
GaussDB

Compatibility(Distributed)

Issue 01

Date 2025-09-09

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 GaussDB Compatibility Overview..1

2 Oracle Compatibility Description.. 2
2.1 Overview of Oracle Database Compatibility... 2
2.2 Basic SQL Elements.. 2
2.2.1 Data Types.. 3
2.2.2 Data Type Comparison Rules... 8
2.2.3 Literals... 10
2.2.4 Format Models... 10
2.2.5 Nulls... 11
2.2.6 Comments.. 11
2.2.7 Database Objects...12
2.2.8 Database Object Names and Qualifiers.. 14
2.2.9 Syntax for Schema Objects and Parts in SQL Statements.. 15
2.3 Pseudocolumns.. 15
2.4 Operators... 16
2.5 Expressions.. 19
2.6 Conditions.. 21
2.7 Drivers... 22
2.7.1 JDBC... 22
2.7.1.1 Array... 23
2.7.1.2 Struct.. 39
2.8 Common SQL DDL Clauses... 54
2.9 SQL Queries and Subqueries.. 62
2.10 PL/SQL Language... 63
2.10.1 Basic PL/SQL Syntax... 64
2.10.2 Data Type Compatibility... 67
2.10.3 Control Statements...67
2.10.4 Collections and Records.. 69
2.10.5 Static SQL Statements... 75
2.10.6 Dynamic SQL Statements.. 80
2.10.7 Triggers... 80
2.11 System Functions.. 90
2.11.1 Single-Row Functions.. 90

GaussDB
Compatibility(Distributed) Contents

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

2.11.2 Other Functions...111
2.12 System Views... 113
2.13 Advanced Packages... 120

3 MySQL Compatibility Description...186
3.1 Overview of MySQL Compatibility... 186
3.2 M-compatible Mode.. 188
3.2.1 Data Types... 188
3.2.1.1 Numeric Data Types... 188
3.2.1.2 Date and Time Data Types... 190
3.2.1.3 String Data Types.. 192
3.2.1.4 Binary Data Types..196
3.2.1.5 Attributes Supported by Data Types... 202
3.2.1.6 Data Type Conversion.. 203
3.2.2 System Functions.. 207
3.2.2.1 System Function Compatibility Overview... 207
3.2.2.2 Flow Control Functions.. 209
3.2.2.3 Date and Time Functions..209
3.2.2.4 String Functions... 215
3.2.2.5 Forced Conversion Functions... 219
3.2.2.6 Encryption Functions.. 220
3.2.2.7 Comparison Functions... 221
3.2.2.8 Aggregate Functions...222
3.2.2.9 Numeric Operation Functions... 224
3.2.2.10 Other Functions... 226
3.2.3 Operators... 226
3.2.4 Character Sets.. 237
3.2.5 Collation Rules... 238
3.2.6 Transactions.. 239
3.2.7 SQL... 243
3.2.7.1 Keywords.. 244
3.2.7.2 Identifiers..244
3.2.7.3 DDL... 246
3.2.7.4 DML.. 270
3.2.7.5 DCL... 304
3.2.7.6 Other Statements.. 305
3.2.7.7 Users and Permissions... 307
3.2.7.8 System Catalogs and System Views.. 313
3.2.8 Drivers... 317
3.2.8.1 ODBC... 317
3.2.8.1.1 ODBC API Reference... 318
3.2.8.2 JDBC... 319
3.3 MySQL-compatible Mode.. 319

GaussDB
Compatibility(Distributed) Contents

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

3.3.1 Data Types... 319
3.3.1.1 Numeric Data Types... 319
3.3.1.2 Date and Time Data Types... 327
3.3.1.3 String Data Types.. 342
3.3.1.4 Binary Data Types..347
3.3.1.5 JSON Data Type... 350
3.3.1.6 Attributes Supported by Data Types... 350
3.3.1.7 Data Type Conversion.. 350
3.3.2 System Functions.. 353
3.3.2.1 Flow Control Functions.. 354
3.3.2.2 Date and Time Functions..356
3.3.2.3 String Functions... 369
3.3.2.4 Forced Conversion Functions... 375
3.3.2.5 Encryption Functions.. 375
3.3.2.6 JSON Functions.. 375
3.3.2.7 Aggregate Functions...378
3.3.2.8 Numeric Operation Functions... 380
3.3.2.9 Other Functions..381
3.3.3 Operators... 381
3.3.4 Character Sets.. 383
3.3.5 Collation Rules... 383
3.3.6 SQL... 384
3.3.6.1 DDL... 384
3.3.6.2 DML.. 395
3.3.6.3 DCL... 408
3.3.7 Drivers... 408
3.3.7.1 JDBC... 408
3.3.7.1.1 JDBC API Reference... 408

GaussDB
Compatibility(Distributed) Contents

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iv

1 GaussDB Compatibility Overview

In GaussDB, you can create a database whose compatibility mode is set to ORA,
MYSQL, TD, PG, or M, which represent the database is in Oracle-compatible,
MySQL-compatible, Teradata-compatible, PostgreSQL-compatible, or M-
compatible mode, respectively. The compatibility mode may affect SQL syntax,
data types, system functions, and stored procedures. Some compatibility APIs are
supported only in the corresponding compatibility mode.

For details about Oracle-compatible mode, M-compatible mode, and MySQL-
compatible mode, see Oracle Compatibility Description, M-compatible Mode,
and MySQL-compatible Mode. You can select a proper compatibility mode based
on actual requirements.

GaussDB
Compatibility(Distributed) 1 GaussDB Compatibility Overview

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

2 Oracle Compatibility Description

2.1 Overview of Oracle Database Compatibility
GaussDB is generally compatible with Oracle Database in terms of basic functions
(such as data types, SQL statements, and database objects) and PL/SQL. However,
due to architecture design differences, there are still some incompatible items.

This chapter compares the Oracle-compatible mode in GaussDB 505.2.1 with
Oracle Database 19c.

2.2 Basic SQL Elements

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

2.2.1 Data Types

Table 2-1 Numeric types

No. Oracle
Database

GaussDB Difference

1 NUMBER
[(p [,
s])]

Supported,
with
differences
.

The precision and usage are different.
● When NUMBER contains parameters,

the maximum boundary values of
precision p and scale s in GaussDB are
greater than those in Oracle Database.

● In GaussDB, the default value of p when
NUMBER does not contain parameters
is much greater than the maximum
boundary value when NUMBER contains
parameters. However, in Oracle
Database, the former is equal to the
latter.

● In GaussDB, the value of s cannot be
negative. In Oracle Database, a negative
s value is accurate to an integer.

2 FLOAT
[(p)]

Supported. -

3 BINARY_FLO
AT

Not
supported.

-

4 BINARY_DO
UBLE

Supported. -

Table 2-2 Date and time types

No. Oracle Database GaussDB Difference

1 DATE Supported,
with
differences.

The precision is different.
GaussDB supports a wider time
range than Oracle Database.

2 TIMESTAMP
[(fractional_seconds
_precision)]

Supported,
with
differences.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

No. Oracle Database GaussDB Difference

3 TIMESTAMP
[(fractional_seconds
_precision)] WITH
TIME ZONE

Supported,
with
differences.

The timestamptz type of
GaussDB is equivalent to the
timestampwithlocaltimezone
type of Oracle Database. The
type corresponding to
timestamptz of Oracle Database
is missing.
Time zone update: In some
countries or regions, the time
zone information is often
updated. Therefore, the database
system often needs to modify the
time zone file accordingly to
ensure that the time is correct.
Currently, the GaussDB time zone
type involves only timestamp
with timezone. When a new time
zone file takes effect, the existing
data is not changed, and the new
data is adjusted based on the
time zone file information. Data
capabilities of GaussDB are
different from those of Oracle
Database.

4 TIMESTAMP
[(fractional_seconds
_precision)] WITH
LOCAL TIME ZONE

Not
supported.

-

5 INTERVAL YEAR
[(year_precision)]
TO MONTH

Supported. -

6 INTERVAL DAY
[(day_precision)]
TO SECOND
[(fractional_seconds
_precision)]

Supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

NO TE

● In ORA-compatible mode, the DATE type is replaced by TIMESTAMP(0) WITHOUT TIME
ZONE. The differences between DATE and TIMESTAMP(0) WITHOUT TIME ZONE are
the same.

● In terms of TIMESTAMP [(fractional_seconds_precision)] and TIMESTAMP
[(fractional_seconds_precision)] WITH TIME ZONE, the differences between GaussDB
and Oracle Database are as follows:

● The value of fractional_seconds_precision ranges from 0 to 6 in GaussDB, but
ranges from 0 to 9 in Oracle Database.

● GaussDB uses DateStyle to set the display format of date and time values and the
rules of resolving ambiguous values. For details, see "SQL Reference > Data Type >
Date/Time Types" in Developer Guide. Generally, the input format verification and
output display in Oracle Database are controlled by the
NLS_TIMESTAMP_FORMAT and NLS_TIMESTAMP_TZ_FORMAT parameters.

● By default, GaussDB removes zeros from the end of the decimal part of the second.
Oracle Database controls the display of the decimal part based on the setting (FF/
FF1-FF9) of the formatting parameter. For example, '2017-09-01 10:32:19.212000'
is displayed as '2017-09-01 10:32:19.212' in GaussDB. In Oracle Database, it is
displayed as '2017-09-01 10:32:19.212' if the format parameter contains FF, or
'2017-09-01 10:32:19.212000000' if the format parameter contains FF9.

● GaussDB supports a wider time range than Oracle Database.

Table 2-3 Character types

No. Oracle
Database

GaussDB Difference

1 VARCHAR2
(size [BYTE |
CHAR])

Supported,
with
differences.

In GaussDB, the unit of size only supports
BYTE and the option CHAR is not
available. The maximum size is 10 MB. In
Oracle Database, however, the unit of
size can be selected between BYTE and
CHAR. If MAX_STRING_SIZE is set to
EXTENDED, the maximum size is 32767
bytes. If MAX_STRING_SIZE is set to
STANDARD, the maximum size is 4000
bytes. The actual number of characters
that can be contained depends on the
character set in use.

2 NVARCHAR2
(size)

Supported,
with
differences.

In GaussDB, the unit of size is bytes, and
the maximum size is 10 MB. The actual
number of characters that can be
contained depends on the character set
in use.
In Oracle Database, when
MAX_STRING_SIZE is set to EXTENDED,
the maximum length is 32767 bytes.
When MAX_STRING_SIZE is set to
STANDARD, the maximum length is 4000
bytes. The actual number of characters
that can be contained depends on the
character set in use.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

No. Oracle
Database

GaussDB Difference

3 CHAR [(size
[BYTE |
CHAR])]

Supported,
with
differences.

In GaussDB, the unit of size only supports
BYTE and the option CHAR is not
available. The maximum size is 10 MB. In
Oracle Database, however, the unit of
size can be selected between BYTE and
CHAR. The maximum size is 2000 bytes.
The actual number of characters that can
be contained depends on the character
set in use.

4 NCHAR
[(size)]

Supported,
with
differences.

In GaussDB, the unit of size is bytes, and
the maximum size is 10 MB. In Oracle
Database, however, the unit of size is
characters, and the maximum size is
2000 bytes. The actual number of
characters that can be contained depends
on the character set in use.

5 CLOB Supported,
with
differences.

Locators are not supported.

6 NCLOB Not
supported.

-

7 LONG Not
supported.

-

Table 2-4 Binary types

No. Oracle
Database

GaussDB Difference

1 RAW
(size)

Supported,
with
differences.

In GaussDB, size indicates the
recommended byte length and is not used
to verify the byte length of the input raw
type.

2 LONG RAW Not
supported.

-

3 BLOB Supported. -

4 BFILE Not
supported.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

Table 2-5 ROWID types

No. Oracle Database GaussDB

1 ROWID Not supported.

2 UROWID Not supported.

Table 2-6 User-defined types

No. Oracle Database GaussDB

1 Object types Not supported.

2 REF data types Not supported.

3 Variable arrays Supported.

4 Nested tables Supported.

Table 2-7 Pseudo-types

No. Oracle Database GaussDB

1 anytype Not supported.

2 anydata Not supported.

3 anydataset Not supported.

Table 2-8 XML types

No. Oracle
Databas
e

GaussDB Difference

1 XMLType Supported,
with
differences.

GaussDB does not support some operations.
For example, the XMLELEMENT function is
used to convert a character string to the
XML type instead of the XMLType type. For
details, see "SQL Reference > Data Type >
XMLType" in Developer Guide.

2 URIType Not
supported.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

Table 2-9 Spatial types

No. Oracle Database GaussDB

1 SDO_GEOMETRY Not supported.

2 SDO_TOPO_GEOMETRY Not supported.

3 SDO_GEORASTER Not supported.

Table 2-10 Lock modes

No. Oracle Database GaussDB

1 none -

2 null AccessShare

3 RS RowShare

4 RX RowExclusive

5 S ShareUpdateExclusive

6 SRX Share

7 - ShareRowExclusive

8 X Exclusive

9 - AccessExclusive

10 - INVALID
NOTE

INVALID of GaussDB indicates that an
invalid lock is assigned. An invalid lock is
assigned only when a lock that cannot be
identified by GaussDB occurs during system
running.

2.2.2 Data Type Comparison Rules
Data type comparison (collation) rules apply only when values of the same data
type are compared (collated).

Table 2-11 Comparison rules

No. Oracle
Databas
e

GaussDB Difference

1 Numeric
values

Supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

No. Oracle
Databas
e

GaussDB Difference

2 Datetim
e values

Supported. -

3 Binary
values

Supported. -

4 Characte
r values

Supported,
with
differences.

● GaussDB and Oracle Database support
different comparison rules, and the names
of the same comparison rules may be
different.

● GaussDB and Oracle Database differ in
specifying comparison rules. For example,
table-level comparison rules cannot be
specified in GaussDB, but can be specified
in Oracle Database.

● GaussDB and Oracle Database differ in the
syntax for specifying comparison rules. For
example, in GaussDB, the ENCODING,
LC_CTYPE, and LC_COLLATE parameters
are used to specify the character set,
character type, and comparison rules used
during database creation. For details, see
"SQL Reference > SQL Syntax > C >
CREATE DATABASE" in Developer Guide. In
Oracle Database, comparison rules at
different levels are usually specified by a
series of parameters with the NLS prefix.

5 Object
values

Not
supported.

-

6 Varrays
and
nested
tables

Supported,
with
differences.

Both GaussDB and Oracle Database support
the comparison of varrays. Different from
Oracle Database, GaussDB not only supports
the comparison of the number of elements in
two varrays, but also supports the comparison
between varrays of the same type.

7 Data
type
preceden
ce

Supported. -

8 Explicit/
Implicit
data
conversi
on

Supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

2.2.3 Literals

Table 2-12 Literals

No. Oracle Database GaussDB

1 Text literals Supported.

2 Numeric literals Supported.

3 Datetime literals Supported.

4 Interval literals Supported.

2.2.4 Format Models

Table 2-13 Formats

No. Oracle
Database

GaussDB Difference

1 Number
formats

Supported,
with
differences.

GaussDB supports the $, C, TM, TM9, TME,
and U formats only when
a_format_version is set to 10c and
a_format_dev_version is set to s1. In
addition, this parameter does not support
the TH, PL, or SG format.
For details about GaussDB, see Table
Formats for the number type in "SQL
Reference > Functions and Operators >
Type Conversion Functions" in Developer
Guide.

2 Datetime
formats

Supported,
with
differences.

GaussDB: Parameters used for time
truncation and rounding are valid only
when a_format_version is set to 10c and
a_format_dev_version is set to s1.
For details about GaussDB support, see
formats for formatting date and time in
"SQL References > Functions and Operators
> Date and Time Processing Functions and
Operators" in Developer Guide.

3 Format
model
modifiers

Supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

No. Oracle
Database

GaussDB Difference

4 String-to-
date
conversion
rules

Supported,
with
differences.

GaussDB: The to_timestamp_tz function is
valid only when a_format_version is set to
10c and a_format_dev_version is set to s1.
For details about GaussDB, see to_date,
to_timestamp, and to_timestamp_tz in
"SQL Reference > Functions and Operators
> Type Conversion Functions" in Developer
Guide.

5 XML
format
models

Not
supported.

-

2.2.5 Nulls

Table 2-14 Nulls

No. Oracle Database GaussDB

1 IS NULL and IS NOT NULL Supported.

2 NULLS in conditions Supported.

2.2.6 Comments

Table 2-15 Comments

No. Oracle
Database

GaussDB Difference

1 A slash and an
asterisk (/*)

Supported. -

2 Two hyphens (--) Supported. -

3 COMMENT
command

Supported. -

4 HINT Supported, with
differences.

GaussDB does not support the
'--+' hint format.
For details, see "SQL
Optimization > Hint-based
Tuning" in Developer Guide.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

2.2.7 Database Objects

Table 2-16 Schema objects

No. Oracle
Database

GaussDB Difference

1 Analytic
views

Not
supported.

-

2 Attribute
dimensions

Not
supported.

-

3 Clusters Supported
.

-

4 Constraints Supported
.

-

5 Database
links

Supported
.

-

6 Database
triggers

Supported
.

-

7 Dimension
s

Supported
.

-

8 External
procedure
libraries

Not
supported.

-

9 Hierarchies Not
supported.

-

10 Index-
organized
tables

Not
supported.

-

11 Indexes Supported
.

-

12 Index types Not
supported.

-

13 Java
classes

Not
supported.

-

14 Java
resources

Not
supported.

-

15 Java source
code

Not
supported.

-

16 Join groups Not
supported.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

No. Oracle
Database

GaussDB Difference

17 Materialize
d views

Supported
.

-

18 Materialize
d view logs

Not
supported.

-

19 Mining
models

Not
supported.

-

20 Object
tables

Not
supported.

-

21 Object
types

Not
supported.

-

22 Object
views

Not
supported.

-

23 Operators Supported
.

-

24 Packages Supported
.

-

25 Sequences Supported
.

-

26 Storage
functions

Supported
.

-

27 Stored
procedures

Supported
.

-

28 Synonyms Supported
, with
difference
s.

The names of Oracle Database objects in
the same namespace must be unique. In
GaussDB, the name of a synonym can be
the same as that of a table, view, function,
or package in the same namespace. In this
case, GaussDB preferentially accesses the
table, view, function, or package object with
the same name. If no such object is found,
GaussDB searches for the synonym object.
In addition, the PUBLIC synonym is searched
only when the schema name of the object
to which the synonym points is a username.
For details about the search sequence, see
"SQL Reference > SQL Syntax > C > CREATE
SYNONYM" in Developer Guide.

29 Tables Supported
.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

No. Oracle
Database

GaussDB Difference

30 Views Supported
.

-

31 Zone map Not
supported.

-

Table 2-17 Non-schema objects

No. Oracle Database GaussDB

1 Contexts Not supported.

2 Directories Supported.

3 Editions Not supported.

4 Flashback archives Not supported.

5 Lockdown profiles Not supported.

6 Profiles Not supported.

7 Restore points Supported.

8 Roles Supported.

9 Rollback segments ● Ustore supports rollback segments.
● Astore does not support rollback

segments.

10 Tablespaces Supported.

11 Tablespace sets Not supported.

12 Unified audit policies Supported.

13 Users Supported.

2.2.8 Database Object Names and Qualifiers

Table 2-18 Naming rules

No. Oracle
Database

GaussDB Difference

1 Database
object
naming rules

Supported,
with
differences.

GaussDB uses lowercase letters by
default.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

No. Oracle
Database

GaussDB Difference

2 Schema
object
naming rules

Supported. -

2.2.9 Syntax for Schema Objects and Parts in SQL Statements

Table 2-19 Object reference

No. Oracle Database GaussDB

1 General syntax for
referencing an object

Supported.

2 Resolving a reference to an
object

Supported.

3 Referencing objects in other
schemas

Supported.

4 Referencing objects in remote
databases

Supported.

5 Referencing partitions and
subpartitions of tables and
indexes

Supported.

2.3 Pseudocolumns
GaussDB is compatible with sequence and rownum pseudocolumns. Other
pseudocolumns are not supported.

Hierarchical Query Pseudocolumns

Table 2-20 Hierarchical query pseudocolumns

No. Oracle Database GaussDB

1 connect_by_iscycle Supported.

2 connect_by_isleaf Supported.

3 LEVEL pseudocolumn Supported.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

Sequence Pseudocolumns

Table 2-21 Sequences

No. Oracle
Database

GaussDB Difference

1 currval Supported,
with
differences.

It is implemented as a function in
GaussDB. The call mode is compatible
with Oracle Database.

2 nextval Supported,
with
differences.

It is implemented as a function in
GaussDB. The call mode is compatible
with Oracle Database.

ROWNUM Pseudocolumn

Table 2-22 rownum

No. Oracle
Database

GaussDB Difference

1 rownum Supported,
with
differences.

When Oracle Database uses rownum in the
left, right, and full join conditions for
filtering, the performance varies according
to the conditions. The rownum condition
may be ignored or partially ignored.
However, GaussDB filters the results after
left, right, and full join.

XMLDATA Pseudocolumn

Table 2-23 xmldata

No. Oracle Database GaussDB

1 xmldata Not supported.

2.4 Operators
GaussDB is compatible with operators except hierarchical query.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

SQL Operators

Table 2-24 SQL operators

No. Oracle Database GaussDB

1 Unary and binary
operators

Supported.

2 Operator precedence Supported.

Arithmetic Operators

Table 2-25 Arithmetic operators

No. Oracle Database GaussDB

1 Unary operators: positive
(+) and negative (–).

Supported.

2 Binary operators: addition
(+) and subtraction (–).

Supported.

3 Binary operators:
multiplication (*) and
division (/).

Supported.

COLLATE Operator

Table 2-26 COLLATE operator

No. Oracle Database GaussDB

1 COLLATE collation_name Supported.

Connection Operators

Table 2-27 Connection operators

No. Oracle Database GaussDB

1 || Supported.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

Hierarchical Query Operators

Table 2-28 Hierarchical query operators

No. Oracle
Database

GaussDB Difference

1 prior Supported,
with
differences.

GaussDB: Only ordinary columns can be
called. Functions cannot be called.

2 connect_by
_root

Supported,
with
differences.

GaussDB: When connect_by_root is
called, if parentheses are used to modify
the operation value, the behavior is the
same as that of Oracle Database. If
parentheses are not used, this operator
can be called only for ordinary columns.

Set Operators

Table 2-29 Set operators

No. Oracle Database GaussDB

1 union Supported.

2 union all Supported.

3 intersect Supported.

4 minus Supported.

Multiset Operators

Table 2-30 Multiset operators

No. Oracle Database GaussDB

1 multiset except Supported.

2 multiset intersect Supported.

3 multiset union Supported.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

User-defined Operators

Table 2-31 User-defined operators

No. Oracle
Database

GaussDB Difference

1 CREATE
OPERATOR

Supported. ● Oracle Database provides
CONTEXT_CLAUSE to define
functional estimator functions,
which is different from the
restriction selectivity estimator
function in GaussDB. GaussDB does
not support user-defined functional
estimator functions.

● Optional parameters in GaussDB
differ greatly from those in Oracle
Database. For details, see the
GaussDB parameter description in
"SQL Reference > SQL Syntax > C >
CREATE OPERATOR" in Developer
Guide.

Comparison Operators

No. Oracle Database GaussDB

1 < = Supported.

2 < > Supported.

3 > = Supported.

4 ^ = Supported.

5 ! = Not supported. For !=, if there is a space
between an exclamation mark (!) and an
equal sign (=), the exclamation mark will
be identified as factorial.

For comparison operators <=, <>, >=, and ^=, if there is a space between two
symbols, it does not affect normal operations. For !=, if there is a space between
an exclamation mark (!) and an equal sign (=), the exclamation mark will be
identified as factorial, which may cause the result to be inconsistent with the
expected result.

2.5 Expressions
GaussDB is compatible with most database expressions.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

Table 2-32 Expressions

No. Oracle
Database

GaussDB Difference

1 Simple
expressions

Supported. -

2 Analytic view
expressions

Not
supported.

-

3 Compound
expressions

Supported. -

4 CASE
expressions

Supported. -

5 Column
expressions

Supported. -

6 CURSOR
expressions

Not
supported.

-

7 Datetime
expressions

Supported,
with
differences.

GaussDB command output does not
contain time zone information, but
Oracle Database contains time zone
information similar to "PM
AMERICA/LOS_ANGELES."

8 Function
expressions

Supported. -

9 Interval
expressions

Partially
supported.

GaussDB supports statements in
the format of "SELECT INTERVAL
'999999999 23:59:59.999' day(9) to
second FROM DUAL;" but does not
support statements in the format of
"SELECT(SYSDATE-SYSDATE) DAY
TO SECOND FROM DUAL;". They
are supported in Oracle Database.

10 JSON object
access
expressions

Partially
supported,
with
differences.

● GaussDB can extract values from
JSON objects in "->'key'" mode,
while Oracle Database can
extract values in ".key" mode.

● For JSONARRY objects, Oracle
Database can extract values
corresponding to all keys at a
time in ".key" mode. However,
GaussDB does not support this
function.

11 Model
expressions

Not
supported.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

No. Oracle
Database

GaussDB Difference

12 Object
expressions

Not
supported.

-

13 Placeholder
expressions

Partially
supported.

GaussDB supports general
placeholder expressions such as
":var", but does not support the
combination of two general
placeholder expressions using the
INDICATOR keyword.

14 Scalar subquery
expressions

Supported. -

15 Type
constructor
expressions

Partially
supported.

GaussDB cannot specify the NEW
keyword before the type
constructor, but Oracle Database
can.

16 Expression lists Supported. -

2.6 Conditions
This chapter describes common compatible conditions. The conditions include
comparison, floating-point, logical, model, multiset, pattern matching, NULL
value, XML, SQL/JSON, composite, BETWEEN, EXISTS, IN, and IS OF TYPE, as
shown in Table 2-33.

Table 2-33 Conditions

No. Oracle
Database

GaussDB Difference

1 Comparison
conditions

Supported,
with
differences.

Differences exist when statements
contain the ANY, SOME, and ALL
operators. Oracle Database supports
operations on list objects, but GaussDB
needs to convert list objects into array
expressions before performing
operations.

2 Floating-
point
conditions

Not
supported.

-

3 Logical
conditions

Supported. -

4 Model
conditions

Not
supported.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

No. Oracle
Database

GaussDB Difference

5 Multiset
conditions

Not
supported.

-

6 Pattern-
matching
conditions

Supported. -

7 NULL
conditions

Supported. -

8 XML
conditions

Not
supported.

-

9 SQL/JSON
conditions

Partially
supported,
with
differences.

● GaussDB does not support the IS
JSON and JSON_TEXTCONTAINS
conditions.

● The JSONB_EQ condition in GaussDB
is the same as the JSON_EQUAL
condition in Oracle Database.
However, GaussDB does not support
the ERROR clause.

● The JSONB_EXISTS condition in
GaussDB is the same as the
JSON_EXISTS condition in Oracle
Database. However, GaussDB does
not support the ERROR, EMPTY, or
PASSING clauses.

10 Compound
conditions

Supported. -

11 BETWEEN
condition

Supported. -

12 EXISTS
condition

Supported. -

13 IN condition Supported. -

14 IS OF TYPE
condition

Not
supported.

-

2.7 Drivers

2.7.1 JDBC

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

2.7.1.1 Array
This section describes the differences between Oracle Database and GaussDB
when the JDBC driver of the java.sql.Array type is used.

Table 2-34 Constructor reference

Constructor Oracle Database GaussDB API Difference

1. Use the
static
constructor of
ArrayDescript
or to
construct an
ArrayDescript
or object.
2. Use
ArrayDescript
or to
construct an
array object.

String typeName =
"XXX";
Connection conn =
getConnection();
Object[] elements
= null;
ArrayDescriptor
desc =
ArrayDescriptor.cre
ateDescriptor(type
Name, conn);
Array array = new
ARRAY(desc, conn,
elements);

String typeName
= "xxx";
Connection conn =
getConnection();
Object[] elements
= null;
ArrayDescriptor
desc =
ArrayDescriptor.ge
tDescriptor(typeN
ame, conn);
Array array = new
GaussArray(desc,
elements);

● Different names
of the static
constructor for
ArrayDescriptor:
In Oracle
Database, it is
createDescriptor,
while in GaussDB
it is getDescriptor.

● Different
constructor
names for arrays:
In Oracle
Database, it is
ARRAY(ArrayDesc
riptor, Connection,
Object), while in
GaussDB, it is
GaussArray(Array
Descriptor,
Object).

● Variable
description:
typeName
indicates the type
name and is case-
sensitive.
Generally, it uses
uppercase in
Oracle Database,
while in GaussDB
it is lowercase.
conn indicates the
connection object
for the
corresponding
database.
elements
indicates the
element data of
the corresponding
type.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

NO TE

1. GaussDB currently does not support the constructors not listed in the aforementioned
table.

2. If the element type is a character type and the length of the construction input string
exceeds that defined by the element type, Oracle Database reports an error during input
parameter binding.
If the array type is the varray type and the number of elements exceeds the maximum
length of varray, Oracle Database reports an error during input parameter binding.
GaussDB does not verify type modifiers when constructing or binding input parameters.
When a database receives array objects and executes SQL statements, it decides
whether to report an error.

Table 2-35 API reference

Method Return Value
Type

Throws GaussDB

getBaseTypeNam
e()

String SQLException Supported.

getBaseType() int SQLException Supported.

getArray() Object SQLException Supported.

getArray(java.util.
Map<String,Class<
?>> map)

Object SQLException Not supported.

getArray(long
index, int count)

Object SQLException Supported.

getArray(long
index, int count,
java.util.Map<Stri
ng,Class<?>>
map)

Object SQLException Not supported.

getResultSet() ResultSet SQLException Not supported.

getResultSet(java.
util.Map<String,Cl
ass<?>> map)

ResultSet SQLException Not supported.

getResultSet(long
index, int count)

ResultSet SQLException Not supported.

getResultSet (long
index, int count,
java.util.Map<Stri
ng,Class<?>>
map)

ResultSet SQLException Not supported.

free() void SQLException Not supported.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

Table 2-36 Differences in the getArray() API

Element
Database Type

Actual Return Value
Type of the getArray
API (Oracle Database)

Actual Return Value Type of
the getArray API (GaussDB)

CHAR java.lang.String[] java.lang.String[]

VARCHAR/
VARCHAR2

java.lang.String[] java.lang.String[]

NCHAR java.lang.String[] java.lang.String[]

NVARCHAR2 java.lang.String[] java.lang.String[]

NUMBER java.math.BigDecimal[] java.math.BigDecimal[]

NUMERIC java.math.BigDecimal[] java.math.BigDecimal[]

DECIMAL java.math.BigDecimal[] java.math.BigDecimal[]

INTEGER java.math.BigDecimal[] java.lang.Integer[]

SMALLINT java.math.BigDecimal[] java.lang.Short[]

DOUBLE
PRECISION

java.math.BigDecimal[] java.lang.Double[]

FLOAT java.math.BigDecimal[] java.lang.Double[]

REAL java.math.BigDecimal[] java.lang.Float[]

BINARY_DOUBLE java.lang.Double[] java.lang.Double[]

BINARY_INTEGER java.math.BigDecimal[] java.lang.Integer[]

BOOLEAN java.math.BigDecimal[] java.lang.Boolean[]

TIMESTAMP java.sql.Timestamp[] java.sql.Timestamp[]

TIMESTAMP WITH
TIME ZONE

java.time.OffsetDateTim
e[]

java.sql.Timestamp[]

BLOB oracle.sql.BLOB[] java.sql.Blob[]

CLOB oracle.sql.CLOB[] java.sql.Clob[]

Set/Array java.lang.Object[] java.sql.Array[]

RECORD java.lang.Object[] java.sql.Struct[]

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

NO TE

1. GaussDB currently does not support the types unlisted in the aforementioned table.

2. For details about the differences in the return values of the getArray(long index, int
count) API, see the preceding table.

3. The differences in index parameter of getArray(long index, int count) are as follows:

● The value range supported by Oracle Database is [1, Long.MAX_VALUE]. GaussDB
supports a range of [1, Integer.MAX_VALUE].

● If the index value is greater than that of Integer.MAX_VALUE, it will be truncated
in Oracle Database, while an error is reported in GaussDB.

Table 2-37 Differences in the getBaseType() API

Element
Database Type

Return Value of the
getBaseType API
(Oracle Database)

Return Value of the
getBaseType API (GaussDB)

CHAR java.sql.Types.CHAR java.sql.Types.CHAR

VARCHAR/
VARCHAR2

java.sql.Types.VARCHAR java.sql.Types.VARCHAR

NCHAR java.sql.Types.NCHAR java.sql.Types.CHAR

NVARCHAR2 java.sql.Types.NVARCHA
R

java.sql.Types.VARCHAR

NUMBER java.sql.Types.NUMERIC java.sql.Types.NUMERIC

NUMERIC java.sql.Types.DECIMAL java.sql.Types.NUMERIC

DECIMAL java.sql.Types.DECIMAL java.sql.Types.NUMERIC

INTEGER java.sql.Types.NUMERIC java.sql.Types.INTEGER

SMALLINT java.sql.Types.NUMERIC java.sql.Types.SMALLINT

DOUBLE
PRECISION

java.sql.Types.FLOAT java.sql.Types.DOUBLE

FLOAT java.sql.Types.FLOAT java.sql.Types.DOUBLE

REAL java.sql.Types.FLOAT java.sql.Types.REAL

BINARY_DOUBLE oracle.jdbc.OracleTypes.B
INARY_DOUBLE

java.sql.Types.DOUBLE

BINARY_INTEGER java.sql.Types.NUMERIC java.sql.Types.INTEGER

BOOLEAN java.sql.Types.NUMERIC java.sql.Types.BIT

TIMESTAMP java.sql.Types.TIMESTAM
P

java.sql.Types.TIMESTAMP

TIMESTAMP WITH
TIME ZONE

oracle.jdbc.OracleTypes.T
IMESTAMPTZ

java.sql.Types.TIMESTAMP

BLOB java.sql.Types.BLOB java.sql.Types.BLOB

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

Element
Database Type

Return Value of the
getBaseType API
(Oracle Database)

Return Value of the
getBaseType API (GaussDB)

CLOB java.sql.Types.CLOB java.sql.Types.CLOB

Set/Array java.sql.Types.ARRAY java.sql.Types.ARRAY

RECORD java.sql.Types.STRUCT java.sql.Types.STRUCT

NO TE

GaussDB currently does not support the types unlisted in the aforementioned table.

Table 2-38 Differences in the getBaseTypeName() API

Element
Database Type

Return Value of the
getBaseTypeName API
(Oracle Database)

Return Value of the
getBaseTypeName API
(GaussDB)

CHAR "CHAR" "bpchar"

VARCHAR/
VARCHAR2

"VARCHAR" "varchar"

NCHAR "NCHAR" "bpchar"

NVARCHAR2 "NVARCHAR" "nvarchar2"

NUMBER "NUMBER" "numeric"

NUMERIC "DECIMAL" "numeric"

DECIMAL "DECIMAL" "numeric"

INTEGER "NUMBER" "int4"

SMALLINT "NUMBER" "int2"

DOUBLE
PRECISION

"FLOAT" "float8"

FLOAT "FLOAT" "float8"

REAL "FLOAT" "float4"

BINARY_DOUBLE "BINARY_DOUBLE" "float8"

BINARY_INTEGER "NUMBER" "int4"

BOOLEAN "NUMBER" "bool"

TIMESTAMP "TIMESTAMP" "timestamp"

TIMESTAMP WITH
TIME ZONE

"TIMESTAMP WITH
TIME ZONE"

"timestamptz"

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

Element
Database Type

Return Value of the
getBaseTypeName API
(Oracle Database)

Return Value of the
getBaseTypeName API
(GaussDB)

BLOB "BLOB" "blob"

CLOB "CLOB" "clob"

Set/Array See the description
below.

See the description below.

RECORD See the description
below.

See the description below.

NO TE

1. GaussDB currently does not support the types unlisted in the aforementioned table.
2. When an element is of the set, array, or RECORD type that is defined within a package,

the return rules for getBaseTypeName are as follows:
● OJDBC11 returns schemaName.packageName.typeName.
● OJDBC8 generally returns schemaName.packageName.typeName, or returns

"schemaName"."packageName.typeName" in the following condition:
Any of schemaName, packageName, or typeName does not meet the rule of
starting with a letter followed by characters including letters, digits, or underscores.

● GaussDB generally returns schemaName.packageName.typeName, or returns
"schemaName"."packageName"."typeName" in the following condition:
Any of schemaName, packageName, or typeName does not meet the rule of
starting with a letter or underscore followed by characters including letters, digits,
or underscores.

3. When an element is of the set, array, or RECORD type that is defined in the schema (but
not in the package), the return rules for getBaseTypeName are as follows:
● OJDBC11 returns schemaName.typeName.
● OJDBC8 generally returns schemaName.typeName, or returns

"schemaName"."typeName" in the following condition:
Any of schemaName or typeName does not meet the rule of starting with a letter
followed by characters including letters, digits, or underscores.

● GaussDB generally returns schemaName.typeName, or returns
"schemaName"."typeName" in the following condition:
Any of schemaName or typeName does not meet the rule of starting with a letter
or underscore followed by characters including letters, digits, or underscores.

4. If no special processing is performed during element type creation, the
getBaseTypeName API typically returns the type name in uppercase in Oracle Database,
while returns the type name in lowercase in GaussDB.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

Table 2-39 Differences in array construction APIs

Element
Database
Type

List of Java Types
Supported by
Element Input
Parameters
(Oracle Database
OJDBC8)

List of Java Types
Supported by
Element Input
Parameters
(GaussDB)

Difference

CHAR Any Java type Byte, Short, Integer,
Long, BigInteger,
BigDecimal, Float,
Double, Character,
Boolean,
java.sql.Date,
java.sql.Time,
java.sql.Timestamp,
and PGClob

The different types
supported by element
input parameters can
be seen in the table.

VARCHAR/
VARCHAR2

Any Java type Byte, Short, Integer,
Long, BigInteger,
BigDecimal, Float,
Double, Character,
Boolean,
java.sql.Date,
java.sql.Time,
java.sql.Timestamp,
and PGClob

The different types
supported by element
input parameters can
be seen in the table.

NCHAR Any Java type Byte, Short, Integer,
Long, BigInteger,
BigDecimal, Float,
Double, Character,
Boolean,
java.sql.Date,
java.sql.Time,
java.sql.Timestamp,
and PGClob

The different types
supported by element
input parameters can
be seen in the table.

NVARCHA
R2

Any Java type Byte, Short, Integer,
Long, BigInteger,
BigDecimal, Float,
Double, Character,
Boolean,
java.sql.Date,
java.sql.Time,
java.sql.Timestamp,
and PGClob

The different types
supported by element
input parameters can
be seen in the table.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

Element
Database
Type

List of Java Types
Supported by
Element Input
Parameters
(Oracle Database
OJDBC8)

List of Java Types
Supported by
Element Input
Parameters
(GaussDB)

Difference

NUMBER Byte, Short, Integer,
Long, Float,
Double, Boolean,
BigDecimal,
BigInteger, String,
and
oracle.sql.NUMBER

Byte, Short, Integer,
Long, Float, Double,
Boolean,
BigDecimal,
BigInteger, and
String

1. The different types
supported by
element input
parameters can be
seen in the table.

2. When the input
parameter is of
the Float, Double,
BigDecimal, or
String type and
the decimal part is
0, Oracle Database
truncates the
decimal part, while
GaussDB retains it.

NUMERIC Byte, Short, Integer,
Long, Float,
Double, Boolean,
BigDecimal,
BigInteger, String,
and
oracle.sql.NUMBER

Byte, Short, Integer,
Long, Float, Double,
Boolean,
BigDecimal,
BigInteger, and
String

1. The different types
supported by
element input
parameters can be
seen in the table.

2. When the input
parameter is of
the Float, Double,
BigDecimal, or
String type and
the decimal part is
0, Oracle Database
truncates the
decimal part, while
GaussDB retains it.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

Element
Database
Type

List of Java Types
Supported by
Element Input
Parameters
(Oracle Database
OJDBC8)

List of Java Types
Supported by
Element Input
Parameters
(GaussDB)

Difference

DECIMAL Byte, Short, Integer,
Long, Float,
Double, Boolean,
BigDecimal,
BigInteger, String,
and
oracle.sql.NUMBER

Byte, Short, Integer,
Long, Float, Double,
Boolean,
BigDecimal,
BigInteger, and
String

1. The different types
supported by
element input
parameters can be
seen in the table.

2. When the input
parameter is of
the Float, Double,
BigDecimal, or
String type and
the decimal part is
0, Oracle Database
truncates the
decimal part, while
GaussDB retains it.

INTEGER Byte, Short, Integer,
Long, Float,
Double, Boolean,
BigDecimal,
BigInteger, String,
and
oracle.sql.NUMBER

Byte, Short, Integer,
Long, Float, Double,
Boolean,
BigDecimal,
BigInteger, and
String

1. The different types
supported by
element input
parameters can be
seen in the table.

2. The target types
are inconsistent.
For details, see
differences in the
getArray() API.

3. When the input
parameter value
exceeds the
integer range,
GaussDB reports
an error.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Element
Database
Type

List of Java Types
Supported by
Element Input
Parameters
(Oracle Database
OJDBC8)

List of Java Types
Supported by
Element Input
Parameters
(GaussDB)

Difference

SMALLINT Byte, Short, Integer,
Long, Float,
Double, Boolean,
BigDecimal,
BigInteger, String,
and
oracle.sql.NUMBER

Byte, Short, Integer,
Long, Float, Double,
Boolean,
BigDecimal,
BigInteger, and
String

1. The different types
supported by
element input
parameters can be
seen in the table.

2. The target types
are inconsistent.
For details, see
differences in the
getArray() API.

3. When the input
parameter exceeds
the Short range,
GaussDB reports
an error.

DOUBLE
PRECISION

Byte, Short, Integer,
Long, Float,
Double, Boolean,
BigDecimal,
BigInteger, String,
and
oracle.sql.NUMBER

Byte, Short, Integer,
Long, Float, Double,
Boolean,
BigDecimal,
BigInteger, and
String

1. The different types
supported by
element input
parameters can be
seen in the table.

2. The target types
are inconsistent.
For details, see
differences in the
getArray() API.

3. Converting a
higher-precision
type to Double
may result in
precision loss.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

Element
Database
Type

List of Java Types
Supported by
Element Input
Parameters
(Oracle Database
OJDBC8)

List of Java Types
Supported by
Element Input
Parameters
(GaussDB)

Difference

FLOAT Byte, Short, Integer,
Long, Float,
Double, Boolean,
BigDecimal,
BigInteger, String,
and
oracle.sql.NUMBER

Byte, Short, Integer,
Long, Float, Double,
Boolean,
BigDecimal,
BigInteger, and
String

1. The different types
supported by
element input
parameters can be
seen in the table.

2. The target types
are inconsistent.
For details, see
differences in the
getArray() API.

3. Converting a
higher-precision
type to Double
may result in
precision loss.

REAL Byte, Short, Integer,
Long, Float,
Double, Boolean,
BigDecimal,
BigInteger, String,
and
oracle.sql.NUMBER

Byte, Short, Integer,
Long, Float, Double,
Boolean,
BigDecimal,
BigInteger, and
String

1. The different types
supported by
element input
parameters can be
seen in the table.

2. The target types
are inconsistent.
For details, see
differences in the
getArray() API.

3. Converting a
higher-precision
type to Float may
result in precision
loss.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

Element
Database
Type

List of Java Types
Supported by
Element Input
Parameters
(Oracle Database
OJDBC8)

List of Java Types
Supported by
Element Input
Parameters
(GaussDB)

Difference

BINARY_D
OUBLE

Double and
oracle.sql.BINARY_
DOUBLE

Byte, Short, Integer,
Long, Float, Double,
Boolean,
BigDecimal,
BigInteger, and
String

1. The different types
supported by
element input
parameters can be
seen in the table.

2. The target types
are inconsistent.
For details, see
differences in the
getArray() API.

3. Converting a
higher-precision
type to Double
may result in
precision loss.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

Element
Database
Type

List of Java Types
Supported by
Element Input
Parameters
(Oracle Database
OJDBC8)

List of Java Types
Supported by
Element Input
Parameters
(GaussDB)

Difference

BINARY_IN
TEGER

Byte, Short, Integer,
Long, Float,
Double, Boolean,
BigDecimal,
BigInteger,
AtomicInteger,
AutomicLong,
DoubleAccumulator
, DoubleAddr,
LongAccumulator,
LondAdder,
Striped64, String,
and
oracle.sql.NUMBER

Byte, Short, Integer,
Long, Float, Double,
Boolean,
BigDecimal,
BigInteger, and
String

1. The different types
supported by
element input
parameters can be
seen in the table.

2. The input
parameters of the
OJDBC11 element
support the
following types:
Byte, Short,
Integer, Long,
Float, Double,
Boolean,
BigDecimal,
BigInteger, String,
and
oracle.sql.NUMBER
.

3. The target types
are inconsistent.
For details, see
differences in the
getArray() API.

4. When the input
value exceeds the
Integer range,
GaussDB reports
an error.
Oracle Database
OJDBC8 performs
data truncation.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

Element
Database
Type

List of Java Types
Supported by
Element Input
Parameters
(Oracle Database
OJDBC8)

List of Java Types
Supported by
Element Input
Parameters
(GaussDB)

Difference

BOOLEAN Byte, Short, Integer,
Long, Float,
Double, Boolean,
BigDecimal,
BigInteger,
AtomicInteger,
AutomicLong,
DoubleAccumulator
, DoubleAddr,
LongAccumulator,
LondAdder,
Striped64, String,
and
oracle.sql.NUMBER

Byte, Short, Integer,
Long, Float, Double,
Boolean,
BigDecimal,
BigInteger, and
String

1. The different types
supported by
element input
parameters can be
seen in the table.

2. The input
parameters of the
OJDBC8 element
support the
following types:
Byte, Short,
Integer, Long,
Float, Double,
Boolean,
BigDecimal,
BigInteger, String,
and
oracle.sql.NUMBER
.

3. The target types
are inconsistent.
For details, see
differences in the
getArray() API.

4. In GaussDB, the
target data type is
Boolean, which
only supports
inputs of 1, 0,
"true", and
"false".

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

Element
Database
Type

List of Java Types
Supported by
Element Input
Parameters
(Oracle Database
OJDBC8)

List of Java Types
Supported by
Element Input
Parameters
(GaussDB)

Difference

TIMESTAM
P

byte[],
java.sql.Date,
Calendar,
java.util.Date,
LocalDate,
LocalDateTime,
LocalTime,
OffsetDateTime,
OffsetTime, String,
java.sql.Time,
java.sql.Timestamp,
oracle.sql.DATE,
oracle.sql.TIMESTA
MP,
oracle.sql.TIMESTA
MPTZ,
oracle.sql.TIMESTA
MPLTZ, and
ZonedDateTime

java.util.Date,
java.sql.Date,
java.sql.Time,
java.sql.Timestamp,
LocalDateTime, and
String

The different types
supported by element
input parameters can
be seen in the table.

TIMESTAM
P WITH
TIME
ZONE

java.sql.Date,
Calendar,
java.util.Date,
LocalDate,
LocalDateTime,
LocalTime,
OffsetDateTime,
OffsetTime, String,
java.sql.Time,
java.sql.Timestamp,
oracle.sql.DATE,
oracle.sql.TIMESTA
MP,
oracle.sql.TIMESTA
MPTZ,
oracle.sql.TIMESTA
MPLTZ, and
ZonedDateTime

java.util.Date,
java.sql.Date,
java.sql.Time,
java.sql.Timestamp,
LocalDateTime, and
String

1. The different types
supported by
element input
parameters can be
seen in the table.

2. The target types
are inconsistent.
For details, see
differences in the
getArray() API.

BLOB oracle.sql.BLOB and
oracle.jdbc.driver.Or
acleBlob

PGBlob The different types
supported by element
input parameters can
be seen in the table.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

Element
Database
Type

List of Java Types
Supported by
Element Input
Parameters
(Oracle Database
OJDBC8)

List of Java Types
Supported by
Element Input
Parameters
(GaussDB)

Difference

CLOB oracle.sql.CLOB,
oracle.jdbc.driver.Or
acleClob,
InputStream, and
Reader

PGClob The different types
supported by element
input parameters can
be seen in the table.

Set/Array Array and Object GaussArray and
Object

1. The different types
supported by
element input
parameters can be
seen in the table.

2. Oracle Database:
No error is
reported when the
input parameter is
of the Array type
even if the Array
type differs from
the element type.
GaussDB: An error
is reported when
the input
parameter is of
the GaussArray
type that differs
from the element
type.

3. When the input
parameter of an
element is of the
Object type, refer
to the differences
in array
construction APIs.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

Element
Database
Type

List of Java Types
Supported by
Element Input
Parameters
(Oracle Database
OJDBC8)

List of Java Types
Supported by
Element Input
Parameters
(GaussDB)

Difference

RECORD Struct and Object[] GaussStruct and
Object[]

1. The different types
supported by
element input
parameters can be
seen in the table.

2. Oracle Database:
No error is
reported when the
input parameter is
of the Struct type
even if the Struct
type differs from
the element type.
GaussDB: An error
is reported when
the input
parameter is of
the GaussStruct
type that differs
from the element
type.

3. When the input
parameter of an
element is of the
Object[] type, refer
to the differences
in struct
construction APIs.

NO TE

1. When an array is constructed, if the Java type of the input element does not match the
target type, an implicit conversion operation is performed. For details on the Java types
of input elements supported by various database element types, refer to the preceding
table.

2. GaussDB currently does not support the types unlisted in the aforementioned table.

3. The constructor needs to provide an element array. The preceding table describes the
differences between elements in the array.

2.7.1.2 Struct

This section describes the differences between Oracle Database and GaussDB
when the JDBC driver of the java.sql.Struct type is used.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

Table 2-40 Constructor reference

Constructor Oracle Database GaussDB API Difference

1. Use the
static
constructor of
StructDescript
or to
construct a
StructDescript
or object.
2. Use
StructDescript
or to
construct a
struct object.

String typeName =
"XXX";
Connection conn =
getConnection();
Object[] attributes
= null;
StructDescriptor
desc =
StructDescriptor.cre
ateDescriptor(type
Name, conn);
Struct struct = new
STRUCT(desc,
conn, attributes);

String typeName
= "xxx";
Connection conn =
getConnection();
Object[] elements
= null;
StructDescriptor
desc =
StructDescriptor.g
etDescriptor(type
Name, conn);
Struct struct =
new
GaussStruct(desc,
attributes);

● Different names
of the static
constructor for
StructDescriptor:
In Oracle
Database, it is
createDescriptor,
while in GaussDB
it is getDescriptor.

● Different
constructor
names for structs.
In Oracle
Database, it is
defined as
STRUCT(StructDes
criptor,
Connection,
Object[]), while in
GaussDB, it is
defined as
GaussStruct(Struc
tDescriptor,
Object[]).

● Variable
description:
typeName
indicates the type
name and is case-
sensitive.
Generally, it uses
uppercase in
Oracle Database,
while in GaussDB
it is lowercase.
conn indicates the
connection object
for the
corresponding
database.
attributes
indicates the
element data
array.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

Constructor Oracle Database GaussDB API Difference

Use the
createStruct
standard API
of Connection
to construct a
struct object.

String typeName =
"XXX";
Connection conn =
getConnection();
Object[] attributes
= null;
Struct struct =
conn.createStruct(t
ypeName,
attributes);

String typeName
= "XXX";
Connection conn =
getConnection();
Object[] attributes
= null;
Struct struct =
conn.createStruct(
typeName,
attributes);

● Variable
description:
typeName
indicates the type
name and is case-
sensitive.
Generally, it uses
uppercase in
Oracle Database,
while in GaussDB
it is lowercase.
conn indicates the
connection object
for the
corresponding
database.
attributes
indicates the
element data
array.

NO TE

1. GaussDB currently does not support the constructors not listed in the aforementioned
table.

2. If the attribute type is a character type and the length of the construction input string
exceeds that defined by the element type, Oracle Database reports an error during input
parameter binding.
GaussDB does not verify type modifiers when constructing or binding input parameters.
When a database receives struct objects and executes SQL statements, it decides
whether to report an error.

3. If the number of array elements exceeds the actual number of columns of the
corresponding type, an error is reported during creation.
When the number of array elements is less than the actual number of columns, the
creation of Oracle Database is successful, but an error is reported during parameter
input for execution; GaussDB reports an error during creation.

Table 2-41 API reference

Method Return Value
Type

Throws GaussDB

getSQLTypeNam
e()

String SQLException Supported.

getAttributes() Object[] SQLException Supported.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

Method Return Value
Type

Throws GaussDB

getAttributes(java
.util.Map<String,Cl
ass<?>> map)

Object[] SQLException Not supported.

NO TE

The differences in the getSQLTypeName API are as follows:

1. For the package type, the struct constructed in the packageName.typeName format, the
differences in the getSQLTypeName API are as follows:

● OJDBC11 returns packageName.typeName.

● OJDBC8 generally returns packageName.typeName, or returns
"packageName"."typeName" when packageName and typeName meet the
following condition:

Any of packageName or typeName does not meet the rule of starting with a letter
followed by characters including letters, digits, or underscores.

● GaussDB generally returns schemaName.packageName.typeName, or returns
"schemaName"."packageName"."typeName" when schemaName, packageName,
and typeName meet the following condition:

Any of schemaName, packageName, or typeName does not meet the rule of
starting with a letter or underscore followed by characters including letters, digits,
or underscores.

2. For the package type, the differences in the getSQLTypeName API in other scenarios are
as follows:

● OJDBC11 returns schemaName.packageName.typeName.

● OJDBC8 generally returns schemaName.packageName.typeName, or returns
"schemaName"."packageName.typeName" when schemaName, packageName,
and typeName meet the following condition:

Any of schemaName, packageName, or typeName does not meet the rule of
starting with a letter followed by characters including letters, digits, or underscores.

● GaussDB generally returns schemaName.packageName.typeName, or returns
"schemaName"."packageName"."typeName" when schemaName, packageName,
and typeName meet the following condition:

Any of schemaName, packageName, or typeName does not meet the rule of
starting with a letter or underscore followed by characters including letters, digits,
or underscores.

3. For the non-package type, the differences in the getSQLTypeName API are as follows:

● OJDBC11 returns schemaName.typeName.

● OJDBC8 generally returns schemaName.typeName, or returns
"schemaName"."typeName" when schemaName and typeName meet the
following condition:

Any of schemaName or typeName does not meet the rule of starting with a letter
followed by characters including letters, digits, or underscores.

● GaussDB generally returns schemaName.typeName, or returns
"schemaName"."typeName" when schemaName and typeName meet the
following condition:

Any of schemaName or typeName does not meet the rule of starting with a letter
or underscore followed by characters including letters, digits, or underscores.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

Table 2-42 Differences in the getAttributes() API

Database
Attribute
Type

Java Type of the
Corresponding
Element in the
Return Value
(Oracle Database
OJDBC8)

Java Type of the
Corresponding
Element in the
Return Value
(Oracle Database
OJDBC11)

Java Type of the
Corresponding
Element in the
Return Value
(GaussDB)

CHAR String String String

VARCHAR/
VARCHAR2

String String String

NCHAR String String String

NVARCHAR2 String String String

NUMBER BigDecimal BigDecimal BigDecimal

NUMERIC BigDecimal BigDecimal BigDecimal

DECIMAL BigDecimal BigDecimal BigDecimal

INTEGER BigDecimal BigDecimal Integer

SMALLINT BigDecimal BigDecimal Short

DOUBLE
PRECISION

BigDecimal BigDecimal Double

FLOAT BigDecimal BigDecimal Double

REAL BigDecimal BigDecimal Float

BINARY_DOU
BLE

Double Double Double

BINARY_INTE
GER

BigDecimal Integer Integer

BOOLEAN BigDecimal Integer Boolean

TIMESTAMP Timestamp Timestamp Timestamp

TIMESTAMP
WITH TIME
ZONE

TIMESTAMPTZ TIMESTAMPTZ Timestamp

BLOB BLOB BLOB PGBlob

CLOB CLOB CLOB PGClob

Set/Array ARRAY ARRAY GaussArray

RECORD STRUCT STRUCT GaussStruct

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

NO TE

GaussDB currently does not support the types unlisted in the aforementioned table.

Table 2-43 Differences in struct construction APIs

Database
Attribute
Type

List of Java Types
Supported by
Attribute Input
Parameters
(Oracle Database)

List of Java Types
Supported by
Attribute Input
Parameters
(GaussDB)

Difference

CHAR Any Java type Byte, Short, Integer,
Long, BigInteger,
BigDecimal, Float,
Double, Character,
Boolean, String,
java.sql.Date,
java.sql.Time,
java.sql.Timestamp,
and PGClob

1. The different types
supported by
attribute input
parameters can be
seen in the table.

2. When the input
parameter is of
the String type,
Oracle Database
adds spaces at the
end of the string
until its length
matches the
length defined by
the type; GaussDB
does not add
spaces.

