GaussDB

MySQL Compatibility(Distributed)

Issue 01
Date 2025-06-30

NN

»)

pIa

V.

HUAWEI

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

QD

nuawer and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.

Address: Huawei Cloud Data Center Jiaoxinggong Road
Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

GaussDB

MySQL Compatibility(Distributed) Contents

Contents
T OVEIVIEW...ueieeeeeeeeneeeenieeesnnesessnssssesssessesssessessssssesssssssssssssssssssssssssssessssssssssessssssesssssassassssasanss 1
1.1 Overview of MYSQL-COMPALIDIE MOAE.......oireireer ettt sss st s bbbt st snssssnsans 1
1.2 Overview Of M-COMPALIDLE IMOGE........ririeieeecnis sttt s st s st s s sssssss s st snssnsessnsans 1
2 MYSQL-cOMPAtible MOde.........eeeeeeceeeececceeceeseeeeeseeeseesseessesssesssssesssessssssesssssssssassassns 3
2.1 DA@ TYPS ettt e b et £ e A A bt A R A et et a bt e ettt e et e bttt et s 3
2.1.7 NUMEIIC DA TYPES. .o ettt sttt ettt sttt bbbttt as s bt tae s b et tasae st stasanes 3
2.1.2 Date and TimMeE DAta TYPES....ccoceuerurirrreeieeeeeieiesissssissesessesssssss s sssses s sesssssssasssssassssssssssssssssssasssssssssssssssssassassassessenes 11
2.1.3 SEING DALA TYPES..ceiiiricerecireeireieirei ittt sttt sttt sttt st st st sttt bbbt et ettt eas 26
2.1.4 BINATY DAt TYPES...o ettt ettt ettt es ettt bttt bbbttt s et ben 31
2.1.5 JSON DALA TYPL..eiericirieereeirieireeistisiseietses sttt sttt sttt sttt bt et sttt sttt ettt ettt eeas 34
2.1.6 Attributes SUPPOIted DY Data TYPES.....cooriririeriririeieiseiseeseiseas st ssss s ess st s s s s ssssssssssnssns 34
2.1.7 DAt TYPE CONVEISION....cueiuiiieieeerieesieeseetstseestaststaets st tsesstss s s ssss st st sseassstassstassstassstassstsestassasasbasassassseassssassssassnen 34
2.2 SYSTEIM FUNCLIONS. ..ttt sttt st et et sttt et bttt bttt 37
2.2.71 FLOW CONEIOL FUNCHIONS.......veierieririririeei sttt ses st s st s s s sssassasssssenes 38
2.2.2 Date aNnd TiME FUNCLIONS.......vuieceeeeeeerereeis sttt s st sssnsssssssessnssssssssssasssssenes 40
2.2.3 SEING FUNCHIONS. ...ttt ettt sttt st et st eastseasssessbsssesassesastesasens 53
2.2.4 FOrced CONVEISION FUNCLIONS.......coiiriririreiseerieniieisissss s tssesssessssssssssssssssssesssssnsans 59
2.2.5 ENCrYPLION FUNCLIONS ...ttt sttt ettt st eassssn st s sssnssas 59
2.2.6 JSON FUNCLIONS.ceeitieieseeeieceseeseeseteseese et esse b e sss s cs bt s et st e st b e ettt b e ts et baeeses 59
2.2.7 AQQregate FUNCLIONS.......ccouieeeririeieicie ettt ees s s s s st sassssass et as s ess s e s s sssssssssassssassssassssnssesassssssssanes 62
2.2.8 AFENMELIC FUNCLIONS. ..ottt bbbt sas bbbt e et a bbbt s s s s sansenses 64
2.2.9 OtNEI FUNCLIONS. ...ttt sttt sa s s st s et se s bbb s st s s b s b s b bbb es s s s sansanbasbnsnes 65
2.3 OPRIALONS. ...ttt ettt ettt ettt bt s ettt e et A A beteReR ettt ARt Rt AR A et A bttt s sttt e At e et s et et tasaeaas 65
2.4 CRAFACEET SEES ...ttt ettt s bbb s e ee s et s s et s s bbb s e s s et s s s s s s s s st s s s ssnsnsas 67
2.5 COLAtION RULES......ceeieeetetsieisie sttt ettt t st s s bbb s s s b s b s s s s s st e s sssesss s sss s ssesnsesassssassessnsen 67
206 SQLci e et R AR AR ARk R Rt b et s saeen 68
2.6.T DD Lttt e bbbt 68
2.6.2 DMLttt e R AR AR AR ARt R ettt st et 79
2.6.3 DICLuuetiieiirtieeeeieieiei ettt eb sttt e s bttt 92
2.7 DIFIVEIS sttt sttt st ettt s et st st sttt et e et b et Attt et ettt 92
2.7.T IDBC ittt ettt R bbbt 92
2.7.1.71 JDBC API REFEIENCE. ...ttt ss s s sss s st ss st s s s s s s st st ssssssessssssssesnsanssnsensnssesssns 92
3 M-compatible Mode...........coiriiiiiininirincntntneetstssssssssssssssssssssssssssssssssssssans 94

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

GaussDB

MySQL Compatibility(Distributed) Contents
3.1 DALA TYPES ettt sttt ettt bttt ettt bbbt aen 94
3.1.1 NUMEKIC DAA TYPES...oimiieiireiricinieinieireet sttt tsese st s bbbttt sttt st st bbb bbb et s st st st b seaetsenes 94
3.1.2 Date and TimMeE Data TYPES....coceuirrrirririeeeeeiesissssssssssssesssassasssnsanes 97
3.1.3 SEING DALA TYPES. ettt sttt sttt st st st sttt et e b e e et et beeasseas 99
3.1.4 BINAKY DAt TYPES...eiciiciiieetieitieieisetist sttt sttt ettt ettt et et et ettt eae 103
3.1.5 Attributes SUPPOIted DY Data TYPES.......ooeieieririeieieissiesissessisss st sssssssesssssssssssssssssssessssssssssssssssssssssssssssessnsans 109
3.1.6 DAta TYPE CONVEISION....couieriieriiieitieieeeieesisees ettt ess st s tss b sss st ese s s st s etss e tasbetassetassetasseeasssassesssreas 110
3.2 SYSTEIM FUNCLIONS. ...ttt ettt sttt bbbttt st sttt es bbb e b et b etasbetacs 114
3.2.1 System Function ComMPatibility OVEIVIEW..........oiiiiieieeeeeeeieisie s ssssssss st sassssssssss s s s s sssssssssssssnsans 114
3.2.2 FLOW CONLIOL FUNCLIONS. ...coutiriniieieeiiseie ittt taees sttt ss s et sttt 116
3.2.3 Date and TimME FUNCLIONS......couieieieecieesieesie ettt sssse s s st s s ssssessssessssssss s ssessssessssesasssssssssassessssesasssanss 116
3.2.4 SEING FUNCLIONS......ciiteiecieieie ettt sttt sttt ass st st ssass bbb eeas s s e st eaasseeastseasssnsssssssssssessssssassesans 122
3.2.5 Forced CONVEISION FUNCLIONS.......c.cciiuieiireireieeireise et eeesse et sss et asessses st st ssneen 126
3.2.6 ENCIYPLION FUNCHIONS ... cuiiieiiiiiecitis sttt sttt ettt sttt eae 127
3.2.7 COMPATISON FUNCLIONS......oviteirieieie ittt sttt seas st e st st s s bes s st sassssessssasssessssssssssssssssssssssssanens 128
3.2.8 AQQregate FUNCLIONS.......cceuieiieeiceri ettt ettt ettt sttt et seeas 129
3.2.9 AFENMETIC FUNCLIONS ..ottt sttt st s b ss b s s s s s s s s assessssensssesansenassensnssnans 130
3.2.10 OthEr FUNCLIONS......vieeeeieeieeieietesisteteetesessas s st see s s s s st st sss s b s s bbb s s s s bs b bbb ssessss s senseneas 131
3.3 OPBIALONS.... ettt ettt sttt E bbbttt et b et eae 132
3.4 CNAFACEET SEES ..ottt ettt s s b s s s b st b s s e e st sa st st st en st s s s s s e s s sessssessssessssesassensnsenassenans 143
3.5 COLLAtION RULES......ceeeieeieirisiestee ettt s bbb bbb s s s bbbt s s se b s bbb bt en s s s ssnsas 144
3.6 TrANSACTIONS. ...cuinrieieieeeiiece ettt ebsees st et s s e e e s o e bttt s s e et tb st taesssesacsncs 145
3.7 SQLun ettt s e RS R SRR A R AR AR RS e R A bR s et 149
3.7 KEYWOIAS.....cveeeeeeieeisisissis s eee s ssssss s st ss st sssbs b s s s s s s bt b s b s b s s s bbbt es s s s s s e b st s b s ensensessesansansans 150
372 TABNEIFIEIS. ettt et s b bbb 150
3.7.3 DD Lttt st AR AR A et 152
3.7 DMLttt ettt e R AR bbbt 175
375 DICLutietie ittt ettt e R bbbttt 206
3.7.6 Other STATEMENTS......cvieeiceeeeeeiceiee ettt bbb bbb bbbt bbb s s s ses s sessnssas 207
3.7.7 USEIS AN PEIMMISSIONS......cuivereeieeieeieieissiesisseesessssssssssssssssssssessssssssssssssssssssessssssssssssssssssssssssssssesssssnssssassssssssassnssessnssnes 209
3.7.8 System Catalogs and SYSLEM VIEWS........ccoriririrrirririrrnienisisisssessssanes 215
3.8 DIFIVEIS ettt sttt ettt sttt et e s st e e as st e s e s s st e et asAe s e st ee s et et e e s e s et et st ae s s e e st A e s et et eAe s et et et ne At et e asae s s e reas 219
3.8.T ODBUC ittt ee ettt e AR AR et 219
3.8.T.1T ODBEC API REFEIENCE. ...ttt ettt st et 220

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

GaussDB
MySQL Compatibility(Distributed) 1 Overview

Overview

1.1 Overview of MYSQL-compatible Mode

MYSQL-compatible Mode compares GaussDB in MYSQL-compatible mode (that
is, when sql_compatibility is set to 'MYSQL', b_format_version is set to '5.7', and
b_format_dev_version is set to 's1') with MySQL 5.7. Only compatibility features
added later than GaussDB Kernel 503.0.0 are described. You are advised to view
the specifications and restrictions of the features in Developer Guide.

(11 NOTE

The implementation logic of MYSQL-compatible mode (sql_compatibility set to 'MYSQL')
in distributed mode is similar to that of the B-compatible mode (sql_compatibility set to
'B') in centralized mode. For details, see "Overview > B-compatible Mode" in the centralized
MySQL Compatibility Description.

GaussDB is compatible with MySQL in terms of data types, SQL functions, and
database objects.

GaussDB and MySQL implement different underlying frameworks. Therefore, there
are still some differences between GaussDB and MySQL.

1.2 Overview of M-compatible Mode

M-compatible Mode compares GaussDB in M-compatible mode
(sgql_compatibility set to 'M'") with MySQL 5.7. Only compatibility features added
later than GaussDB Kernel 505.2.0 are described. You are advised to view the
specifications and restrictions of the features in M Compatibility Developer Guide.

GaussDB is compatible with MySQL in terms of data types, SQL functions, and
database objects.

The execution plan, optimization, and EXPLAIN result in GaussDB are different
from those in MySQL.

GaussDB and MySQL implement different underlying frameworks. Therefore, there
are still some differences between GaussDB and MySQL.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

GaussDB
MySQL Compatibility(Distributed) 1 Overview

(11 NOTE

The underlying architecture of GaussDB is different from that of MySQL. Therefore, the
performance of querying the same schemas under information_schema and m_schema may
be different from that in MySQL. For details, see "Schemas" in M Compatibility Developer
Guide. For example, the execution of the count function cannot be optimized. The time
consumed by the SELECT * and SELECT COUNT(*) statements is similar.

Database and Schema Design

MySQL data objects include database, table, index, view, trigger, and proc,
mapping those in GaussDB hierarchically and maybe in a 1:N relationship, as
shown in the following figure.

Figure 1-1 Differences between databases and schemas in MySQL and GaussDB

Diatahaze
Datahaze Schema
Tables Views Procs Tahles Indexes || Views Procs
Indespas
MySQL GauzzDE

e In MySQL, database and schema are synonyms. In GaussDB, a database can
have multiple schemas. In this feature, each database in MySQL is mapped to
a schema in GaussDB.

e In MySQL, an index belongs to a table. In GaussDB, an index belongs to a
schema. As a result, an index name must be unique in a schema in GaussDB
and must be unique in a table in MySQL. This difference will be retained as a
current constraint.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

GaussDB
MySQL Compatibility(Distributed) 2 MYSQL-compatible Mode

MYSQL-compatible Mode

2.1 Data Types

2.1.1 Numeric Data Types

Integer

Unless otherwise specified, the precision, scale, and number of bits cannot be
defined as the floating-point values in MYSQL-compatible mode by default. You
are advised to use a valid integer type.

Differences in terms of the integer types:

e Input format:
- MysSQL
For characters such as "asbd", "12dd", and "12 12", the system truncates

them or returns 0 and reports a WARNING. Data fails to be inserted into
a table in strict mode.

- GaussDB

® For integer types (TINYINT, SMALLINT, MEDIUMINT, INT, INTEGER,
and BIGINT), if the invalid part of a character string is truncated, for
example, "12@3", no message is displayed. Data is successfully
inserted into a table.

" |f the whole integer is truncated (for example, "@123") or the
character string is empty, 0 is returned and data is successfully
inserted into a table.

e Operators:
- +,-and*
GaussDB: When INT, INTEGER, SMALLINT, or BIGINT is used for

calculation, a value of the original type is returned and is not changed to
a larger type. If the return value exceeds the range, an error is reported.

MySQL: The value can be changed to BIGINT for calculation.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

GaussDB

MySQL Compatibility(Distributed) 2 MYSQL-compatible Mode

- |, & A and ~

GaussDB: The value is calculated in the bits occupied by the type. In
GaussDB, A indicates the exponentiation operation. If the XOR operator is
required, replace it with #.

MYSQL: The value is changed to a larger type for calculation.
Type conversion of negative numbers:
GaussDB: The result is 0 in loose mode and an error is reported in strict mode.

MySQL: The most significant bit is replaced with a numeric bit based on the
corresponding binary value, for example, (-1):uint4 = 4294967295.

Other differences:

The precision of INT[(M)] controls formatted output in MySQL. GaussDB
supports only the syntax but does not support the function.

Aggregate function:

- variance: indicates the sample variance in GaussDB and the population
variance in MySQL.

- stddev: indicates the sample standard deviation in GaussDB and the
overall standard deviation in MySQL.

Display width:

- If ZEROFILL is not specified when the width information is specified for
an integer column, the width information is not displayed in the table
structure description.

- When the INSERT statement is used to insert a column of the character
type, GaussDB pads 0Os before inserting the column.

- The JOIN USING statement involves type derivation. In MySQL, the first
table column is used by default. In GaussDB, if the result is of the signed
type, the width information is invalid. Otherwise, the width of the first
table column is used.

- For GREATEST/LEAST, IFNULL/IF, and CASE WHEN/DECODE, MySQL does
not pad 0s. In GaussDB, 0s are padded when the type and width
information is consistent.

- MySAQL supports this function when it is used as the input or output
parameter or return value of a function or stored procedure. GaussDB
neither reports syntax errors nor supports this function.

For details about the differences between integer types in GaussDB and MySQL,
see Table 2-1.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Table 2-1 Integer types

differences

MySQL GaussDB Difference

BOOL Supported, MySQL: The BOOL/BOOLEAN type is actually
with mapped to the TINYINT type.
differences GaussDB: BOOL is supported.

BOOLEAN Supported, e Valid literal values for the "true" state
with include: TRUE, 't', 'true', 'y', 'yes', '1', 'TRUE',

true, 'on', and all non-zero values.

e Valid literal values for the "false" state
include: FALSE, 'f', 'false’, 'n’, 'no', '0', 0,
'FALSE', false, and 'off".

TRUE and FALSE are standard expressions,

compatible with SQL statements.

differences

TINYINT[(M)] | Supported, For details, see Differences in terms of the
[UNSIGNED] | with integer types.
differences
SMALLINTI[(Supported, For details, see Differences in terms of the
M)] with integer types.
[UNSIGNED] | differences
MEDIUMINT[| Supported, MySQL requires 3 bytes to store MEDIUMINT
(M)] with data.
[UNSIGNED] | differences | o The signed range is -8388608 to +8388607.
e The unsigned range is 0 to +16777215.
GaussDB maps data to the INT type and
requires 4 bytes for storage.
e The signed range is -2147483648 to
+2147483647.
e The unsigned range is 0 to +4294967295.
For details about other differences, see
Differences in terms of the integer types.
INT[(M)] Supported, For details, see Differences in terms of the
[UNSIGNED] | with integer types.
differences
INTEGER[(M) [Supported, For details, see Differences in terms of the
] with integer types.
[UNSIGNED] | differences
BIGINT[(M)] Supported, For details, see Differences in terms of the
[UNSIGNED] | with integer types.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

GaussDB

MySQL Compatibility(Distributed) 2 MYSQL-compatible Mode

Arbitrary Precision Types

Table 2-2 Arbitrary precision types

differences

NUMERIC[(
MLDD]

Supported,
with
differences

DEC[(M[,D])]

Supported,
with
differences

MySQL GaussDB Difference
DECIMAL[(M[| Supported, e Operator: In GaussDB, "A" indicates the
,DN] with exponentiation operation. If the XOR

operator is required, replace it with "#". In
MySQL, "A" indicates the XOR operation.

Value range: The precision M and scale D
support only integers and do not support
floating-point values.

Input format: No error is reported when all
input parameters of a character string (for
example, "@123") are truncated. An error is
reported only when it is partially truncated,
for example, "12@3".

FIXED[(M[,D]
)]

Not
supported

Floating-Point Types

Table 2-3 Floating-point types

differences

MySQL GaussDB Difference
FLOAT[(M,D) | Supported, e Partitioned table: The FLOAT data type does
] with not support partitioned tables with the key

partitioning policy.

Operator: In GaussDB, "A" indicates the
exponentiation operation. If the XOR
operator is required, replace it with "#". In
MySQL, "A" indicates the XOR operation.

e Value range: The precision M and scale D

support only integers and do not support
floating-point values.

Output format: An ERROR message is
reported for invalid input parameters. No
WARNING is reported in loose mode (that is,
sql_mode is set to "').

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

FLOAT(p)

Supported,
with
differences

e Partitioned table: The FLOAT data type does
not support partitioned tables with the key
partitioning policy.

e Operator: The A operator is used for the
numeric types, which is different from that in
MySQL. In GaussDB, the A operator is used
for exponential calculation.

e Value range: When the precision p is defined,
only valid integer data types are supported.

e Output format: An ERROR message is
reported for invalid input parameters. No
WARNING is reported in loose mode (that is,
sgl_mode is set to "').

DOUBLE[(M,
D)]

Supported,
with
differences

e Partitioned table: The DOUBLE data type
does not support partitioned tables with the
key partitioning policy.

e Operator: In GaussDB, "A" indicates the
exponentiation operation. If the XOR
operator is required, replace it with "#". In
MySQL, "A" indicates the XOR operation.

e Value range: The precision M and scale D
support only integers and do not support
floating-point values.

e Output format: An ERROR message is
reported for invalid input parameters. No
WARNING is reported in loose mode (that is,
sql_mode is set to "').

DOUBLE
PRECISIONI(
M,D)]

Supported,
with
differences

e Operator: In GaussDB, "A" indicates the
exponentiation operation. If the XOR
operator is required, replace it with "#". In
MySQL, "A" indicates the XOR operation.

e Value range: The precision M and scale D
support only integers and do not support
floating-point values.

e Output format: An ERROR message is
reported for invalid input parameters. No
WARNING is reported in loose mode (that is,
sql_mode is set to).

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

GaussDB

MySQL Compatibility(Distributed) 2 MYSQL-compatible Mode
MySQL GaussDB Difference
REAL[(M,D)] | Supported, e Partitioned table: The REAL data type does
with not support partitioned tables with the key
differences partitioning policy.

e Operator: In GaussDB, "A" indicates the
exponentiation operation. If the XOR
operator is required, replace it with "#". In
MySQL, "A" indicates the XOR operation.

e Value range: The precision M and scale D
support only integers and do not support
floating-point values.

e Output format: An ERROR message is
reported for invalid input parameters. No
WARNING is reported in loose mode (that is,
sql_mode is set to ").

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

GaussDB
MySQL Compatibility(Distributed) 2 MYSQL-compatible Mode

Sequential Integers

Table 2-4 Sequential integers

MySQL GaussDB Difference

SERIAL Supported, For details about SERIAL in GaussDB, see "SQL
with Reference > Data Types > Value Types" in
differences Developer Guide.

The differences in specifications are as follows:

CREATE TABLE test(f1 serial, f2 CHAR(20));

e The SERIAL of MySQL is mapped to
BIGINT(20) UNSIGNED NOT NULL
AUTO_INCREMENT UNIQUE, and the SERIAL
of GaussDB is mapped to INTEGER NOT
NULL DEFAULT

nextval('test_f1_seq':regclass). For example:
-- Definition of MySQL SERIAL:
mysql> SHOW CREATE TABLE test\G

1. row

Table: test
Create Table: CREATE TABLE “test™ (
*f1° bigint(20) unsigned NOT NULL AUTO_INCREMENT,
*f2° char(20) DEFAULT NULL,
UNIQUE KEY *f1° (*f1°)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
1 row in set (0.00 sec)

-- Definition of GaussDB SERIAL
gaussdb=# \d+ test

Table "public.test"
Column| Type |

Modifiers | Storage | Stats target |
Description
f1 | integer | not null default

nextval('test_f1_seq':regclass) | plain |
f2 | character(20) |

extended | |

Has OIDs: no

Options: orientation=row, compression=no,
storage_type=USTORE

e Differences in using INSERT to insert default

values of the SERIAL type. For example:

-- Inserting default values of the SERIAL type in MySQL
mysql> INSERT INTO test VALUES(DEFAULT, 'aaaa');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO test VALUES(10, 'aaaa');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO test VALUES(DEFAULT, 'aaaa');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM test;
T SR +

[f1]f2 |

T SR +

| 1]aaaa|

| 10 | aaaa |

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

| 11| aaaa |
[R S +
3 rows in set (0.00 sec)

-- Inserting default values of the SERIAL type in GaussDB
gaussdb=# INSERT INTO test VALUES(DEFAULT, 'aaaa');
INSERT O 1

gaussdb=# INSERT INTO test VALUES(10, 'aaaa');
INSERT O 1

gaussdb=# INSERT INTO test VALUES(DEFAULT, 'aaaa');
INSERT O 1

gaussdb=# SELECT * FROM test;

1| 2

1] aaaa

2 | aaaa

10 | aaaa
(3 rows)
Differences in performing REPLACE on
referencing columns of the SERIAL type. For
details about GaussDB referencing columns,
see "SQL Reference > SQL Syntax > R >
REPLACE" in Developer Guide. For example:
-- Inserting values of the referencing columns of the
SERIAL type in MySQL
mysql> REPLACE INTO test VALUES(f1, 'aaaa');
Query OK, 1 row affected (0.00 sec)

mysql> REPLACE INTO test VALUES(f1, 'bbbb');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM test;

f R S +
| f1]f2 |

f R S +
| 1]aaaa|

| 2|bbbb |
f R S +

2 rows in set (0.00 sec)

-- Inserting values of the referencing columns of the
SERIAL type in GaussDB

gaussdb=# REPLACE INTO test VALUES(f1, 'aaaa');
REPLACE 0 1

gaussdb=# REPLACE INTO test VALUES(f1, 'bbbb');
REPLACE 0 1

gaussdb=# SELECT * FROM test;

1| f2

0 | aaaa
0 | bbbb
(2 rows)

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

10

GaussDB
MySQL Compatibility(Distributed) 2 MYSQL-compatible Mode

2.1.2 Date and Time Data Types

Table 2-5 Date and time data types

MySQL GaussDB Difference

DATE Supported, GaussDB supports the date data type.
with Compared with MySQL, GaussDB has the
differences following differences in specifications:

e Input formats

- GaussDB supports only the character type
and does not support the numeric type.
For example, the format can be
'2020-01-01"' or '20200101', but cannot be
20200101. MySQL supports conversion
from numeric input to the date type.

- Separator: GaussDB does not support the
plus sign (+) or colon (:) as the separator
between the year, month, and day. Other
symbols are supported. MySQL supports
all symbols as separators. Sometimes, the
mixed use of separators is not supported,
which is different from MySQL, such as
'2020-01>01"' and '2020/01+01". You are
advised to use hyphens (-) or slashes (/)
as separators.

- No separator: You are advised to use the
complete format, for example,
'YYYYMMDD' or 'YYMMDD'. The parsing
rules of incomplete formats (including the
ultra-long format) are different from
those of MySQL. An error may be
reported or the parsing result may be
inconsistent with that of MySQL.
Therefore, the incomplete format is not
recommended.

e Output formats
If the sql_mode parameter of GaussDB does
not contain 'strict_trans_tables' (the strict
mode is used unless otherwise defined as the
loose mode), the year, month, and day can
be set to 0. However, the value is converted
to a valid value in the sequence of year,
month, and day. For example, date
'0000-00-10' is converted to 0002-12-10 BC.
If the input is invalid or exceeds the range, a
warning message is reported and the value
0000-00-00 is returned. MySQL outputs the
date value as it is, even if the year, month,
and day are set to 0.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

e Value ranges

The value range of GaussDB is 4713-01-01
BC to 5874897-12-31 AD. BC dates are
supported. In loose mode, if the value
exceeds the range, 0000-00-00 is returned.
In strict mode, an error is reported. In
MySQL, the value range is 0000-00-00 to
9999-12-31. In loose mode, if the value
exceeds the range, the performance varies in
different scenarios. An error may be reported
(for example, in the SELECT statement) or
the value 0000-00-00 may be returned (for
example, in the INSERT statement). As a
result, when the date type is used as the
input parameter of the function, the results
returned by the function are different.

Operators

- GaussDB supports only the comparison
operators =, !=, <, <=, >, and >= between
date types and returns true or false. For
the addition operation between the date
and interval types, the return result is of
the date type. For the subtraction
operation between the date and interval
types, the return result is of the date type.
For the subtraction operation between
date types, the return result is of the
interval type.

- When the MySQL date type and other
numeric types are calculated, the date
type is converted to the numeric type, and
then the calculation is performed based
on the numeric type. The result is also of
the numeric type. It is different from
GaussDB. For example:

-- MySQL: date+numeric. Convert the date type to

20200101 and add it to 1. The result is 20200102.

mysql> SELECT date'2020-01-01' + 1;

+ +

| date'2020-01-01" + 1 |

s a

| 20200102 |
+ +

1 row in set (0.00 sec)

-- GaussDB: date+numeric. Convert the numeric type to
the interval type (1 day), and then add them up to obtain
a new date.
gaussdb=# SELECT date'2020-01-01' + 1;

?column?

