciihword, hword_asciipart,
word, hword, hword_part
WITH pg_dict, english_ispell, english_stem;

In the text search configuration, set non-index or set the search for tokens of
certain types.

ALTER TEXT SEARCH CONFIGURATION ts_conf
DROP MAPPING FOR email, url, url_path, sfloat, float;

Use the text retrieval commissioning function ts_debug() to test the text search
configuration ts_conf.

SELECT * FROM ts_debug('ts_conf', '
PostgreSQL, the highly scalable, SQL compliant, open source object-relational
database management system, is now undergoing beta testing of the next

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 352

Data Warehouse Service

SQL Syntax

9 Full Text Search

version of our software.

O

Step 7 You can set the default text search configuration of the current session to ts_conf.

This

setting is valid only for the current session.

\dF+ ts_conf
Text search configuration "public.ts_conf"
Parser: "pg_catalog.default"

Token | Dictionaries
+
asciihword | pg_dict,english_ispell,english_stem
asciiword | pg_dict,english_ispell,english_stem
file | simple
host | simple
hword | pg_dict,english_ispell,english_stem

hword_asciipart | pg_dict,english_ispell,english_stem
hword_numpart | simple
hword_part | pg_dict,english_ispell,english_stem

int | simple

numhword | simple

numword | simple

uint | simple

version | simple

word | pg_dict,english_ispell,english_stem

SET default_text_search_config = 'public.ts_conf";

SET

SHOW default_text_search_config;
default_text_search_config

public.ts_conf
(1 row)

--—-End

9.8 Testing and Debugging Text Search

9.8.1 Testing a Configuration

The function ts_debug allows easy testing of a text search configuration.

ts_debug([config regconfig,] document text,

OUT alias text,

OUT description text,

OUT token text,

OUT dictionaries regdictionary(],
OUT dictionary regdictionary,
OUT lexemes text[])

returns setof record

ts_debug displays information about every token of document as produced by the
parser and processed by the configured dictionaries. It uses the configuration
specified by config, or default_text_search_config if that argument is omitted.

ts_debug returns one row for each token identified in the text by the parser. The
columns returned are:

alias text — short name of the token type
description text — description of the token type
token text — text of the token

dictionaries regdictionary[] — the dictionaries selected by the configuration
for this token type

Issue 01 (2022-07-29)

Copyright © Huawei Technologies Co., Ltd. 353

Data Warehouse Service
SQL Syntax 9 Full Text Search

e dictionary regdictionary: the dictionary that recognized the token, or NULL if
none did

o lexemes text[]: the lexeme(s) produced by the dictionary that recognized the
token, or NULL if none did; an empty array ({}) means the token was
recognized as a stop word

Here is a simple example:

SELECT * FROM ts_debug('english','a fat cat sat on a mat - it ate a fat rats');
alias | description |token | dictionaries | dictionary | lexemes

+ +

asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}

blank | Space symbols | | {3 | |

asciiword | Word, all ASCII | fat | {english_stem} | english_stem | {fat}
blank | Space symbols | | {3 | |

asciiword | Word, all ASCII | cat | {english_stem} | english_stem | {cat}
blank | Space symbols | | {3 | |

asciiword | Word, all ASCII | sat | {english_stem} | english_stem | {sat}
blank | Space symbols | | {3 | |

asciiword | Word, all ASCII | on | {english_stem} | english_stem | {}
blank | Space symbols | | {3 | |

asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}
blank | Space symbols | | {3 | |

asciiword | Word, all ASCII | mat | {english_stem} | english_stem | {mat}
blank | Space symbols | | {3 | |

blank | Space symbols |- | {} | |

asciiword | Word, all ASCII | it | {english_stem} | english_stem | {}
blank | Space symbols | | {3 | |

asciiword | Word, all ASCII | ate | {english_stem} | english_stem | {ate}
blank | Space symbols | | {3 | |

asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}
blank | Space symbols | | {3 | |

asciiword | Word, all ASCII | fat | {english_stem} | english_stem | {fat}
blank | Space symbols | | {3 | |

asciiword | Word, all ASCII | rats | {english_stem} | english_stem | {rat}
(24 rows)

9.8.2 Testing a Parser

The ts_parse function allows direct testing of a text search parser.

ts_parse(parser_name text, document text,
OUT tokid integer, OUT token text) returns setof record

ts_parse parses the given document and returns a series of records, one for each
token produced by parsing. Each record includes a tokid showing the assigned
token type and a token which is the text of the token. For example:

SELECT * FROM ts_parse('default’, '123 - a number');
tokid | token
_______ e
221123
12
12]-
1]a
12
1 | number
(6 rows)
ts_token_type(parser_name text, OUT tokid integer,
OUT alias text, OUT description text) returns setof record

ts_token_type returns a table which describes each type of token the specified
parser can recognize. For each token type, the table gives the integer tokid that
the parser uses to label a token of that type, the alias that names the token type
in configuration commands, and a short description. For example:

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 354

Data Warehouse Service

9 Full Text Search

SQL Syntax
SELECT * FROM ts_token_type('default');
tokid | alias | description
1 | asciiword | Word, all ASCII
2 | word | Word, all letters
3 | numword | Word, letters and digits
4 | email | Email address
5| url | URL
6 | host | Host
7 | sfloat | Scientific notation
8 | version | Version number

9 | hword_numpart | Hyphenated word part, letters and digits
10 | hword_part | Hyphenated word part, all letters
11 | hword_asciipart | Hyphenated word part, all ASCII

12 | blank | Space symbols
13 | tag | XML tag
14 | protocol | Protocol head
15 | numhword | Hyphenated word, letters and digits
16 | asciihword | Hyphenated word, all ASCII
17 | hword | Hyphenated word, all letters
18 | url_path | URL path
19 | file | File or path name
20 | float | Decimal notation
21 |int | Signed integer
22 | uint | Unsigned integer
23 | entity | XML entity
(23 rows)

9.8.3 Testing a Dictionary

The ts_lexize function facilitates dictionary testing.

ts_lexize(dict regdictionary, token text) returns text[] ts_lexize returns an
array of lexemes if the input token is known to the dictionary, or an empty array
if the token is known to the dictionary but it is a stop word, or NULL if it is an

unknown word.

For example:

SELECT ts_lexize('english_stem’, 'stars');
ts_lexize

SELECT ts_lexize('english_stem’, 'a');
ts_lexize

NOTICE

The ts_lexize function expects a single token, not text.

9.9 Limitations

The current limitations of GaussDB(DWS)'s full text search are:

e The length of each lexeme must be less than 2 KB.
e The length of a tsvector (lexemes + positions) must be less than 1 megabyte.
e Position values in tsvector must be greater than 0 and no more than 16383.

Issue 01 (2022-07-29) Copyright © Huawei Technologies Co., Ltd. 355

Data Warehouse Service
SQL Syntax 9 Full Text Search

e No more than 256 positions per lexeme. Excessive positions, if any, will be
discarded.

e The number