VARCHAR/
VARCHAR2

Any Java type Byte, Short, Integer,
Long, BigInteger,
BigDecimal, Float,
Double, Character,
Boolean, String,
java.sql.Date,
java.sql.Time,
java.sql.Timestamp,
and PGClob

The different types
supported by
attribute input
parameters can be
seen in the table.

NCHAR Any Java type Byte, Short, Integer,
Long, BigInteger,
BigDecimal, Float,
Double, Character,
Boolean, String,
java.sql.Date,
java.sql.Time,
java.sql.Timestamp,
and PGClob

The different types
supported by
attribute input
parameters can be
seen in the table.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

Database
Attribute
Type

List of Java Types
Supported by
Attribute Input
Parameters
(Oracle Database)

List of Java Types
Supported by
Attribute Input
Parameters
(GaussDB)

Difference

NVARCHA
R2

Any Java type Byte, Short, Integer,
Long, BigInteger,
BigDecimal, Float,
Double, Character,
Boolean, String,
java.sql.Date,
java.sql.Time,
java.sql.Timestamp,
and PGClob

The different types
supported by
attribute input
parameters can be
seen in the table.

NUMBER Byte, Short, Integer,
Long, Float,
Double, Boolean,
BigDecimal,
BigInteger, String,
and
oracle.sql.NUMBER

Byte, Short, Integer,
Long, Float, Double,
Boolean,
BigDecimal,
BigInteger, and
String

1. The different types
supported by
attribute input
parameters can be
seen in the table.

2. When the input
parameter is of
the Float, Double,
BigDecimal, or
String type and
the decimal part is
0, Oracle Database
truncates the
decimal part,
while GaussDB
retains it.

NUMERIC Byte, Short, Integer,
Long, Float,
Double, Boolean,
BigDecimal,
BigInteger, String,
and
oracle.sql.NUMBER

Byte, Short, Integer,
Long, Float, Double,
Boolean,
BigDecimal,
BigInteger, and
String

1. The different types
supported by
attribute input
parameters can be
seen in the table.

2. When the input
parameter is of
the Float, Double,
BigDecimal, or
String type and
the decimal part is
0, Oracle Database
truncates the
decimal part,
while GaussDB
retains it.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

Database
Attribute
Type

List of Java Types
Supported by
Attribute Input
Parameters
(Oracle Database)

List of Java Types
Supported by
Attribute Input
Parameters
(GaussDB)

Difference

DECIMAL Byte, Short, Integer,
Long, Float,
Double, Boolean,
BigDecimal,
BigInteger, String,
and
oracle.sql.NUMBER

Byte, Short, Integer,
Long, Float, Double,
Boolean,
BigDecimal,
BigInteger, and
String

1. The different types
supported by
attribute input
parameters can be
seen in the table.

2. When the input
parameter is of
the Float, Double,
BigDecimal, or
String type and
the decimal part is
0, Oracle Database
truncates the
decimal part,
while GaussDB
retains it.

INTEGER Byte, Short, Integer,
Long, Float,
Double, Boolean,
BigDecimal,
BigInteger, String,
and
oracle.sql.NUMBER

Byte, Short, Integer,
Long, Float, Double,
Boolean,
BigDecimal,
BigInteger, and
String

1. The different types
supported by
attribute input
parameters can be
seen in the table.

2. The target types
are inconsistent.
For details, see
differences in the
getAttributes()
API.

3. When the input
parameter value
exceeds the
integer range,
GaussDB reports
an error.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

Database
Attribute
Type

List of Java Types
Supported by
Attribute Input
Parameters
(Oracle Database)

List of Java Types
Supported by
Attribute Input
Parameters
(GaussDB)

Difference

SMALLINT Byte, Short, Integer,
Long, Float,
Double, Boolean,
BigDecimal,
BigInteger, String,
and
oracle.sql.NUMBER

Byte, Short, Integer,
Long, Float, Double,
Boolean,
BigDecimal,
BigInteger, and
String

1. The different types
supported by
attribute input
parameters can be
seen in the table.

2. The target types
are inconsistent.
For details, see
differences in the
getAttributes()
API.

3. When the input
parameter exceeds
the Short range,
GaussDB reports
an error.

DOUBLE
PRECISION

Byte, Short, Integer,
Long, Float,
Double, Boolean,
BigDecimal,
BigInteger, String,
and
oracle.sql.NUMBER

Byte, Short, Integer,
Long, Float, Double,
Boolean,
BigDecimal,
BigInteger, and
String

1. The different types
supported by
attribute input
parameters can be
seen in the table.

2. The target types
are inconsistent.
For details, see
differences in the
getAttributes()
API.

3. Converting a
higher-precision
type to Double
may result in
precision loss.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

Database
Attribute
Type

List of Java Types
Supported by
Attribute Input
Parameters
(Oracle Database)

List of Java Types
Supported by
Attribute Input
Parameters
(GaussDB)

Difference

FLOAT Byte, Short, Integer,
Long, Float,
Double, Boolean,
BigDecimal,
BigInteger, String,
and
oracle.sql.NUMBER

Byte, Short, Integer,
Long, Float, Double,
Boolean,
BigDecimal,
BigInteger, and
String

1. The different types
supported by
attribute input
parameters can be
seen in the table.

2. The target types
are inconsistent.
For details, see
differences in the
getAttributes()
API.

3. Converting a
higher-precision
type to Double
may result in
precision loss.

REAL Byte, Short, Integer,
Long, Float,
Double, Boolean,
BigDecimal,
BigInteger, String,
and
oracle.sql.NUMBER

Byte, Short, Integer,
Long, Float, Double,
Boolean,
BigDecimal,
BigInteger, and
String

1. The different types
supported by
attribute input
parameters can be
seen in the table.

2. The target types
are inconsistent.
For details, see
differences in the
getAttributes()
API.

3. Converting a
higher-precision
type to Float may
result in precision
loss.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

Database
Attribute
Type

List of Java Types
Supported by
Attribute Input
Parameters
(Oracle Database)

List of Java Types
Supported by
Attribute Input
Parameters
(GaussDB)

Difference

BINARY_D
OUBLE

byte[], Double, and
oracle.sql.BINARY_
DOUBLE

Byte, Short, Integer,
Long, Float, Double,
Boolean,
BigDecimal,
BigInteger, and
String

1. The different types
supported by
attribute input
parameters can be
seen in the table.

2. The target types
are inconsistent.
For details, see
differences in the
getAttributes()
API.

3. Converting a
higher-precision
type to Double
may result in
precision loss.

BINARY_IN
TEGER

Byte, Short, Integer,
Long, Float,
Double, Boolean,
BigDecimal,
BigInteger,
AtomicInteger,
AutomicLong,
DoubleAccumulato
r, DoubleAddr,
LongAccumulator,
LondAdder,
Striped64, String,
and
oracle.sql.NUMBER

Byte, Short, Integer,
Long, Float, Double,
Boolean,
BigDecimal,
BigInteger, and
String

1. The different types
supported by
attribute input
parameters can be
seen in the table.

2. If the input value
exceeds the
integer range,
GaussDB reports
an error, whereas
Oracle Database
truncates the
value.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

Database
Attribute
Type

List of Java Types
Supported by
Attribute Input
Parameters
(Oracle Database)

List of Java Types
Supported by
Attribute Input
Parameters
(GaussDB)

Difference

BOOLEAN Byte, Short, Integer,
Long, Float,
Double, Boolean,
BigDecimal,
BigInteger,
AtomicInteger,
AutomicLong,
DoubleAccumulato
r, DoubleAddr,
LongAccumulator,
LondAdder,
Striped64, String,
and
oracle.sql.NUMBER

Byte, Short, Integer,
Long, Float, Double,
Boolean,
BigDecimal,
BigInteger, and
String

1. The different types
supported by
attribute input
parameters can be
seen in the table.

2. The target types
are inconsistent.
For details, see
differences in the
getAttributes()
API.

3. In GaussDB, the
target data type is
Boolean, which
only supports
inputs of 1, 0,
"true", and
"false".

TIMESTAM
P

byte[],
java.sql.Date,
String,
java.sql.Time,
java.sql.Timestamp,
oracle.sql.TIMESTA
MP, and
oracle.sql.DATE

java.util.Date,
java.sql.Date,
java.sql.Time,
java.sql.Timestamp,
LocalDateTime, and
String

The different types
supported by
attribute input
parameters can be
seen in the table.

TIMESTAM
P WITH
TIME
ZONE

java.sql.Date,
Calendar,
java.util.Date,
LocalDate,
LocalDateTime,
LocalTime,
OffsetDateTime,
OffsetTime, String,
java.sql.Time,
java.sql.Timestamp,
oracle.sql.TIMESTA
MP,
oracle.sql.TIMESTA
MPTZ,
oracle.sql.TIMESTA
MPLTZ, and
ZonedDateTime

java.util.Date,
java.sql.Date,
java.sql.Time,
java.sql.Timestamp,
LocalDateTime, and
String

1. The different types
supported by
attribute input
parameters can be
seen in the table.

2. The target types
are inconsistent.
For details, see
differences in the
getAttributes()
API.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

Database
Attribute
Type

List of Java Types
Supported by
Attribute Input
Parameters
(Oracle Database)

List of Java Types
Supported by
Attribute Input
Parameters
(GaussDB)

Difference

BLOB oracle.sql.BLOB and
oracle.jdbc.driver.Or
acleBlob

PGBlob 1. The different types
supported by
attribute input
parameters can be
seen in the table.

2. The target types
are inconsistent.
For details, see
differences in the
getAttributes()
API.

CLOB oracle.sql.CLOB and
oracle.jdbc.driver.Or
acleClob

PGClob 1. The different types
supported by
attribute input
parameters can be
seen in the table.

2. The target types
are inconsistent.
For details, see
differences in the
getAttributes()
API.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

Database
Attribute
Type

List of Java Types
Supported by
Attribute Input
Parameters
(Oracle Database)

List of Java Types
Supported by
Attribute Input
Parameters
(GaussDB)

Difference

Set/Array Array and Object GaussArray and
Object

1. The different types
supported by
attribute input
parameters can be
seen in the table.

2. In Oracle
Database, no error
is reported when
the attribute input
parameter is of
the Array type,
even if the Array
type differs from
the actual type
required by the
attribute.
In GaussDB, an
error is reported
when the attribute
input parameter is
of the GaussArray
type that differs
from the actual
type required by
the attribute.

3. When the input
parameter of an
attribute is of the
Object type, refer
to the differences
in array
construction APIs.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

Database
Attribute
Type

List of Java Types
Supported by
Attribute Input
Parameters
(Oracle Database)

List of Java Types
Supported by
Attribute Input
Parameters
(GaussDB)

Difference

RECORD Struct and Object[] GaussStruct and
Object[]

1. The different types
supported by
attribute input
parameters can be
seen in the table.

2. In Oracle
Database, no error
is reported when
the attribute input
parameter is of
the Struct type,
even if the Struct
type differs from
the actual type
required by the
attribute.
In GaussDB, an
error is reported
when the attribute
input parameter is
of the GaussStruct
type that differs
from the actual
type required by
the attribute.

3. When the input
parameter of an
attribute is of the
Object[] type,
refer to the
differences in
struct construction
APIs.

NO TE

1. When a struct is constructed, if the Java type of the input element does not match the
target type, an implicit conversion operation is performed. For details on the Java types
of input elements supported by various database element types, refer to the preceding
table.

2. GaussDB currently does not support the types unlisted in the aforementioned table.
3. The constructor needs to provide an attribute array. The preceding table describes the

differences of each attribute in the array.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

2.8 Common SQL DDL Clauses
This chapter describes common compatible SQL DDL clauses, including
allocate_extent_clause, constraint, deallocate_unused_clause, file_specification,
logging_clause, parallel_clause, physical_attributes_clause, size_clause,
storage_clause, and aggregate function nesting. For details, see Table 2-44.

Table 2-44 Common SQL DDL clauses

No. Oracle Database GaussD
B

Difference

1 allocate_extent_clause
Syntax:
ALLOCATE EXTENT
[({ SIZE size_clause |
DATAFILE 'filename' |
INSTANCE
integer } ...)]

For example, after the
employees table is
created, change the
allocated extent size
of the table to 10M.
SQL> CREATE TABLE
employees(EMPLOYEE_ID
NUMBER(38), JOB_ID
NUMBER(38), SALARY
NUMBER(38), LAST_NAME
VARCHAR2(16));

Table created.

SQL> ALTER TABLE
employees ALLOCATE
EXTENT (SIZE 10M);

Table altered.

Not
support
ed.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

No. Oracle Database GaussD
B

Difference

2 constraint
Syntax:
{ inline_constraint |
out_of_line_constraint |
inline_ref_constraint |
out_of_line_ref_constraint }

For example, when
you create the staff
table, the ID and
NAME columns
specified in the
constraint clause
cannot be empty.
SQL> CREATE TABLE staff(ID
INT NOT NULL, NAME
char(8) NOT NULL, AGE INT,
ADDRESS CHAR(50), SALARY
REAL);

Table created.

Support
ed.

-

3 deallocate_unused_cla
use
Syntax:
DEALLOCATE UNUSED
[KEEP size_clause]

For example, after
creating the
employees table and
performing some
INSERT and DELETE
operations, you want
to use the
deallocate_unused_cla
use to release the
unused space of the
employees table.
SQL> CREATE TABLE
employees(EMPLOYEE_ID
NUMBER(38), JOB_ID
NUMBER(38), SALARY
NUMBER(38), LAST_NAME
VARCHAR2(16));

Table created.

- Perform some INSERT and
DELETE operations.

SQL> ALTER TABLE
employees DEALLOCATE
UNUSED;

Table altered.

Not
support
ed.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

No. Oracle Database GaussD
B

Difference

4 file_specification
Syntax:
{['filename' |
'ASM_filename'] [SIZE
size_clause] [REUSE]
[autoextend_clause]}
|
{['filename | ASM_filename' |
('filename | ASM_filename'
[, 'filename |
ASM_filename']...)] [SIZE
size_clause] [BLOCKSIZE
size_clause [REUSE]}

For example, to create
a temporary
tablespace
tbs_temp_01, the
file_specification
clause of the SQL
statement specifies
that a temporary
database file
templ01.dbf is created
in the tablespace. The
tablespace can be
automatically
expanded and
allocated to the
tablespace group
tbs_grp_01.
SQL> CREATE TEMPORARY
TABLESPACE tbs_temp_01
TEMPFILE 'temp01.dbf'
AUTOEXTEND ON
TABLESPACE GROUP
tbs_grp_01;

Tablespace created.

Not
support
ed.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

No. Oracle Database GaussD
B

Difference

5 logging_clause
Syntax:
{ LOGGING | NOLOGGING |
FILESYSTEM_LIKE_LOGGING }

Partially
support
ed, with
differen
ces.

● GaussDB does not support the
LOGGING and
FILESYSTEM_LIKE_LOGGING
constraint clauses.
Example:
When a table is created in
GaussDB with the LOGGING
constraint clause, a syntax error
is reported.
gaussdb=# CREATE LOGGING TABLE
my_tab(id int, name char(16));
ERROR: syntax error at or near
"LOGGING"
LINE 1: CREATE LOGGING TABLE
my_tab(id int, name char(16));
 ^

When a table is created in
GaussDB with the
FILESYSTEM_LIKE_LOGGING
constraint clause, a syntax error
is reported.
gaussdb=# CREATE
FILESYSTEM_LIKE_LOGGING TABLE
my_tab(id int, name char(16));
ERROR: syntax error at or near
"FILESYSTEM_LIKE_LOGGING"
LINE 1: CREATE
FILESYSTEM_LIKE_LOGGING TABLE
my_tab(id int, name cha...
 ^

● GaussDB supports only table-
level UNLOGGED constraints
and does not support column-
level UNLOGGED constraints.
For example, when a table is
created in GaussDB with the
column-level UNLOGGED
constraint clause, a syntax error
is reported.
gaussdb=# CREATE UNLOGGED TABLE
my_tab(id int UNLOGGED, name
char(16));
ERROR: syntax error at or near
"UNLOGGED"
LINE 1: CREATE UNLOGGED TABLE
my_tab(id int UNLOGGED, name
char(16))...
 ^

● GaussDB uses logging clauses
only in the CREATE TABLE,
CREATE TABLE AS, and SELECT
INTO statements.
For example, when a
TABLESPACE statement with the

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

No. Oracle Database GaussD
B

Difference

UNLOGGED constraint clause is
created in GaussDB, a syntax
error is reported.
gaussdb=# CREATE UNLOGGED
TABLESPACE tbs1 RELATIVE LOCATION
'tablespace1/tablespace_1';
ERROR: syntax error at or near
"TABLESPACE"
LINE 1: CREATE UNLOGGED TABLESPACE
tbs1 RELATIVE LOCATION 'tablespac...
 ^

6 parallel_clause
Syntax:
{ NOPARALLEL | PARALLEL
[integer] }

For example, if you
create table t1 and
specify PARALLEL 4 in
the parallel_clause, a
maximum of four
parallel processes can
be used to query and
update table t1.
SQL> CREATE TABLE t1 (id
NUMBER, name
VARCHAR2(50)) PARALLEL 4;

Table created.

Not
support
ed.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

No. Oracle Database GaussD
B

Difference

7 physical_attributes_cla
use
Syntax:
[{ PCTFREE integer |
PCTUSED integer |
INITRANS integer |
storage_clause }...]

Partially
support
ed, with
differen
ces.

● GaussDB does not support
PCTUSED.
For example, if you run an SQL
statement to create the tbl1_ind
index in the tbl1 table and set
the space usage PCTUSED of
the index to 20% in the
physical_attributes_clause of the
statement, an error is reported
when the SQL statement is
executed in GaussDB.
gaussdb=# CREATE INDEX tbl1_ind ON
tbl1 (name) PCTUSED 20;
ERROR: syntax error at or near
"PCTUSED"
LINE 1: CREATE INDEX tbl1_ind ON tbl1
(name) PCTUSED 20;
 ^

● GaussDB uses
physical_attributes_clause only
in the CREATE TABLE and
CREATE INDEX statements.
For example, if you run an SQL
statement to obtain data from
the tbl1 table, create the
materialized view tbl1_mv, and
set the number of initial
transactions of the view to 30 in
the physical_attributes_clause,
an error is reported when
GaussDB executes the
statement.
gaussdb=# CREATE MATERIALIZED VIEW
tbl1_mv INITRANS 30 as select * from tbl1;
ERROR: syntax error at or near
"INITRANS"
LINE 1: CREATE MATERIALIZED VIEW
tbl1_mv INITRANS 30 as select * fro...
 ^

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

No. Oracle Database GaussD
B

Difference

8 size_clause
Syntax:
integer [K | M | G | T | P | E]

For example, create a
temporary tablespace
tbs_temp_01 and a
temporary database
file templ01.dbf in the
tablespace. The initial
size of the tablespace
is 5M as specified by
the size_clause in the
SQL statement, which
can be automatically
expanded. The
tablespace can be
allocated to the
tablespace group
tbs_grp_01.
SQL> CREATE TEMPORARY
TABLESPACE tbs_temp_01
TEMPFILE 'temp01.dbf' SIZE
5M AUTOEXTEND ON
TABLESPACE GROUP
tbs_grp_01;

Tablespace created.

Not
support
ed.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

No. Oracle Database GaussD
B

Difference

9 storage_clause
Syntax:
STORAGE ({ INITIAL
size_clause | NEXT
size_clause | MINEXTENTS
integer | MAXEXTENTS
{ integer | UNLIMITED } |
maxsize_clause |
PCTINCREASE integer |
FREELISTS integer | FREELIST
GROUPS integer | OPTIMAL
[size_clause | NULL] |
BUFFER_POOL { KEEP |
RECYCLE | DEFAULT } |
FLASH_CACHE { KEEP |
NONE | DEFAULT } |
(CELL_FLASH_CACHE (KEEP
| NONE | DEFAULT)) |
ENCRYPT } ...)

Partially
support
ed, with
differen
ces.

● In Oracle Database, storage
parameters are specified by the
STORAGE clause. In GaussDB,
storage parameters are specified
by the WITH clause.
Example:
To create the my_tab1 table in
Oracle Database, set the initial
size of the table to 10M in the
storage_clause, and add 5 MB
each time when more space is
required, run the following SQL
statement:
SQL> CREATE TABLE my_tab1 (id
NUMBER(10) PRIMARY KEY, name
VARCHAR2(50)) STORAGE (INITIAL 10M
NEXT 5M);

Table created.

To create the my_tab2 table in
GaussDB and set the storage
engine type to ustore in the
storage_clause, run the
following SQL statement:
gaussdb=# CREATE TABLE my_tab2 (id
NUMBER(10) PRIMARY KEY, name
VARCHAR2(50)) with
(storage_type=ustore);
NOTICE: CREATE TABLE / PRIMARY KEY
will create implicit index "my_tab2_pkey"
for table "my_tab2"
CREATE TABLE

● Optional storage parameters in
GaussDB are greatly different
from those in Oracle Database.
For details, see the GaussDB
parameter description in "SQL
Reference > SQL Syntax > C >
CREATE TABLE" in Developer
Guide. WITH
({storage_parameter = value}
[, ...]) describes the storage
parameters supported by the
CREATE TABLE statement.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

No. Oracle Database GaussD
B

Difference

10 Aggregate function
nesting
For example, create
the revenue table
generated by nesting
the aggregate
functions MIN() and
SUM() in the
sales_amount column
of the sales table.
SQL> CREATE TABLE sales(ID
INT, SALES_AMOUNT INT);

Table created.

SQL> INSERT INTO sales
VALUES(1, 100);

1 row created.

SQL> INSERT INTO sales
VALUES (3, 200);

1 row created.

SQL> CREATE TABLE revenue
as SELECT
SUM(MIN(sales_amount)) as
total from sales group by
sales_amount;

Table created.

Support
ed.

-

11 Dropping a system
schema
Syntax:
DROP USER schema_name
CASCADE;

For example, drop the
SYS schema as the SYS
user.
SQL> DROP USER SYS;
DROP USER SYS
*
ERROR at line 1:
ORA-28050: specified user or
role cannot be dropped

Support
ed.

-

2.9 SQL Queries and Subqueries
GaussDB is compatible with SQL queries and subqueries except hierarchical
queries.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

Table 2-45 SQL queries and subqueries

No. Oracle
Database

GaussDB Difference

1 Creating simple
queries

Supported. -

2 Hierarchical
queries

Not
supported.

-

3 UNION [ALL],
INTERSECT,
MINUS

Supported. -

4 Sorting query
results

Supported,
with
differences.

If the GaussDB query does not contain
groups and the target column contains
both an aggregate function and a set
returning function, the sorting of the
set returning function column is not
ignored.

5 Joins Supported,
with
differences.

GaussDB supports only the same join
types as Oracle Database, such as left/
right, self, natural, and full outer join.
Join optimization methods such as IN-
MEMORY JOIN GROUPS are not
supported.

6 Using
subqueries

Supported. -

7 Unnesting of
nested
subqueries

Supported,
with
differences.

HASH_AJ or MERGE_AJ cannot be
explicitly specified in GaussDB.

8 Distributed
queries

Supported,
with
differences.

GaussDB requires explicit database link
query.

9 Aggregate
function
nesting

Supported. -

2.10 PL/SQL Language
GaussDB is compatible with PL/SQL operators, expressions, control statements,
collections, and records, but does not support predefined PL/SQL constants, types,
and subtypes.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

2.10.1 Basic PL/SQL Syntax

Table 2-46 PL/SQL operators

No. Oracle Database GaussDB

1 + Supported.

2 := Supported.

3 => Supported.

4 % Supported.

5 ' Supported.

6 . Supported.

7 || Supported.

8 / Supported.

9 ** Not supported.

10 (Supported.

11) Supported.

12 : Supported.

13 , Supported.

14 << Supported.

15 >> Supported.

16 /* Supported.

17 */ Supported.

18 * Supported.

19 " Supported.

20 .. Supported.

21 = Supported.

22 <> Supported.

23 != Supported.

24 ~= Supported.

25 ^= Supported.

26 < Supported.

27 > Supported.

28 <= Supported.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

No. Oracle Database GaussDB

29 >= Supported.

30 @ Supported.

31 -- Supported.

32 ; Supported.

33 - Supported.

Table 2-47 Logical operators

No. Oracle Database GaussDB

1 NOT Supported.

2 AND Supported.

3 OR Supported.

Table 2-48 Comparison expressions

No. Oracle Database GaussDB

1 IS [NOT] NULL Supported.

2 LIKE Supported.

3 BETWEEN Supported.

4 IN Supported.

Table 2-49 CASE expressions

No. Oracle Database GaussDB

1 simple CASE Supported.

2 searched CASE Supported.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

Table 2-50 Parameters related to variable declaration

No. Oracle
Databas
e

GaussDB Difference

1 %TYPE Supported,
with
differences.

● GaussDB does not support record%type.
● GaussDB does not support pkg.record

%type and schema.pkg.record%type as
the input and output parameter types.

● In GaussDB, Table/View.column.column
%type or schema.Table/
View.column.column%type cannot be
nested with one or more layers as variable
types or input/output parameter type.

● In GaussDB, record.column.column%type
and pkg.record.column.column%TYPE
cannot be nested with a column type of
records at one or more layers as the
variable type or input/output parameter
type.

2 %ROWTY
PE

Supported,
with
differences.

● When GaussDB has multiple CNs, the
%ROWTYPE and %TYPE attributes of the
temporary table cannot be declared in a
stored procedure. The temporary table is
valid only in the current session. During
compilation, other CNs cannot view the
temporary table of the current CN.
Therefore, if there are multiple CNs, the
system displays a message indicating that
the temporary table does not exist.

● GaussDB does not support view%rowtype
and schema.view%rowtype as the input
and output parameter types.

● GaussDB does not support the
package.cursor%rowtype as the input
and output parameter types.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

2.10.2 Data Type Compatibility

Table 2-51 Other PL/SQL data types

No. Oracle
Database

GaussDB Difference

1 CHARACTER Supported,
with
differences.

● GaussDB: The length ranges from 1
to 10485760 bytes.

● Oracle Database: The length ranges
from 1 to 32767 bytes.

2 VARCHAR Supported,
with
differences.

● GaussDB: The length ranges from 1
to 10485760 bytes.

● Oracle Database: The length ranges
from 1 to 32767 bytes.

3 STRING Not
supported.

-

4 PLS_INTEGER Not
supported.

In GaussDB, you can use the INT type
instead.

5 BINARY_INTE
GER

Supported. -

2.10.3 Control Statements

Table 2-52 Conditional statements

No. Oracle Database GaussDB

1 IF THEN Supported.

2 IF THEN ELSE Supported.

3 IF THEN ELSIF Supported.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

No. Oracle Database GaussDB

4 simple CASE:
CASE selector
WHEN selector_value_1 THEN
statements_1
WHEN selector_value_2 THEN
statements_2
...
WHEN selector_value_n THEN
statements_n
[ELSE
else_statements
END CASE;]

Supported.

5 searched CASE:
CASE
WHEN condition_1 THEN
statements_1
WHEN condition_2 THEN
statements_2
...
WHEN condition_n THEN
statements_n
[ELSE
else_statements
END CASE;]

Supported.

Table 2-53 LOOP statements

No. Oracle Database GaussDB

1 [label] LOOP
statements
END LOOP [label];

Supported.

2 EXIT; Supported.

3 EXIT WHEN; Supported.

4 CONTINUE; Supported.

5 CONTINUE WHEN; Supported.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

Table 2-54 FOR LOOP statements

No. Oracle Database GaussDB Difference

1 [label] FOR index IN
[REVERSE]
lower_bound..upper_b
ound LOOP
statements
END LOOP [label];

Supported,
with
differences.

When the keyword REVERSE is
used in GaussDB, the lower
bound must be greater than or
equal to the upper bound;
otherwise, the loop body is not
executed.

2 EXIT WHEN; Supported. -

3 CONTINUE WHEN; Supported. -

Table 2-55 WHILE LOOP statement

No. Oracle Database GaussDB

1 [label] WHILE condition
LOOP
statements
END LOOP [label];

Supported.

Table 2-56 GOTO statement

No. Oracle Database GaussDB

1 GOTO Supported.

Table 2-57 NULL statement

No. Oracle Database GaussDB

1 NULL Supported.

2.10.4 Collections and Records

Table 2-58 Types

No. Oracle Database GaussDB

1 Associative array (or index-by
table)

Supported.

2 VARRAY (variable-size array) Supported.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

No. Oracle Database GaussDB

3 Nested table Supported.

4 record Supported.

Table 2-59 Syntax

No. Oracle Database GaussDB Difference

1 Associative array (or
index-by table) syntax:
TABLE OF datatype
[NOT NULL]
INDEX BY
{ PLS_INTEGER |
BINARY_INTEGER |
VARCHAR2 (v_size) |
data_type }

Supported,
with
differences.

● GaussDB does not support
the PLS_INTEGER type. In
GaussDB, the value of
data_type can be a base
data type or a record type,
collection type, or array type
defined in a stored
procedure. The ref cursor
type is not supported.

● In GaussDB, NOT NULL does
not take effect in the syntax.
That is, the system does not
check whether an element is
NULL.

● For details, see "Stored
Procedure > Arrays,
Collections, and Records >
Collections" in Developer
Guide.

2 VARRAY (variable-size
array) syntax:
{ VARRAY | [VARYING]
ARRAY } (size_limit)
OF datatype [NOT
NULL]

Supported,
with
differences.

● GaussDB does not support
the NOT NULL syntax.

● In GaussDB, datatype
cannot be set to varray
(varray cannot be nested).

● To make the size_limit
function take effect, enable
the varray_compat
parameter in the GUC
parameter
behavior_compat_options.

● For details, see "Stored
Procedure > Arrays,
Collections, and Records >
Arrays" in Developer Guide.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

No. Oracle Database GaussDB Difference

3 Nested table syntax:
TABLE OF datatype
[NOT NULL]

Supported,
with
differences.

● In GaussDB, NOT NULL does
not take effect in the syntax.

● For details, see "Stored
Procedure > Arrays,
Collections, and Records >
Collections" in Developer
Guide.

4 record syntax:
TYPE record_type IS
RECORD
(field_definition [,
field_definition]...) ;

Supported. ● Record columns can be
defined as NOT NULL or a
default value can be
specified. If the record type
is nested in other types, the
default value and NOT NULL
of the record type do not
take effect. If a record
variable is created using the
package.record_type access
type, the default value and
NOT NULL of the record
variable do not take effect.

● For details, see "Stored
Procedure > Arrays,
Collections, and Records >
Records" in Developer
Guide.

Table 2-60 Constructor

No. Oracle Database GaussDB

1 collection_type ([value [,
value]...])

Supported.

Table 2-61 Variable assignment

No. Oracle Database GaussDB Difference

1 Associative array (or
index-by table)

Supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

No. Oracle Database GaussDB Difference

2 VARRAY (variable-
size array)

Supported,
with
differences.

● Values of different VARRAY data
in GaussDB can be assigned to
each other, depending on
whether elements in the data
can be implicitly converted to
each other.

● For details, see "Stored
Procedure > Arrays, Collections,
and Records > Arrays" in
Developer Guide.

3 Nested table Supported. -

4 record Supported,
with
differences.

● Values of different record data
in GaussDB can be assigned to
each other, depending on
whether columns can be
implicitly converted.

● For details, see "Stored
Procedure > Arrays, Collections,
and Records > Records" in
Developer Guide.

Table 2-62 Collection operators

No. Oracle
Database

GaussDB Difference

1 = Supported,
with
differences.

● Oracle Database: The sequence of
collection members is ignored during
comparison.

● GaussDB: The comparison is
performed strictly based on the
sequence of collection members.

2 <> Supported,
with
differences.

● Oracle Database: The sequence of
collection members is ignored during
comparison.

● GaussDB: The comparison is
performed strictly based on the
sequence of collection members.

3 IS[NOT] NULL Supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

No. Oracle
Database

GaussDB Difference

4 ^= Supported,
with
differences.

● Oracle Database: The sequence of
collection members is ignored during
comparison.

● GaussDB: The comparison is
performed strictly based on the
sequence of collection members.

5 ~= Not
supported.

-

6 IS[NOT] A SET Not
supported.

-

7 IS [NOT] EMPTY Not
supported.

-

8 expr [NOT]
MEMBER [OF]
nested_table

Not
supported.

-

9 nested_table1
[NOT]
SUBMULTISET
[OF]
nested_table2

Not
supported.

-

10 [NOT] IN Supported. ● Oracle Database: The sequence of
collection members is ignored during
comparison.

● GaussDB: The comparison is
performed strictly based on the
sequence of collection members.

Table 2-63 MULTISET functions

No. Oracle Database GaussDB

1 MULTISET UNION [ALL |
DISTINCT]

Supported.

2 MULTISET EXCEPT [ALL |
DISTINCT]

Supported.

3 MULTISET INTERSECT [ALL |
DISTINCT]

Supported.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

Table 2-64 Collection type functions

No. Oracle
Database

GaussDB Difference

1 exists(idx) Supported. -

2 extend[(count[,
idx])]

Supported, with
differences.

GaussDB supports only nested
tables.

3 delete[(idx1[,
idx2])]

Supported. -

4 trim[(n)] Supported, with
differences.

GaussDB supports only nested
tables.

5 count Supported. -

6 first Supported. -

7 last Supported. -

8 prior(idx) Supported. -

9 next(idx) Supported. -

10 limit Supported, with
differences.

GaussDB supports only nested
tables.

Table 2-65 Record variable operations

No. Oracle Database GaussDB

1 Constructors Supported.

2 %ROWTYPE to declare a
variable

Supported.

3 Defining constants Not supported.

Table 2-66 Collection-related functions

No. Oracle Database GaussDB Difference

1 unnest_table(anynesttable
)

Supported. -

2 unnest_table(anyindexbyta
ble)

Supported. -

3 table(anyarray) Not supported. GaussDB uses the unnest
(anyarray) function for
equivalent rewriting.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

2.10.5 Static SQL Statements

Table 2-67 Static query SQL statements

No. Oracle
Databas
e

GaussDB Difference

1 SELECT Supported,
with
differences.

GaussDB and Oracle Database are different in
some scenarios.
In GaussDB, FOR SHARE adds a shared lock to
the retrieved rows. The shared locks of different
transactions do not block each other. If data is
locked by FOR SHARE in one transaction and
SELECT FOR SHARE SKIP LOCKED is used in
another transaction, SKIP LOCKED does not skip
the lock.

Table 2-68 Static DML SQL statements

No. Oracle
Databas
e

GaussDB Difference

1 INSERT Supported,
with
differences.

Oracle Database allows the number of columns
in the target table to be greater than the
number of columns in the subquery result.
However, you must explicitly specify the names
of columns to be inserted to ensure that the
number of columns matches. In GaussDB, you
can omit the names of columns to be inserted.
In this case, the value of the first column in the
subquery result is inserted into the first column
of the target table, and so on. If the target table
has more columns, NULL (if a column allows
NULL) or the default value (if any) is inserted
into each column.

2 UPDATE Supported. -

3 DELETE Supported. -

4 MERGE Supported. -

5 LOCK
TABLE

Supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

No. Oracle
Databas
e

GaussDB Difference

6 INSERT
ALL

Supported,
with
differences.

● Oracle Database does not support alias
setting for the tables of into_clause, but
GaussDB supports.

● When into_clause specifies the sequence:
– Oracle Database: If nextval is referenced

for the first time, the next number of the
current value is generated. Otherwise, the
same number will always be returned.

– GaussDB: The number generated by
referencing nextval can increment
automatically.

● The plan_hint statement can take effect in
Oracle Database but does not take effect in
GaussDB.

● Oracle Database allows the number of
columns in the target table to be greater
than the number of columns in the subquery
result. However, you must explicitly specify
the names of columns to be inserted to
ensure that the number of columns matches.
In GaussDB, you can omit the names of
columns to be inserted. In this case, the
value of the first column in the subquery
result is inserted into the first column of the
target table, and so on. If the target table
has more columns, NULL (if a column allows
NULL) or the default value (if any) is
inserted into each column.

Table 2-69 Static TCL SQL statements

No. Oracle
Databas
e

GaussDB Difference

1 COMMIT Supported. -

2 ROLLBAC
K

Supported. -

3 SAVEPOI
NT

Supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

No. Oracle
Databas
e

GaussDB Difference

4 SET
TRANSAC
TION

Supported,
with
differences
.

GaussDB does not support the NAME string
and USE ROLLBACK SEGMENT
rollback_segment syntax.

Table 2-70 Pseudocolumns

No. Oracle
Database

GaussDB Difference

1 CURRVAL and
NEXTVAL

Supported. -

2 LEVEL Not
supported.

-

3 OBJECT_VALU
E

Not
supported.

-

4 ROWID Not
supported.

-

5 ROWNUM Supported,
with
differences.

It is not recommended that the
ROWNUM condition be used in the JOIN
ON clause.
In GaussDB, when the ROWNUM
condition is used in the JOIN ON clause,
the behavior in the LEFT JOIN, RIGHT
JOIN, FULL JOIN, and MERGE INTO
scenarios is different from that in other
databases, causing risks in service
migration.

Table 2-71 Implicit cursor attributes

No. Oracle
Database

GaussDB Difference

1 SQL%FOUND Supported,
with
differences.

GaussDB does not update the implicit
cursor result after COMMIT or
ROLLBACK. Oracle Database updates the
implicit cursor result after COMMIT or
ROLLBACK.2 SQL

%NOTFOUND
Supported,
with
differences.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

No. Oracle
Database

GaussDB Difference

3 SQL
%ROWCOUNT

Supported,
with
differences.

4 SQL%ISOPEN Supported,
with
differences.

5 SQL
%BULK_ROWC
OUNT

Not
supported.

6 SQL
%BULK_EXCEP
TIONS

Not
supported.

Table 2-72 Explicit cursor syntax and keywords

No. Oracle Database GaussDB Difference

1 CURSOR cursor_name
[parameter_list] RETURN
return_type;

Supported. -

2 CURSOR cursor_name
[parameter_list] [RETURN
return_type]
IS select_statement;

Supported. -

3 OPEN Supported. -

4 CLOSE Supported,
with
differences.

GaussDB is automatically
closed in the exception,
but Oracle Database is
not automatically closed
in the exception.

5 FETCH Supported. -

6 CURRENT OF CURSOR Supported. -

Table 2-73 Explicit cursor attributes

No. Oracle Database GaussDB

1 SQL%FOUND Supported.

2 SQL%NOTFOUND Supported.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

No. Oracle Database GaussDB

3 SQL%ROWCOUNT Supported.

4 SQL%ISOPEN Supported.

Table 2-74 Cursor loop

No. Oracle Database GaussDB

1 FOR LOOP Supported, with differences.
In the FORALL+BULK COLLECT INTO
scenario, the INTO variable returns
only the execution result of a single
DML statement in GaussDB, and
returns the accumulated execution
result of DML statements in Oracle
Database.

Table 2-75 Scenarios supported by autonomous transactions

No. Oracle Database GaussDB

1 Stored procedures Supported.

2 Anonymous blocks Supported.

3 Functions Supported.

4 Packages Supported.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

2.10.6 Dynamic SQL Statements

Table 2-76 Dynamic SQL statement execution modes

No. Oracle
Database

GaussDB Difference

1 EXECUTE
IMMEDIATE

Supported,
with
differences.

● GaussDB uses the
dynamic_sql_compat parameter to
determines whether variables with the
same name read the same parameter
and check whether the input and
output parameter types of the bound
parameters are the same as those of
the statement parameters when the
stored procedure is called.

● GaussDB does not support scenarios
where some bound parameters in
anonymous blocks are called. For
example, when dynamic statements
are nested in anonymous blocks,
expressions are used to bind
parameters. For details, see "Stored
Procedure > Dynamic Statements >
Dynamically Calling Anonymous
Blocks" in Developer Guide.

● GaussDB does not support
RETURNING or RETURN INTO.

2 OPEN FOR,
FETCH,
CLOSE

Supported. GaussDB uses the dynamic_sql_compat
parameter to determines whether
variables with the same name read the
same parameter and check whether the
input and output parameter types of the
bound parameters are the same as those
of the statement parameters when the
stored procedure is called.

2.10.7 Triggers

Table 2-77 Trigger types

No. Oracle
Database

GaussDB Difference

1 DML
TRIGGER

Supported,
with
differences.

GaussDB: Compound DML triggers are
not supported.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

No. Oracle
Database

GaussDB Difference

2 SYSTEM
TRIGGER

Not
supported.

-

Table 2-78 CREATE triggers

No. Oracle Database GaussDB Difference

1 CREATE syntaxes:
CREATE [OR
REPLACE]
[EDITIONABLE |
NONEDITIONABLE]
TRIGGER
plsql_trigger_source

Supported,
with
differences.

GaussDB does not support OR
REPLACE or EDITIONABLE |
NONEDITIONABLE, but supports
some behaviors of
plsql_trigger_source.

2 plsql_trigger_source ::=
syntax:
[schema.]
trigger_name
[sharing_clause]
[default_collation_cla
use]
{ simple_dml_trigger
|
instead_of_dml_trigger
|
compound_dml_trigger
| system_trigger
}

Supported,
with
differences.

GaussDB: The schema,
sharing_clause, and
default_collation_clause are not
supported.

3 simple_dml_trigger ::=
syntax:

{ BEFORE | AFTER }
dml_event_clause
[referencing_clause]
[FOR EACH ROW]

[trigger_edition_claus
e]
[trigger_ordering_clau
se]

[ENABLE | DISABLE]
[WHEN (condition)]
trigger_body

Supported,
with
differences.

GaussDB does not support
referencing_clause,
referencing_clause (instead, from
referencing_table is used),
trigger_edition_clause,
trigger_ordering_clause, and
ENABLE | DISABLE, but supports
some behaviors of trigger_body.
No error is reported in GaussDB
when a statement-level BEFORE/
AFTER TRIGGER is created in a
view without INSTEAD OF
TRIGGER. An error is reported
when DML is executed.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

No. Oracle Database GaussDB Difference

4 dml_event_clause ::=
syntax:
{ DELETE | INSERT |
UPDATE [OF column
[, column]...] }
[OR { DELETE |
INSERT | UPDATE [OF
column [,
column]...] }...
ON [schema.] { table |
view }

Not
supported.

-

5 trigger_body ::= syntax:
{ plsql_block | CALL
routine_clause }

Supported,
with
differences.

GaussDB: The plsql_block is not
supported. A function can be
executed only in the EXECUTE
PROCEDURE function_name
(arguments); format. In
addition, the function needs to
be defined by users and declared
that it does not contain
parameters and the return type
is trigger. It is executed when a
trigger is triggered.

6 instead_of_dml_trigger
::= syntax:
INSTEAD OF { DELETE
| INSERT | UPDATE }
[OR { DELETE |
INSERT | UPDATE }]...
ON [NESTED TABLE
nested_table_column
OF] [schema.]
noneditioning_view
[referencing_clause]
[FOR EACH ROW]
[trigger_edition_claus
e]
[trigger_ordering_clau
se]
[ENABLE | DISABLE]
trigger_body

Supported,
with
differences.

GaussDB: The NESTED TABLE
nested_table_column OF,
referencing_clause,
trigger_edition_clause,
trigger_ordering_clause, and
ENABLE | DISABLE are not
supported.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

No. Oracle Database GaussDB Difference

7 compound_dml_trigger
::= syntax:
CREATE trigger FOR
dml_event_clause ON
view
COMPOUND TRIGGER
INSTEAD OF EACH
ROW IS BEGIN
statement;
END INSTEAD OF
EACH ROW;

Not
supported.

-

8 system_trigger ::=
syntax:
{ BEFORE | AFTER |
INSTEAD OF }
{ ddl_event [OR
ddl_event]... |
database_event [OR
database_event]... }
ON { [schema.]
SCHEMA |
[PLUGGABLE]
DATABASE }
[trigger_ordering_clau
se] [ENABLE |
DISABLE] trigger_body

Not
supported.

-

Table 2-79 ALTER trigger

No. Oracle Database GaussDB Difference

1 ALTER TRIGGER
[schema.]
trigger_name
{ trigger_compile_clause
| { ENABLE | DISABLE }
| RENAME TO
new_name
| { EDITIONABLE |
NONEDITIONABLE }
} ;

Supported,
with
differences
.

GaussDB: The schema,
trigger_compile_clause,
{ ENABLE | DISABLE }, and
{ EDITIONABLE |
NONEDITIONABLE } are not
supported.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

Table 2-80 drop trigger

No. Oracle Database GaussDB Difference

1 DROP TRIGGER
[schema.] trigger ;

Supported,
with
differences.

GaussDB does not support
schemas. You need to add ON
table_name to the end of
trigger_name.

The *_TRIGGERS views in Oracle Database collect information about triggers. The
views in GaussDB are different from those in Oracle Database. For details, see
sections "DB_TRIGGERS", "ADM_TRIGGERS", and "MY_TRIGGERS" in "System
Catalogs and System Views > System Views > Other System Views" in Developer
Guide.

Table 2-81 Compatibilities of nested, package, and standalone subprograms

No. Oracle Database GaussDB Difference

1 Nested subprograms
(subblocks)

Supported,
with
differences.

GaussDB does not support
overloading.
GaussDB does not support
the definition of
autonomous transactions.
GaussDB does not support
SETOF. Only one qualifier
can reference nested
subprograms or variables of
nested subprograms.

2 Package subprograms Supported. -

3 Standalone subprograms
(including functions and
procedures)

Supported. -

4 Anonymous blocks Supported. -

Table 2-82 RETURN statements

No. Oracle Database GaussDB

1 Functions Supported.

2 Procedures Supported.

3 Anonymous blocks Supported.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

Table 2-83 Function-related parameters

No. Oracle
Database

GaussDB Difference

1 DETERMINIS
TIC

Supported,
with
differences.

In GaussDB, it is IMMUTABLE.

2 PARALLEL_E
NABLE

Not
supported.

-

3 PIPELINED Not
supported.

-

4 RESULT_CAC
HE

Not
supported.

-

Table 2-84 Parameter formats

No. Oracle Database GaussDB

1 IN Supported.

2 OUT Supported.

3 IN OUT Supported.

Table 2-85 CREATE statements

No. Oracle
Database

GaussDB Difference

1 CREATE
FUNCTION

Supporte
d, with
difference
s.

GaussDB does not support the IF NOT
EXISTS syntax, sharing_clause, or keywords
[EDITIONABLE | NONEDITIONABLE]. Only
some clauses that specify the function
attribute are supported (only the
invoker_rights_clause clause is supported).
For details about GaussDB syntax, see "SQL
Reference > SQL Syntax > C > CREATE
FUNCTION" in Developer Guide.

2 CREATE
LIBRARY

Not
supported
.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

No. Oracle
Database

GaussDB Difference

3 CREATE
PACKAGE

Supporte
d, with
difference
s.

GaussDB does not support the IF NOT
EXISTS syntax, sharing_clause, or keywords
[EDITIONABLE | NONEDITIONABLE]. Only
some clauses that specify the package
attribute are supported (only the
invoker_rights_clause clause is supported).
For details about GaussDB syntax, see "SQL
Reference > SQL Syntax > C > CREATE
PACKAGE" in Developer Guide.

4 CREATE
PACKAGE
BODY

Supporte
d, with
difference
s.

GaussDB does not support the IF NOT
EXISTS syntax, sharing_clause, or keywords
[EDITIONABLE | NONEDITIONABLE].
For details about GaussDB syntax, see "SQL
Reference > SQL Syntax > C > CREATE
PACKAGE" in Developer Guide.

5 CREATE
PROCEDURE

Supporte
d, with
difference
s.

GaussDB does not support the IF NOT
EXISTS syntax, sharing_clause, or keywords
[EDITIONABLE | NONEDITIONABLE].
For details about GaussDB syntax, see "SQL
Reference > SQL Syntax > C > CREATE
PROCEDURE" in Developer Guide.

6 CREATE
TRIGGER

Supporte
d, with
difference
s.

For details about GaussDB syntax, see "SQL
Reference > SQL Syntax > C > CREATE
TRIGGER" in Developer Guide.

7 CREATE TYPE Supporte
d, with
difference
s.

GaussDB does not support the varray, object
type, and UNDER syntax.
For details about GaussDB syntax, see "SQL
Reference > SQL Syntax > C > CREATE
TYPE" in Developer Guide.

8 CREATE TYPE
BODY

Not
supported
.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

Table 2-86 ALTER statements

No. Oracle
Database

GaussDB Difference

1 ALTER
FUNCTION

Supported,
with
differences
.

GaussDB does not support keywords
[EDITIONABLE | NONEDITIONABLE],
REUSE, SETTINGS, and DEBUG.
For details about GaussDB syntax, see "SQL
Reference > SQL Syntax > A > ALTER
FUNCTION" in Developer Guide.

2 ALTER
LIBRARY

Not
supported.

-

3 ALTER
PACKAGE

Supported,
with
differences
.

GaussDB does not support keywords
[EDITIONABLE | NONEDITIONABLE],
REUSE, SETTINGS, and DEBUG.
For details about GaussDB syntax, see "SQL
Reference > SQL Syntax > A > ALTER
PACKAGE" in Developer Guide.

4 ALTER
PROCEDURE

Supported,
with
differences
.

GaussDB does not support keywords
[EDITIONABLE | NONEDITIONABLE],
REUSE, SETTINGS, and DEBUG.

5 ALTER
TRIGGER

Supported,
with
differences
.

In GaussDB, only the trigger name can be
modified.
For details about GaussDB syntax, see "SQL
Reference > SQL Syntax > A > ALTER
TRIGGER" in Developer Guide.

6 ALTER TYPE Supported,
with
differences
.

GaussDB supports only some statements.
For details about GaussDB syntax, see "SQL
Reference > SQL Syntax > A > ALTER TYPE"
in Developer Guide.

Table 2-87 DROP statements

No. Oracle
Database

GaussDB Difference

1 DROP
FUNCTION

Supported. -

2 DROP
LIBRARY

Not
supported.

-

3 DROP
PACKAGE

Supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

No. Oracle
Database

GaussDB Difference

4 DROP
PROCEDURE

Supported. -

5 DROP
TRIGGER

Supported,
with
differences
.

The syntax of GaussDB is different from
that of Oracle Database.
For details about GaussDB syntax, see "SQL
Reference > SQL Syntax > D > DROP
TRIGGER" in Developer Guide.

6 DROP TYPE Supported,
with
differences
.

GaussDB does not support keywords FORCE
and VALIDATE.
For details about GaussDB syntax, see "SQL
Reference > SQL Syntax > D > DROP TYPE"
in Developer Guide.

7 DROP TYPE
BODY

Not
supported.

-

Table 2-88 Keywords related to functions, procedures, and anonymous blocks

No. Oracle
Database

GaussDB Difference

1 ACCESSIBLE
BY

Not
supported.

-

2 AGGREGATE Supported
, with
difference
s.

● GaussDB does not support Oracle
Database's aggregate using [schema.]
implementation_type.

● For details about GaussDB syntax, see
"SQL Reference > SQL Syntax > C >
CREATE AGGREGATE" in Developer
Guide.

The syntax is different, but the
implementation functions are the same.

3 DETERMINIS
TIC

Supported
, with
difference
s.

GaussDB supports the keyword
DETERMINISTIC only in syntax, but does not
support this function.

4 PIPE ROW Not
supported.

-

5 PIPELINED Not
supported.

-

6 SQL_MACRO Not
supported.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

No. Oracle
Database

GaussDB Difference

7 RESTRICT_RE
FERENCES

Not
supported.

-

8 INLINE Not
supported.

-

Table 2-89 Keywords related to exception handling

No. Oracle
Database

GaussDB Difference

1 EXCEPTION_
INIT

Supported,
with
differences.

Binding with system error codes is not
supported in GaussDB.

2 Exception Supported. -

3 Exception
Handler

Supported. -

4 SQLCODE Supported. -

5 SQLERRM Supported. -

Table 2-90 Other PL/SQL keywords

No. Oracle Database GaussDB

1 COVERAGE Not supported.

2 COLLATION Supported.

3 DEPRECATE Not supported.

4 FORALL Supported.

5 NOCOPY Not supported.

6 RETURNING Supported.

7 SERIALLY_REUSABLE Not supported.

8 SHARING Not supported.

9 BULK COLLECT Supported.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

2.11 System Functions
Compatible functions are classified into single-row functions, user-defined
functions, aggregate functions, analytic functions, object reference functions,
model functions, and OLAP functions.

2.11.1 Single-Row Functions

No. Oracle Database GaussDB

1 Numeric functions Supported, with differences.

2 Character functions returning
character values

Supported, with differences.

3 Character functions returning
number values

Supported, with differences.

4 Character set functions Not supported.

5 Collation functions Not supported.

6 Datetime functions Supported, with differences.

7 General comparison functions Supported, with differences.

8 Conversion functions Supported, with differences.

9 Large object functions Supported, with differences.

10 Collection functions Not supported.

11 Hierarchical functions Supported.

12 Data mining functions Not supported.

13 XML functions Supported, with differences.

14 JSON functions Not supported.

15 Encoding and decoding
functions

Supported, with differences.

16 Null-related functions Supported.

17 Environment and identifier
functions

Supported, with differences.

Table 2-91 Numeric functions

No. Oracle
Database

GaussDB Difference

1 ABS Supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

No. Oracle
Database

GaussDB Difference

2 ACOS Supported. -

3 ASIN Supported. -

4 ATAN Supported. -

5 ATAN2 Supported. -

6 BITAND Supported. -

7 CEIL Supported. -

8 COS Supported. -

9 COSH Supported. -

10 EXP Supported. -

11 FLOOR Supported. -

12 LN Supported. -

13 LOG Supported. -

14 MOD Supported,
with
differences.

● The return types are different. In Oracle
Database, the return types include
BINARY_DOUBLE, BINARY_FLOAT, and
NUMBER. In GaussDB, the return types
include INT2, INT4, INT8, and NUMERIC.

● If the first input parameter is of the
NUMERIC type, the second parameter must
be of the INT or NUMERIC type or can be
converted to the NUMERIC type. If
a_format_version is set to 10c,
a_format_dev_version is set to s6, and the
first parameter is of the TEXT type that can
be converted to NUMERIC, the second
parameter must be of the INT4 type or a
type with the value range smaller than
INT4.

15 NANVL Supported,
with
differences.

GaussDB: NaN cannot be obtained by directly
declaring or dividing a floating-point number
by 0.

16 POWER Supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

No. Oracle
Database

GaussDB Difference

17 REMAIND
ER

Supported,
with
differences.

The data types of the return values are
different.
GaussDB:
● If one input is of the FLOAT4 type and the

other is of the NUMERIC type, values of the
FLOAT4 type is returned.

● If both inputs are of the FLOAT4 type,
values of the FLOAT4 type is returned.

● If both inputs are of the FLOAT8 type,
values of the FLOAT8 type are returned.

● For other data types, values of the
NUMERIC type are returned.

Oracle Database:
The return type is NUMBER.

18 ROUND Supported,
with
differences.

● For the FLOAT type of the first parameter
n, the precision of GaussDB is lower than
that of Oracle.

● The returned types are different. If round(n,
integer) is used, Oracle Database returns
the NUMBER type, and GaussDB returns
the NUMERIC type. If round(n) is used,
Oracle Database returns the data type of n,
and GaussDB can return only the FLOAT8
or NUMERIC types, but cannot return
FLOAT4.

● The logic for the GaussDB to determine
that the input parameter is null and the
execution framework to return null is
different from that in Oracle Database.
SELECT round(NULL,'q');
Oracle Database reports null, and GaussDB
reports the error: invalid input syntax for
integer: "q".

19 SIGN Supported. -

20 SIN Supported. -

21 SINH Supported. -

22 SQRT Supported. -

23 TAN Supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

No. Oracle
Database

GaussDB Difference

24 TANH Supported,
with
differences.

The data types of the return values are
different.
GaussDB:
● If the input is of the FLOAT8 type, a value

of the FLOAT8 type is returned.
● If the input is of the NUMERIC type, a value

of the NUMERIC type is returned.
Oracle Database:
The return type is NUMBER.

25 TRUNC Supported. -

26 WIDTH_B
UCKET

Supported. -

Table 2-92 Character functions returning character values

No. Oracle
Database

GaussDB Difference

1 CHR Supported,
with
differences.

● If the entered number does not comply
with the existing character set, GaussDB
reports an error in JDBC and Oracle
Database returns garbled characters.

● If you enter 0 or 256, Oracle Database
returns characters whose ASCII code is 0,
and GaussDB truncates the characters at
'\0;.