2020-01-02
(1 row)

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

GaussDB

MySQL Compatibility(Distributed) 2 MYSQL-compatible Mode

MySQL

GaussDB Difference

e Type conversion
Compared with MySQL, GaussDB supports
conversion between the date type and
char(n), nchar(n), datetime, or timestamp
type, but does not support conversion
between the date type and binary, decimal,
JSON, integer, unsigned integer, or time type.
The principles for determining common
types in scenarios such as collections and
complex expressions are different from those
in MySQL. For details, see Data Type
Conversion.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

p)]

DATETIME[(fs | Supported,

with
differences

GaussDB supports the datetime data type.
Compared with MySQL, GaussDB has the
following differences in specifications:

e Input formats

- GaussDB supports only the character type
and does not support the numeric type.
For example, '2020-01-01
10:20:30.123456' or
'20200101102030.123456' is supported,
but 20200101102030.123456 is not
supported. MySQL supports conversion
from numeric input to the datetime type.

- Separator: GaussDB does not support the
plus sign (+) or colon (:) as the separator
between the year, month, and day. Other
symbols are supported. Only colons ()
can be used as separators between hours,
minutes, and seconds. Sometimes, the
mixed use of separators is not supported,
which is different from MySQL. Therefore,
it is not recommended. MySQL supports
all symbols as separators.

- No separator: In GaussDB, the complete
format 'YYYYMMDDhhmiss.ffffff' is
recommended. The parsing rules of
incomplete formats (including the ultra-
long format) may be different from those
of MySQL. An error may be reported or
the parsing result may be inconsistent
with that of MySQL. Therefore, the
incomplete format is not recommended.

e Output formats:

- The format is 'YYYY-MM-DD
hh:mi:ss. ffffff', which is the same as that
of MySQL and is not affected by the
DateStyle parameter. However, for the
precision part, if the last several digits are
0, they are not displayed in GaussDB but
displayed in MySQL.

- If the sql_mode parameter of GaussDB
does not contain 'strict_trans_tables'
(the strict mode is used unless otherwise
defined as the loose mode), the year,
month, and day can be set to 0. However,
the value is converted to a valid value in
the sequence of year, month, and day. For
example, datetime '0000-00-10 00:00:00'

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

is converted to 0002-12-10 00:00:00 BC. If
the input is invalid or exceeds the range, a
warning message is reported and the
value 0000-00-00 00:00:00 is returned.
MySQL outputs the datetime value as it
is, even if the year, month, and day are set
to 0.

e Value ranges

4713-11-24 00:00:00.000000 BC to
294277-01-09 04:00:54.775806 AD. If the
value is 294277-01-09 04:00:54.775807 AD,
infinity is returned. If the value exceeds the
range, GaussDB reports an error in strict
mode. Whether MySQL reports an error
depends on the application scenario.
Generally, no error is reported in the query
scenario. However, an error is reported when
the DML or SQL statement is executed to
change the value of a table attribute. In
loose mode, GaussDB returns 0000-00-00
00:00:00. MySQL may report an error, return
0000-00-00 00:00:00, or return null based
on the application scenario. As a result, the
execution result of the function that uses the
datetime type as the input parameter is
different from that of MySQL.

Precision

The value ranges from 0 to 6. For a table
column, the default value is 0, which is the
same as that in MySQL. In the
datetime[(p)]'str' expression, GaussDB parses
(p) as the precision. The default value is 6,
indicating that 'str' is formatted to the
datetime type based on the precision
specified by p. MySQL does not support the
datetime[(p)]'str' expression.

e Operators

- GaussDB supports only the comparison
operators =, !=, <, <=, >, and >= between
datetime types and returns true or false.
For the addition operation between the
datetime and interval types, the return
result is of the datetime type. For the
subtraction operation between the
datetime and interval types, the return
result is of the datetime type. For the
subtraction operation between datetime
types, the return result is of the interval

type.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

- When the MySQL datetime type and
other numeric types are calculated, the
datetime type is converted to the numeric
type, and then the calculation is
performed based on the numeric type.
The result is also of the numeric type. It is
different from GaussDB. For example:

-- MySQL: datetime+numeric. Convert the datetime type
to 20201010123456 and add it to 1. The result is
20201010123457.

mysql> SELECT cast('2020-10-10 12:34:56.123456' AS
datetime) + 1;

+ +

| cast('2020-10-10 12:34:56.123456' as datetime) + 1 |
iz ar

| 20201010123457 |

iz ar

1 row in set (0.00 sec)

-- GaussDB: datetime+numeric. Convert the numeric type
to the interval type (1 day), and then add them up to
obtain the new datetime.
gaussdb=# SELECT cast('2020-10-10 12:34:56.123456' AS
datetime) + 1;

?column?

2020-10-11 12:34:56
(1 row)

If the calculation result of the datetime type
and numeric type is used as the input
parameter of a function, the result of the
function may be different from that of
MySQL.

Type conversion

Compared with MySQL, GaussDB supports
only conversion between the datetime type
and char(n), varchar(n), and timestamp
types, and conversion from datetime to date
and time types (only value assignment and
explicit conversion). The conversion between
the datetime type and the binary, decimal,
json, integer, or unsigned integer type is not
supported. The principles for determining
common types in scenarios such as
collections and complex expressions are
different from those in MySQL. For details,
see Data Type Conversion.

Time zones

In GaussDB, the datetime value can carry the
time zone information (time zone offset or
time zone name), for example, '2020-01-01
12:34:56.123456 +01:00' or '2020-01-01
2:34:56.123456 CST'. GaussDB converts the
time to the time of the current server time

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

zone. MySQL 5.7 does not support this
function. MySQL 8.0 and later versions
support this function.

e The table columns of the datetime data type
in GaussDB are actually converted to the
timestamp(p) without time zone. When you
query the table information or use a tool to
export the table structure, the data type of
columns is timestamp(p) without time zone
instead of datetime. For MySQL, datetime(p)
is displayed.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

fsp)]

TIMESTAMP[(| Supported,

with
differences

GaussDB supports the timestamp data type.
Compared with MySQL, GaussDB has the
following differences in specifications:

e Input formats:

- It supports only the character type and
does not support the numeric type. For
example, '2020-01-01 10:20:30.123456' or
'20200101102030.123456' is supported,
but 20200101102030.123456 is not
supported. MySQL supports conversion
from numeric input to the timestamp
type.

- Separator: It does not support the plus
sign (+) or colon (:) as the separator
between the year, month, and day. Other
symbols are supported. Only colons ()
can be used as separators between hours,
minutes, and seconds. Sometimes, the
mixed use of separators is not supported,
which is different from MySQL. Therefore,
it is not recommended. MySQL supports
all symbols as separators.

- No separator: The complete format
YYYYMMDDhhmiss.ffffff' is
recommended. The parsing rules of
incomplete formats (including the ultra-
long format) may be different from those
of MySQL. An error may be reported or
the parsing result may be inconsistent
with that of MySQL. Therefore, the
incomplete format is not recommended.

e Output formats:

- The format is 'YYYY-MM-DD
hh:mi:ss. ffffff', which is the same as that
of MySQL and is not affected by the
DateStyle parameter. However, for the
precision part, if the last several digits are
0, they are not displayed in GaussDB but
displayed in MySQL.

- If the sql_mode parameter of GaussDB
does not contain 'strict_trans_tables'
(the strict mode is used unless otherwise
defined as the loose mode), the year,
month, and day can be set to 0. However,
the value is converted to a valid value in
the sequence of year, month, and day. For
example, timestamp '0000-00-10

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

e Value ranges

e Operators

00:00:00' is converted to 0002-12-10
00:00:00 BC. If the input is invalid or
exceeds the range, a warning message is
reported and the value 0000-00-00
00:00:00 is returned. MySQL outputs the
timestamp value as it is, even if the year,
month, and day are set to 0.

4713-11-24 00:00:00.000000 BC to
294277-01-09 04:00:54.775806 AD. If the
value is 294277-01-09 04:00:54.775807 AD,
infinity is returned. If the value exceeds the
range, GaussDB reports an error in strict
mode. Whether MySQL reports an error
depends on the application scenario.
Generally, no error is reported in the query
scenario. However, an error is reported when
the DML or SQL statement is executed to
change the value of a table attribute. In
loose mode, GaussDB returns 0000-00-00
00:00:00. MySQL may report an error, return
0000-00-00 00:00:00, or return null based
on the application scenario. As a result, the
execution result of the function that uses the
timestamp type as the input parameter is
different from that of MySQL.

Precision:

The value ranges from 0 to 6. For a table
column, the default value is 0, which is the
same as that in MySQL. In the
timestamp[(p)] 'str' expression:

- GaussDB parses (p) as the precision. The
default value is 6, indicating that 'str' is
formatted to the timestamp type based
on the precision specified by p.

- The meaning of timestamp 'str' in MySQL
is the same as that in GaussDB. The
default precision is 6. However,
timestamp(p) 'str' is parsed as a function
call. p is used as the input parameter of
the timestamp function. The result returns
a value of the timestamp type, and 'str' is
used as the alias of the projection column.

- GaussDB supports only the comparison
operators =, !=, <, <=, >, and >= between
timestamp types and returns true or
false. For the addition operation between

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

the timestamp and interval types, the
return result is of the timestamp type. For
the subtraction operation between the
timestamp and interval types, the return
result is of the timestamp type. For the
subtraction operation between timestamp
types, the return result is of the interval
type.

- When the MySQL timestamp type and
other numeric types are calculated, the
timestamp type is converted to the
numeric type, and then the calculation is
performed based on the numeric type.
The result is also of the numeric type. It is
different from GaussDB. For example:

-- MySQL: timestamp+numeric. Convert the timestamp
type to 20201010123456.123456 and add it to 1. The
result is 20201010123457.123456.

mysql> SELECT timestamp '2020-10-10 12:34:56.123456' +
1

| timestamp '2020-10-10 12:34:56.123456' + 1 |

| 20201010123457.123456 |

+

1 row in set (0.00 sec)

-- GaussDB: timestamp+numeric. Convert the numeric
type to the interval type (1 day), and then add them up to
obtain a new timestamp.
gaussdb=# SELECT timestamp '2020-10-10
12:34:56.123456' + 1;

?column?

2020-10-11 12:34:56.123456
(1 row)

If the calculation result of the timestamp
type and numeric type is used as the input
parameter of a function, the result of the
function may be different from that of
MySQL.

Type conversion

Compared with MySQL, GaussDB supports
only conversion between timestamp and
char(n), varchar(n), and datetime, and
conversion from timestamp to date and time
(only value assignment and explicit
conversion). The conversion between the
timestamp type and the binary, decimal,
json, integer, or unsigned integer type is not
supported. The principles for determining
common types in scenarios such as
collections and complex expressions are

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

different from those in MySQL. For details,
see Data Type Conversion.

Time zones

In GaussDB, the timestamp value can carry
the time zone information (time zone offset
or time zone name), for example,
'2020-01-01 12:34:56.123456 +01:00' or
'2020-01-01 2:34:56.123456 CST'. GaussDB
converts the time to the time of the current
server time zone. If the time zone of the
server is changed, the timestamp value is
converted to the timestamp of the new time
zone. MySQL 5.7 does not support this
function. MySQL 8.0 and later versions
support this function.

The table columns of the timestamp data
type in GaussDB are actually converted to
the timestamp(p) with time zone. When you
query the table information or use a tool to
export the table structure, the data type of
columns is timestamp(p) with time zone
instead of timestamp. For MySQL,
timestamp(p) is displayed.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

TIME[(fsp)] Supported,

with
differences

GaussDB supports the time data type.
Compared with MySQL, GaussDB has the
following differences in specifications:

e Input formats:

- It supports only the character type and
does not support the numeric type. For
example, '1 10:20:30' or '102030' is
supported, but 102030 is not supported.
MySQL supports conversion from numeric
input to the time type.

- Separator: GaussDB supports only colons
() as separators between hours, minutes,
and seconds. MySQL supports all symbols
as separators.

- No separator: The complete format
'hhmiss.ffffff' is recommended. The
parsing rules of incomplete formats
(including the ultra-long format) may be
different from those of MySQL. An error
may be reported or the parsing result may
be inconsistent with that of MySQL.
Therefore, the incomplete format is not
recommended.

- When a negative value is entered for
minute, second, or precision, GaussDB
may ignore the first part of the negative
value, which is parsed as 0. For example,
'00:00:-10' is parsed as '00:00:00'. An error
may also be reported. For example, if
'00:00:-10000' is parsed, an error will be
reported. The result depends on the range
of the input value. However, MySQL
reports an error in both cases.

e Output formats:
The format is hh:mi:ss.ffffff, which is the
same as that of MySQL. However, for the
precision part, if the last several digits are 0,
they are not displayed in GaussDB but
displayed in MySQL.

e Value ranges
-838:59:59.000000 to 838:59:59.000000,
which is the same as that of MySQL. For
values that exceed the range, when GaussDB
performs DML operations such as SELECT,
INSERT, and UPDATE in loose mode, it
returns the nearest boundary values such as
-838:59:59 or 838:59:59. In MySQL, an error
is reported during query, or the nearest

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

22

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

boundary value is returned after a DML
operation. As a result, when the time type is
used as the input parameter of the function,
the results returned by the function are
different.

Precision:

The value ranges from 0 to 6. For a table
column, the default value is 0, which is the
same as that in MySQL. In the time(p) 'str'
expression, GaussDB parses (p) as the
precision. The default value is 6, indicating
that 'str' is formatted to the time type based
on the precision specified by p. MySQL
parses it as a time function, p is an input
parameter, and 'str' is the alias of the
projection column.

Operators

- GaussDB supports only the comparison
operators =, =, <, <=, >, and >= between
time types and returns true or false. For
the addition operation between the time
and interval types, the return result is of
the time type. For the subtraction
operation between the time and interval
types, the return result is of the time type.
For the subtraction operation between
time types, the return result is of the
interval type.

- When the MySQL time type and other
numeric types are calculated, the time
type is converted to the numeric type, and
then the calculation is performed based
on the numeric type. The result is also of
the numeric type. It is different from
GaussDB. For example:

-- MySQL: time+numeric. Convert the time type to 123456
and add it to 1. The result is 123457.
mysql> SELECT time '12:34:56' + 1;

| time '12:34:56' + 1 |
| 123457 |

il Tr

1 row in set (0.00 sec)

-- GaussDB: time+numeric. Convert the numeric type to
the interval type (1 day), and then add them up to obtain
the new time. Because 24 hours are added, the obtained
time is still 12:34:56.

gaussdb=# SELECT time '12:34:56' + 1;

?column?

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

GaussDB
MySQL Compatibility(Distributed) 2 MYSQL-compatible Mode

MySQL GaussDB Difference

12:34:56
(1 row)

If the calculation result of the time type and
numeric type is used as the input parameter
of a function, the result of the function may
be different from that of MySQL.

e Type conversion
Compared with MySQL, GaussDB supports
only conversion between the time type and
char(n) or nchar(n) type, and conversion
between the datetime or timestamp type
and time type. The conversion between the
time type and binary, decimal, date, JSON,
integer, or unsigned integer type is not
supported. The principles for determining
common types in scenarios such as
collections and complex expressions are
different from those in MySQL. For details,
see Data Type Conversion.

YEAR[(4)] Supported, GaussDB supports the year data type.
with Compared with MySQL, GaussDB has the
differences following differences in specifications:

e Operators

- GaussDB supports only the comparison
operators =, !=, <, <=, >, and >= between
year types and returns true or false.

- GaussDB supports only the arithmetic
operators + and - between the year and
int4 types and returns integer values.
MySQL returns unsigned integer values.

e Type conversion
Compared with MySQL, GaussDB supports
only the conversion between the year type
and int4 type, and supports only the
conversion from the int4, varchar, numeric,
date, time, timestamp, or timestamptz type
to the year type. The principles for
determining common types in scenarios such
as collections and complex expressions are
different from those in MySQL. For details,
see Data Type Conversion.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

differences

MySQL GaussDB Difference
INTERVAL Supported, GaussDB supports the INTERVAL data type, but
with INTERVAL is an expression in MySQL. The

differences are as follows:

e The date input of the character string type
cannot be used as an operation, for example,
SELECT '2023-01-01' + interval 1 day.

e In the INTERVAL expr unit syntax, expr
cannot be a negative integer or floating-
point number, for example, SELECT
date'2023-01-01' + interval -1 day.

e In the INTERVAL expr unit syntax, expr
cannot be the input of an operation
expression, for example, SELECT
date'2023-01-01' + interval 4/2 day.

e When the INTERVAL expression is used for
calculation, the return value is of the
datetime type. For MySQL, the return value
is of the datetime or date type. The
calculation logic is the same as that of
GaussDB but different from that of MySQL.

e In the INTERVAL expr unit syntax, the value
range of expr varies with the unit. The
maximum value range is [-2147483648,
2147483647]. If the value exceeds the range,
an error is reported in strict mode, and a
warning is reported in loose mode and 0 is
returned.

e In the INTERVAL expr unit syntax, if the
number of columns specified by expr is
greater than the expected number of
columns in unit, an error is reported in strict
mode, and a warning is reported in loose
mode and 0 is returned. For example, if the
value of unit is DAY_HOUR, the expected
number of columns is 2. If the value of expr
is '"1-2-3', the expected number of columns is
3.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

2.1.3 String Data Types

Table 2-6 String data types

MySQL

GaussDB

Difference

CHAR[(

M)] Supported,
with
differences

e Input format

- The length of parameters and return
values of GaussDB user-defined functions
cannot be verified. The length of stored
procedure parameters cannot be verified.
In addition, correct spaces cannot be
supplemented when
PAD_CHAR_TO_FULL_LENGTH is
enabled. However, MySQL supports these
functions.

- GaussDB does not support escape
characters or double quotation marks
("). MySQL supports these inputs.

e Syntax
The CAST(expr as char) syntax of GaussDB
cannot convert the input string to the
corresponding type based on the string
length. It can only be converted to the
varchar type. CAST(" as char) and CAST("
as char(0)) cannot convert an empty string
to the char(0) type. MySQL supports
conversion to the corresponding type by
length.

e Operator

- After performing addition, subtraction,
multiplication, division, or modulo
operations on a string (that can be
converted to a floating-point value) and
an integer value, GaussDB returns an
integer, while MySQL returns a floating-
point value.

- If a value is divided by 0, GaussDB reports
an error, and MySQL returns null.

- "~": returns a negative number in
GaussDB and an 8-byte unsigned integer
in MySQL.

- "A".indicates a power in GaussDB and a
bitwise XOR in MySQL.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

VARCHAR(M) | Supported,

with
differences

e Input format

- The length of parameters and return
values of GaussDB user-defined functions
cannot be verified. The length of stored
procedure parameters cannot be verified.
However, MySQL supports these
functions.

- The length of temporary variables in
GaussDB user-defined functions and
stored procedures can be verified, and an
error or truncation alarm is reported in
strict or loose mode. However, MySQL
does not support these functions.

- GaussDB does not support escape
characters or double quotation marks
(""). MySQL supports these inputs.

e Operator

- After performing addition, subtraction,
multiplication, division, or modulo
operations on a string (that can be
converted to a floating-point value) and
an integer value, GaussDB returns an
integer, while MySQL returns a floating-
point value.

- If a value is divided by 0, GaussDB reports
an error, and MySQL returns null.

- "~":returns a negative number in
GaussDB and an 8-byte unsigned integer
in MySQL.

- "A" indicates a power in GaussDB and a
bitwise XOR in MySQL.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

differences

MySQL GaussDB Difference
TINYTEXT Supported, e Input format
with

- In GaussDB, the length of this type cannot
exceed 1 GB. If the length exceeds 1 GB,
an error is reported. In MySQL, the length
of this type cannot exceed 255 bytes.
Otherwise, an error is reported in strict
mode, and data is truncated and an alarm
is generated in loose mode.

- GaussDB does not support escape
characters or double quotation marks
("). MySQL supports these inputs.

e Operator

- After performing addition, subtraction,
multiplication, division, or modulo
operations on a string (that can be
converted to a floating-point value) and
an integer value, GaussDB returns an
integer, while MySQL returns a floating-
point value.

- If a value is divided by 0, GaussDB reports
an error, and MySQL returns null.

- "~"returns a negative number in
GaussDB and an 8-byte unsigned integer
in MySQL.

- "A"indicates a power in GaussDB and a
bitwise XOR in MySQL.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

differences

MySQL GaussDB Difference
TEXT Supported, e Input format
with

- In GaussDB, the length of this type cannot
exceed 1 GB. If the length exceeds 1 GB,
an error is reported. In MySQL, the length
of this type cannot exceed 65535 bytes.
Otherwise, an error is reported in strict
mode, and data is truncated and an alarm
is generated in loose mode.

- GaussDB does not support escape
characters or double quotation marks
("). MySQL supports these inputs.

e Operator

- After performing addition, subtraction,
multiplication, division, or modulo
operations on a string (that can be
converted to a floating-point value) and
an integer value, GaussDB returns an
integer, while MySQL returns a floating-
point value.

- If a value is divided by 0, GaussDB reports
an error, and MySQL returns null.

- "~"returns a negative number in
GaussDB and an 8-byte unsigned integer
in MySQL.

- "A"indicates a power in GaussDB and a
bitwise XOR in MySQL.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

MEDIUMTEXT | Supported,

with
differences

e Input format

- In GaussDB, the length of this type cannot
exceed 1 GB. If the length exceeds 1 GB,
an error is reported. In MySQL, the length
of this type cannot exceed 16777215
bytes. Otherwise, an error is reported in
strict mode, and data is truncated and an
alarm is generated in loose mode.

- GaussDB does not support escape
characters or double quotation marks
("). MySQL supports these inputs.

e Operator

- After performing addition, subtraction,
multiplication, division, or modulo
operations on a string (that can be
converted to a floating-point value) and
an integer value, GaussDB returns an
integer, while MySQL returns a floating-
point value.

- If a value is divided by 0, GaussDB reports
an error, and MySQL returns null.

- "~"returns a negative number in
GaussDB and an 8-byte unsigned integer
in MySQL.

- "A"indicates a power in GaussDB and a
bitwise XOR in MySQL.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

LONGTEXT

Supported,
with
differences

e Input format

- GaussDB supports a maximum of 1 GB,
and MySQL supports a maximum of 4 GB
minus 1 byte.

- GaussDB does not support escape
characters or double quotation marks
("). MySQL supports these inputs.

e Operator

- After performing addition, subtraction,
multiplication, division, or modulo
operations on a string (that can be
converted to a floating-point value) and
an integer value, GaussDB returns an
integer, while MySQL returns a floating-
point value.

- If a value is divided by 0, GaussDB reports
an error, and MySQL returns null.

- "~"returns a negative number in
GaussDB and an 8-byte unsigned integer
in MySQL.

- "A"indicates a power in GaussDB and a
bitwise XOR in MySQL.

ENUM('value
1','value2',...)

Not
supported

SET('value1','v
alue2',...)

Not
supported

2.1.4 Binary Data Types

Table 2-7 Binary data types

MySQL GaussDB Difference

BINARY[(M)] | Not -
supported

VARBINARY (Not -

M) supported

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

TINYBLOB Supported,

with
differences

e Value range: In GaussDB, this type is mapped
from the BYTEA type. Its length cannot
exceed 1 GB. Otherwise, an error is reported.
In MySQL, the length of this type cannot
exceed 255 bytes. Otherwise, an error is
reported in strict mode, and data is
truncated and an alarm is generated in loose
mode.

e Input format: Escape characters and double
quotation marks ("") are not supported.

e Output format: For the "\0' character, the
query result is displayed as "\000". If the
getBytes API of the JDBC driver is used, the
result is the '\O' character.

e Operator: Arithmetic operators (+ - * / %)
are not supported. Common logical
operators OR, AND, NOT (|| &&!) are not
supported. Common bitwise operators (~ & |
A) are not supported.

BLOB

Supported,
with
differences

e Value range: In GaussDB, this type is mapped
from the BYTEA type. Its length cannot
exceed 1 GB. Otherwise, an error is reported.
In MySQL, the length of this type cannot
exceed 65535 bytes. Otherwise, an error is
reported in strict mode, and data is
truncated and an alarm is generated in loose
mode.

e Input format: Escape characters and double
quotation marks ("") are not supported.

e Output format: For the "\0' character, the
query result is displayed as "\000". If the
getBytes API of the JDBC driver is used, the
result is the '\O' character.

e Operator: Arithmetic operators (+ - * / %)
are not supported. Common logical
operators OR, AND, NOT (|| &&!) are not
supported. Common bitwise operators (~ & |
A) are not supported.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

B

MEDIUMBLO | Supported,

with
differences

e Value range: In GaussDB, this type is mapped
from the BYTEA type. Its length cannot
exceed 1 GB. Otherwise, an error is reported.
In MySQL, the length of this type cannot
exceed 16777215 bytes. Otherwise, an error
is reported in strict mode, and data is
truncated and an alarm is generated in loose
mode.

e Input format: Escape characters and double
quotation marks ("") are not supported.

e Output format: For the "\0' character, the
query result is displayed as "\000". If the
getBytes API of the JDBC driver is used, the
result is the '\O' character.

e Operator: Arithmetic operators (+ - * / %)
are not supported. Common logical
operators OR, AND, NOT (|| &&!) are not
supported. Common bitwise operators (~ & |
A) are not supported.

LONGBLOB Supported,

with
differences

e Value range: In GaussDB, this type is mapped
from the BYTEA type. Its length cannot
exceed 1 GB. For details, see the centralized
and distributed specifications of the BYTEA
data type.

e Input format: Escape characters and double
quotation marks ("") are not supported.

e Output format: For the "\O' character, the
query result is displayed as "\000". If the
getBytes API of the JDBC driver is used, the
result is the "\0' character.

e Operator: Arithmetic operators (+ - * / %)
are not supported. Common logical
operators OR, AND, NOT (|| && !) are not
supported. Common bitwise operators (~ & |
A) are not supported.

BIT[(M)] Not

supported

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

2.1.5 JSON Data Type

Table 2-8 JSON data type

differences

MySQL GaussDB Difference
JSON Supported, e The JSON types in GaussDB in MYSQL-
with compatible mode are the same as the native

JSON type of GaussDB but greatly different
from that of MySQL. Therefore, the JSON
types are not listed one by one.

e For details about the JSON types in GaussDB
in MYSQL-compatible mode, see "SQL
Reference > Data Types > JSON/JSONB
Types" in Developer Guide.

2.1.6 Attributes Supported by Data Types

Table 2-9 Attributes supported by data types

MySQL GaussDB

NULL Supported
NOT NULL Supported
DEFAULT Supported
ON UPDATE Supported
PRIMARY KEY Supported
CHARACTER SET name Supported
COLLATE name Supported

2.1.7 Data Type Conversion

Conversion between different data types is supported. Data type conversion is
involved in the following scenarios:

e The data types of operands of operators (such as comparison and arithmetic
operators) are inconsistent. It is commonly used for comparison operations in
query conditions or join conditions.

e The data types of arguments and parameters are inconsistent when a
function is called.

e The data types of target columns to be updated by DML statements
(including INSERT, UPDATE, MERGE, and REPLACE) and the defined column
types are inconsistent.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

GaussDB

MySQL Compatibility(Distributed) 2 MYSQL-compatible Mode

e Using CAST(expr AS datatype) can explicitly convert an expression to a data
type.

e After the target data type of the final projection column is determined by set
operations (UNION, MINUS, EXCEPT, and INTERSECT), the type of the
projection column in each SELECT statement is inconsistent with the target
data type.

e In other expression calculation scenarios, the target data type used for
comparison or final result is determined based on the data type of different
expressions.