2 CONCAT Supported. -

3 INITCAP Supported,
with
differences.

The return value is restricted by the database
character set. As a result, the returned result
is different from that in Oracle Database.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

No. Oracle
Database

GaussDB Difference

4 LOWER Supported,
with
differences.

● The return value types are different. The
data types of Oracle Database are the
same as the input types.

● The time format is implicitly converted.
When the time type is entered, the time
type is implicitly converted to a character
string and then the lower operation is
performed.
SELECT LOWER(TO_DATE('2012-12-10','YYYY-MM-DD'));
Oracle Database returns 10-DEC-12, and
GaussDB returns 2012-12-10 00:00:00.

● The return value is restricted by the
database character set. As a result, the
returned result is different from that in
Oracle Database.

5 LPAD Supported. -

6 LTRIM Supported,
with
differences.

The return value types are different.
If the input is of the character data type,
Oracle Database returns the VARCHAR2 type.
If the input is of the national character set
specified during database creation, Oracle
Database returns the NVARCHAR2 type. If the
input is of the LOB type, Oracle Database
returns the LOB type. GaussDB returns the
TEXT type.

7 NCHR Supported,
with
differences.

● The byte length of the return value is
different from that of Oracle Database.

● The return value is restricted by the
database character set. As a result, the
returned result is different from that in
Oracle Database.

● When the byte array corresponding to the
input parameter is returned, a question
mark (?) is returned if a single byte ranges
from 0x80 to 0xFF. In Oracle Database, a
question mark (?) is returned, no output is
returned, or an error is reported.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

No. Oracle
Database

GaussDB Difference

8 NLS_LOW
ER

Supported,
with
differences.

● The return value types are different. If the
input is of the character data type, Oracle
Database returns the VARCHAR2 type. If
the input is of the LOB type, Oracle
Database returns the LOB type. GaussDB
returns the TEXT type.

● In Oracle Database, the nlsparam
parameter can be of a type except
nls_sort, and no error is reported. GaussDB
supports only nls_sort.

● The return value is restricted by the
database character set. As a result, the
returned result is different from that in
Oracle Database.

9 NLS_UPPE
R

Supported,
with
differences.

● The return value types are different. If the
input is of the character data type, Oracle
Database returns the VARCHAR2 type. If
the input is of the LOB type, Oracle
Database returns the LOB type. GaussDB
returns the TEXT type.

● In Oracle Database, the nlsparam
parameter can be of a type except
nls_sort, and no error is reported. GaussDB
supports only nls_sort.

● The return value is restricted by the
database character set. As a result, the
returned result is different from that in
Oracle Database.

10 NLSSORT Supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

No. Oracle
Database

GaussDB Difference

11 REGEXP_R
EPLACE

Supported,
with
differences.

● GaussDB input parameter source_char
does not support the NCLOB type.

● The meaning of the 'n' option in the
match_param input parameter is
different. In GaussDB, the 'n' option has
the same meaning as the 'm' option,
indicating that the multi-row matching
mode is used. In Oracle Database, it
indicates that the dot (.) can match the
'\n' character. If this option is not specified,
the '\n' character cannot be matched by
default. In GaussDB, the dot (.) matches
'\n' by default. You do not need to specify
the option.

● The matching results of some regular
expressions may be different.
SELECT REGEXP_REPLACE('abc01234xyz', '(.*?)(\d+)(.*)',
'#', 'g') FROM DUAL;
Oracle Database reports an error, and
GaussDB returns #####xyz.

● The matching results may be different
when Chinese characters are entered in
the UTF-8 character set. Oracle Database
needs to implement regular expression
matching for Chinese character strings in
the GBK character set.

● The matching results of regular
expressions that contain some escape
characters may be different.
SELECT REGEXP_REPLACE('abcabc', '\abc', '#', 'g') FROM
DUAL;
Oracle Database reports an error, and
GaussDB returns abcabc.

● The matching rules are affected by the
aformat_regexp_match parameter. For
details about the affected specifications,
see the REGEXP_REPLACE function in "SQL
Reference > Functions and Operators >
Character Processing Functions and
Operators" in Developer Guide.

12 REGEXP_S
UBSTR

Supported,
with
differences.

The matching rules are affected by the
aformat_regexp_match parameter. For
details about the affected specifications, see
the REGEXP_SUBSTR function in "SQL
Reference > Functions and Operators >
Character Processing Functions and
Operators" in Developer Guide.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

No. Oracle
Database

GaussDB Difference

13 REPLACE Supported. -

14 RPAD Supported. -

15 RTRIM Supported. -

16 SUBSTR Supported. -

17 TRANSLAT
E

Supported. -

18 TRIM Supported. -

19 UPPER Supported,
with
differences.

● The return value types are different. The
data types of Oracle Database are the
same as the input types. GaussDB returns
the TEXT type.

● The time format is implicitly converted.
When the time type is entered, the time
type is implicitly converted to a character
string and then the upper operation is
performed.
SELECT UPPER(TO_DATE('2012-12-10','YYYY-MM-DD'));
Oracle Database returns 10-DEC-12, and
GaussDB returns 2012-12-10 00:00:00.

● The return value is restricted by the
database character set. As a result, the
returned result is different from that in
Oracle Database.

20 INSTRB Supported. -

Table 2-93 Character functions returning number values

No. Oracle
Database

GaussDB Difference

1 ASCII Supported,
with
differences.

The return value types are different. The
return value type is UINT4 for Oracle and
INT4 for GaussDB.

2 INSTR Supported. -

3 LENGTH Supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

No. Oracle
Database

GaussDB Difference

4 REGEXP_C
OUNT

Supported,
with
differences.

● GaussDB input parameter source_char
does not support the NCLOB type.

● The meaning of the 'n' option in the
match_param input parameter is
different. In GaussDB, the 'n' option has
the same meaning as the 'm' option,
indicating that the multi-row matching
mode is used. In Oracle Database, it
indicates that the dot (.) can match the
'\n' character. If this option is not specified,
the '\n' character cannot be matched by
default. In GaussDB, the dot (.) matches
'\n' by default. You do not need to specify
the option.

● The matching results of some regular
expressions may be different.

● The matching results may be different
when Chinese characters are entered in
the UTF-8 character set. Oracle Database
needs to implement regular expression
matching for Chinese character strings in
the GBK character set.

● The matching results of regular
expressions that contain some escape
characters may be different.

● The matching rules are affected by the
aformat_regexp_match parameter. For
details about the affected specifications,
see the REGEXP_COUNT function in "SQL
Reference > Functions and Operators >
Character Processing Functions and
Operators" in Developer Guide.

5 REGEXP_I
NSTR

Supported,
with
differences.

The matching rules are affected by the
aformat_regexp_match parameter. For
details about the affected specifications, see
the REGEXP_INSTR function in "SQL
Reference > Functions and Operators >
Character Processing Functions and
Operators" in Developer Guide.

6 LENGTHC Supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

Table 2-94 Datetime functions

No. Oracle
Database

GaussDB Difference

1 ADD_MONTH
S

Supported,
with
differences.

● From A.D. to B.C., the difference
between GaussDB and Oracle
Database is one year.

● The earliest year can be –4714 in
GaussDB and –4713 in Oracle
Database.

2 CURRENT_DA
TE

Supported,
with
differences.

GaussDB: The nls_date_format
parameter cannot be used to set the
time display format.

3 CURRENT_TIM
ESTAMP

Supported,
with
differences.

The value ranges from 0 to 9 in Oracle
Database.
The value ranges from 0 to 6 in
GaussDB. The trailing zeros in
microseconds are not displayed.

4 DBTIMEZONE Supported,
with
differences.

GaussDB: The timestamp API with the
built-in tz cannot be called.

5 EXTRACT Supported. -

6 LAST_DAY Supported,
with
differences.

The return value types are different.

7 LOCALTIMEST
AMP

Supported,
with
differences.

The value ranges from 0 to 9 in Oracle
Database.
The value ranges from 0 to 6 in
GaussDB. The trailing zeros in
microseconds are not displayed.

8 MONTHS_BET
WEEN

Supported,
with
differences.

The input parameter types are different.

9 NEW_TIME Supported,
with
differences.

When the first input parameter of the
new_time function is a literal, the literal
format and the return value type of the
function are different from those in
Oracle Database.

10 NEXT_DAY Supported. -

11 NUMTODSINT
ERVAL

Supported,
with
differences.

GaussDB: The dsinterval type is not
supported. Currently, interval is used to
be compatible with the dsinterval type.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

No. Oracle
Database

GaussDB Difference

12 NUMTOYMIN
TERVAL

Supported,
with
differences.

GaussDB: The yminterval type is not
supported. Currently, interval is used to
be compatible with the yminterval type.

13 SESSIONTIME
ZONE

Supported,
with
differences.

● The assignment syntax is different. In
GaussDB, the SET SESSION TIME
ZONE 8 syntax is used. In Oracle
Database, alter session set
time_zone= '+08:00' is used.

● The default values are different.
GaussDB: The time zone name is
displayed, for example, PRC. The
offset is used in Oracle Database, for
example, +08:00.

14 SYS_EXTRACT_
UTC

Supported. -

15 SYSDATE Supported,
with
differences.

The return value types are different.

16 SYSTIMESTAM
P

Supported,
with
differences.

GaussDB supports only six digits for
millisecond calculation, and Oracle
Database supports nine digits.

17 TO_CHAR Supported,
with
differences.

The fmt '5' is not included in Oracle
Database documents and is not
adapted.

18 TO_DSINTERV
AL

Supported,
with
differences.

GaussDB: The dsinterval type is not
supported. Currently, interval is used to
be compatible with the dsinterval type.

19 TO_TIMESTA
MP

Supported,
with
differences.

GaussDB supports only six digits for
millisecond calculation, and Oracle
Database supports nine digits.

20 TO_TIMESTA
MP_TZ

Supported,
with
differences.

The timestamptz type of GaussDB is
equivalent to the timestampwithlocalti-
mezone type of Oracle Database. The
type corresponding to timestamptz of
Oracle Database is missing. The value
of nls_date_language can only be
ENGLISH or AMERICAN.

21 TO_YMINTERV
AL

Supported,
with
differences.

GaussDB: The yminterval type is not
supported. Currently, interval is used to
be compatible with the yminterval type.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

No. Oracle
Database

GaussDB Difference

22 TRUNC Supported,
with
differences.

The type returned by GaussDB is the
same as the type of the first input
parameter. Oracle Database always
returns the date type. In addition, the
supported formats are different in the
two databases. For details about the
supported formats, see "SQL Reference
> Functions and Operators > Date and
Time Processing Functions and
Operators" in Developer Guide.

23 TZ_OFFSET Supported,
with
differences.

When a time zone name is received as
an input parameter, the types of the
time zone name are less than those of
Oracle Database.

Table 2-95 General comparison functions

No. Oracle
Database

GaussDB Difference

1 GREATEST Supported, with
differences.

● GaussDB: The comparison mode
specified by the NLS_SORT parameter
is not supported. Only binary
comparison is supported.

● GaussDB: Expressions in multiple
languages are not supported.

2 LEAST Supported, with
differences.

● GaussDB: The comparison mode
specified by the NLS_SORT parameter
is not supported. Only binary
comparison is supported.

● GaussDB: Expressions in multiple
languages are not supported.

Table 2-96 Conversion functions

No. Oracle
Database

GaussDB Difference

1 ASCIISTR Supported. -

2 CAST Supported,
with
differences.

● GaussDB: The MULTISET clause is not
supported.

● GaussDB: The nlsparam parameter is
not supported.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

No. Oracle
Database

GaussDB Difference

3 HEXTORAW Supported. -

4 RAWTOHEX Supported. -

5 TO_BINARY_
DOUBLE

Supported,
with
differences.

GaussDB: The nlsparam parameter is
not supported.

6 TO_BINARY_F
LOAT

Supported,
with
differences.

GaussDB: The nlsparam parameter is
not supported.

7 TO_BLOB Supported,
with
differences.

● GaussDB: The long raw type is not
supported.

● GaussDB: The bfile and mime_type
types are not supported.

8 TO_CLOB Supported. -

9 TO_DATE Supported,
with
differences.

● Multi-language parameters are not
supported.

● The returned types are different.
● The control parameter

NLS_DATE_FORMAT is missing.
● Some formats are not supported.
● fmt = 'j'. The output before October

15, 1582 in Oracle Database is
inconsistent with that in GaussDB.

● If there is no separator, the value may
be different from that in Oracle
Database. Take
to_date('220725','yymmdd') as an
example. If yy/rr is parsed based on
the fixed length 4, the year is parsed
as 2207 and the month is parsed as
25. The month 25 is invalid, and an
error will be reported.

10 TO_MULTI_B
YTE

Supported. -

11 TO_NCHAR Supported,
with
differences.

● GaussDB: The input parameter type is
converted to text.

● Oracle Database: The input
parameter type is converted to the
national character set.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

No. Oracle
Database

GaussDB Difference

12 TO_NUMBER Supported,
with
differences.

GaussDB does not support the
NLS_PARAM parameter.
The differences between the format
options of GaussDB and Oracle
Database are as follows:
1. $
GaussDB does not support this format.
2. Comma (,)
GaussDB: Commas (,) can appear at any
position of format.
Oracle Database:
● In format, commas can only appear

in the integer part and cannot appear
at the beginning of a number. In the
original data, commas can appear at
the beginning of a number.

● The number and position of commas
in the format can be different from
those in the original data, but the
position of the last comma must be
the same.

● Consecutive commas in the original
data and the format are equivalent to
no comma.

● If the original data does not contain
commas, the number of digits after
the last comma in the format must
be the same as that in the original
data.

3. B
GaussDB does not support this function.
4. C
GaussDB does not support the NLS
parameter.
5. G
GaussDB does not support the NLS
parameter.
6. L
GaussDB does not support the NLS
parameter.
7. U
GaussDB does not support the NLS
parameter.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

No. Oracle
Database

GaussDB Difference

8. D
GaussDB does not support the NLS
parameter.
9. PR
GaussDB: It is equivalent to S. A
negative number is returned.
Oracle Database:
● Returns the negative value in the

angle brackets (< >).
● Returns a positive value with leading

and trailing spaces.
● Restriction: PR format elements can

only appear at the last position of the
digital format model.

10. RN | rn
GaussDB does not support this function.
TM| TM9 | TMe
GaussDB does not support this function.
11. V
GaussDB does not support this function.
12. FM
In GaussDB, when there is FM, the
comma in the format can be more than
that in the original data. In other words,
the number of commas is not
necessarily the same.
In Oracle Database, spaces before and
after the return value are retained.
13. EEEE
GaussDB does not support this function.

13 TO_SINGLE_B
YTE

Supported. -

14 TREAT Supported,
with
differences.

In GaussDB, the period (.) operator
cannot be used to obtain values, and the
values cannot be converted to the
OBJECT type.

15 UNISTR Supported,
with
differences.

GaussDB supports only UTF-8 encoding.
Oracle Database supports UTF-8 and
UTF-16 encodings.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

Table 2-97 Large object functions

No. Oracle
Database

GaussDB Difference

1 EMPTY_BLO
B

Supported. -

2 EMPTY_CLO
B

Supported, with
differences.

GaussDB: The CLOB type does not
support the locator concept in Oracle
Database.

Table 2-98 Hierarchical functions

No. Oracle Database GaussDB

1 SYS_CONNECT_BY_PATH Not supported.

Table 2-99 XML functions

No. Oracle
Database

GaussDB Difference

1 EXISTSNODE Supported,
with
differences.

If the input parameter has a namespace,
aliases must be defined for both the XPath
and namespace.

2 EXTRACTVAL
UE

Supported,
with
differences.

Currently, only XPath 1.0 is supported.

3 SYS_XMLAG
G

Supported,
with
differences.

This is an alias of xmlagg and can be
replaced with xmlagg.

4 XMLAGG Supported. -

5 XMLCOMME
NT

Supported. -

6 XMLCONCAT Supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

No. Oracle
Database

GaussDB Difference

7 XMLELEMEN
T

Supported,
with
differences.

For xmlelement and xmlattributes, when
the value of name is NULL, the database
behavior is different from that in Oracle
Database.
● When the name column of xmlelement

is set to NULL, the name information is
empty and the attribute information is
not displayed.

● When the name column of
xmlattributes is set to NULL, the
attribute information is not displayed.

8 XMLEXISTS Supported,
with
differences.

GaussDB input parameter is of the XML
type.

9 XMLFOREST Supported,
with
differences.

GaussDB return value is of the XML type.
GaussDB does not support the EVALNAME
syntax.

10 XMLPARSE Supported,
with
differences.

GaussDB return value is of the XML type.
GaussDB does not support the
WELLFORMED syntax.

11 XMLROOT Supported,
with
differences.

GaussDB return value is of the XML type.

12 JSON_OBJEC
T

Supported. -

13 XMLTABLE Supported,
with
differences.

GaussDB: The XPath 1.0 expression is used
to select data from the XML file. The
default namespace cannot be declared,
multiple groups of inputs and aliases
cannot be obtained, the passing_clause
clause of the input data cannot be omitted,
and the RETURNING SEQUENCE BY REF
and (SEQUENCE) BY REF clauses are not
supported.

14 GETSTRINGV
AL

Supported. -

15 GETCLOBVAL Supported. -

16 XMLSEQUEN
CE

Supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

Table 2-100 Encoding and decoding functions

No. Oracle
Database

GaussDB Difference

1 DECODE Supported. -

2 DUMP Supported,
with
differences.

The returned results of the numeric and
time types in GaussDB are inconsistent with
those in Oracle Database due to different
storage formats. In GaussDB, select
dump(123); returns Typ=23 Len=4:
123,0,0,0. In Oracle Database, select
dump(123) from dual; returns Typ=2
Len=3: 194,2,24.

3 ORA_HASH Supported,
with
differences.

GaussDB has the following behaviors:
● The input parameter of the time type is

converted into the character string type
and then hashed.

● The maxbucket parameter is not
supported.

4 VSIZE Supported,
with
differences.

The returned results of the numeric and
time types in GaussDB are inconsistent with
those in Oracle Database due to different
storage formats. In GaussDB, select
vsize(999); returns 4. In Oracle Database,
select vsize(999) from dual; returns 3.

Table 2-101 Null-related functions

No. Oracle Database GaussDB

1 COALESCE Supported.

2 LNNVL Supported.

3 NULLIF Supported.

4 NVL Supported.

5 NVL2 Supported.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

Table 2-102 Environment and identifier functions

No. Oracle
Database

GaussDB Difference

1 SYS_CONTE
XT

Supported,
with
differences.

GaussDB returns NULL for unsupported
parameters.
The following parameters are not
supported:
● 'action'
● 'is_application_root'
● 'is_application_pdb'
● 'audited_cursorid'
● 'authenticated_identity'
● 'authentication_data'
● 'authentication_method'
● 'cdb_domain'
● 'cdb_name'
● 'client_identifier'
● 'con_id'
● 'con_name'
● 'current_sql_length'
● 'db_domain'
● 'db_supplemental_log_level'
● 'dblink_info'
● 'drain_status'
● 'entryid'
● 'enterprise_identity'
● 'fg_job_id'
● 'global_uid'
● 'identification_type'
● 'instance'
● 'is_dg_rolling_upgrade'
● 'ldap_server_type'
● 'module'
● 'network_protocol'
● 'nls_calendar'
● 'nls_sort'
● 'nls_territory'
● 'oracle_home'
● 'os_user'
● 'platform_slash'

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

No. Oracle
Database

GaussDB Difference

● 'policy_invoker'
● 'proxy_enterprise_identity'
● 'proxy_user'
● 'proxy_userid'
● 'scheduler_job'
● 'session_edition_id'
● 'session_edition_name'
● 'sessionid'
● 'statementid'
● 'terminal'
● 'unified_audit_sessionid'
● 'session_default_collation'
● 'client_info'
● 'bg_job_id'
● 'client_program_name'
● 'current_bind'
● 'global_context_memory'
● 'host'
● 'current_sqln'

2 SYS_GUID Supported. -

3 USER Supported,
with
differences.

The return value types are different.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

No. Oracle
Database

GaussDB Difference

4 USERENV Supported,
with
differences.

GaussDB returns NULL for unsupported
parameters.
The following parameters are not
supported:
● 'action'
● 'is_application_root'
● 'is_application_pdb'
● 'audited_cursorid'
● 'authenticated_identity'
● 'authentication_data'
● 'authentication_method'
● 'cdb_domain'
● 'cdb_name'
● 'client_identifier'
● 'con_id'
● 'con_name'
● 'current_sql_length'
● 'db_domain'
● 'db_supplemental_log_level'
● 'dblink_info'
● 'drain_status'
● 'entryid'
● 'enterprise_identity'
● 'fg_job_id'
● 'global_uid'
● 'identification_type'
● 'is_dg_rolling_upgrade'
● 'ldap_server_type'
● 'module'
● 'network_protocol'
● 'nls_calendar'
● 'nls_sort'
● 'nls_territory'
● 'oracle_home'
● 'os_user'
● 'platform_slash'
● 'policy_invoker'
● 'proxy_enterprise_identity'

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

No. Oracle
Database

GaussDB Difference

● 'proxy_user'
● 'proxy_userid'
● 'scheduler_job'
● 'session_edition_id'
● 'session_edition_name'
● 'sessionid'
● 'statementid'
● 'terminal'
● 'unified_audit_sessionid'
● 'session_default_collation'
● 'client_info'
● 'bg_job_id'
● 'client_program_name'
● 'current_bind'
● 'global_context_memory'
● 'host'
● 'current_sqln'

2.11.2 Other Functions

No. Oracle Database GaussDB

1 Aggregate functions Supported.

2 Analytic functions Supported.

3 Object reference functions Not supported.

4 Models functions Not supported.

5 OLAP functions Not supported.

6 Data cartridge functions Not supported.

7 User-defined functions Supported.

Table 2-103 Aggregate functions

No. Oracle
Database

GaussDB Difference

1 AVG Supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

No. Oracle
Database

GaussDB Difference

2 CORR Supported. -

3 COUNT Supported. -

4 COVAR_POP Supported. -

5 COVAR_SAMP Supported. -

6 CUME_DIST Supported. -

7 DENSE_RANK Supported. -

8 FIRST Supported. The KEEP syntax used in GaussDB is
compatible with Oracle Database.

9 GROUPING Supported. -

10 LAST Supported. The KEEP syntax used in GaussDB is
compatible with Oracle Database.

11 LISTAGG Supported. -

12 MAX Supported. -

13 MEDIAN Supported. -

14 MIN Supported. -

15 PERCENT_RAN
K

Supported. -

16 PERCENTILE_C
ONT

Supported. -

17 RANK Supported. -

18 REGR_ (Linear
Regression)

Supported. -

19 STDDEV Supported. -

20 STDDEV_POP Supported. -

21 STDDEV_SAM
P

Supported. -

22 SUM Supported. -

23 VAR_POP Supported. -

24 VAR_SAMP Supported. -

25 VARIANCE Supported. -

26 WM_CONCAT Supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

Table 2-104 Analytic functions

No. Oracle
Database

GaussDB Difference

1 FIRST_VALUE Supported. -

2 LAG Supported. -

3 LAST_VALUE Supported. -

4 LEAD Supported. -

5 NTH_VALUE Supported,
with
differences.

● Oracle Database: The FROM FIRST|
LAST syntax format is supported.

● GaussDB: The FROM FIRST|LAST
syntax format is not supported.

6 NTILE Supported. -

7 ROW_NUMBE
R

Supported. -

8 RATIO_TO_RE
PORT

Supported. -

2.12 System Views
GaussDB is compatible with some Oracle Database system views. For details, see
the following table.

For details about columns in system views, see "System Views" in Developer
Guide.

Table 2-105 Supported system views

No. Oracle Database GaussDB

1 ALL_ALL_TABLES DB_ALL_TABLES

2 ALL_COL_PRIVS DB_COL_PRIVS

3 ALL_COLL_TYPES DB_COLL_TYPES

4 ALL_IND_COLUMNS DB_IND_COLUMNS

5 ALL_COL_COMMENTS DB_COL_COMMENTS

6 ALL_CONS_COLUMNS DB_CONS_COLUMNS

7 ALL_CONSTRAINTS DB_CONSTRAINTS

8 ALL_DEPENDENCIES DB_DEPENDENCIES

9 ALL_DIRECTORIES DB_DIRECTORIES

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

No. Oracle Database GaussDB

10 ALL_IND_EXPRESSIONS DB_IND_EXPRESSIONS

11 ALL_IND_PARTITIONS DB_IND_PARTITIONS

12 ALL_INDEXES DB_INDEXES

13 ALL_IND_SUBPARTITIONS DB_IND_SUBPARTITIONS

14 ALL_OBJECTS DB_OBJECTS

15 ALL_PART_COL_STATISTIC
S

DB_PART_COL_STATISTICS

16 ALL_PART_KEY_COLUMNS DB_PART_KEY_COLUMNS

17 ALL_PART_TABLES DB_PART_TABLES

18 ALL_SCHEDULER_JOB_AR
GS

DB_SCHEDULER_JOB_ARGS

19 ALL_SCHEDULER_PROGRA
M_ARGS

DB_SCHEDULER_PROGRAM_ARGS

20 ALL_SEQUENCES DB_SEQUENCES

21 ALL_SUBPART_KEY_COLU
MNS

DB_SUBPART_KEY_COLUMNS

22 ALL_SYNONYMS DB_SYNONYMS

23 ALL_TAB_COL_STATISTICS DB_TAB_COL_STATISTICS

24 ALL_TAB_COMMENTS DB_TAB_COMMENTS

25 ALL_TAB_HISTOGRAMS DB_TAB_HISTOGRAMS

26 ALL_TAB_STATS_HISTORY DB_TAB_STATS_HISTORY

27 ALL_TYPES DB_TYPES

28 ALL_PROCEDURES DB_PROCEDURES

29 ALL_SOURCE DB_SOURCE

30 ALL_TAB_COLUMNS DB_TAB_COLUMNS

31 ALL_TAB_PARTITIONS DB_TAB_PARTITIONS

32 ALL_TAB_SUBPARTITIONS DB_TAB_SUBPARTITIONS

33 ALL_TABLES DB_TABLES

34 ALL_TRIGGERS DB_TRIGGERS

35 ALL_USERS DB_USERS

36 ALL_VIEWS DB_VIEWS

37 DBA_AUDIT_OBJECT ADM_AUDIT_OBJECT

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

No. Oracle Database GaussDB

38 DBA_AUDIT_SESSION ADM_AUDIT_SESSION

39 DBA_AUDIT_STATEMENT ADM_AUDIT_STATEMENT

40 DBA_AUDIT_TRAIL ADM_AUDIT_TRAIL

41 DBA_COL_COMMENTS ADM_COL_COMMENTS

42 DBA_COL_PRIVS ADM_COL_PRIVS

43 DBA_COLL_TYPES ADM_COLL_TYPES

44 DBA_ARGUMENTS ADM_ARGUMENTS

45 DBA_CONSTRAINTS ADM_CONSTRAINTS

46 DBA_DATA_FILES ADM_DATA_FILES

47 DBA_CONS_COLUMNS ADM_CONS_COLUMNS

48 DBA_DEPENDENCIES ADM_DEPENDENCIES

49 DBA_DIRECTORIES ADM_DIRECTORIES

50 DBA_PART_COL_STATISTIC
S

ADM_PART_COL_STATISTICS

51 DBA_PART_TABLES ADM_PART_TABLES

52 DBA_ROLE_PRIVS ADM_ROLE_PRIVS

53 DBA_ROLES ADM_ROLES

54 DBA_SCHEDULER_JOB_AR
GS

ADM_SCHEDULER_JOB_ARGS

55 DBA_SCHEDULER_PROGR
AMS

ADM_SCHEDULER_PROGRAMS

56 DBA_SCHEDULER_PROGR
AM_ARGS

ADM_SCHEDULER_PROGRAM_ARGS

57 DBA_HIST_SNAPSHOT ADM_HIST_SNAPSHOT

58 DBA_HIST_SQL_PLAN ADM_HIST_SQL_PLAN

59 DBA_HIST_SQLSTAT ADM_HIST_SQLSTAT

60 DBA_HIST_SQLTEXT ADM_HIST_SQLTEXT

61 DBA_ILMDATAMOVEMEN
TPOLICIES

GS_ADM_ILMDATAMOVEMENTPOLICIES

62 DBA_ILMEVALUATIONDE-
TAILS

GS_ADM_ILMEVALUATIONDETAILS

63 DBA_ILMOBJECTS GS_ADM_ILMOBJECTS

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

No. Oracle Database GaussDB

64 DBA_ILMPARAMETERS GS_ADM_ILMPARAMETERS

65 DBA_ILMPOLICIES GS_ADM_ILMPOLICIES

66 DBA_ILMRESULTS GS_ADM_ILMRESULTS

67 DBA_ILMTASKS GS_ADM_ILMTASKS

68 DBA_IND_COLUMNS ADM_IND_COLUMNS

69 DBA_IND_EXPRESSIONS ADM_IND_EXPRESSIONS

70 DBA_IND_PARTITIONS ADM_IND_PARTITIONS

71 DBA_INDEXES ADM_INDEXES

72 DBA_OBJECTS ADM_OBJECTS

73 DBA_PART_INDEXES ADM_PART_INDEXES

74 DBA_PROCEDURES ADM_PROCEDURES

75 DBA_SCHEDULER_JOBS ADM_SCHEDULER_JOBS

76 DBA_SCHEDULER_RUNNI
NG_JOBS

ADM_SCHEDULER_RUNNING_JOBS

77 DBA_SEGMENTS ADM_SEGMENTS

78 DBA_SEQUENCES ADM_SEQUENCES

79 DBA_SOURCE ADM_SOURCE

80 DBA_IND_SUBPARTITIONS ADM_IND_SUBPARTITIONS

81 DBA_SUBPART_KEY_COLU
MNS

ADM_SUBPART_KEY_COLUMNS

82 DBA_SYS_PRIVS ADM_SYS_PRIVS

83 DBA_TAB_COL_STATISTICS ADM_TAB_COL_STATISTICS

84 DBA_TAB_HISTOGRAMS ADM_TAB_HISTOGRAMS

85 DBA_TAB_STATISTICS ADM_TAB_STATISTICS

86 DBA_TAB_STATS_HISTORY ADM_TAB_STATS_HISTORY

87 DBA_TABLESPACES ADM_TABLESPACES

88 DBA_TYPES ADM_TYPES

89 DBA_USERS ADM_USERS

90 DBA_SYNONYMS ADM_SYNONYMS

91 DBA_TAB_COLS ADM_TAB_COLS

92 DBA_TAB_COLUMNS ADM_TAB_COLUMNS

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

No. Oracle Database GaussDB

93 DBA_TAB_COMMENTS ADM_TAB_COMMENTS

94 DBA_TABLES ADM_TABLES

95 DBA_TAB_PARTITIONS ADM_TAB_PARTITIONS

96 DBA_TAB_SUBPARTITIONS ADM_TAB_SUBPARTITIONS

97 DBA_TRIGGERS ADM_TRIGGERS

98 DBA_TYPE_ATTRS ADM_TYPE_ATTRS

99 DBA_VIEWS ADM_VIEWS

100 ROLE_ROLE_PRIVS ROLE_ROLE_PRIVS

101 ROLE_SYS_PRIVS ROLE_SYS_PRIVS

102 ROLE_TAB_PRIVS ROLE_TAB_PRIVS

103 USER_COL_COMMENTS MY_COL_COMMENTS

104 USER_COL_PRIVS MY_COL_PRIVS

105 USER_COLL_TYPES MY_COLL_TYPES

106 USER_CONSTRAINTS MY_CONSTRAINTS

107 USER_DEPENDENCIES MY_DEPENDENCIES

108 DICT DICT

109 DICTIONARY DICTIONARY

110 DUAL DUAL

111 NLS_DATABASE_PARAMET
ERS

NLS_DATABASE_PARAMETERS

112 NLS_INSTANCE_PARAMET
ERS

NLS_INSTANCE_PARAMETERS

113 PLAN_TABLE PLAN_TABLE

114 USER_ILMDATAMOVEME
NTPOLICIES

GS_MY_ILMDATAMOVEMENTPOLICIES

115 USER_ILMEVALUATIONDE
TAILS

GS_MY_ILMEVALUATIONDETAILS

116 USER_ILMOBJECTS GS_MY_ILMOBJECTS

117 USER_ILMPOLICIES GS_MY_ILMPOLICIES

118 USER_ILMRESULTS GS_MY_ILMRESULTS

119 USER_ILMTASKS GS_MY_ILMTASKS

120 USER_IND_COLUMNS MY_IND_COLUMNS

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

No. Oracle Database GaussDB

121 USER_IND_EXPRESSIONS MY_IND_EXPRESSIONS

122 USER_IND_PARTITIONS MY_IND_PARTITIONS

123 USER_IND_SUBPARTITION
S

MY_IND_SUBPARTITIONS

124 USER_INDEXES MY_INDEXES

125 USER_JOBS MY_JOBS

126 USER_OBJECTS MY_OBJECTS

127 USER_PART_COL_STATISTI
CS

MY_PART_COL_STATISTICS

128 USER_PART_INDEXES MY_PART_INDEXES

129 USER_PART_TABLES MY_PART_TABLES

130 USER_PROCEDURES MY_PROCEDURES

131 USER_SCHEDULER_JOB_A
RGS

MY_SCHEDULER_JOB_ARGS

132 USER_SCHEDULER_PROG
RAM_ARGS

MY_SCHEDULER_PROGRAM_ARGS

133 USER_SEQUENCES MY_SEQUENCES

134 USER_SOURCE MY_SOURCE

135 USER_SUBPART_KEY_COL
UMNS

MY_SUBPART_KEY_COLUMNS

136 USER_SYNONYMS MY_SYNONYMS

137 USER_SYS_PRIVS MY_SYS_PRIVS

138 USER_TAB_COL_STATISTIC
S

MY_TAB_COL_STATISTICS

139 USER_TAB_COLUMNS MY_TAB_COLUMNS

140 USER_TAB_COMMENTS MY_TAB_COMMENTS

141 USER_TAB_HISTOGRAMS MY_TAB_HISTOGRAMS

142 USER_TAB_PARTITIONS MY_TAB_PARTITIONS

143 USER_TAB_STATISTICS MY_TAB_STATISTICS

144 USER_TAB_STATS_HISTOR
Y

MY_TAB_STATS_HISTORY

145 USER_TABLES MY_TABLES

146 USER_TABLESPACES MY_TABLESPACES

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

No. Oracle Database GaussDB

147 USER_TRIGGERS MY_TRIGGERS

148 USER_TYPE_ATTRS MY_TYPE_ATTRS

149 USER_TYPES MY_TYPES

150 USER_VIEWS MY_VIEWS

151 V$NLS_PARAMETERS V$NLS_PARAMETERS

152 V$SESSION_WAIT V$SESSION_WAIT

153 V$SYSSTAT V$SYSSTAT

154 V$SYSTEM_EVENT V$SYSTEM_EVENT

155 V$VERSION V$VERSION

156 V$INSTANCE V_INSTANCE

157 GV$INSTANCE GV_INSTANCE

158 V$MYSTAT V_MYSTAT

159 V$SESSION V_SESSION

160 GV$SESSION GV_SESSION

161 V$SESSION_LONGOPS DV_SESSION_LONGOPS

162 V$SESSION DV_SESSIONS

163 ALL_ARGUMENTS DB_ARGUMENTS

164 USER_CONS_COLUMNS MY_CONS_COLUMNS

165 USER_PART_KEY_COLUM
NS

MY_PART_KEY_COLUMNS

166 USER_ROLE_PRIVS MY_ROLE_PRIVS

167 DBA_TAB_PRIVS ADM_TAB_PRIVS

168 USER_SCHEDULER_JOBS MY_SCHEDULER_JOBS

169 V$LOCK V$LOCK

170 V$DBLINK V$DBLINK

171 V
$GLOBAL_TRANSACTION

V$GLOBAL_TRANSACTION

172 V$OPEN_CURSOR V$OPEN_CURSOR

173 V
$GLOBAL_OPEN_CURSOR

V$GLOBAL_OPEN_CURSOR

174 ALL_TAB_PRIVS DB_TAB_PRIVS

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

No. Oracle Database GaussDB

175 ALL_TAB_MODIFICATIONS DB_TAB_MODIFICATIONS

176 USER_TAB_MODIFICATIO
NS

MY_TAB_MODIFICATIONS

177 USER_AUDIT_TRAIL MY_AUDIT_TRAIL

2.13 Advanced Packages
GaussDB is compatible with some advanced packages in Oracle Database. For
details, see the following table.

For more information about the advanced packages, see "Advanced Packages" in
Developer Guide.

Table 2-106 Supported advanced packages

No. Oracle
Database

GaussDB Difference

1 DBMS_LOB DBE_LOB For details about how to use it in
GaussDB, see "Stored Procedure >
Advanced Packages > Secondary
Encapsulation APIs (Recommended) >
DBE_LOB" in Developer Guide.

2 DBMS_RAND
OM

DBE_RANDO
M

For details about how to use it in
GaussDB, see "Stored Procedure >
Advanced Packages > Secondary
Encapsulation APIs (Recommended) >
DBE_RANDOM" in Developer Guide.

3 DBMS_OUTP
UT

DBE_OUTPUT For details about how to use it in
GaussDB, see "Stored Procedure >
Advanced Packages > Secondary
Encapsulation APIs (Recommended) >
DBE_OUTPUT" in Developer Guide.

4 UTL_RAW DBE_RAW For details about how to use it in
GaussDB, see "Stored Procedure >
Advanced Packages > Secondary
Encapsulation APIs (Recommended) >
DBE_RAW" in Developer Guide.

5 DBMS_SCHED
ULER

DBE_SCHEDU
LER

For details about how to use it in
GaussDB, see "Stored Procedure >
Advanced Packages > Secondary
Encapsulation APIs (Recommended) >
DBE_SCHEDULER" in Developer Guide.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 120

No. Oracle
Database

GaussDB Difference

6 DBMS_UTILIT
Y

DBE_UTILITY For details about how to use it in
GaussDB, see "Stored Procedure >
Advanced Packages > Secondary
Encapsulation APIs (Recommended) >
DBE_UTILITY" in Developer Guide.

7 DBMS_SQL DBE_SQL For details about how to use it in
GaussDB, see "Stored Procedure >
Advanced Packages > Secondary
Encapsulation APIs (Recommended) >
DBE_SQL" in Developer Guide.

8 UTL_FILE DBE_FILE For details about how to use it in
GaussDB, see "Stored Procedure >
Advanced Packages > Secondary
Encapsulation APIs (Recommended) >
DBE_FILE" in Developer Guide.

9 DBMS_SESSIO
N

DBE_SESSION For details about how to use it in
GaussDB, see "Stored Procedure >
Advanced Packages > Secondary
Encapsulation APIs (Recommended) >
DBE_SESSION" in Developer Guide.

10 UTL_MATCH DBE_MATCH For details about how to use it in
GaussDB, see "Stored Procedure >
Advanced Packages > Secondary
Encapsulation APIs (Recommended) >
DBE_MATCH" in Developer Guide.

11 DBMS_APPLIC
ATION_INFO

DBE_APPLICA
TION_INFO

For details about how to use it in
GaussDB, see "Stored Procedure >
Advanced Packages > Secondary
Encapsulation APIs (Recommended) >
DBE_APPLICATION_INFO" in
Developer Guide.

12 DBMS_XMLD
OM

DBE_XMLDO
M

For details about information in
GaussDB, see "Stored Procedure >
Advanced Packages > Secondary
Encapsulation APIs (Recommended) >
DBE_XMLDOM" in Developer Guide.

13 DBMS_XMLPA
RSER

DBE_XMLPAR
SER

For details about information in
GaussDB, see "Stored Procedure >
Advanced Packages > Secondary
Encapsulation APIs (Recommended) >
DBE_XMLPARSER" in Developer Guide.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

No. Oracle
Database

GaussDB Difference

14 DBMS_ILM DBE_ILM For details about information in
GaussDB, see "Stored Procedure >
Advanced Packages > Secondary
Encapsulation APIs (Recommended) >
DBE_ILM" in Developer Guide.

15 DBMS_ILM_A
DMIN

DBE_ILM_AD
MIN

For details about information in
GaussDB, see "Stored Procedure >
Advanced Packages > Secondary
Encapsulation APIs (Recommended) >
DBE_ILM_ADMIN" in Developer Guide.

16 DBMS_COMP
RESSION

DBE_COMPRE
SSION

For details about information in
GaussDB, see "Stored Procedure >
Advanced Packages > Secondary
Encapsulation APIs (Recommended) >
DBE_COMPRESSION" in Developer
Guide.

17 DBMS_HEAT_
MAP

DBE_HEAT_M
AP

For details about information in
GaussDB, see "Stored Procedure >
Advanced Packages > Secondary
Encapsulation APIs (Recommended) >
DBE_HEAT_MAP" in Developer Guide.

18 DBMS_DESCR
IBE

DBE_DESCRIB
E

For details about information in
GaussDB, see "Stored Procedure >
Advanced Packages > Secondary
Encapsulation APIs (Recommended) >
DBE_DESCRIBE" in Developer Guide.

19 DBMS_XMLGE
N

DBE_XMLGEN For details about information in
GaussDB, see "Stored Procedure >
Advanced Packages > Secondary
Encapsulation APIs (Recommended) >
DBE_XMLGEN" in Developer Guide.

20 DBMS_STATS DBE_STATS For details about information in
GaussDB, see "Stored Procedure >
Advanced Packages > Secondary
Encapsulation APIs (Recommended) >
DBE_STATS" in Developer Guide.

Table 2-107 DBMS_LOB compatibility

No. Oracle
Database

GaussDB Difference

1 APPEND
Procedures

APPEND Procedures -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 122

No. Oracle
Database

GaussDB Difference

2 CLOB2FILE
Procedure

Not supported. -

3 CLOSE Procedure BFILECLOSE
Procedure

GaussDB: The parameter type
is BFILE, and no function
overloading exists.
Oracle Database: There are
three overloaded procedures.
The procedures have three
parameters lob_loc, lob_loc,
and file_loc, which are of the
BLOB, CLOB CHARACTER SET
ANY_CS, and BFILE types,
respectively.

4 COMPARE
Functions

COMPARE
Functions

GaussDB: There are three
overloaded functions. The
third parameter (len) is of the
BIGINT type.
Oracle Database: There are
three overloaded functions.
The third parameter (amount)
is of the INTEGER type.

5 CONVERTTOBLO
B Procedure

LOB_CONVERTTOB
LOB Procedure

GaussDB: This procedure has
five parameters, and the third,
fourth, and fifth parameters
are of the BIGINT type.
Oracle Database: This
procedure has eight
parameters. In addition to all
GaussDB parameters, the
blob_csid, lang_context, and
warning parameters are
added, which are of the
NUMBER, INTEGER, and
INTEGER types, respectively.
The third, fourth, and fifth
parameters are of the
INTEGER type.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 123

No. Oracle
Database

GaussDB Difference

6 CONVERTTOCLO
B Procedure

LOB_CONVERTTOC
LOB Procedure

GaussDB: This procedure has
five parameters. The third,
fourth, and fifth parameters
are of the BIGINT type.
Oracle Database: This
procedure has eight
parameters. The third, fourth,
and fifth parameters are of
the INTEGER type. In addition
to all GaussDB parameters,
this procedure in Oracle
Database adds three
parameters: blob_csid,
lang_context, and warning,
which are of NUMBER,
INTEGER, and INTEGER types,
respectively.

7 COPY Procedures LOB_COPY
Functions

-

8 COPY_DBFS_LIN
K Procedures

Not supported. -

9 COPY_FROM_DB
FS_LINK

Not supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 124

No. Oracle
Database

GaussDB Difference

10 CREATETEMPOr
acleRY
Procedures

CREATE_TEMPOracl
eRY Procedures

GaussDB: There are two
overloaded procedures. The
first parameter (lob_loc) of
the first overloaded procedure
is of the BLOB type, and the
first parameter (lob_loc) of
the second overloaded
procedure is of the CLOB type.
The third parameter (dur) of
the two overloaded
procedures is of the INTEGER
type, and the default value is
10.
Oracle Database: There are
two overloaded procedures.
The first parameter (lob_loc)
of the first overloaded
procedure is of the BLOB type.
The first parameter (lob_loc)
of the second overloaded
procedure is of the CLOB type.
The third parameter (dur) of
the two overloaded
procedures is of the
PLS_INTEGER type. The
default value of dur of the
first overloaded procedure is
DBMS_LOB.SESSION, and the
default value of dur of the
second overloaded procedure
is 10.

11 DBFS_LINK_GEN
ERATE_PATH
Functions

Not supported. -

12 ERASE
Procedures

LOB_ERASE
Procedures

-

13 FILECLOSE
Procedure

Not supported. -

14 FILECLOSEALL
Procedure

Not supported. -

15 FILEEXISTS
Function

Not supported. -

16 FILEGETNAME
Procedure

Not supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

No. Oracle
Database

GaussDB Difference

17 FILEISOPEN
Function

Not supported. -

18 FILEOPEN
Procedure

Not supported. -

19 FRAGMENT_DEL
ETE Procedure

Not supported. -

20 FRAGMENT_INS
ERT Procedures

Not supported. -

21 FRAGMENT_MO
VE Procedure

Not supported. -

22 FRAGMENT_REP
LACE Procedures

Not supported. -

23 FREETEMPOracle
RY Procedures

Not supported. -

24 GET_DBFS_LINK
Functions

Not supported. -

25 GET_DBFS_LINK_
STATE
Procedures

Not supported. -

26 GETCHUNKSIZE
Functions

GETCHUNKSIZE
Functions

-

27 GETCONTENTTY
PE Functions

Not supported. -

28 GETLENGTH
Functions

Not supported. -

29 GETOPTIONS
Functions

Not supported. -

30 GET_STOracleGE
_LIMIT Function

Not supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

No. Oracle
Database

GaussDB Difference

31 INSTR Functions MATCH Functions GaussDB: There are three
overloaded functions. The
third and fourth parameters of
the three overloaded functions
are of the BIGINT type.
Oracle Database: There are
three overloaded functions.
The third and fourth
parameters of the three
overloaded functions are of
the INTEGER type.

32 ISOPEN
Functions

Not supported. -

33 ISREMOTE
Function

Not supported. -

34 ISSECUREFILE
Function

Not supported. -

35 ISTEMPOracleRY
Functions

Not supported. -

36 LOADBLOBFRO
MFILE Procedure

LOADBLOBFROMFI
LE Procedure

-

37 LOADCLOBFRO
MFILE Procedure

LOADCLOBFROMFI
LE Procedure

-

38 LOADFROMFILE
Procedure

LOADFROMFILE
Procedure

-

39 MOVE_TO_DBFS
_LINK
Procedures

Not supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 127

No. Oracle
Database

GaussDB Difference

40 OPEN
Procedures

BFILEOPEN
Procedure

GaussDB: There is no
overloaded procedure. The
first parameter (bfile) is of
the DBE_LOB.BFILE type, and
the second parameter
(open_mode) is of the TEXT
type. Only the read mode is
supported.
Oracle Database: There are
three overloaded procedures.
In the first overloaded
procedure, the first parameter
(lob_loc) is of the NOCOPY
BLOB type, and the second
parameter (openmode) is of
the BINARY_INTEGER type. In
the second overloaded
procedure, the first parameter
(lob_loc) is of the NOCOPY
CLOB CHARACTER SET
ANY_CS type, and the second
parameter (openmode) is of
the BINARY_INTEGER type. In
the third overloaded
procedure, the first parameter
(file_loc) is of the NOCOPY
BFILE type, and the second
parameter (openmode) is of
the BINARY_INTEGER type,
and the value can only be
file_readonly.

41 READ
Procedures

READ Procedures GaussDB: There are two
overloaded procedures.
Oracle Database: There are
three overloaded procedures.
The first two overloaded
procedures are the same as
those in GaussDB. The third
overloaded procedure includes
four parameters: file_loc,
amount, offset, and buffer,
which are of the BFILE,
NOCOPY INTEGER, INTEGER,
and RAW types, respectively.

42 SET_DBFS_LINK
Procedures

Not supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 128

No. Oracle
Database

GaussDB Difference

43 SETCONTENTTY
PE Procedure

Not supported. -

44 SETOPTIONS
Procedures

Not supported. -

45 SUBSTR
Functions

LOB_SUBSTR
Functions

-

46 TRIM Procedures STRIP Functions GaussDB: There are two
overloaded procedures. The
second parameter (newlen) of
the two overloaded
procedures is of the BIGINT
type.
Oracle Database: There are
two overloaded procedures.
The second parameter
(newlen) of the two
overloaded procedures is of
the INTEGER type.

47 WRITE
Procedures

WRITE Functions -

48 WRITEAPPEND
Procedures

WRITEAPPEND
Functions

-

Table 2-108 DBMS_RANDOM compatibility

No. Oracle
Database

GaussDB Difference

1 INITIALIZE
Procedure

Not supported. -

2 NORMAL
Function

Not supported. -

3 RANDOM
Function

Not supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 129

No. Oracle
Database

GaussDB Difference

4 SEED Procedures DBE_RANDOM.SET_
SEED Function

GaussDB: There is no
overloaded function. The
parameter is of the INTEGER
type.
Oracle Database: There are
two overloaded procedures.
The parameter types of the
two overloaded procedures are
VARCHAR2 and
BINARY_INTEGER, respectively.

5 STRING
Function

Not supported. -

6 TERMINATE
Procedure

Not supported. -

7 VALUE
Functions

DBE_RANDOM.GET
_VALUE Function

GaussDB: There is no
overloaded function.
Oracle Database: The VALUE
function without parameters is
overloaded, and the return
type is NUMBER.

Table 2-109 DBMS_OUTPUT compatibility

No. Oracle
Database

GaussDB Difference

1 DISABLE
Procedure

DISABLE Function -

2 ENABLE
Procedure

ENABLE Function -

3 GET_LINE
Procedure

GET_LINE
Function

GaussDB: There is no overloaded
function. The first parameter
(lines) is of the VARCHAR[] type.
Oracle Database: There are two
overloaded procedures. The first
parameters (lines) of the two
overloaded procedures are of the
CHARARR and
DBMSOUTPUT_LINESARRAY
types, respectively.

4 GET_LINES
Procedure

GET_LINES
Function

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 130

No. Oracle
Database

GaussDB Difference

5 NEW_LINE
Procedure

NEW_LINE
Function

-

6 PUT Procedure PUT Function GaussDB: If the character set of
the database server
(server_encoding) is not
encoded in UTF-8 and the
character encoding of the input
parameter is valid UTF-8, this
function converts character
encoding based on the
relationship "UTF8 >
server_encoding" and then
outputs the result regardless of
the data type of the input
parameter.
Oracle Database: If the character
set of the database server
(server_encoding) is not
encoded in UTF-8, the character
encoding of the input parameter
is valid UTF-8, and the input
parameter type is NVARCHAR2,
this procedure coverts the
character encoding based on the
relationship "UTF8 >
server_encoding" and then
outputs the result. If the input
parameter is of other character
types, the character encoding is
regarded as an invalid character
and output as a placeholder.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 131

No. Oracle
Database

GaussDB Difference

7 PUT_LINE
Procedure

PUT_LINE
Function

GaussDB: If the character set of
the database server
(server_encoding) is not
encoded in UTF-8 and the
character encoding of the input
parameter is valid UTF-8, this
function converts character
encoding based on the
relationship "UTF8 >
server_encoding" and then
outputs the result regardless of
the data type of the input
parameter.
Oracle Database: If the character
set of the database server
(server_encoding) is not
encoded in UTF-8, the character
encoding of the input parameter
is valid UTF-8, and the input
parameter type is NVARCHAR2,
this procedure coverts the
character encoding based on the
relationship "UTF8 >
server_encoding" and then
outputs the result. If the input
parameter is of other character
types, the character encoding is
regarded as an invalid character
and output as a placeholder.

Table 2-110 UTL_RAW compatibility

No. Oracle Database GaussDB Difference

1 BIT_AND
Function

BIT_AND Function -

2 BIT_COMPLEME
NT Function

BIT_COMPLEMENT
Function

-

3 BIT_OR Function BIT_OR Function GaussDB: The two parameters
are defined as the TEXT type
and returned as the TEXT
type.
Oracle Database: The two
parameters are of the RAW
type and returned as the RAW
type.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 132

No. Oracle Database GaussDB Difference

4 BIT_XOR
Function

BIT_XOR Function -

5 CAST_FROM_BIN
ARY_DOUBLE
Function

CAST_FROM_BINAR
Y_DOUBLE_TO_RA
W Function

-

6 CAST_FROM_BIN
ARY_FLOAT
Function

CAST_FROM_BINAR
Y_FLOAT_TO_RAW
Function

GaussDB: The n parameter is
of the FLOAT4 type.
Oracle Database: The n
parameter is of the FLOAT
type.

7 CAST_FROM_BIN
ARY_INTEGER
Function

CAST_FROM_BINAR
Y_INTEGER_TO_RA
W Function

GaussDB: The value
parameter is of the BIGINT
type.
Oracle Database: The value
parameter is of the INTEGER
type.

8 CAST_FROM_NU
MBER Function

CAST_FROM_NUMB
ER_TO_RAW
Function

GaussDB: The n parameter is
of the NUMERIC type.
Oracle Database: The n
parameter is of the NUMBER
type.

9 CAST_TO_BINARY
_DOUBLE
Function

CAST_FROM_RAW_
TO_BINARY_DOUBL
E Function

-

10 CAST_TO_BINARY
_FLOAT Function

CAST_FROM_RAW_
TO_BINARY_FLOAT
Function

GaussDB: The function returns
the FLOAT4 type.
Oracle Database: The function
returns the FLOAT type.

11 CAST_TO_BINARY
_INTEGER
Function

CAST_FROM_RAW_
TO_BINARY_INTEGE
R Function

GaussDB: The endianess
parameter is of the INTEGER
type, and the function returns
the INTEGER type.
Oracle Database: The
endianess parameter is of the
PLS_INTEGER type, and the
function returns the
BINARY_INTEGER type.

12 CAST_TO_NUMB
ER Function

CAST_FROM_RAW_
TO_NUMBER
Function

GaussDB: The function returns
the NUMERIC type.
Oracle Database: The function
returns the NUMBER type.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 133

No. Oracle Database GaussDB Difference

13 CAST_TO_NVARC
HAR2 Function

CAST_FROM_RAW_
TO_NVARCHAR2
Function

-

14 CAST_TO_RAW
Function

CAST_FROM_VARCH
AR2_TO_RAW
Function

-

15 CAST_TO_VARCH
AR2 Function

CAST_TO_VARCHAR
2 Function

-

16 COMPARE
Function

COMPARE Function GaussDB: The function returns
the INTEGER type.
Oracle Database: The function
returns the NUMBER type.

17 CONCAT
Function

CONCAT Function -

18 CONVERT
Function

CONVERT Function -

19 COPIES Function COPIES Function GaussDB: The n parameter is
of the NUMERIC type.
Oracle Database: The n
parameter is of the NUMBER
type.

20 LENGTH Function GET_LENGTH
Function

-

21 OVERLAY
Function

OVERLAY Function -

22 REVERSE
Function

REVERSE Function -

23 SUBSTR Function SUBSTR Function GaussDB: The lob_loc
parameter is of the BLOB
type. The off_set parameter is
of the INTEGER type and its
default value is 1. The
amount parameter is of the
INTEGER type and its default
value is 32767.
Oracle Database: The r
parameter is of the RAW type.
The pos parameter is of the
BINARY_INTEGER type and
has no default value. The len
parameter is of the
BINARY_INTEGER type and its
default value is NULL.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 134

No. Oracle Database GaussDB Difference

24 TRANSLATE
Function

TRANSLATE
Function

-

25 TRANSLITERATE
Function

TRANSLITERATE
Function

-

26 XRANGE
Function

XRANGE Function GaussDB: The start_byte and
end_byte parameters do not
have default values.
Oracle Database: The default
values of the start_byte and
end_byte parameters are
NULL.

Table 2-111 DBMS_SCHEDULER compatibility

No. Oracle Database GaussDB

1 ADD_EVENT_QUEUE_SUBSCRIBER
Procedure

Not supported.

2 ADD_GROUP_MEMBER Procedure Not supported.

3 ADD_JOB_EMAIL_NOTIFICATION
Procedure

Not supported.

4 ADD_TO_INCOMPATIBILITY
Procedure

Not supported.

5 ALTER_CHAIN Procedure Not supported.

6 ALTER_RUNNING_CHAIN Procedure Not supported.

7 CLOSE_WINDOW Procedure Not supported.

8 COPY_JOB Procedure Not supported.

9 CREATE_CHAIN Procedure Not supported.

10 CREATE_CREDENTIAL Procedure CREATE_CREDENTIAL Procedure

11 CREATE_DATABASE_DESTINATION
Procedure

Not supported.

12 CREATE_EVENT_SCHEDULE
Procedure

Not supported.

13 CREATE_FILE_WATCHER Procedure Not supported.

14 CREATE_GROUP Procedure Not supported.

15 CREATE_INCOMPATIBILITY
Procedure

Not supported.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 135

No. Oracle Database GaussDB

16 CREATE_JOB Procedure CREATE_JOB Procedure

17 CREATE_JOB_CLASS Procedure CREATE_JOB_CLASS Procedure

18 CREATE_JOBS Procedure Not supported.

19 CREATE_PROGRAM Procedure CREATE_PROGRAM Procedure

20 CREATE_RESOURCE Procedure Not supported.

21 CREATE_SCHEDULE Procedure CREATE_SCHEDULE Procedure

22 CREATE_WINDOW Procedure Not supported.

23 DEFINE_ANYDATA_ARGUMENT
Procedure

Not supported.

24 DEFINE_CHAIN_EVENT_STEP
Procedure

Not supported.

25 DEFINE_CHAIN_RULE Procedure Not supported.

26 DEFINE_CHAIN_STEP Procedure Not supported.

27 DEFINE_METADATA_ARGUMENT
Procedure

Not supported.

28 DEFINE_PROGRAM_ARGUMENT
Procedure

DEFINE_PROGRAM_ARGUMENT
Procedure

29 DISABLE Procedure DISABLE Procedure

30 DROP_AGENT_DESTINATION
Procedure

Not supported.

31 DROP_CHAIN Procedure Not supported.

32 DROP_CHAIN_RULE Procedure Not supported.

33 DROP_CHAIN_STEP Procedure Not supported.

34 DROP_CREDENTIAL Procedure DROP_CREDENTIAL Procedure

35 DROP_DATABASE_DESTINATION
Procedure

Not supported.

36 DROP_FILE_WATCHER Procedure Not supported.

37 DROP_GROUP Procedure Not supported.

38 DROP_INCOMPATIBILITY Procedure Not supported.

39 DROP_JOB Procedure DROP_JOB Procedure

40 DROP_JOB_CLASS Procedure DROP_JOB_CLASS Procedure

41 DROP_PROGRAM Procedure DROP_PROGRAM Procedure

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 136

No. Oracle Database GaussDB

42 DROP_PROGRAM_ARGUMENT
Procedure

Not supported.

43 DROP_SCHEDULE Procedure DROP_SCHEDULE Procedure

44 DROP_WINDOW Procedure Not supported.

45 ENABLE Procedure ENABLE Procedure

46 END_DETACHED_JOB_RUN
Procedure

Not supported.

47 EVALUATE_CALENDAR_STRING
Procedure

EVALUATE_CALENDAR_STRING
Procedure

48 EVALUATE_RUNNING_CHAIN
Procedure

Not supported.

49 GENERATE_JOB_NAME Function GENERATE_JOB_NAME Function

50 GET_AGENT_INFO Function Not supported.

51 GET_AGENT_VERSION Function Not supported.

52 GET_ATTRIBUTE Procedure Not supported.

53 GET_FILE Procedure Not supported.

54 GET_SCHEDULER_ATTRIBUTE
Procedure

Not supported.

55 OPEN_WINDOW Procedure Not supported.

56 PURGE_LOG Procedure Not supported.

57 PUT_FILE Procedure Not supported.

58 REMOVE_EVENT_QUEUE_SUBSCRI
BER Procedure

Not supported.

59 REMOVE_FROM_INCOMPATIBILITY
Procedure

Not supported.

60 REMOVE_GROUP_MEMBER
Procedure

Not supported.

61 REMOVE_JOB_EMAIL_NOTIFICATIO
N Procedure

Not supported.

62 RESET_JOB_ARGUMENT_VALUE
Procedure

Not supported.

63 RUN_CHAIN Procedure Not supported.

64 RUN_JOB Procedure RUN_JOB Procedure

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 137

No. Oracle Database GaussDB

65 SET_AGENT_REGISTRATION_PASS
Procedure

Not supported.

66 SET_ATTRIBUTE Procedure SET_ATTRIBUTE Procedure

67 SET_ATTRIBUTE_NULL Procedure Not supported.

68 SET_JOB_ANYDATA_VALUE
Procedure

Not supported.

69 SET_JOB_ARGUMENT_VALUE
Procedure

SET_JOB_ARGUMENT_VALUE
Procedure

70 SET_JOB_ATTRIBUTES Procedure Not supported.

71 SET_RESOURCE_CONSTRAINT
Procedure

Not supported.

72 SET_SCHEDULER_ATTRIBUTE
Procedure

Not supported.

73 STOP_JOB Procedure STOP_JOB Procedure

Table 2-112 DBMS_UTILITY compatibility

No. Oracle Database GaussDB Difference

1 ACTIVE_INSTANCES
Procedure

Not supported. -

2 ANALYZE_DATABASE
Procedure

Not supported. -

3 ANALYZE_PART_OBJECT
Procedure

Not supported. -

4 ANALYZE_SCHEMA
Procedure

Not supported. -

5 CANONICALIZE
Procedure

CANONICALIZE
Procedure

GaussDB: The default
size of the canon_len
parameter is 1024 bytes.
Oracle Database: The
canon_len parameter
has no default value.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 138

No. Oracle Database GaussDB Difference

6 COMMA_TO_TABLE
Procedures

COMMA_TO_TABL
E Procedures

GaussDB: The tab
parameter is a
VARCHAR2 array.
Oracle Database: There
are two overloaded
procedures. The tab
parameter can be of the
uncl_array or
lname_array type.

7 COMPILE_SCHEMA
Procedure

Not supported. -

8 CREATE_ALTER_TYPE_ER
ROR_TABLE Procedure

Not supported. -

9 CURRENT_INSTANCE
Function

Not supported. -

10 DATA_BLOCK_ADDRESS_
BLOCK Function

Not supported. -

11 DATA_BLOCK_ADDRESS_
FILE Function

Not supported. -

12 DB_VERSION Procedure DB_VERSION
Procedure

GaussDB: There is only
the version parameter,
which is of the
VARCHAR2 type. Oracle
Database: There are the
version and
compatibility
parameters, which are
of the VARCHAR2 type.

13 EXEC_DDL_STATEMENT
Procedure

EXEC_DDL_STATE
MENT Function

GaussDB: The
parse_string parameter
is of the TEXT type.
Oracle Database: The
parse_string parameter
is of the VARCHAR2
type.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 139

No. Oracle Database GaussDB Difference

14 EXPAND_SQL_TEXT
Procedure

EXPAND_SQL_TEX
T Function

GaussDB: The
output_sql_text
parameter is of the
CLOB type.
Oracle Database: The
output_sql_text
parameter is of the
NOCOPY CLOB type.
The OUT parameter is
passed by reference.

15 FORMAT_CALL_STACK
Function

FORMAT_CALL_ST
ACK Function

GaussDB: The function
returns the TEXT type.
Oracle Database: The
function returns the
VARCHAR2 type.

16 FORMAT_ERROR_BACKT
RACE Function

FORMAT_ERROR_
BACKTRACE
Function

GaussDB: The function
returns the TEXT type.
Oracle Database: The
function returns the
VARCHAR2 type.

17 FORMAT_ERROR_STACK
Function

FORMAT_ERROR_
STACK Function

GaussDB: The function
returns the TEXT type.
Oracle Database: The
function returns the
VARCHAR2 type.

18 GET_CPU_TIME Function GET_CPU_TIME
Function

GaussDB: The function
returns the BIGINT type.
Oracle Database: The
function returns the
NUMBER type.

19 GET_DEPENDENCY
Procedure

Not supported. -

20 GET_ENDIANNESS
Function

GET_ENDIANNESS
Function

GaussDB: The function
returns the INTEGER
type.
Oracle Database: The
function returns the
NUMBER type.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 140

No. Oracle Database GaussDB Difference

21 GET_HASH_VALUE
Function

GET_HASH_VALUE
Function

GaussDB: The base and
hash_size parameter
values and the return
value are all of the
INTEGER type.
Oracle Database: The
base and hash_size
values and the return
value are all of the
NUMBER type.

22 GET_PARAMETER_VALUE
Function

Not supported. -

23 GET_SQL_HASH
Function

GET_SQL_HASH
Function

GaussDB: The
last4bytes parameter of
the BIGINT type
specifies the last four
bytes of an MD5 hash
value and is displayed as
an unsigned integer. The
function returns the
BIGINT type.
Oracle Database: The
pre10ihash parameter
of the NUMBER type is
used to store the 4-byte
hash value among the
16 bytes calculated by
MD5.

24 GET_TIME Function GET_TIME
Function

GaussDB: The function
returns the BIGINT type.
Oracle Database: The
function returns the
NUMBER type.

25 GET_TZ_TRANSITIONS
Procedure

Not supported. -

26 INVALIDATE Procedure Not supported. -

27 IS_BIT_SET Function IS_BIT_SET
Function

GaussDB: The n
parameter and return
value type are both
INTEGER.
Oracle Database: The n
parameter and return
value type are both
NUMBER.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 141

No. Oracle Database GaussDB Difference

28 IS_CLUSTER_DATABASE
Function

IS_CLUSTER_DATA
BASE Function

-

29 MAKE_DATA_BLOCK_AD
DRESS Function

Not supported. -

30 NAME_RESOLVE
Procedure

NAME_RESOLVE
Procedure

GaussDB: The context
and part1_type
parameters are of the
INTEGER type, and the
object_number
parameter is of the OID
type. GaussDB does not
support implicit
conversion from
NUMBER to OID.
Oracle Database: The
context, part1_type,
and object_number
parameters are of the
NUMBER type.

31 NAME_TOKENIZE
Procedure

NAME_TOKENIZE
Procedure

GaussDB: The nextpos
parameter is of the
INTEGER type.
Oracle Database: The
nextpos parameter is of
the BINARY_INTEGER
type.

32 OLD_CURRENT_SCHEMA
Function

OLD_CURRENT_SC
HEMA Function

GaussDB: The function
returns the VARCHAR
type.
Oracle Database: The
function returns the
VARCHAR2 type.

33 OLD_CURRENT_USER
Function

OLD_CURRENT_U
SER Function

GaussDB: The function
returns the TEXT type.
Oracle Database: The
function returns the
VARCHAR2 type.

34 PORT_STRING Function Not supported. -

35 SQLID_TO_SQLHASH
Function

Not supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 142

No. Oracle Database GaussDB Difference

36 TABLE_TO_COMMA
Procedures

TABLE_TO_COMM
A Procedures

GaussDB: The tab
parameter is a
VARCHAR2 array.
Oracle Database: There
are two overloaded
stored procedures. The
tab parameter can be of
the uncl_array or
lname_array type.

37 VALIDATE Procedure Not supported. -

38 WAIT_ON_PENDING_DM
L Function

Not supported. -

Table 2-113 DBMS_SQL compatibility

No. Oracle Database GaussDB Difference

1 BIND_ARRAY
Procedures

SQL_BIND_ARRAY
Function

-

2 BIND_VARIABLE
Procedures

SQL_BIND_VARIABL
E Function

-

3 BIND_VARIABLE_PKG
Procedure

Not supported. -

4 CLOSE_CURSOR
Procedure

SQL_UNREGISTER_C
ONTEXT Function

-

5 COLUMN_VALUE
Procedure

GET_RESULT
Procedure

-

6 COLUMN_VALUE_LO
NG Procedure

Not supported. -

7 DEFINE_ARRAY
Procedure

SET_RESULTS_TYPE
Procedure

-

8 DEFINE_COLUMN
Procedures

SET_RESULT_TYPE
Procedure

-

9 DEFINE_COLUMN_C
HAR Procedure

Not supported. -

10 DEFINE_COLUMN_L
ONG Procedure

Not supported. -

11 DEFINE_COLUMN_R
AW Procedure

Not supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 143

No. Oracle Database GaussDB Difference

12 DEFINE_COLUMN_R
OWID Procedure

Not supported. -

13 DESCRIBE_COLUMNS
Procedure

DESCRIBE_COLUMN
S Procedure

-

14 DESCRIBE_COLUMNS
2 Procedure

Not supported. -

15 DESCRIBE_COLUMNS
3 Procedure

Not supported. -

16 EXECUTE Function SQL_RUN Function GaussDB: The return value
is a constant 1. Currently,
the comparison between
unknown types in the
statement cannot return
correct results.
Oracle Database: The
return value is the number
of affected rows for
INSERT, UPDATE, and
DELETE statements and is
meaningless for other
statements.

17 EXECUTE_AND_FETC
H Function

RUN_AND_NEXT
Function

-

18 FETCH_ROWS
Function

NEXT_ROW
Function

-

19 GET_NEXT_RESULT
Procedures

Not supported. -

20 IS_OPEN Function IS_ACTIVE Function -

21 LAST_ERROR_POSITI
ON Function

Not supported. -

22 LAST_ROW_COUNT
Function

LAST_ROW_COUNT
Function

-

23 LAST_ROW_ID
Function

Not supported. -

24 LAST_SQL_FUNCTIO
N_CODE Function

Not supported. -

25 OPEN_CURSOR
Functions

REGISTER_CONTEXT
Function

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 144

No. Oracle Database GaussDB Difference

26 PARSE Procedures Supported, with
differences.

In GaussDB, the
SQL_SET_SQL function
does not support
overloading.

27 RETURN_RESULT
Procedures

Not supported. -

28 TO_CURSOR_NUMBE
R Function

Not supported. -

29 TO_REFCURSOR
Function

Not supported. -

30 VARIABLE_VALUE
Procedures

GET_VARIABLE_RES
ULT Procedures

-

31 VARIABLE_VALUE_PK
G Procedure

Not supported. -

Table 2-114 DBMS_SQL data type compatibility

No. Oracle Database GaussDB

1 DBMS_SQL DESC_REC DBE_SQL.DESC_REC

2 DBMS_SQL DATE_TABLE DBE_SQL.DATE_TABLE

3 DBMS_SQL
NUMBER_TABLE

DBE_SQL.NUMBER_TABLE

4 DBMS_SQL
VARCHAR2_TABLE

DBE_SQL.VARCHAR2_TABLE

5 DBMS_SQL BLOB_TABLE DBE_SQL.BLOB_TABLE

Table 2-115 UTL_FILE compatibility

No. Oracle
Database

GaussDB Difference

1 FCLOSE
Procedure

CLOSE Procedure -

2 FCLOSE_ALL
Procedure

CLOSE_ALL Procedure -

3 FCOPY Procedure COPY Procedure -

4 FFLUSH
Procedure

FLUSH Procedure -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 145

No. Oracle
Database

GaussDB Difference

5 FGETATTR
Procedure

GET_ATTR Procedure -

6 FGETPOS
Function

GET_POS Function -

7 FOPEN Function FOPEN Function -

8 FOPEN_NCHAR
Function

FOPEN_NCHAR
Function

-

9 FREMOVE
Procedure

REMOVE Procedure -

10 FRENAME
Procedure

RENAME Procedure -

11 FSEEK Procedure SEEK Procedure -

12 GET_LINE
Procedure

READ_LINE Procedure -

13 GET_LINE_NCHA
R Procedure

READ_LINE_NCHAR
Procedure

-

14 GET_RAW
Procedure

GET_RAW Procedure -

15 IS_OPEN
Function

IS_OPEN Function -

16 NEW_LINE
Procedure

Supported, with
differences in the
NEW_LINE function

GaussDB defines the API as a
function.

17 PUT Procedure Supported, with
differences in the
WRITE function

GaussDB defines the API as a
function.

18 PUT_LINE
Procedure

Supported, with
differences in the
WRITE_LINE function

GaussDB defines the API as a
function.

19 PUT_LINE_NCHA
R Procedure

Supported, with
differences in the
WRITE_LINE_NCHAR
function

GaussDB defines the API as a
function.

20 PUT_NCHAR
Procedure

Supported, with
differences in the
WRITE_NCHAR
function

GaussDB defines the API as a
function.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 146

No. Oracle
Database

GaussDB Difference

21 PUTF Procedure Supported, with
differences in the
FORMAT_WRITE
function

GaussDB defines the API as a
function.

22 PUTF_NCHAR
Procedure

Supported, with
differences in the
FORMAT_WRITE_NC
HAR function

GaussDB defines the API as a
function.

23 PUT_RAW
Procedure

Supported, with
differences in the
PUT_RAW function

GaussDB defines the API as a
function.

Table 2-116 DBMS_SESSION compatibility

No. Oracle Database GaussDB Difference

1 CLEAR_ALL_CONTEXT
Procedure

Not supported. -

2 CLEAR_CONTEXT
Procedure

CLEAR_CONTEXT
Function

-

3 CLEAR_IDENTIFIER
Procedure

Not supported. -

4 CLOSE_DATABASE_LIN
K Procedure

Not supported. -

5 CURRENT_IS_ROLE_EN
ABLED Function

Not supported. -

6 FREE_UNUSED_USER_
MEMORY Procedure

Not supported. -

7 GET_PACKAGE_MEMOR
Y_UTILIZATION
Procedure

Not supported. -

8 IS_ROLE_ENABLED
Function

Not supported. -

9 IS_SESSION_ALIVE
Function

Not supported. -

10 LIST_CONTEXT
Procedures

Not supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 147

No. Oracle Database GaussDB Difference

11 MODIFY_PACKAGE_STA
TE Procedure

MODIFY_PACKAGE_
STATE Procedure

GaussDB: The scenario
where flags is set to 1 is
supported.
Oracle Database: The
scenario where flags is
set to 1 or 2 is
supported.

12 RESET_PACKAGE
Procedure

Not supported. -

13 SESSION_IS_ROLE_ENA
BLED Function

Not supported. -

14 SESSION_TRACE_DISAB
LE Procedure

Not supported. -

15 SESSION_TRACE_ENAB
LE Procedure

Not supported. -

16 SET_CONTEXT
Procedure

SET_CONTEXT
Function

GaussDB: There are the
namespace, attribute,
and value parameters of
the TEXT type.
Oracle Database: There
are the namespace,
attribute, value,
username, and
client_id parameters of
the VARCHAR2 type.

17 SET_EDITION_DEFERRE
D Procedure

Not supported. -

18 SET_IDENTIFIER
Procedure

Not supported. -

19 SET_NLS Procedure Not supported. -

20 SET_ROLE Procedure Not supported. -

21 SET_SQL_TRACE
Procedure

Not supported. -

22 SLEEP Procedure Not supported. -

23 SWITCH_CURRENT_CO
NSUMER_GROUP
Procedure

Not supported. -

24 UNIQUE_SESSION_ID
Function

Not supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 148

Table 2-117 UTL_MATCH compatibility

No. Oracle Database GaussDB Difference

1 EDIT_DISTANCE
Function

Not supported. -

2 EDIT_DISTANCE_SIMI
LARITY Function

EDIT_DISTANC
E_SIMILARITY
Function

GaussDB: The str1 and str2
parameters are of the TEXT
type, and the function returns
the INTEGER type.
Oracle Database: The s1 and s2
parameters are of the
VARCHAR2 type, and the
function returns the
PLS_INTEGER type.

3 JARO_WINKLER
Function

Not supported. -

4 JARO_WINKLER_SIMI
LARITY Function

Not supported. -

Table 2-118 DBMS_APPLICATION_INFO compatibility

No. Oracle
Database

GaussDB Difference

1 READ_CLIENT_IN
FO Function

READ_CLIENT_
INFO
Procedure

GaussDB: The client_info parameter
is of the TEXT type.
Oracle Database: The client_info
parameter is of the VARCHAR2 type.

2 READ_MODULE
Procedure

READ_MODUL
E Procedure

GaussDB: The module_name and
action_name parameters are of the
TEXT type.
Oracle Database: The
module_name and action_name
parameters are of the VARCHAR2
type.

3 SET_ACTION
Procedure

SET_ACTION
Procedure

GaussDB: The action_name
parameter is of the TEXT type.
Oracle Database: The action_name
parameter is of the VARCHAR2 type.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 149

No. Oracle
Database

GaussDB Difference

4 SET_CLIENT_INF
O Function

SET_CLIENT_IN
FO Procedure

GaussDB: The str parameter is of
the TEXT type, and the return type is
VOID.
Oracle Database: The client_info
parameter is of the VARCHAR2 type
and no value is returned. Both of
them are written to the client. The
maximum length is 64 bytes. If the
length exceeds 64 bytes, it will be
truncated.

5 SET_MODULE
Procedure

SET_MODULE
Procedure

GaussDB: The module_name and
action_name parameters are of the
TEXT type.
Oracle Database: The
module_name and action_name
parameters are of the VARCHAR2
type.

6 SET_SESSION_LO
NGOPS
Procedure

Not supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 150

Table 2-119 DBMS_XMLDOM compatibility

No. Oracle Database GaussDB Difference

1 DBMS_XMLDOM.
APPENDCHILD

DBE_XMLDOM.AP
PENDCHILD

● GaussDB: The error message
"operation not support" is
displayed for the APPEND
ATTR node under the
DOCUMENT node.
Oracle Database: No error is
reported in this scenario, but
the mounting fails.

● GaussDB: The error message
"operation not support" is
displayed for the APPEND
ATTR node under the ATTR
node.
Oracle Database: No error is
reported in this scenario, but
the mounting fails.

● GaussDB: When multiple
child nodes of the ATTR type
are added to a parent node,
the child nodes with the
same key value cannot exist
under the same parent node.
Oracle Database: Child nodes
with the same key value can
exist under the same parent
node.

2 DBMS_XMLDOM.
CREATEELEMENT

DBE_XMLDOM.CR
EATEELEMENT

-

3 DBMS_XMLDOM.
CREATETEXTNO
DE

DBE_XMLDOM.CR
EATETEXTNODE

-

4 DBMS_XMLDOM.
FREEDOCUMENT

Supported, with
differences in
DBE_XMLDOM.FR
EEDOCUMENT

GaussDB: Objects are not
released immediately. They are
released after a certain number
of objects are accumulated. All
nodes in the document are
invalid.
Oracle Database: The object is
released immediately.

5 DBMS_XMLDOM.
FREEELEMENT

DBE_XMLDOM.FR
EEELEMENT

-

6 DBMS_XMLDOM.
FREENODE

DBE_XMLDOM.FR
EENODE

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 151

No. Oracle Database GaussDB Difference

7 DBMS_XMLDOM.
FREENODELIST

Supported, with
differences in
DBE_XMLDOM.FR
EENODELIST

GaussDB: The nodelist will be
released.
Oracle Database: After the
nodelist is released, it can still
be queried in the original
document.

8 DBMS_XMLDOM.
GETATTRIBUTE

DBE_XMLDOM.GE
TATTRIBUTE

-

9 DBMS_XMLDOM.
GETATTRIBUTES

DBE_XMLDOM.GE
TATTRIBUTES

-

10 DBMS_XMLDOM.
GETCHILDNODE
S

DBE_XMLDOM.GE
TCHILDNODES

GaussDB: When the document
node is used, DTD is included.
Oracle Database: DTD is not
included.

11 DBMS_XMLDOM.
GETCHILDRENBY
TAGNAME

DBE_XMLDOM.GE
TCHILDRENBYTAG
NAME

GaussDB: The ns parameter of
the
DBE_XMLDOM.GETCHILDRENBY
TAGNAME API does not support
the asterisk (*) parameter. To
obtain all attributes of a node,
use the
DBE_XMLDOM.GETCHILDNODE
S API.
Oracle Database: The input
parameter * is supported.

12 DBMS_XMLDOM.
GETDOCUMENT
ELEMENT

DBE.XMLDOM.GE
TDOCUMENTELE
MENT

-

13 DBMS_XMLDOM.
GETFIRSTCHILD

DBE_XMLDOM.GE
TFIRSTCHILD

-

14 DBMS_XMLDOM.
GETLASTCHILD

DBE_XMLDOM.GE
TLASTCHILD

-

15 DBMS_XMLDOM.
GETLENGTH

DBE_XMLDOM.GE
TLENGTH

-

16 DBMS_XMLDOM.
GETLOCALNAME

DBE_XMLDOM.GE
TLOCALNAME

-

17 DBMS_XMLDOM.
GETNAMEDITEM

DBE_XMLDOM.GE
TNAMEDITEM

-

18 DBMS_XMLDOM.
GETNEXTSIBLING

DBE_XMLDOM.GE
TNEXTSIBLING

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 152

No. Oracle Database GaussDB Difference

19 DBMS_XMLDOM.
GETNODENAME

DBE_XMLDOM.GE
TNODENAME

-

20 DBMS_XMLDOM.
GETNODETYPE

DBE_XMLDOM.GE
TNODETYPE

-

21 DBMS_XMLDOM.
GETTAGNAME

DBE_XMLDOM.GE
TTAGNAME

-

22 DBMS_XMLDOM.
IMPORTNODE

DBE_XMLDOM.IM
PORTNODE

-

23 DBMS_XMLDOM.
ISNULL

DBE_XMLDOM.ISN
ULL

GaussDB: When the input
parameter is of the
DOMNODELIST type, an error is
reported if the object does not
exist in the hash table.
Oracle Database: No error is
reported.

24 DBMS_XMLDOM.
ITEM

DBE_XMLDOM.ITE
M

-

25 DBMS_XMLDOM.
MAKENODE

DBE_XMLDOM.MA
KENODE

GaussDB: This function cannot
be directly returned as the
function return value.
Oracle Database: It is directly
returned as the function return
value.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 153

No. Oracle Database GaussDB Difference

26 DBMS_XMLDOM.
NEWDOMDOCU
MENT

DBE_XMLDOM.NE
WDOMDOCUMEN
T

● GaussDB: The size of the
input parameter must be less
than 1 GB.
Oracle Database: The size is
the same as that of the CLOB
type.

● Currently, external DTD
parsing is not supported in
GaussDB.
Oracle Database: External
DTD can be parsed.

● GaussDB: The default
character set of doc created
by newdomdocument is
UTF-8.
Oracle Database: It is
generated based on the
character set of the server.

● GaussDB: Each doc parsed
from the same xmltype
instance is independent, and
the modification of the doc
does not affect the xmltype.
Oracle Database: Each doc
parsed from the same
xmltype instance is not
independent but associated.

● GaussDB: The version
column supports only 1.0. If
1.0 to 1.9 are parsed, a
warning is reported but the
execution is normal. For
versions later than 1.9, an
error is reported.
Oracle Database: No error is
reported.

● DTD validation difference:
GaussDB reports an error
for !ATTLIST to type
(CHECK|check|Check) "Ch..."
because the default value
"Ch..." is not an enumerated
value in the brackets.
However, Oracle Database
does not report this error. An
error will be reported for <!
ENTITY baidu
"www.baidu.com">......
&Baidu;&writer, because the

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 154

No. Oracle Database GaussDB Difference

letters are case-sensitive and
Baidu cannot correspond to
baidu.
Oracle Database: No error is
reported.

● Namespace verification
difference between GaussDB
and Oracle Database:
Undeclared namespace tags
are parsed in GaussDB.
Oracle Database: An error is
reported.

27 DBMS_XMLDOM.
SETATTRIBUTE

DBE_XMLDOM.SE
TATTRIBUTE

GaussDB: The attribute key
cannot be null or an empty
string.
Oracle Database: The attribute
key can be null or an empty
string.

28 DBMS_XMLDOM.
SETCHARSET

DBE_XMLDOM.SE
TCHARSET

Currently, the following
character sets are supported in
GaussDB: UTF-8, UCS-4, UCS-2,
ISO-8859-1, ISO-8859-2,
ISO-8859-3, ISO-8859-4,
ISO-8859-5, ISO-8859-6,
ISO-8859-7, ISO-8859-8,
ISO-8859-9, ISO-2022-JP,
Shift_JIS, EUC-JP, and ASCII. If
you enter other character sets,
an error is reported or garbled
characters may be displayed.

29 DBMS_XMLDOM.
SETDOCTYPE

DBE_XMLDOM.SE
TDOCTYPE

GaussDB: The total length of
name, sysid, and pubid cannot
exceed 32,500 bytes.
Oracle Database: The maximum
size is 32,767 bytes.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 155

No. Oracle Database GaussDB Difference

30 DBMS_XMLDOM.
WRITETOBUFFER

Supported, with
differences in
DBE_XMLDOM.WR
ITETOBUFFER

● GaussDB: The writetobuffer
output buffer is limited to
less than 1 GB.
Oracle Database: The
maximum size is 32,767
bytes.

● GaussDB: The output doc will
contain the XML declaration
version and encoding.
Oracle Database: It is not
contained unless being
specified by users.

● GaussDB: If the input
parameter is of the domnode
type and the node is
converted from a doc, the
output node contains the
XML declaration version and
encoding.
Oracle Database: It is not
contained unless being
specified by users.

● GaussDB: By default, XML
files are output in the UTF-8
character set.
Oracle Database: It is
generated based on the
database character set.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 156

No. Oracle Database GaussDB Difference

31 DBMS_XMLDOM.
WRITETOCLOB

DBE_XMLDOM.WR
ITETOCLOB

● GaussDB: The writetoclob
size cannot exceed 1 GB.
Oracle Database: The
supported size depends on
the CLOB size.

● GaussDB: The output doc will
contain the XML declaration
version and encoding.
Oracle Database: It is not
contained unless being
specified by users.

● GaussDB: If the input
parameter is of the domnode
type and the node is
converted from a doc, the
output node contains the
XML declaration version and
encoding.
Oracle Database: It is not
contained unless being
specified by users.

● GaussDB: By default, XML
files are output in the UTF-8
character set.
Oracle Database: It is
generated based on the
database character set.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 157

No. Oracle Database GaussDB Difference

32 DBMS_XMLDOM.
WRITETOFILE

DBE_XMLDOM.WR
ITETOFILE

● GaussDB document input
parameter. The length of
filename cannot exceed 255
bytes. For details about
charset, see the
dbe_xmldom.setcharset API.
Oracle Database: The length
of filename is affected by
the OS and is greater than
255 bytes.

● GaussDB DOMNode input
parameter. The length of
filename cannot exceed 255
bytes. For details about
charset, see the
dbe_xmldom.setcharset API.
Oracle Database: The length
of filename is affected by
the OS and is greater than
255 bytes.

● GaussDB: This function adds
content such as indentation
to format the output. The
output doc will contain the
XML declaration version and
encoding. If the input
parameter is of the domnode
type and the node is
converted from a doc, the
output node contains the
XML declaration version and
encoding.
Oracle Database: It is not
contained unless being
specified by users.

● GaussDB: If
newdomdocument() is used
to create a doc without
parameters, no error is
reported when charset is not
specified. The UTF-8
character set is used by
default.
Oracle Database: An error is
reported.

● GaussDB: The filename must
be in the path created in
pg_directory. The backslash
(\) in the filename will be

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 158

No. Oracle Database GaussDB Difference

converted to a slash (/). Only
one slash (/) is allowed. The
file name must be in the
pg_directory_name/file_name
format.
Oracle Database: User input
is not escaped.

33 DBMS_XMLDOM.
GETNODEVALUE

DBE_XMLDOM.GE
TNODEVALUE

-

34 DBMS_XMLDOM.
GETPARENTNOD
E

DBE_XMLDOM.GE
TPARENTNODE

-

35 DBMS_XMLDOM.
HASCHILDNODE
S

DBE_XMLDOM.HA
SCHILDNODES

-

36 DBMS_XMLDOM.
MAKEELEMENT

DBE_XMLDOM.MA
KEELEMENT

-

37 DBMS_XMLDOM.
SETNODEVALUE

DBE_XMLDOM.SE
TNODEVALUE

● GaussDB: The input
parameter of nodeValue can
be an empty string or NULL,
but the node value will not
be changed.
Oracle Database: If you enter
an empty string or NULL, the
node value is set to an empty
string.

● GaussDB: Input parameter of
nodeValue. The escape
character '&' is not supported.
If the character string
contains the escape character,
the node value will be
cleared.
Oracle Database: Escape
characters are supported.

38 DBMS_XMLDOM.
GETELEMENTSBY
TAGNAM

DBE_XMLDOM.GE
TELEMENTSBYTAG
NAME

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 159

Table 2-120 DBMS_XMLPARSER compatibility

No. Oracle
Database

GaussDB Difference

1 DBMS_XMLPARS
ER.FREEPARSER

DBE_XMLPARSER.F
REEPARSER

-

2 DBMS_XMLPARS
ER.GETDOCUME
NT

DBE_XMLPARSER.G
ETDOCUMENT

-

3 DBMS_XMLPARS
ER.GETVALIDATI
ONMODE

DBE_XMLPARSER.G
ETVALIDATIONMO
DE

-

4 DBMS_XMLPARS
ER.NEWPARSER

Supported, with
differences in
DBE_XMLPARSER.
NEWPARSER

The maximum number of parser
objects in GaussDB is
16,777,215, and that in Oracle
Database is about 100 million.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 160

No. Oracle
Database

GaussDB Difference

5 DBMS_XMLPARS
ER.PARSEBUFFE
R

Supported, with
differences in
DBE_XMLPARSER.P
ARSEBUFFER

● Difference in parsing
columns: Only UTF-8 is
supported in terms of
character encoding, and
version can only be set to
1.0. If versions 1.0 to 1.9 are
parsed, a warning appears
but the execution is normal.
For versions later than 1.9, an
error is reported.

● Namespace validation
difference: Undeclared
namespace tags are parsed.
However, Oracle Database
reports an error.

● Difference in parsing XML
predefined entities: '
and " are parsed and
escaped to ' and ". However,
predefined entities in Oracle
Database are not escaped to
characters.

● DTD validation differences:
– An error will be reported

for !ATTLIST to type
(CHECK|check|Check)
"Ch..." because the default
value "Ch..." is not an
enumerated value in the
brackets. However, Oracle
Database does not report
this error.

– An error will be reported
for <!ENTITY baidu
"www.baidu.com">......
&Baidu;&writer, because
the letters are case-
sensitive and Baidu
cannot correspond to
baidu. However, Oracle
Database does not report
this error.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 161

No. Oracle
Database

GaussDB Difference

6 DBMS_XMLPARS
ER.PARSECLOB

Supported, with
differences in
DBE_XMLPARSER.P
ARSECLOB

● PARSECLOB cannot parse
CLOBs greater than or equal
to 2 GB.

● Difference in parsing
columns: Only UTF-8 is
supported in terms of
character encoding, and
version can only be set to
1.0. If versions 1.0 to 1.9 are
parsed, a warning appears
but the execution is normal.
For versions later than 1.9, an
error is reported.

● Namespace validation
difference: Undeclared
namespace tags are parsed.
However, Oracle Database
reports an error.

● Difference in parsing XML
predefined entities: '
and " are parsed and
escaped to ' and ". However,
predefined entities in Oracle
Database are not escaped to
characters.

● DTD validation differences:
– An error will be reported

for !ATTLIST to type
(CHECK|check|Check)
"Ch..." because the default
value "Ch..." is not an
enumerated value in the
brackets. However, Oracle
Database does not report
this error.

– An error will be reported
for <!ENTITY baidu
"www.baidu.com">......
&Baidu;&writer, because
the letters are case-
sensitive and Baidu
cannot correspond to
baidu. However, Oracle
Database does not report
this error.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 162

No. Oracle
Database

GaussDB Difference

7 DBMS_XMLPARS
ER.SETVALIDATI
ONMODE

DBE_XMLPARSER.S
ETVALIDATIONMO
DE

-

Table 2-121 DBMS_ILM compatibility

No. Oracle
Database

GaussDB Difference

1 DBMS_ILM.ADD
_TO_ILM

Not supported. -

2 DBMS_ILM.ARC
HIVESTATENAM
E

Not supported. -

3 DBMS_ILM.EXEC
UTE_ILM

DBE_ILM.EXECUTE
_ILM

● The input parameter Schema
in GaussDB corresponds to
owner in Oracle Database.

● GaussDB does not support
the operation of specifying
ilm_scope (specifying
multiple objects at a time).

4 DBMS_ILM.EXEC
UTE_ILM_TASK

Not supported. -

5 DBMS_ILM.PREV
IEW_ILM

Not supported. -

6 DBMS_ILM.REM
OVE_FROM_ILM

Not supported. -

7 DBMS_ILM.STOP
_ILM

DBE_ILM.STOP_IL
M

-

Table 2-122 DBMS_ILM_ADMIN compatibility

No. Oracle Database GaussDB Difference

1 DBMS_ILM_ADMI
N.CLEAR_HEAT_
MAP_ALL

Not supported. -

2 DBMS_ILM_ADMI
N.CLEAR_HEAT_
MAP_TABLE

Not supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 163

No. Oracle Database GaussDB Difference

3 DBMS_ILM_ADMI
N.CUSTOMIZE_IL
M

DBE_ILM_ADMIN.
CUSTOMIZE_ILM

The feature parameters
corresponding to the values of
input parameters are different.
● The value of param in

GaussDB can be 1, 2, 7, 11,
12, 13, 14, or 15.

● When the value of param in
GaussDB is 14, the
corresponding feature
parameter is
WIND_DURATION which is
used to control the duration
of the execution window in
automatic scheduling.
However, Oracle Database
does not have the
corresponding feature
parameter.

4 DBMS_ILM_ADMI
N.DISABLE_ILM

DBE_ILM_ADMIN.
DISABLE_ILM

-

5 DBMS_ILM_ADMI
N.ENABLE_AUTO
_OPTIMIZE

Not supported. -

6 DBMS_ILM_ADMI
N.ENABLE_ILM

DBE_ILM_ADMIN.
ENABLE_ILM

-

7 DBMS_ILM_ADMI
N.
IGNORE_AUTO_O
PTIMIZE_
CRITERIA

Not supported. -

8 DBMS_ILM_ADMI
N.SET_HEAT_MA
P_ALL

Not supported. -

9 DBMS_ILM_ADMI
N.SET_HEAT_MA
P_START

Not supported. -

10 DBMS_ILM_ADMI
N.SET_HEAT_MA
P_TABLE

Not supported. -

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 164

Table 2-123 DBMS_COMPRESSION compatibility

No. Oracle
Database

GaussDB Difference

1 DBMS_COMPRE
SSION.GET_COM
PRESSION_RATI
O

DBE_COMPRESSIO
N.GET_COMPRESS
ION_RATIO

● GaussDB cannot obtain
compression ratios of LOBs.

● For obtaining a compression
ratio of a single object:
– The value of the input

parameter comptype in
GaussDB can only be 1
(uncompressed) or 2
(advanced compression)
while Oracle Database
also supports values such
as 1024 and 2048.

– The value of the input
parameter objtype in
GaussDB can only be 1
(table object) while Oracle
Database also supports
the value 2 (index object).

– Oracle Database uses the
subset_numrows
parameter to directly
determine the number of
rows to be sampled (that
is, the value of the
parameter). GaussDB uses
sample_ratio (sampling
rate) to indirectly
determine the number of
rows to be sampled.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 165

No. Oracle
Database

GaussDB Difference

2 DBMS_COMPRE
SSION.GET_COM
PRESSION_TYPE

DBE_COMPRESSIO
N.GET_COMPRESS
ION_TYPE

● Oracle Database uses a row
ID to specify the row whose
compression type is to be
obtained, while GaussDB uses
a CTID to specify the row.

● The value of comptype is
returned. The value
difference is the same as that
of
GET_COMPRESSION_RATIO.

● In GaussDB, this API can be
called only on DNs. For
details, see "Stored Procedure
> Advanced Packages >
Secondary Encapsulation APIs
(Recommended) >
DBE_COMPRESSION" in
Developer Guide.

Table 2-124 DBMS_HEAT_MAP compatibility

No. Oracle Database GaussDB Difference

1 DBMS_HEAT_MAP.B
LOCK_HEAT_MAP

Not supported. -

2 DBMS_HEAT_MAP.E
XTENT_HEAT_MAP

Not supported. -

3 DBMS_HEAT_MAP.
OBJECT_HEAT_MAP

Not supported. -

4 DBMS_HEAT_MAP.S
EGMENT_HEAT_MA
P

Not supported. -

5 DBMS_HEAT_MAP.T
ABLESPACE_HEAT_
MAP

Not supported. -

6 Not supported. DBE_HEAT_MA
P.ROW_HEAT_
MAP

In GaussDB, this API can be
called only on DNs. For details,
see "Stored Procedure >
Advanced Packages > Secondary
Encapsulation APIs
(Recommended) >
DBE_HEAT_MAP" in Developer
Guide.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 166

Table 2-125 DBMS_DESCRIBE compatibility

No. Oracle
Database

GaussDB Difference

1 DBMS_DESCRI
BE.DESCRIBE_P
ROCEDURE

DBE_DESCRIBE.D
ESCRIBE_PROCED
URE

● The datatype parameter is
different from Oracle Database.
GaussDB returns the OID of the
data type, and Oracle Database
returns the ID of the data type
within Oracle Database.

● The datalength, dataprecision,
and scale parameters are set to
0 because type constraints
(such as number (7,2) and
varchar2(20)) cannot be
retained when GaussDB creates
stored procedures or functions.
Oracle Database can use the
%type method to obtain
constrained data types.

● For details about information in
GaussDB, see "Stored Procedure
> Advanced Packages >
Secondary Encapsulation APIs
(Recommended) >
DBE_DESCRIBE" in Developer
Guide.

Table 2-126 DBMS_STATS compatibility

No. Oracle Database GaussDB Difference

1 DBMS_STATS.ALTER_STATS_
HISTORY_RETENTION

Not
supported.

-

2 DBMS_STATS.CANCEL_ADVI
SOR_TASK

Not
supported.

-

3 DBMS_STATS.CONFIGURE_
ADVISOR_FILTER

Not
supported.

-

4 DBMS_STATS.CONFIGURE_
ADVISOR_OBJ_FILTER

Not
supported.

-

5 DBMS_STATS.CONFIGURE_
ADVISOR_OPR_FILTER

Not
supported.

-

6 DBMS_STATS.CONFIGURE_
ADVISOR_RULE_FILTER

Not
supported.

-

7 DBMS_STATS.CREATE_ADVI
SOR_TASK

Not
supported.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 167

No. Oracle Database GaussDB Difference

8 DBMS_STATS.CONVERT_RA
W_VALUE

Not
supported.

-

9 DBMS_STATS.CONVERT_RA
W_VALUE_NVARCHAR

Not
supported.

-

10 DBMS_STATS.CONVERT_RA
W_VALUE_ROWID

Not
supported.

-

11 DBMS_STATS.COPY_TABLE_
STATS

Not
supported.

-

12 DBMS_STATS.CREATE_EXTE
NDED_STATS

Not
supported.

-

13 DBMS_STATS.CREATE_STAT
_TABLE

DBE_STATS.C
REATE_STAT_
TABLE

● In GaussDB,
ownname must be set
to a Schema name.

● GaussDB supports
only some input
parameter functions.
For details, see
"Stored Procedure >
Advanced Package >
Secondary
Encapsulation APIs
(Recommended) >
DBE_STATS" in
Developer Guide.

14 DBMS_STATS.DELETE_COLU
MN_STATS

DBE_STATS.D
ELETE_COLU
MN_STATS

● In GaussDB,
ownname must be set
to a Schema name.

● GaussDB supports
only some input
parameter functions.
For details, see
"Stored Procedure >
Advanced Package >
Secondary
Encapsulation APIs
(Recommended) >
DBE_STATS" in
Developer Guide.

● In GaussDB, this API
can be used to set
expression statistics,
but tabname must be
set to an index name
corresponding to the
expression.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 168

No. Oracle Database GaussDB Difference

15 DBMS_STATS.DELETE_DATA
BASE_PREFS

Not
supported.

-

16 DBMS_STATS.DELETE_DATA
BASE_STATS

Not
supported.

-

17 DEDBMS_STATS.DELETE_DI
CTIONARY_STATS

Not
supported.

-

18 DBMS_STATS.DELETE_FIXED
_OBJECTS_STATS

Not
supported.

-

19 DBMS_STATS.DELETE_INDE
X_STATS

DBE_STATS.D
ELETE_INDEX
_STATS

● In GaussDB,
ownname must be set
to a Schema name.

● GaussDB supports
only some input
parameter functions.
For details, see
"Stored Procedure >
Advanced Package >
Secondary
Encapsulation APIs
(Recommended) >
DBE_STATS" in
Developer Guide.

20 DBMS_STATS.DELETE_PEND
ING_STATS

Not
supported.

-

21 DBMS_STATS.DELETE_PROC
ESSING_RATE

Not
supported.

-

22 DBMS_STATS.DELETE_SCHE
MA_PREFS

Not
supported.

-

23 DBMS_STATS.DELETE_SCHE
MA_STATS

DBE_STATS.D
ELETE_SCHE
MA_STATS

● In GaussDB,
ownname must be set
to a Schema name.

● GaussDB supports
only some input
parameter functions.
For details, see
"Stored Procedure >
Advanced Package >
Secondary
Encapsulation APIs
(Recommended) >
DBE_STATS" in
Developer Guide.

24 DBMS_STATS.DELETE_SYST
EM_STATS

Not
supported.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 169

No. Oracle Database GaussDB Difference

25 DBMS_STATS.DELETE_TABL
E_PREFS

Not
supported.

-

26 DBMS_STATS.DELETE_TABL
E_STATS

DBE_STATS.D
ELETE_TABLE_
STATS

● In GaussDB,
ownname must be set
to a Schema name.

● GaussDB supports
only some input
parameter functions.
For details, see
"Stored Procedure >
Advanced Package >
Secondary
Encapsulation APIs
(Recommended) >
DBE_STATS" in
Developer Guide.

27 DBMS_STATS.DIFF_TABLE_S
TATS_IN_HISTORY

Not
supported.

-

28 DBMS_STATS.DIFF_TABLE_S
TATS_IN_PENDING

Not
supported.

-

29 DBMS_STATS.DIFF_TABLE_S
TATS_IN_STATTAB

Not
supported.

-

30 DBMS_STATS.DROP_ADVIS
OR_TASK

Not
supported.

-

31 DBMS_STATS.DROP_EXTEN
DED_STATS

Not
supported.

-

32 DBMS_STATS.DROP_STAT_T
ABLE

DBE_STATS.D
ROP_STAT_TA
BLE

-

33 DBMS_STATS.EXECUTE_ADV
ISOR_TASK

Not
supported.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 170

No. Oracle Database GaussDB Difference

34 DBMS_STATS.EXPORT_COL
UMN_STATS

DBE_STATS.E
XPORT_COLU
MN_STATS

● In GaussDB,
ownname must be set
to a Schema name.

● GaussDB supports
only some input
parameter functions.
For details, see
"Stored Procedure >
Advanced Package >
Secondary
Encapsulation APIs
(Recommended) >
DBE_STATS" in
Developer Guide.

● The exported column-
level statistics are
consistent with those
in the pg_statistic
catalog. Multiple
columns are consistent
with those in the
pg_statistic_ext
catalog.

● Index expression
statistics can be
exported. tabname
must be set to an
index name, and
colname must be set
to an index expression
name.

● Permission: You must
have the ANALYZE
permission to query
tables and the siud
permission on the
stattab table.

35 DBMS_STATS.EXPORT_DAT
ABASE_PREFS

Not
supported.

-

36 DBMS_STATS.EXPORT_DAT
ABASE_STATS

Not
supported.

-

37 DBMS_STATS.EXPORT_DICTI
ONARY_STATS

Not
supported.

-

38 DBMS_STATS.EXPORT_FIXE
D_OBJECTS_STATS

Not
supported.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 171

No. Oracle Database GaussDB Difference

39 DBMS_STATS.EXPORT_INDE
X_STATS

DBE_STATS.E
XPORT_INDE
X_STATS

● In GaussDB,
ownname must be set
to a Schema name.

● GaussDB supports
only some input
parameter functions.
For details, see
"Stored Procedure >
Advanced Package >
Secondary
Encapsulation APIs
(Recommended) >
DBE_STATS" in
Developer Guide.

● In the stattab table,
the exported table-
level and partition-
level statistics are
numrows,
numblocks, and
relallvisible, which
correspond to
reltuples, relpages,
and relallvisible in
the pg_class and
pg_partition system
catalogs, respectively.

● Permission: You must
have the ANALYZE
permission to query
tables and the siud
permission on the
stattab table.

40 DBMS_STATS.EXPORT_PEN
DING_STATS

Not
supported.

-

41 DBMS_STATS.EXPORT_SCHE
MA_PREFS

Not
supported.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 172

No. Oracle Database GaussDB Difference

42 DBMS_STATS.EXPORT_SCHE
MA_STATS

DBE_STATS.E
XPORT_SCHE
MA_STATS

● In GaussDB,
ownname must be set
to a Schema name.

● GaussDB supports
only some input
parameter functions.
For details, see
"Stored Procedure >
Advanced Package >
Secondary
Encapsulation APIs
(Recommended) >
DBE_STATS" in
Developer Guide.

● In the stattab table,
the exported table-
level and partition-
level statistics are
numrows,
numblocks, and
relallvisible, which
correspond to
reltuples, relpages,
and relallvisible in
the pg_class and
pg_partition system
catalogs, respectively.
The column-level
statistics of the
exported table are
consistent with those
of the pg_statistic and
pg_statistic_ext
catalogs.

● Permission: You must
have the siud
permission on the
stattab table.

43 DBMS_STATS.EXPORT_SYST
EM_STATS

Not
supported.

-

44 DBMS_STATS.EXPORT_TABL
E_PREFS

Not
supported.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 173

No. Oracle Database GaussDB Difference

45 DBMS_STATS.EXPORT_TABL
E_STATS

DBE_STATS.E
XPORT_TABLE
_STATS

● In GaussDB,
ownname must be set
to a Schema name.

● GaussDB supports
only some input
parameter functions.
For details, see
"Stored Procedure >
Advanced Package >
Secondary
Encapsulation APIs
(Recommended) >
DBE_STATS" in
Developer Guide.

● In the stattab table,
the exported table-
level and partition-
level statistics are
numrows,
numblocks, and
relallvisible, which
correspond to
reltuples, relpages,
and relallvisible in
the pg_class and
pg_partition system
catalogs, respectively.
The column-level
statistics exported in
cascading mode are
consistent with those
in the pg_statistic and
pg_statistic_ext
catalogs.

● Permission: You must
have the ANALYZE
permission to query
tables and the siud
permission on the
stattab table.

46 DBMS_STATS.FLUSH_DATA
BASE_MONITORING_INFO

Not
supported.

-

47 DBMS_STATS.GATHER_DAT
ABASE_STATS

Not
supported.

-

48 DBMS_STATS.GATHER_DICT
IONARY_STATS

Not
supported.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 174

No. Oracle Database GaussDB Difference

49 DBMS_STATS.GATHER_FIXE
D_OBJECTS_STATS

Not
supported.

-

50 DBMS_STATS.GATHER_IND
EX_STATS

Not
supported.

-

51 DBMS_STATS.GATHER_PRO
CESSING_RATE

Not
supported.

-

52 DBMS_STATS.GATHER_SCH
EMA_STATS

Not
supported.

-

53 DBMS_STATS.GATHER_SYST
EM_STATS

Not
supported.

-

54 DBMS_STATS.GATHER_TABL
E_STATS

Not
supported.

-

55 DBMS_STATS.GENERATE_ST
ATS

Not
supported.

-

56 DBMS_STATS.GET_ADVISOR
_OPR_FILTER

Not
supported.

-

57 DBMS_STATS.GET_ADVISOR
_RECS

Not
supported.

-

58 DBMS_STATS.GET_COLUMN
_STATS

Not
supported.

-

59 DBMS_STATS.GET_INDEX_S
TATS

Not
supported.

-

60 DBMS_STATS.GET_PARAM Not
supported.

-

61 DBMS_STATS.GET_PREFS Not
supported.

-

62 DBMS_STATS.GET_STATS_HI
STORY_AVAILABILITY

DBE_STATS.G
ET_STATS_HIS
TORY_AVAILA
BILITY

GaussDB queries the
collection time of the
earliest historical
statistics in the entire
database.

63 DBMS_STATS.GET_STATS_HI
STORY_RETENTION

DBE_STATS.G
ET_STATS_HIS
TORY_RETEN
TION

-

64 DBMS_STATS.GET_SYSTEM_
STATS

Not
supported.

-

65 DBMS_STATS.GET_TABLE_S
TATS

Not
supported.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 175

No. Oracle Database GaussDB Difference

66 DBMS_STATS.IMPLEMENT_
ADVISOR_TASK

Not
supported.

-

67 DBMS_STATS.IMPORT_COL
UMN_STATS

DBE_STATS.I
MPORT_COL
UMN_STATS

● In GaussDB,
ownname must be set
to a Schema name.

● GaussDB supports
only some input
parameter functions.
For details, see
"Stored Procedure >
Advanced Package >
Secondary
Encapsulation APIs
(Recommended) >
DBE_STATS" in
Developer Guide.

● The exported single-
column col statistics
are the same as those
in the pg_statistic
catalog. The exported
multi-column ext-col
statistics are
consistent with those
in the pg_statistic_ext
catalog.

● Index expression
statistics can be
imported. tabname
must be set to an
index name, and
colname must be set
to an index expression
name.

● Permission: You must
have the ANALYZE
permission to query
tables and the siud
permission on the
stattab table.

68 DBMS_STATS.IMPORT_DAT
ABASE_PREFS

Not
supported.

-

69 DBMS_STATS.IMPORT_DAT
ABASE_STATS

Not
supported.

-

70 DBMS_STATS.IMPORT_DICT
IONARY_STATS

Not
supported.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 176

No. Oracle Database GaussDB Difference

71 DBMS_STATS.IMPORT_FIXE
D_OBJECTS_STATS

Not
supported.

-

72 DBMS_STATS.IMPORT_INDE
X_STATS

DBE_STATS.I
MPORT_INDE
X_STATS

● In GaussDB,
ownname must be set
to a Schema name.

● GaussDB supports
only some input
parameter functions.
For details, see
"Stored Procedure >
Advanced Package >
Secondary
Encapsulation APIs
(Recommended) >
DBE_STATS" in
Developer Guide.

● In the stattab table,
the imported table-
level and partition-
level statistics are
numrows,
numblocks, and
relallvisible, which
correspond to
reltuples, relpages,
and relallvisible in
the pg_class and
pg_partition system
catalogs, respectively.

● Permission: You must
have the ANALYZE
permission to query
tables and the siud
permission on the
stattab table.

73 DBMS_STATS.IMPORT_SCH
EMA_PREFS

Not
supported.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 177

No. Oracle Database GaussDB Difference

74 DBMS_STATS.IMPORT_SCH
EMA_STATS

DBE_STATS.I
MPORT_SCHE
MA_STATS

● In GaussDB,
ownname must be set
to a Schema name.

● GaussDB supports
only some input
parameter functions.
For details, see
"Stored Procedure >
Advanced Package >
Secondary
Encapsulation APIs
(Recommended) >
DBE_STATS" in
Developer Guide.

● In the stattab table,
the imported table-
level and partition-
level statistics are
numrows,
numblocks, and
relallvisible, which
correspond to
reltuples, relpages,
and relallvisible in
the pg_class and
pg_partition system
catalogs, respectively.
The column-level
statistics of the
imported table are
consistent with those
of the pg_statistic and
pg_statistic_ext
catalogs.

● Permission: You must
have the siud
permission on the
stattab table.

75 DBMS_STATS.IMPORT_SYST
EM_STATS

Not
supported.

-

76 DBMS_STATS.IMPORT_TABL
E_PREFS

Not
supported.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 178

No. Oracle Database GaussDB Difference

77 DBMS_STATS.IMPORT_TABL
E_STATS

DBE_STATS.I
MPORT_TABL
E_STATS

● In GaussDB,
ownname must be set
to a Schema name.

● GaussDB supports
only some input
parameter functions.
For details, see
"Stored Procedure >
Advanced Package >
Secondary
Encapsulation APIs
(Recommended) >
DBE_STATS" in
Developer Guide.

● In the stattab table,
the imported table-
level and partition-
level statistics are
numrows,
numblocks, and
relallvisible, which
correspond to
reltuples, relpages,
and relallvisible in
the pg_class and
pg_partition system
catalogs, respectively.
The column-level
statistics imported in
cascading mode are
consistent with those
in the pg_statistic and
pg_statistic_ext
catalogs.

● Permission: You must
have the ANALYZE
permission to query
tables and the siud
permission on the
stattab table.

78 DBMS_STATS.INTERRUPT_A
DVISOR_TASK

Not
supported.

-

79 DBMS_STATS.LOCK_PARTITI
ON_STATS

DBE_STATS.L
OCK_PARTITI
ON_STATS

● In GaussDB,
ownname must be set
to a Schema name.

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 179

No. Oracle Database GaussDB Difference

80 DBMS_STATS.LOCK_SCHEM
A_STATS

DBE_STATS.L
OCK_SCHEM
A_STATS

● In GaussDB,
ownname must be set
to a Schema name.