- DECODE

- CASE WHEN

- lexpr [NOT] IN (expr_list)
- BETWEEN AND

- JOIN USING(a,b)

- GREATEST and LEAST

- NVL and COALESCE

GaussDB and MySQL have different rules for data type conversion and target data
types. The following examples show the differences between the two processing
modes:

-- MySQL: The execution result of IN is 0, indicating false. According to the rule, '1970-01-01' is compared

with the expressions in the list in sequence. The results are all Os. Therefore, the final result is 0.
mysql> SELECT '1970-01-01' IN ('1970-01-02', 1, '1970-01-02");

+ +
| '1970-01-01" in ('1970-01-02', 1, '1970-01-02") |
+ +

I 0]

+ +

-- GaussDB: The execution result of IN is true, which is opposite to the MySQL result. The common type
selected based on the rule is int. Therefore, the left expression '1970-01-01" is converted to the int type and
compared with the value after the expression in the list is converted to the int type.

-- When '1970-01-01' and '1970-01-02' are converted to the int type, the values are 1970. (In MySQL-
compatible mode, invalid characters and the following content are ignored during conversion, and the
previous part is converted to the int type.) The comparison result is equal. Therefore, the returned result is
true.

gaussdb=# SELECT '1970-01-01' IN ('1970-01-02', 1:int, '1970-01-02') AS result;

result

Differences in data type conversion rules:

e The GaussDB clearly defines the conversion rules between different data
types.

- Whether to support conversion: Conversion is supported only when the
conversion path of two types is defined in the pg_cast system catalog.

- Conversion scenarios: conversion in any scenario, conversion only in CAST
expressions, and conversion only during value assignment. In scenarios
that are not supported, data type conversion cannot be performed even if
the conversion path is defined.

e MySQL supports conversion between any two data types.

Due to the preceding differences, when MySQL-based applications are migrated to
GaussDB, an error may be reported because the SQL statement does not support

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

GaussDB

MySQL Compatibility(Distributed) 2 MYSQL-compatible Mode

the conversion between different data types. In the scenario where conversion is
supported, different conversion rules result in different execution results of SQL
statements.

You are advised to use the same data type in SQL statements for comparison or
value assignment to avoid unexpected results or performance loss caused by data
type conversion.

Differences in target data type selection rules:

In some scenarios, the data type to be compared or returned can be determined
only after the types of multiple expressions are considered. For example, in the
UNION operation, projection columns at the same position in different SELECT
statements are of different data types. The final data type of the query result
needs to be determined based on the data type of the projection columns in each
SELECT statement.

GaussDB and MySQL have different rules for determining the target data types.

e GaussDB rules:

- If the operand types of operators are inconsistent, the operand types are
not converted to the target type before calculation. Instead, operators of
two data types are directly registered, and two types of processing rules
are defined during operator processing. In this mode, implicit type
conversion does not exist, but the customized processing rule implies the
conversion operation.

- Rules for determining the target data type in the set operation and
expression scenarios:

= |f all types are the same, it is the target type.

" |f the two data types are different, check whether the data types are
of the same type, such as the numeric type, character type, and date
and time type. If they do not belong to the same type, the target
type cannot be determined. In this case, an error is reported during
SQL statement execution.

" For data types with the same category attribute (defined in the
pg_type system catalog), the data type with the preferred attribute
(defined in the pg_type system catalog) is selected as the target
type. If operand 1 can be converted to operand 2 (no conversion
path), but operand 2 cannot be converted to operand 1 or the
priority of the numeric type is lower than that of operand 2, then
operand 2 is selected as the target type.

® |f three or more data types are involved, the rule for determining the
target type is as follows: common_type(typel,type2,type3) =
common_type(common_type(type1,type2),type3). Perform iterative
processing in sequence to obtain the final result.

® For IN and NOT IN expressions, if the target type cannot be
determined based on the preceding rules, each expression in lexpr
and expr_list is compared one by one based on the equivalent
operator (=).

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

GaussDB

MySQL Compatibility(Distributed) 2 MYSQL-compatible Mode

Precision determination: The precision of the finally selected
expression is used as the final result.

e MySQL rules:

- If the operand types of operators are inconsistent, determine the target
type based on the following rules. Then, convert the inconsistent operand
types to the target type and then process the operands.

If both parameters are of the string type, they are compared based
on the string type.

If both parameters are of the integer type, they are compared based
on the integer type.

If a hexadecimal value is not compared with a numeric value, they
are compared based on the binary string.

If one parameter is of the datetime/timestamp type, and the other
parameter is a constant, the constant is converted to the timestamp
type for comparison.

If one parameter is of the decimal type, the data type used for
comparison depends on the other parameter. If the other type is
decimal or integer, the decimal type is used. If the other type is not
decimal, the real type is used.

In other scenarios, the data type is converted to the real type for
comparison.

- Rules for determining the target data type in the set operation and
expression scenarios:

Establish a target type matrix between any two types. Given two
types, the target type can be determined by using the matrix.

If three or more data types are involved, the rule for determining the
target type is as follows: common_type(typel,type2,type3) =
common_type(common_type(typel,type2),type3). Perform iterative
processing in sequence to obtain the final result.

If the target type is integer and each expression type contains signed
and unsigned integers, the type is promoted to an integer type with
higher precision. The result is unsigned only when all expressions are
unsigned. Otherwise, the result is signed.

The highest precision in the expression is used as the final result.

According to the preceding rules, GaussDB and MySQL differ greatly in data type
conversion rules and types cannot be directly compared. In the preceding scenario,
the execution result of SQL statements may be different from that in MySQL. In
the current version, you are advised to use the same type for all expressions or use
CAST to convert the type to the required type in advance to avoid differences.

2.2 System Functions

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

2.2.1 Flow Control Functions

Table 2-10 Flow control functions

MySQL

GaussDB

Difference

IF()

Supported,
with
differences

e The expr1 input parameter supports only the
Boolean type. If an input parameter of the
non-Boolean type cannot be converted to
the Boolean type, an error is reported.

e |If the types of expr2 and expr3 are different
and no implicit conversion function exists
between the two types, an error is reported.

e If the two input parameters are of the same
type, the input parameter type is returned.

e [f the expr2 and expr3 input parameters are
of the NUMERIC, STRING, or TIME type
respectively, GaussDB outputs the TEXT type,
while MySQL outputs the VARCHAR type.

IFNULL()

Supported,
with
differences

e If the types of expr1 and expr2 are different
and no implicit conversion function exists
between the two types, an error is reported.

e |If the two input parameters are of the same
type, the input parameter type is returned.

e [f the expr1 and expr2 input parameters are
of the NUMERIC, STRING, or TIME type
respectively, GaussDB outputs the TEXT type,
while MySQL outputs the VARCHAR type.

e If one input parameter is of the FLOAT4 type
and the other is of any type in the numeric
category, GaussDB returns the DOUBLE type.
In MySQL, if one input parameter is of
FLOAT4 type and the other is of the TINYINT,
UNSIGNED TINYINT, SMALLINT, UNSIGNED
SMALLINT, MEDIUMINT, UNSIGNED
MEDIUMINT, or BOOL type, the FLOAT4 type
is returned. If the first is of FLOAT4 type and
the second is of BIGINT or UNSIGNED
BIGINT type, the FLOAT type is returned.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL GaussDB Difference
NULLIF() Supported, e The NULLIF() type derivation in GaussDB
with complies with the following logic:

differences

- If the data types of two parameters are
different and the two input parameter
types have an equality comparison
operator, the left value type
corresponding to the equality comparison
operator is returned. Otherwise, the two
input parameter types are forcibly
compatible.

- If an equality comparison operator exists
after forcible type compatibility, the left
value type of the equality comparison
operator after forcible type compatibility
is returned.

- If the corresponding equality operator
cannot be found after forcible type

compatibility, an error is reported.

-- The two input parameter types have an equality
comparison operator.

gaussdb=# SELECT pg_typeof(nullif(1:int2, 2::int8));
pg_typeof

smallint

(1 row)

-- The two input parameter types do not have the
equality comparison operator, but the equality
comparison operator can be found after forcible type
compatibility.

gaussdb=# SELECT pg_typeof(nullif(1:int1, 2::int2));
pg_typeof

-- The two input parameter types do not have the
equality comparison operator, and the equality
comparison operator does not exist after forcible type
compatibility.
gaussdb=# SELECT nullif(1::bit, '1':MONEY);
ERROR: operator does not exist: bit = money
LINE 1: SELECT nullif(1::bit, '1'::MONEY);

N

HINT: No operator matches the given name and
argument type(s). You might need to add explicit type
casts.
CONTEXT: referenced column: nullif
e The MySQL output type is related only to the
type of the first input parameter.

- If the type of the first input parameter is
TINYINT, SMALLINT, MEDIUMINT, INT, or
BOOL, the output is of the INT type.

- If the type of the first input parameter is
BIGINT, the output is of the BIGINT type.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

- When the type of the first input
parameter is UNSIGNED TINYINT,
UNSIGNED SMALLINT, UNSIGNED
MEDIUMINT, UNSIGNED INT, or BIT, the
output is of the UNSIGNED INT type.

- If the type of the first input parameter is
UNSIGNED BIGINT, the output is of the
UNSIGNED BIGINT type.

- If the type of the first input parameter is
of the FLOAT, DOUBLE, or REAL type, the
output is of the DOUBLE type.

- If the type of the first input parameter
DECIMAL or NUMERIC, the output is of
the DECIMAL type.

- If the type of the first input parameter is
DATE, TIME, DATE, DATETIME,
TIMESTAMP, CHAR, VARCHAR, TINYTEXT,
ENUM, or SET, the output is of the
VARCHAR type.

- If the type of the first input parameter is
TEXT, MEDIUMTEXT, or LONGTEXT, the
output is of the LONGTEXT type.

- If the type of the first input parameter is
TINYBLOB, the output is of the
VARBINARY type.

- If the type of the first input parameter is
MEDIUMBLOB or LONGBLOB, the output
is of the LONGBLOB type.

- If the type of the first input parameter is
BLOB, the output is of the BLOB type.

ISNULL()

Supported,
with
differences

In GaussDB, the return value is t or f of the
BOOLEAN type. In MySQL, the return value is 1
or 0 of the INT type.

2.2.2 Date and Time Functions

The date and time functions in GaussDB in MySQL-compatible mode, with the
same behavior as MySQL, are described as follows:

e Functions may use time expressions as their input parameters.

Time expressions mainly include text, datetime, date, and time. Besides, all
types that can be implicitly converted to time expressions can be input
parameters. For example, a number can be implicitly converted to text and
then used as a time expression.

However, different functions take effect in different ways. For example, the
datediff function calculates only the difference between dates. Therefore, time

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

GaussDB

MySQL Compatibility(Distributed) 2 MYSQL-compatible Mode

expressions are parsed as the date type. The timestampdiff function parses
time expressions as date, time, or datetime based on the unit parameter
before calculating the time difference.

The input parameters of functions may contain an invalid date.

Generally, the supported date and datetime ranges are the same as those of
MySQL. The value of date ranges from '0000-01-01' to '9999-12-31', and the
value of datetime ranges from '0000-01-01 00:00:00' to '9999-12-31 23:59:59'.
Although GaussDB supports larger date and datetime ranges, dates beyond
the MySQL ranges are still considered invalid.

In most cases, time functions report an alarm and return NULL if the input
date is invalid, unless the invalid date can be converted by CAST.

Separators for input parameters of functions:

For a time function, all non-digit characters are regarded as separators when
input parameters are processed. The standard format is recommended: Use
hyphens (-) to separate year, month, and day, use colons (:) to separate hour,
minute, and second, and use a period (.) before milliseconds.

Error-prone scenario: When SELECT timestampdiff(hour, '2020-03-01
00:00:00', '2020-02-28 00:00:00+08'); is executed in a MySQL-compatible
database, the time function does not automatically calculate the time zone.
Therefore, +08 is not identified as the time zone. Instead, + is used as the
separator for calculation as seconds.

Most function scenarios of GaussDB date and time functions are the same as
those of MySQL, but there are still differences. Some differences are as follows:

If an input parameter of a function is NULL, the function returns NULL, and
no warning or error is reported. These functions include:

from_days, date_format, str_to_date, datediff, timestampdiff, date_add,
subtime, month, time_to_sec, to_days, to_seconds, dayname, monthname,
convert_tz, sec_to_time, addtime, adddate, date_sub, timediff, last_day,
weekday, from_unixtime, unix_timestamp, subdate, day, year, weekofyear,
dayofmonth, dayofyear, week, yearweek, dayofweek, time_format, hour,
minute, second, microsecond, quarter, get_format, extract, makedate,
period_add, timestampadd, period_diff, utc_time, utc_timestamp, maketime,
and curtime.

Example:

gaussdb=# SELECT day(null);
day

(1 row)

Some functions with pure numeric input parameters are different from those
of MySQL. Numeric input parameters without quotation marks are converted
into text input parameters for processing.

Example:

gaussdb=# SELECT day(19231221.123141);

WARNING: Incorrect datetime value: "19231221.123141"
CONTEXT: referenced column: day

day

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

GaussDB

MySQL Compatibility(Distributed) 2 MYSQL-compatible Mode

Time and date calculation functions are adddate, subdate, date_add, and
date_sub. If the calculation result is a date, the supported range is
[0000-01-01,9999-12-31]. If the calculation result is a date and time, the
supported range is [0000-01-01 00:00:00.000000,9999-12-31
23:59:59.999999]. If the calculation result exceeds the supported range, an
ERROR is reported in strict mode, or a WARNING is reported in loose mode. If
the date result after calculation is within the range [0000-01-01,0001-01-01],
GaussDB returns the result normally. MySQL returns '0000-00-00".

Example:

gaussdb=# SELECT subdate('0000-01-01", interval 1 hour);
ERROR: Datetime function: datetime field overflow
CONTEXT: referenced column: subdate

gaussdb=# SELECT subdate('0001-01-01", interval 1 day);
subdate

0000-12-31

(1 row)

If the input parameter of the date or datetime type of the date and time
function contains month 0 or day 0, the value is invalid. In strict mode, an
error is reported. In loose mode, if the input is a character string or number, a
warning is reported. If the input is of the date or datetime type, the system
processes the input as December of the previous year or the last day of the
previous month.

If the type of the CAST function is converted to date or datetime, an error is
reported in strict mode. In loose mode, no warning is reported. Instead, the
system processes the input as December of the previous year or the last day
of the previous month. Pay attention to this difference. MySQL outputs the
value as it is, even if the year, month, and day are set to 0.

Example:

gaussdb=# SELECT adddate('2023-01-00", 1); -- Strict mode
ERROR: Incorrect datetime value: "2023-01-00"
CONTEXT: referenced column: adddate

gaussdb=# SELECT adddate('2023-01-00", 1); -- Loose mode
WARNING: Incorrect datetime value: "2023-01-00"
CONTEXT: referenced column: adddate

adddate

(1 row)

gaussdb=# SELECT adddate(date'2023-00-00', 1); -- Loose mode
adddate

2022-12-01
(1 row)

gaussdb=# SELECT cast('2023/00/00' as date); -- Loose mode
date

2022-11-30
(1 row)

gaussdb=# SELECT cast('0000-00-00' as datetime);-- Loose mode
timestamp

0000-00-00 00:00:00
(1 row)

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

e If the input parameter of the function is of the numeric data type, no error is
reported in the case of invalid input, and the input parameter is processed as

0.

Example:

gaussdb=# SELECT from_unixtime('aa');
from_unixtime

-01-01 08:00:00

1970

(1 row)

e A maximum of six decimal places are allowed. Decimal places with all Os are
not allowed.

Example:

gaussdb=# SELECT from_unixtime('1234567899.00000');
from_unixtime

-02-14 07:31:39

2009

(1 row)
e If the time function parameter is a character string, the result is correct only

when the year, month, and day are separated by a hyphen (-) and the hour,
minute, and second are separated by a colon (:).

Example:

gaussdb=# SELECT adddate('20-12-12',interval 1 day);
adddate

2020-12-13
(1 row)

e If the return value of a function is of the varchar type in MySQL, the return

value of the function is of the text type in GaussDB.
-- Return value of a function in GaussDB.
gaussdb=# SELECT pg_typeof(adddate('2023-01-01', 1));

pg_typeof

text

(1 row)

-- Return value of a function in MySQL.
mysql> CREATE VIEW v1 AS SELECT adddate('2023-01-01', 1);

Query OK, 0 rows affected (0.00 sec)

mysql> DESC v1;

+ + +om e + + +
| Field | Type | Null | Key | Default | Extra |

+ + +om e + + +
| adddate('2023-01-01', 1) | varchar(29) | YES | | NULL | |
+ + + - + + +

1 row in set (0.00 sec)

Table 2-11 Date and time functions

MySQL

GaussDB

Difference

ADDDATE() Supported,

with
differences

The performance of this function is different
from that of MySQL due to interval expression
differences. For details, see INTERVAL.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

GaussDB

MySQL Compatibility(Distributed) 2 MYSQL-compatible Mode
MySQL GaussDB Difference
ADDTIME() Supported, e MySQL returns NULL if the second input
with parameter is a string in the DATETIME
differences format. GaussDB can calculate the value.

e The value range of an input parameter is
['0001-01-01 00:00:00', 9999-12-31
23:59:59.999999].

e |If the first parameter of the ADDTIME
function in MySQL is a dynamic parameter
(for example, in a prepared statement), the
return type is TIME. Otherwise, the parse
type of the function is derived from the
parse type of the first parameter. The return
value rules of the ADDTIME function in
GaussDB are as follows:

- The first input parameter is of the date
type, the second input parameter is of the
date type, and the return value is of the
time type.

- The first input parameter is of the date
type, the second input parameter is of the
text type, and the return value is of the
text type.

- The first input parameter is of the date
type, the second input parameter is of the
datetime type, and the return value is of
the time type.

- The first input parameter is of the date
type, the second input parameter is of the
time type, and the return value is of the
time type.

- The first input parameter is of the text
type, the second input parameter is of the
date type, and the return value is of the
text type.

- The first input parameter is of the text
type, the second input parameter is of the
text type, and the return value is of the
text type.

- The first input parameter is of the text
type, the second input parameter is of the
datetime type, and the return value is of
the text type.

- The first input parameter is of the text
type, the second input parameter is of the
time type, and the return value is of the
text type.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

The first input parameter is of the
datetime type, the second input
parameter is of the date type, and the
return value is of the datetime type.

The first input parameter is of the
datetime type, the second input
parameter is of the text type, and the
return value is of the text type.

The first input parameter is of the
datetime type, the second input
parameter is of the datetime type, and
the return value is of the datetime type.

The first input parameter is of the
datetime type, the second input
parameter is of the time type, and the
return value is of the datetime type.

The first input parameter is of the time
type, the second input parameter is of the
date type, and the return value is of the
time type.

The first input parameter is of the time
type, the second input parameter is of the
text type, and the return value is of the
text type.

The first input parameter is of the time
type, the second input parameter is of the
datetime type, and the return value is of
the time type.

The first input parameter is of the time
type, the second input parameter is of the
time type, and the return value is of the
time type.

CONVERT_T
Z()

Supported.

CURDATE()

Supported.

CURRENT_DA
TE(),
CURRENT_DA
TE

Supported.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

CURRENT_TI
ME(),
CURRENT_TI
ME

Supported,
with
differences

The time value (after the decimal point) output
by precision is rounded off in GaussDB and
directly truncated in MySQL. The trailing Os of
the time value (after the decimal point) output
by precision are not displayed in GaussDB but
displayed in MySQL. GaussDB supports only an
integer value within the range of [0,6] as the
precision of the returned time. For other values,
an error is reported. In MySQL, a precision value
within [0,6] is valid, but an input integer value
is divided by 256 to get a remainder. For
example, if the input integer value is 257, the
time value with precision 1 is returned.

CURRENT_TI
MESTAMP(),
CURRENT_TI
MESTAMP

Supported,
with
differences

The time value (after the decimal point) output
by precision is rounded off in GaussDB and
directly truncated in MySQL. The trailing 0s of
the time value (after the decimal point) output
by precision are not displayed in GaussDB but
displayed in MySQL. GaussDB supports an input
integer value within the range of [0,6] as the
precision of the returned time. If the input
integer value is greater than 6, an alarm is
generated and the time value is output based
on the precision 6. In MySQL, a precision value
within [0,6] is valid, but an input integer value
is divided by 256 to get a remainder. For
example, if the input integer value is 257, the
time value with precision 1 is returned.

CURTIME()

Supported,
with
differences

In GaussDB, if a character string or a non-
integer value is entered, the value is implicitly
converted into an integer and then the precision
is verified. If the value is beyond the [0,6] range,
an error is reported. If the value is within the
range, the time value is output normally. In
MySQL, an error is reported. The time value
(after the decimal point) output by precision is
rounded off in GaussDB and directly truncated
in MySQL. The trailing Os of the time value
(after the decimal point) output by precision
are not displayed in GaussDB but displayed in
MySQL. GaussDB supports only an integer value
within the range of [0,6] as the precision of the
returned time. For other values, an error is
reported. In MySQL, a precision value within
[0,6] is valid, but an input integer value is
divided by 256 to get a remainder. For example,
if the input integer value is 257, the time value
with precision 1 is returned.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL GaussDB Difference

YEARWEEK() | Supported. -

DATE_ADD() | Supported, The performance of this function is different
with from that of MySQL due to interval expression
differences differences. For details, see INTERVAL.

DATE_FORMA | Supported. -

T()

DATE_SUB() Supported, The performance of this function is different
with from that of MySQL due to interval expression
differences differences. For details, see INTERVAL.

DATEDIFF() Supported. -

DAY() Supported. -

DAYNAME() Supported. -

DAYOFMONT | Supported. -

H()

DAYOFWEEK(| Supported. -

)

DAYOFYEAR() | Supported. -

EXTRACT() Supported. -

FROM_DAYS(| Supported. -

)

FROM_UNIXT | Supported. -

IME()

GET_FORMA | Supported. -

T()

HOUR() Supported. -

LAST_DAY Supported. -

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

47

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL GaussDB Difference
LOCALTIME(), | Supported, The time value (after the decimal point) output
LOCALTIME with by precision is rounded off in GaussDB and

differences

directly truncated in MySQL. The trailing 0s of
the time value (after the decimal point) output
by precision are not displayed in GaussDB but
displayed in MySQL. GaussDB supports only an
integer value within the range of [0,6] as the
precision of the returned time. For other integer
values, an error is reported. In MySQL, a
precision value within [0,6] is valid, but an input
integer value is divided by 256 to get a
remainder. For example, if the input integer
value is 257, the time value with precision 1 is
returned.

LOCALTIMEST
AMP,
LOCALTIMEST
AMP()

Supported,
with
differences

The time value (after the decimal point) output
by precision is rounded off in GaussDB and
directly truncated in MySQL. The trailing Os of
the time value (after the decimal point) output
by precision are not displayed in GaussDB but
displayed in MySQL. GaussDB supports an input
integer value within the range of [0,6] as the
precision of the returned time. If the input
integer value is greater than 6, an alarm is
generated and the time value is output based
on the precision 6. In MySQL, a precision value
within [0,6] is valid, but an input integer value
is divided by 256 to get a remainder. For
example, if the input integer value is 257, the
time value with precision 1 is returned.

MAKEDATE() | Supported. -

MAKETIME() | Supported, When the input parameter is NULL, GaussDB
with does not support self-nesting of the maketime
differences function, but MySQL supports.

MICROSECON | Supported. -

DO

MINUTE() Supported. -

MONTHY() Supported. -

MONTHNAM | Supported. -

EQ)

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL GaussDB Difference
NOW() Supported, The time value (after the decimal point) output
with by precision is rounded off in GaussDB and
differences directly truncated in MySQL. The trailing Os of
the time value (after the decimal point) output
by precision are not displayed in GaussDB but
displayed in MySQL. GaussDB supports an input
integer value within the range of [0,6] as the
precision of the returned time. If the input
integer value is greater than 6, an alarm is
generated and the time value is output based
on the precision 6. In MySQL, a precision value
within [0,6] is valid, but an input integer value
is divided by 256 to get a remainder. For
example, if the input integer value is 257, the
time value with precision 1 is returned.
PERIOD_AD Supported, If the input parameter period or result is less
D() with than 0, GaussDB reports an error by referring to
differences the performance in MySQL 8.0.x. Integer
wrapping occurs in MySQL 5.7. As a result, the
calculation result is abnormal.
PERIOD_DIFF(| Supported, If the input parameter or result is less than 0,
) with GaussDB reports an error by referring to the
differences performance in MySQL 8.0.x. Integer wrapping
occurs in MySQL 5.7. As a result, the calculation
result is abnormal.
QUARTER() Supported. -
SEC_TO_TIM Supported. -
EQ)
SECOND() Supported. -
STR_TO_DAT | Supported, GaussDB returns values of the text type, while
EQ with MySQL returns values of the datetime or date
differences type.
SUBDATE() Supported, The performance of this function is different
with from that of MySQL due to interval expression

differences

differences. For details, see INTERVAL.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

SUBTIME() Supported,

with
differences

e MySQL returns NULL if the second input
parameter is a string in the DATETIME
format. GaussDB can calculate the value.

e The value range of an input parameter is
['0001-01-01 00:00:00', 9999-12-31
23:59:59.999999].

e |[f the first parameter of the SUBTIME
function in MySQL is a dynamic parameter
(for example, in a prepared statement), the
return type is TIME. Otherwise, the parse
type of the function is derived from the
parse type of the first parameter. The return
value rules of the SUBTIME function in
GaussDB are as follows:

- The first input parameter is of the date
type, the second input parameter is of the
date type, and the return value is of the
time type.

- The first input parameter is of the date
type, the second input parameter is of the
text type, and the return value is of the
text type.

- The first input parameter is of the date
type, the second input parameter is of the
datetime type, and the return value is of
the time type.

- The first input parameter is of the date
type, the second input parameter is of the
time type, and the return value is of the
time type.

- The first input parameter is of the text
type, the second input parameter is of the
date type, and the return value is of the
text type.

- The first input parameter is of the text
type, the second input parameter is of the
text type, and the return value is of the
text type.

- The first input parameter is of the text
type, the second input parameter is of the
datetime type, and the return value is of
the text type.

- The first input parameter is of the text
type, the second input parameter is of the
time type, and the return value is of the
text type.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

The first input parameter is of the
datetime type, the second input
parameter is of the date type, and the
return value is of the datetime type.

The first input parameter is of the
datetime type, the second input
parameter is of the text type, and the
return value is of the text type.

The first input parameter is of the
datetime type, the second input
parameter is of the datetime type, and
the return value is of the datetime type.

The first input parameter is of the
datetime type, the second input
parameter is of the time type, and the
return value is of the datetime type.

The first input parameter is of the time
type, the second input parameter is of the
date type, and the return value is of the
time type.

The first input parameter is of the time
type, the second input parameter is of the
text type, and the return value is of the
text type.

The first input parameter is of the time
type, the second input parameter is of the
datetime type, and the return value is of
the time type.

The first input parameter is of the time
type, the second input parameter is of the
time type, and the return value is of the
time type.

SYSDATE()

Supported,
with
differences

In MySQL, an integer input value is wrapped
when it reaches 255 (maximum value of a one-
byte integer value), while GaussDB does not.

YEAR()

Supported.

TIME_FORMA
T0)

Supported.

TIME_TO_SE
cO

Supported.

TIMEDIFF()

Supported.