81 DBMS_STATS.LOCK_TABLE_
STATS

DBE_STATS.L
OCK_TABLE_S
TATS

● In GaussDB,
ownname must be set
to a Schema name.

82 DBMS_STATS.MERGE_COL_
USAGE

Not
supported.

-

83 DBMS_STATS.PREPARE_COL
UMN_VALUES

Not
supported.

-

84 DBMS_STATS.PREPARE_COL
UMN_VALUES_ROWID

Not
supported.

-

85 DBMS_STATS.PUBLISH_PEN
DING_STATS

Not
supported.

-

86 DBMS_STATS.PURGE_STATS DBE_STATS.P
URGE_STATS

-

87 DBMS_STATS.REMAP_STAT_
TABLE

Not
supported.

-

88 DBMS_STATS.REPORT_ADVI
SOR_TASK

Not
supported.

-

89 DBMS_STATS.REPORT_COL_
USAGE

Not
supported.

-

90 DBMS_STATS.REPORT_GAT
HER_AUTO_STATS

Not
supported.

-

91 DBMS_STATS.REPORT_GAT
HER_DATABASE_STATS

Not
supported.

-

92 DBMS_STATS.REPORT_GAT
HER_DICTIONARY_STATS

Not
supported.

-

93 DBMS_STATS.REPORT_GAT
HER_FIXED_OBJ_STATS

Not
supported.

-

94 DBMS_STATS.REPORT_GAT
HER_SCHEMA_STATS

Not
supported.

-

95 DBMS_STATS.REPORT_STAT
S_OPERATIONS

Not
supported.

-

96 DBMS_STATS.RESET_ADVIS
OR_TASK

Not
supported.

-

97 DBMS_STATS.RESET_COL_U
SAGE

Not
supported.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 180

No. Oracle Database GaussDB Difference

98 DBMS_STATS.RESET_GLOBA
L_PREF_DEFAULTS

Not
supported.

-

99 DBMS_STATS.RESET_PARA
M_DEFAULTS

Not
supported.

-

100 DBMS_STATS.RESTORE_DIC
TIONARY_STATS

Not
supported.

-

101 DBMS_STATS.RESTORE_FIXE
D_OBJECTS_STATS

Not
supported.

-

102 DBMS_STATS.RESTORE_SCH
EMA_STATS

DBE_STATS.R
ESTORE_SCH
EMA_STATS

● In GaussDB,
ownname must be set
to a Schema name.

● GaussDB supports
only some input
parameter functions.
For details, see
"Stored Procedure >
Advanced Package >
Secondary
Encapsulation APIs
(Recommended) >
DBE_STATS" in
Developer Guide.

103 DBMS_STATS.RESTORE_SYS
TEM_STATS

Not
supported.

-

104 DBMS_STATS.RESTORE_TAB
LE_STATS

DBE_STATS.R
ESTORE_TABL
E_STATS

● In GaussDB,
ownname must be set
to a Schema name.

● GaussDB supports
only some input
parameter functions.
For details, see
"Stored Procedure >
Advanced Package >
Secondary
Encapsulation APIs
(Recommended) >
DBE_STATS" in
Developer Guide.

105 DBMS_STATS.RESUME_ADV
ISOR_TASK

Not
supported.

-

106 DBMS_STATS.SCRIPT_ADVIS
OR_TASK

Not
supported.

-

107 DBMS_STATS.SEED_COL_US
AGE

Not
supported.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 181

No. Oracle Database GaussDB Difference

108 DBMS_STATS.SET_ADVISOR
_TASK_PARAMETER

Not
supported.

-

109 DBMS_STATS.SET_COLUMN
_STATS

DBE_STATS.SE
T_COLUMN_S
TATS

● In GaussDB,
ownname must be set
to a Schema name.

● GaussDB supports
only some input
parameter functions.
For details, see
"Stored Procedure >
Advanced Package >
Secondary
Encapsulation APIs
(Recommended) >
DBE_STATS" in
Developer Guide.

110 DBMS_STATS.SET_DATABAS
E_PREFS

Not
supported.

-

111 DBMS_STATS.SET_GLOBAL_
PREFS

Not
supported.

-

112 DBMS_STATS.SET_INDEX_ST
ATS

DBE_STATS.SE
T_INDEX_STA
TS

● In GaussDB,
ownname must be set
to a Schema name.
GaussDB supports
only some input
parameter functions.
For details, see
"Stored Procedure >
Advanced Package >
Secondary
Encapsulation APIs
(Recommended) >
DBE_STATS" in
Developer Guide.

● The relallvisible input
parameter is added to
GaussDB.

113 DBMS_STATS.SET_PARAM Not
supported.

-

114 DBMS_STATS.SET_PROCESSI
NG_RATE

Not
supported.

-

115 DBMS_STATS.SET_SCHEMA_
PREFS

Not
supported.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 182

No. Oracle Database GaussDB Difference

116 DBMS_STATS.SET_SYSTEM_
STATS

Not
supported.

-

117 DBMS_STATS.SET_TABLE_PR
EFS

Not
supported.

-

118 DBMS_STATS.SET_TABLE_ST
ATS

DBE_STATS.SE
T_TABLE_STA
TS

● In GaussDB,
ownname must be set
to a Schema name.

● GaussDB supports
only some input
parameter functions.
For details, see
"Stored Procedure >
Advanced Package >
Secondary
Encapsulation APIs
(Recommended) >
DBE_STATS" in
Developer Guide.

● The relallvisible input
parameter is added to
GaussDB.

119 DBMS_STATS.SHOW_EXTEN
DED_STATS_NAME

Not
supported.

-

120 DBMS_STATS.TRANSFER_ST
ATS

Not
supported.

-

121 DBMS_STATS.UNLOCK_PAR
TITION_STATS

DBE_STATS.U
NLOCK_PARTI
TION_STATS

In GaussDB, ownname
must be set to a Schema
name.

122 DBMS_STATS.UNLOCK_SCH
EMA_STATS

DBE_STATS.U
NLOCK_SCHE
MA_STATS

In GaussDB, ownname
must be set to a Schema
name.

123 DBMS_STATS.UNLOCK_TAB
LE_STATS

DBE_STATS.U
NLOCK_TABL
E_STATS

In GaussDB, ownname
must be set to a Schema
name.

124 DBMS_STATS.UPGRADE_ST
AT_TABLE

Not
supported.

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 183

Table 2-127 DBMS_XMLGEN compatibility

No. Oracle
Database

GaussDB Difference

1 DBMS_XMLGE
N.CONVERT

DBE_XMLGEN.CON
VERT

-

2 DBMS_XMLGE
N.NEWCONTEX
T

DBE_XMLGEN.NEW
CONTEXT

-

3 DBMS_XMLGE
N.NEWCONTEX
TFROMHIERAR
CHY

DBE_XMLGEN.NEW
CONTEXTFROMHIE
RARCHY

● The maximum depth of
recursive XML files
generated by GaussDB
cannot exceed 50 million
layers.

● XML files generated by the
CONNECT BY statement in
Oracle Database's
newcontextfromhierarchy
method contain XML
headers. However, the
directly constructed data
does not contain the XML
header. In GaussDB, the files
contain XML headers.

4 DBMS_XMLGE
N.SETCONVERT
SPECIALCHARS

DBE_XMLGEN.SETC
ONVERTSPECIALCH
ARS

-

5 DBMS_XMLGE
N.SETNULLHA
NDLING

DBE_XMLGEN.SETN
ULLHANDLING

-

6 DBMS_XMLGE
N.SETROWSET
TAG

DBE_XMLGEN.SETR
OWSETTAG

-

7 DBMS_XMLGE
N.SETROWTAG

DBE_XMLGEN.SETR
OWTAG

-

8 DBMS_XMLGE
N.USENULLATT
RIBUTEINDICA
TOR

DBE_XMLGEN.USEN
ULLATTRIBUTEINDI
CATOR

-

9 DBMS_XMLGE
N.USEITEMTAG
SFORCOLL

DBE_XMLGEN.USEIT
EMTAGSFORCOLL

-

10 DBMS_XMLGE
N.GETNUMRO
WSPROCESSED

DBE_XMLGEN.GETN
UMROWSPROCESSE
D

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 184

No. Oracle
Database

GaussDB Difference

11 DBMS_XMLGE
N.SETMAXROW
S

DBE_XMLGEN.SETM
AXROWS

-

12 DBMS_XMLGE
N.SETSKIPROW
S

DBE_XMLGEN.SETS
KIPROWS

-

13 DBMS_XMLGE
N.RESTARTQUE
RY

DBE_XMLGEN.REST
ARTQUERY

In distributed GaussDB, the
cursor cannot be moved
reversely. Therefore, the
restartquery function is
unavailable.

14 DBMS_XMLGE
N.GETXMLTYPE

DBE_XMLGEN.GETX
MLTYPE

-

15 DBMS_XMLGE
N.GETXML

DBE_XMLGEN.GETX
ML

-

16 DBMS_XMLGE
N.CLOSECONT
EXT

DBE_XMLGEN.CLOS
ECONTEXT

-

GaussDB
Compatibility(Distributed) 2 Oracle Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 185

3 MySQL Compatibility Description

3.1 Overview of MySQL Compatibility

Overview of M-compatible Mode
M-compatible Mode compares GaussDB in M-compatible mode
(sql_compatibility set to 'M') with MySQL 5.7. Only compatibility features added
later than GaussDB Kernel 505.2.0 are described. You are advised to view the
specifications and restrictions of the features in M Compatibility Developer Guide.

GaussDB is compatible with MySQL in terms of data types, SQL functions, and
database objects.

The execution plan, optimization, and EXPLAIN result in GaussDB are different
from those in MySQL.

GaussDB and MySQL implement different underlying frameworks. Therefore, there
are still some differences between GaussDB and MySQL.

NO TE

The underlying architecture of GaussDB is different from that of MySQL. Therefore, the
performance of querying the same schemas under information_schema and m_schema may
be different from that in MySQL. For details, see "Schemas" in M Compatibility Developer
Guide. For example, the execution of the count function cannot be optimized. The time
consumed by the SELECT * and SELECT COUNT(*) statements is similar.

Overview of MySQL-compatible Mode
MySQL-compatible Mode compares GaussDB in MySQL-compatible mode (that
is, when sql_compatibility is set to 'MYSQL', b_format_version is set to '5.7', and
b_format_dev_version is set to 's1') with MySQL 5.7. Only compatibility features
added later than GaussDB Kernel 503.0.0 are described. You are advised to view
the specifications and restrictions of the features in Developer Guide.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 186

NO TE

● The MySQL-compatible mode delivers high compatibility with MySQL in terms of
syntax, data types, metadata, and protocols. The MySQL-compatible mode will not
evolve because it is not compatible with the MySQL architecture.

● Only the features described in MySQL-compatible Mode are compatible with MySQL.
The behavior of other features remain the same as that in GaussDB.

● The implementation logic of the MySQL-compatible mode (sql_compatibility set to
'MYSQL') is similar to that of the B-compatible mode (sql_compatibility set to 'B') in
centralized deployment.

GaussDB is compatible with MySQL in terms of data types, SQL functions, and
database objects.

GaussDB and MySQL implement different underlying frameworks. Therefore, there
are still some differences between GaussDB and MySQL.

Database and Schema Design
MySQL data objects include database, table, index, view, trigger, and proc,
mapping those in GaussDB hierarchically and maybe in a 1:N relationship, as
shown in the following figure.

Figure 3-1 Differences between databases and schemas in MySQL and GaussDB

● In MySQL, database and schema are synonyms. In GaussDB, a database can
have multiple schemas. In this feature, each database in MySQL is mapped to
a schema in GaussDB.

● In MySQL, an index belongs to a table. In GaussDB, an index belongs to a
schema. As a result, an index name must be unique in a schema in GaussDB
and must be unique in a table in MySQL. This difference will be retained as a
current constraint.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 187

3.2 M-compatible Mode

3.2.1 Data Types

3.2.1.1 Numeric Data Types
Unless otherwise specified, the precision, scale, and number of digits cannot be set
to floating-point values in M-compatible mode by default. You are advised to use
valid integer values.

Table 3-1 Integer types

MySQL GaussDB Difference

BOOL Supported,
with
differences.

Output format: The output of SELECT TRUE/
FALSE in GaussDB is t or f, and that in MySQL is
1 or 0.
MySQL: The BOOL/BOOLEAN type is actually
mapped to the TINYINT type.

BOOLEAN Supported,
with
differences.

TINYINT[(M)]
[UNSIGNED]
[ZEROFILL]

Supported,
with
differences.

Input format:
● MySQL:

If a character string with multiple decimal
points (such as "1.2.3.4.5") is entered, MySQL
will misparse the character string in loose
mode, throw a warning, and insert the
character string into the table successfully.
For example, after "1.2.3.4.5" is inserted into
the table, the value is 12.

● GaussDB:
If a character string with multiple decimal
points (such as "1.2.3.4.5") is entered in
loose mode, the characters after the second
decimal point are truncated as invalid
characters, a warning is thrown, and the
character string is inserted into the table
successfully. For example, after "1.2.3.4.5" is
inserted into the table, the value is 1. After
"1.6.3.4.5" is inserted into the table, the
value is 2.

SMALLINT[(
M)]
[UNSIGNED]
[ZEROFILL]

Supported,
with
differences.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 188

MySQL GaussDB Difference

MEDIUMINT[
(M)]
[UNSIGNED]
[ZEROFILL]

Supported,
with
differences.

MySQL requires 3 bytes to store MEDIUMINT
data.
● The signed range is –8388608 to +8388607.
● The unsigned range is 0 to +16777215.
GaussDB is mapped to the INT type. Four bytes
are required for storage. The value range is
determined based on boundary values.
● The signed range is –8388608 to +8388607.
● The unsigned range is 0 to +16777215.
For other differences, see the description below
the table.

INT[(M)]
[UNSIGNED]
[ZEROFILL]

Supported,
with
differences.

Input format:
● MySQL:

If a character string with multiple decimal
points (such as "1.2.3.4.5") is entered, MySQL
will misparse the character string in loose
mode, throw a warning, and insert the
character string into the table successfully.
For example, after "1.2.3.4.5" is inserted into
the table, the value is 12.

● GaussDB:
If a character string with multiple decimal
points (such as "1.2.3.4.5") is entered in
loose mode, the characters after the second
decimal point are truncated as invalid
characters, a warning is thrown, and the
character string is inserted into the table
successfully. For example, after "1.2.3.4.5" is
inserted into the table, the value is 1. After
"1.6.3.4.5" is inserted into the table, the
value is 2.

INTEGER[(M)
]
[UNSIGNED]
[ZEROFILL]

Supported,
with
differences.

BIGINT[(M)]
[UNSIGNED]
[ZEROFILL]

Supported,
with
differences.

Table 3-2 Arbitrary precision types

MySQL GaussDB Difference

DECIMAL[(M[
,D])]
[ZEROFILL]

Supported,
with
differences.

-

NUMERIC[(
M[,D])]
[ZEROFILL]

Supported,
with
differences.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 189

MySQL GaussDB Difference

DEC[(M[,D])]
[ZEROFILL]

Supported,
with
differences.

FIXED[(M[,D]
)] [ZEROFILL]

Supported,
with
differences.

Table 3-3 Floating-point types

MySQL GaussDB Difference

FLOAT[(M,D)
] [ZEROFILL]

Supported,
with
differences.

The FLOAT data type does not support
partitioned tables with the key partitioning
policy.

FLOAT(p)
[ZEROFILL]

Supported,
with
differences.

The FLOAT data type does not support
partitioned tables with the key partitioning
policy.

DOUBLE[(M,
D)]
[ZEROFILL]

Supported,
with
differences.

The DOUBLE data type does not support
partitioned tables with the key partitioning
policy.

DOUBLE
PRECISION[(
M,D)]
[ZEROFILL]

Supported,
with
differences.

The DOUBLE PRECISION data type does not
support partitioned tables with the key
partitioning policy.

REAL[(M,D)]
[ZEROFILL]

Supported,
with
differences.

The REAL data type does not support
partitioned tables with the key partitioning
policy.

3.2.1.2 Date and Time Data Types

Table 3-4 Date and Time Data Types

MySQL GaussDB Difference

DATE Supported,
with
differences.

GaussDB supports the DATE data type and
differs from MySQL in terms of the following
specifications:
A backslash (\) is regarded as an escape
character in both MySQL and GaussDB.
However, MySQL supports \0, but GaussDB does
not support \0. Therefore, GaussDB reports an
error when the backslash is used as a separator
and followed by 0.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 190

MySQL GaussDB Difference

DATETIME[(fs
p)]

Supported,
with
differences.

GaussDB supports the DATETIME data type and
differs from MySQL in terms of the following
specifications:
A backslash (\) is regarded as an escape
character in both MySQL and GaussDB.
However, MySQL supports \0, but GaussDB does
not support \0. Therefore, GaussDB reports an
error when the backslash is used as a separator
and followed by 0.

TIMESTAMP[(
fsp)]

Supported,
with
differences.

GaussDB supports the TIMESTAMP data type
and differs from MySQL in terms of the
following specifications:
● A backslash (\) is regarded as an escape

character in both MySQL and GaussDB.
However, MySQL supports \0, but GaussDB
does not support \0. Therefore, GaussDB
reports an error when the backslash is used
as a separator and followed by 0.

● MySQL supports
explicit_defaults_for_timestamp. When
explicit_defaults_for_timestamp is set to
off, setting the default value of the
TIMESTAMP column and inserting NULL are
non-standard behaviors. The default value of
explicit_defaults_for_timestamp is off in
MySQL 5.7 and is on in MySQL 8.0. GaussDB
does not support
explicit_defaults_for_timestamp. The
behavior is the same as that when
explicit_defaults_for_timestamp is set to
on in MySQL. For details about
explicit_defaults_for_timestamp, see the
note below the table.

TIME[(fsp)] Supported,
with
differences.

GaussDB supports the TIME data type.
Compared with MySQL, GaussDB has the
following differences in specifications:
● A backslash (\) is regarded as an escape

character in both MySQL and GaussDB.
However, MySQL supports \0, but GaussDB
does not support \0. Therefore, GaussDB
reports an error when the backslash is used
as a separator and followed by 0.

● When the hour, minute, second, and
nanosecond of the TIME type are 0, the sign
bits of GaussDB and MySQL may be
different.

YEAR[(4)] Supported. -

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 191

NO TE

● GaussDB does not support ODBC syntax literals:
{ d 'str' }
{ t 'str' }
{ ts 'str' }

● If you specify a precision for the DATETIME, TIME, or TIMESTAMP data type greater
than the maximum precision supported by the data type, GaussDB truncates the
precision to the maximum precision supported by the data type, whereas MySQL reports
an error.

● In MySQL, when explicit_defaults_for_timestamp is set to off, the processing logic of
the TIMESTAMP columns is as follows:
● If NULL or NOT NULL attribute is not explicitly specified for a column, the NOT

NULL attribute will be automatically added. When a NULL value is inserted into
such a column, the NULL value is replaced with the current timestamp.

● If the NULL attribute is not specified for the first TIMESTAMP column in a table,
the DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP
attributes will be automatically added to the column.

● If the NULL attribute is not specified for the second and subsequent TIMESTAMP
columns in a table, the DEFAULT '0000-00-00 00:00:00' attribute will be
automatically added to the columns.

● In MySQL, when explicit_defaults_for_timestamp is set to off, the processing logic of
the TIMESTAMP columns is as follows:
● When a NULL value is inserted into a TIMESTAMP column, the NULL value is not

replaced with the current timestamp.
● If NULL or NOT NULL attribute is not explicitly specified for a column, the NULL

attribute will be automatically added.
● When a NULL value is inserted into a column with the NOT NULL attribute

specified, an error is reported in strict mode, and '0000-00-00 00:00:00' is inserted
in loose mode.

● DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP
attributes will not be automatically added to any TIMESTAMP columns.

3.2.1.3 String Data Types

Table 3-5 String Data Types

MySQL GaussDB Difference

CHAR(M) Supported,
with
differences.

Input format: If a binary or hexadecimal
character string is input, GaussDB outputs a
hexadecimal character string, and MySQL
escapes the character string based on the ASCII
code table. If the character string cannot be
escaped, the output is empty.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 192

MySQL GaussDB Difference

VARCHAR(M) Supported,
with
differences.

Input format:
● GaussDB cannot verify the length of

parameters and return values of user-defined
functions or the length of stored procedure
parameters. However, MySQL supports their
verification.

● GaussDB can verify the length of temporary
variables in user-defined functions and
stored procedures, and an error or truncation
alarm is reported in strict or loose mode.
However, MySQL does not support these
functions.

● After a binary or hexadecimal character
string is entered, GaussDB outputs a
hexadecimal character string, and MySQL
escapes the character string based on the
ASCII code table. If the character string
cannot be escaped, the output is empty.

TINYTEXT Supported,
with
differences.

● Input format: If a binary or hexadecimal
character string is input, GaussDB outputs a
hexadecimal character string, and MySQL
escapes the character string based on the
ASCII code table. If the character string
cannot be escaped, the output is empty.

● Default value: The default value cannot be
set in MySQL 5.7 but can be set in GaussDB
and MySQL 8.0.

● Primary key: When creating a primary key,
you must specify the prefix length in MySQL,
but you cannot specify the prefix length in
GaussDB.

● Index: In MySQL, the TINYTEXT type does
not support other index methods except
prefix indexes. GaussDB supports these index
methods.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 193

MySQL GaussDB Difference

TEXT Supported,
with
differences.

● Input format: If a binary or hexadecimal
character string is input, GaussDB outputs a
hexadecimal character string, and MySQL
escapes the character string based on the
ASCII code table. If the character string
cannot be escaped, the output is empty.

● Default value: The default value cannot be
set in MySQL 5.7 but can be set in GaussDB
and MySQL 8.0.

● Primary key: When creating a primary key,
you must specify the prefix length in MySQL,
but you cannot specify the prefix length in
GaussDB.

● Index: In MySQL, the TEXT type does not
support other index methods except prefix
indexes. GaussDB supports these index
methods.

MEDIUMTEXT Supported,
with
differences.

● Input format: If a binary or hexadecimal
character string is input, GaussDB outputs a
hexadecimal character string, and MySQL
escapes the character string based on the
ASCII code table. If the character string
cannot be escaped, the output is empty.

● Default value: The default value cannot be
set in MySQL 5.7 but can be set in GaussDB
and MySQL 8.0.

● Primary key: When creating a primary key,
you must specify the prefix length in MySQL,
but you cannot specify the prefix length in
GaussDB.

● Index: In MySQL, the MEDIUMTEXT type
does not support other index methods except
prefix indexes. GaussDB supports these index
methods.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 194

MySQL GaussDB Difference

LONGTEXT Supported,
with
differences.

● Input format: If a binary or hexadecimal
character string is input, GaussDB outputs a
hexadecimal character string, and MySQL
escapes the character string based on the
ASCII code table. If the character string
cannot be escaped, the output is empty.

● Default value: The default value cannot be
set in MySQL 5.7 but can be set in GaussDB
and MySQL 8.0.

● Primary key: When creating a primary key,
you must specify the prefix length in MySQL,
but you cannot specify the prefix length in
GaussDB.

● Index: In MySQL, the LONGTEXT type does
not support other index methods except
prefix indexes. GaussDB supports these index
methods.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 195

3.2.1.4 Binary Data Types

Table 3-6 Binary Data Types

MySQL GaussDB Difference

BINARY[(M)] Supported,
with
differences.

● Input format:
– After a binary or hexadecimal character

string is entered, GaussDB outputs a
hexadecimal character string, and MySQL
escapes the character string based on the
ASCII code table. If the character string
cannot be escaped, the output is empty.

– If the length of the inserted string is less
than the target length, the padding
character is 0x20 in GaussDB and 0x00 in
MySQL.

● Character set: The default character set is the
initialized character set of the database. For
MySQL, the default character set is BINARY.

● Output formats:
– When the JDBC protocol is used, a space

at the end of the BINARY type is displayed
as a space, and that in MySQL is
displayed as \x00.

– In loose mode, if characters (such as
Chinese characters) of the BINARY type
exceed n bytes, the excess characters will
be truncated. MySQL retains the first n
bytes. However, garbled characters are
displayed in the output.

– In MySQL 8.0 and later versions, results
starting with 0x are returned by default.
In GaussDB, results in the format of
"\x...\x...\x..." are returned.

NOTE
Due to the differences between GaussDB and
MySQL in BINARY fillers and \0 truncation,
GaussDB and MySQL have different performance
in scenarios such as operator comparison
calculation, character string-related system
function calculation, index matching, and data
import and export. For details about the difference
scenarios, see the examples in this section.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 196

MySQL GaussDB Difference

VARBINARY(
M)

Supported,
with
differences.

● Input format: If a binary or hexadecimal
character string is input, GaussDB outputs a
hexadecimal character string, and MySQL
escapes the character string based on the
ASCII code table. If the character string
cannot be escaped, the output is empty.

● Character set: The default character set is the
initialized character set of the database. For
MySQL, the default character set is BINARY.

● Output formats:
– When the JDBC protocol is used, a space

at the end of the BINARY type is displayed
as a space, and that in MySQL is
displayed as \x00.

– In MySQL 8.0 and later versions, results
starting with 0x are returned by default.
In GaussDB, results in the format of
"\x...\x...\x..." are returned.

TINYBLOB Supported,
with
differences.

● Input format:
– Default value: The syntax of GaussDB

allows you to set a default value for a
table column to be created. However, this
operation is not allowed in MySQL.

– After a binary or hexadecimal character
string is entered, GaussDB outputs a
hexadecimal character string, and MySQL
escapes the character string based on the
ASCII code table. If the character string
cannot be escaped, the output is empty.

● Primary key: In MySQL, the TINYBLOB type
does not support primary keys, but GaussDB
supports.

● Index: In MySQL, the TINYBLOB type does
not support other index methods except
prefix indexes. GaussDB supports these index
methods.

● Foreign key: In MySQL, the TINYTEXT type
cannot be used as the referencing column or
referenced column of a foreign key, but
GaussDB supports this operation.

● Output format: In MySQL 8.0 and later
versions, results starting with 0x are returned
by default. In GaussDB, results in the format
of "\x...\x...\x..." are returned.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 197

MySQL GaussDB Difference

BLOB Supported,
with
differences.

● Input format:
– Default value: The syntax of GaussDB

allows you to set a default value for a
table column to be created. However, this
operation is not allowed in MySQL.

– After a binary or hexadecimal character
string is entered, GaussDB outputs a
hexadecimal character string, and MySQL
escapes the character string based on the
ASCII code table. If the character string
cannot be escaped, the output is empty.

● Primary key: In MySQL, the BLOB type does
not support primary keys, but GaussDB
supports.

● Index: In MySQL, the BLOB type does not
support other index methods except prefix
indexes. GaussDB supports these index
methods.

● Foreign key: In MySQL, the TINYTEXT type
cannot be used as the referencing column or
referenced column of a foreign key, but
GaussDB supports this operation.

● Output format: In MySQL 8.0 and later
versions, results starting with 0x are returned
by default. In GaussDB, results in the format
of "\x...\x...\x..." are returned.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 198

MySQL GaussDB Difference

MEDIUMBLO
B

Supported,
with
differences.

● Input format:
– Default value: The syntax of GaussDB

allows you to set a default value for a
table column to be created. However, this
operation is not allowed in MySQL.

– After a binary or hexadecimal character
string is entered, GaussDB outputs a
hexadecimal character string, and MySQL
escapes the character string based on the
ASCII code table. If the character string
cannot be escaped, the output is empty.

● Primary key: In MySQL, the MEDIUMBLOB
type does not support primary keys, but
GaussDB supports.

● Index: In MySQL, the MEDIUMBLOB type
does not support other index methods except
prefix indexes. GaussDB supports these index
methods.

● Foreign key: In MySQL, the TINYTEXT type
cannot be used as the referencing column or
referenced column of a foreign key, but
GaussDB supports this operation.

● Output format: In MySQL 8.0 and later
versions, results starting with 0x are returned
by default. In GaussDB, results in the format
of "\x...\x...\x..." are returned.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 199

MySQL GaussDB Difference

LONGBLOB Supported,
with
differences.

● Value range: a maximum of 1 GB. MySQL
supports a maximum of 4 GB minus 1 byte.

● Input format:
– Default value: The syntax of GaussDB

allows you to set a default value for a
table column to be created. However, this
operation is not allowed in MySQL.

– After a binary or hexadecimal character
string is entered, GaussDB outputs a
hexadecimal character string, and MySQL
escapes the character string based on the
ASCII code table. If the character string
cannot be escaped, the output is empty.

● Primary key: In MySQL, the LONGBLOB type
does not support primary keys, but GaussDB
supports.

● Index: In MySQL, the LONGBLOB type does
not support other index methods except
prefix indexes. GaussDB supports these index
methods.

● Foreign key: In MySQL, the TINYTEXT type
cannot be used as the referencing column or
referenced column of a foreign key, but
GaussDB supports this operation.

● Output format: In MySQL 8.0 and later
versions, results starting with 0x are returned
by default. In GaussDB, results in the format
of "\x...\x...\x..." are returned.

BIT[(M)] Supported,
with
differences.

Output formats:
● All outputs are displayed as binary character

strings. MySQL escapes the character string
based on the ASCII code table. If the
character string cannot be escaped, the
output is empty.

● In MySQL 8.0 and later versions, 0 is added
at the beginning of each result by default. In
GaussDB, 0 is not added.

Example:

-- GaussDB
m_db=# CREATE TABLE test(a BINARY(10)) DISTRIBUTE BY REPLICATION;
CREATE TABLE
m_db=# INSERT INTO test VALUES(0x8000);
INSERT 0 1
m_db=# SELECT hex(a) FROM test;
 hex

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 200

 80202020202020202020
(1 row)

m_db=# SELECT * FROM test WHERE hex(a) = 80000000000000000000;
 a

(0 rows)

m_db=# CREATE TABLE test2(a BINARY(10)) DISTRIBUTE BY REPLICATION;
CREATE TABLE
m_db=# INSERT INTO test2 VALUES(0x80008000);
INSERT 0 1
m_db=# SELECT hex(a) FROM test2;
 hex

 80202020202020202020
(1 row)

m_db=# DROP TABLE test;
DROP TABLE
m_db=# DROP TABLE test2;
DROP TABLE

-- MySQL
mysql> CREATE TABLE test(a BINARY(10));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO test VALUES(0x8000);
Query OK, 1 row affected (0.00 sec)

mysql> SELECT hex(a) FROM test;
+----------------------+
| hex(a) |
+----------------------+
| 80000000000000000000 |
+----------------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM test WHERE hex(a) = 80000000000000000000;
+------------+
| a |
+------------+
| ▒ |
+------------+
1 row in set (0.00 sec)

mysql> CREATE TABLE test2(a binary(10));
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO test2 VALUES(0x80008000);
Query OK, 1 row affected (0.00 sec)

mysql> SELECT hex(a) FROM test2;
+----------------------+
| hex(a) |
+----------------------+
| 80008000000000000000 |
+----------------------+
1 row in set (0.00 sec)
mysql> DROP TABLE test;
Query OK, 0 rows affected (0.00 sec)
mysql> DROP TABLE test2;
Query OK, 0 rows affected (0.00 sec)

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 201

3.2.1.5 Attributes Supported by Data Types

Table 3-7 Attributes Supported by Data Types

MySQL GaussDB

NULL Supported.

NOT NULL Supported.

DEFAULT Supported.

ON UPDATE Supported.

PRIMARY KEY Supported.

AUTO_INCREMENT Supported.

CHARACTER SET name Supported.

COLLATE name Supported.

ZEROFILL Supported.

When CREATE TABLE AS is used to create a table and default values are set for
columns of the VARBINARY type, the command output of SHOW CREATE TABLE,
DESC, or \d is different from that of MySQL. The value displayed in GaussDB is a
hexadecimal value, but MySQL displays the original value.

Example:
m_db=# CREATE TABLE test_int(
 int_col INT
);
m_db=# CREATE TABLE test_varbinary(
 varbinary_col VARBINARY(20) default 'gauss'
) AS SELECT * FROM test_int;
m_db=# SHOW CREATE TABLE test_varbinary;
 Table | Create Table
----------------+---
 test_varbinary | SET search_path = public; +
 | CREATE TABLE test_varbinary (+
 | varbinary_col varbinary(20) DEFAULT X'6761757373', +
 | int_col integer +
 |) +
 | CHARACTER SET = "UTF8" COLLATE = "utf8mb4_general_ci" +
 | WITH (orientation=row, compression=no, storage_type=USTORE, segment=off);
(1 row)
m_db=# DROP TABLE test_int, test_varbinary;

mysql> CREATE TABLE test_int(
 int_col INT
);
mysql> CREATE TABLE test_varbinary(
 varbinary_col VARBINARY(20) default 'gauss'
) AS SELECT * FROM test_int;
mysql> SHOW CREATE TABLE test_varbinary;
+----------------
+--+
| Table | Create
Table |
+----------------
+--+

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 202

| test_varbinary | CREATE TABLE `test_varbinary` (
 `varbinary_col` varbinary(20) DEFAULT 'gauss',
 `int_vol` int(11) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 |
+----------------
+--+
1 row in set (0.00 sec)
mysql> DROP TABLE test_int, test_varbinary;

3.2.1.6 Data Type Conversion
Conversion between different data types is supported. Data type conversion is
involved in the following scenarios:

● The data types of operands of operators (such as comparison and arithmetic
operators) are inconsistent. It is commonly used for comparison operations in
query or join conditions.

● The data types of arguments and parameters are inconsistent when a
function is called.

● The data types of target columns to be updated by DML statements
(including INSERT, UPDATE, MERGE, and REPLACE) and the defined column
types are inconsistent.

● Explicit type conversion: CAST(expr AS datatype), which converts an
expression to a data type.

● After the target data type of the final projection column is determined by set
operations (UNION and EXCEPT), the type of the projection column in each
SELECT statement is inconsistent with the target data type.

● In other expression calculation scenarios, the target data type used for
comparison or final result is determined based on the data type of different
expressions.

There are three types of data type conversion differences: implicit conversion,
explicit conversion, and UNION/CASE.

Differences in Double Colon Conversion
● In GaussDB, if you use double colons to convert input parameters of a

function to another type, the result may be unexpected. In MySQL, double
colons do not take effect.
Example:
m_db=# SELECT POW("12"::VARBINARY,"12"::VARBINARY);
ERROR: value out of range: overflow
CONTEXT: referenced column: pow

varbinary col
m_db=# CREATE TABLE test_varbinary (
 A VARBINARY(10)
);
m_db=# INSERT INTO test_varbinary VALUES ('12');
m_db=# SELECT POW(A, A) FROM test_varbinary;
 pow

 8916100448256
(1 row)

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 203

Differences in Implicit Type Conversion
● In GaussDB, the conversion rules from small types to small types are used. In

MySQL, the conversion rules from small types to large types and from large
types to small types are used.

● Due to data type differences, some output formats of implicit conversion in
GaussDB are inconsistent.

● During implicit conversion from the BIT data type to the character data type
and binary data type in GaussDB, some output behaviors are inconsistent.
GaussDB outputs a hexadecimal character string, and MySQL escapes the
character string based on the ASCII code table. If the character string cannot
be escaped, the output is empty.
Example:
m_db=# CREATE TABLE bit_storage (
 VS_COL1 BIT(4),
 VS_COL2 BIT(4),
 VS_COL3 BIT(4),
 VS_COL4 BIT(4),
 VS_COL5 BIT(4),
 VS_COL6 BIT(4),
 VS_COL7 BIT(4),
 VS_COL8 BIT(4)
) DISTRIBUTE BY REPLICATION;
m_db=# CREATE TABLE string_storage (
 VS_COL1 BLOB,
 VS_COL2 TINYBLOB,
 VS_COL3 MEDIUMBLOB,
 VS_COL4 LONGBLOB,
 VS_COL5 TEXT,
 VS_COL6 TINYTEXT,
 VS_COL7 MEDIUMTEXT,
 VS_COL8 LONGTEXT
) DISTRIBUTE BY REPLICATION;
m_db=# INSERT INTO bit_storage VALUES(B'101', B'101', B'101', B'101', B'101', B'101', B'101', B'101');
m_db=# INSERT INTO string_storage SELECT * FROM bit_storage;
m_db=# SELECT * FROM string_storage;
 VS_COL1 | VS_COL2 | VS_COL3 | VS_COL4 | VS_COL5 | VS_COL6 | VS_COL7 | VS_COL8
---------+---------+---------+---------+---------+---------+---------+---------
 \x05 | \x05 | \x05 | \x05 | \x05 | \x05 | \x05 | \x05
(1 row)
m_db=# DROP TABLE bit_storage, string_storage;

mysql> CREATE TABLE bit_storage (
 VS_COL1 BIT(4),
 VS_COL2 BIT(4),
 VS_COL3 BIT(4),
 VS_COL4 BIT(4),
 VS_COL5 BIT(4),
 VS_COL6 BIT(4),
 VS_COL7 BIT(4),
 VS_COL8 BIT(4)
);
mysql> CREATE TABLE bit_storage (
 VS_COL1 BIT(4),
 VS_COL2 BIT(4),
 VS_COL3 BIT(4),
 VS_COL4 BIT(4),
 VS_COL5 BIT(4),
 VS_COL6 BIT(4),
 VS_COL7 BIT(4),
 VS_COL8 BIT(4)
);
mysql> INSERT INTO bit_storage VALUES(B'101', B'101', B'101', B'101', B'101', B'101', B'101', B'101');
mysql> INSERT INTO string_storage SELECT * FROM bit_storage;
mysql> SELECT * FROM string_storage;

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 204

+---------+---------+---------+---------+---------+---------+---------+---------+
| VS_COL1 | VS_COL2 | VS_COL3 | VS_COL4 | VS_COL5 | VS_COL6 | VS_COL7 | VS_COL8 |
+---------+---------+---------+---------+---------+---------+---------+---------+
| | | | | | | | |
+---------+---------+---------+---------+---------+---------+---------+---------+
1 row in set (0.00 sec)
mysql> DROP TABLE bit_storage, string_storage;

● When a binary or hexadecimal character string with 0x00 is inserted into the
binary data type, GaussDB inserts part of the string and truncates the
characters following 0x00. MySQL can insert the entire string.

Example:
m_db=# CREATE TABLE blob_storage (
 A BLOB
) DISTRIBUTE BY REPLICATION;
m_db=# INSERT INTO blob_storage VALUES (0xBB00BB);
m_db=# SELECT hex(A) FROM blob_storage;
 hex

 BB
(1 row)
m_db=# DROP TABLE blob_storage;

mysql> CREATE TABLE blob_storage (
 A BLOB
);
mysql> INSERT INTO blob_storage VALUES (0xBB00BB);
mysql> SELECT hex(A) FROM blob_storage;
+--------+
| hex(a) |
+--------+
| BB00BB |
+--------+
1 row in set (0.01 sec)
mysql> DROP TABLE blob_storage;

● When a binary or hexadecimal string with 0x00 in the middle is inserted into
the string data type, GaussDB inserts part of the string and truncates the
characters following 0x00. In MySQL, the string cannot be inserted in strict
mode, and an empty string is inserted in loose mode.

Example:
m_db=# CREATE TABLE text_storage (
 A TEXT
);
m_db=# INSERT INTO text_storage VALUES (b'101110110000000010111011');
m_db=# SELECT hex(A) FROM text_storage;
 hex

 BB
(1 row)
m_db=# DROP TABLE text_storage;

mysql> CREATE TABLE text_storage (
 A TEXT
);
mysql> INSERT INTO text_storage VALUES (b'101110110000000010111011');
ERROR 1366 (HY000): Incorrect string value: '\xBB\x00\xBB' for column 'A' at row 1
mysql> SELECT hex(A) FROM text_storage;
Empty set (0.00 sec)
mysql> SET SQL_MODE='';
mysql> INSERT INTO text_storage VALUES (b'101110110000000010111011');
mysql> SELECT hex(A) FROM text_storage;
+--------+
| hex(A) |
+--------+
| |
+--------+

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 205

1 row in set (0.01 sec)
mysql> DROP TABLE text_storage;

● The WHERE clause contains only common character strings. GaussDB returns
TRUE for 't', 'true', 'yes', 'y', and 'on', returns FALSE for 'no', 'f', 'off', 'false',
and 'n', and reports an error for other character strings. MySQL determines
whether to return TRUE or FALSE by converting a character string to an INT1
value.
Example:
m_db=# CREATE TABLE test_where (
 A INT
);
m_db=# INSERT INTO test_where VALUES (1);
m_db=# SELECT * FROM test_where WHERE '111';
ERROR: invalid input syntax for type boolean: "111"
LINE 1: SELECT * FROM test_where WHERE '111';
m_db=# DROP TABLE test_where;

mysql> CREATE TABLE test_where (
 A INT
);
mysql> INSERT INTO test_where VALUES (1);
mysql> SELECT * FROM test_where WHERE '111';
+------+
| a |
+------+
| 1 |
+------+
1 row in set (0.01 sec)
mysql> DROP TABLE test_where;

● When converting strings of the YEAR type to integers, MySQL uses scientific
notation, but GaussDB does not support scientific notation and truncates the
strings.
Example:
m_db=# CREATE TABLE test_year (
 A YEAR
);
m_db=# SET sql_mode = '';
m_db=# INSERT INTO test_year VALUES ('2E3x');
WARNING: Data truncated for column.
LINE 1: INSERT INTO test_year VALUES ('2E3x');
 ^
CONTEXT: referenced column: a
m_db=# SELECT * FROM test_year ORDER BY A;
 a

 2002
(1 row)
m_db=# DROP TABLE test_year;

mysql> CREATE TABLE test_year (
 A YEAR
);
mysql> INSERT INTO test_year VALUES ('2E3x');
mysql> SELECT * FROM test_year ORDER BY A;
+------+
| a |
+------+
| 2000 |
+------+
1 row in set (0.01 sec)
mysql> DROP TABLE test_year;

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 206

Differences in Explicit Type Conversion
● In GaussDB, the conversion rules for each target type are used. In MySQL, C++

polymorphic overloading functions are used, causing inconsistent behavior in
nesting scenarios.
Example:
m_db=# SELECT CAST(GREATEST(date'2023-01-01','2023-01-01') AS SIGNED);
WARNING: Truncated incorrect INTEGER value: '2023-01-01'
CONTEXT: referenced column: cast
 cast

 2023
(1 row)

mysql> SELECT CAST(GREATEST(date'2023-01-01','2023-01-01') AS SIGNED);
+---+
| CAST(GREATEST(date'2023-01-01','2023-01-01') AS SIGNED) |
+---+
| 20230101 |
+---+

Differences Between UNION, CASE, and Related Structures
● In MySQL, POLYGON+NULL, POINT+NULL, and POLYGON+POINT return the

GEOMETRY type. They are not involved in GaussDB and considered as errors.
● The SET and ENUM types are not supported currently and are considered as

errors.
● When the constant type is aggregated with other types, the precision of the

output type is the precision of other types. For example, the precision of the
result of "SELECT "helloworld" UNION SELECT p FROM t;" is the precision of
attribute p.

● When fixed-point constants and types without precision constraints (non-
string types such as int, bool, and year, and the type of the aggregation result
is the fixed-point type) are aggregated, the precision constraint is output
based on the default precision 31 of fixed-point numbers.

● Differences in merge rules:
In MySQL 5.7, if YEAR is aggregated with TINYINT, INT, MEDIUMINT, BIGINT,
or BOOL, the result is of the type with UNSIGNED. In GaussDB, it is of the
type without UNSIGNED. In MySQL, if BIT is aggregated with a numeric type
such as INT, NUMERIC, FLOAT, or DOUBLE, the result type is VARBINARY. In
GaussDB, the result type is NUMERIC for aggregation between BIT and INT or
NUMERIC, DOUBLE for aggregation between BIT and FLOAT or DOUBLE, and
UINT8 for aggregation between BIT and unsigned integers.

● In MySQL, BINARY and CHAR use different padding characters. BINARY is
padded with '\0', and CHAR is padded with spaces. In GaussDB, BINARY and
CHAR are padded with spaces.

3.2.2 System Functions

3.2.2.1 System Function Compatibility Overview

GaussDB is compatible with most MySQL system functions, but there are some
differences.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 207

Currently, some system functions in GaussDB with the same names as those in
MySQL are not supported in M-compatible mode. For some of them, the message
indicating that they are not supported in M-compatible mode is displayed. Other
functions still retain the behaviors of the original GaussDB system functions. The
behavior of functions with the same name is greatly different from that of MySQL.
Therefore, you are advised to avoid using them but use only system functions in
M-compatible mode.

The following table lists the functions with the same name.

Table 3-8 Same-name functions for which a message indicating that they are not
supported in M-compatible mode is displayed

cot isEmpty last_insert_id mod octet_length

overlaps point radians regexp_instr regexp_like

regexp_replac
e

regexp_substr stddev_pop stddev_samp var_pop

var_samp variance - - -

Table 3-9 Same-name functions that retain the behaviors of the original GaussDB
system functions in M-compatible mode

ceil decode encode format instr

position round stddev row_num -

NO TE

● MySQL allows you to add user-defined functions to the database through the loadable
functions. When such functions are called, aliases can be specified in the input
parameters of the functions. GaussDB does not support loadable functions. When a
function is called, aliases cannot be specified for input parameters of the function.

● In M-compatible mode, system functions have the following differences:
● The return value type of a system function is the same as that of MySQL only

when the node type of the input parameter is Var (table data) or Const (constant
input). In other cases (for example, the input parameter is a calculation expression
or function expression), the return value type may be different from that of
MySQL.

● When an aggregate function uses an expression such as another function, operator,
or SELECT clause as the input parameter (for example, SELECT sum(abs(n))
FROM t;), the aggregate function cannot obtain the precision passed by the input
parameter expression. As a result, the precision of the function result is different
from that of MySQL.

● Calling system functions by pg_catalog.func_name() is not recommended. If the
called function has input parameters in the format of syntax (such as SELECT
substr('demo' from 1 for 2)), an error may occur when the function is called.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 208

3.2.2.2 Flow Control Functions

Table 3-10 Flow control functions

MySQL GaussDB Difference

IF() Supported,
with
differences.

If the first parameter is TRUE and the third
parameter expression contains an implicit type
conversion error, or if the first parameter is
FALSE and the second parameter expression
contains an implicit type conversion error,
MySQL ignores the error while GaussDB
displays a type conversion error.

IFNULL() Supported,
with
differences.

If the first parameter is not NULL and the
expression of the second parameter contains an
implicit type conversion error, MySQL ignores
the error while GaussDB reports a type
conversion error.

NULLIF() Supported,
with
differences.

The return value type of a function differs in
MySQL 5.7 and MySQL 8.0. Return types are
compatible with MySQL 8.0 because it is more
appropriate.

3.2.2.3 Date and Time Functions

The date and time functions in the M-compatible mode in GaussDB, with the
same behavior as MySQL, are described as follows:

● Functions may use time expressions as their input parameters.

Time expressions (mainly including TEXT, DATETIME, DATE, and TIME) and
types that can be implicitly converted to time expressions can be used as
input parameters. For example, a number can be implicitly converted to text
and then used as a time expression.

However, different functions take effect in different ways. For example, the
DATEDIFF function calculates only the difference between dates. Therefore,
the time expression is parsed as the date type. The TIMESTAMPDIFF function
parses the time expression as DATE, TIME, or DATETIME based on the UNIT
parameter before calculating the time difference.

● The input parameters of functions may contain an invalid date.

Generally, the supported DATE and DATETIME ranges are the same as those
in MySQL. The value of DATE ranges from '0000-01-01' to '9999-12-31', and
the value of DATETIME ranges from '0000-01-01 00:00:00' to '9999-12-31
23:59:59'. Although the DATE and DATETIME ranges supported by GaussDB
are greater than those supported by MySQL, out-of-bounds dates are still
invalid.

In most cases, time functions report an alarm and return NULL if the input
date is invalid, unless the invalid date can be converted by CAST.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 209

Most date and time functions in the GaussDB M-compatible framework are the
same as those in MySQL. The following table lists the differences between them in
terms of some functions.

Table 3-11 Date and time functions

MySQL GaussDB Difference

ADDDATE() Supported. -

ADDTIME() Supported. -

CONVERT_T
Z()

Supported. -

CURDATE() Supported. -

CURRENT_DA
TE()/
CURRENT_DA
TE

Supported. -

CURRENT_TI
ME()/
CURRENT_TI
ME

Supported,
with
differences.

In MySQL, an integer input value is wrapped
when it reaches 255 (maximum value of a one-
byte integer value), for example, SELECT
CURRENT_TIME(257) == SELECT
CURRENT_TIME(1).
GaussDB supports only valid values ranging
from 0 to 6. For other values, an error is
reported.

CURRENT_TI
MESTAMP()/
CURRENT_TI
MESTAMP

Supported,
with
differences.

In MySQL, an integer input value is wrapped
when it reaches 255 (maximum value of a one-
byte integer value), for example, SELECT
CURRENT_TIMESTAMP(257) == SELECT
CURRENT_TIMESTAMP(1).
GaussDB supports only valid values ranging
from 0 to 6. For other values, an error is
reported.

CURTIME() Supported,
with
differences.

In MySQL, an integer input value is wrapped
when it reaches 255 (maximum value of a one-
byte integer value), for example, SELECT
CURTIME(257) == SELECT CURTIME(1).
GaussDB supports only valid values ranging
from 0 to 6. For other values, an error is
reported.

DATE() Supported. -

DATE_ADD() Supported. -

DATE_FORMA
T()

Supported. -

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 210

MySQL GaussDB Difference

DATE_SUB() Supported. -

DATEDIFF() Supported. -

DAY() Supported. -

DAYNAME() Supported. -

DAYOFMONT
H()

Supported. -

DAYOFWEEK(
)

Supported. -

DAYOFYEAR() Supported. -

EXTRACT() Supported. -

FROM_DAYS(
)

Supported. -

FROM_UNIXT
IME()

Supported. -

GET_FORMA
T()

Supported. -

HOUR() Supported. -

LAST_DAY() Supported. -

LOCALTIME()
/LOCALTIME

Supported,
with
differences.

In MySQL, an integer input value is wrapped
when it reaches 255 (maximum value of a one-
byte integer value), for example, SELECT
LOCALTIME(257) == SELECT LOCALTIME(1).
GaussDB supports only valid values ranging
from 0 to 6. For other values, an error is
reported.

LOCALTIMEST
AMP/
LOCALTIMEST
AMP()

Supported,
with
differences.

In MySQL, an integer input value is wrapped
when it reaches 255 (maximum value of a one-
byte integer value), for example, SELECT
LOCALTIMESTAMP(257) == SELECT
LOCALTIMESTAMP(1).
GaussDB supports only valid values ranging
from 0 to 6. For other values, an error is
reported.

MAKEDATE() Supported. -

MAKETIME() Supported,
with
differences.

In the distributed pushdown scenario, if no
second precision is specified for the TIME type,
MySQL supplements six trailing zeros by
default, but GaussDB does not supplement
anything.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 211

MySQL GaussDB Difference

MICROSECON
D()

Supported. -

MINUTE() Supported. -

MONTH() Supported. -

MONTHNAM
E()

Supported. -

NOW() Supported,
with
differences.

In MySQL, an integer input value is wrapped
when it reaches 255 (maximum value of a one-
byte integer value), for example, SELECT
NOW(257)==SELECT NOW(1).
GaussDB supports only valid values ranging
from 0 to 6. For other values, an error is
reported.

PERIOD_AD
D()

Supported,
with
differences.

● Processing of integer overflow.
In MySQL 5.7, the maximum value of an
input parameter result of this function is
2^32=4294967296. When the accumulated
value of the month corresponding to period
and the value of month_number in the
input parameter or result exceed the uint32
range, integer wraparound occurs. This issue
has been resolved in MySQL 8.0. The
performance of this function in GaussDB is
the same as that in MySQL 8.0.

● Performance when the value of period is
negative:
In MySQL 5.7, a negative year is parsed as an
abnormal value instead of an error.
Conversely, GaussDB reports an error when
any input parameter or result is negative (for
example, January 100 minus 10000 months).
This issue has been resolved in MySQL 8.0.
The performance of this function in GaussDB
is the same as that in MySQL 8.0.

● Performance when the month in period
exceeds the range:
When dealing with a month greater than 12
or equal to 0, for example, 200013 or
199900, MySQL 5.7 postpones it to the next
year or views month 0 as December of the
previous year. GaussDB reports an error for
months beyond the range. This issue has
been resolved in MySQL 8.0. The
performance of this function in GaussDB is
the same as that in MySQL 8.0.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 212

MySQL GaussDB Difference

PERIOD_DIFF(
)

Supported,
with
differences.

● Processing of integer overflow.
In MySQL 5.7, the maximum value of an
input parameter result of this function is
2^32=4294967296. When the accumulated
value of the month corresponding to period
and the value of month_number in the
input parameter or result exceed the uint32
range, integer wraparound occurs. This issue
has been resolved in MySQL 8.0. The
performance of this function in GaussDB is
the same as that in MySQL 8.0.

● Performance when the value of period is
negative:
In MySQL 5.7, a negative year is parsed as an
abnormal value instead of an error.
Conversely, GaussDB reports an error when
any input parameter or result is negative (for
example, January 100 minus 10000 months).
This issue has been resolved in MySQL 8.0.
The performance of this function in GaussDB
is the same as that in MySQL 8.0.

● Performance when the month in period
exceeds the range:
When dealing with a month greater than 12
or equal to 0, for example, 200013 or
199900, MySQL 5.7 postpones it to the next
year or views month 0 as December of the
previous year. GaussDB reports an error for
months beyond the range. This issue has
been resolved in MySQL 8.0. The
performance of this function in GaussDB is
the same as that in MySQL 8.0.

QUARTER() Supported. -

SEC_TO_TIM
E()

Supported. -

SECOND() Supported. -

STR_TO_DAT
E()

Supported,
with
differences.

GaussDB returns values of the text type, while
MySQL returns values of the datetime or date
type.

SUBDATE() Supported. -

SUBTIME() Supported. -

SYSDATE() Supported,
with
differences.

In MySQL, an integer input value is wrapped
when it reaches 255 (maximum value of a one-
byte integer value).
GaussDB does not support wraparound.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 213

MySQL GaussDB Difference

TIME() Supported. -

TIME_FORMA
T()

Supported. -

TIME_TO_SE
C()

Supported. -

TIMEDIFF() Supported. -

TIMESTAMP() Supported. -

TIMESTAMPA
DD()

Supported. -

TIMESTAMPD
IFF()

Supported. -

TO_DAYS() Supported. -

TO_SECOND
S()

Supported. -

UNIX_TIMEST
AMP()

Supported,
with
differences.

MySQL determines whether to return a fixed-
point value or an integer based on whether an
input parameter contains decimal places. When
operators or functions are nested in the input
parameter, GaussDB may return a value of the
type different from that in MySQL. If the inner
node returns a value of the fixed-point,
floating-point, string, or time type (excluding
the date type), MySQL may return an integer,
while GaussDB returns a fixed-point value.

UTC_DATE() Supported. -

UTC_TIME() Supported,
with
differences.

In MySQL, an integer input value is wrapped
when it reaches 255 (maximum value of a one-
byte integer value). GaussDB supports only
valid values ranging from 0 to 6. For other
values, an error is reported.

UTC_TIMESTA
MP()

Supported,
with
differences.

In MySQL, an integer input value is wrapped
when it reaches 255 (maximum value of a one-
byte integer value). GaussDB supports only
valid values ranging from 0 to 6. For other
values, an error is reported.

WEEK() Supported. -

WEEKDAY() Supported. -

WEEKOFYEA
R()

Supported. -

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 214

MySQL GaussDB Difference

YEAR() Supported. -

YEARWEEK() Supported. -

3.2.2.4 String Functions

Table 3-12 String functions

MySQL GaussDB Difference

ASCII() Supported. -

BIT_LENGTH(
)

Supported. -

CHAR_LENGT
H()

Supported,
with
differences.

In GaussDB, if the character set is SQL_ASCII,
CHAR_LENGTH() returns the number of bytes
instead of characters.

CHARACTER_
LENGTH()

Supported,
with
differences.

In GaussDB, if the character set is SQL_ASCII,
CHARACTER_LENGTH() returns the number of
bytes instead of characters.

CONCAT() Supported,
with
differences.

For binary return values, MySQL offers various
options (including BINARY, VARBINARY, and
BLOB), while GaussDB offers only one—
LONGBLOB. For non-binary return values,
MySQL offers various options (including CHAR,
VARCHAR, and TEXT), while GaussDB only
offers TEXT.

CONCAT_WS(
)

Supported,
with
differences.

For binary return values, MySQL offers various
options (including BINARY, VARBINARY, and
BLOB), while GaussDB offers only one—
LONGBLOB. For non-binary return values,
MySQL offers various options (including CHAR,
VARCHAR, and TEXT), while GaussDB only
offers TEXT.

HEX() Supported. -

LENGTH() Supported. -

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 215

MySQL GaussDB Difference

LPAD() Supported,
with
differences.

● The default maximum padding length in
MySQL is 1398101, and that in GaussDB is
1048576. The maximum padding length
varies depending on the character set. For
example, if the character set is GBK, the
default maximum padding length in
GaussDB is 2097152.

● When GaussDB uses the SQL_ASCII, the
server interprets byte values 0 to 127
according to the ASCII standard, and byte
values 128 to 255 are regarded as characters
that cannot be parsed. If the input and
output of the function contain any non-ASCII
data, the database cannot convert or verify
non-ASCII characters. As a result, the
behavior of the function is greatly different
from that of MySQL.

● For binary return values, MySQL offers
various options (including BINARY,
VARBINARY, and BLOB), while GaussDB
offers only one—LONGBLOB. For non-binary
return values, MySQL offers various options
(including CHAR, VARCHAR, and TEXT),
while GaussDB only offers TEXT.

REPEAT() Supported,
with
differences.

For binary return values, MySQL offers various
options (including BINARY, VARBINARY, and
BLOB), while GaussDB offers only one—
LONGBLOB. For non-binary return values,
MySQL offers various options (including CHAR,
VARCHAR, and TEXT), while GaussDB only
offers TEXT.

REPLACE() Supported,
with
differences.

For binary return values, MySQL offers various
options (including BINARY, VARBINARY, and
BLOB), while GaussDB offers only one—
LONGBLOB. For non-binary return values,
MySQL offers various options (including CHAR,
VARCHAR, and TEXT), while GaussDB only
offers TEXT.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 216

MySQL GaussDB Difference

RPAD() Supported,
with
differences.

● The default maximum padding length in
MySQL is 1398101, and that in GaussDB is
1048576. The maximum padding length
varies depending on the character set. For
example, if the character set is GBK, the
default maximum padding length in
GaussDB is 2097152.

● When GaussDB uses the SQL_ASCII, the
server interprets byte values 0 to 127
according to the ASCII standard, and byte
values 128 to 255 are regarded as characters
that cannot be parsed. If the input and
output of the function contain any non-ASCII
data, the database cannot convert or verify
non-ASCII characters. As a result, the
behavior of the function is greatly different
from that of MySQL.

● For binary return values, MySQL offers
various options (including BINARY,
VARBINARY, and BLOB), while GaussDB
offers only one—LONGBLOB. For non-binary
return values, MySQL offers various options
(including CHAR, VARCHAR, and TEXT),
while GaussDB only offers TEXT.

SPACE() Supported. -

STRCMP() Supported,
with
differences.

When GaussDB uses the SQL_ASCII, the server
interprets byte values 0 to 127 according to the
ASCII standard, and byte values 128 to 255 are
regarded as characters that cannot be parsed. If
the input and output of the function contain
any non-ASCII data, the database cannot
convert or verify non-ASCII characters. As a
result, the behavior of the function is greatly
different from that of MySQL.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 217

MySQL GaussDB Difference

FIND_IN_SET(
)

Supported,
with
differences.

When GaussDB uses the SQL_ASCII, the server
interprets byte values 0 to 127 according to the
ASCII standard, and byte values 128 to 255 are
regarded as characters that cannot be parsed. If
the input and output of the function contain
any non-ASCII data, the database cannot
convert or verify non-ASCII characters. As a
result, the behavior of the function is greatly
different from that of MySQL.
For binary return values, MySQL offers various
options (including BINARY, VARBINARY, and
BLOB), while GaussDB offers only one—
LONGBLOB. For non-binary return values,
MySQL offers various options (including CHAR,
VARCHAR, and TEXT), while GaussDB only
offers TEXT.

LCASE()

LEFT()

LOWER()

LTRIM()

REVERSE()

RIGHT()

RTRIM()

SUBSTR()

SUBSTRING()

SUBSTRING_I
NDEX()

TRIM()

UCASE()

UPPER()

UNHEX() Supported,
with
differences.

The return value type in MySQL is BINARY,
VARBINARY, BLOB, MEDIUMBLOB, or
LONGBLOB, while the return value type in
GaussDB is fixed to LONGBLOB.

FIELD() Supported. -

FORMAT() Supported. -

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 218

3.2.2.5 Forced Conversion Functions

Table 3-13 Forced conversion functions

MySQL GaussDB Difference

CAST() Supported,
with
differences

● In GaussDB, CAST(expr AS CHAR[(N)]
charset_info or CAST(expr AS NCHAR[(N)])
cannot be used to convert character sets.

● In GaussDB, you can use CAST(expr AS
FLOAT[(p)]) or CAST(expr AS DOUBLE) to
convert an expression to the one of the
floating-point type. MySQL 5.7 does not
support this conversion.

● In GaussDB, CAST(expr AS JSON) cannot be
used to convert expressions to JSON.

● In the CAST nested subquery scenario, if the
subquery statement returns the FLOAT type,
an accurate value is returned in GaussDB
while a distorted value is returned in MySQL
5.7. The same rule applies to the BINARY
function implemented using CAST.
--GaussDB
m_db=# CREATE TABLE sub_query_table(myfloat float)
DISTRIBUTE BY REPLICATION;
CREATE TABLE
m_db=# INSERT INTO sub_query_table(myfloat) VALUES
(1.23);
INSERT 0 1
m_db=# SELECT binary(SELECT myfloat FROM
sub_query_table) FROM sub_query_table;
 binary

 1.23
(1 row)
m_db=# SELECT cast((SELECT myfloat FROM
sub_query_table) AS char);
 cast

 1.23
(1 row)
--MySQL 5.7
mysql> CREATE TABLE sub_query_table(myfloat float);
Query OK, 0 rows affected (0.02 sec)
mysql> INSERT INTO sub_query_table(myfloat) VALUES
(1.23);
Query OK, 1 row affected (0.00 sec)
mysql> SELECT binary(SELECT myfloat FROM
sub_query_table) FROM sub_query_table;
+---+
| binary(SELECT myfloat FROM sub_query_table) |
+---+
| 1.2300000190734863 |
+---+
1 row in set (0.00 sec)
mysql> SELECT cast((SELECT myfloat FROM
sub_query_table) AS char);
+--+
| cast((SELECT myfloat FROM sub_query_table) AS char) |
+--+
| 1.2300000190734863 |

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 219

MySQL GaussDB Difference

+--+
1 row in set (0.00 sec)

CONVERT() Supported,
with
differences

● In GaussDB, CONVERT(expr, CHAR[(N)]
charset_info or CAST(expr, NCHAR[(N)])
cannot be used to convert character sets.

● In GaussDB, you can use CONVERT(expr,
FLOAT[(p)]) or CONVERT(expr, DOUBLE)
to convert an expression to the one of the
floating-point type. MySQL 5.7 does not
support this conversion.

● In GaussDB, CONVERT(expr, JSON) cannot
be used to convert expressions to JSON.

3.2.2.6 Encryption Functions

Table 3-14 Encryption functions

MySQL GaussDB Difference

AES_DECRYP
T()

Supported,
with
differences

● GaussDB does not support ECB mode, which
is an insecure encryption mode, but uses CBC
mode by default.

● When characters are specified to be encoded
in SQL_ASCII for GaussDB, the server parses
byte values 0 to 127 according to the ASCII
standard, and byte values 128 to 255 cannot
be parsed. If the input and output of the
function contain any non-ASCII characters,
the database cannot convert or verify them.

● The return value type in MySQL is BINARY,
VARBINARY, BLOB, MEDIUMBLOB, or
LONGBLOB, while the return value type in
GaussDB is fixed to LONGBLOB.

AES_ENCRYP
T()

Supported,
with
differences

SHA()/
SHA1()

Supported. -

SHA2() Supported. -

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 220

3.2.2.7 Comparison Functions

Table 3-15 Comparison functions

MySQL GaussDB Difference

COALESCE() Supported,
with
differences.

In the union distinct scenario, the precision of
the return value is different from that in
MySQL.
If there is an implicit type conversion error in
the subsequent parameter expression of the
first parameter that is not NULL, MySQL
ignores the error while GaussDB displays a type
conversion error. When the parameter is a MIN
or MAX function, the return value type is
different from that in MySQL.

INTERVAL() Supported. -

GREATEST() Supported,
with
differences.

For binary return values, MySQL offers various
options (including BINARY, VARBINARY, and
BLOB), while GaussDB offers only one—
LONGBLOB. For non-binary return values,
MySQL offers various options (including CHAR,
VARCHAR, and TEXT), while GaussDB only
offers TEXT.
If the input parameter of the function contains
NULL and the function is called after the
WHERE keyword, the returned result is
inconsistent with that of MySQL 5.7. This
problem lies in MySQL 5.7. Since MySQL 8.0 has
resolved this problem, GaussDB are consistent
with MySQL 8.0.

LEAST() Supported,
with
differences.

For binary return values, MySQL offers various
options (including BINARY, VARBINARY, and
BLOB), while GaussDB offers only one—
LONGBLOB. For non-binary return values,
MySQL offers various options (including CHAR,
VARCHAR, and TEXT), while GaussDB only
offers TEXT.
If the input parameter of the function contains
NULL and the function is called after the
WHERE keyword, the returned result is
inconsistent with that of MySQL 5.7. This
problem lies in MySQL 5.7. Since MySQL 8.0 has
resolved this problem, GaussDB are consistent
with MySQL 8.0.

ISNULL() Supported. -

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 221

3.2.2.8 Aggregate Functions

Table 3-16 Aggregate functions

MySQL GaussDB Difference

AVG() Supported,
with
differences.

● If DISTINCT is specified and the SQL
statement contains the GROUP BY clause,
GaussDB does not sort the results, while
MySQL sorts the results.

● In GaussDB, if the columns in expr are of the
BIT, BOOL, or integer type and the sum of all
rows exceeds the range of BIGINT, overflow
occurs, reversing integers.

BIT_AND() Supported. -

BIT_OR() Supported. -

BIT_XOR() Supported. -

COUNT() Supported,
with
differences.

If DISTINCT is specified and the SQL statement
contains the GROUP BY clause, GaussDB does
not sort the results, while MySQL sorts the
results.

GROUP_CON
CAT()

Supported,
with
differences.

● If DISTINCT is specified and the SQL
statement contains the GROUP BY clause,
GaussDB does not sort the results, while
MySQL sorts the results.

● If GROUP_CONCAT is to return a binary type,
only the BLOB type is returned. In other
cases, the TEXT type is returned. MySQL may
return the LONGTEXT, TINYTEXT, LONGBLOB,
or TINYBLOB type based on the return
length.

● In GaussDB, if the parameters in
GROUP_CONCAT contain both the DISTINCT
and ORDER BY syntaxes, all expressions
following ORDER BY must be in the
DISTINCT expression.

● In GaussDB, GROUP_CONCAT(... ORDER BY
Number) does not indicate the sequence of
the parameter. The number is only a
constant expression, which is equivalent to
no sorting.

● In GaussDB, the group_concat_max_len
parameter is used to limit the maximum
return length of GROUP_CONCAT. If the
return length exceeds the maximum, the
length is truncated. Currently, the maximum
length that can be returned is 1073741823,
which is smaller than that in MySQL.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 222

MySQL GaussDB Difference

MAX() Supported,
with
differences.

● If DISTINCT is specified and the SQL
statement contains the GROUP BY clause,
GaussDB does not sort the results, while
MySQL sorts the results.

● When the parameter is not a table column,
the return value types of the MAX and MIN
functions are different from those in MySQL
5.7.

● When the parameter is of the FLOAT type,
the return values of the MAX and MIN
functions are the same as those in MySQL
5.7. The behavior of MySQL 5.7 and MySQL
8.0 is different. As a result, the return values
of the MAX and MIN functions with
CAST(expr AS FLOAT[(p)]) nested are
different from those in MySQL 8.0.
-- GaussDB:
m_db=# CREATE TABLE t1(c1 float);
CREATE TABLE

m_db=# INSERT INTO t1 VALUES(1.2);
INSERT 0 1

m_db=# SELECT MAX(c1) FROM t1;
 max

 1.2000000476837158
(1 row)

m_db=# SELECT MAX(CAST(1.2 AS FLOAT));
 max

 1.2000000476837158
(1 row)

m_db=# DROP TABLE t1;
DROP TABLE

-- MySQL 5.7:
mysql> CREATE TABLE t1(c1 float);
Query OK, 0 rows affected (0.02 sec)

mysql> INSERT INTO t1 VALUES(1.2);
Query OK, 1 row affected (0.00 sec)

mysql> SELECT MAX(c1) FROM t1;
+--------------------+
| MAX(c1) |
+--------------------+
| 1.2000000476837158 |
+--------------------+
1 row in set (0.00 sec)
-- MySQL 5.7 does not support the CAST(expr AS
FLOAT[(p)]) expression.
mysql> SELECT MAX(CAST(1.2 AS FLOAT));
ERROR 1064 (42000): You have an error in your SQL
syntax; check the manual that corresponds to your MySQL
server version for the right syntax to use near 'FLOAT))' at
line 1

MIN()

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 223

MySQL GaussDB Difference

mysql> DROP TABLE t1;
Query OK, 0 rows affected (0.01 sec)

-- MySQL 8.0:
mysql> CREATE TABLE t1(c1 float);
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO t1 VALUES(1.2);
Query OK, 1 row affected (0.00 sec)

mysql> SELECT MAX(c1) FROM t1;
+---------+
| MAX(c1) |
+---------+
| 1.2 |
+---------+
1 row in set (0.00 sec)

mysql> SELECT MAX(CAST(1.2 AS FLOAT));
+-------------------------+
| MAX(CAST(1.2 AS FLOAT)) |
+-------------------------+
| 1.2 |
+-------------------------+
1 row in set (0.00 sec)

mysql> DROP TABLE t1;
Query OK, 0 rows affected (0.01 sec)

SUM() Supported,
with
differences.

● If DISTINCT is specified and the SQL
statement contains the GROUP BY clause,
GaussDB does not sort the results, while
MySQL sorts the results.

● In GaussDB, if the columns in expr are of the
BIT, BOOL, or integer type and the sum of all
rows exceeds the range of BIGINT, overflow
occurs, reversing integers.

3.2.2.9 Numeric Operation Functions

Table 3-17 Numeric operation functions

MySQL GaussDB Difference

ABS() Supported. -

ACOS() Supported. -

ASIN() Supported. -

ATAN() Supported. -

ATAN2() Supported. -

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 224

MySQL GaussDB Difference

CEILING() Supported,
with
differences.

Some operation result types in GaussDB are
inconsistent with those in MySQL. If the derived
result is of the NUMERIC or integer type and
can be stored as an integer type, the result type
in MySQL is integer, but is still NUMERIC in
GaussDB.

COS() Supported. -

DEGREES() Supported. -

EXP() Supported. -

FLOOR() Supported,
with
differences.

The return value types of the FLOOR function in
GaussDB are different from those in MySQL.
When the input parameter type is INT, the
return value type is BIGINT in GaussDB, but is
INT in MySQL.
Some operation result types in GaussDB are
inconsistent with those in MySQL. If the derived
result is of the NUMERIC or integer type and
can be stored as an integer type, the result type
in MySQL is integer, but is still NUMERIC in
GaussDB.

LN() Supported. -

LOG() Supported. -

LOG10() Supported. -

LOG2() Supported. -

PI() Supported,
with
differences.

The precision of the return value of the PI
function in GaussDB is different from that in
MySQL. It is rounded off to 15 decimal places in
GaussDB but to six decimal places in MySQL.

POW() Supported. -

POWER() Supported. -

RAND() Supported. -

SIGN() Supported. -

SIN() Supported. -

SQRT() Supported. -

TAN() Supported. -

TRUNCATE() Supported. -

CEIL() Supported. -

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 225

3.2.2.10 Other Functions

Table 3-18 Other functions

MySQL GaussDB Difference

DATABASE() Supported. -

UUID() Supported. -

UUID_SHOR
T()

Supported. -

3.2.3 Operators
GaussDB is compatible with most MySQL operators, but there are some
differences. If not listed, the operator behavior is the native behavior of GaussDB
by default. Currently, there are statements that are not supported by MySQL but
supported by GaussDB. In MySQL-compatible mode, they are usually used inside
the system, so they are not recommended.

Operator Differences
● NULL values in ORDER BY are sorted in different ways. MySQL sorts NULL

values first, while GaussDB sorts NULL values last. In GaussDB, you can use
NULLS FIRST and NULLS LAST to set the sorting sequence of NULL values.

● If ORDER BY is used, the output sequence of GaussDB is the same as that of
MySQL. Without ORDER BY, GaussDB does not guarantee that the results are
ordered.

● When using MySQL operators, use parentheses to ensure the combination of
expressions. Otherwise, an error is reported. For example, SELECT 1 regexp
('12345' regexp '123').
The GaussDB M-compatible operators can be successfully executed without
using parentheses to strictly combine expressions.

● NULL values are displayed in different ways. MySQL displays a NULL value as
"NULL". GaussDB displays a NULL value as empty.
MySQL output:
mysql> SELECT NULL;
+------+
| NULL |
+------+
| NULL |
+------+
1 row in set (0.00 sec)

GaussDB output:
m_db=# SELECT NULL;
 ?column?

(1 row)

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 226

● After the operator is executed, the column names are displayed in different
ways. MySQL displays a NULL value as "NULL". GaussDB displays a NULL
value as empty.

● When character strings are being converted to the double type but there is an
invalid one, the alarm is reported differently. MySQL reports an error when
there is an invalid constant character string, but does not report an error for
an invalid column character string. GaussDB reports an error in either
situation.

● The results returned by the comparison operator are different. For MySQL, 1
or 0 is returned. For GaussDB, t or f is returned.

Table 3-19 Operators

MySQL GaussDB Difference

<> Supported,
with
differences.

MySQL supports indexes, but GaussDB does not.

<=> Supported,
with
differences.

MySQL supports indexes, but GaussDB does not
support indexes, hash joins, or merge joins.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 227

MySQL GaussDB Difference

Row
expressions

Supported,
with
differences.

● MySQL supports row comparison using the
<=> operator, but GaussDB does not support
row comparison using the <=> operator.

● MySQL does not support comparison
between row expressions and NULL values.
In GaussDB, the <, <=, =, >=, >, and <>
operators can be used to compare row
expressions with NULL values.

● IS NULL or ISNULL operations on row
expressions are not supported in MySQL.
However, they are supported in GaussDB.

● For operations by using operators that
cannot be performed on row expressions, the
error information in GaussDB is inconsistent
with that in MySQL.

GaussDB:
m_db=# SELECT (1,2) <=> row(2,3);
ERROR: could not determine interpretation of row
comparison operator <=>
LINE 1: SELECT (1,2) <=> row(2,3);
 ^
HINT: unsupported operator.
m_db=# SELECT (1,2) < NULL;
 ?column?

(1 row)
m_db=# SELECT (1,2) <> NULL;
 ?column?

(1 row)
m_db=# SELECT (1, 2) IS NULL;
 ?column?

 f
(1 row)
m_db=# SELECT ISNULL((1, 2));
 ?column?

 f
(1 row)
m_db=# SELECT ROW(0,0) BETWEEN ROW(1,1) AND
ROW(2,2);
ERROR: un support type

MySQL:
mysql> SELECT (1,2) <=> row(2,3);
+--------------------+
| (1,2) <=> row(2,3) |
+--------------------+
| 0 |
+--------------------+
1 row in set (0.00 sec)

mysql> SELECT (1,2) < NULL;
ERROR 1241 (21000): Operand should contain 2 column(s)
mysql> SELECT (1,2) <> NULL;
ERROR 1241 (21000): Operand should contain 2 column(s)
mysql> SELECT (1, 2) IS NULL;
ERROR 1241 (21000): Operand should contain 1 column(s)

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 228

MySQL GaussDB Difference

mysql> SELECT ISNULL((1, 2));
ERROR 1241 (21000): Operand should contain 1 column(s)
mysql> SELECT NULL BETWEEN NULL AND ROW(2,2);
ERROR 1241 (21000): Operand should contain 1 column(s)

-- Supported,
with
differences.

MySQL indicates that an operand is negated
twice and the result is equal to the original
operand. GaussDB indicates a comment.

!! Supported,
with
differences.

MySQL: The meaning of !! is the same as that
of !, indicating NOT.
GaussDB: ! indicates NOT. If there is a space
between two exclamation marks (! !), it
indicates NOT for twice. If there is no space
between them (!!), it indicates factorial.
NOTE

● In GaussDB, when both factorial (!!) and NOT (!)
are used, a space must be added between them.
Otherwise, an error is reported.

● In GaussDB, when multiple NOT operations are
required, use a space between exclamation marks
(! !).

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 229

MySQL GaussDB Difference

[NOT]
REGEXP

Supported,
with
differences.

● GaussDB and MySQL support different
metacharacters in regular expressions. For
example, GaussDB allows \d to indicate
digits, \w to indicate letters, digits, and
underscores (_), and \s to indicate spaces.
However, MySQL does not support these
metacharacters and considers them as
normal character strings.

● In GaussDB, "\b" can match "\\b", but in
MySQL, the matching will fail.

● In GaussDB, a backslash (\) indicates an
escape character. In MySQL, two backslashes
(\\) are used.

● MySQL does not support two operators to be
used together.

● If the input parameter of the pattern string is
invalid with only the right parenthesis ()),
GaussDB and MySQL 5.7 will report an error,
but MySQL 8.0 will not.

● In the rule of matching the de|abc sequence
with de or abc, when there are empty values
on the left and right of the pipe symbol (|),
MySQL 5.7 will report an error, but GaussDB
and MySQL 8.0 will not.

● The regular expression of the tab character
"\t" can match the character class [:blank:] in
GaussDB and MySQL 8.0 but cannot in
MySQL 5.7.

● GaussDB supports non-greedy pattern
matching. That is, the number of matching
characters is as small as possible. A question
mark (?) is added after some special
characters, for example, ?? *? +? {n}? {n,}?
{n,m}? MySQL 5.7 does not support non-
greedy pattern matching, and the error
message "Got error 'repetition-operator
operand invalid' from regexp" is displayed.
MySQL 8.0 already supports this function.

● In the BINARY character set, the TEXT and
BLOB types are converted to the BYTEA type.
The REGEXP operator does not support the
BYTEA type. Therefore, the two types cannot
be matched.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 230

MySQL GaussDB Difference

LIKE Supported,
with
differences.

MySQL: The left operand of LIKE can only be an
expression of a bitwise or arithmetic operation,
or expression consisting of parentheses. The
right operand of LIKE can only be an expression
consisting of unary operators (excluding NOT)
or parentheses.
GaussDB: The left and right operands of LIKE
can be any expression.

[NOT]
BETWEEN
AND

Supported,
with
differences.

MySQL: [NOT] BETWEEN AND is nested from
right to left. The first and second operands of
[NOT] BETWEEN AND can only be expressions
of bitwise or arithmetic operations, or
expressions consisting of parentheses.
GaussDB: [NOT] BETWEEN AND is nested from
left to right. The first and second operands of
[NOT] BETWEEN AND can be any expression.

IN Supported,
with
differences.

MySQL: The left operand of IN can only be an
expression of a bitwise or arithmetic operation,
or expression consisting of parentheses.
GaussDB: The left operand of IN can be any
expression.

! Supported,
with
differences.

MySQL: The operand of ! can only be an
expression consisting of unary operators
(excluding NOT) or parentheses.
GaussDB: The operand of ! can be any
expression.

Not
supported

MySQL supports the comment tag (#), but
GaussDB does not.

BINARY Supported,
with
differences.

Expressions (including some functions and
operators) supported by GaussDB are different
from those supported by MySQL. For GaussDB-
specific expressions such as "~" and "IS
DISTINCT FROM", due to the higher priority of
the BINARY keyword, when BINARY expr is
used, BINARY is combined with the left
parameters of "~" and "IS DISTINCT FROM"
first. As a result, an error is reported.

Negation (-) Supported,
with
differences.

If the number of consecutive negation times
exceeds 1, GaussDB identifies the negations as
comments. As a result, it returns results
different from MySQL.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 231

MySQL GaussDB Difference

XOR, |, & , < ,
> , <=, >=, =,
and !=

Supported,
with
differences.

The execution mechanism of MySQL is as
follows: After the left operand is executed, the
system checks whether the result is empty and
then determines whether to execute the right
operand.
As for the execution mechanism of GaussDB,
after the left and right operands are executed,
the system checks whether the result is empty.
If the result of the left operand is empty and an
error is reported during the execution of the
right operand, MySQL does not report an error
but directly returns an error. GaussDB reports an
error during the execution.
Behavior in MySQL:
mysql> SELECT version();
+------------------+
| version() |
+------------------+
| 5.7.44-debug-log |
+------------------+
1 row in set (0.00 sec)

mysql> dROP TABLE IF EXISTS data_type_table;
Query OK, 0 rows affected (0.02 sec)

mysql> CREATE TABLE data_type_table (
 -> MyBool BOOL,
 -> MyBinary BINARY(10),
 -> MyYear YEAR
 ->);
Query OK, 0 rows affected (0.02 sec)

mysql> INSERT INTO data_type_table VALUES (TRUE,
0x1234567890, '2021');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT (MyBool % MyBinary) | (MyBool - MyYear)
FROM data_type_table;
+---+
| (MyBool % MyBinary) | (MyBool - MyYear) |
+---+
| NULL |
+---+
1 row in set, 2 warnings (0.00 sec)

Behavior in GaussDB:
m_db=# DROP TABLE IF EXISTS data_type_table;
DROP TABLE
m_db=# CREATE TABLE data_type_table (
m_db(# MyBool BOOL,
m_db(# MyBinary BINARY(10),
m_db(# MyYear YEAR
m_db(#);
CREATE TABLE
m_db=# INSERT INTO data_type_table VALUES (TRUE,
0x1234567890, '2021');
INSERT 0 1
m_db=# SELECT (MyBool % MyBinary) | (MyBool - MyYear)
FROM data_type_table;
WARNING: Truncated incorrect double value: '4Vx '
CONTEXT: referenced column: (MyBool % MyBinary) |

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 232

MySQL GaussDB Difference

(MyBool - MyYear)
WARNING: division by zero
CONTEXT: referenced column: (MyBool % MyBinary) |
(MyBool - MyYear)
ERROR: Bigint is out of range.
CONTEXT: referenced column: (MyBool % MyBinary) |
(MyBool - MyYear)

Table 3-20 Differences in operator combinations

Example of Operator
Combination

MySQL GaussD
B

Description

SELECT 1 LIKE 3 & 1; Not
support
ed

Support
ed.

The right operand of LIKE
cannot be an expression
consisting of bitwise operators.

SELECT 1 LIKE 1 +1; Not
support
ed

Support
ed.

The right operand of LIKE
cannot be an expression
consisting of arithmetic
operators.

SELECT 1 LIKE NOT 0; Not
support
ed

Support
ed.

The right operand of LIKE can
only be an expression consisting
of unary operators (such as +, -,
or ! but except NOT) or
parentheses.

SELECT 1 BETWEEN 1
AND 2 BETWEEN 2
AND 3;

Right-
to-left
combina
tion

Left-to-
right
combina
tion

You are advised to add
parentheses to specify the
calculation priority to prevent
result deviation caused by
sequence differences.

SELECT 2 BETWEEN
1=1 AND 3;

Not
support
ed

Support
ed.

The second operand of
BETWEEN cannot be an
expression consisting of
comparison operators.

SELECT 0 LIKE 0
BETWEEN 1 AND 2;

Not
support
ed

Support
ed.

The first operand of BETWEEN
cannot be an expression
consisting of pattern matching
operators.

SELECT 1 IN (1)
BETWEEN 0 AND 3;

Not
support
ed

Support
ed.

The first operand of BETWEEN
cannot be an expression
consisting of IN operators.

SELECT 1 IN (1) IN (1); Not
support
ed

Support
ed.

The second left operand of the
IN expression cannot be an
expression consisting of INs.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 233

Example of Operator
Combination

MySQL GaussD
B

Description

SELECT ! NOT 1; Not
support
ed

Support
ed.

The operand of ! can only be an
expression consisting of unary
operators (such as +, -, or ! but
except NOT) or parentheses.

Index Differences
● Currently, GaussDB supports only UB-tree and B-tree indexes.
● For fuzzy match (LIKE operator), the default index created can be used in

MySQL, but cannot be used in GaussDB. You need to use the following syntax
to specify opclass to, for example, text_pattern_ops, so that LIKE operators
can be used as indexes:
CREATE INDEX indexname ON tablename(col [opclass]);

● In the B-tree/UB-tree index scenario, the original logic of the native GaussDB
is retained. That is, index scan supports comparison of types in the same
operator family, but does not support other index types currently.

● When GaussDB JDBC is used to connect to the database, the YEAR type of
GaussDB cannot use indexes in the PBE scenario that contains bind
parameters.

● In the operation scenarios involving index column type and constant type, the
conditions that indexes of a WHERE clause are supported in GaussDB is
different from those in MySQL. For details, see Table 3-21. For example,
GaussDB does not support indexes in the following statement:
CREATE TABLE t(_int int);
CREATE INDEX idx ON t(_int) USING BTREE;
SELECT * FROM t WHERE _int > 2.0;

NO TE

In the operation scenarios involving index column type and constant type in the
WHERE clause, you can use the cast function to explicitly convert the constant type to
the column type for indexing.
SELECT * FROM t WHERE _int > cast(2.0 AS signed);

Table 3-21 Differences in index support

Index Column
Type

Constant Type Supported by
GaussDB

Supported by
MySQL

Integer Integer Yes Yes

Floating-point Floating-point Yes Yes

Fixed-point Fixed-point Yes Yes

String String Yes Yes

Binary Binary Yes Yes

Time with date Time with date Yes Yes

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 234

Index Column
Type

Constant Type Supported by
GaussDB

Supported by
MySQL

TIME TIME Yes Yes

Time with date Type that can be
converted to
time type with
date (for
example,
integers such as
20231130)

Yes Yes

Time with date TIME Yes Yes

TIME Constants that
can be converted
to the TIME type
(for example,
integers such as
203008)

Yes Yes

Floating-point Integer Yes Yes

Floating-point Fixed-point Yes Yes

Floating-point String Yes Yes

Floating-point Binary Yes Yes

Floating-point Time with date Yes Yes

Floating-point TIME Yes Yes

Fixed-point Integer Yes Yes

String Time with date Yes No

String TIME Yes No

Binary String Yes Yes

Binary Time with date Yes No

Binary TIME Yes No

Integer Floating-point No Yes

Integer Fixed-point No Yes

Integer String No Yes

Integer Binary No Yes

Integer Time with date No Yes

Integer TIME No Yes

Fixed-point Floating-point No Yes

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 235

Index Column
Type

Constant Type Supported by
GaussDB

Supported by
MySQL

Fixed-point String No Yes

Fixed-point Binary No Yes

Fixed-point Time with date No Yes

Fixed-point TIME No Yes

String Binary No Yes

Time with date Integer (that
cannot be
converted to the
time type with
date)

No Yes

Time with date Floating-point
(that cannot be
converted to the
time type with
date)

No Yes

Time with date Fixed-point (that
cannot be
converted to the
time type with
date)

No Yes

TIME Integer (that
cannot be
converted to the
TIME type)

No Yes

TIME Character string
(that cannot be
converted to the
TIME type)

No Yes

TIME Binary (that
cannot be
converted to the
TIME type)

No Yes

TIME Time with date No Yes

YEAR YEAR Yes Yes

YEAR Constants that
can be converted
to the YEAR type
(for example,
integers such as
2034)

Yes Yes

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 236

Index Column
Type

Constant Type Supported by
GaussDB

Supported by
MySQL

BIT BIT No Yes

Table 3-22 Whether index use is supported

Index Column
Type

Constant Type Use Index or
Not in GaussDB

Use Index or
Not in MySQL

String Integer No No

String Floating-point No No

String Fixed-point No No

Binary Integer No No

Binary Floating-point No No

Binary Fixed-point No No

Time with date Character string
(that cannot be
converted to the
time type with
date)

No No

Time with date Binary (that
cannot be
converted to the
time type with
date)

No No

TIME Floating-point
(that cannot be
converted to the
TIME type)

No No

TIME Fixed-point (that
cannot be
converted to the
TIME type)

No No

BIT String No No

3.2.4 Character Sets
GaussDB allows you to specify the following character sets for databases,
schemas, tables, or columns.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 237

Table 3-23 Character sets

MySQL GaussDB

utf8mb4 Supported.

utf8 Supported.

gbk Supported.

gb18030 Supported.

binary Supported.

NO TE

● utf8 and utf8mb4 refer to the same character set in GaussDB. The maximum code
length is 4 bytes. If the current character set is utf8 and the collation is set to
utf8mb4_bin, utf8mb4_general_ci, utf8mb4_unicode_ci, or utf8mb4_0900_ai_ci (for
example, by running SELECT _utf8'a' collate utf8mb4_bin), MySQL reports an error
but GaussDB does not. The difference also exists when the character set is utf8mb4 and
the collation is set to utf8_bin, utf8_general_ci, or utf8_unicode_ci.

● The lexical syntax is parsed based on the byte stream. If a multi-byte character contains
code that is consistent with symbols such as '\', '\'', and '\\', the behavior of the multi-
byte character is inconsistent with that in MySQL. In this case, you are advised to disable
the escape character function temporarily.

3.2.5 Collation Rules
GaussDB allows you to specify the following collation rules for schemas, tables, or
columns.

NO TE

Differences in collation rules:

● Currently, collation rules can only be specified for the character string type and some
binary types. You can check the typcollation attribute of a type in the pg_type system
catalog. If it is not 0, the type supports the collation. The collation can be specified for
all types in MySQL. However, collation rules are meaningless except those for character
strings and binary types.

● The current collation rules (except binary) can be specified only when the corresponding
character set is the same as the database-level character set. In GaussDB, the character
set must be the same as the database character set, and multiple character sets cannot
be used together in a table.

● The default collation of the utf8mb4 character set is utf8mb4_general_ci, which is the
same as that in MySQL 5.7.

Table 3-24 Collation rules

MySQL GaussDB

utf8mb4_general_ci Supported.

utf8mb4_unicode_ci Supported.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 238

MySQL GaussDB

utf8mb4_bin Supported.

gbk_chinese_ci Supported.

gbk_bin Supported.

gb18030_chinese_ci Supported.

gb18030_bin Supported.

binary Supported.

utf8mb4_0900_ai_ci Supported.

utf8_general_ci Supported.

utf8_bin Supported.

utf8_unicode_ci Supported.

3.2.6 Transactions
GaussDB is compatible with MySQL transactions, but there are some differences.
This section describes transaction-related differences in GaussDB M-compatible
databases.

Default Transaction Isolation Levels

The default isolation level of an M-compatible database is READ COMMITTED,
and that of MySQL is REPEATABLE READ.

-- View the current transaction isolation level.
m_db=# SHOW transaction_isolation;

Sub-transactions

In an M-compatible database, SAVEPOINT is used to create a savepoint (sub-
transaction) in the current transaction, and ROLLBACK TO SAVEPOINT is used to
roll back to a savepoint (sub-transaction). After the sub-transaction is rolled back,
the parent transaction can continue to run, the rollback of a sub-transaction does
not affect the transaction status of the parent transaction.

No savepoint (sub-transaction) can be created in MySQL.

Nested Transactions

A nested transaction refers to a new transaction started in a transaction block.

In an M-compatible database, if a new transaction is started in a normal
transaction block, a warning is displayed indicating that an ongoing transaction
exists and the start command is ignored. If a new transaction is started in an
abnormal transaction block, an error is reported. The transaction can be executed

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 239

only after ROLLBACK or COMMIT is executed. If ROLLBACK or COMMIT is
executed, the previous statement is rolled back.

In MySQL, before a new transaction is started in a normal transaction block, the
previous one must be committed. If a new transaction is started in an abnormal
transaction block, the error is ignored and the previous correct statement is
committed.

-- In an M-compatible database, if a new transaction is started in a normal transaction block, a warning is
generated and the transaction is ignored.
m_db=# DROP TABLE IF EXISTS test_t;
m_db=# CREATE TABLE test_t(a int, b int);
m_db=# BEGIN;
m_db=# INSERT INTO test_t values(1, 2);
m_db=# BEGIN; -- The warning "There is already a transaction in progress" is displayed.
m_db=# SELECT * FROM test_t ORDER BY 1;
m_db=# COMMIT;

-- In an M-compatible database, if a new transaction is started in an abnormal transaction block, an error is
reported. The transaction can be executed only after ROLLBACK or COMMIT is executed.
m_db=# BEGIN;
m_db=# ERROR sql; -- Error statement.
m_db=# BEGIN; -- An error is reported.
m_db=# COMMIT; -- It can be executed only after ROLLBACK/COMMIT is executed.

Statements Committed Implicitly
An M-compatible database uses GaussDB for storage and inherits the GaussDB
transaction mechanism. If a DDL or DCL statement is executed in a transaction,
the transaction is not automatically committed.

In MySQL, if DDL, DCL, management-related, or lock-related statements are
executed, the transaction is automatically committed.

-- In M-compatible database, table creation and GUC parameter setting support rollback.
m_db=# DROP TABLE IF EXISTS test_table_rollback;
m_db=# BEGIN;
m_db=# CREATE TABLE test_table_rollback(a int, b int);
m_db=# \d test_table_rollback;
m_db=# ROLLBACK;
m_db=# \d test_table_rollback; -- This table does not exist.

Differences in SET TRANSACTION
In an M-compatible database, if SET TRANSACTION is used to set the isolation
level or transaction access mode for multiple times, only the last setting takes
effect. Transaction features can be separated by spaces or commas (,).

In MySQL, SET TRANSACTION cannot be used to set the isolation level or
transaction access mode for multiple times. Transaction features can only be
separated by commas (,).

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 240

Table 3-25 Differences in SET TRANSACTION

Syntax Description Difference

SET
TRANSACTI
ON

Sets
transactions.

In M-compatible mode, if the
m_format_dev_version parameter is not set to
's2', SET TRANSACTION takes effect at the session
level, with the same functionality as SET SESSION
TRANSACTION. If the m_format_dev_version
parameter is set to 's2', SET TRANSACTION sets
the next transaction feature. In MySQL, SET
TRANSACTION takes effect in the next
transaction.

SET
SESSION
TRANSACTI
ON

Sets session-
level
transactions.

-

SET
GLOBAL
TRANSACTI
ON

Sets global
session-level
transactions.
This feature
applies to
subsequent
sessions and
has no
impact on
the current
session.

In an M-compatible database, GLOBAL takes
effect in global session-level transactions and is
applicable only to the current database instance.
In MySQL, this feature takes effect in all
databases.

-- SET TRANSACTION takes effect in session-level transactions.
m_db=# SET TRANSACTION ISOLATION LEVEL READ COMMITTED READ WRITE;
m_db=# SHOW transaction_isolation;
m_db=# SHOW transaction_read_only;
-- In an M-compatible database, if the isolation level or transaction access mode is set for multiple times,
only the last setting takes effect.
m_db=# SET SESSION TRANSACTION ISOLATION LEVEL READ COMMITTED, ISOLATION LEVEL
REPEATABLE READ, READ WRITE, READ ONLY;
m_db=# SHOW transaction_isolation; -- repeatable read
m_db=# SHOW transaction_read_only; -- on

Differences in START TRANSACTION
In an M-compatible database, when START TRANSACTION is used to start a
transaction, the isolation level can be set. If the isolation level or transaction
access mode is set for multiple times, only the last setting takes effect. In the
current version, consistency snapshot cannot be enabled immediately. Transaction
features can be separated by spaces or commas (,).

In MySQL, if START TRANSACTION is used to start a transaction, the isolation level
cannot be set and the transaction access mode cannot be set for multiple times.
Transaction features can only be separated by commas (,).

-- Start a transaction and set the isolation level.
m_db=# START TRANSACTION ISOLATION LEVEL READ COMMITTED;

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 241

m_db=# COMMIT;
-- Set the access mode for multiple times.
m_db=# START TRANSACTION READ ONLY, READ WRITE;
m_db=# COMMIT;

Transaction-related GUC Parameters

Table 3-26 Differences in transaction-related GUC parameters

GUC
Parameter

Description Difference

autocommi
t

Sets the
automatic
transaction
commit
mode.

-

transaction
_isolation

Sets the
isolation
level of the
current
transaction
in an M-
compatible
database.
Sets the
isolation
level of a
session-level
transaction
in MySQL.

● In GaussDB, you can only change the isolation
level of the current transaction by running the
SET transaction_isolation = value command.
To change the session-level isolation level, use
default_transaction_isolation. In MySQL, you
can run the SET command to change the
isolation level of a session-level transaction.

● The supported range is different.
MySQL supports the following isolation levels,
which are case-insensitive but space-sensitive:
– READ-COMMITTED
– READ-UNCOMMITTED
– REPEATABLE READ
– SERIALIZABLE
GaussDB supports the following isolation
levels, which are case-sensitive and space-
sensitive:
– read committed
– read uncommitted
– repeatable read
– serializable
– default (The level is set to be the same as

the default isolation level in the session.)
– If m_format_dev_version is set to 's2', the

isolation levels of MySQL can be set.
● In GaussDB, the value of transaction_isolation

of a new transaction is initialized to the value
of default_transaction_isolation.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 242

GUC
Parameter

Description Difference

tx_isolation Sets the
transaction
isolation
level.
tx_isolation
and
transaction_
isolation are
synonyms.

This parameter does not support query or
modification in an M-compatible database. You
are advised to use transaction_isolation for
query.

default_tra
nsaction_is
olation

Sets the
transaction
isolation
level.

In an M-compatible database, the SET command
is used to change the transaction isolation level
for a session.
MySQL does not support this system parameter.

transaction
_read_only

Sets the
access mode
of a
transaction.

● In an M-compatible database, only the access
mode of the current transaction can be
changed by using the SET command. If you
want to change the access mode of a session-
level transaction, you can use
default_transaction_read_only.
In MySQL, you can run the SET command to
change the isolation level of a session-level
transaction.

● In GaussDB, the value of
transaction_read_only of a new transaction is
initialized to the value of
default_transaction_read_only.

tx_read_onl
y

Sets the
access mode
of a
transaction.
tx_read_only
and
transaction_
read_only
are
synonyms.

This parameter does not support query or
modification in an M-compatible database. You
are advised to use transaction_read_only for
query.

default_tra
nsaction_re
ad_only

Sets the
access mode
of a
transaction.

In an M-compatible database, the SET command
is used to change the access mode of a session-
level transaction. MySQL does not support this
system parameter.

3.2.7 SQL

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 243

3.2.7.1 Keywords
The constraint differences are as follows:

● If a keyword is a reserved one in M-compatible mode but non-reserved in
MySQL, it cannot be a table name, column name, column alias, AS column
alias, AS table alias, table alias, function name, or variable name in M-
compatible mode, but can be any of these names or aliases in MySQL.

● If a keyword is a non-reserved one in M-compatible mode but reserved in
MySQL, it can be a table name, column name, column alias, AS column alias,
AS table alias, table alias, function name, or variable name in M-compatible
mode, but cannot be any of these names or aliases in MySQL.

● If a keyword is a reserved one (function or type) both in M-compatible mode
and MySQL, it can be a column alias, AS column alias, function name, or
variable name in M-compatible mode, but cannot be any of these names or
aliases in MySQL.

● If a keyword is a reserved one (function or type) in M-compatible mode but
non-reserved in MySQL, it cannot be a table name, column name, AS table
alias, or table alias in M-compatible mode, but can be one of these names or
aliases in MySQL.

● If a keyword is a non-reserved one (excluding function and type) in M-
compatible mode but reserved in MySQL, it can be a table name, column
name, column alias, AS column alias, AS table alias, table alias, function
name, or variable name in M-compatible mode, but cannot be any of these
names or aliases in MySQL.

● If a keyword is a non-reserved one (excluding function and type) both in M-
compatible mode and MySQL, it cannot be a function name in M-compatible
mode, but can be a function name in MySQL.

NO TE

Among non-reserved keywords, reserved keywords (functions or types), and non-
reserved keywords (not functions or types) in M-compatible mode, the following
keywords cannot be used as column aliases:
BETWEEN, BIGINT, BLOB, CHAR, CHARACTER, CROSS, DEC, DECIMAL, DIV, DOUBLE,
EXISTS, FLOAT, FLOAT4, FLOAT8, GROUPING, INNER, INOUT, INT, INT1, INT2, INT3,
INT4, INT8, INTEGER, JOIN, LEFT, LIKE, LONGBLOB, LONGTEXT, MEDIUMBLOB,
MEDIUMINT, MEDIUMTEXT, MOD, NATURAL, NUMERIC, OUT, OUTER, PRECISION,
REAL, RIGHT, ROW, ROW_NUMBER, SIGNED, SMALLINT, SOUNDS, TINYBLOB, TINYINT,
TINYTEXT, VALUES, VARCHAR, VARYING, and WITHOUT.
SIGNED and WITHOUT can be used as column aliases in MySQL.

3.2.7.2 Identifiers
Differences in identifiers in M-compatible mode are as follows:

● In GaussDB, unquoted identifiers cannot start with a dollar sign ($). In MySQL
unquoted identifiers can start with a dollar sign ($).

● GaussDB unquoted identifiers support case-sensitive database objects.
● GaussDB identifiers support extended characters from U+0080 to U+00FF.

MySQL identifiers support extended characters from U+0080 to U+FFFF.
● As for unquoted identifier, a table that starts with a digit and ends with an e

or E as the identifier cannot be created in GaussDB. For example:

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 244

-- GaussDB reports an error indicating that this operation is not supported. MySQL supports this
operation.
m_db=# CREATE TABLE 23e(c1 int);
ERROR: syntax error at or near "23"
LINE 1: CREATE TABLE 23e(c1 int);
 ^
m_db=# CREATE TABLE t1(23E int);
ERROR: syntax error at or near "23"
LINE 1: CREATE TABLE t1(23E int);
 ^

● As for quoted identifiers, tables whose column names contain only digits or
scientific computing cannot be directly used in GaussDB. You need to use
them in quotes. This rule also applies to the dot operator (.) scenarios. For
example:
-- Create a table whose column names contain only numbers or scientific computing.
m_db=# CREATE TABLE t1(`123` int, `1e3` int, `1e` int);
CREATE TABLE

-- Insert data into the table.
m_db=# INSERT INTO t1 VALUES(7, 8, 9);
INSERT 0 1

-- The result is not as expected, but is the same as that in MySQL.
m_db=# SELECT 123 FROM t1;
 ?column?

 123
(1 row)

-- The result is not as expected, but is the same as that in MySQL.
m_db=# SELECT 1e3 FROM t1;
 ?column?

 1000
(1 row)

-- The result is not as expected and is not the same as that in MySQL.
m_db=# SELECT 1e FROM t1;
 e

 1
(1 row)

-- The correct way to use is as follows:
m_db=# SELECT `123` FROM t1;
 123

 7
(1 row)

m_db=# SELECT `1e3` FROM t1;
 1e3

 8
(1 row)

m_db=# SELECT `1e` FROM t1;
 1e

 9
(1 row)

-- Dot operator scenarios are not supported by GaussDB but supported by MySQL.
m_db=# SELECT t1.123 FROM t1;
ERROR: syntax error at or near ".123"
LINE 1: SELECT t1.123 FROM t1;
 ^
m_db=# SELECT t1.1e3 FROM t1;

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 245

ERROR: syntax error at or near "1e3"
LINE 1: SELECT t1.1e3 FROM t1;
 ^
m_db=# SELECT t1.1e FROM t1;
ERROR: syntax error at or near "1"
LINE 1: SELECT t1.1e FROM t1;
 ^
-- The correct way to use in dot operator scenarios is as follows:
m_db=# SELECT t1.`123` FROM t1;
 123

 7
(1 row)

m_db=# SELECT t1.`1e3` FROM t1;
 1e3

 8
(1 row)

m_db=# SELECT t1.`1e` FROM t1;
 1e

 9
(1 row)

m_db=# DROP TABLE t1;
DROP TABLE

● In GaussDB, the partition name is case-sensitive when it is enclosed in double
quotation marks (SQL_MODE must be set to ANSI_QUOTES) or backquotes,
but in MySQL the partition name is case-insensitive.

● The maximum length of a MySQL identifier is 64 characters, while that of a
GaussDB identifier is 63 bytes. If the length of an identifier exceeds the limit,
MySQL reports an error, while GaussDB truncates the identifier and generates
an alarm.

3.2.7.3 DDL

Table 3-27 DDL syntax compatibility

Description Syntax Difference

Create primary keys,
UNIQUE indexes, and
foreign keys during
table creation and
modification.

ALTER TABLE and
CREATE TABLE

● In GaussDB, when the
table joined with the
constraint is Ustore and
USING BTREE is specified
in the SQL statement, the
underlying index is created
as UB-tree.

● GaussDB: Foreign keys can
be used as partition keys.

● The index name,
constraint name, and key
name are unique in a
schema in GaussDB and
unique in a table in
MySQL.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 246

Description Syntax Difference

Auto-increment
columns

ALTER TABLE and
CREATE TABLE

● It is recommended that an
auto-increment column in
GaussDB be the first
column of an index.
Otherwise, an alarm is
generated during table
creation. The auto-
increment column in
MySQL must be the first
column of the index.
Otherwise, an error is
reported during table
creation. In GaussDB, an
error occurs when some
operations (such as ALTER
TABLE EXCHANGE
PARTITION) are
performed on a table that
contains auto-increment
columns.

● In GaussDB, value in the
AUTO_INCREMENT =
value syntax must be a
positive number less than
2^127. It can be 0 in
MySQL but cannot be 0 in
GaussDB.

● In GaussDB, an error
occurs if the auto-
increment continues after
an auto-increment value
reaches the maximum
value of a column data
type. In MySQL, errors or
warnings may be
generated during auto-
increment, and sometimes
auto-increment continues
until the maximum value
is reached.

● GaussDB does not support
the
innodb_autoinc_lock_mod
e system variable, but
when its GUC parameter
auto_increment_cache is
set to 0, the behavior of
inserting auto-increment
columns in batches is

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 247

Description Syntax Difference

similar to that when the
MySQL system variable
innodb_autoinc_lock_mod
e is set to 1.

● In GaussDB, when 0s,
NULLs, and definite values
are imported or batch
inserted into auto-
increment columns, the
auto-increment values
inserted after an error
occurs in GaussDB may
not be the same as those
in MySQL. You can use the
GUC parameter
auto_increment_cache to
control the number of
reserved auto-increment
values.

● In GaussDB, when auto-
increment is triggered by
parallel import or
insertion of auto-
increment columns, the
cache value reserved for
each parallel thread is
used only in the thread. If
the cache value is not
used up, the values of
auto-increment columns
in the table are
discontinuous. The auto-
increment value generated
by parallel insertion
cannot be guaranteed to
be the same as that
generated in MySQL.

● In GaussDB, when auto-
increment columns are
batch inserted into a local
temporary table, no auto-
increment value is
reserved. In normal
scenarios, auto-increment
values are not
discontinuous. In MySQL,
the auto-increment result
of an auto-increment
column in a temporary

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 248

Description Syntax Difference

table is the same as that
in an ordinary table.

● The SERIAL data type of
GaussDB is an original
auto-increment column,
which is different from the
AUTO_INCREMENT
column. The SERIAL data
type of MySQL is the
AUTO_INCREMENT
column.

● GaussDB does not allow
the value of
auto_increment_offset to
be greater than that of
auto_increment_increme
nt. Otherwise, an error
occurs. MySQL allows it
and states that
auto_increment_offset
will be ignored.

● If a table has a primary
key or index, the sequence
in which the ALTER TABLE
command rewrites table
data may be different
from that in MySQL.
GaussDB rewrites table
data based on the table
data storage sequence,
while MySQL rewrites
table data based on the
primary key or index
sequence. As a result, the
auto-increment sequence
may be different.

● When the ALTER TABLE
command in GaussDB is
used to add or modify
auto-increment columns,
the number of auto-
increment values reserved
for the first time is the
number of rows in the
table statistics. The
number of rows in the
statistics may not be the
same as that in MySQL.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 249

Description Syntax Difference

● The return value of the
last_insert_id function in
GaussDB is a 128-bit
integer.

● When GaussDB performs
auto-increment in a
trigger or user-defined
function, the return value
of last_insert_id is
updated. MySQL does not
update it.

● If the values of the GUC
parameters
auto_increment_offset
and
auto_increment_increme
nt in GaussDB are out of
range, an error occurs.
MySQL automatically
changes the value to a
boundary value.

Prefix indexes CREATE INDEX, ALTER
TABLE, and CREATE
TABLE

● In GaussDB, the prefix
length cannot exceed
2676. The actual length of
the key value is restricted
by the internal page. If a
column contains multi-
byte characters or an
index has multiple keys,
an error may be reported
when the index line length
exceeds the threshold.

● In GaussDB, the primary
key index does not
support prefix keys. The
prefix length cannot be
specified when a primary
key is created or added.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 250

Description Syntax Difference

Specify character sets
and collation rules.

ALTER SCHEMA, ALTER
TABLE, CREATE
SCHEMA, and CREATE
TABLE

● When you specify a
database-level character
set, except binary
character sets, the
character set of a new
database or schema
cannot be different from
that specified by
server_encoding of the
database.

● When you specify a table-
level or column-level
character set and
collation, MySQL allows
you to specify a character
set and collation that are
different from the
database-level character
set and collation. In
GaussDB, the table-level
and column-level
character sets and
collations support only the
binary character sets and
collations or can be the
same as the database-
level character sets and
collations.

Add columns before
the first column of a
table or after a
specified column
during table
modification.

ALTER TABLE -

Alter the column
name/definition.

ALTER TABLE Currently, the DROP INDEX,
DROP KEY, or ORDER BY is
not supported.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 251

Description Syntax Difference

Create a partitioned
table.

CREATE TABLE
PARTITION

● MySQL supports
expressions but does not
support multiple partition
keys in the following
scenarios:
– The LIST/RANGE

partitioning policy is
used and the
COLUMNS keyword is
not specified.

– The hash partitioning
policy is used.

● MySQL does not support
expressions but supports
multiple partition keys in
the following scenarios:
– The LIST/RANGE

partitioning policy is
used and the
COLUMNS keyword is
specified.

– The KEY partitioning
policy is used.

● In GaussDB, expressions
cannot be used as
partition keys, and
partitions cannot be
specified.

● GaussDB supports
multiple partition keys
only when the LIST or
RANGE partitioning policy
is used.

● When LIST partitioning is
used in GaussDB, ensure
that list_value is set to a
valid value of the
corresponding partition
key type. Otherwise, the
creation fails. However,
the creation can be
successful even if an
invalid value is used.

● In GaussDB partitioned
tables, generated columns
cannot be used as
partition keys.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 252

Description Syntax Difference

Specify table-level
and column-level
comments during
table creation and
modification.

CREATE TABLE and
ALTER TABLE

-

Specify index-level
comments during
index creation.

CREATE INDEX -

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 253

Description Syntax Difference

Exchange the
partition data of an
ordinary table and a
partitioned table.

ALTER TABLE
PARTITION

Differences in ALTER TABLE
EXCHANGE PARTITION:
● After ALTER TABLE

EXCHANGE PARTITION is
executed, the auto-
increment columns are
reset in MySQL, but in
GaussDB, they are not
reset and continue the
auto-increment based on
their old values.

● If MySQL tables or
partitions use tablespaces,
data in partitions and
ordinary tables cannot be
exchanged. If GaussDB
tables or partitions use
different tablespaces, data
in partitions and ordinary
tables can still be
exchanged.

● MySQL does not verify the
default values of columns.
Therefore, data in
partitions and ordinary
tables can be exchanged
even if the default values
are different. GaussDB
verifies the default values.
If they are different, data
in partitions and ordinary
tables cannot be
exchanged.

● After the DROP COLUMN
operation is performed on
a partitioned table or an
ordinary table in MySQL,
if the table structure is
still consistent, data can
be exchanged between
partitions and ordinary
tables. In GaussDB, data
can be exchanged
between partitions and
ordinary tables only when
the deleted columns of
ordinary tables and
partitioned tables are
strictly aligned.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 254

Description Syntax Difference

● MySQL and GaussDB use
different hash algorithms.
Therefore, data stored in
the same hash partition
may be inconsistent. As a
result, the exchanged data
may also be inconsistent.

● MySQL partitioned tables
do not support foreign
keys. If an ordinary table
contains foreign keys or
other tables reference
foreign keys of an
ordinary table, data in
partitions and ordinary
tables cannot be
exchanged. GaussDB
partitioned tables support
foreign keys. If the
FOREIGN KEY constraints
of two tables are the
same, data in partitions
and ordinary tables can be
exchanged. If a GaussDB
partitioned table does not
contain foreign keys, an
ordinary table is
referenced by other tables,
and the partitioned table
is the same as the
ordinary table, data in the
partitioned table can be
exchanged with that in
the ordinary table.