WEEKOFYEA
R()

Supported.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL GaussDB Difference

TIMESTAMPA | Supported. -

DD()

TIMESTAMPD | Supported. -

IFF()

TO_DAYS() Supported. -

TO_SECOND | Supported. -

S0

UNIX_TIMEST | Supported, GaussDB returns values of the numeric type,

AMP() with while MySQL returns values of the int type.
differences

UTC_DATE() Supported, e MySQL supports calling without parentheses,
with but GaussDB does not. In MySQL, an integer
differences input value is wrapped when it reaches 255

(maximum value of a one-byte integer

UTC TIME() Supported, value).
with
differences e MySQL input parameters support only

integers ranging from 0 to 6. GaussDB

UTC_TIMESTA | Supported, supports input parameters that can be

MP() with implicitly converted to integers ranging from
differences 0 to 6.

WEEK() Supported. -

WEEKDAY() Supported. -

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

GaussDB
MySQL Compatibility(Distributed) 2 MYSQL-compatible Mode

2.2.3 String Functions

Table 2-12 String functions

MySQL GaussDB Difference
BIN() Supported, In GaussDB, the types supported by function
with input parameters are as follows:

differences e Integer types: tinyint, smallint, mediumint,

int, and bigint.

e Unsigned integer types: tinyint unsigned,
smallint unsigned, int unsigned, and bigint
unsigned.

e Character and text types: char, varchar,
tinytext, text, mediumtext, and longtext.
Only numeric integer strings are supported,
and the integer range is within the bigint
range.

e Floating-point types: float, real, and double.
e Fixed-point types: numeric, decimal, and dec.
e Boolean type: bool.

CONCAT() Supported, The data type of the return value of CONCAT is
with always text regardless of the data type of the
differences parameter. However, in MySQL, if CONCAT
contains binary parameters, the return value is
binary.

CONCAT_WS(| Supported, The data type of the return value of

) with CONCAT_WS is always text regardless of the
differences data type of the parameter. However, in MySQL,
if CONCAT_WS contains binary parameters, the
return value is binary. In other cases, the return
value is a string.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

ELT()

Supported,
with
differences

In GaussDB, the types supported by function
input parameter 1 are as follows:

- Integer types: tinyint, smallint, mediumint,
int, and bigint.

- Unsigned integer types: tinyint unsigned,
smallint unsigned, and int unsigned.

- Character and text types: char, varchar,
tinytext, text, mediumtext, and longtext.
Only numeric integer strings are
supported, and the integer range is within
the bigint range.

- Floating-point types: float, real, and
double.

- Fixed-point types: numeric, decimal, and
dec.

- Boolean type: bool.

In GaussDB, the types supported by function

input parameter 2 are as follows:

- Integer types: tinyint, smallint, mediumint,
int, and bigint.

- Unsigned integer types: tinyint unsigned,
smallint unsigned, int unsigned, and
bigint unsigned.

- Character and text types: char, varchar,
tinytext, text, mediumtext, and longtext.

- Floating-point types: float, real, and
double.

- Fixed-point types: numeric, decimal, and
dec.

- Boolean type: bool.

- Large object types: tinyblob, blob,
mediumblob, and longblob.

- Date types: datetime, timestamp, date,
and time.

FIELD()

Supported,
with
differences

When function input parameters range from
the maximum bigint value to the maximum
bigint unsigned value, incompatibility occurs.

When function input parameters are of the
float(m, d), double(m, d), or real(m, d) type,
the precision is higher and incompatibility
occurs.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

)

FIND_IN_SET(| Supported,

with
differences

When the database encoding is set to
'SQL_ASCII', the default case sensitivity rule is
not supported. That is, if no character set rule is
specified, uppercase and lowercase letters are
treated as distinct.

INSERT

0 Supported,
with
differences

e The range of input parameters of the Int64
type is from -9223372036854775808 to
+9223372036854775807. If a value is out of
range, an error is reported. MySQL does not
limit the range of input parameters of the
numeric type. If an exception occurs, an
alarm is generated, indicating that the value
is set to the upper or lower limit.

e The maximum length of the input parameter
of the text type is 2A30 - 5 bytes, and the
maximum length of the input parameter of
the bytea type is 2A30 - 512 bytes.

e If any of the s1 and s2 parameters is of the
bytea type and the result contains invalid
characters, the displayed result may be
different from that of MySQL, but the
character encoding is the same as that of
MySQL.

LOCATE() Supported,

with
differences

When input parameter 1 is of the bytea type
and input parameter 2 is of the text type, the
behavior of GaussDB is different from that of
MySQL.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

MAKE_SET() Supported,

with
differences

e When the bits parameter is an integer, the
maximum range is int128, which is smaller
than the MySQL range.

e When the bits parameter is of the date type
(datetime, timestamp, date, or time), it is
not supported because the conversion from
the date type to the integer type is different
from that in MySQL.

e GaussDB and MySQL are inherently different
in the bit and Boolean types, causing
different returned results. When the bits
input parameter is of the Boolean type, and
the str input parameter is of the bit or
Boolean type, they are not supported.

e When the bits input parameter is of the
character string or text type, only the pure
integer format is supported. In addition, the
value range of pure integers is limited to
bigint.

e The integer value of the str input parameter
exceeds the range from 81 negative nines to
81 positive nines. The return value is
different from that of MySQL.

e When the str input parameter is expressed in
scientific notation, trailing zeros are
displayed in GaussDB but not displayed in
MySQL. This is an inherent difference.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL GaussDB Difference
QUOTE() Supported, e If the str character string contains "\Z", "\r",
with "\%", or "\ ", GaussDB does not escape it,

differences

which is different from MySQL. The slash
followed by digits may also cause
differences, for example, "\563". This
function difference is the escape character
difference between GaussDB and MySQL.

e The output format of "\b" in the str
character string is different from that in
MySQL. This is an inherent difference
between GaussDB and MySQL.

e If the str character string contains "\0",
GaussDB cannot identify the character
because the UTF-8 character set cannot
identify the character. As a result, the input
fails. This is an inherent difference between
GaussDB and MySQL.

e |[f stris of the bit or Boolean type, this type
is not supported because it is different in
GaussDB and MySQL.

e GaussDB supports a maximum of 1 GB data
transfer. The maximum length of the str
input parameter is 536870908 bytes, and the
maximum size of the result string returned
by the function is 1 GB.

e The integer value of the str input parameter
exceeds the range from 81 negative nines to
81 positive nines. The return value is
different from that of MySQL.

e When the str input parameter is expressed in
scientific notation, trailing zeros are
displayed in GaussDB but not displayed in
MySQL. This is an inherent difference.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

GaussDB

MySQL Compatibility(Distributed) 2 MYSQL-compatible Mode
MySQL GaussDB Difference
SPACE() Supported, e GaussDB allows an input parameter of no
with more than 1073741818 bytes. If the length
differences exceeds the limit, an empty string is

returned. By default, MySQL allows an input
parameter of no more than 4194304 bytes. If
the length exceeds the limit, an alarm is
generated.

e In GaussDB, the types supported by function
input parameters are as follows:

- Integer types: tinyint, smallint, mediumint,
int, and bigint.

- Unsigned integer types: tinyint unsigned,
smallint unsigned, and int unsigned.

- Character and text types: char, varchar,
tinytext, text, mediumtext, and longtext.
Only numeric integer strings are
supported, and the integer range is within
the bigint range.

- Floating-point types: float, real, and
double.

- Fixed-point types: numeric, decimal, and
dec.

- Boolean type: bool.

SUBSTR() Supported. -

SUBSTRING() | Supported. -

SUBSTRING_I | Supported. -
NDEX()

STRCMP() Supported, e In GaussDB, the types supported by function
with input parameters are as follows:

differences - Character types: char, varchar, nvarchar2,

and text

- Binary type: bytea

- Value type: tinying [unsigned], smallint
[unsigned], integer [unsigned], bigint
[unsigned], float4, float8, and numeric

- Date and time type: date, time without
time zone, datetime, and timestamptz

e For the floating-point type in the numeric
type, the precision may be different from
that in MySQL due to different connection
parameter settings. Therefore, this scenario is
not recommended, or the NUMERIC type is
used instead.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

GaussDB

MySQL Compatibility(Distributed) 2 MYSQL-compatible Mode
MySQL GaussDB Difference
SHA()/ Supported. -
SHA1()
SHA2() Supported. -

2.2.4 Forced Conversion Functions

Table 2-13 Forced conversion functions

MySQL GaussDB Difference

CAST() Supported, The data type conversion rules and supported
with conversion types are subject to the conversion
differences scope and rules supported by GaussDB.

CONVERT() Supported, The data type conversion rules and supported
with conversion types are subject to the conversion
differences scope and rules supported by GaussDB.

2.2.5 Encryption Functions

Table 2-14 Encryption functions

MySQL GaussDB Difference
AES_DECRYP | Supported. -

T

AES_ENCRYP | Supported. -

T()

2.2.6 JSON Functions

JSON function differences:

If you add escape characters as input parameters to JSON functions and other
functions that allow character inputs, the processing is different from that in
MySQL by default. To be compatible with MySQL, set the GUC parameter
standard_conforming_strings to off. In this case, the processing of escape
characters is compatible with MySQL, but a warning is generated for non-
standard character input. The escape characters \t and \u and escape digits
are different from those in MySQL. The JSON_UNQUOTE () function is
compatible with MySQL. Even if the GUC parameter is not set, no alarm is
generated.

When processing an ultra-long number (the number contains more than 64
characters), the JSON function of GaussDB parses the number as a DOUBLE

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

GaussDB
MySQL Compatibility(Distributed) 2 MYSQL-compatible Mode

and uses scientific notation for counting. The input parameters of the non-
JSON type are the same as those of MySQL. However, when input parameters
of the JSON type are used, the JSON type is not completely compatible with
MySQL. As a result, differences occur in this scenario. MySQL displays
complete numbers. (When the number length exceeds 82, MySQL displays an
incorrect result.) GaussDB still parses an ultra-long number into a double-
precision value. Long numbers are stored using floating-point numbers.
During calculation, precision loss occurs in both GaussDB and MySQL.

Therefore, you are advised to use character strings to store long numbers.
gaussdb=# SELECT json_insert('[1, 4,
99]",'$[6]' json
_insert('[1,4]','$[5]',99
999999));

json_insert

[1, 4, 1e+74, [1, 4, 1e+74]]
(1 row)

Table 2-15 JSON functions

MySQL GaussDB Difference
JSON_APPEN | Supported. -
D()

JSON_ARRAY(| Supported. -
)

JSON_ARRAY_ | Supported. -
APPEND()

JSON_ARRAY_ | Supported. -
INSERT()

JSON_CONTA | Supported. -
INS()

JSON_CONTA | Supported. -
INS_PATH()

JSON_DEPTH(| Supported, GaussDB returns values of the int type, while
) with MySQL returns values of the bigint type.
differences

JSON_EXTRAC | Supported. -
T()

JSON_INSER Supported. -
T(

JSON_KEYS() | Supported. -

JSON_LENGT | Supported, Return value difference: In GaussDB, int is
H() with returned. In MySQL, bigint is returned.
differences

JSON_MERG | Supported. -
EQ)

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL GaussDB Difference

JSON_OBJEC | Supported. -

T()

JSON_QUOT | Supported, Return value difference: In GaussDB, JSON is

E() with returned. In MySQL, varchar or text is returned.
differences

JSON_REMOV | Supported. -

EQ)

JSON_REPLAC | Supported. -

EQ)

JSON_SEARC | Supported, Return value difference: In GaussDB, text is

H() with returned. In MySQL, JSON is returned.
differences

JSON_SET() Supported. -

JSON_TYPE() | Supported, JSON values of the numeric type are identified
with as number, which is different from MySQL.
differences

JSON_UNQU | Supported. -

OTE()

JSON_VALID(| Supported. -

)

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

61

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

2.2.7 Aggregate Functions

Table 2-16 Aggregate functions

MySQL

GaussDB

Difference

CAT()

GROUP_CON | Supported,

with
differences

e [f the group_concat parameter contains

both the DISTINCT and ORDER BY syntaxes,
all expressions following ORDER BY must be
in the DISTINCT expression.

group_concat(... order by Number) does
not indicate the sequence of the parameter.
The number is only a constant expression,
which is equivalent to no sorting.

The data type of the return value of
group_concat is always text regardless of
the data type of the parameter. For MySQL,
if group_concat contains binary parameters,
the return value is binary. In other cases, the
return value is a character string. If the
return value length is greater than 512 bytes,
the data type is a character large object or
binary large object.

The value of group_concat_max_len ranges
from 0 to 1073741823. The maximum value
is smaller than that of MySQL.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL

GaussDB

Difference

DEFAULT() Supported,

with
differences

e The default value of a column is an array.
GaussDB returns an array. MySQL does not
support the array type.

e GaussDB columns are hidden columns (such
as xmin and cmin). The default function
returns a null value.

e GaussDB supports default values of
partitioned tables, temporary tables, and
multi-table join query.

e GaussDB supports the query of nodes whose
column names contain character string
values (indicating names) and A_Star nodes
(indicating that asterisks [*] appear), for
example, default(tt.t4.id) and
default(tt.t4.*). For invalid query column
names and A_Star nodes, the error
information reported by GaussDB is different
from that reported by MySQL.

e When the default value of a column is
created in GaussDB, the range of the column
type is not verified. As a result, an error may
be reported when the default function is
used.

e If the default value of a column is a function
expression, the default function in GaussDB
returns the calculated value of the default
expression of the column during table
creation. The default function in MySQL
returns NULL.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

2.2.8 Arithmetic Functions

Table 2-17 Numeric operation functions

differences

MySQL GaussDB Difference
log2() Supported, e The display of decimal places is different
with from that in MySQL. Due to the limitation of

the GaussDB floating-point data type, the
extra_float_digits parameter is used to
control the number of decimal places to be
displayed.

e Due to the internal processing difference of
the input precision, the calculation results of
GaussDB and MySQL are different.

e The following data types are supported:

- Integer types: bigint, int16, int, smallint,
and tinyint.

- Unsigned integer types: bigint unsigned,
integer unsigned, smallint unsigned, and
tinyint unsigned.

- Floating-point number type: numeric and
real.

- Character string type: character, character
varying, clob, and text. Only numeric
integer strings are supported.

- SET type.

- NULL type.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

MySQL GaussDB Difference
log10() Supported, e The display of decimal places is different
with from that in MySQL. Due to the limitation of

differences

the GaussDB floating-point data type, the
extra_float_digits parameter is used to
control the number of decimal places to be
displayed.

e Due to the internal processing difference of
the input precision, the calculation results of
GaussDB and MySQL are different.

e The following data types are supported:

- Integer types: bigint, int16, int, smallint,
and tinyint.

- Unsigned integer types: bigint unsigned,
integer unsigned, smallint unsigned, and
tinyint unsigned.

- Floating-point number type: numeric and
real.

- Character string type: character, character
varying, clob, and text. Only numeric
integer strings are supported.

- SET type.
- NULL type.
2.2.9 Other Functions
Table 2-18 Other functions
MySQL GaussDB Difference
UuID() Supported -
UUID_SHOR Supported -
T()

2.3 Operators

GaussDB is compatible with most MySQL operators, but there are some
differences. Unless otherwise specified, the operator behavior in MYSQL-
compatible mode is the native GaussDB behavior by default.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Table 2-19 Operators

MySQL GaussDB

Difference

NULL-safe
equal (<=>)

Supported.

[NOT]
REGEXP

Supported,
with
differences

If the GUC parameter b_format_dev_version
is set to 's2' and a pattern string with escape
characters such as "\\a", "\\d", "\\e", "\\n", "\
\Z", or "\\u" is matched with source
character strings "\a", "\d", "\e", "\n", "\Z", or
"\u", the behavior of GaussDB is different
from that of MySQL 5.7 but the same as that
of MySQL 8.0.

When the GUC parameter
b_format_dev_version is set to 's2', "\b" in
GaussDB can match "\\b", but the matching
will fail in MySQL.

If the input parameter of the pattern string is
invalid with only the right parenthesis ()),
GaussDB and MySQL 5.7 will report an error,
but MySQL 8.0 will not.

In the rule of matching the de|abc sequence
with de or abc, when there are empty values
on the left and right of the pipe symbol (|),
MySQL 5.7 will report an error, but GaussDB
and MySQL 8.0 will not.

The regular expression of the tab character
"\t" can match the character class [:blank:] in
GaussDB and MySQL 8.0 but cannot in
MySQL 5.7.

GaussDB supports non-greedy pattern
matching. That is, the number of matching
characters is as small as possible. A question
mark (?) is added after some special
characters, for example, ?? *? +? {n}? {n,}?
{n,m}? MySQL 5.7 does not support non-
greedy pattern matching, and the error
message "Got error 'repetition-operator
operand invalid' from regexp" is displayed.
MySQL 8.0 already supports this function.

In the binary character set, the text and
BLOB types are converted to the bytea type.
The REGEXP operator does not support the
bytea type. Therefore, the two types cannot
be matched.

[NOT] RLIKE | Supported,
with

differences

Same as [NOT] REGEXP.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

GaussDB
MySQL Compatibility(Distributed) 2 MYSQL-compatible Mode

2.4 Character Sets

GaussDB allows you to specify the following character sets for databases,
schemas, tables, or columns.

Table 2-20 Character sets

MySQL GaussDB
utf8mb4 Supported
gbk Supported
gb18030 Supported
{10 NOTE

Currently, GaussDB does not perform strict encoding logic verification on invalid characters
that do not belong to the current character set. As a result, such invalid characters may be
successfully entered. However, an error is reported during verification in MySQL.

2.5 Collation Rules

GaussDB allows you to specify the following collation rules for schemas, tables, or
columns.

(10 NOTE

Differences in collation rules:

e Currently, only the character string type and some binary types support the specified
collation rules. You can check whether the typcollation attribute of a type in the
pg_type system catalog is not 0 to determine whether the type supports the collation.
The collation can be specified for all types in MySQL. However, collation rules are
meaningless except those for character strings and binary types.

e The current collation rules can be specified only when the corresponding character set is
the same as the database-level character set.

e The default collation of the utf8mb4 character set is utf8mb4_general_ci, which is the
same as that in MySQL 5.7. utf8mb4_0900_ai_ci is not the default collation of utf8mb4.

e In GaussDB, utf8 and utf8mb4 are the same character set.

Table 2-21 Collation rules

MySQL GaussDB

utf8mb4_general_ci Supported.
utf8mb4_unicode_ci Supported.
utf8mb4_bin Supported.
gbk_chinese_ci Supported.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

GaussDB

MySQL Compatibility(Distributed) 2 MYSQL-compatible Mode
MySQL GaussDB
gbk_bin Supported.
gb18030_chinese_ci Supported.
gb18030_bin Supported.
binary Supported.
utf8mb4_0900 ai_ci Supported.
utf8_general_ci Supported.
utf8_bin Supported.
2.6 SQL
2.6.1 DDL
Table 2-22 DDL syntax compatibility
Description Syntax Difference
Create primary keys ALTER TABLE and e GaussDB does not support
and UNIQUE indexes | CREATE TABLE the UNIQUE INDEX|KEY
during table creation index_name syntax. An
and modification. error will be reported

when the UNIQUE INDEX|
KEY index_name syntax is
used. However, MySQL
supports these functions.

e When a constraint is
created as a global
secondary index and
USING BTREE is specified
in the SQL statement, the
underlying index is created
as UB-tree.

e When the table joined
with the constraint is
Ustore and USING BTREE
is specified in the SQL
statement, the underlying
index is created as UB-
tree.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Description

Syntax

Difference

Support prefix
indexes.

CREATE INDEX

e The prefix length cannot

exceed 2676. The actual
length of the key value is
restricted by the internal
page. If a column contains
multi-byte characters or
an index has multiple
keys, an error may be
reported when the index
line length exceeds the
threshold.

In the CREATE INDEX
syntax, the following
keywords cannot be used
as prefix keys for column
names: COALESCE,
EXTRACT, GREATEST,
LEAST, LNNVL, NULLIF,
NVL, NVL2, OVERLAY,
POSITION, REGEXP_LIKE,
SUBSTRING,
TIMESTAMPDIFF, TREAT,
TRIM, XMLCONCAT,
XMLELEMENT, XMLEXISTS,
XMLFOREST, XMLPARSE,
XMLPI, XMLROOT, and
XMLSERIALIZE.

Prefix keys are not
supported in primary key
and unique key indexes.

Specify character sets
and collation rules.

ALTER SCHEMA, ALTER
TABLE, CREATE
SCHEMA, and CREATE
TABLE

Create a partitioned
table.

CREATE TABLE
PARTITION

Specify table-level
and column-level
comments during
table creation and
modification.

CREATE TABLE and
ALTER TABLE

Specify index-level
comments during
index creation.

CREATE INDEX

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Description

Syntax

Difference

Exchange the
partition data of an
ordinary table and a
partitioned table.

ALTER TABLE
PARTITION

Differences in ALTER TABLE
EXCHANGE PARTITION:

e If MySQL tables or

partitions use tablespaces,
data in partitions and
ordinary tables cannot be
exchanged. If GaussDB
tables or partitions use
different tablespaces, data
in partitions and ordinary
tables can still be
exchanged.

MySQL does not verify the
default values of columns.
Therefore, data in
partitions and ordinary
tables can be exchanged
even if the default values
are different. GaussDB
verifies the default values.
If the default values are
different, data in
partitions and ordinary
tables cannot be
exchanged.

After the DROP COLUMN
operation is performed on
a partitioned table or an
ordinary table in MySQL,
if the table structure is
still consistent, data can
be exchanged between
partitions and ordinary
tables. In GaussDB, data
can be exchanged
between partitions and
ordinary tables only when
the deleted columns of
ordinary tables and
partitioned tables are
strictly aligned.

MySQL and GaussDB use
different hash algorithms.
Therefore, data stored in
the same hash partition
may be inconsistent. As a
result, the exchanged data
may also be inconsistent.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Description

Syntax

Difference

e MySQL partitioned tables
do not support foreign
keys. If an ordinary table
contains foreign keys or
other tables reference
foreign keys of an
ordinary table, data in
partitions and ordinary
tables cannot be
exchanged. GaussDB
partitioned tables support
foreign keys. If the foreign
key constraints of two
tables are the same, data
in partitions and ordinary
tables can be exchanged.
If a GaussDB partitioned
table does not contain
foreign keys, an ordinary
table is referenced by
other tables, and the
partitioned table is the
same as the ordinary
table, data in the
partitioned table can be
exchanged with that in
the ordinary table.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Description

Syntax

Difference

Support auto-

increment columns.

ALTER TABLE and
CREATE TABLE

e Currently, only local auto-

increment columns of
each DN are supported.

It is recommended that
the auto-increment
column be the first
column of a non-global
secondary index.
Otherwise, an alarm is
generated when a table is
created, and errors may
occur when some
operations are performed
on a table that contains
auto-increment columns,
for example, ALTER TABLE
EXCHANGE PARTITION.
The auto-increment
column in MySQL must be
the first column of the
index.

In the syntax
AUTO_INCREMENT =
value, value must be a
positive number less than
2A127. MySQL does not
verify the value.

An error occurs if the
auto-increment continues
after an auto-increment
value reaches the
maximum value of a
column data type. In
MySQL, errors or warnings
may be generated during
auto-increment, and
sometimes auto-
increment continues until
the maximum value is
reached.

GaussDB does not support
the
innodb_autoinc_lock mod
e system variable, but
when its GUC parameter
auto_increment_cache is
set to 0, the behavior of
inserting auto-increment
columns in batches is

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Description

Syntax

Difference

similar to that when the
MySQL system variable
innodb_autoinc lock_mod
eissetto 1.

When 0s, NULLs, and
definite values are
imported or batch inserted
into auto-increment
columns, the auto-
increment values inserted
after an error occurs in
GaussDB may not be the
same as those in MySQL.
The
auto_increment_cache
parameter is provided to
control the number of
reserved auto-increment
values.

In different execution
plans, the auto-increment
sequence and reserved
auto-increment values
may be different from
those in MySQL. For
example, "INSERT INTO
table VALUES(...),(...),.." is
distributed to different
DNs. Therefore, in some
execution plans, DNs
cannot obtain the number
of rows to be inserted. The
auto_increment_cache
parameter is provided to
control the number of
reserved auto-increment
values.

When auto-increment is
triggered by parallel
import or insertion of
auto-increment columns,
the cache value reserved
for each parallel thread is
used only in the thread. If
the cache value is not
used up, the values of
auto-increment columns
in the table are
discontinuous. The auto-

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Description

Syntax

Difference

increment value generated
by parallel insertion
cannot be guaranteed to
be the same as that
generated in MySQL.

The SERIAL data type of
GaussDB is an original
auto-increment column,
which is different from the
AUTO_INCREMENT
column. The SERIAL data
type of MySQL is the
AUTO_INCREMENT
column.

The value of
auto_increment_offset
cannot be greater than
that of
auto_increment_increme
nt. Otherwise, an error
occurs. MySQL allows it
and states that
auto_increment_offset
will be ignored.

If a table has a primary
key or index, the sequence
in which the ALTER TABLE
command rewrites table
data may be different
from that in MySQL.
GaussDB rewrites table
data based on the table
data storage sequence,
while MySQL rewrites
table data based on the
primary key or index
sequence. As a result, the
auto-increment sequence
may be different.

When the ALTER TABLE
command is used to add
or modify auto-increment
columns, the number of
auto-increment values
reserved for the first time
is the number of rows in
the table statistics. The
number of rows in the

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Description

Syntax

Difference

statistics may not be the
same as that in MySQL.

When auto-increment is
performed in a trigger or
user-defined function, the
return value of
last_insert_id is updated.
MySQL does not update it.

If the values of the GUC
parameters
auto_increment_offset
and
auto_increment_increme
nt are out of range, an
error occurs. MySQL
automatically changes the
value to a boundary value.

The last_insert_id function
is not supported.

Currently, local temporary
tables do not support
auto-increment columns.

If sql_mode is set to
no_auto_value_on_zero,
the auto-increment
columns of the table are
not subject to NOT NULL
constraints. In GaussDB
and MySQL, when the
value of an auto-
increment column is not
specified, NULL will be
inserted into the auto-
increment column, but
auto-increment is
triggered for the former
and not triggered for the
latter.

Delete the primary
key constraints of a
table.

ALTER TABLE

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Description

Syntax

Difference

Support the CREATE

TABLE ... LIKE syntax.

CREATE TABLE ... LIKE

In versions earlier than
MySQL 8.0.16, CHECK
constraints are parsed but
their functions are
ignored. In this case,
CHECK constraints are not
replicated. GaussDB
supports replication of
CHECK constraints.

For the set data type,
MySQL supports
replication while GaussDB
does not during table
creation.

When a table is created,
all primary key constraint
names in MySQL are fixed
to PRIMARY KEY.
GaussDB does not support
replication of primary key
constraint names.

When a table is created,
MySQL supports
replication of unique key
constraint names, but
GaussDB does not.

When a table is created,
MySQL versions earlier
than 8.0.16 do not have
CHECK constraint
information, but GaussDB
supports replication of
CHECK constraint names.

When a table is created,
MySQL supports
replication of index
names, but GaussDB does
not.

When a table is created
across sql_mode, MySQL is
controlled by the loose
mode and strict mode.
The strict mode may
become invalid in
GaussDB.