Modify the partition
key information of a
partitioned table.

ALTER TABLE MySQL allows you to modify
the partition key information
of a partitioned table, but
GaussDB does not.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 255

Description Syntax Difference

CREATE TABLE... LIKE
syntax

CREATE TABLE ... LIKE ● In versions earlier than
MySQL 8.0.16, CHECK
constraints are parsed but
their functions are
ignored. In this case,
CHECK constraints are not
replicated. GaussDB
supports replication of
CHECK constraints.

● When a table is created,
all PRIMARY KEY
constraint names in
MySQL are fixed to
PRIMARY KEY. GaussDB
does not support
replication of PRIMARY
KEY constraint names.

● When a table is created,
MySQL supports
replication of UNIQUE KEY
constraint names, but
GaussDB does not.

● When a table is created,
MySQL versions earlier
than 8.0.16 do not have
CHECK constraint
information, but GaussDB
supports replication of
CHECK constraint names.

● When a table is created,
MySQL supports
replication of index
names, but GaussDB does
not.

● When a table is created
across sql_mode, MySQL is
controlled by the loose
mode and strict mode.
The strict mode may
become invalid in
GaussDB.
For example, if the source
table has the default value
"0000-00-00", a table
with the default value
"0000-00-00" can be
created in "no_zero_date"
strict mode in GaussDB,
which means that the

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 256

Description Syntax Difference

strict mode is invalid. In
MySQL, the table creation
will fail because it is
controlled by the strict
mode.

Truncate a partition. ALTER TABLE [IF EXISTS]
table_name
 truncate_clause;

For truncate_clause, the
supported subitems are
different:
● M-compatible mode:

TRUNCATE PARTITION { { ALL |
partition_name [, ...] } | FOR
(partition_value [, ...]) }
[UPDATE GLOBAL INDEX]

● MySQL:
TRUNCATE PARTITION
{partition_names | ALL}

Index name of a
primary key

CREATE TABLE table_name
(col_definitine ,PRIMARY KEY
[index_name] [USING
method] ({ column_name |
(expression) }[ASC | DESC] }
[, ...]) index_parameters
[USING method| COMMENT
'string'])

The index name created after
being specified by a primary
key in GaussDB is the index
name specified by a user. In
MySQL, the index name is
PRIMARY.

Delete dependent
objects.

DROP drop_type name
CASCADE;

In GaussDB, CASCADE needs
to be added to delete
dependent objects. In MySQL,
CASCADE is not required.

The NOT NULL
constraint does not
allow NULL values to
be inserted.

CREATE TABLE t1(id int NOT
NULL DEFAULT 8);
INSERT INTO t1
VALUES(NULL);
INSERT INTO t1 VALUES(1),
(NULL),(2);

In MySQL loose mode, NULL
is converted and data is
successfully inserted. In
MySQL strict mode, NULL
values cannot be inserted.
GaussDB does not support
this feature. NULL values
cannot be inserted in loose
or strict mode.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 257

Description Syntax Difference

The CHECK constraint
takes effect.

CREATE TABLE ● CREATE TABLE that
contains the CHECK
constraint takes effect in
MySQL 8.0. MySQL 5.7
parses the syntax but the
syntax does not take
effect. GaussDB
synchronizes this function
of MySQL 8.0, and the
GaussDB CHECK
constraint can reference
other columns, but MySQL
cannot.

● A maximum of 32767
CHECK constraints can be
added to a table in
GaussDB.

The algorithm and
lock options of an
index do not take
effect.

CREATE INDEX ...
DROP INDEX ...

Currently, the index options
algorithm_option and
lock_option in the CREATE/
DROP INDEX statement in
M-compatible mode are
supported only in syntax. No
error is reported during
creation, but they do not
take effect.

The storage of hash
partitions and
subpartitions in
CREATE TABLE in
GaussDB is different
from that in MySQL.

CREATE TABLE In GaussDB, the hash
functions used by hash
partitioned tables and
subpartitioned tables in the
CREATE TABLE statement are
different from those used in
MySQL. Therefore, the
storage of hash partitioned
tables and subpartitioned
tables is different from that
in MySQL.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 258

Description Syntax Difference

Partitioned table
indexes

CREATE INDEX ● GaussDB partitioned table
indexes are classified into
local and global indexes. A
local index is bound to a
specific partition, and a
global index corresponds
to the entire partitioned
table.

● For details about how to
create local and global
indexes and the default
rules, see "SQL Syntax >
SQL Statement > C >
CREATE INDEX " in
Developer Guide. For
example, if a unique index
is created on a non-
partition key, a global
index is created by
default.

● MySQL does not have
global indexes. In
GaussDB, if the
partitioned table index is a
global index, the global
index is not updated by
default when operations
such as DROP, TRUNCATE,
and EXCHANGE are
performed on table
partitions. As a result, the
global index becomes
invalid and cannot be
selected in subsequent
statements. To avoid this
problem, you are advised
to explicitly specify the
UPDATE GLOBAL INDEX
clause at the end of the
partition syntax or set the
global GUC parameter
enable_gpi_auto_update
to true (recommended) so
that global indexes can be
automatically updated
during partition
operations.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 259

Description Syntax Difference

If the table is
partitioned by key in
the CREATE/ALTER
TABLE statement,
algorithms cannot be
specified. Input
parameters of some
partition definition do
not support
expressions.

CREATE TABLE and
ALTER TABLE

In GaussDB, if the table is
partitioned by key in the
CREATE/ALTER TABLE
statement, algorithms cannot
be specified.
The syntaxes that do not
support expressions as input
parameters are as follows:
● PARTITION BY HASH()
● PARTITION BY KEY()
● VALUES LESS THAN()

Partitioned tables do
not support
LINEAR/KEY hash.

CREATE TABLE ...
PARTITION ...

GaussDB: Partitioned tables
do not support LINEAR/KEY
hash.

The CHECK and
AUTO_INCREMENT
syntaxes cannot be
used in the same
column.

CREATE TABLE The column using CHECK
does not take effect in
MySQL 5.7. When both
CHECK and
AUTO_INCREMENT are used
on the same column, only
AUTO_INCREMENT takes
effect. However, GaussDB
reports an error.

Delete dependent
tables.

DROP TABLE In GaussDB, CASCADE must
be added to delete
dependent tables. In MySQL,
CASCADE is not required.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 260

Description Syntax Difference

Options related to
table definition.

CREATE TABLE ... and
ALTER TABLE ...

● GaussDB does not support
the following options:
AVG_ROW_LENGTH,
CHECKSUM,
COMPRESSION,
CONNECTION, DATA
DIRECTORY, INDEX
DIRECTORY,
DELAY_KEY_WRITE,
ENCRYPTION,
INSERT_METHOD,
KEY_BLOCK_SIZE,
MAX_ROWS, MIN_ROWS,
PACK_KEYS, PASSWORD,
STATS_AUTO_RECALC,
STATS_PERSISTENT, and
STATS_SAMPLE_PAGES.

● The following options do
not report errors in
GaussDB and do not take
effect: ENGINE and
ROW_FORMAT.

Encrypt the CMKs of
CEKs in round robin
(RR) mode and
encrypt the plaintext
of CEKs.

ALTER COLUMN
ENCRYPTION KEY

The M-compatible mode
does not support the full
encryption. Therefore, this
syntax is not supported.

The encrypted
equality query feature
adopts a multi-level
encryption model.
The master key
encrypts the column
key, and the column
key encrypts data.
This syntax is used to
create a master key
object.

CREATE CLIENT
MASTER KEY

The M-compatible mode
does not support the full
encryption. Therefore, this
syntax is not supported.

Create a CEK that can
be used to encrypt a
specified column in a
table.

CREATE COLUMN
ENCRYPTION KEY

The M-compatible mode
does not support the full
encryption. Therefore, this
syntax is not supported.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 261

Description Syntax Difference

Send keys to the
server for caching.
This function is used
only when the
memory decryption
emergency channel is
enabled. This is a
fully-encrypted
function.

\send_token The M-compatible mode
does not support the full
encryption. Therefore, this
syntax is not supported.

Send keys to the
server for caching.
This function is used
only when the
memory decryption
emergency channel is
enabled. This is a
fully-encrypted
function.

\st The M-compatible mode
does not support the full
encryption. Therefore, this
syntax is not supported.

Destroy the keys
cached on the server.
This function is used
only when the
memory decryption
emergency channel is
enabled. This is a
fully-encrypted
function.

\clear_token The M-compatible mode
does not support the full
encryption. Therefore, this
syntax is not supported.

Destroy the keys
cached on the server.
This function is used
only when the
memory decryption
emergency channel is
enabled. This is a
fully-encrypted
function.

\ct The M-compatible mode
does not support the full
encryption. Therefore, this
syntax is not supported.

Set the parameters
for accessing the
external key manager
in the fully-encrypted
database features.

\key_info KEY_INFO The M-compatible mode
does not support the full
encryption. Therefore, this
syntax is not supported.

Enable third-party
dynamic libraries and
set related
parameters. This is a
fully-encrypted
function.

\crypto_module_info
MODULE_INFO

The M-compatible mode
does not support the full
encryption. Therefore, this
syntax is not supported.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 262

Description Syntax Difference

Enable third-party
dynamic libraries and
set related
parameters. This is a
fully-encrypted
function.

\cmi MODULE_INFO The M-compatible mode
does not support the full
encryption. Therefore, this
syntax is not supported.

The GENERATED
ALWAYS AS
statement cannot
reference columns
generated by
GENERATED ALWAYS
AS.

Generated Always AS In GaussDB, the GENERATED
ALWAYS AS statement
cannot reference columns
generated by GENERATED
ALWAYS AS, but it can in
MySQL.

Alter table names. ALTER TABLE tbl_name
RENAME [TO | AS | =]
new_tbl_name;

● The ALTER RENAME
syntax in GaussDB
supports only the function
of changing the table
name and cannot be
coupled with other
function operations.

● In GaussDB, only the old
table name column
supports the
schema.table_name
format, and the new and
old table names belong to
the same schema.

● GaussDB does not support
renaming of old and new
tables across schemas.
However, if you have the
permission, you can
modify the names of
tables in other schemas in
the current schema.

Disable the GUC
parameter
enable_expr_fusion.

SET
enable_expr_fusion=
ON

In M-compatible mode, the
GUC parameter
enable_expr_fusion cannot
be enabled.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 263

Description Syntax Difference

CREATE VIEW AS
SELECT syntax

CREATE VIEW table_name AS
query;

● For the following types,
the query using the
CREATE VIEW view_name
AS query syntax cannot
contain calculation
operations (such as
function call and
calculation using
operators):
– BINARY[(n)]
– BOOLEAN/BOOL
– VARBINARY(n)
– CHAR[(n)]
– VARCHAR(n)
– TIME[(p)]
– DATETIME[(p)]
– TIMESTAMP[(p)]
– BIT[(n)]
– NUMERIC[(p[,s])]
– DECIMAL[(p[,s])]
– DEC[(p[,s])]
– FIXED[(p[,s])]
– FLOAT4[(p, s)]
– FLOAT8[(p,s)]
– FLOAT[(p)]
– REAL[(p, s)]
– FLOAT[(p, s)]
– DOUBLE[(p,s)]
– DOUBLE

PRECISION[(p,s)]
– TEXT
– TINYTEXT
– MEDIUMTEXT
– LONGTEXT
– BLOB
– TINYBLOB
– MEDIUMBLOB
– LONGBLOB

● In the simple query
scenario, an error message
is displayed for the

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 264

Description Syntax Difference

preceding calculation
operations in M-
compatible mode. For
example:
m_db=# CREATE TABLE TEST
(salary int(10));
CREATE TABLE

m_db=# INSERT INTO TEST
VALUES(8000);
INSERT 0 1

m_db=# CREATE VIEW view1 AS
SELECT salary/10 as te FROM
TEST;
ERROR: Unsupported type
numeric used with expression in
CREATE VIEW statement.

m_db=# CREATE VIEW view2 AS
SELECT sec_to_time(salary) as te
FROM TEST;
ERROR: Unsupported type time
used with expression in CREATE
VIEW statement.

● In non-simple query
scenarios such as
composite query and
subquery, the calculation
operations of the
preceding types in M-
compatible mode are
different from those in
MySQL. In M-compatible
mode, the data type
column precision attribute
of the created table is not
retained.

Range of index
names that can be
duplicated

CREATE TABLE, CREATE
INDEX

In MySQL, an index name is
unique in a table. Different
tables can have the same
index name. In M-compatible
mode, the index name must
be unique in the same
schema. In M-compatible
mode, the same rules apply
to constraints and keys that
automatically create indexes.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 265

Description Syntax Difference

View dependency
differences

CREATE VIEW and
ALTER TABLE

In MySQL, view storage
records only the table name,
column name, and database
name of the target table, but
does not record the unique
identifier of the target table.
GaussDB parses the SQL
statement used for creating a
view and stores the unique
identifier of the target table.
Therefore, the differences are
as follows:
● In MySQL, you can modify

the data type of a column
on which a view depends
because the view is
unaware of the
modification of the target
table. In GaussDB, such
modification is forbidden
and the attempt will fail.

● In MySQL, you can
rename a column on
which a view depends
because the view is
unaware of the
modification of the target
table, but the view cannot
be queried after the
operation. In GaussDB,
each column precisely
stores the unique
identifier of the
corresponding table and
column. Therefore, the
column name in the table
can be modified
successfully without
changing the column
name in the view. In
addition, the view can be
queried after the
operation.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 266

Description Syntax Difference

Foreign key
differences

CREATE TABLE ● In GaussDB, FOREIGN KEY
constraints are insensitive
to types. If the data types
of the columns in the
main and child tables are
implicitly converted,
foreign keys can be
created. In MySQL,
FOREIGN KEY constraints
are sensitive to types. If
the column types of the
two tables are different,
foreign keys cannot be
created.

● MySQL does not allow
you to modify the data
type or name of a table
column where the foreign
key of the column is
located by running
MODIFY COLUMN or
CHANGE COLUMN, but
GaussDB supports such
operation.

Differences in index
ascending and
descending orders

CREATE INDEX In MySQL 5.7, ASC | DESC is
parsed but ignored, and the
default behavior is ASC. In
MySQL 8.0 and GaussDB,
ASC | DESC is parsed and
takes effect.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 267

Description Syntax Difference

Setting default values
of columns

CREATE TABLE and
ALTER TABLE

● For MySQL 5.7, only the
default value without
parentheses is supported.
MySQL 8.0 and GaussDB
support default values in
parentheses.
-- GaussDB
m_db=# DROP TABLE IF EXISTS
t1, t2;
DROP TABLE
m_db=# CREATE TABLE t1(a
DATETIME DEFAULT NOW());
CREATE TABLE
m_db=# CREATE TABLE t2(a
DATETIME DEFAULT (NOW()));
CREATE TABLE

-- MySQL 5.7
mysql> DROP TABLE IF EXISTS t1,
t2;
Query OK, 0 rows affected (0.04
sec)

mysql> CREATE TABLE t1(a
DATETIME DEFAULT NOW());
Query OK, 0 rows affected (0.04
sec)

mysql> CREATE TABLE t2(a
DATETIME DEFAULT (NOW()));
ERROR 1064 (42000): You have
an error in your SQL syntax; check
the manual that corresponds to
your MySQL server version for the
right syntax to use near
'(NOW()))' at line 1

-- MySQL 8.0
mysql> DROP TABLE IF EXISTS t1,
t2;
Query OK, 0 rows affected (0.17
sec)

mysql> CREATE TABLE t1(a
DATETIME DEFAULT NOW());
Query OK, 0 rows affected (0.19
sec)

mysql> CREATE TABLE t2(a
DATETIME DEFAULT (NOW()));
Query OK, 0 rows affected (0.20
sec)

● In MySQL, when
specifying default values
for BLOB, TEXT, and JSON
data types, you must add
parentheses to the default
values. In GaussDB, you
do not need to add
parentheses when
specifying default values

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 268

Description Syntax Difference

for the preceding data
types.

● When the default value is
specified, GaussDB does
not check whether the
default value overflows.
When the default value
without parentheses is
specified in MySQL,
MySQL checks whether
the default value
overflows. When the
default value with
parentheses is specified,
MySQL does not check
whether the default value
overflows.

● In GaussDB, time
constants starting with
DATE, TIME, or
TIMESTAMP can be used
to specify default values
for columns. In MySQL,
when time constants
starting with DATE, TIME,
or TIMESTAMP are used to
specify default values for
columns, parentheses
must be added to the
default values.
-- GaussDB
m_db=# DROP TABLE IF EXISTS
t1, t2;
DROP TABLE
m_db=# CREATE TABLE t1(a
TIMESTAMP DEFAULT TIMESTAMP
'2000-01-01 00:00:00');
CREATE TABLE
m_db=# CREATE TABLE t2(a
TIMESTAMP DEFAULT
(TIMESTAMP '2000-01-01
00:00:00'));
CREATE TABLE

-- MySQL 5.7
mysql> DROP TABLE IF EXISTS t1,
t2;
Query OK, 0 rows affected (0.02
sec)

mysql> CREATE TABLE t1(a
TIMESTAMP DEFAULT TIMESTAMP
'2000-01-01 00:00:00');
ERROR 1067 (42000): Invalid
default value for 'a'
mysql> CREATE TABLE t2(a

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 269

Description Syntax Difference

TIMESTAMP DEFAULT
(TIMESTAMP '2000-01-01
00:00:00'));
ERROR 1064 (42000): You have
an error in your SQL syntax; check
the manual that corresponds to
your MySQL server version for the
right syntax to use near
'(TIMESTAMP '2000-01-01
00:00:00'))' at line 1

-- MySQL 8.0
mysql> DROP TABLE IF EXISTS t1,
t2;
Query OK, 0 rows affected (0.14
sec)

mysql> CREATE TABLE t1(a
TIMESTAMP DEFAULT TIMESTAMP
'2000-01-01 00:00:00');
ERROR 1067 (42000): Invalid
default value for 'a'
mysql> CREATE TABLE t2(a
TIMESTAMP DEFAULT
(TIMESTAMP '2000-01-01
00:00:00'));
Query OK, 0 rows affected (0.19
sec)

3.2.7.4 DML

Table 3-28 DML syntax compatibility

Description Syntax Difference

DELETE supports
deleting data from a
specified partition (or
subpartition).

DELETE -

UPDATE supports
ORDER BY and LIMIT.

UPDATE -

SELECT INTO syntax SELECT ● In GaussDB, you can use
SELECT INTO to create a
table based on the query
result. MySQL does not
support this function.

● In GaussDB, the SELECT
INTO syntax does not
support the query result
that is obtained after the
set operation of multiple
queries is performed.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 270

Description Syntax Difference

REPLACE INTO syntax REPLACE Difference between the initial
values of the time type. For
example:
● MySQL is not affected by

the strict or loose mode.
You can insert time 0 into
a table.
mysql> CREATE TABLE test(f1
TIMESTAMP NOT NULL, f2
DATETIME NOT NULL, f3 DATE
NOT NULL);
Query OK, 1 row affected (0.00
sec)

mysql> REPLACE INTO test
VALUES(f1, f2, f3);
Query OK, 1 row affected (0.00
sec)

mysql> SELECT * FROM test;
+---------------------
+---------------------+------------+
| f1 | f2 |
f3 |
+---------------------
+---------------------+------------+
| 0000-00-00 00:00:00 |
0000-00-00 00:00:00 | 0000-00-00
|
+---------------------
+---------------------+------------+
1 row in set (0.00 sec)

● The time 0 can be
successfully inserted only
when GaussDB is in loose
mode.
gaussdb=# SET sql_mode = '';
SET
gaussdb=# CREATE TABLE test(f1
TIMESTAMP NOT NULL, f2
DATETIME NOT NULL, f3 DATE
NOT NULL);
CREATE TABLE
gaussdb=# REPLACE INTO test
VALUES(f1, f2, f3);
REPLACE 0 1
gaussdb=# SELECT * FROM test;
f1 | f2 | f3

+---------------------+------------
0000-00-00 00:00:00 | 0000-00-00
00:00:00 | 0000-00-00
(1 row)
In strict mode, the error
"Incorrect Date/Time/
Datetime/Timestamp/Year
value" is reported.

SELECT supports
multi-partition query.

SELECT -

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 271

Description Syntax Difference

UPDATE supports
multi-partition
update.

UPDATE -

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 272

Description Syntax Difference

Import data by using
LOAD DATA.

LOAD DATA When LOAD DATA is used to
import data, GaussDB differs
from MySQL in the following
aspects:
● The execution result of the

LOAD DATA syntax is the
same as that in M* strict
mode. The loose mode is
not adapted currently.

● The IGNORE and LOCAL
parameters are used only
to ignore the conflicting
rows when the imported
data conflicts with the
data in the table and to
automatically fill default
values for other columns
when the number of
columns in the file is less
than that in the table.
Other functions are not
supported currently.

● The
[(col_name_or_user_var
[,
col_name_or_user_var]...)
] parameter cannot be
used to specify a column
repeatedly.

● The newline character
specified by [FIELDS
TERMINATED BY 'string']
cannot be the same as the
separator specified by
[LINES TERMINATED
BY'string'].

● If the data written to a
table by running LOAD
DATA cannot be
converted to the data type
of the table, an error is
reported.

● The LOAD DATA SET
expression does not
support the calculation of
a specified column name.

● LOAD DATA applies only
to tables but not views.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 273

Description Syntax Difference

● The default newline
character of the file in
Windows is different from
that in Linux. LOAD DATA
cannot identify this
scenario and reports an
error. You are advised to
check the newline
character at the end of
lines in the file to be
imported.

● In GaussDB, when the
GUC parameter
m_format_behavior_com
pat_options is not set,
data can be imported only
from the server using
LOAD DATA, regardless of
whether the LOCAL
parameter is specified. In
MySQL, if the LOCAL
parameter is specified,
data can be imported
from the client; otherwise,
it is imported from the
server. After you specify
the value of this GUC
parameter that includes
enable_load_data_remot
e_transmission in
GaussDB, the LOCAL
parameter behavior of
LOAD DATA becomes
consistent with that in
MySQL.

INSERT supports the
VALUES reference
column syntax.

INSERT INTO tabname
VALUES(1,2,3) ON
DUPLICATE KEY
UPDATE b =
VALUES(column_name)

The format of table-
name.column-name is not
supported by VALUES() in the
ON DUPLICATE KEY UPDATE
clause in GaussDB, but is
supported in MySQL.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 274

Description Syntax Difference

LIMIT differences DELETE, SELECT, and
UPDATE

The LIMIT clauses of each
statement in GaussDB are
different from those in
MySQL.
The maximum parameter
value of LIMIT (of the BIG
INT type) in GaussDB is
9223372036854775807. If
the actual value exceeds the
number, an error is reported.
In MySQL, the maximum
value of LIMIT (of the
unsigned LONGLONG type) is
18446744073709551615. If
the actual value exceeds the
number, an error is reported.
You can set a small value in
LIMIT, which is rounded off
during execution. The value
cannot be a decimal in
MySQL.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 275

Description Syntax Difference

Difference in using
backslashes (\)

INSERT The usage of backslashes (\)
can be determined by
parameters in GaussDB and
MySQL, but their default
usages are different.
In MySQL, the
NO_BACKSLASH_ESCAPES
parameter is used to
determine whether
backslashes (\) in character
strings and identifiers are
parsed as common characters
or escape characters. By
default, backslashes (\) are
parsed as escape characters
in character strings and
identifiers. If SET
sql_mode='NO_BACKSLASH
_ESCAPES'; is used, the
backslashes (\) cannot be
parsed as escape characters
in strings and identifiers.
In GaussDB, the
standard_conforming_string
s parameter is used to
determine whether
backslashes (\) in character
strings and identifiers are
parsed as common characters
or escape characters. The
default value is on, indicating
that backslashes (\) are
parsed as common text in
common character string
texts according to the SQL
standard. If SET
standard_conforming_string
s=off; is used, backslashes (\)
can be parsed as escape
characters in character
strings and identifiers.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 276

Description Syntax Difference

If the inserted value is
less than the number
of columns, MySQL
reports an error while
GaussDB supplements
null values.

INSERT In GaussDB, if the column list
is not specified and the
inserted value is less than the
number of columns, values
are assigned based on the
column sequence when the
table is created by default. If
a column has a NOT NULL
constraint, an error is
reported. If no NOT NULL
constraint exists and a
default value is specified, the
default value is added to the
column. If no default value is
specified, null is added.

The columns sorted in
ORDER BY must be
included in the
columns of the result
set.

SELECT In GaussDB, when used with
the GROUP BY clause, the
columns to be sorted in
ORDER BY must be included
in the columns of the result
set retrieved by the SELECT
statement. When used with
the DISTINCT keyword, the
columns to be sorted in
ORDER BY must be included
in the columns of the result
set retrieved by the SELECT
statement.

Modify constraint
columns by using
INSERT ON
DUPLICATE KEY
UPDATE.

INSERT In GaussDB, constraint
columns cannot be modified
by using ON DUPLICATE KEY
UPDATE, but this operation is
allowed in MySQL.

Duplicate column
names are allowed in
the SELECT result.

SELECT -

NATURAL JOIN in
GaussDB is different
from that in MySQL.

SELECT In GaussDB, NATURAL
[[LEFT | RIGHT] OUTER]
JOIN allows you not to
specify LEFT | RIGHT. If LEFT
| RIGHT is not specified,
NATURAL OUTER JOIN is
NATURAL JOIN. You can use
JOIN consecutively.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 277

Description Syntax Difference

If the foreign key
data type is
timestamp or
datetime, an error is
reported for attempts
to perform UPDATE
or DELETE on a
foreign table.

UPDATE/DELETE If the foreign key data type is
timestamp or datetime, an
error is reported for attempts
to perform UPDATE or
DELETE on a foreign table,
but such operations are
allowed in MySQL.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 278

Description Syntax Difference

Compatibility in
terms of nature join
and using

SELECT ● In GaussDB, join sequence
is strictly from left to
right. MySQL may adjust
the sequence.

● In GaussDB and MySQL,
columns involving join in
the left or right table
cannot be ambiguous
during natural join or
using. (Generally,
ambiguity is caused by
duplicate names of
columns in the left or
right temporary table.)
The join sequence differs
in two databases, which
may lead to different
behaviors.
– Behavior in GaussDB:

m_regression=# CREATE
TABLE t1(a int,b int);
CREATE TABLE
m_regression=# CREATE
TABLE t2(a int,b int);
CREATE TABLE
m_regression=# CREATE
TABLE t3(a int,b int);
CREATE TABLE
m_regression=# SELECT *
FROM t1 JOIN t2;
 a | b | a | b
---+---+---+---
(0 rows)
m_regression=# SELECT *
FROM t1 JOIN t2 natural join
t3; -- Failed. Duplicate
contents exist in columns a
and b of the temporary table
obtained by t1 join t2.
Therefore, there is ambiguity
in nature join.
ERROR: common column
name "a" appears more than
once in left table

– Behavior in MySQL:
mysql> SELECT * FROM t1
JOIN t2 NATURAL JOIN t3;
Empty set (0.00 sec)
mysql> SELECT * FROM (t1
join t2) NATURAL JOIN t3;
ERROR 1052 (23000): Column
'a' in from clause is ambiguous

The WITH clause is
compatible with
MySQL 8.0.

SELECT, INSERT,
UPDATE, and DELETE

-

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 279

Description Syntax Difference

Compatibility in
terms of join

SELECT Commas (,) cannot be used
as a way of join in GaussDB,
but can be used in MySQL.
GaussDB does not support
use index for join.

If the column
expression in the
SELECT statement is a
function expression or
arithmetic expression,
the column name in
the query result is ?
column?.

SELECT In GaussDB, if the column
expression in the SELECT
statement is a function
expression or arithmetic
expression, the column name
in the query result is ?
column?. In MySQL, the
name is the corresponding
expression.

SELECT export file
(into outfile)

SELECT ... INTO
OUFILE ...

In the file exported by using
the SELECT INTO OUTFILE
syntax, the display precision
of values of the FLOAT,
DOUBLE, and REAL types in
GaussDB is different from
that in MySQL. The syntax
does not affect the import
using COPY the values after
import.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 280

Description Syntax Difference

Specify schema
names and table
names by using
SELECT/UPDATE/
INSERT/REPLACE.

SELECT/UPDATE/
INSERT/REPLACE

● When the SELECT
statement is used to the
projection column, MySQL
supports the three-
segment format of
schema name.table
alias.column name, but
GaussDB does not.
m_db=# CREATE SCHEMA test;
CREATE SCHEMA
m_db=# CREATE TABLE test.t1(a
int);
CREATE TABLE
m_db=# SELECT test.alias1.a
FROM t1 alias1;
ERROR: invalid reference to
FROM-clause entry for table
"alias1"
LINE 1: SELECT test.alias1.a FROM
t1 alias1;
 ^
HINT: There is an entry for table
"alias1", but it cannot be
referenced from this part of the
query.
CONTEXT: referenced column: a

● The three-segment format
for UPDATE/REPLACE SET
is database.table.column
in MySQL, and is
table.column.field in
GaussDB, where field
indicates the attribute in
the specified composite
type.

● For INSERT ... SET, MySQL
supports column,
table.column, and
database.table.column.
GaussDB supports only
column and does not
support table.column and
database.table.column.

● For INSERT... SET, you can
reference column names
and expressions that
contain column names on
the right of the SET clause
in MySQL. GaussDB does
not support this operation.
– Behavior in GaussDB:

m_db=# CREATE TABLE t2 (a
int default 3, b int default 5);

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 281

Description Syntax Difference

CREATE TABLE

m_db=# INSERT INTO t2 SET
a = b + 1;
ERROR: Column "b" does not
exist.
LINE 1: INSERT INTO t2 SET a
= b + 1;
 ^
HINT: There is a column
named "b" in table "t2", but it
cannot be referenced from
this part of the query.

m_db=# INSERT INTO t2 SET
a = b + 1, b = 0;
ERROR: Column "b" does not
exist.
LINE 1: INSERT INTO t2 SET a
= b + 1, b = 0;
 ^
HINT: There is a column
named "b" in table "t2", but it
cannot be referenced from
this part of the query.

m_db=# INSERT INTO t2 SET
b = 0, a = b + 1;
ERROR: Column "b" does not
exist.
LINE 1: INSERT INTO t2 SET b
= 0, a = b + 1;
 ^
HINT: There is a column
named "b" in table "t2", but it
cannot be referenced from
this part of the query.

m_db=# INSERT INTO t2 SET
a = a + 1;
ERROR: Column "a" does not
exist.
LINE 1: INSERT INTO t2 SET a
= a + 1;
 ^
HINT: There is a column
named "a" in table "t2", but it
cannot be referenced from
this part of the query.

m_db=# DROP TABLE t2;
DROP TABLE

– Behavior in MySQL:
mysql> CREATE TABLE t2 (a
int default 3, b int default 5);
Query OK, 0 rows affected
(0.07 sec)

mysql> INSERT INTO t2 SET a
= b + 1;
Query OK, 1 row affected
(0.02 sec)

mysql> SELECT * FROM t2;

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 282

Description Syntax Difference

+------+------+
| a | b |
+------+------+
| 6 | 5 |
+------+------+
1 row in set (0.00 sec)

mysql> INSERT INTO t2 SET a
= b + 1, b = 0;
Query OK, 1 row affected
(0.00 sec)

mysql> SELECT * FROM t2;
+------+------+
| a | b |
+------+------+
| 6 | 5 |
| 6 | 0 |
+------+------+
2 rows in set (0.00 sec)

mysql> INSERT INTO t2 SET b
= 0, a = b + 1;
Query OK, 1 row affected
(0.00 sec)

mysql> SELECT * FROM t2;
+------+------+
| a | b |
+------+------+
6	5
6	0
1	0
+------+------+
3 rows in set (0.00 sec)

mysql> INSERT INTO t2 SET a
= a + 1;
Query OK, 1 row affected
(0.02 sec)

mysql> SELECT * FROM t2;
+------+------+
| a | b |
+------+------+
6	5
6	0
1	0
4	5
+------+------+
4 rows in set (0.00 sec)

mysql> DROP TABLE t2;
Query OK, 4 rows affected
(0.40 sec)

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 283

Description Syntax Difference

The execution
sequence of UPDATE
SET is different from
that of MySQL.

UPDATE ... SET In MySQL, UPDATE SET is
performed in sequence. The
results of UPDATE at the
front affect subsequent
results of UPDATE, and the
same column can be updated
for multiple times. In
GaussDB, all related data is
obtained first, and then
UPDATE is performed on the
data at a time. The same
column cannot be updated
for multiple times.

IGNORE feature UPDATE/DELETE/
INSERT

The execution process in
MySQL is different from that
in GaussDB. Therefore, the
number and information of
generated warnings may be
different.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 284

Description Syntax Difference

SHOW COLUMNS
syntax

SHOW ● User permission
verification is different
from that of MySQL.
– In GaussDB, you need

the USAGE permission
on the schema of a
specified table and
table-level or column-
level permissions on
the specified table.
Only information about
columns with the
SELECT, INSERT,
UPDATE, REFERENCES,
and COMMENT
permissions is
displayed.

– In MySQL, you need
table-level or column-
level permissions on a
specified table. Only
information about
columns with the
SELECT, INSERT,
UPDATE, REFERENCES,
and COMMENT
permissions is
displayed.

● When the LIKE and
WHERE clauses involve
string comparison
operations, the collation is
different from that in
MySQL.
– utf8_general_ci is used

in MySQL.
– The

collation_connection
of the current client is
used as the collation in
GaussDB.
In GaussDB, you are
advised not to select
columns other than the
returned fields in the
WHERE clause.
Otherwise, unexpected
errors may occur.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 285

Description Syntax Difference

-- Expected error
m_db=# SHOW FULL
COLUMNS FROM t02 WHERE
`b`='pri';
ERROR: Column "b" does not
exist.
LINE 1: SHOW FULL
COLUMNS FROM t02 WHERE
`b`='pri';
 ^

-- Unexpected error
m_db=# SHOW FULL
COLUMNS FROM t02 WHERE
`c`='pri';
ERROR: input of anonymous
composite types is not
implemented
LINE 1: SHOW FULL
COLUMNS FROM t02 WHERE
`c`='pri';

^

SHOW CREATE
DATABASE syntax

SHOW User permission verification
is different from that of
MySQL.
● In GaussDB, you need the

USAGE permission on a
specified schema.

● In MySQL, you need
database-level
permissions (except
GRANT OPTION and
USAGE), table-level
permissions (except
GRANT OPTION), or
column-level permissions.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 286

Description Syntax Difference

SHOW CREATE TABLE
syntax

SHOW ● User permission
verification is different
from that of MySQL.
– In GaussDB, you need

the USAGE permission
on the schema where a
specified table is
located and table-level
permissions on the
specified table.

– Table-level permissions
(except GRANT
OPTION) of the
specified table are
required in MySQL.

● The returned statements
for table creation are
different from those in
MySQL.
– In GaussDB, indexes are

returned as CREATE
INDEX statements. In
MySQL, indexes are
returned as CREATE
TABLE statements. In
GaussDB, the range of
optional parameters
supported by the
CREATE INDEX syntax
is different from that
supported by the
CREATE TABLE syntax.
Therefore, some
indexes cannot be
created in CREATE
TABLE statements.

– In GaussDB, the
ENGINE and
ROW_FORMAT options
of CREATE TABLE are
adapted only for the
syntax but do not take
effect. Therefore, they
are not displayed in the
returned statements for
table creation.

● These statements are
compatible with MySQL

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 287

Description Syntax Difference

only after the
compatibility parameter
m_format_dev_version is
set to 's2'. The
compatibility parameter
takes effect by changing
the positions of column
comments, table
comments, ON COMMIT
option for global
temporary tables,
PRIMARY KEY and
UNIQUE constraints
(where the USING INDEX
TABLESPACE option is no
longer displayed), and
index comments.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 288

Description Syntax Difference

SHOW CREATE VIEW
syntax

SHOW ● User permission
verification is different
from that of MySQL.
– In GaussDB, you need

the USAGE permission
on the schema where a
specified view is
located and table-level
permissions on the
specified view.

– In MySQL, you need
the table-level SELECT
and table-level SHOW
VIEW permissions on
the specified view.

● The returned statements
for view creation are
different from those in
MySQL. If a view is
created in the format of
SELECT * FROM tbl_name,
* is not expanded in
GaussDB but expanded in
MySQL.

● The character_set_client
and collation_connection
columns in the returned
result are different from
those in MySQL.
– The session values of

system variables
character_set_client
and
collation_connection
are displayed during
view creation in MySQL

– Related metadata is
not recorded in
GaussDB and NULL is
displayed.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 289

Description Syntax Difference

SHOW PROCESSLIST
syntax

SHOW In GaussDB, the column
content and case in the query
result of this command are
the same as those in the
information_schema.processli
st view. In MySQL, the
column content and case
may be different.
● In GaussDB, common

users can access only their
own thread information.
Users with the SYSADMIN
permission can access
thread information of all
users.

● In MySQL, common users
can access only their own
thread information. Users
with the PROCESS
permission can access
thread information of all
users.

SHOW [STORAGE]
ENGINES

SHOW In GaussDB, the column
content and case of the
query result of this command
are the same as those in the
information_schema.engines
view. In MySQL, they may be
different from those in the
view. The query results of this
command are different in
MySQL and GaussDB because
the databases have different
storage engines.

SHOW [SESSION]
STATUS

SHOW In GaussDB, the column
content and case of the
query result of this command
are the same as those in the
information_schema.session_
status view. In MySQL, they
may be different from those
in the view. Currently,
GaussDB supports only
Threads_connected and
Uptime.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 290

Description Syntax Difference

SHOW [GLOBAL]
STATUS

SHOW In GaussDB, the column
content and case of the
query result of this command
are the same as those in the
information_schema.global_st
atus view. In MySQL, they
may be different from those
in the view. Currently,
GaussDB supports only
Threads_connected and
Uptime.

SHOW INDEX SHOW ● User permission
verification is different
from that of MySQL.
– In GaussDB, you need

the USAGE permission
on a specified schema
and table-level or
column-level
permissions on a
specified table.

– In MySQL, you need
table-level (except
GRANT OPTION) or
column-level
permission on the
specified table.

● Temporary tables in
GaussDB are stored in
independent temporary
schemas. When using the
FROM or IN db_name
condition to display the
index information of a
specified temporary table,
you must specify
db_name as the schema
where the temporary table
is located. Otherwise, the
system displays a message
indicating that the
temporary table does not
exist. This is different from
MySQL in some cases.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 291

Description Syntax Difference

SHOW SESSION
VARIABLES

SHOW In GaussDB, the column
content and case of the
query result are the same as
those in the
information_schema.session_
variables view. In MySQL,
they may be different from
those in the view.

SHOW GLOBAL
VARIABLES

SHOW In GaussDB, the column
content and case of the
query result are the same as
those in the
information_schema.global_v
ariables view. In MySQL, they
may be different from those
in the view.

SHOW CHARACTER
SET

SHOW In GaussDB, the column
content and case of the
query result are the same as
those in the
information_schema.characte
r_sets view. In MySQL, they
may be different from those
in the view.

SHOW COLLATION SHOW In GaussDB, the column
content and case of the
query result are the same as
those in the
information_schema.collation
s view. In MySQL, they may
be different from those in the
view.

EXCEPT Syntax SELECT -

SELECT supports the
STRAIGHT_JOIN
syntax.

SELECT The execution plans
generated in the multi-table
JOIN scenarios in GaussDB
may be different from those
in MySQL.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 292

Description Syntax Difference

SHOW TABLES SHOW ● The LIKE behavior is
different. For details, see
"LIKE" in Operators.

● The WHERE expression
behavior is different. For
details, see "WHERE" in
GaussDB.

● In GaussDB, permissions
on tables and databases
must be assigned to users
separately. The database
to be queried must be
available to users on the
SHOW SCHEMAS. Users
must have permissions on
both tables and
databases. MySQL can be
accessed as long as you
have table permissions.

● In GaussDB, the
verification logic
preferentially checks
whether a schema exists
and then checks whether
the current user has the
permission on the schema,
which is different from
that in MySQL.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 293

Description Syntax Difference

SHOW TABLE STATUS SHOW ● In GaussDB, the syntax
displays data depending
on the tables view under
information_schema. In
MySQL, the tables view
specifies tables.

● In GaussDB, permissions
on tables and databases
must be assigned to users
separately. The database
to be queried must be
available to users on the
SHOW SCHEMAS. Users
must have permissions on
both tables and
databases. MySQL can be
accessed as long as you
have table permissions.

● In GaussDB, the
verification logic
preferentially checks
whether a schema exists
and then checks whether
the current user has the
permission on the schema,
which is different from
that in MySQL.

HAVING syntax SELECT In GaussDB, HAVING can
only reference columns in the
GROUP BY clause or columns
used in aggregate functions.
MySQL supports more: it
allows HAVING to reference
SELECT columns in the list
and columns in external
subqueries.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 294

Description Syntax Difference

SELECT followed by a
row expression

SELECT In MySQL, SELECT cannot be
followed by a row expression,
but in GaussDB, SELECT can
be followed by a row
expression.
Behavior in MySQL:
mysql> SELECT row(1,2);
ERROR 1241 (21000): Operand should
contain 1 column(s)

Behavior in GaussDB:
m_db=# SELECT row(1,2);
 row(1,2)

 (1,2)
(1 row)

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 295

Description Syntax Difference

SELECT FOR
SHARE/FOR UPDATE/
LOCK IN SHRAE
MODE

SELECT ● The FOR SHARE/FOR
UPDATE/LOCK IN SHARE
MODE and UNION/
EXCEPT/DISTINCT/GROUP
BY/HAVING clauses
cannot be used together
in GaussDB. They can be
used together in MySQL
5.7 (except in the FOR
SHARE/EXCEPT syntax)
and MySQL 8.0.

● When a lock clause is used
together with the LEFT/
RIGHT [OUTER] JOIN
clause, the LEFT JOIN
cannot be used to lock the
right table, and the RIGHT
JOIN clause cannot be
used to lock the left table.
In MySQL, tables on both
sides of JOIN can be
locked at the same time.

● In MySQL, multiple lock
clauses cannot be
specified for the same
table, while GaussDB
supports this operation
and the strongest lock will
take effect.
-- GaussDB
m_db=# DROP TABLE IF EXISTS t1;
DROP TABLE

m_db=# CREATE TABLE t1(a INT,
b INT);
CREATE TABLE

m_db=# INSERT INTO t1
VALUES(1,2);
INSERT 0 1

m_db=# SELECT * FROM t1 FOR
UPDATE OF t1 LOCK IN SHARE
MODE;
 a | b
---+---
 1 | 2
(1 row)

m_db=# DROP TABLE t1;
DROP TABLE

-- MySQL
mysql> DROP TABLE IF EXISTS t1;
Query OK, 0 rows affected (0.05
sec)

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 296

Description Syntax Difference

mysql> CREATE TABLE t1(a INT, b
INT);
Query OK, 0 rows affected (0.09
sec)

mysql> INSERT INTO t1
VALUES(1,2);
Query OK, 1 row affected (0.01
sec)

mysql> SELECT * FROM t1 FOR
UPDATE OF t1 LOCK IN SHARE
MODE;
ERROR 3569 (HY000): Table t1
appears in multiple locking
clauses.

mysql> DROP TABLE t1;
Query OK, 0 rows affected (0.05
sec)

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 297

Description Syntax Difference

SELECT syntax SELECT ● In GaussDB, the HAVING
clause must be used
together with the GROUP
BY clause or aggregate
functions. In MySQL,
specifying only the
HAVING clause in a query
statement is allowed.

● In GaussDB, HAVING can
only reference columns in
the GROUP BY clause or
columns used in
aggregate functions.
MySQL supports more: it
allows HAVING to
reference SELECT columns
in the list and columns in
external subqueries.

● In GaussDB and MySQL
5.7, GROUP BY WITH
ROLLUP cannot be used
together with the
DISTINCT and ORDER BY
clauses. However, MySQL
8.0 supports this
operation.

● In GaussDB, when an
empty table is queried by
using the specified WITH
ROLLUP statement, the
query result is an empty
row. In contrast, the query
result in MySQL is empty.

● In GaussDB, a table alias
with the column name
can be specified by using
the FROM clause. In
MySQL 5.7, a table alias
with the column name
cannot be specified. In
MySQL 8.0, it is allowed
only in a subquery.
-- GaussDB
m_db=# DROP TABLE IF EXISTS t1;
DROP TABLE
m_db=# CREATE TABLE t1(a INT,
b INT);
CREATE TABLE
m_db=# INSERT INTO t1
VALUES(1,2);
INSERT 0 1

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 298

Description Syntax Difference

m_db=# SELECT * FROM t1 t2(a,
b);
 a | b
---+---
 1 | 2
(1 row)

m_db=# SELECT * FROM (SELECT
* FROM t1) t2(a, b);
 a | b
---+---
 1 | 2
(1 row)

-- MySQL 5.7
mysql> DROP TABLE IF EXISTS t1;
Query OK, 0 rows affected, 1
warning (0.00 sec)

mysql> CREATE TABLE t1(a INT, b
INT);
Query OK, 0 rows affected (0.03
sec)

mysql> INSERT INTO t1
VALUES(1,2);
Query OK, 1 row affected (0.01
sec)

mysql> SELECT * FROM t1 t2(a, b);
ERROR 1064 (42000): You have
an error in your SQL syntax; check
the manual that corresponds to
your MySQL server version for the
right syntax to use near '(a, b)' at
line 1
mysql> SELECT * FROM (SELECT *
FROM t1) t2(a, b);
ERROR 1064 (42000): You have
an error in your SQL syntax; check
the manual that corresponds to
your MySQL server version for the
right syntax to use near '(a, b)' at
line 1

-- MySQL 8.0
mysql> DROP TABLE IF EXISTS t1;
Query OK, 0 rows affected (0.10
sec)

mysql> CREATE TABLE t1(a INT, b
INT);
Query OK, 0 rows affected (0.18
sec)

mysql> INSERT INTO t1
VALUES(1,2);
Query OK, 1 row affected (0.03
sec)

mysql> SELECT * FROM t1 t2(a, b);
ERROR 1064 (42000): You have
an error in your SQL syntax; check
the manual that corresponds to
your MySQL server version for the
right syntax to use near '(a, b)' at

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 299

Description Syntax Difference

line 1
mysql> SELECT * FROM (SELECT *
FROM t1) t2(a, b);
+------+------+
| a | b |
+------+------+
| 1 | 2 |
+------+------+
1 row in set (0.00 sec)

● If a query statement does
not contain the FROM
clause, GaussDB supports
the WHERE clause, which
is the same as that in
MySQL 8.0. MySQL 5.7
does not support the
WHERE clause.
-- GaussDB
m_db=# SELECT 1 WHERE true;
 1

 1
(1 row)

-- MySQL 5.7
mysql> SELECT 1 WHERE true;
ERROR 1064 (42000): You have
an error in your SQL syntax; check
the manual that corresponds to
your MySQL server version for the
right syntax to use near 'where
true' at line 1

-- MySQL 8.0
mysql> SELECT 1 WHERE true;
+---+
| 1 |
+---+
| 1 |
+---+
1 row in set (0.00 sec)

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 300

Description Syntax Difference

INSERT ... ON
DUPLICATE KEY
UPDATE syntax

INSERT ● The format of table-
name.column-name is not
supported by VALUES() in
the ON DUPLICATE KEY
UPDATE clause in
GaussDB, but is supported
in MySQL.

● In GaussDB, constraint
columns cannot be
modified by using ON
DUPLICATE KEY UPDATE,
but this operation is
allowed in MySQL.

● In the INSERT... query ON
DUPLICATE KEY UPDATE
statement, if query is a
subquery, the ON
DUPLICATE KEY UPDATE
clause cannot reference
column names in the
subquery in GaussDB,
while MySQL supports this
behavior.

● In MySQL, when you use
the ON DUPLICATE KEY
UPDATE clause to update
multiple columns, the
result of the previous
UPDATE statement affects
the subsequent results. In
addition, you can update
the same column for
multiple times. In
GaussDB, the result of the
previous UPDATE
operation does not affect
the subsequent results. In
addition, the same column
cannot be updated for
multiple times.

● When the UPDATE
operation is performed on
inserted data that violates
the UNIQUE constraint,
the number of affected
rows returned by GaussDB
is different from that
returned by MySQL. When
a data record is updated,

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 301

Description Syntax Difference

GaussDB returns 1 and
MySQL returns 2. If such
update does not change
the value of an existing
row, GaussDB returns 1
and MySQL returns 0.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 302

Description Syntax Difference

If the value of a
GROUP BY HAVING
column is an alias of
the query projection
column and overlaps
with the table column
name, the syntax may
be ambiguous, and
the result may be
different from that of
MySQL.

SELECT ● If the alias of a query
expression is the same as
a table column name, in
GaussDB, the name in the
HAVING condition
indicates the column
name no matter whether
the GROUP BY clause is
followed by a number or a
name.

● In MySQL, if the GROUP
BY clause is followed by a
number, the name in the
HAVING condition
indicates the expression
alias in the projection
column. If the GROUP BY
clause is followed by a
name, the name in the
HAVING condition
indicates the column
name.

m_db=# CREATE TABLE t1(col_int int);
CREATE TABLE
m_db=# INSERT INTO t1 VALUES(1),
(2);
INSERT 0 2
m_db=# SELECT abs(col_int) + 2 AS
col_int FROM t1 GROUP BY col_int
HAVING col_int > 2;
 col_int

(0 rows)

m_db=# SET sql_mode = '';
SET
m_db=# SELECT abs(col_int) + 2 AS
col_int FROM t1 GROUP BY 1
HAVING col_int > 2;
 col_int

(0 rows)

mysql> CREATE TABLE t1(col_int int);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t1 VALUES(1),
(2);
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT abs(col_int) + 2 AS
col_int FROM t1 GROUP BY col_int
HAVING col_int > 2;
Empty set, 2 warnings (0.00 sec)

mysql> SELECT abs(col_int) + 2 AS
col_int FROM t1 GROUP BY 1
HAVING col_int > 2;

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 303

Description Syntax Difference

+---------+
| col_int |
+---------+
| 3 |
| 4 |
+---------+
2 rows in set (0.00 sec)

3.2.7.5 DCL

Table 3-29 DCL syntax compatibility

Description Syntax Difference

Set names with
COLLATE specified.

SET [SESSION |
LOCAL] NAMES
{'charset_name'
[COLLATE
'collation_name'] |
DEFAULT};

GaussDB does not allow
charset_name to be different
from the database character
set. For details, see "SQL
Reference > SQL Syntax >
SQL Statements > S > SET" in
M Compatibility Developer
Guide.

Switch the current
mode with USE.

USE schema_name If the USE statement is used
to specify a schema and the
user does not have USAGE
permissions on the schema,
MySQL reports an error while
GaussDB specifies the current
schema as null.
-- MySQL
mysql> USE test;
ERROR 1044 (42000): Access denied
for user 'u1'@'%' to database 'test'

-- GaussDB
m_db=> USE test;
SET
m_db=> SELECT database();
ERROR: function returned NULL
CONTEXT: referenced column:
database

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 304

3.2.7.6 Other Statements

Table 3-30 Compatibility of other syntaxes

Description Syntax Difference

Transaction-related
syntax

Default database
isolation level

The default isolation level of
an M-compatible database is
READ COMMITTED, and that
of MySQL is REPEATABLE
READ.
Only the READ COMMITTED
and REPEATABLE READ
isolation levels take effect in
M-compatible databases.

Transaction-related
syntax

Transaction nesting In M-compatible mode,
nested transactions are not
automatically committed, but
in MySQL, they are
automatically committed.

Transaction-related
syntax

Autocommit In M-compatible mode,
GaussDB is used for storage
and the GaussDB transaction
mechanism is inherited. If
DDL or DCL is executed in a
transaction, the transaction is
not automatically committed.
In MySQL, if DDL, DCL,
management-related, or
lock-related statements are
executed, the transaction is
automatically committed.

Transaction-related
syntax

Rollback is required
after an error is
reported.

If an error is reported for a
transaction in an M-
compatible database,
rollback needs to be
performed. There is no such
restriction in MySQL.

Transaction-related
syntax

Lock mechanism The M-compatible lock
mechanism can be used only
in transaction blocks. There is
no such restriction in MySQL.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 305

Description Syntax Difference

Lock mechanism Lock mechanism ● After the read lock is
obtained, write operations
cannot be performed on
the current session in
MySQL, but write
operations can be
performed on the current
session in an M-
compatible database.

● After MySQL locks a table,
an error is reported when
other tables are read. M-
compatible does not have
such restriction.

● In MySQL, if the lock of
the same table is obtained
in the same session, the
previous lock is
automatically released
and the transaction is
committed. M-compatible
databases do not have
this mechanism.

● M-compatible databases
allow LOCK TABLE to be
used only inside a
transaction block, and
have no UNLOCK TABLE
command. Locks are
always released at the end
of transactions.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 306

Description Syntax Difference

PBE PBE ● In an M-compatible
database, if a PREPARE
statement with the same
name is repeatedly
created, an error is
reported, indicating that
the statement already
exists. You need to delete
the existing statement
first. In MySQL, the old
statement will be
overwritten.

● M-compatible databases
and MySQL report errors
in different phases, such
as parsing and execution,
during SQL statement
execution. PREPARE
statements process
prepared statements till
the parsing phrase.
Therefore, in abnormal
scenarios in PBE, an M-
compatible database may
be different from that in
MySQL in terms of
whether the error is
reported in the PREPARE
or EXECUTE phase.

Single-line comment
syntax

Single-line comment
syntax

The single-line comment
syntax is consistent with
MySQL only when the
m_format_behavior_compat
_options parameter is set to
'forbid_none_space_comme
nt'.

3.2.7.7 Users and Permissions

Overview
In M-compatible mode, the behaviors and syntaxes related to user and permission
control inherit the GaussDB mechanism but are not synchronized with those in
MySQL.

User and permission behaviors are the same as those in GaussDB. For details, see
"Database Security Management > Managing Users and Their Permissions" in
Developer Guide.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 307

Some syntaxes for users and permissions are tailored in GaussDB. For details
about the syntaxes, see "SQL Reference > SQL Syntax > SQL Statements" in M
Compatibility Developer Guide. For details about the syntax differences between
an M-compatible database and GaussDB, see Table 3-31.

Table 3-31 Syntax differences between an M-compatible database and GaussDB

Syntax Overview Difference

CREATE ROLE Creates a role. In M-compatible mode,
options involving the
following keywords cannot
be specified: ENCRYPTED,
UNENCRYPTED, RESOURCE
POOL, PERM SPACE, TEMP
SPACE, and SPILL SPACE.
When a user is created, a
schema with the same name
as the user is automatically
created in an M-compatible
database, but it is not
created in MySQL.

CREATE USER Creates a user.

CREATE GROUP Creates a user group.
CREATE GROUP is the
alias of CREATE ROLE
and is not
recommended.

ALTER ROLE Modifies role attributes.

ALTER USER Modifies user attributes.

ALTER GROUP Modifies the attributes
of a user group.

-

DROP ROLE Deletes a role. -

DROP USER Deletes a user. -

DROP GROUP Deletes a user group. -

DROP OWNED Deletes the database
objects owned by a
database role.

-

REASSIGN OWNED Changes the owner of a
database object.

This syntax is not supported
in an M-compatible
database.

GRANT Grants permissions to
roles and users.

In an M-compatible
database, permissions on
objects such as functions,
stored procedures,
tablespaces, and database
links cannot be granted or
revoked.

REVOKE Revokes permissions
from one or more roles.

ALTER DEFAULT
PRIVILEGES

Sets the permissions
that will be granted to
objects created in the
future. (It does not
affect permissions
granted to existing
objects.)

This syntax is not supported
in an M-compatible
database.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 308

Differences
● Syntax format differences

For details about the M-compatible permission granting syntaxes, see "SQL
Reference > SQL Syntax > G > GRANT" in M Compatibility Developer Guide.
The permission granting syntax in MySQL is as follows:
-- Global, database-level, table-level, and stored procedure–level permission granting syntax
GRANT
 priv_type [(column_list)]
 [, priv_type [(column_list)]] ...
 ON [object_type] priv_level
 TO user [auth_option] [, user [auth_option]] ...
 [REQUIRE {NONE | tls_option [[AND] tls_option] ...}]
 [WITH {GRANT OPTION | resource_option} ...]