For example, if the source
table has the default value
"0000-00-00", GaussDB

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Description

Syntax

Difference

can create a table that
contains the default value
"0000-00-00" in
"no_zero_date" strict
mode, which means that
the strict mode is invalid.
MySQL fails to create the
table because it is
controlled by the strict
mode.

MySQL supports cross-
database table creation,
but GaussDB does not.

If the source table is a
temporary table, you can
create a non-temporary
table in MySQL but not in
GaussDB.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

77

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Description

Syntax

Difference

Compatible with
syntax for changing
table names.

ALTER TABLE[IF
EXISTS] tbl_name
RENAME [TO | AS | =]
new_tbl name;
RENAME {TABLE |
TABLES} tbl_name TO
new_tbl_name [,
tbl_name2 TO
new_tbl_name2, ...];

e The ALTER RENAME

syntax in GaussDB
supports only the function
of changing the table
name and cannot be
coupled with other
function operations.

In GaussDB, only the old
table name column
supports the
schema.table_name
format, and the new and
old table names belong to
the same schema.

GaussDB does not support
renaming of old and new
tables across schemas.
However, if you have the
permission, you can
modify the names of
tables in other schemas in
the current schema.

e The syntax for renaming

multiple groups of tables
in GaussDB supports
renaming of all local
temporary tables, but
does not support the
combination of local
temporary tables and non-
local temporary tables.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Description

Syntax

Difference

Create a partition.

ALTER TABLE [IF
EXISTS] { table_name
[*] | ONLY table_name |
ONLY (table_name)}

action [, ... 1;

action:
move_clause |
exchange_clause |
row_clause |
merge_clause |
modify_clause |
split_clause |
add_clause |
drop_clause |
ilm_clause
add_clause:

ADD
{{partition_less_than_ite
m |
partition_start_end_ite
m | partition_list_item} |

PARTITION ({partition_le
ss_than_item |
partition_start_end_ite
m |
partition_list_item})}

e The ALTER TABLE
table_name ADD
PARTITION
(partition_definition1,
partition_definition1,...);
syntax cannot be used to
add multiple partitions.

e Only the original syntax
for adding multiple
partitions is supported:
ALTER TABLE table_name
ADD PARTITION
(partition_definition1),
ADD PARTITION
(partition_definition2[y1]
), ...

2.6.2 DML

Table 2-23 DML syntax compatibility

ORDER BY and LIMIT.

Description Syntax Difference
DELETE supports DELETE -

ORDER BY and LIMIT.

UPDATE supports UPDATE -

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

79

GaussDB

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Description

Syntax

Difference

Support the REPLACE
INTO syntax.

REPLACE

e Difference between the
initial values of the time
type. For example:

- MySQL is not affected

by the strict or loose
mode. You can insert

time 0 into a table.
mysql> CREATE TABLE test(f1
TIMESTAMP NOT NULL, f2
DATETIME NOT NULL, f3
DATE NOT NULL);

Query OK, 1 row affected
(0.00 sec)

mysql> REPLACE INTO test
VALUES(f1, f2, f3);

Query OK, 1 row affected
(0.00 sec)

mysql> SELECT * FROM test;

| 0000-00-00 00:00:00 |
0000-00-00 00:00:00 |
0000-00-00 |

1 row in set (0.00 sec)

The time 0 can be
successfully inserted
only when GaussDB is

in loose mode.
gaussdb=# SET
b_format_version = '5.7";
SET

gaussdb=# SET
b_format_dev_version = 's1;
SET

gaussdb=# SET sql_mode = ";
SET

gaussdb=# CREATE TABLE
test(f1 TIMESTAMP NOT
NULL, f2 DATETIME NOT
NULL, f3 DATE NOT NULL)
DISTRIBUTE BY HASH(f1);
CREATE TABLE

gaussdb=# REPLACE INTO
test VALUES(f1, f2, f3);
REPLACE 0 1

gaussdb=# SELECT * FROM
test;

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

80

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Description

Syntax

Difference

e Difference between the
initial values of the BIT
type when NOT NULL
exists. For example:

0000-00-00 00:00:00 |
0000-00-00 00:00:00 |
0000-00-00

(1 row)

In strict mode, the error
is reported: date/time
field value out of
range: "0000-00-00
00:00:00".

The initial value of the
BIT type is an empty
string " in MySQL, that
is:

mysql> CREATE TABLE test(f1
BIT(3) NOT NULL);

Query OK, 0 rows affected
(0.01 sec)

mysql> REPLACE INTO test
VALUES(f1);

Query OK, 1 row affected
(0.00 sec)

mysql> SELECT 1, f1 IS NULL
FROM test;
Hbmmemd boo e mecomsas +

| 1| f1 is null |

2 rows in set (0.00 sec)

If the initial value of
the BIT type is NULL in
GaussDB, an error is

reported.

gaussdb=# CREATE TABLE
test(f1 int, f2 BIT(3) NOT
NULL) DISTRIBUTE BY
HASH(f1);

CREATE TABLE

gaussdb=# REPLACE INTO
test VALUES(1, f2);

ERROR: null value in column
"f2" violates not-null
constraint

DETAIL: Failing row contains
(1, null).

SELECT supports
multi-partition query.

SELECT

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Description

Syntax

Difference

UPDATE supports
multi-partition
update.

UPDATE

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

82

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Description

Syntax

Difference

Import data by using
LOAD DATA.

LOAD DATA

e The execution result of the

LOAD DATA syntax is the
same as that in MySQL
strict mode. The loose
mode is not adapted
currently.

The IGNORE and LOCAL
parameters are used only
to ignore the conflicting
rows when the imported
data conflicts with the
data in the table and to
automatically fill default
values for other columns
when the number of
columns in the file is less
than that in the table.
Other functions are not
supported currently.

If the keyword LOCAL is
specified and the file path
is a relative path, the file
is searched from the
binary directory. If the
keyword LOCAL is not
specified and the file path
is a relative path, the file
is searched from the data
directory.

If single quotation marks
are specified as
separators, escape
characters, and newline
characters in the syntax,
lexical parsing errors
occur.

The
[(col_name_or_user_var
[I
col_name_or_user_var]...)
] parameter cannot be
used to specify a column
repeatedly.

The newline character
specified by [FIELDS
TERMINATED BY 'string']
cannot be the same as the
separator specified by

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

83

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Description

Syntax

Difference

[LINES TERMINATED
BY'string'].

If the data written to a
table by running LOAD
DATA cannot be
converted to the data type
of the table, an error is
reported.

Columns can only be
specified by column name
instead of user variables.

The LOAD DATA SET
expression does not
support the calculation of
a specified column name.

If no implicit conversion
function exists between
the return value type of
the SET expression and
the corresponding column
type, an error is reported.

LOAD DATA does not
support the INSERT or
DELETE trigger.

LOAD DATA applies only
to tables but not views.

The default newline
character of the file in
Windows is different from
that in Linux. LOAD DATA
cannot identify this
scenario and reports an
error. You are advised to
check the newline
character at the end of
lines in the file to be
imported.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Description

Syntax

Difference

Compatible with

INSERT IGNORE.

INSERT IGNORE

e GaussDB displays the error
information after the
downgrade. MySQL
records the error
information after the
downgrade to the error
stack and runs the show
warnings; command to
view the error
information. For example:

e Time type difference. For
example:

- The default values of
date, datetime, and
timestamp in GaussDB

are 0.

gaussdb=# CREATE TABLE
test(f1 DATE NOT NULL, 2
DATETIME NOT NULL, f3
TIMESTAMP NOT NULL);
CREATE TABLE

gaussdb=# INSERT IGNORE
INTO test VALUES(NULL,
NULL, NULL);

WARNING: null value in
column "f1" violates not-null
constraint

DETAIL: Failing row contains
(null, null, null, null).
WARNING: null value in
column "f2" violates not-null
constraint

DETAIL: Failing row contains
(null, null, null, null).
WARNING: null value in
column "f3" violates not-null
constraint

DETAIL: Failing row contains
(null, null, null, null).

INSERT O 1
gaussdb=#
SELECT * FROM test;
f1 | f2 |
f3

1970-01-01 | 1970-01-01
00:00:00 | 1970-01-01
00:00:00

(1 row)

- The default values of
date, datetime, and
timestamp in MySQL
are 0.
mysql> CREATE TABLE test(f1
DATE NOT NULL, f2

DATETIME NOT NULL, f3
TIMESTAMP NOT NULL);

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Description

Syntax

Difference

e GaussDB does not support

Query OK, 0 rows affected
(0.00 sec)

mysql> INSERT IGNORE INTO
test VALUES(NULL, NULL,
NULL);

Query OK, 1 row affected, 3
warnings (0.00 sec)

mysql> show warnings;

B B

| Level | Code |

Message |

B B

| Warning | 1048 | Column 'f1'
cannot be null |

| Warning | 1048 | Column 'f2'
cannot be null |

| Warning | 1048 | Column 'f3'
cannot be null |

B B

3 rows in set (0.00 sec)

mysql> SELECT * FROM test;

| f1 | f2 |
f3 |

+ +.
t +

| 0000-00-00 | 0000-00-00
00:00:00 | 0000-00-00
00:00:00 |

+.
+

+ +
t y

1 row in set (0.00 sec)

the MySQL bit type.
Therefore, the INSERT
IGNORE error downgrade
is not supported when the
NOT NULL constraint of
the bit type is ignored and
the length of the inserted
bit type is different from
that defined.

- Bit type in GaussDB
gaussdb=# CREATE TABLE
test(f1 BIT(10) NOT NULL);
CREATE TABLE
gaussdb=# INSERT IGNORE
INTO test VALUES(NULL);
ERROR: Un-support feature
DETAIL: ignore null for insert
statement is not supported in
column f1.
gaussdb=# INSERT IGNORE
INTO test VALUES('1010");

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Description

Syntax

Difference

ERROR: bit string length 4
does not match type bit(10)
CONTEXT: referenced column:
f1

- Bit type in MySQL
mysql> CREATE TABLE test(f1
BIT(10) NOT NULL);

Query OK, 0 rows affected
(0.00 sec)

mysql> INSERT IGNORE INTO
test VALUES(NULL);

Query OK, 1 row affected, 1
warning (0.00 sec)

mysql> INSERT IGNORE INTO
test VALUES('1010");

Query OK, 1 row affected, 1
warning (0.01 sec)

e |f the precision is specified
for the time type in
MySQL, the precision is
displayed when the zero
value is inserted. It is not
displayed in GaussDB. For
example:

- Time precision specified
in GaussDB
gaussdb=# CREATE TABLE
test(f1 TIME(3) NOT NULL, f2
DATETIME(3) NOT NULL, f3
TIMESTAMP(3) NOT NULL);
CREATE TABLE
gaussdb=# INSERT IGNORE
INTO test
VALUES(NULL,NULL,NULL);
WARNING: null value in
column "f1" violates not-null
constraint
DETAIL: Failing row contains
(null, null, null).
WARNING: null value in
column "f2" violates not-null
constraint
DETAIL: Failing row contains
(null, null, null).
WARNING: null value in
column "f3" violates not-null
constraint
DETAIL: Failing row contains
(null, null, null).

INSERT O 1
gaussdb=# SELECT * FROM
test;
f1 f2 |
f3

00:00:00 | 1970-01-01
00:00:00 | 1970-01-01 00:00:00
(1 row)

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Description

Syntax

Difference

- Time precision specified
in MySQL
mysql> CREATE TABLE test(f1
TIME(3) NOT NULL, f2
DATETIME(3) NOT NULL, f3
TIMESTAMP(3) NOT NULL);
Query OK, 0 rows affected
(0.00 sec)

mysql> INSERT IGNORE INTO
test
VALUES(NULL,NULL,NULL);
Query OK, 1 row affected, 3
warnings (0.00 sec)

mysql> SELECT * FROM test;

| 00:00:00.000 | 0000-00-00
00:00:00.000 | 0000-00-00
00:00:00.000 |

1 row in set (0.00 sec)

e The execution process in
MySQL is different from
that in GaussDB.
Therefore, the number of
generated warnings may
be different. For example:

- Number of warnings

generated in GaussDB
gaussdb=# CREATE TABLE
test(f1 INT, f2 INT not null);
CREATE TABLE

gaussdb=# INSERT INTO test
VALUES(1,0),(3,0),(5,0);
INSERT 0 3

gaussdb=# INSERT IGNORE
INTO test SELECT f1+1, f1/f2
FROM test;

WARNING: division by zero
CONTEXT: referenced column:
2

WARNING: null value in
column "f2" violates not-null
constraint

DETAIL: Failing row contains
(2, null).

WARNING: division by zero
CONTEXT: referenced column:
2

WARNING: null value in
column "f2" violates not-null

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Description

Syntax

Difference

constraint

DETAIL: Failing row contains
(4, null).

WARNING: division by zero

CONTEXT: referenced column:

f2

WARNING: null value in
column "f2" violates not-null
constraint

DETAIL: Failing row contains
(6, null).

INSERT 0 3

Number of warnings

generated in MySQL
mysql> CREATE TABLE test(f1
INT, f2 INT not null);

Query OK, 0 rows affected
(0.01 sec)

mysql> INSERT INTO test
VALUES(1,0),(3,0),(5,0);
Query OK, 3 rows affected
(0.00 sec)

Records: 3 Duplicates: 0
Warnings: 0

mysql> INSERT IGNORE INTO
test SELECT f1+1, f1/f2 FROM
test;

Query OK, 3 rows affected, 4
warnings (0.00 sec)

Records: 3 Duplicates: 0
Warnings: 4

e The differences between
MySQL's and GaussDB's
INSERT IGNORE in
triggers are as follows:

INSERT IGNORE used

in a GaussDB trigger
gaussdb=# CREATE TABLE
test1(f1 INT NOT NULL);
CREATE TABLE

gaussdb=# CREATE TABLE
test2(f1 INT);

CREATE TABLE

gaussdb=# CREATE OR
REPLACE FUNCTION
trig_test() RETURNS TRIGGER
AS $$

gaussdb$# BEGIN
gaussdb$# INSERT IGNORE
INTO test1 VALUES(NULL);
gaussdb$# RETURN NEW;
gaussdb$# END;
gaussdb$# $$ LANGUAGE
plpgsql;

CREATE FUNCTION
gaussdb=# CREATE TRIGGER
trig2 BEFORE INSERT ON
test2 FOR EACH ROW
EXECUTE PROCEDURE

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

89

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Description

Syntax

Difference

trig_test();
CREATE TRIGGER
gaussdb=# INSERT INTO test2
VALUES(NULL);
WARNING: null value in
column "f1" violates not-null
constraint
DETAIL: Failing row contains
(null).
CONTEXT: SQL statement
"INSERT IGNORE INTO test1
VALUES(NULL)"
PL/pgSQL function trig_test()
line 3 at SQL statement
INSERT O 1
gaussdb=# SELECT * FROM
test1;

f1

0
(1 rows)

gaussdb=# SELECT * FROM
test2;
1

(1 rows)

- INSERT IGNORE used
in a MySQL trigger
mysql> CREATE TABLE
test1(f1 INT NOT NULL);

Query OK, 0 rows affected
(0.01 sec)

mysql> CREATE TABLE
test2(f1 INT);

Query OK, 0 rows affected
(0.00 sec)

mysql> DELIMITER ||
mysql> CREATE TRIGGER trig2
BEFORE INSERT ON test2 FOR
EACH ROW

-> BEGIN

-> INSERT IGNORE into
test1 values(NULL);

-> END||
Query OK, 0 rows affected
(0.01 sec)

mysql> DELIMITER ;

mysql> INSERT INTO test2
VALUES(NULL);

ERROR 1048 (23000): Column
'f1' cannot be null

mysql> INSERT IGNORE INTO
test2 VALUES(NULL);

Query OK, 1 row affected
(0.00 sec)

mysql> SELECT * FROM test1;
+omt

[1]

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Description

Syntax

Difference

R
| O]

R

1 row in set (0.00 sec)

mysql> SELECT * FROM test2;

[f1 |

S +
| NULL |
S +

1 row in set (0.00 sec)

e The implementation
mechanism of Boolean
and serial in GaussDB is
different from that in
MySQL. Therefore, the
default zero value in
GaussDB is different from
that in MySQL. For
example:

Behavior in GaussDB
gaussdb=# CREATE TABLE
test(f1 SERIAL, f2 BOOL NOT
NULL);

NOTICE: CREATE TABLE will
create implicit sequence
"test_f1_seq" for serial column
"test.f1"

CREATE TABLE

gaussdb=# INSERT IGNORE
INTO test values(NULL,NULL);
WARNING: null value in
column "f1" violates not-null
constraint

DETAIL: Failing row contains
(null, null).

WARNING: null value in
column "f2" violates not-null
constraint

DETAIL: Failing row contains
(null, null).

INSERT 0 1

gaussdb=# SELECT * FROM
test;

f1]f2

Behavior in MySQL
mysql> CREATE TABLE test(f1
SERIAL, f2 BOOL NOT NULL);
Query OK, 0 rows affected
(0.00 sec)

mysql> INSERT IGNORE INTO
test values(NULL,NULL);
Query OK, 1 row affected, 1
warning (0.00 sec)

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

GaussDB
MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Description

Syntax

Difference

mysql> SELECT * FROM test;
[S S

| f1]f2|

Fommbo—t

1 row in set (0.00 sec)

2.6.3 DCL

Table 2-24 DCL syntax compatibility

Description

Syntax

Difference

Set hames with

SET [SESSION |

COLLATE specified. LOCAL] NAMES

{'charset_name'
[COLLATE
'collation_name'] |
DEFAULTY;

GaussDB does not allow
charset_name to be different
from the database character
set. For details, see "SQL
Reference > SQL Syntax > S >
SET" in Developer Guide.

2.7 Drivers

2.7.1 JDBC

2.7.1.1 JDBC API Reference

The JDBC API definitions in GaussDB are the same as those in MySQL and comply
with industry standards. This section describes the behavior differences of JDBC
APIs between the GaussDB in MySQL-compatible mode and MySQL.

Obtaining Data from a Result Set

ResultSet objects provide a variety of methods to obtain data from a result set.
Table 2-25 describes the common methods for obtaining data. If you want to
know more about other methods, see JDK official documents.

Table 2-25 Common methods for obtaining data from a result set

Method

Description | Difference

int getInt(int
columnindex)

Obtains int -
data by
column
index.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

MySQL Compatibility(Distributed)

2 MYSQL-compatible Mode

Method Description | Difference
int Obtains int -
getint(String | data by
columnLabel) | column
name.
String Obtains If the column type is integer and the column
getString(int | string data contains the ZEROFILL attribute, GaussDB pads
columnindex) | by column Os to meet the width required by the ZEROFILL
index. attribute and outputs the result. MySQL directly
outputs the result.
String Obtains If the column type is integer and the column
getString(Stri | string data contains the ZEROFILL attribute, GaussDB pads
ng by column Os to meet the width required by the ZEROFILL
columnLabel) | name. attribute and outputs the result. MySQL directly
outputs the result.
Date Obtains date | -

getDate(int
columnindex)

data by
column
index.

Date
getDate(Strin

g
columnLabel)

Obtains date
data by
column
name.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

GaussDB
MySQL Compatibility(Distributed) 3 M-compatible Mode

3 M-compatible Mode

3.1 Data Types

3.1.1 Numeric Data Types

Unless otherwise specified, the data type precision, scale, and number of bits in
M-compatible mode of MySQL compatibility cannot be defined as floating-point
values by default. You are advised to use valid integer values.

Table 3-1 Integer types

MySQL GaussDB Difference

BOOL Supported, Output format: The output of SELECT TRUE/
with FALSE in GaussDB is t or f, and that in MySQL is
differences 1or0.

BOOLEAN Supported MySQL: The BOOL/BOOLEAN type is actually
with ' mapped to the TINYINT type.
differences

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

GaussDB

MySQL Compatibility(Distributed) 3 M-compatible Mode
MySQL GaussDB Difference
TINYINT[(M)] | Supported, Input format:
[UNSIGNED] | with e MySQL:
[ZEROFILL] differences If a character string with multiple decimal

points (such as "1.2.3.4.5") is entered, MySQL

SMALLINTI(Supported, will misparse the character string in loose

'[\CJ)IIISIGNED] \c;vi:‘E‘Zrences mode, throw a warning, and insert the
[ZEROFILL] character string into the table successfully.

For example, after "1.2.3.4.5" is inserted into
the table, the value is 12.

e GaussDB:
If a character string with multiple decimal
points (such as "1.2.3.4.5") is entered in
loose mode, the characters after the second
decimal point are truncated as invalid
characters, a warning is thrown, and the
character string is inserted into the table
successfully. For example, after "1.2.3.4.5" is
inserted into the table, the value is 1. After
"1.6.3.4.5" is inserted into the table, the
value is 2.

MEDIUMINT[| Supported, MySQL requires 3 bytes to store MEDIUMINT
(M)] with data.

Egé\‘RSc')C;:\iE]D] differences | o The signed range is -8388608 to +8388607.
e The unsigned range is 0 to +16777215.

GaussDB is mapped to the INT type. Four bytes
are required for storage. The value range is
determined based on boundary values.

e The signed range is -8388608 to +8388607.
e The unsigned range is 0 to +16777215.

For other differences, see the description below
the table.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

MySQL GaussDB Difference

INT[(M)] Supported, Input format:

[UNSIGNED] | with e MysQL:

[ZEROFILL] differences If a character string with multiple decimal
points (such as "1.2.3.4.5") is entered, MySQL

;NTEGER[(M) svl:fhported, will misparse the character string in loose

[UNSIGNED] differences mode, throw a warning, and insert the

[ZEROFILL] character string into the table successfully.
For example, after "1.2.3.4.5" is inserted into

BIGINT[(M)] | Supported, the table, the value is 12.

[UNSIGNED] | with e GaussDB:

[ZEROFILL] differences If a character string with multiple decimal

points (such as "1.2.3.4.5") is entered in
loose mode, the characters after the second
decimal point are truncated as invalid
characters, a warning is thrown, and the
character string is inserted into the table
successfully. For example, after "1.2.3.4.5" is
inserted into the table, the value is 1. After
"1.6.3.4.5" is inserted into the table, the
value is 2.

Table 3-2 Arbitrary precision types

differences

MySQL GaussDB Difference
DECIMAL[(M[| Supported, MySQL DECIMAL uses a 9 x 9 array to store
,DD] with values. The integer part and decimal part are
[ZEROFILL] differences stored separately. If the length exceeds the
value, the decimal part is truncated first.

NUMERIC[(Supported, GaussDB truncates an integer that contains
MI,D])] with more than 81 digits.
[ZEROFILL] differences
DEC[(M[,D])] | Supported,
[ZEROFILL] with

differences
FIXED[(M[,D] | Supported,
)] [ZEROFILL] | with

Table 3-3 Floating-point types

differences

MySQL GaussDB Difference
FLOAT[(M,D) | Supported, The FLOAT data type does not support
] [ZEROFILL] | with partitioned tables with the key partitioning

policy.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

96

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

MySQL GaussDB Difference

FLOAT(p) Supported, The FLOAT data type does not support

[ZEROFILL] with partitioned tables with the key partitioning
differences policy.

DOUBLE[(M, | Supported, The DOUBLE data type does not support

D)] with partitioned tables with the key partitioning

[ZEROFILL] differences policy.

DOUBLE Supported, The DOUBLE PRECISION data type does not

PRECISION[(| with support partitioned tables with the key

M,D)] differences partitioning policy.

[ZEROFILL]

REAL[(M,D)]
[ZEROFILL]

Supported,
with
differences

The REAL data type does not support
partitioned tables with the key partitioning

policy.

3.1.2 Date and Time Data Types

Table 3-4 Date and time data types

differences.

MySQL GaussDB Difference
DATE Supported, GaussDB supports the date data type.
with Compared with MySQL, GaussDB has the

following differences in specifications:

A backslash (\) is regarded as an escape
character in both MySQL and GaussDB.
However, MySQL supports \0, but GaussDB does
not support \O. Therefore, GaussDB reports an
error when the backslash is used as a separator
and the separator is followed by 0.

DATETIME[(fs
p)]

Supported,
with

differences.

GaussDB supports the datetime data type.
Compared with MySQL, GaussDB has the
following differences in specifications:

A backslash (\) is regarded as an escape
character in both MySQL and GaussDB.
However, MySQL supports \0, but GaussDB does
not support \0. Therefore, GaussDB reports an
error when the backslash is used as a separator
and the separator is followed by 0.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

97

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

MySQL

GaussDB

Difference

fsp)]

TIMESTAMP[(| Supported,

with

differences.

GaussDB supports the timestamp data type.
Compared with MySQL, GaussDB has the
following differences in specifications:

e A backslash (\) is regarded as an escape
character in both MySQL and GaussDB.
However, MySQL supports \0, but GaussDB
does not support \0. Therefore, GaussDB
reports an error when the backslash is used
as a separator and the separator is followed
by 0.

e In MySQL 5.7, the default value of the
timestamp column is the real time when
data is inserted. Same as MySQL 8.0,
GaussDB has no default value set for this
column. That is, when null is inserted, the
value is null.

TIME[(fsp)] Supported,

with

differences.

GaussDB supports the time data type.
Compared with MySQL, GaussDB has the
following differences in specifications:

e A backslash (\) is regarded as an escape
character in both MySQL and GaussDB.
However, MySQL supports \0, but GaussDB
does not support \0. Therefore, GaussDB
reports an error when the backslash is used
as a separator and the separator is followed
by 0.

e When the hour, minute, second, and
nanosecond of the time type are 0, the sign

bits of GaussDB and MySQL may be
different.

YEAR[(4)] Supported.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

98

GaussDB
MySQL Compatibility(Distributed)

3 M-compatible Mode

(11 NOTE

e GaussDB does not support ODBC syntax literals:

{d'str'}
{t'str'}
{ts'str'}

e GaussDB supports standard SQL literals, and precision can be added after type
keywords, but MySQL does not support the following:

DATE[(n)] 'str'
TIME[(n)] 'str'
TIMESTAMP[(n)] 'str'

e If you specify a precision for the DATETIME, TIME, or TIMESTAMP data type greater
than the maximum precision supported by the data type, GaussDB truncates the
precision to the maximum precision supported by the data type, whereas MySQL reports

an error.

3.1.3 String Data Types

Table 3-5 String data types

differences

MySQL GaussDB Difference
CHAR(M) Supported, Input format: If a binary or hexadecimal
with character string is input, GaussDB outputs a
differences hexadecimal character string, and MySQL
escapes the character string based on the ASCII
code table. If the character string cannot be
escaped, the output is empty.
VARCHAR(M) | Supported, Input formats:
with

e The length of parameters and return values
of GaussDB user-defined functions cannot be
verified. The length of stored procedure
parameters cannot be verified. However,
MySQL supports these functions.

e The length of temporary variables in
GaussDB user-defined functions and stored
procedures can be verified, and an error or
truncation alarm is reported in strict or loose
mode. However, MySQL does not support
these functions.

e After a binary or hexadecimal character
string is entered, GaussDB outputs a
hexadecimal character string, and MySQL
escapes the character string based on the
ASCII code table. If the character string
cannot be escaped, the output is empty.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

GaussDB
MySQL Compatibility(Distributed)

3 M-compatible Mode

MySQL

GaussDB

Difference

TINYTEXT

Supported,
with
differences

e Input formats:

- Default value: When creating a table
column, you can set a default value in the
syntax. MySQL does not allow you to set
a default value.

- After a binary or hexadecimal character
string is entered, GaussDB outputs a
hexadecimal character string, and MySQL
escapes the character string based on the
ASCII code table. If the character string
cannot be escaped, the output is empty.

e Primary key: In MySQL, the TINYTEXT type
does not support primary keys, but GaussDB
supports.

e Index: In MySQL, the TINYTEXT type does
not support other index methods except
prefix indexes. GaussDB supports these index
methods.

e Foreign key: In MySQL, the TINYTEXT type
cannot be used as the referencing column or
referenced column of a foreign key, but
GaussDB supports this operation.

TEXT

Supported,
with
differences

e Input formats:

- Default value: When creating a table
column, you can set a default value in the
syntax. MySQL does not allow you to set
a default value.

- After a binary or hexadecimal character
string is entered, GaussDB outputs a
hexadecimal character string, and MySQL
escapes the character string based on the
ASCII code table. If the character string
cannot be escaped, the output is empty.

e Primary key: In MySQL, the TEXT type does
not support primary keys, but GaussDB
supports.

e Index: In MySQL, the TEXT type does not
support other index methods except prefix
indexes. GaussDB supports these index
methods.

e Foreign key: In MySQL, the TINYTEXT type
cannot be used as the referencing column or
referenced column of a foreign key, but
GaussDB supports this operation.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

GaussDB

MySQL Compatibility(Distributed) 3 M-compatible Mode
MySQL GaussDB Difference
MEDIUMTEXT | Supported, e Input formats:
with - Default value: When creating a table
differences column, you can set a default value in the

syntax. MySQL does not allow you to set
a default value.

- After a binary or hexadecimal character
string is entered, GaussDB outputs a
hexadecimal character string, and MySQL
escapes the character string based on the
ASCII code table. If the character string
cannot be escaped, the output is empty.

e Primary key: In MySQL, the MEDIUMTEXT
type does not support primary keys, but
GaussDB supports.

e Index: In MySQL, the MEDIUMTEXT type
does not support other index methods except
prefix indexes. GaussDB supports these index
methods.

e Foreign key: In MySQL, the TINYTEXT type
cannot be used as the referencing column or
referenced column of a foreign key, but
GaussDB supports this operation.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

MySQL

GaussDB

Difference

LONGTEXT Supported,

with
differences

e Input format:

- GaussDB supports a maximum of 1 GB,
and MySQL supports a maximum of 4 GB
minus 1 byte.

- Default value: When creating a table
column, you can set a default value in the
syntax. MySQL does not allow you to set
a default value.

- After a binary or hexadecimal character
string is entered, GaussDB outputs a
hexadecimal character string, and MySQL
escapes the character string based on the
ASCII code table. If the character string
cannot be escaped, the output is empty.

e Primary key: In MySQL, the LONGTEXT type
does not support primary keys, but GaussDB
supports.

e Index: In MySQL, the LONGTEXT type does
not support other index methods except
prefix indexes. GaussDB supports these index
methods.

e Foreign key: In MySQL, the TINYTEXT type
cannot be used as the referencing column or
referenced column of a foreign key, but
GaussDB supports this operation.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

GaussDB
MySQL Compatibility(Distributed) 3 M-compatible Mode

3.1.4 Binary Data Types

Table 3-6 Binary data types

MySQL GaussDB Difference

BINARY[(M)] | Supported, e Input format:
with

' - After a binary or hexadecimal character
differences

string is entered, GaussDB outputs a
hexadecimal character string, and MySQL
escapes the character string based on the
ASCII code table. If the character string
cannot be escaped, the output is empty.

- If the length of the inserted string is less
than the target length, the padding
character is 0x20 in GaussDB and 0x00 in
MySQL.

e Character set: The default character set is the
initialized character set of the database. For
MySQL, the default character set is BINARY.

e Output formats:

- When the JDBC protocol is used, a space
at the end of the BINARY type is displayed
as a space, and that in MySQL is
displayed as \x00.

- In loose mode, if characters (such as
Chinese characters) of the BINARY type
exceed n bytes, the excess characters will
be truncated. MySQL retains the first n
bytes. However, garbled characters are
displayed in the output.

- In MySQL 8.0 and later versions, results
starting with Ox are returned by default.
In GaussDB, results in the format of
"\X...\x...\x..." are returned.

NOTE
Due to the differences between GaussDB and
MySQL in BINARY fillers and \0 truncation,
GaussDB and MySQL have different performance
in scenarios such as operator comparison
calculation, character string-related system
function calculation, index matching, and data
import and export. For details about the difference
scenarios, see the examples in this section.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

MySQL

GaussDB

Difference

M)

VARBINARY(| Supported,

with
differences

e Input format: If a binary or hexadecimal
character string is input, GaussDB outputs a
hexadecimal character string, and MySQL
escapes the character string based on the
ASCII code table. If the character string
cannot be escaped, the output is empty.

e Character set: The default character set is the
initialized character set of the database. For
MySQL, the default character set is BINARY.

e Output formats:

- When the JDBC protocol is used, a space
at the end of the BINARY type is displayed
as a space, and that in MySQL is
displayed as \x00.

- In MySQL 8.0 and later versions, results
starting with Ox are returned by default.
In GaussDB, results in the format of
"\X...\x..\x..." are returned.

TINYBLOB Supported,

with
differences

e Input formats:

- Default value: When creating a table
column, you can set a default value in the
syntax. MySQL does not allow you to set
a default value.

- After a binary or hexadecimal character
string is entered, GaussDB outputs a
hexadecimal character string, and MySQL
escapes the character string based on the
ASCII code table. If the character string
cannot be escaped, the output is empty.

e Primary key: In MySQL, the TINYBLOB type
does not support primary keys, but GaussDB
supports.

e Index: In MySQL, the TINYBLOB type does
not support other index methods except
prefix indexes. GaussDB supports these index
methods.

e Foreign key: In MySQL, the TINYTEXT type
cannot be used as the referencing column or
referenced column of a foreign key, but
GaussDB supports this operation.

e Output format: In MySQL 8.0 and later
versions, results starting with Ox are returned
by default. In GaussDB, results in the format
of "\x...\x..\x..." are returned.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

GaussDB

MySQL Compatibility(Distributed) 3 M-compatible Mode
MySQL GaussDB Difference
BLOB Supported, e Input formats:
with - Default value: When creating a table

differences column, you can set a default value in the

syntax. MySQL does not allow you to set
a default value.

- After a binary or hexadecimal character
string is entered, GaussDB outputs a
hexadecimal character string, and MySQL
escapes the character string based on the
ASCII code table. If the character string
cannot be escaped, the output is empty.

e Primary key: In MySQL, the BLOB type does
not support primary keys, but GaussDB
supports.

e Index: In MySQL, the BLOB type does not
support other index methods except prefix
indexes. GaussDB supports these index
methods.

e Foreign key: In MySQL, the TINYTEXT type
cannot be used as the referencing column or
referenced column of a foreign key, but
GaussDB supports this operation.

e Output format: In MySQL 8.0 and later
versions, results starting with Ox are returned
by default. In GaussDB, results in the format
of "\x...\x...\x..." are returned.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

MySQL

GaussDB

Difference

B

MEDIUMBLO | Supported,

with
differences

e Input formats:

- Default value: When creating a table
column, you can set a default value in the
syntax. MySQL does not allow you to set
a default value.

- After a binary or hexadecimal character
string is entered, GaussDB outputs a
hexadecimal character string, and MySQL
escapes the character string based on the
ASCII code table. If the character string
cannot be escaped, the output is empty.

e Primary key: In MySQL, the MEDIUMBLOB
type does not support primary keys, but
GaussDB supports.

e Index: In MySQL, the MEDIUMBLOB type
does not support other index methods except
prefix indexes. GaussDB supports these index
methods.

e Foreign key: In MySQL, the TINYTEXT type
cannot be used as the referencing column or
referenced column of a foreign key, but
GaussDB supports this operation.

e Output format: In MySQL 8.0 and later
versions, results starting with Ox are returned
by default. In GaussDB, results in the format
of "\x...\x...\x..." are returned.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

GaussDB
MySQL Compatibility(Distributed) 3 M-compatible Mode

MySQL GaussDB Difference

LONGBLOB Supported, e Value range: a maximum of 1 GB. MySQL
with supports a maximum of 4 GB minus 1 byte.

differences e Input format:

- Default value: When creating a table
column, you can set a default value in the
syntax. MySQL does not allow you to set
a default value.

- After a binary or hexadecimal character
string is entered, GaussDB outputs a
hexadecimal character string, and MySQL
escapes the character string based on the
ASCII code table. If the character string
cannot be escaped, the output is empty.

e Primary key: In MySQL, the LONGBLOB type
does not support primary keys, but GaussDB
supports.

e Index: In MySQL, the LONGBLOB type does
not support other index methods except
prefix indexes. GaussDB supports these index
methods.

e Foreign key: In MySQL, the TINYTEXT type
cannot be used as the referencing column or
referenced column of a foreign key, but
GaussDB supports this operation.

e Output format: In MySQL 8.0 and later
versions, results starting with Ox are returned
by default. In GaussDB, results in the format
of "\x..\x..\x..." are returned.

BIT[(M)] Supported, Output formats:
with

' e All outputs are displayed as binary character
differences

strings. MySQL escapes the character string
based on the ASCII code table. If the
character string cannot be escaped, the
output is empty.

e In MySQL 8.0 and later versions, 0 is added
at the beginning of each result by default. In
GaussDB, 0 is not added.

Example:

-- GaussDB
m_db=# CREATE TABLE test(a BINARY(10)) DISTRIBUTE BY REPLICATION;
CREATE TABLE
m_db=# INSERT INTO test VALUES(0x8000);
INSERT O 1
m_db=# SELECT hex(a) FROM test;
hex

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

80202020202020202020
(1 row)

m_db=# SELECT * FROM test WHERE hex(a) = 80000000000000000000;
a

(0 rows)

m_db=# CREATE TABLE test2(a BINARY(10)) DISTRIBUTE BY REPLICATION;
CREATE TABLE
m_db=# INSERT INTO test2 VALUES(0x80008000);
INSERT O 1
m_db=# SELECT hex(a) FROM test2;
hex
80202020202020202020
(1 row)

m_db=# DROP TABLE test;
DROP TABLE

m_db=# DROP TABLE test2;
DROP TABLE

-- MySQL
mysql> CREATE TABLE test(a BINARY(10));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO test VALUES(0x8000);
Query OK, 1 row affected (0.00 sec)

mysql> SELECT hex(a) FROM test;

+

| hex(a) |

+

| 80000000000000000000 |

1 row in set (0.00 sec)

mysql> SELECT * FROM test WHERE hex(a) = 80000000000000000000;

1 row in set (0.00 sec)

mysql> CREATE TABLE test2(a binary(10));
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO test2 VALUES(0x80008000);
Query OK, 1 row affected (0.00 sec)

mysql> SELECT hex(a) FROM test2;

+

| hex(a) |

+

| 80008000000000000000 |

1 row in set (0.00 sec)

mysql> DROP TABLE test;

Query OK, 0 rows affected (0.00 sec)
mysql> DROP TABLE test2;

Query OK, 0 rows affected (0.00 sec)

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

3.1.5 Attributes Supported by Data Types

Table 3-7 Attributes supported by data types

MySQL GaussDB

NULL Supported.
NOT NULL Supported.
DEFAULT Supported.
ON UPDATE Supported.
PRIMARY KEY Supported.
AUTO_INCREMENT Supported.
CHARACTER SET name Supported.
COLLATE name Supported.
ZEROFILL Supported.

When CREATE TABLE AS is used to create a table and default values are set for
columns of the VARBINARY type, the command output of SHOW CREATE TABLE,
DESC, or \d is different from that of MySQL. The value displayed in GaussDB is a

hexadecimal value, but MySQL displays the original value.

Example:

m_db=# CREATE TABLE test_int(
int_col INT

).

m_db=# CREATE TABLE test_varbinary(
varbinary_col VARBINARY (20) default 'gauss'

) AS SELECT * FROM test_int;

m_db=# SHOW CREATE TABLE test_varbinary;

Table | Create Table

+

test_varbinary | SET search_path = public;
| CREATE TABLE test_varbinary (

| varbinary_col varbinary(20) DEFAULT X'6761757373',

| int_col integer

| CHARACTER SET = "UTF8" COLLATE = "utf8mb4_general_ci"

+
+

+

| WITH (orientation=row, compression=no, storage_type=USTORE, segment=0ff);

(1 row)
m_db=# DROP TABLE test_int, test_varbinary;

mysql> CREATE TABLE test_int(
int_col INT
);
mysql> CREATE TABLE test_varbinary(
varbinary_col VARBINARY (20) default 'gauss'
) AS SELECT * FROM test_int;
mysql> SHOW CREATE TABLE test_varbinary;

| Table | Create
Table

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

GaussDB

MySQL Compatibility(Distributed) 3 M-compatible Mode

+

| test_varbinary | CREATE TABLE “test_varbinary™ (

“varbinary_col” varbinary(20) DEFAULT 'gauss',
“int_vol™ int(11) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 |

1 row in set (0.00 sec)
mysql> DROP TABLE test_int, test_varbinary;

3.1.6 Data Type Conversion

Conversion between different data types is supported. Data type conversion is
involved in the following scenarios:

The data types of operands of operators (such as comparison and arithmetic
operators) are inconsistent. It is commonly used for comparison operations in
query conditions or join conditions.

The data types of arguments and parameters are inconsistent when a
function is called.

The data types of target columns to be updated by DML statements
(including INSERT, UPDATE, MERGE, and REPLACE) and the defined column
types are inconsistent.

Explicit type conversion: CAST(expr AS datatype), which converts an
expression to a data type.

After the target data type of the final projection column is determined by set
operations (UNION and EXCEPT), the type of the projection column in each
SELECT statement is inconsistent with the target data type.

In other expression calculation scenarios, the target data type used for
comparison or final result is determined based on the data type of different
expressions.

There are three types of data type conversion differences: implicit conversion,
explicit conversion, and UNION/CASE.

Differences in Double Colon Conversion

In GaussDB, if you use double colons to convert input parameters of a
function to another type, the result may be unexpected. In MySQL, double
colons do not take effect.

Example:

m_db=# SELECT POW("12":VARBINARY,"12":VARBINARY);
ERROR: value out of range: overflow

CONTEXT: referenced column: pow

varbinary col
m_db=# CREATE TABLE test_varbinary (
A VARBINARY(10)
);
m_db=# INSERT INTO test_varbinary VALUES ('12");
m_db=# SELECT POW(A, A) FROM test_varbinary;
pow
8916100448256
(1 row)

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

Differences in Implicit Type Conversion

In GaussDB, the conversion rules from small types to small types are used. In
MySQL, the conversion rules from small types to large types and from large

types to small types are used.

Due to data type differences, some output formats of implicit conversion in

GaussDB are inconsistent.

During implicit conversion from the BIT data type to the character data type
and binary data type in GaussDB, some output behaviors are inconsistent.
GaussDB outputs a hexadecimal character string, and MySQL escapes the
character string based on the ASCII code table. If the character string cannot

be escaped, the output is empty.

Example:

m_db=# CREATE TABLE bit_storage (

) DISTRIBUTE BY REPLICATION;
m_db=# CREATE TABLE string_storage (

VS_COL1 BIT(4),
VS_COL2 BIT(4),
VS_COL3 BIT(4),
VS_COL4 BIT(4),
VS_COLS BIT(4),
VS_COL6 BIT(4),
VS_COL7 BIT(4),
VS_COL8 BIT(4)

VS_COL1 BLOB,

VS_COL2 TINYBLOB,
VS_COL3 MEDIUMBLOB,
VS_COL4 LONGBLOB,

VS_COLS5 TEXT,

VS_COL6 TINYTEXT,
VS_COL7 MEDIUMTEXT,
VS_COL8 LONGTEXT

) DISTRIBUTE BY REPLICATION;

m_db=# INSERT INTO bit_storage VALUES(B'101', B'101', B'101', B'101', B'101', B'101', B'101', B'101");

m_db=# INSERT INTO string_storage SELECT * FROM bit_storage;
m_db=# SELECT * FROM string_storage;

VS_COL1 | VS_COL2 | VS_COL3 | VS_COL4 | VS_COL5 | VS_COL6 | VS_COL7 | VS_COL8

W05 |\x05 |\x05 |\x05 |\x05 |\x05 |\x05 |\x05

(1 row)

m_db=# DROP TABLE bit_storage, string_storage;

mysql> CREATE TABLE bit_storage (

)i

mysql> CREATE TABLE bit_storage (

)i

VS_COL1 BIT(4),
VS_COL2 BIT(4),
VS_COL3 BIT(4),
VS_COL4 BIT(4),
VS_COLS BIT(4),
VS_COL6 BIT(4),
VS_COL7 BIT(4),
VS_COL8 BIT(4)

VS_COL1 BIT(4),
VS_COL2 BIT(4),
VS_COL3 BIT(4),
VS_COL4 BIT(4),
VS_COLS5 BIT(4),
VS_COL6 BIT(4),
VS_COL7 BIT(4),
VS_COL8 BIT(4)

mysql> INSERT INTO bit_storage VALUES(B'101', B'101', B'101', B'101', B'101', B'101', B'101', B'101');

mysql> INSERT INTO string_storage SELECT * FROM bit_storage;
mysql> SELECT * FROM string_storage;

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

GaussDB
MySQL Compatibility(Distributed) 3 M-compatible Mode

+. +. +. + + + + + +

| VS_COL1 | VS_COL2 | VS_COL3 | VS_COL4 | VS_COLS5 | VS_COL6 | VS_COL7 | VS_COLS |

1 row in set (0.00 sec)
mysql> DROP TABLE bit_storage, string_storage;

|

a =

e When a binary or hexadecimal character string with 0x00 is inserted into the
binary data type, GaussDB inserts part of the string and truncates the
characters following 0x00. MySQL can insert the entire string.

Example:
m_db=# CREATE TABLE blob_storage (
A BLOB
) DISTRIBUTE BY REPLICATION;
m_db=# INSERT INTO blob_storage VALUES (0xBBOOBB);
m_db=# SELECT hex(A) FROM blob_storage;
hex
BB
(1 row)
m_db=# DROP TABLE blob_storage;

mysql> CREATE TABLE blob_storage (
A BLOB
)
mysql> INSERT INTO blob_storage VALUES (0xBBOOBB);
mysql> SELECT hex(A) FROM blob_storage;

1 row in set (0.01 sec)
mysql> DROP TABLE blob_storage;

e When a binary or hexadecimal string with 0x00 in the middle is inserted into
the string data type, GaussDB inserts part of the string and truncates the
characters following 0x00. In MySQL, the string cannot be inserted in strict
mode, and an empty string is inserted in loose mode.

Example:
m_db=# CREATE TABLE text_storage (
A TEXT

);

m_db=# INSERT INTO text_storage VALUES (b'101110110000000010111011');
m_db=# SELECT hex(A) FROM text_storage;

hex

BB

(1 row)

m_db=# DROP TABLE text_storage;

mysql> CREATE TABLE text_storage (

A TEXT
i
mysql> INSERT INTO text_storage VALUES (b'101110110000000010111011");
ERROR 1366 (HY000): Incorrect string value: '\xBB\x00\xBB' for column 'A" at row 1
mysql> SELECT hex(A) FROM text_storage;
Empty set (0.00 sec)
mysql> SET SQL_MODE=";
mysql> INSERT INTO text_storage VALUES (b'101110110000000010111011");
mysql> SELECT hex(A) FROM text_storage;

R +
| hex(A) |
R +
| I

R +

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

GaussDB
MySQL Compatibility(Distributed) 3 M-compatible Mode

1 row in set (0.01 sec)
mysql> DROP TABLE text_storage;

e The WHERE clause contains only common character strings. GaussDB returns
TRUE for 't', 'true’, 'yes', 'y', and 'on', returns FALSE for 'no', 'f', 'off', 'false’,
and 'n', and reports an error for other character strings. MySQL determines
whether to return TRUE or FALSE by converting a character string to an INT1
value.

Example:

m_db=# CREATE TABLE test_where (
A INT

);

m_db=# INSERT INTO test_where VALUES (1);
m_db=# SELECT * FROM test_where WHERE '111";
ERROR: invalid input syntax for type boolean: "111"
LINE 1: SELECT * FROM test_where WHERE '111";
m_db=# DROP TABLE test_where;

mysql> CREATE TABLE test_where (
A INT

);
mysql> INSERT INTO test_where VALUES (1);
mysql> SELECT * FROM test_where WHERE '111";

+ommm o +
la |
+ommm o +
[1]
+ommm o +

1 row in set (0.01 sec)
mysql> DROP TABLE test_where;

e When converting strings of the YEAR type to integers, MySQL uses scientific

notation, but GaussDB does not support scientific notation and truncates the
strings.

Example:

m_db=# CREATE TABLE test_year (
A YEAR
)
m_db=# SET sql_mode =";
m_db=# INSERT INTO test_year VALUES ('2E3x');
WARNING: Data truncated for column.
LINE 1: INSERT INTO test_year VALUES ('2E3x');
VAN

CONTEXT: referenced column: a
m_db=# SELECT * FROM test_year ORDER BY A;

(1 row)
m_db=# DROP TABLE test_year;

mysql> CREATE TABLE test_year (
A YEAR

);
mysql> INSERT INTO test_year VALUES ('2E3x');
mysql> SELECT * FROM test_year ORDER BY A;

Fom o +
la |

Fom o +
| 2000 |
Fom o +

1 row in set (0.01 sec)
mysql> DROP TABLE test_year;

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

GaussDB

MySQL Compatibility(Distributed) 3 M-compatible Mode

Differences in Explicit Type Conversion

In GaussDB, the conversion rules for each target type are used. In MySQL, C++
polymorphic overloading functions are used, causing inconsistent behavior in
nesting scenarios.

Example:

m_db=# SELECT CAST(GREATEST (date'2023-01-01','2023-01-01") AS SIGNED);
WARNING: Truncated incorrect INTEGER value: '2023-01-01'

CONTEXT: referenced column: cast

cast

mysql> SELECT CAST(GREATEST (date'2023-01-01','2023-01-01') AS SIGNED);
+ +

| CAST(GREATEST (date'2023-01-01','2023-01-01') AS SIGNED) |
+ +

| 20230101 |
+ +

Differences Between UNION, CASE, and Related Structures

3.2 System

In MySQL, POLYGON+NULL, POINT+NULL, and POLYGON+POINT return the
GEOMETRY type. They are not involved in GaussDB and considered as errors.

The SET and ENUM types are not supported currently and are considered as
errors.

When the constant type is aggregated with other types, the precision of the
output type is the precision of other types. For example, the precision of the
result of "SELECT "helloworld" UNION SELECT p FROM t;" is the precision of
attribute p.

When fixed-point constants and types without precision constraints (non-
string types such as int, bool, and year, and the type of the aggregation result
is the fixed-point type) are aggregated, the precision constraint is output
based on the default precision 31 of fixed-point numbers.

Differences in merge rules:

In MySQL 5.7, if YEAR is aggregated with TINYINT, INT, MEDIUMINT, BIGINT,
or BOOL, the result is of the type with UNSIGNED. In GaussDB, it is of the
type without UNSIGNED. In MySQL, if BIT is aggregated with a numeric type
such as INT, NUMERIC, FLOAT, or DOUBLE, the result type is VARBINARY. In
GaussDB, the result type is NUMERIC for aggregation between BIT and INT or
NUMERIC, DOUBLE for aggregation between BIT and FLOAT or DOUBLE, and
UINTS8 for aggregation between BIT and unsigned integers.

In MySQL, BINARY and CHAR use different padding characters. BINARY is
padded with "\0', and CHAR is padded with spaces. In GaussDB, BINARY and
CHAR are padded with spaces.

Functions

3.2.1 System Function Compatibility Overview

GaussDB is compatible with most MySQL system functions, but there are some
differences.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

MySQL Compatibility(Distributed)

3 M-compatible Mode

Currently, some system functions in GaussDB with the same names as those in
MySQL are not supported in M-compatible mode. For some of them, the message
indicating that they are not supported in M-compatible mode is displayed. Other
functions still retain the behaviors of the original GaussDB system functions. The
behavior of functions with the same name is greatly different from that of MySQL.
Therefore, you are advised to avoid using them but use only system functions in
M-compatible mode.

The following table lists the functions with the same name.

Table 3-8 Same-name functions for which a message indicating that they are not
supported in M-compatible mode is displayed

cot isEmpty last_insert_id | mod octet_length
overlaps point radians regexp_instr regexp_like
regexp_replac | regexp_substr | stddev_pop stddev_samp | var_pop

e

var_samp

variance - - -

Table 3-9 Same-name functions that retain the behaviors of the original GaussDB
system functions in M-compatible mode

ceil decode encode format instr
position round stddev row_num -
{110 NOTE

e MySQL allows you to add user-defined functions to the database through the loadable
functions. When such functions are called, aliases can be specified in the input
parameters of the functions. GaussDB does not support loadable functions. When a
function is called, aliases cannot be specified for input parameters of the function.

e In M-compatible mode, system functions have the following differences:

The return value type of a system function is the same as that of MySQL only
when the node type of the input parameter is Var (table data) or Const (constant
input). In other cases (for example, the input parameter is a calculation expression
or function expression), the return value type may be different from that of
MySQL.

When an aggregate function uses an expression such as another function, operator,
or SELECT clause as the input parameter (for example, SELECT sum(abs(n))
FROM t;), the aggregate function cannot obtain the precision transferred by the
input parameter expression. As a result, the precision of the function result is
different from that of MySQL.

Calling system functions by pg_catalog.func_name() is not recommended. If the
called function has input parameters in the format of syntax (such as SELECT
substr('demo' from 1 for 2)), an error may occur when the function is called.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

115

GaussDB

MySQL Compatibility(Distributed) 3 M-compatible Mode

3.2.2 Flow Control Functions

Table 3-10 Flow control functions

MySQL GaussDB Difference

IF() Supported, If the first parameter is TRUE and the third
with parameter expression contains an implicit type
differences. conversion error, or if the first parameter is

FALSE and the second parameter expression
contains an implicit type conversion error,
MySQL ignores the error while GaussDB
displays a type conversion error.

IFNULL() Supported, If the first parameter is not NULL and the
with expression of the second parameter contains an
differences. implicit type conversion error, MySQL ignores

the error while GaussDB displays a type
conversion error.

NULLIF() Supported, The return value type of a function differs in
with MySQL 5.7 and MySQL 8.0. Return types are
differences. compatible with MySQL 8.0 because it is more

appropriate.

3.2.3 Date and Time Functions

The date and time functions in the M-compatible mode in GaussDB, with the
same behavior as MySQL, are described as follows:

Functions may use time expressions as their input parameters.

Time expressions (mainly including TEXT, DATETIME, DATE, and TIME) and
types that can be implicitly converted to time expressions can be used as
input parameters. For example, a number can be implicitly converted to text
and then used as a time expression.

However, different functions take effect in different ways. For example, the
DATEDIFF function calculates only the difference between dates. Therefore,
the time expression is parsed as the date type. The TIMESTAMPDIFF function
parses the time expression as DATE, TIME, or DATETIME based on the UNIT
parameter before calculating the time difference.

The input parameters of functions may contain an invalid date.

Generally, the supported DATE and DATETIME ranges are the same as those
in MySQL. The value of DATE ranges from '0000-01-01' to '9999-12-31", and
the value of DATETIME ranges from '0000-01-01 00:00:00' to '9999-12-31
23:59:59'. Although the DATE and DATETIME ranges supported by GaussDB
are greater than those supported by MySQL, out-of-bounds dates are still
invalid.

In most cases, time functions report an alarm and return NULL if the input
date is invalid, unless the invalid date can be converted by CAST.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

Most date and time functions in the GaussDB M-compatible framework are the
same as those in MySQL. The following table lists the differences between them in
terms of some functions.

Table 3-11 Date and time functions

TO

MySQL GaussDB Difference

ADDDATE() Supported -

ADDTIME() Supported -

CONVERT_T Supported -

Z()

CURDATE() Supported -

CURRENT_DA | Supported -

TE()/

CURRENT_DA

TE

CURRENT_TI | Supported, In MySQL, an integer input value is wrapped

ME()/ with when it reaches 255 (maximum value of a one-

CURRENT_TI differences. byte integer value), for example, SELECT

ME CURRENT_TIME(257) == SELECT

CURRENT_TIME(1).

GaussDB supports only valid values ranging
from 0 to 6. For other values, an error is
reported.

CURRENT_TI | Supported, In MySQL, an integer input value is wrapped

MESTAMP()/ | with when it reaches 255 (maximum value of a one-

CURRENT_TI | differences. byte integer value), for example, SELECT

MESTAMP CURRENT_TIMESTAMP(257) == SELECT

CURRENT_TIMESTAMP(1).

GaussDB supports only valid values ranging
from 0 to 6. For other values, an error is
reported.

CURTIME() Supported, In MySQL, an integer input value is wrapped
with when it reaches 255 (maximum value of a one-
differences. byte integer value), for example, SELECT

CURTIME(257) == SELECT CURTIME(1).
GaussDB supports only valid values ranging
from 0 to 6. For other values, an error is
reported.

DATE() Supported -

DATE_ADD() | Supported -

DATE_FORMA | Supported -

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

117

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

MySQL GaussDB Difference
DATE_SUB() Supported -
DATEDIFF() Supported -

DAY() Supported -
DAYNAME() Supported -
DAYOFMONT | Supported -

H()

DAYOFWEEK(| Supported -

)

DAYOFYEAR() | Supported -
EXTRACT() Supported -
FROM_DAYS(| Supported -

)

FROM_UNIXT | Supported -

IME()

GET_FORMA | Supported -

T()

HOUR() Supported -
LAST_DAY() Supported -
LOCALTIME() | Supported, In MySQL, an integer input value is wrapped
/LOCALTIME with when it reaches 255 (maximum value of a one-

differences.

byte integer value), for example, SELECT
LOCALTIME(257) == SELECT LOCALTIME(1).

GaussDB supports only valid values ranging
from 0 to 6. For other values, an error is
reported.

LOCALTIMEST
AMP/
LOCALTIMEST
AMP()

Supported,
with

differences.

In MySQL, an integer input value is wrapped
when it reaches 255 (maximum value of a one-
byte integer value), for example, SELECT
LOCALTIMESTAMP(257) == SELECT
LOCALTIMESTAMP(1).

GaussDB supports only valid values ranging
from 0 to 6. For other values, an error is
reported.

MAKEDATE() | Supported -
MAKETIME() | Supported, In the distributed pushdown scenario, if no
with second precision is specified for the TIME type,

differences.

MySQL supplements six trailing zeros by
default, but GaussDB does not supplement
anything.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

118

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

MySQL GaussDB Difference

MICROSECON | Supported -

D()

MINUTE() Supported -

MONTHY() Supported -

MONTHNAM | Supported -

EQ)

NOW() Supported, In MySQL, an integer input value is wrapped
with when it reaches 255 (maximum value of a one-
differences. byte integer value), for example, SELECT

NOW (257)==SELECT NOW(1).

GaussDB supports only valid values ranging
from O to 6. For other values, an error is
reported.

PERIOD_AD Supported, e Processing of integer overflow.

D() with In MySQL 5.7, the maximum value of an

differences.

input parameter result of this function is
2A\32=4294967296. When the accumulated
value of the month corresponding to period
and the month_number value in the input
parameter or result exceed the uint32 range,
integer wraparound occurs. This issue has
been resolved in MySQL 8.0. The
performance of this function in GaussDB is
the same as that in MySQL 8.0.

Performance when the value of period is
negative:

In MySQL 5.7, a negative year is parsed as an
abnormal value instead of an error.
Conversely, GaussDB reports an error when
any input parameter or result is negative (for
example, January 100 minus 10000 months).
This issue has been resolved in MySQL 8.0.
The performance of this function in GaussDB
is the same as that in MySQL 8.0.

Performance when the month in period
exceeds the range:

When dealing with a month greater than 12
or equal to 0, for example, 200013 or
199900, MySQL 5.7 postpones it to the next
year or views month 0 as December of the
previous year. GaussDB reports an error for
months beyond the range. This issue has
been resolved in MySQL 8.0. The
performance of this function in GaussDB is
the same as that in MySQL 8.0.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

MySQL

GaussDB

Difference

PERIOD_DIFF(
)

Supported,
with
differences.

e Processing of integer overflow.
In MySQL 5.7, the maximum value of an
input parameter result of this function is
2A32=4294967296. When the accumulated
value of the month corresponding to period
and the month_number value in the input
parameter or result exceed the uint32 range,
integer wraparound occurs. This issue has
been resolved in MySQL 8.0. The
performance of this function in GaussDB is
the same as that in MySQL 8.0.

e Performance when the value of period is
negative:
In MySQL 5.7, a negative year is parsed as an
abnormal value instead of an error.
Conversely, GaussDB reports an error when
any input parameter or result is negative (for
example, January 100 minus 10000 months).
This issue has been resolved in MySQL 8.0.
The performance of this function in GaussDB
is the same as that in MySQL 8.0.

e Performance when the month in period
exceeds the range:
When dealing with a month greater than 12
or equal to 0, for example, 200013 or
199900, MySQL 5.7 postpones it to the next
year or views month 0 as December of the
previous year. GaussDB reports an error for
months beyond the range. This issue has
been resolved in MySQL 8.0. The
performance of this function in GaussDB is
the same as that in MySQL 8.0.

QUARTER()

Supported

SEC_TO_TIM
EQ

Supported

SECOND()

Supported

STR_TO_DAT
EQ

Supported,
with

differences.

GaussDB returns values of the text type, while
MySQL returns values of the datetime or date

type.

SUBDATE()

Supported

SUBTIME()

Supported

SYSDATE()

Supported,
with

differences.

In MySQL, an integer input value is wrapped
when it reaches 255 (maximum value of a one-
byte integer value).

GaussDB does not support wraparound.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

120

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

MySQL GaussDB Difference

TIME() Supported -

TIME_FORMA | Supported -

T()

TIME_TO_SE Supported -

CO

TIMEDIFF() Supported -

TIMESTAMP() | Supported -

TIMESTAMPA | Supported -

DD()

TIMESTAMPD | Supported -

IFF()

TO_DAYS() Supported -

TO_SECOND | Supported -

S0

UNIX_TIMEST | Supported, MySQL determines whether to return a fixed-

AMP() with point value or an integer based on whether an
differences. input parameter contains decimal places. When

operators or functions are nested in the input
parameter, GaussDB may return a value of the
type different from that in MySQL. If the inner
node returns a value of the fixed-point,
floating-point, string, or time type (excluding
the date type), MySQL may return an integer,
while GaussDB returns a fixed-point value.

UTC_DATE() Supported -

UTC_TIME() Supported, In MySQL, an integer input value is wrapped
with when it reaches 255 (maximum value of a one-
differences. byte integer value). GaussDB supports only

valid values ranging from 0 to 6. For other
values, an error is reported.

UTC_TIMESTA | Supported, In MySQL, an integer input value is wrapped

MP() with when it reaches 255 (maximum value of a one-
differences. byte integer value). GaussDB supports only

valid values ranging from 0 to 6. For other
values, an error is reported.

WEEK() Supported -

WEEKDAY() Supported -

WEEKOFYEA | Supported -

R()

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

3.2.4 String Functions

MySQL GaussDB Difference

YEAR() Supported -

YEARWEEK() | Supported -

Table 3-12 String functions

MySQL GaussDB Difference

ASCII() Supported. -

BIT_LENGTH(| Supported. -

)

CHAR_LENGT | Supported, In GaussDB, if the character set is SQL_ASCII,

H() with CHAR_LENGTHY() returns the number of bytes
differences. instead of characters.

CHARACTER_ | Supported, In GaussDB, if the character set is SQL_ASCII,

LENGTH() with CHARACTER_LENGTH() returns the number of
differences. bytes instead of characters.

CONCAT() Supported, For binary return values, MySQL offers various
with options (including BINARY, VARBINARY, and
differences. BLOB), while GaussDB offers only one—

LONGBLOB. For non-binary return values,
MySQL offers various options (including CHAR,
VARCHAR, and TEXT), while GaussDB only
offers TEXT.

CONCAT_WS(| Supported, For binary return values, MySQL offers various

) with options (including BINARY, VARBINARY, and
differences. BLOB), while GaussDB offers only one—

LONGBLOB. For non-binary return values,
MySQL offers various options (including CHAR,
VARCHAR, and TEXT), while GaussDB only
offers TEXT.

HEX() Supported. -

LENGTH() Supported. -

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

122

GaussDB

MySQL Compatibility(Distributed) 3 M-compatible Mode
MySQL GaussDB Difference
LPAD() Supported, e The default maximum padding length in
with MySQL is 1398101, and that in GaussDB is
differences. 1048576. The maximum padding length

varies depending on the character set. For
example, if the character set is GBK, the
default maximum padding length in
GaussDB is 2097152.

e When GaussDB uses the SQL_ASCII, the
server interprets byte values 0 to 127
according to the ASCII standard, and byte
values 128 to 255 are regarded as characters
that cannot be parsed. If the input and
output of the function contain any non-ASClI
data, the database cannot convert or verify
non-ASCII characters. As a result, the
behavior of the function is greatly different
from that of MySQL.

e For binary return values, MySQL offers
various options (including BINARY,
VARBINARY, and BLOB), while GaussDB
offers only one—LONGBLOB. For non-binary
return values, MySQL offers various options
(including CHAR, VARCHAR, and TEXT),
while GaussDB only offers TEXT.

REPEAT() Supported, For binary return values, MySQL offers various
with options (including BINARY, VARBINARY, and
differences. BLOB), while GaussDB offers only one—
LONGBLOB. For non-binary return values,
MySQL offers various options (including CHAR,
VARCHAR, and TEXT), while GaussDB only
offers TEXT.

REPLACE() Supported, For binary return values, MySQL offers various
with options (including BINARY, VARBINARY, and
differences. BLOB), while GaussDB offers only one—
LONGBLOB. For non-binary return values,
MySQL offers various options (including CHAR,
VARCHAR, and TEXT), while GaussDB only
offers TEXT.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 123

GaussDB

MySQL Compatibility(Distributed) 3 M-compatible Mode
MySQL GaussDB Difference
RPAD() Supported, e The default maximum padding length in
with MySQL is 1398101, and that in GaussDB is
differences. 1048576. The maximum padding length

varies depending on the character set. For
example, if the character set is GBK, the
default maximum padding length in
GaussDB is 2097152.

e When GaussDB uses the SQL_ASCII, the
server interprets byte values 0 to 127
according to the ASCII standard, and byte
values 128 to 255 are regarded as characters
that cannot be parsed. If the input and
output of the function contain any non-ASClI
data, the database cannot convert or verify
non-ASCII characters. As a result, the
behavior of the function is greatly different
from that of MySQL.

e For binary return values, MySQL offers
various options (including BINARY,
VARBINARY, and BLOB), while GaussDB
offers only one—LONGBLOB. For non-binary
return values, MySQL offers various options
(including CHAR, VARCHAR, and TEXT),
while GaussDB only offers TEXT.

SPACE() Supported. -
STRCMP() Supported, When GaussDB uses the SQL_ASCII, the server
with interprets byte values 0 to 127 according to the

differences. ASCII standard, and byte values 128 to 255 are
regarded as characters that cannot be parsed. If
the input and output of the function contain
any non-ASCII data, the database cannot
convert or verify non-ASCIl characters. As a
result, the behavior of the function is greatly
different from that of MySQL.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 124

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

MySQL GaussDB Difference
FIND_IN_SET(| Supported, When GaussDB uses the SQL_ASCII, the server
) with interprets byte values 0 to 127 according to the
differences. ASCII standard, and byte values 128 to 255 are
LCASE() regarded as characters that cannot be parsed. If
LEFT() the input and output of the function contain
any non-ASCII data, the database cannot
LOWER() convert or verify non-ASCIl characters. As a
result, the behavior of the function is greatly
LTRIM() different from that of MySQL.
REVERSE() For binary return values, MySQL offers various
options (including BINARY, VARBINARY, and
RIGHT() BLOB), while GaussDB offers only one—
RTRIM() LONGBLOB. For non-binary return values,
MySQL offers various options (including CHAR,
SUBSTR() VARCHAR, and TEXT), while GaussDB only

SUBSTRING()

offers TEXT.

SUBSTRING_I

NDEX()

TRIM()

UCASE()

UPPER()

UNHEX() Supported, The return value type in MySQL is BINARY,
with VARBINARY, BLOB, MEDIUMBLOB, or
differences. LONGBLOB, while the return value type in

GaussDB is fixed to LONGBLOB.

FIELD() Supported. -

FORMAT() Supported. -

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

3.2.5 Forced Conversion Functions

Table 3-13 Forced conversion functions

MySQL GaussDB Difference
CAST() Supported, e In GaussDB, CAST(expr AS CHAR[(N)]
with charset_info or CAST(expr AS NCHAR[(N)])

differences

cannot be used to convert character sets.

In GaussDB, you can use CAST(expr AS
FLOAT[(p)]) or CAST(expr AS DOUBLE) to
convert an expression to the one of the
floating-point type. MySQL 5.7 does not
support this conversion.

In GaussDB, CAST(expr AS JSON) cannot be
used to convert expressions to JSON.

In the CAST nested subquery scenario, if the
subquery statement returns the FLOAT type,
an accurate value is returned in GaussDB
while a distorted value is returned in MySQL
5.7. The same rule applies to the BINARY

function implemented using CAST.
--GaussDB

m_db=# CREATE TABLE sub_query_table(myfloat float)
DISTRIBUTE BY REPLICATION;

CREATE TABLE

m_db=# INSERT INTO sub_query_table(myfloat) VALUES
(1.23);

INSERT 0 1

m_db=# SELECT binary(SELECT myfloat FROM
sub_query_table) FROM sub_query_table;

binary

(1 row)

m_db=# SELECT cast((SELECT myfloat FROM
sub_query_table) AS char);

cast

(1 row)
--MySQL 5.7
mysql> CREATE TABLE sub_query_table(myfloat float);
Query OK, 0 rows affected (0.02 sec)

mysql> INSERT INTO sub_query_table(myfloat) VALUES
(1.23);

Query OK, 1 row affected (0.00 sec)

mysql> SELECT binary(SELECT myfloat FROM
sub_query_table) FROM sub_query_table;

+

| binary(SELECT myfloat FROM sub_query_table) |

| 1.2300000190734863 |

+

1 row in set (0.00 sec)
mysql> SELECT cast((SELECT myfloat FROM
sub_query_table) AS char);

+

| cast((SELECT myfloat FROM sub_query_table) AS char) |

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

GaussDB
MySQL Compatibility(Distributed)

3 M-compatible Mode

differences

MySQL GaussDB Difference
| 1.2300000190734863
1+ row in set (0.00 sec) '
CONVERT() Supported, e In GaussDB, CONVERT(expr, CHAR[(N)]
with charset_info or CAST(expr, NCHAR[(N)])

cannot be used to convert character sets.

e In GaussDB, you can use CONVERT (expr,
FLOAT[(p)]) or CONVERT (expr, DOUBLE)
to convert an expression to the one of the
floating-point type. MySQL 5.7 does not
support this conversion.

e In GaussDB, CONVERT (expr, JSON) cannot
be used to convert expressions to JSON.

3.2.6 Encryption Functions

Table 3-14 Encryption functions

MySQL GaussDB Difference
AES_DECRYP | Supported, e GaussDB does not support ECB mode, which
T0O with is an insecure encryption mode, but uses CBC
differences mode by default.
AES_ENCRYP | Supported e When characters are specified to be encoded
T0) - with ' in SQL_ASCII for GaussDB, the server parses
differences byte values 0 to 127 according to the ASCII
standard, and byte values 128 to 255 cannot
be parsed. If the input and output of the
function contain any non-ASCII characters,
the database cannot convert or verify them.
e The return value type in MySQL is BINARY,
VARBINARY, BLOB, MEDIUMBLOB, or
LONGBLOB, while the return value type in
GaussDB is fixed to LONGBLOB.
SHA()/ Supported. -
SHA1()
SHA2() Supported. -

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

127

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

3.2.7 Comparison Functions

Table 3-15 Comparison functions

MySQL

GaussDB

Difference

COALESCE()

Supported,
with

differences.

In the union distinct scenario, the precision of
the return value is different from that in
MySQL.

If there is an implicit type conversion error in
the subsequent parameter expression of the
first parameter that is not NULL, MySQL
ignores the error while GaussDB displays a type
conversion error. When the parameter is a MIN
or MAX function, the return value type is
different from that in MySQL.

INTERVAL()

Supported.

GREATEST()

Supported,
with

differences.

For binary return values, MySQL offers various
options (including BINARY, VARBINARY, and
BLOB), while GaussDB offers only one—
LONGBLOB. For non-binary return values,
MySQL offers various options (including CHAR,
VARCHAR, and TEXT), while GaussDB only
offers TEXT.

If the input parameter of the function contains
NULL and the function is called after the
WHERE keyword, the returned result is
inconsistent with that of MySQL 5.7. This
problem lies in MySQL 5.7. Since MySQL 8.0 has
resolved this problem, GaussDB are consistent
with MySQL 8.0.

LEAST()

Supported,
with

differences.

For binary return values, MySQL offers various
options (including BINARY, VARBINARY, and
BLOB), while GaussDB offers only one—
LONGBLOB. For non-binary return values,
MySQL offers various options (including CHAR,
VARCHAR, and TEXT), while GaussDB only
offers TEXT.

If the input parameter of the function contains
NULL and the function is called after the
WHERE keyword, the returned result is
inconsistent with that of MySQL 5.7. This
problem lies in MySQL 5.7. Since MySQL 8.0 has
resolved this problem, GaussDB are consistent
with MySQL 8.0.

ISNULL()

Supported.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

128

GaussDB

MySQL Compatibility(Distributed) 3 M-compatible Mode

3.2.8 Aggregate Functions

Table 3-16 Aggregate functions

differences.

MySQL GaussDB Difference

AVG() Supported, e |f DISTINCT is specified and the SQL
with statement contains the GROUP BY clause,
differences. GaussDB does not sort the results, while

MySQL sorts the results.

e In GaussDB, if the columns in expr are of the
BIT, BOOL, or integer type and the sum of all
rows exceeds the range of BIGINT, overflow
occurs, reversing integers.

BIT_AND() Supported. -

BIT_OR() Supported. -

BIT_XOR() Supported. -

COUNTY() Supported, If DISTINCT is specified and the SQL statement
with contains the GROUP BY clause, GaussDB does
differences. not sort the results, while MySQL sorts the

results.

GROUP_CON | Supported, e |f DISTINCT is specified and the SQL

CAT() with statement contains the GROUP BY clause,

GaussDB does not sort the results, while
MySQL sorts the results.

In GaussDB, if the parameters in
GROUP_CONCAT contain both the DISTINCT
and ORDER BY syntaxes, all expressions
following ORDER BY must be in the
DISTINCT expression.

In GaussDB, GROUP_CONCAT(... ORDER BY
Number) does not indicate the sequence of
the parameter. The number is only a
constant expression, which is equivalent to
no sorting.

In GaussDB, the group_concat_max_len
parameter is used to limit the maximum
return length of GROUP_CONCAT. If the
return length exceeds the maximum, the
length is truncated. Currently, the maximum
length that can be returned is 1073741823,
which is smaller than that in MySQL.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

129

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

MySQL GaussDB Difference
MAX() Supported, If DISTINCT is specified and the SQL statement
with contains the GROUP BY clause, GaussDB does
differences. not sort the results, while MySQL sorts the
results. When the parameter is not a table
column, the return value type of the MAX
function is different from that of MySQL 5.7.
MIN() Supported, If DISTINCT is specified and the SQL statement
with contains the GROUP BY clause, GaussDB does
differences. not sort the results, while MySQL sorts the
results. When the parameter is not a table
column, the return value type of the MIN
function is different from that of MySQL 5.7.
SUM() Supported, e |f DISTINCT is specified and the SQL
with statement contains the GROUP BY clause,

differences.

GaussDB does not sort the results, while
MySQL sorts the results.

e In GaussDB, if the columns in expr are of the
BIT, BOOL, or integer type and the sum of all
rows exceeds the range of BIGINT, overflow
occurs, reversing integers.

3.2.9 Arithmetic Functions

Table 3-17 Arithmetic functions

MySQL GaussDB Difference

ABS() Supported. -

ACOS() Supported. -

ASIN() Supported. -

ATAN() Supported. -

ATAN2() Supported. -

CEILING() Supported, Some operation result types are inconsistent
with with those in MySQL. If the derived result is of
differences. the NUMERIC or integer type and can be stored

as an integer type, the result type in MySQL is
integer, but is still NUMERIC in GaussDB.

COS() Supported. -

DEGREES() Supported. -

EXP() Supported. -

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 130

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

MySQL GaussDB Difference
FLOOR() Supported, The return value types of the FLOOR function in
with GaussDB are different from those in MySQL.
differences. When the input parameter type is INT, the
return value type is BIGINT in GaussDB, but is
INT in MySQL.
Some operation result types are inconsistent
with those in MySQL. If the derived result is of
the NUMERIC or integer type and can be stored
as an integer type, the result type in MySQL is
integer, but is still NUMERIC in GaussDB.
LN() Supported. -
LOG() Supported. -
LOG10() Supported. -
LOG2() Supported. -
PI() Supported, The precision of the return value of the PI
with function in GaussDB is different from that in
differences. MySQL. It is rounded off to 15 decimal places in
GaussDB but to six decimal places in MySQL.
POW() Supported. -
POWER() Supported. -
RAND() Supported. -
SIGN() Supported. -
SIN() Supported. -
SQRT() Supported. -
TAN() Supported. -
TRUNCATE() | Supported. -
CEIL() Supported. -

3.2.10 Other Functions

Table 3-18 Other functions

MySQL GaussDB Difference
DATABASE() Supported. -
UuID() Supported. -

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 131

GaussDB

MySQL Compatibility(Distributed) 3 M-compatible Mode

MySQL GaussDB Difference

UUID_SHOR Supported. -
T()

3.3 Operators

GaussDB is compatible with most MySQL operators, but there are some
differences. If not listed, the operator behavior is the native behavior of GaussDB
by default. Currently, there are statements that are not supported by MySQL but
supported by GaussDB. In MySQL compatibility, they are usually used inside the
system, so they are not recommended.

Operator Differences

NULL values in ORDER BY are sorted in different ways. MySQL sorts NULL
values first, while GaussDB sorts NULL values last. In GaussDB, you can use
NULLS FIRST and NULLS LAST to set the sorting sequence of NULL values.

If ORDER BY is used, the output sequence of GaussDB is the same as that of
MySQL. Without ORDER BY, GaussDB does not guarantee that the results are
ordered.

When using MySQL operators, use parentheses to ensure the combination of
expressions. Otherwise, an error is reported. For example, SELECT 1 regexp
("12345' regexp '123").

The GaussDB M-compatible operators can be successfully executed without
using parentheses to strictly combine expressions.

NULL values are displayed in different ways. MySQL displays a NULL value as
"NULL". GaussDB displays a NULL value as empty.

MySQL output:
mysql> SELECT NULL;

1 row in set (0.00 sec)

GaussDB output:
m_db=# SELECT NULL;
?column?

(1 row)

After the operator is executed, the column names are displayed in different
ways. MySQL displays a NULL value as "NULL". GaussDB displays a NULL
value as empty.

When character strings are being converted to the double type but there is an
invalid one, the alarm is reported differently. MySQL reports an error when
there is an invalid constant character string, but does not report an error for
an invalid column character string. GaussDB reports an error in either
situation.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 132

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

e The results returned by the comparison operator are different. For MySQL, 1
or 0 is returned. For GaussDB, t or f is returned.

Table 3-19 Operators

MySQL GaussDB Difference

<> Supported, MySQL supports indexes, but GaussDB does not.
with
differences.

<=> Supported, MySQL supports indexes, but GaussDB does not
with support indexes, hash joins, or merge joins.
differences.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 133

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

MySQL GaussDB Difference
Row Supported, e MySQL supports row comparison using the
expressions with <=> operator, but GaussDB does not support

differences.

row comparison using the <=> operator.

e MySQL does not support comparison
between row expressions and NULL values.
In GaussDB, the <, <=, =, >=, >, and <>
operators can be used to compare row
expressions with NULL values.

e IS NULL or ISNULL operations on row
expressions are not supported in MySQL, but
they are supported in GaussDB.

e For operations by using operators that
cannot be performed on row expressions, the
error information in GaussDB is inconsistent
with that in MySQL.

GaussDB:
m_db=# SELECT (1,2) <=> row(2,3);
ERROR: could not determine interpretation of row
comparison operator <=>
LINE 1: SELECT (1,2) <=> row(2,3);
A

HINT: unsupported operator.
m_db=# SELECT (1,2) < NULL;
?column?

(1 row)

m_db=# SELECT (1,2) <> NULL;
?column?

(1 row)

m_db=# SELECT (1, 2) IS NULL;
?column?

(1 row)
m_db=# SELECT ISNULL((1, 2));
?column?

(1 row)

m_db=# SELECT ROW(0,0) BETWEEN ROW(1,1) AND
ROW(2,2);

ERROR: un support type

MySQL:
mysql> SELECT (1,2) <=> row(2,3);

1 row in set (0.00 sec)

mysql> SELECT (1,2) < NULL;

ERROR 1241 (21000): Operand should contain 2 column(s)
mysql> SELECT (1,2) <> NULL;

ERROR 1241 (21000): Operand should contain 2 column(s)
mysql> SELECT (1, 2) 1S NULL;

ERROR 1241 (21000): Operand should contain 1 column(s)

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 134

GaussDB
MySQL Compatibility(Distributed) 3 M-compatible Mode

MySQL GaussDB Difference

mysql> SELECT ISNULL((1, 2));

ERROR 1241 (21000): Operand should contain 1 column(s)
mysql> SELECT NULL BETWEEN NULL AND ROW(2,2);
ERROR 1241 (21000): Operand should contain 1 column(s)

-- Supported, MySQL indicates that an operand is negated
with twice and the result is equal to the original
differences. operand. GaussDB indicates a comment.

! Supported, MySQL: The meaning of !! is the same as that
with of !, indicating NOT.

differences. | GaussDB: ! indicates NOT. If there is a space

between two exclamation marks (!!), it
indicates NOT for twice. If there is no space
between them (!), it indicates factorial.

NOTE

e In GaussDB, when both factorial (!') and NOT (!)
are used, a space must be added between them.
Otherwise, an error is reported.

e In GaussDB, when multiple NOT operations are
required, use a space between exclamation marks

("n.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 135

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

differences.

MySQL GaussDB Difference
[NOT] Supported, e GaussDB and MySQL support different
REGEXP with metacharacters in regular expressions. For

example, GaussDB allows \d to indicate
digits, \w to indicate letters, digits, and
underscores (_), and \s to indicate spaces.
However, MySQL does not support these
metacharacters and considers them as
normal character strings.

e In GaussDB, "\b" can match "\\b", but in
MySQL, the matching will fail.

e |n GaussDB, a backslash (\) indicates an
escape character. In MySQL, two backslashes
(\\) are used.

e MySQL does not support two operators to be
used together.

e [f the input parameter of the pattern string is
invalid with only the right parenthesis ()),
GaussDB and MySQL 5.7 will report an error,
but MySQL 8.0 will not.

e In the rule of matching the de|abc sequence
with de or abc, when there are empty values
on the left and right of the pipe symbol (|),
MySQL 5.7 will report an error, but GaussDB
and MySQL 8.0 will not.

e The regular expression of the tab character
"\t" can match the character class [:blank:] in
GaussDB and MySQL 8.0 but cannot in
MySQL 5.7.

e GaussDB supports non-greedy pattern
matching. That is, the number of matching
characters is as small as possible. A question
mark (?) is added after some special
characters, for example, ?? *? +? {n}? {n,}?
{n,m}? MySQL 5.7 does not support non-
greedy pattern matching, and the error
message "Got error 'repetition-operator
operand invalid' from regexp" is displayed.
MySQL 8.0 already supports this function.

e |n the BINARY character set, the text and
BLOB types will be converted to the bytea
type. However, the REGEXP operator does
not support the bytea type. Therefore, the
matching will fail.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 136

MySQL Compatibility(Distributed)

3 M-compatible Mode

MySQL GaussDB Difference

LIKE Supported, MySQL: The left operand of LIKE can only be an
with expression of a bitwise or arithmetic operation,
differences. or expression consisting of parentheses. The

right operand of LIKE can only be an expression
consisting of unary operators (excluding NOT)
or parentheses.

GaussDB: The left and right operands of LIKE
can be any expression.

[NOT] Supported, MySQL: [NOT] BETWEEN AND is nested from

BETWEEN with right to left. The first and second operands of

AND differences. [NOT] BETWEEN AND can only be expressions

of bitwise or arithmetic operations, or
expressions consisting of parentheses.
GaussDB: [NOT] BETWEEN AND is nested from
left to right. The first and second operands of
[NOT] BETWEEN AND can be any expression.

IN Supported, MySQL: The left operand of IN can only be an
with expression of a bitwise or arithmetic operation,
differences. or expression consisting of parentheses.

GaussDB: The left operand of IN can be any
expression.

! Supported, MySQL: The operand of ! can only be an
with expression consisting of unary operators
differences. (excluding NOT) or parentheses.

GaussDB: The operand of ! can be any
expression.

Not MySQL supports the comment tag (#), but
supported. GaussDB does not.

BINARY Supported, Expressions (including some functions and
with operators) supported by GaussDB are different
differences. from those supported by MySQL. For GaussDB-

specific expressions such as "~" and "IS
DISTINCT FROM", due to the higher priority of
the BINARY keyword, when BINARY expr is
used, BINARY is combined with the left
parameters of "~" and "IS DISTINCT FROM"
first. As a result, an error is reported.

Negation (-) | Supported, If the number of consecutive negation times
with exceeds 1, GaussDB identifies the negations as

differences.

comments. As a result, it returns results
different from MySQL.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 137

GaussDB
MySQL Compatibility(Distributed)

3 M-compatible Mode

MySQL GaussDB Difference

XOR, |, &, <, | Supported, The execution mechanism of MySQL is as

> <=, >=, =, with follows: After the left operand is executed, the
and != differences. system checks whether the result is empty and

then determines whether to execute the right
operand.

As for the execution mechanism of GaussDB,
after the left and right operands are executed,
the system checks whether the result is empty.

If the result of the left operand is empty and an
error is reported during the execution of the
right operand, MySQL does not report an error
but directly returns an error. GaussDB reports an
error during the execution.

Behavior in MySQL:
mysql> SELECT version();

S +

| version() |
S +

| 5.7.44-debug-log |
S +

1 row in set (0.00 sec)

mysql> dROP TABLE IF EXISTS data_type_table;
Query OK, 0 rows affected (0.02 sec)

mysql> CREATE TABLE data_type_table (
-> MyBool BOOL,
-> MyBinary BINARY(10),
-> MyYear YEAR
-=>);
Query OK, 0 rows affected (0.02 sec)

mysql> INSERT INTO data_type_table VALUES (TRUE,
0x1234567890, '2021");
Query OK, 1 row affected (0.00 sec)

mysql> SELECT (MyBool % MyBinary) | (MyBool - MyYear)
FROM data_type_table;

+ +

| (MyBool % MyBinary) | (MyBool - MyYear) |

| NULL |

+ +
t y

1 row in set, 2 warnings (0.00 sec)

Behavior in GaussDB:

m_db=# DROP TABLE IF EXISTS data_type_table;
DROP TABLE

m_db=# CREATE TABLE data_type_table (

m_db(# MyBool BOOL,

m_db(# MyBinary BINARY(10),

m_db(# MyYear YEAR

m_db(#);

CREATE TABLE

m_db=# INSERT INTO data_type_table VALUES (TRUE,
0x1234567890, '2021');

INSERT O 1

m_db=# SELECT (MyBool % MyBinary) | (MyBool - MyYear)
FROM data_type_table;

WARNING: Truncated incorrect double value: '4vx '
CONTEXT: referenced column: (MyBool % MyBinary) |

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 138

MySQL Compatibility(Distributed)

3 M-compatible Mode

MySQL GaussDB

Difference

(MyBool - MyYear)

WARNING: division by zero

CONTEXT: referenced column: (MyBool % MyBinary) |
(MyBool - MyYear)

ERROR: Bigint is out of range.

CONTEXT: referenced column: (MyBool % MyBinary) |
(MyBool - MyYear)

Table 3-20 Differences in operator combinations

Example of Operator

MySQL | GaussD | Description

Combination B

SELECT 1 LIKE 3 & 1; Not Support | The right operand of LIKE
support | ed. cannot be an expression
ed consisting of bitwise operators.

SELECT 1 LIKE 1 +1; Not Support | The right operand of LIKE
support | ed. cannot be an expression
ed consisting of arithmetic

operators.

SELECT 1 LIKE NOT 0; Not Support | The right operand of LIKE can
support | ed. only be an expression consisting
ed of unary operators (such as +, -,

or ! but except NOT) or
parentheses.

SELECT 1 BETWEEN 1 Right- Left-to- | You are advised to add

AND 2 BETWEEN 2 to-left right parentheses to specify the

AND 3; combina | combina | calculation priority to prevent
tion tion result deviation caused by

sequence differences.

SELECT 2 BETWEEN Not Support | The second operand of

1=1 AND 3; support | ed. BETWEEN cannot be an
ed expression consisting of

comparison operators.

SELECT O LIKE O Not Support | The first operand of BETWEEN

BETWEEN 1 AND 2; support | ed. cannot be an expression
ed consisting of pattern matching

operators.

SELECT 1IN (1) Not Support | The first operand of BETWEEN

BETWEEN 0 AND 3; support | ed. cannot be an expression
ed consisting of IN operators.

SELECT T IN (1) IN (1); | Not Support | The second left operand of the
support | ed. IN expression cannot be an
ed expression consisting of INs.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 139

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

Example of Operator | MySQL | GaussD | Description
Combination B
SELECT ! NOT 1; Not Support | The operand of ! can only be an
support | ed. expression consisting of unary
ed operators (such as +, -, or ! but
except NOT) or parentheses.

Index Differences

Currently, GaussDB supports only UB-tree and B-tree indexes.

For fuzzy match (LIKE operator), the default index created can be used in
MySQL, but cannot be used in GaussDB. You need to use the following syntax
to specify opclass to, for example, text_pattern_ops, so that LIKE operators
can be used as indexes:

CREATE INDEX indexname ON tablename(col [opclass]);

In the B-tree/UB-tree index scenario, the original logic of the native GaussDB
is retained. That is, index scan supports comparison of types in the same
operator family, but does not support other index types currently.

When GaussDB JDBC is used to connect to the database, the YEAR type of
GaussDB cannot use indexes in the PBE scenario that contains bind
parameters.

In the operation scenarios involving index column type and constant type, the
conditions that indexes of a WHERE clause are supported in GaussDB is
different from those in MySQL, as shown in Table 3-21. For example,

GaussDB does not support indexes in the following statement:
CREATE TABLE t(_int int);

CREATE INDEX idx ON t(_int) USING BTREE;

SELECT * FROM t WHERE _int > 2.0;

(11 NOTE

In the operation scenarios involving index column type and constant type in the
WHERE clause, you can use the cast function to explicitly convert the constant type to
the column type for indexing.

SELECT * FROM t WHERE _int > cast(2.0 AS signed);

Table 3-21 Differences in index support

Index Column Constant Type Supported by Supported by
Type GaussDB MySQL
Integer Integer Yes Yes
Floating-point Floating-point Yes Yes
Fixed-point Fixed-point Yes Yes

String String Yes Yes

Binary Binary Yes Yes

Time with date Time with date Yes Yes

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

140

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

Index Column Constant Type Supported by Supported by
Type GaussDB MySQL
TIME TIME Yes Yes
Time with date Type that can be | Yes Yes

converted to

time type with

date (for

example,

integers such as

20231130)
Time with date TIME Yes Yes
TIME Constants that Yes Yes

can be converted

to the TIME type

(for example,

integers such as

203008)
Floating-point Integer Yes Yes
Floating-point Fixed-point Yes Yes
Floating-point String Yes Yes
Floating-point Binary Yes Yes
Floating-point Time with date Yes Yes
Floating-point TIME Yes Yes
Fixed-point Integer Yes Yes
String Time with date Yes No
String TIME Yes No
Binary String Yes Yes
Binary Time with date Yes No
Binary TIME Yes No
Integer Floating-point No Yes
Integer Fixed-point No Yes
Integer String No Yes
Integer Binary No Yes
Integer Time with date No Yes
Integer TIME No Yes
Fixed-point Floating-point No Yes

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

141

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

Index Column
Type

Constant Type

Supported by
GaussDB

Supported by
MySQL

Fixed-point

String

No

Yes

Fixed-point

Binary

No

Yes

Fixed-point

Time with date

No

Yes

Fixed-point

TIME

No

Yes

String

Binary

No

Yes

Time with date

Integer (that
cannot be
converted to the
time type with
date)

No

Yes

Time with date

Floating-point
(that cannot be
converted to the
time type with
date)

No

Yes

Time with date

Fixed-point (that
cannot be
converted to the
time type with
date)

No

Yes

TIME

Integer (that
cannot be
converted to the
TIME type)

No

Yes

TIME

Character string
(that cannot be
converted to the
TIME type)

No

Yes

TIME

Binary (that
cannot be
converted to the
TIME type)

No

Yes

TIME

Time with date

No

Yes

YEAR

YEAR

Yes

Yes

YEAR

Constants that
can be converted
to the YEAR type
(for example,
integers such as
2034)

Yes

Yes

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

142

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

Index Column Constant Type Supported by Supported by
Type GaussDB MySQL
BIT BIT No Yes

Table 3-22 Whether index use is supported

Index Column Constant Type Use Index or Use Index or
Type Not in GaussDB | Not in MySQL
String Integer No No
String Floating-point No No
String Fixed-point No No
Binary Integer No No
Binary Floating-point No No
Binary Fixed-point No No
Time with date Character string | No No

(that cannot be

converted to the

time type with

date)
Time with date Binary (that No No

cannot be

converted to the

time type with

date)
TIME Floating-point No No

(that cannot be

converted to the

TIME type)
TIME Fixed-point (that | No No

cannot be

converted to the

TIME type)
BIT String No No

3.4 Character Sets

GaussDB allows you to specify the following character sets for databases,
schemas, tables, or columns.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

143

GaussDB
MySQL Compatibility(Distributed) 3 M-compatible Mode

Table 3-23 Character sets

MySQL GaussDB
utf8mb4 Supported.
utf8 Supported.
gbk Supported.
gb18030 Supported.
binary Supported.
(11 NOTE

e utf8 and utf8mb4 refer to the same character set in GaussDB. The maximum code
length is 4 bytes. If the current character set is utf8 and the collation is set to
utf8mb4_bin, utf8mb4_general_ci, utf8mb4_unicode_ci, or utf8mb4_0900_ai_ci (for
example, by running SELECT _utf8'a’ collate utf8mb4_bin), MySQL reports an error
but GaussDB does not. The difference also exists when the character set is utf8mb4 and
the collation is set to utf8_bin, utf8_general_ci, or utf8_unicode_ci.

e The lexical syntax is parsed based on byte streams. If a multi-byte character contains
code that is consistent with symbols such as '\, '\", and '\\', the behavior of the multi-
byte character is inconsistent with that in MySQL. In this case, you are advised to disable
the escape character function temporarily.

3.5 Collation Rules

GaussDB allows you to specify the following collation rules for schemas, tables, or
columns.

(11 NOTE

Differences in collation rules:

e Currently, only the character string type and some binary types support the specified
collation rules. You can check whether the typcollation attribute of a type in the pg_type
system catalog is not O to determine whether the type supports the collation. The
collation can be specified for all types in MySQL. However, collation rules are
meaningless except those for character strings and binary types.

e The current collation rules (except binary) can be specified only when the corresponding
character set is the same as the database-level character set. In GaussDB, the character
set must be the same as the database character set, and multiple character sets cannot
be used together in a table.

e The default collation of the utf8mb4 character set is utf8mb4_general_ci, which is the
same as that in MySQL 5.7.

Table 3-24 Collation rules

MySQL GaussDB
utf8mb4_general_ci Supported.
utf8mb4_unicode_ci Supported.

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 144

GaussDB

MySQL Compatibility(Distributed) 3 M-compatible Mode
MySQL GaussDB
utf8mb4_bin Supported.
gbk_chinese_ci Supported.
gbk_bin Supported.
gb18030_chinese_ci Supported.
gb18030_bin Supported.
binary Supported.
utf8mb4_0900 ai_ci Supported.
utf8_general_ci Supported.
utf8_bin Supported.
utf8_unicode_ci Supported.

3.6 Transactions

GaussDB is compatible with MySQL transactions, but there are some differences.
This section describes transaction-related differences in GaussDB M-compatible
databases.

Default Transaction Isolation Levels

The default isolation level of an M-compatible database is READ COMMITTED,
and that of MySQL is REPEATABLE READ.

-- View the current transaction isolation level.
m_db=# SHOW transaction_isolation;

Sub-transactions

In an M-compatible database, SAVEPOINT is used to create a savepoint (sub-
transaction) in the current transaction, and ROLLBACK TO SAVEPOINT is used to
roll back to a savepoint (sub-transaction). After the sub-transaction is rolled back,
the parent transaction can continue to run, the rollback of a sub-transaction does
not affect the transaction status of the parent transaction.

No savepoint (sub-transaction) can be created in MySQL.

Nested Transactions
A nested transaction refers to a new transaction started in a transaction block.

In an M-compatible database, if a new transaction is started in a normal
transaction block, a warning is displayed indicating that an ongoing transaction
exists and the start command is ignored. If a new transaction is started in an
abnormal transaction block, an error is reported. The transaction can be executed

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 145

GaussDB
MySQL Compatibility(Distributed) 3 M-compatible Mode

only after ROLLBACK or COMMIT is executed. If ROLLBACK or COMMIT is
executed, the previous statement is rolled back.

In MySQL, if a new transaction is started in a normal transaction block, the
previous transaction is committed and then the new transaction is started. If a
new transaction is started in an abnormal transaction block, the error is ignored,
and the previous error-free statement is committed and the new transaction is
started.

-- In an M-compatible database, if a new transaction is started in a normal transaction block, a warning is
generated and the transaction is ignored.

m_db=# DROP TABLE IF EXISTS test_t;

m_db=# CREATE TABLE test_t(a int, b int);

m_db=# BEGIN;

m_db=# INSERT INTO test_t values(1, 2);

m_db=# BEGIN; -- The warning "There is already a transaction in progress" is displayed.

m_db=# SELECT * FROM test_t ORDER BY 1;

m_db=# COMMIT;

-- In an M-compatible database, if a new transaction is started in an abnormal transaction block, an error is
reported. The transaction can be executed only after ROLLBACK/COMMIT is executed.

m_db=# BEGIN;

m_db=# ERROR sql; -- Error statement.

m_db=# BEGIN; -- An error is reported.

m_db=# COMMIT; -- It can be executed only after ROLLBACK/COMMIT is executed.

Statements Committed Implicitly

An M-compatible database uses GaussDB for storage and inherits the GaussDB
transaction mechanism. If a DDL or DCL statement is executed in a transaction,
the transaction is not automatically committed.

In MySQL, if DDL, DCL, management-related, or lock-related statements are
executed, the transaction is automatically committed.

-- In M-compatible database, table creation and GUC parameter setting support rollback.
m_db=# DROP TABLE IF EXISTS test_table_rollback;

m_db=# BEGIN;

m_db=# CREATE TABLE test_table_rollback(a int, b int);

m_db=# \d test_table_rollback;

m_db=# ROLLBACK;

m_db=# \d test_table_rollback; -- This table does not exist.

Differences in SET TRANSACTION

In an M-compatible database, if SET TRANSACTION is used to set the isolation
level or transaction access mode for multiple times, only the last setting takes
effect. Transaction features can be separated by spaces or commas (,).

In MySQL, SET TRANSACTION cannot be used to set the isolation level or
transaction access mode for multiple times. Transaction features can only be
separated by commas (,).

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 146

GaussDB

MySQL Compatibility(Distributed)

3 M-compatible Mode

Table 3-25 Differences in SET TRANSACTION

Syntax Function Difference
SET Sets In M-compatible mode, if the
TRANSACTI | transactions. | m_format_dev_version parameter is not set to
ON 's2', SET TRANSACTION takes effect at the session
level, with the same functionality as SET SESSION
TRANSACTION. If the m_format_dev_version
parameter is set to 's2', SET TRANSACTION sets
the next transaction feature. In MySQL, SET
TRANSACTION takes effect in the next
transaction.
SET Sets session- | -
SESSION level
TRANSACTI | transactions.
ON
SET Sets global In an M-compatible database, GLOBAL takes
GLOBAL session-level | effect in global session-level transactions and is
TRANSACTI | transactions. | applicable only to the current database instance.
ON This feature | |5 \ysQL, this feature takes effect in all
is applicable | gatabases.
to
subsequent
sessions and
has no
impact on
the current
session.

-- SET TRANSACTION takes effect in session-level transactions.

m_db=# SET TRANSACTION ISOLATION LEVEL READ COMMITTED READ WRITE;

m_db=# SHOW transaction_isolation;

m_db=# SHOW transaction_read_only;

-- In an M-compatible database, if the isolation level or transaction access mode is set for multiple times,
only the last setting takes effect.

m_db=# SET SESSION TRANSACTION ISOLATION LEVEL READ COMMITTED, ISOLATION LEVEL
REPEATABLE READ, READ WRITE, READ ONLY;

m_db=# SHOW transaction_isolation; -- repeatable read

m_db=# SHOW transaction_read_only; -- on

Differences in START TRANSACTION

In an M-compatible database, when START TRANSACTION is used to start a
transaction, the isolation level can be set. If the isolation level or transaction
access mode is set for multiple times, only the last setting takes effect. In the
current version, consistency snapshot cannot be enabled immediately. Transaction
features can be separated by spaces or commas (,).

In MySQL, if START TRANSACTION is used to start a transaction, the isolation level
cannot be set and the transaction access mode cannot be set for multiple times.
Transaction features can only be separated by commas (,).

-- Start a transaction and set the isolation level.
m_db=# START TRANSACTION ISOLATION LEVEL READ COMMITTED;

Issue 01 (2025-06-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 147

GaussDB

MySQL Compatibility(Distributed) 3 M-compatible Mode

m_db=# COMMIT;

-- Set the access mode for multiple times.

m_db=# START TRANSACTION READ ONLY, READ WRITE;
m_db=# COMMIT;

Transaction-related GUC Parameters

Table 3-26 Differences in transaction-related GUC parameters

session-level
transaction
in MySQL.

GUC Function Difference

Parameter

autocommi | Sets the -

t automatic
transaction
commit
mode.

transaction | Sets the e In GaussDB, you can only change the isolation

_isolation isolation level of the current transaction by running the
level of the SET transaction_isolation = value command.
current To change the session-level isolation level, use
transaction default_transaction_isolation. In MySQL, you
in an M- can run the SET command to change the
compatible transaction isolation level for a session.
database. e The supported range is different.
Sets the MySQL supports the following isolation levels,
isolation which are case-insensitive but space-sensitive:
level of a

- READ-COMMITTED

- READ-UNCOMMITTED
- REPEATABLE READ

- SERIALIZABLE

GaussDB supports the following isolation
levels, which are case-sensitive and space-
sensitive:

- read committed
- read uncommitted
- repeatable read
- serializable

- default (The level is set to be the same as
the default isolation level in the session.)

- If m_format_dev _version is set to 's2’, the
isolation levels of MySQL can be set.

e In GaussDB, the value of transaction_isolation
of a new transaction is initialized to the value
of default_transaction_isolation.

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

148

MySQL Compatibility(Distributed)

3 M-compatible Mode

GUC Function Difference

Parameter

tx_isolation | Sets the This parameter does not support query or
transaction modification in an M-compatible database. You
isolation are advised to use transaction_isolation for
level. query.
tx_isolation
and

transaction_
isolation are

synonymes.
default_tra | Sets the In an M-compatible database, the SET command
nsaction_is | transaction is used to change the transaction isolation level
olation isolation for a session.
level. MySQL does not support this system parameter.
transaction | Sets the e In an M-compatible database, only the access
_read_only | access mode mode of the current transaction can be
of a changed by using the SET command. If you
transaction. want to change the access mode of a session-
level transaction, you can use
default_transaction_read_only.
In MySQL, you can run the SET command to
change the transaction isolation level for a
session.

e |n GaussDB, the value of
transaction_read_only of a new transaction is
initialized to the value of
default_transaction_read_only.

tx_read_onl | Sets the This parameter does not support query or
y access mode | modification in an M-compatible database. You

of a
transaction.
tx_read_only
and
transaction_

are advised to use transaction_read_only for
query.

read_only

are

synonymes.
default_tra | Sets the In an M-compatible database, the SET command
nsaction_re | access mode | is used to change the access mode of a session-
ad_only of a level transaction. MySQL does not support this

transaction.

system parameter.

3.7 SQL

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

149

GaussDB

MySQL Compatibility(Distributed) 3 M-compatible Mode

3.7.1 Keywords

The constraint differences are as follows:

If a keyword is a reserved one in M-compatible mode but non-reserved in
MySQL, it cannot be a table name, column name, column alias, AS column
alias, AS table alias, table alias, function name, or variable name in M-
compatible mode, but can be any of these names or aliases in MySQL.

If a keyword is a non-reserved one in M-compatible mode but reserved in
MySQL, it can be a table name, column name, column alias, AS column alias,
AS table alias, table alias, function name, or variable name in M-compatible
mode, but cannot be any of these names or aliases in MySQL.

If a keyword is a reserved one (function or type) both in M-compatible mode
and MySQL, it can be a column alias, AS column alias, function name, or
variable name in M-compatible mode, but cannot be any of these names or
aliases in MySQL.

If a keyword is a reserved one (function or type) in M-compatible mode but
non-reserved in MySQL, it cannot be a table name, column name, AS table
alias, or table alias in M-compatible mode, but can be one of these names or
aliases in MySQL.

If a keyword is a non-reserved one (excluding function and type) in M-
compatible mode but reserved in MySQL, it can be a table name, column
name, column alias, AS column alias, AS table alias, table alias, function
name, or variable name in M-compatible mode, but cannot be any of these
names or aliases in MySQL.

If a keyword is a non-reserved one (excluding function and type) both in M-
compatible mode and MySQL, it cannot be a function name in M-compatible
mode, but can be a function name in MySQL.

(11 NOTE

Among non-reserved keywords, reserved keywords (functions or types), and non-
reserved keywords (not functions or types) in M-compatible mode, the following
keywords cannot be used as column aliases:

BETWEEN, BIGINT, BLOB, CHAR, CHARACTER, CROSS, DEC, DECIMAL, DIV, DOUBLE,
EXISTS, FLOAT, FLOAT4, FLOAT8, GROUPING, INNER, INOUT, INT, INT1, INT2, INT3,
INT4, INT8, INTEGER, JOIN, LEFT, LIKE, LONGBLOB, LONGTEXT, MEDIUMBLOB,
MEDIUMINT, MEDIUMTEXT, MOD, NATURAL, NUMERIC, OUT, OUTER, PRECISION,
REAL, RIGHT, ROW, ROW_NUMBER, SIGNED, SMALLINT, SOUNDS, TINYBLOB, TINYINT,
TINYTEXT, VALUES, VARCHAR, VARYING, and WITHOUT.

SIGNED and WITHOUT can be used as column aliases in MySQL.

3.7.2 ldentifiers

Differences in identifiers in M-compatible mode are as follows:

In GaussDB, unquoted identifiers cannot start with a dollar sign ($). In MySQL
unquoted identifiers can start with a dollar sign ($).

GaussDB unquoted identifiers support case-sensitive database objects.

GaussDB identifiers support extended characters from U+0080 to U+00FF.
MySQL identifiers support extended characters from U+0080 to U+FFFF.

As for unquoted identifier, a table that starts with a digit and ends with an e
or E as the identifier cannot be created in GaussDB. For example:

Issue 01 (2025-06-30)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 150

GaussDB
MySQL Compatibility(Distributed) 3 M-compatible Mode

-- GaussDB reports an error indicating that this operation is not supported. MySQL supports this
operation.
m_db=# CREATE TABLE 23e(c1 int);
ERROR: syntax error at or near "23"
LINE 1: CREATE TABLE 23e(c1 int);
AN

m_db=# CREATE TABLE t1(23E int);

ERROR: syntax error at or near "23"

LINE 1: CREATE TABLE t1(23E int);
AN

e As for quoted identifiers, tables whose column names contain only digits or
scientific computing cannot be directly used in GaussDB. You need to use
them in quotes. This rule also applies to the dot operator (.) scenarios. For
example:

-- Create a table whose column names contain only numbers or scientific computing.
m_db=# CREATE TABLE t1(*123" int, “1e3" int, ‘1€ int);
CREATE TABLE

-- Insert data into the table.
m_db=# INSERT INTO t1 VALUES(7, 8, 9);
INSERT 0 1

-- The result is not as expected, but is the same as that in MySQL.
m_db=# SELECT 123 FROM t1;
?column?

-- The result is not as expected, but is the same as that in MySQL.
m_db=# SELECT 1e3 FROM t1;
?column?

-- The result is not as expected and is not the same as that in MySQL.
m_db=# SELECT 1e FROM t1;

(1 row)

-- The correct way to use is as follows:
m_db=# SELECT "123° FROM t1;
123

1e3

m_db=# SELECT “1e’ FROM t1;
Te

9
(1 row)

-- Dot operator scenarios are not supported by GaussDB but supported by MySQL.
m_db=# SELECT t1.123