-- Syntax for granting permissions to a user proxy
GRANT PROXY ON user
 TO user [, user] ...
 [WITH GRANT OPTION]

object_type: {
 TABLE
 | FUNCTION
 | PROCEDURE
}

priv_level: {
 *
 | *.*
 | db_name.*
 | db_name.tbl_name
 | tbl_name
 | db_name.routine_name
}

user:
 'user_name'@'host_name'

auth_option: {
 IDENTIFIED BY 'auth_string'
 | IDENTIFIED WITH auth_plugin
 | IDENTIFIED WITH auth_plugin BY 'auth_string'
 | IDENTIFIED WITH auth_plugin AS 'auth_string'
 | IDENTIFIED BY PASSWORD 'auth_string'
}

tls_option: {
 SSL
 | X509
 | CIPHER 'cipher'
 | ISSUER 'issuer'
 | SUBJECT 'subject'
}

resource_option: {
 | MAX_QUERIES_PER_HOUR count
 | MAX_UPDATES_PER_HOUR count
 | MAX_CONNECTIONS_PER_HOUR count
 | MAX_USER_CONNECTIONS count
}

● Differences in types of permissions granted

In MySQL, the following types of permissions can be granted.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 309

Table 3-32 Types of permissions that can be granted in MySQL

Permission Type Definition and Permission Level

ALL [PRIVILEGES] Grants all permissions of a specified access
level, except GRANT OPTION and PROXY.

ALTER Enables ALTER TABLE. Level: global, database,
and table.

ALTER ROUTINE Allows you to modify or delete stored
procedures. Level: global, database, and
routine.

CREATE Enables database and table creation. Level:
global, database, and table.

CREATE ROUTINE Enables stored procedure creation. Level:
global and database.

CREATE TABLESPACE Allows you to create, modify, or delete
tablespaces or log file groups. Level: global.

CREATE TEMPORARY
TABLES

Enables CREATE TEMPORARY TABLE. Level:
global and database.

CREATE USER Enable CREATE USER, DROP USER, RENAME
USER, and REVOKE ALL PRIVILEGES. Level:
global.

CREATE VIEW Allows you to create or modify views. Level:
global, database, and table.

DELETE Enable DELETE. Level: global, database, and
table.

DROP Allows you to delete databases, tables, or
views. Level: global, database, and table.

EVENT Enable scheduled tasks. Level: global and
database.

EXECUTE Allows you to execute stored procedures. Level:
global, database, and stored procedure.

FILE Allows you to enable the server to read or
write files. Level: global.

GRANT OPTION Allows you to grant permissions to or remove
permissions from other accounts. Level: global,
database, table, stored procedure, and proxy.

INDEX Allows you to create or delete indexes. Level:
global, database, and table.

INSERT Enables INSERT. Level: global, database, table,
and column.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 310

https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_all
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_grant-option
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_proxy
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_alter
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_alter-routine
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_create
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_create-routine
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_create-tablespace
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_create-temporary-tables
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_create-temporary-tables
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_create-user
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/drop-user.html
https://dev.mysql.com/doc/refman/5.7/en/rename-user.html
https://dev.mysql.com/doc/refman/5.7/en/rename-user.html
https://dev.mysql.com/doc/refman/5.7/en/revoke.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_create-view
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_delete
https://dev.mysql.com/doc/refman/5.7/en/delete.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_drop
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_event
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_execute
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_file
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_grant-option
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_index
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_insert
https://dev.mysql.com/doc/refman/5.7/en/insert.html

Permission Type Definition and Permission Level

LOCK TABLES LOCK TABLES is enabled on tables with the
SELECT permission. Level: global and database.

PROCESS Allows you to view all running threads through
SHOW PROCESSLIST. Level: global.

PROXY Enables a user proxy. Level: from user to user.

REFERENCES Enables foreign key creation. Level: global,
database, table, and column.

RELOAD Enables FLUSH. Level: global.

REPLICATION CLIENT Allows you to query the location of the source
server or replica server. Level: global.

REPLICATION SLAVE Allows replicas to read binary logs from the
source. Level: global.

SELECT Enables SELECT. Level: global, database, table,
and column.

SHOW DATABASES Enables SHOW DATABASES to display all
databases. Level: global.

SHOW VIEW Enables SHOW CREATE VIEW. Level: global,
database, and table.

SHUTDOWN Enables mysqladmin shutdown. Level: global.

SUPER Enables other management operations, such as
the CHANGE MASTER TO, KILL, PURGE
BINARY LOGS, SET GLOBAL, and mysqladmin
debug commands. Level: global.

TRIGGER Enables TRIGGER. Level: global, database, and
table.

UPDATE Enables UPDATE. Level: global, database,
table, and column.

USAGE Equivalent to "no privilege".

M-compatible databases support the following permissions by level:

Table 3-33 Types of permissions that can be granted in M-compatible
databases

Object Permissions That Can Be Granted

Database CREATE, CONNECT, TEMPORARY, TEMP, ALTER,
DROP, and COMMENT

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 311

https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_lock-tables
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_proxy
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_references
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/5.7/en/flush.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_replication-client
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_replication-slave
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_select
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_show-databases
https://dev.mysql.com/doc/refman/5.7/en/show-databases.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_show-view
https://dev.mysql.com/doc/refman/5.7/en/show-create-view.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_shutdown
https://dev.mysql.com/doc/refman/5.7/en/mysqladmin.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_super
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/kill.html
https://dev.mysql.com/doc/refman/5.7/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/5.7/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/5.7/en/set-variable.html
https://dev.mysql.com/doc/refman/5.7/en/mysqladmin.html
https://dev.mysql.com/doc/refman/5.7/en/mysqladmin.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_trigger
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_update
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_usage

Object Permissions That Can Be Granted

Schema CREATE, USAGE, ALTER, DROP, and COMMENT

Table and view SELECT, INSERT, UPDATE, DELETE, TRUNCATE,
REFERENCES, TRIGGER, ALTER, DROP,
COMMENT, INDEX, and VACUUM

Column SELECT, INSERT, UPDATE, REFERENCES, and
COMMENT

Sequence SELECT, USAGE, UPDATE, ALTER, DROP, and
COMMENT

● In MySQL, '*.*' represents a global-level authorization object; in GaussDB,
'{DATABASE} db_name' represents a database-level authorization object. The
database level of GaussDB corresponds to the global level of MySQL.

● In MySQL, 'schema_name.*' represents a database/schema-level authorization
object; in GaussDB, '{SCHEMA} schema_name' represents a schema-level
authorization object. The schema level of GaussDB corresponds to the
database/schema level of MySQL.

● In MySQL, a username consists of two parts: username@hostname, but a
username is only itself in M-compatible databases.

● MySQL allows you to modify user authentication, secure connection, and
resource parameter attributes (including auth_option, tls_option, and
resource option) with the GRANT syntax. In M-compatible databases,
permission granting syntax does not support this function, and you need to
use CREATE USER and ALTER USER to set user attributes.

● MySQL supports permission granting with a user proxy. GRANT PROXY ON is
used to manage permissions of users in a unified manner. MySQL 5.7 does
not provide the role mechanism, but MySQL 8.0 and M-compatible databases
provide the role mechanism. If a role can manage and control the permissions
of users in a unified manner, it can replace GRANT PROXY ON.

● M-compatible databases have a concept called public. All users have public
permissions and they can query some system catalogs and system views.
Users can grant or revoke public permissions. In MySQL, newly created users
have only the global usage permission, which is almost low to none. They
have only the permission to connect to the database and query the
information_schema database.

● In M-compatible databases, the owner of an object has all permissions on the
object by default. For security purposes, the owner can discard some
permissions. However, ALTER, DROP, COMMENT, INDEX, VACUUM, and re-
grantable permissions on the object are implicitly inherent permissions of the
owner: MySQL does not have a concept called owner. Even if a user creates a
table, the user cannot perform operations such as IUD on the table without
being granted the corresponding permissions.

● In MySQL, All users have the USAGE permission, which indicates no
permission. When REVOKE or GRANT USAGE is executed, no modification is
performed. In M-compatible databases, the USAGE permission has the
following meanings:

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 312

– For schemas, USAGE allows access to objects contained in the schema.
Without this permission, it is still possible to see the object names.

– For sequences, USAGE allows use of the nextval function.
● In M-compatible databases, administrator roles can be set for users, including

system administrator (SYSADMIN), security administrator (CREATEROLE),
audit administrator (AUDITADMIN), monitor administrator (MONADMIN),
O&M administrator (OPRADMIN), and security policy administrator
(POLADMIN). By default, system administrators with the SYSADMIN attribute
have the highest permission in the system. After separation of duties is
enabled, a system administrator does not have the CREATEROLE or
AUDITADMIN attribute. That is, the system administrator can neither create
roles or users, nor view or maintain database audit logs. In MySQL,
administrator roles cannot be set for users, and there is no design for
separation of duties.

● In M-compatible databases, the ANY permission can be granted to a user,
indicating that the user can have the corresponding permission in non-system
mode, including CREATE ANY TABLE, SELECT ANY TABLE, and CREATE ANY
INDEX. In MySQL, ANY permission cannot be granted.

● MySQL provides SHOW GRANTS to query user permissions. In M-compatible
databases, you can run a gsql client meta-command '\l+', '\dn+', or '\dp' to
query permission information, or query related columns in system catalogs
such as pg_namespace, pg_class, and pg_attribute for permission information.

● When a database, table, or column is deleted from MySQL, the related
permission granting information is still retained in the system catalog. If an
object with the same name is created again, the user still has the original
permissions. In M-compatible databases, when a database, table, or column is
deleted, related permission granting information is deleted. If an object with
the same name is created again, permissions need to be granted again.

● When granting database-level permissions, MySQL supports fuzzy match of
database names using underscores (_) and percent signs (%). However, M-
compatible databases do not support fuzzy match of object names using
special characters such as underscores (_) or percent signs (%), which are
identified as common characters.

● In MySQL, if a user specified in the GRANT statement does not exist, a user
account is created by default (this feature has been removed from MySQL
8.0). In M-compatible databases, permissions cannot be granted to users who
are not created.

3.2.7.8 System Catalogs and System Views

Table 3-34 Differences between M-compatible databases and GaussDB in terms
of system catalogs or views

System
Catalog or
System View

Column Difference

information_s
chema.colum
ns

generation_e
xpression

The output of this column varies due to
different string concatenation logics of
expressions in M-compatible mode and MySQL.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 313

System
Catalog or
System View

Column Difference

information_s
chema.colum
ns

data_type The output result of this column in M-
compatible mode, having not been modified
due to the data type format_type involved, is
different from that in MySQL.

information_s
chema.colum
ns

column_type The output result of this column in M-
compatible mode, having not been modified
due to the data type format_type involved, is
different from that in MySQL.

information_s
chema.tables

engine In M-compatible mode:
● ENGINE is aligned with data of

information_schema.engines.
● In some system catalogs, ENGINE is left

empty.
● If the default table is an ASTORE table and

STORAGE_TYPE is not specified, ENGINE is
empty.

information_s
chema.tables

version This column is not supported in M-compatible
mode.

information_s
chema.tables

row_format This column is not supported in M-compatible
mode.

information_s
chema.tables

avg_row_len
gth

In M-compatible mode, the result of dividing
the size of the data files by the number of all
tuples (including live tuples and dead tuples) is
used. If there is no tuple in the table, the value
is null.

information_s
chema.tables

max_data_le
ngth

This column is not supported in M-compatible
mode.

information_s
chema.tables

data_free In M-compatible mode, it indicates the result of
(Number of dead tuples/Total number of
tuples) x Data file size. If there is no tuple in the
table, the value is null.

information_s
chema.tables

check_time This column is not supported in M-compatible
mode.

information_s
chema.tables

create_time The behavior of this column in M-compatible
mode is different from that in MySQL. When a
view is created in MySQL, this column is set to
null. In M-compatible mode, the actual table
creation time is displayed. The value is null if it
is a table or view provided by the database.

information_s
chema.tables

update_time The value is null if it is a table or view provided
by the M-compatible database.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 314

System
Catalog or
System View

Column Difference

information_s
chema.statisti
cs

collation The value can only be A or D but not NULL in
M-compatible mode.

information_s
chema.statisti
cs

packed This column is not supported in M-compatible
mode.

information_s
chema.statisti
cs

sub_part This column is not supported in M-compatible
mode.

information_s
chema.statisti
cs

comment This column is not supported in M-compatible
mode.

information_s
chema.partiti
ons

subpartition_
name

In M-compatible mode, if the partition is not a
level-2 partition, the value is null.

information_s
chema.partiti
ons

subpartition_
ordinal_positi
on

In M-compatible mode, if the partition is not a
level-2 partition, the value is null.

information_s
chema.partiti
ons

partition_met
hod

In M-compatible mode:
Partitioning policy. If a partition is not specified,
the value is null.
● 'r': range partition.
● 'i': interval partition.
● 'l': list partition.
● 'h': hash partition.

information_s
chema.partiti
ons

subpartition_
method

In M-compatible mode:
Subpartitioning policy. If a subpartition is not
specified, the value is null.
● 'r': range partition.
● 'i': interval partition.
● 'l': list partition.
● 'h': hash partition.

information_s
chema.partiti
ons

partition_des
cription

In M-compatible mode, there are partitions and
subpartitions.

information_s
chema.partiti
ons

partition_exp
ression

This column is not supported in M-compatible
mode.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 315

System
Catalog or
System View

Column Difference

information_s
chema.partiti
ons

subpartition_
expression

This column is not supported in M-compatible
mode.

information_s
chema.partiti
ons

data_length This column is not supported in M-compatible
mode.

information_s
chema.partiti
ons

max_data_le
ngth

This column is not supported in M-compatible
mode.

information_s
chema.partiti
ons

index_length This column is not supported in M-compatible
mode.

information_s
chema.partiti
ons

data_free This column is not supported in M-compatible
mode.

information_s
chema.partiti
ons

create_time This column is not supported in M-compatible
mode.

information_s
chema.partiti
ons

update_time This column is not supported in M-compatible
mode.

information_s
chema.partiti
ons

check_time This column is not supported in M-compatible
mode.

information_s
chema.partiti
ons

checksum This column is not supported in M-compatible
mode.

information_s
chema.partiti
ons

partition_co
mment

This column is not supported in M-compatible
mode.

information_s
chema.partiti
ons

nodegroup This column is not supported in M-compatible
mode.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 316

NO TE

● The precision range cannot be specified for the command output of the integer type in
a view. For example, the bigint(1) type in MySQL corresponds to the bigint type in M-
compatible mode, and the bigint(21) unsigned type in MySQL corresponds to the bigint
unsigned type in M-compatible mode.

● The int type in MySQL corresponds to the integer type in M-compatible mode.
● M-compatible mode does not support columns of the set and enum types that are

supported in MySQL. This version does not support or display Column_priv column in
the m_schema.columns_priv view, Table_priv,Column_priv column in the
m_schema.tables_priv view, Routine_type,Proc_priv column in the m_schema.procs_priv
view, the type,language,sql_data_access,is_deterministic,security_type,sql_mode
column in the m_schema.proc view, or the type column in the m_schema.func view.

● table_rows, avg_row_length, data_length, data_free, index_length, and cardinality in
information_schema.tables and cardinality in information_schema.statistics are
obtained based on statistics. Therefore, run ANALYZE to update statistics before viewing
them. (If data is updated in the database, you are advised to delay running ANALYZE.)

● The index columns contained in information_schema.statistics must be complete table
columns in the created indexes. If the index columns are expressions, they are not in this
view.

● table_row in information_schema.partitions is obtained based on statistics. Before
viewing the value, run ANALYZE to update the statistics. (If data is updated in the
database, you are advised to delay running ANALYZE.)

● The format of the grantee column supported in MySQL is 'user_name'@'host_name'. In
an M-compatible database, it is the name of the user or role to which the permission is
granted.

● For the host column supported in the M-compatible database, the hostname of the
current node is returned.

● In MySQL, you need the permission before viewing m_schema.tables_priv,
information_schema.user_privileges, information_schema.schema_privileges,
information_schema.table_privileges, information_schema.column_privileges,
m_schema.columns_priv, m_schema.func, and m_schema.procs_priv. In an M-compatible
database, you can view them with the default permission. For example, for table t1, you
need the corresponding permission in MySQL so that you can view the corresponding
permission information in the permission view. In an M-compatible database, you can
view the permission information related to table t1 in the view.

● A system view in m_schema is a system catalog in MySQL.
● The collations of VIEW_DEFINITION in information_schema.views and

ROUTINE_DEFINITION in information_schema.routines are not controlled.
● For the view columns of the character type listed in "Schemas" in M Compatibility

Developer Guide, the character set is utf8mb4, and the collation is utf8mb4_bin or
utf8mb4_general_ci, and the collation priority is the priority of columns of data types
that support collation described in "SQL Reference > Character Set and Collations >
Rules for Combining Character Sets and Collations" in M Compatibility Developer Guide.
These features are different from those in MySQL.

3.2.8 Drivers

3.2.8.1 ODBC

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 317

3.2.8.1.1 ODBC API Reference

Obtaining Parameter Description

SQLDescribeParam is a function in the ODBC API. It is used to obtain the
description of parameters related to prepared SQL statements (for example,
calling SQLPrepare). It can return metadata such as the type, size, and whether
NULL values are allowed for parameters, which is useful for dynamically building
SQL statements and binding parameters.

Prototype
SQLRETURN SQLDescribeParam(
 SQLHSTMT StatementHandle,
 SQLUSMALLINT ParameterNumber,
 SQLSMALLINT *DataTypePtr,
 SQLULEN *ParameterSizePtr,
 SQLSMALLINT *DecimalDigitsPtr,
 SQLSMALLINT *NullablePtr);

Table 3-35 Parameters of SQLDescribeParam

Parameter Description Difference

StatementHa
ndle

Statement
handle.

-

ParameterNu
mber

Parameter
marker
number,
starting with
1 and
increasing in
ascending
order.

-

DataTypePtr Points to the
data type of
the returned
parameter.

In MySQL, ODBC returns SQL_VARCHAR for
any type.
In GaussDB, ODBC returns the data type to an
application based on that returned by the
kernel.

ParameterSiz
ePtr

Points to the
size of the
returned
parameter.

If MySQL allows the ODBC driver to use a larger
data packet for data transmission, 24M is
returned. Otherwise, 255 is returned.
In GaussDB, ODBC returns the parameter size
based on the actual type.

DecimalDigits
Ptr

Points to the
number of
decimal
digits of the
returned
parameter.

-

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 318

Parameter Description Difference

NullablePtr Points to
whether
NULL values
are allowed
for the
returned
parameter.

In MySQL, ODBC directly returns
SQL_NULLABLE_UNKNOWN.
In GaussDB, ODBC directly returns
SQL_NULLABLE.

3.2.8.2 JDBC

JDBC can convert the data types supported by the database to the standard data
types of JDBC. For details about the supported data types, see the set and get APIs
in "Application Development Guide > Development Based on JDBC > JDBC API
Reference" in Developer Guide.

NO TE

If the time() type used in JDBC includes a precision, for example, time(6), the precision is
precisely retained, which is the same as that in MySQL 8.0.

3.3 MySQL-compatible Mode

3.3.1 Data Types

3.3.1.1 Numeric Data Types

Integer types

Unless otherwise specified, the precision, scale, and number of digits cannot be set
to the floating-point values in MySQL-compatible mode by default. You are
advised to use valid integer values.

Differences in terms of the integer types:

● Input format:
– MySQL

For characters such as "asbd", "12dd", and "12 12", the system truncates
them or returns 0 and reports a WARNING. Data fails to be inserted into
a table in strict mode.

– GaussDB

▪ For integer types (TINYINT, SMALLINT, MEDIUMINT, INT, INTEGER,
and BIGINT), if the invalid part of a character string is truncated, for
example, "12@3", no message is displayed. Data is successfully
inserted into a table.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 319

▪ If the whole integer is truncated (for example, "@123") or the
character string is empty, 0 is returned and data is successfully
inserted into a table.

● Operators:

– +, -, and *

GaussDB: When INT, INTEGER, SMALLINT, or BIGINT is used for
calculation, a value of the original type is returned and is not changed to
a larger type. If the return value exceeds the range, an error is reported.

MySQL: The value can be changed to BIGINT for calculation.

– |, &, ^, and ~

GaussDB: The value is calculated in the bits occupied by the type. In
GaussDB, ^ indicates the exponentiation operation. If the XOR operator is
required, replace it with #.

MYSQL: The value is changed to a larger type for calculation.

● Type conversion of negative numbers:

GaussDB: The result is 0 in loose mode and an error is reported in strict mode.

MySQL: The most significant bit is replaced with a numeric bit based on the
corresponding binary value, for example, (-1)::uint4 = 4294967295.

● Other differences:

The precision of INT[(M)] controls formatted output in MySQL. GaussDB
supports only the syntax but does not support the function.

● Aggregate function:

– variance: indicates the sample variance in GaussDB and the population
variance in MySQL.

– stddev: indicates the sample standard deviation in GaussDB and the
overall standard deviation in MySQL.

● Display width:

– If ZEROFILL is not specified when the width information is specified for
an integer column, the width information is not displayed in the table
structure description.

– When the INSERT statement is used to insert a column of the character
type, GaussDB pads 0s before inserting the column.

– The JOIN USING statement involves type derivation. In MySQL, the first
table column is used by default. In GaussDB, if the result is of the signed
type, the width information is invalid. Otherwise, the width of the first
table column is used.

– For GREATEST/LEAST, IFNULL/IF, and CASE WHEN/DECODE, MySQL does
not pad 0s. In GaussDB, 0s are padded when the type and width
information is consistent.

– MySQL supports this function when it is used as the input or output
parameter or return value of a function or stored procedure. GaussDB
neither reports syntax errors nor supports this function.

For details about the differences in GaussDB and MySQL in terms of the integer
types, see Table 3-36.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 320

Table 3-36 Integer types

MySQL GaussDB Difference

BOOL Supported,
with
differences

MySQL: The BOOL/BOOLEAN type is actually
mapped to the TINYINT type.
GaussDB: BOOL is supported.
● Valid literal values for the "true" state

include: TRUE, 't', 'true', 'y', 'yes', '1', 'TRUE',
true, 'on', and all non-zero values.

● Valid literal values for the "false" state
include: FALSE, 'f', 'false', 'n', 'no', '0', 0,
'FALSE', false, and 'off'.

TRUE and FALSE are standard expressions,
compatible with SQL statements.

BOOLEAN Supported,
with
differences

TINYINT[(M)]
[UNSIGNED]

Supported,
with
differences

For details, see Differences in terms of the
integer types.

SMALLINT[(
M)]
[UNSIGNED]

Supported,
with
differences

For details, see Differences in terms of the
integer types.

MEDIUMINT[
(M)]
[UNSIGNED]

Supported,
with
differences

MySQL requires 3 bytes to store MEDIUMINT
data.
● The signed range is –8388608 to +8388607.
● The unsigned range is 0 to +16777215.
GaussDB maps data to the INT type and
requires 4 bytes for storage.
● The signed range is –2147483648 to

+2147483647.
● The unsigned range is 0 to +4294967295.
For details about other differences, see
Differences in terms of the integer types.

INT[(M)]
[UNSIGNED]

Supported,
with
differences

For details, see Differences in terms of the
integer types.

INTEGER[(M)
]
[UNSIGNED]

Supported,
with
differences

For details, see Differences in terms of the
integer types.

BIGINT[(M)]
[UNSIGNED]

Supported,
with
differences

For details, see Differences in terms of the
integer types.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 321

Arbitrary precision types

Table 3-37 Arbitrary precision types

MySQL GaussDB Difference

DECIMAL[(M[
,D])]

Supported,
with
differences

● Operator: In GaussDB, "^" indicates the
exponentiation operation. If the XOR
operator is required, replace it with "#". In
MySQL, "^" indicates the XOR operation.

● Value range: The precision M and scale D
support only integers and do not support
floating-point values.

● Input format: No error is reported when all
input parameters of a character string (for
example, "@123") are truncated. An error is
reported only when it is partially truncated,
for example, "12@3".

NUMERIC[(
M[,D])]

Supported,
with
differences

DEC[(M[,D])] Supported,
with
differences

FIXED[(M[,D]
)]

Not
supported

-

Floating-point types

Table 3-38 Floating-point types

MySQL GaussDB Difference

FLOAT[(M,D)
]

Supported,
with
differences

● Partitioned table: The FLOAT data type does
not support partitioned tables with the key
partitioning policy.

● Operator: In GaussDB, "^" indicates the
exponentiation operation. If the XOR
operator is required, replace it with "#". In
MySQL, "^" indicates the XOR operation.

● Value range: The precision M and scale D
support only integers and do not support
floating-point values.

● Output format: An ERROR message is
reported for invalid input parameters. No
WARNING is reported in loose mode (that is,
sql_mode is set to '').

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 322

MySQL GaussDB Difference

FLOAT(p) Supported,
with
differences

● Partitioned table: The FLOAT data type does
not support partitioned tables with the key
partitioning policy.

● Operator: The ^ operator is used for the
numeric types, which is different from that in
MySQL. In GaussDB, the ^ operator is used
for exponential calculation.

● Value range: When the precision p is defined,
only valid integer data types are supported.

● Output format: An ERROR message is
reported for invalid input parameters. No
WARNING is reported in loose mode (that is,
sql_mode is set to '').

DOUBLE[(M,
D)]

Supported,
with
differences

● Partitioned table: The DOUBLE data type
does not support partitioned tables with the
key partitioning policy.

● Operator: In GaussDB, "^" indicates the
exponentiation operation. If the XOR
operator is required, replace it with "#". In
MySQL, "^" indicates the XOR operation.

● Value range: The precision M and scale D
support only integers and do not support
floating-point values.

● Output format: An ERROR message is
reported for invalid input parameters. No
WARNING is reported in loose mode (that is,
sql_mode is set to '').

DOUBLE
PRECISION[(
M,D)]

Supported,
with
differences

● Operator: In GaussDB, "^" indicates the
exponentiation operation. If the XOR
operator is required, replace it with "#". In
MySQL, "^" indicates the XOR operation.

● Value range: The precision M and scale D
support only integers and do not support
floating-point values.

● Output format: An ERROR message is
reported for invalid input parameters. No
WARNING is reported in loose mode (that is,
sql_mode is set to '').

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 323

MySQL GaussDB Difference

REAL[(M,D)] Supported,
with
differences

● Partitioned table: The REAL data type does
not support partitioned tables with the key
partitioning policy.

● Operator: In GaussDB, "^" indicates the
exponentiation operation. If the XOR
operator is required, replace it with "#". In
MySQL, "^" indicates the XOR operation.

● Value range: The precision M and scale D
support only integers and do not support
floating-point values.

● Output format: An ERROR message is
reported for invalid input parameters. No
WARNING is reported in loose mode (that is,
sql_mode is set to '').

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 324

Sequential Integers

Table 3-39 Sequential integers

MySQL GaussDB Difference

SERIAL Supported,
with
differences

For details about SERIAL in GaussDB, see "SQL
Reference > Data Types > Value Types" in
Developer Guide.
The differences in specifications are as follows:
CREATE TABLE test(f1 serial, f2 CHAR(20));

● Difference in type definition: MySQL maps
serial to BIGINT(20) UNSIGNED NOT NULL
AUTO_INCREMENT UNIQUE, and GaussDB
maps serial to INTEGER NOT NULL DEFAULT
nextval('test_f1_seq'::regclass). For example:
-- Definition of MySQL SERIAL:
mysql> SHOW CREATE TABLE test\G
*************************** 1. row ***************************
 Table: test
Create Table: CREATE TABLE `test` (
 `f1` bigint(20) unsigned NOT NULL AUTO_INCREMENT,
 `f2` char(20) DEFAULT NULL,
 UNIQUE KEY `f1` (`f1`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
1 row in set (0.00 sec)

-- Definition of GaussDB SERIAL
gaussdb=# \d+ test
 Table "public.test"
 Column | Type |
Modifiers | Storage | Stats target |
Description
--------+---------------
+---+----------
+--------------+-------------
 f1 | integer | not null default
nextval('test_f1_seq'::regclass) | plain | |
 f2 | character(20) | |
extended | |
Has OIDs: no
Options: orientation=row, compression=no,
storage_type=USTORE

● Differences in using INSERT to insert default
values of the SERIAL type. For example:
-- Inserting default values of the SERIAL type in MySQL
mysql> INSERT INTO test VALUES(DEFAULT, 'aaaa');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO test VALUES(10, 'aaaa');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO test VALUES(DEFAULT, 'aaaa');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM test;
+----+------+
| f1 | f2 |
+----+------+
1	aaaa
10	aaaa
11	aaaa

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 325

MySQL GaussDB Difference

+----+------+
3 rows in set (0.00 sec)

-- Inserting default values of the SERIAL type in GaussDB
gaussdb=# INSERT INTO test VALUES(DEFAULT, 'aaaa');
INSERT 0 1
gaussdb=# INSERT INTO test VALUES(10, 'aaaa');
INSERT 0 1
gaussdb=# INSERT INTO test VALUES(DEFAULT, 'aaaa');
INSERT 0 1
gaussdb=# SELECT * FROM test;
 f1 | f2
----+----------------------
 1 | aaaa
 2 | aaaa
 10 | aaaa
(3 rows)

● Differences in performing REPLACE on
referencing columns of the SERIAL type. For
details about GaussDB referencing columns,
see "SQL Reference > SQL Syntax > R >
REPLACE" in Developer Guide. For example:
-- Inserting values of the referencing columns of the
SERIAL type in MySQL
mysql> REPLACE INTO test VALUES(f1, 'aaaa');
Query OK, 1 row affected (0.00 sec)

mysql> REPLACE INTO test VALUES(f1, 'bbbb');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM test;
+----+------+
| f1 | f2 |
+----+------+
| 1 | aaaa |
| 2 | bbbb |
+----+------+
2 rows in set (0.00 sec)

-- Inserting values of the referencing columns of the
SERIAL type in GaussDB
gaussdb=# REPLACE INTO test VALUES(f1, 'aaaa');
REPLACE 0 1
gaussdb=# REPLACE INTO test VALUES(f1, 'bbbb');
REPLACE 0 1
gaussdb=# SELECT * FROM test;
 f1 | f2
----+----------------------
 0 | aaaa
 0 | bbbb
(2 rows)

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 326

3.3.1.2 Date and Time Data Types

Table 3-40 Date and Time Data Types

MySQL GaussDB Difference

DATE Supported,
with
differences

GaussDB supports the date data type.
Compared with MySQL, GaussDB has the
following differences in specifications:
● Input format

– GaussDB supports only the character type
and does not support the numeric type.
For example, the format can be
'2020-01-01' or '20200101', but cannot be
20200101. MySQL supports conversion
from numeric input to the date type.

– Separator: GaussDB does not support the
plus sign (+) or colon (:) as the separator
between the year, month, and day. Other
symbols are supported. MySQL supports
all symbols as separators. Sometimes, the
mixed use of separators is not supported,
which is different from MySQL, such as
'2020-01>01' and '2020/01+01'. You are
advised to use hyphens (-) or slashes (/)
as separators.

– No separator: You are advised to use the
complete format, for example,
'YYYYMMDD' or 'YYMMDD'. The parsing
rules of incomplete formats (including the
ultra-long format) are different from
those of MySQL. An error may be
reported or the parsing result may be
inconsistent with that of MySQL.
Therefore, the incomplete format is not
recommended.

● Output format
If the sql_mode parameter of GaussDB does
not contain 'strict_trans_tables' (the strict
mode is used unless otherwise defined as the
loose mode), the year, month, and day can
be set to 0. However, the value is converted
to a valid value in the sequence of year,
month, and day. For example, date
'0000-00-10' is converted to 0002-12-10 BC.
If the input is invalid or exceeds the range, a
warning message is reported and the value
0000-00-00 is returned. MySQL outputs the
date value as it is, even if the year, month,
and day are set to 0.

● Value range

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 327

MySQL GaussDB Difference

The value range of GaussDB is 4713-01-01
BC to 5874897-12-31 AD. BC dates are
supported. In loose mode, if the value
exceeds the range, 0000-00-00 is returned.
In strict mode, an error is reported. In
MySQL, the value range is 0000-00-00 to
9999-12-31. In loose mode, if the value
exceeds the range, the performance varies in
different scenarios. An error may be reported
(for example, in the SELECT statement) or
the value 0000-00-00 may be returned (for
example, in the INSERT statement). As a
result, when the date type is used as the
input parameter of the function, the results
returned by the function are different.

● Operator
– GaussDB supports only the comparison

operators =, !=, <, <=, >, and >= between
date types and returns true or false. For
the addition operation between the date
and interval types, the return result is of
the date type. For the subtraction
operation between the date and interval
types, the return result is of the date type.
For the subtraction operation between
date types, the return result is of the
interval type.

– When the MySQL date type and other
numeric types are calculated, the date
type is converted to the numeric type, and
then the calculation is performed based
on the numeric type. The result is also of
the numeric type. It is different from
GaussDB. For example:

-- MySQL: date+numeric. Convert the date type to
20200101 and add it to 1. The result is 20200102.
mysql> SELECT date'2020-01-01' + 1;
+----------------------+
| date'2020-01-01' + 1 |
+----------------------+
| 20200102 |
+----------------------+
1 row in set (0.00 sec)

-- GaussDB: date+numeric. Convert the numeric type to
the interval type (1 day), and then add them up to obtain
a new date.
gaussdb=# SELECT date'2020-01-01' + 1;
 ?column?

 2020-01-02
(1 row)

● Type conversion

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 328

MySQL GaussDB Difference

Compared with MySQL, GaussDB supports
conversion between the date type and
char(n), nchar(n), datetime, or timestamp
type, but does not support conversion
between the date type and binary, decimal,
JSON, integer, unsigned integer, or time type.
The principles for determining common
types in scenarios such as collections and
complex expressions are different from those
in MySQL. For details, see Data Type
Conversion.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 329

MySQL GaussDB Difference

DATETIME[(fs
p)]

Supported,
with
differences.

GaussDB supports the datetime data type.
Compared with MySQL, GaussDB has the
following differences in specifications:
● Input format

– GaussDB supports only the character type
and does not support the numeric type.
For example, '2020-01-01
10:20:30.123456' or
'20200101102030.123456' is supported,
but 20200101102030.123456 is not
supported. MySQL supports conversion
from numeric input to the datetime type.

– Separator: GaussDB does not support the
plus sign (+) or colon (:) as the separator
between the year, month, and day. Other
symbols are supported. Only colons (:)
can be used as separators between hours,
minutes, and seconds. Sometimes, the
mixed use of separators is not supported,
which is different from MySQL. Therefore,
it is not recommended. MySQL supports
all symbols as separators.

– No separator: In GaussDB, the complete
format 'YYYYMMDDhhmiss.ffffff' is
recommended. The parsing rules of
incomplete formats (including the ultra-
long format) may be different from those
of MySQL. An error may be reported or
the parsing result may be inconsistent
with that of MySQL. Therefore, the
incomplete format is not recommended.

● Output format:
– The format is 'YYYY-MM-DD

hh:mi:ss.ffffff', which is the same as that
of MySQL and is not affected by the
DateStyle parameter. However, for the
precision part, if the last several digits are
0, they are not displayed in GaussDB but
displayed in MySQL.

– If the sql_mode parameter of GaussDB
does not contain 'strict_trans_tables'
(the strict mode is used unless otherwise
defined as the loose mode), the year,
month, and day can be set to 0. However,
the value is converted to a valid value in
the sequence of year, month, and day. For
example, datetime '0000-00-10 00:00:00'

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 330

MySQL GaussDB Difference

is converted to 0002-12-10 00:00:00 BC. If
the input is invalid or exceeds the range, a
warning message is reported and the
value 0000-00-00 00:00:00 is returned.
MySQL outputs the datetime value as it
is, even if the year, month, and day are set
to 0.

● Value range
4713-11-24 00:00:00.000000 BC to
294277-01-09 04:00:54.775806 AD. If the
value is 294277-01-09 04:00:54.775807 AD,
infinity is returned. If the value exceeds the
range, GaussDB reports an error in strict
mode. Whether MySQL reports an error
depends on the application scenario.
Generally, no error is reported in the query
scenario. However, an error is reported when
the DML or SQL statement is executed to
change the value of a table attribute. In
loose mode, GaussDB returns 0000-00-00
00:00:00. MySQL may report an error, return
0000-00-00 00:00:00, or return null based
on the application scenario. As a result, the
execution result of the function that uses the
datetime type as the input parameter is
different from that of MySQL.

● Precision
The value ranges from 0 to 6. For a table
column, the default value is 0, which is the
same as that in MySQL. In the
datetime[(p)]'str' expression, GaussDB parses
(p) as the precision. The default value is 6,
indicating that 'str' is formatted to the
datetime type based on the precision
specified by p. MySQL does not support the
datetime[(p)]'str' expression.

● Operator
– GaussDB supports only the comparison

operators =, !=, <, <=, >, and >= between
datetime types and returns true or false.
For the addition operation between the
datetime and interval types, the return
result is of the datetime type. For the
subtraction operation between the
datetime and interval types, the return
result is of the datetime type. For the
subtraction operation between datetime
types, the return result is of the interval
type.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 331

MySQL GaussDB Difference

– When the MySQL datetime type and
other numeric types are calculated, the
datetime type is converted to the numeric
type, and then the calculation is
performed based on the numeric type.
The result is also of the numeric type. It is
different from GaussDB. For example:

-- MySQL: datetime+numeric. Convert the datetime type
to 20201010123456 and add it to 1. The result is
20201010123457.
mysql> SELECT cast('2020-10-10 12:34:56.123456' AS
datetime) + 1;
+--+
| cast('2020-10-10 12:34:56.123456' as datetime) + 1 |
+--+
| 20201010123457 |
+--+
1 row in set (0.00 sec)

-- GaussDB: datetime+numeric. Convert the numeric type
to the interval type (1 day), and then add them up to
obtain the new datetime.
gaussdb=# SELECT cast('2020-10-10 12:34:56.123456' AS
datetime) + 1;
 ?column?

 2020-10-11 12:34:56
(1 row)
If the calculation result of the datetime type
and numeric type is used as the input
parameter of a function, the result of the
function may be different from that of
MySQL.

● Type conversion
Compared with MySQL, GaussDB supports
only the conversion between the datetime
type and the char(n), varchar(n), or
timestamp type, and the conversion from
datetime to date or time (only value
assignment and explicit conversion).
Conversion between binary, decimal, json,
integer, and unsigned integer types is not
supported. The principles for determining
common types in scenarios such as
collections and complex expressions are
different from those in MySQL. For details,
see Data Type Conversion.

● Time zone
In GaussDB, the datetime value can carry the
time zone information (time zone offset or
time zone name), for example, '2020-01-01
12:34:56.123456 +01:00' or '2020-01-01
2:34:56.123456 CST'. GaussDB converts the
time to the time of the current server time

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 332

MySQL GaussDB Difference

zone. MySQL 5.7 does not support this
function. MySQL 8.0 and later versions
support this function.

● The table columns of the datetime data type
in GaussDB are actually converted to the
timestamp(p) without time zone. When you
query the table information or use a tool to
export the table structure, the data type of
columns is timestamp(p) without time zone
instead of datetime. For MySQL, datetime(p)
is displayed.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 333

MySQL GaussDB Difference

TIMESTAMP[(
fsp)]

Supported,
with
differences

GaussDB supports the timestamp data type and
differs from MySQL in terms of the following
specifications:
● Input format:

– It supports only the character type and
does not support the numeric type. For
example, '2020-01-01 10:20:30.123456' or
'20200101102030.123456' is supported,
but 20200101102030.123456 is not
supported. MySQL supports conversion
from numeric input to the timestamp
type.

– Separator: It does not support the plus
sign (+) or colon (:) as the separator
between the year, month, and day. Other
symbols are supported. Only colons (:)
can be used as separators between hours,
minutes, and seconds. Sometimes, the
mixed use of separators is not supported,
which is different from MySQL. Therefore,
it is not recommended. MySQL supports
all symbols as separators.

– No separator: The complete format
'YYYYMMDDhhmiss.ffffff' is
recommended. The parsing rules of
incomplete formats (including the ultra-
long format) may be different from those
of MySQL. An error may be reported or
the parsing result may be inconsistent
with that of MySQL. Therefore, the
incomplete format is not recommended.

● Output format:
– The format is 'YYYY-MM-DD

hh:mi:ss.ffffff', which is the same as that
of MySQL and is not affected by the
DateStyle parameter. However, for the
precision part, if the last several digits are
0, they are not displayed in GaussDB but
displayed in MySQL.

– If the sql_mode parameter of GaussDB
does not contain 'strict_trans_tables'
(the strict mode is used unless otherwise
defined as the loose mode), the year,
month, and day can be set to 0. However,
the value is converted to a valid value in
the sequence of year, month, and day. For
example, timestamp '0000-00-10

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 334

MySQL GaussDB Difference

00:00:00' is converted to 0002-12-10
00:00:00 BC. If the input is invalid or
exceeds the range, a warning message is
reported and the value 0000-00-00
00:00:00 is returned. MySQL outputs the
timestamp value as it is, even if the year,
month, and day are set to 0.

● Value range:
4713-11-24 00:00:00.000000 BC to
294277-01-09 04:00:54.775806 AD. If the
value is 294277-01-09 04:00:54.775807 AD,
infinity is returned. If the value exceeds the
range, GaussDB reports an error in strict
mode. Whether MySQL reports an error
depends on the application scenario.
Generally, no error is reported in the query
scenario. However, an error is reported when
the DML or SQL statement is executed to
change the value of a table attribute. In
loose mode, GaussDB returns 0000-00-00
00:00:00. MySQL may report an error, return
0000-00-00 00:00:00, or return null based
on the application scenario. As a result, the
execution result of the function that uses the
timestamp type as the input parameter is
different from that of MySQL.

● Precision:
The value ranges from 0 to 6. For a table
column, the default value is 0, which is the
same as that in MySQL. In the
timestamp[(p)] 'str' expression:
– GaussDB parses (p) as the precision. The

default value is 6, indicating that 'str' is
formatted to the timestamp type based
on the precision specified by p.

– The meaning of timestamp 'str' in MySQL
is the same as that in GaussDB. The
default precision is 6. However,
timestamp(p) 'str' is parsed as a function
call. p is used as the input parameter of
the timestamp function. The result returns
a value of the timestamp type, and 'str' is
used as the alias of the projection column.

● Operators:
– GaussDB supports only the comparison

operators =, !=, <, <=, >, and >= between
timestamp types and returns true or
false. For the addition operation between

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 335

MySQL GaussDB Difference

the timestamp and interval types, the
return result is of the timestamp type. For
the subtraction operation between the
timestamp and interval types, the return
result is of the timestamp type. For the
subtraction operation between timestamp
types, the return result is of the interval
type.

– When the MySQL timestamp type and
other numeric types are calculated, the
timestamp type is converted to the
numeric type, and then the calculation is
performed based on the numeric type.
The result is also of the numeric type. It is
different from GaussDB. For example:

-- MySQL: timestamp+numeric. Convert the timestamp
type to 20201010123456.123456 and add it to 1. The
result is 20201010123457.123456.
mysql> SELECT timestamp '2020-10-10 12:34:56.123456' +
1;
+--+
| timestamp '2020-10-10 12:34:56.123456' + 1 |
+--+
| 20201010123457.123456 |
+--+
1 row in set (0.00 sec)

-- GaussDB: timestamp+numeric. Convert the numeric
type to the interval type (1 day), and then add them up to
obtain a new timestamp.
gaussdb=# SELECT timestamp '2020-10-10
12:34:56.123456' + 1;
 ?column?

 2020-10-11 12:34:56.123456
(1 row)
If the calculation result of the timestamp
type and numeric type is used as the input
parameter of a function, the result of the
function may be different from that of
MySQL.

● Type conversion:
Compared with MySQL, GaussDB supports
only the conversion between the timestamp
type and the char(n), varchar(n), or datetime
type, and the conversion from timestamp to
date or time (only value assignment and
explicit conversion). Conversion between
binary, decimal, json, integer, and unsigned
integer types is not supported. The principles
for determining common types in scenarios
such as collections and complex expressions
are different from those in MySQL. For
details, see Data Type Conversion.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 336

MySQL GaussDB Difference

● Time zone
In GaussDB, the timestamp value can carry
the time zone information (time zone offset
or time zone name), for example,
'2020-01-01 12:34:56.123456 +01:00' or
'2020-01-01 2:34:56.123456 CST'. GaussDB
converts the time to the time of the current
server time zone. If the time zone of the
server is changed, the timestamp value is
converted to the timestamp of the new time
zone. MySQL 5.7 does not support this
function. MySQL 8.0 and later versions
support this function.

● The table columns of the timestamp data
type in GaussDB are actually converted to
the timestamp(p) with time zone. When you
query the table information or use a tool to
export the table structure, the data type of
columns is timestamp(p) with time zone
instead of timestamp. For MySQL,
timestamp(p) is displayed.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 337

MySQL GaussDB Difference

TIME[(fsp)] Supported,
with
differences

GaussDB supports the time data type and
differs from MySQL in terms of the following
specifications:
● Input format:

– It supports only the character type and
does not support the numeric type. For
example, '1 10:20:30' or '102030' is
supported, but 102030 is not supported.
MySQL supports conversion from numeric
input to the time type.

– Separator: GaussDB supports only colons
(:) as separators between hours, minutes,
and seconds. MySQL supports all symbols
as separators.

– No separator: The complete format
'hhmiss.ffffff' is recommended. The
parsing rules of incomplete formats
(including the ultra-long format) may be
different from those of MySQL. An error
may be reported or the parsing result may
be inconsistent with that of MySQL.
Therefore, the incomplete format is not
recommended.

– When a negative value is entered for
minute, second, or precision, GaussDB
may ignore the first part of the negative
value, which is parsed as 0. For example,
'00:00:-10' is parsed as '00:00:00'. An error
may also be reported. For example, if
'00:00:-10000' is parsed, an error will be
reported. The result depends on the range
of the input value. However, MySQL
reports an error in both cases.

● Output format:
The format is hh:mi:ss.ffffff, which is the
same as that of MySQL. However, for the
precision part, if the last several digits are 0,
they are not displayed in GaussDB but
displayed in MySQL.

● Value range:
–838:59:59.000000 to 838:59:59.000000,
which is the same as that of MySQL. For
values that exceed the range, when GaussDB
performs DML operations such as SELECT,
INSERT, and UPDATE in loose mode, it
returns the nearest boundary values such as
-838:59:59 or 838:59:59. In MySQL, an error
is reported during query, or the nearest

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 338

MySQL GaussDB Difference

boundary value is returned after a DML
operation. As a result, when the time type is
used as the input parameter of the function,
the results returned by the function are
different.

● Precision:
The value ranges from 0 to 6. For a table
column, the default value is 0, which is the
same as that in MySQL. In the time(p) 'str'
expression, GaussDB parses (p) as the
precision. The default value is 6, indicating
that 'str' is formatted to the time type based
on the precision specified by p. MySQL
parses it as a time function, p is an input
parameter, and 'str' is the alias of the
projection column.

● Operators:
– GaussDB supports only the comparison

operators =, !=, <, <=, >, and >= between
time types and returns true or false. For
the addition operation between the time
and interval types, the return result is of
the time type. For the subtraction
operation between the time and interval
types, the return result is of the time type.
For the subtraction operation between
time types, the return result is of the
interval type.

– When the MySQL time type and other
numeric types are calculated, the time
type is converted to the numeric type, and
then the calculation is performed based
on the numeric type. The result is also of
the numeric type. It is different from
GaussDB. For example:

-- MySQL: time+numeric. Convert the time type to 123456
and add it to 1. The result is 123457.
mysql> SELECT time '12:34:56' + 1;
+---------------------+
| time '12:34:56' + 1 |
+---------------------+
| 123457 |
+---------------------+
1 row in set (0.00 sec)

-- GaussDB: time+numeric. Convert the numeric type to
the interval type (1 day), and then add them up to obtain
the new time. Because 24 hours are added, the obtained
time is still 12:34:56.
gaussdb=# SELECT time '12:34:56' + 1;
 ?column?

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 339

MySQL GaussDB Difference

 12:34:56
(1 row)
If the calculation result of the time type and
numeric type is used as the input parameter
of a function, the result of the function may
be different from that of MySQL.

● Type conversion:
Compared with MySQL, GaussDB supports
only the conversion between the time type
and the char(n) or nchar(n) type, and the
conversion from datetime or timestamp to
the time type. The conversion between the
binary, decimal, date, json, integer, and
unsigned integer types is not supported. The
principles for determining common types in
scenarios such as collections and complex
expressions are different from those in
MySQL. For details, see Data Type
Conversion.

YEAR[(4)] Supported,
with
differences

GaussDB supports the year data type and
differs from MySQL in terms of the following
specifications:
● Operators:

– GaussDB supports only the comparison
operators =, !=, <, <=, >, and >= between
year types and returns true or false.

– GaussDB supports only the arithmetic
operators + and - between the year and
int4 types and returns integer values.
MySQL returns unsigned integer values.

● Type conversion:
Compared with MySQL, GaussDB supports
only the conversion between the year type
and int4 type, and supports only the
conversion from the int4, varchar, numeric,
date, time, timestamp, or timestamptz type
to the year type. The principles for
determining common types in scenarios such
as collections and complex expressions are
different from those in MySQL. For details,
see Data Type Conversion.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 340

MySQL GaussDB Difference

INTERVAL Supported,
with
differences

GaussDB supports the INTERVAL data type, but
INTERVAL is an expression in MySQL. The
differences are as follows:
● The date input of the character string type

cannot be used as an operation, for example,
SELECT '2023-01-01' + interval 1 day.

● In the INTERVAL expr unit syntax, expr
cannot be a negative integer or floating-
point number, for example, SELECT
date'2023-01-01' + interval -1 day.

● In the INTERVAL expr unit syntax, expr
cannot be the input of an operation
expression, for example, SELECT
date'2023-01-01' + interval 4/2 day.

● When the INTERVAL expression is used for
calculation, the return value is of the
datetime type. For MySQL, the return value
is of the datetime or date type. The
calculation logic is the same as that of
GaussDB but different from that of MySQL.

● In the INTERVAL expr unit syntax, the value
range of expr varies with the unit. The
maximum value range is [–2147483648,
2147483647]. If the value exceeds the range,
an error is reported in strict mode, and a
warning is reported in loose mode and 0 is
returned.

● In the INTERVAL expr unit syntax, if the
number of columns specified by expr is
greater than the expected number of
columns in unit, an error is reported in strict
mode, and a warning is reported in loose
mode and 0 is returned. For example, if the
value of unit is DAY_HOUR, the expected
number of columns is 2. If the value of expr
is '1-2-3', the expected number of columns is
3.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 341

3.3.1.3 String Data Types

Table 3-41 String data types

MySQL GaussDB Difference

CHAR[(M)] Supported,
with
differences.

● Input format
– The length of parameters and return

values of GaussDB user-defined functions
cannot be verified. The length of stored
procedure parameters cannot be verified.
In addition, correct spaces cannot be
supplemented when
PAD_CHAR_TO_FULL_LENGTH is
enabled. However, MySQL supports these
functions.

– GaussDB does not support escape
characters or double quotation marks
(""). MySQL supports these inputs.

● Syntax
The CAST(expr as char) syntax of GaussDB
cannot convert the input string to the
corresponding type based on the string
length. It can only be converted to the
varchar type. CAST('' as char) and CAST(''
as char(0)) cannot convert an empty string
to the char(0) type. MySQL supports
conversion to the corresponding type by
length.

● Operator
– After performing addition, subtraction,

multiplication, division, or modulo
operations on a string (that can be
converted to a floating-point value) and
an integer value, GaussDB returns an
integer, while MySQL returns a floating-
point value.

– If a value is divided by 0, GaussDB reports
an error, and MySQL returns null.

– "~": returns a negative number in
GaussDB and an 8-byte unsigned integer
in MySQL.

– "^": indicates a power in GaussDB and a
bitwise XOR in MySQL.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 342

MySQL GaussDB Difference

VARCHAR(M) Supported,
with
differences.

● Input format
– The length of parameters and return

values of GaussDB user-defined functions
cannot be verified. The length of stored
procedure parameters cannot be verified.
However, MySQL supports these
functions.

– The length of temporary variables in
GaussDB user-defined functions and
stored procedures can be verified, and an
error or truncation alarm is reported in
strict or loose mode. However, MySQL
does not support these functions.

– GaussDB does not support escape
characters or double quotation marks
(""). MySQL supports these inputs.

● Operator
– After performing addition, subtraction,

multiplication, division, or modulo
operations on a string (that can be
converted to a floating-point value) and
an integer value, GaussDB returns an
integer, while MySQL returns a floating-
point value.

– If a value is divided by 0, GaussDB reports
an error, and MySQL returns null.

– "~": returns a negative number in
GaussDB and an 8-byte unsigned integer
in MySQL.

– "^": indicates a power in GaussDB and a
bitwise XOR in MySQL.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 343

MySQL GaussDB Difference

TINYTEXT Supported,
with
differences.

● Input format
– In GaussDB, the length of this type cannot

exceed 1 GB. If the length exceeds 1 GB,
an error is reported. In MySQL, the length
of this type cannot exceed 255 bytes.
Otherwise, an error is reported in strict
mode, and data is truncated and an alarm
is generated in loose mode.

– GaussDB does not support escape
characters or double quotation marks
(""). MySQL supports these inputs.

● Operator
– After performing addition, subtraction,

multiplication, division, or modulo
operations on a string (that can be
converted to a floating-point value) and
an integer value, GaussDB returns an
integer, while MySQL returns a floating-
point value.

– If a value is divided by 0, GaussDB reports
an error, and MySQL returns null.

– "~": returns a negative number in
GaussDB and an 8-byte unsigned integer
in MySQL.

– "^": indicates a power in GaussDB and a
bitwise XOR in MySQL.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 344

MySQL GaussDB Difference

TEXT Supported,
with
differences.

● Input format
– In GaussDB, the length of this type cannot

exceed 1 GB. If the length exceeds 1 GB,
an error is reported. In MySQL, the length
of this type cannot exceed 65535 bytes.
Otherwise, an error is reported in strict
mode, and data is truncated and an alarm
is generated in loose mode.

– GaussDB does not support escape
characters or double quotation marks
(""). MySQL supports these inputs.

● Operator
– After performing addition, subtraction,

multiplication, division, or modulo
operations on a string (that can be
converted to a floating-point value) and
an integer value, GaussDB returns an
integer, while MySQL returns a floating-
point value.

– If a value is divided by 0, GaussDB reports
an error, and MySQL returns null.

– "~": returns a negative number in
GaussDB and an 8-byte unsigned integer
in MySQL.

– "^": indicates a power in GaussDB and a
bitwise XOR in MySQL.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 345

MySQL GaussDB Difference

MEDIUMTEXT Supported,
with
differences.

● Input format
– In GaussDB, the length of this type cannot

exceed 1 GB. If the length exceeds 1 GB,
an error is reported. In MySQL, the length
of this type cannot exceed 16777215
bytes. Otherwise, an error is reported in
strict mode, and data is truncated and an
alarm is generated in loose mode.

– GaussDB does not support escape
characters or double quotation marks
(""). MySQL supports these inputs.

● Operator
– After performing addition, subtraction,

multiplication, division, or modulo
operations on a string (that can be
converted to a floating-point value) and
an integer value, GaussDB returns an
integer, while MySQL returns a floating-
point value.

– If a value is divided by 0, GaussDB reports
an error, and MySQL returns null.

– "~": returns a negative number in
GaussDB and an 8-byte unsigned integer
in MySQL.

– "^": indicates a power in GaussDB and a
bitwise XOR in MySQL.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 346

MySQL GaussDB Difference

LONGTEXT Supported,
with
differences.

● Input format
– GaussDB supports a maximum of 1 GB,

and MySQL supports a maximum of 4 GB
minus 1 byte.

– GaussDB does not support escape
characters or double quotation marks
(""). MySQL supports these inputs.

● Operator
– After performing addition, subtraction,

multiplication, division, or modulo
operations on a string (that can be
converted to a floating-point value) and
an integer value, GaussDB returns an
integer, while MySQL returns a floating-
point value.

– If a value is divided by 0, GaussDB reports
an error, and MySQL returns null.

– "~": returns a negative number in
GaussDB and an 8-byte unsigned integer
in MySQL.

– "^": indicates a power in GaussDB and a
bitwise XOR in MySQL.

ENUM('value
1','value2',...)

Not
supported

-

SET('value1','v
alue2',...)

Not
supported

-

3.3.1.4 Binary Data Types

Table 3-42 Binary data types

MySQL GaussDB Difference

BINARY[(M)] Not
supported

-

VARBINARY(
M)

Not
supported

-

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 347

MySQL GaussDB Difference

TINYBLOB Supported,
with
differences.

● Value range: In GaussDB, this type is mapped
from the BYTEA type. Its length cannot
exceed 1 GB. Otherwise, an error is reported.
In MySQL, the length of this type cannot
exceed 255 bytes. Otherwise, an error is
reported in strict mode, and data is
truncated and an alarm is generated in loose
mode.

● Input format: Escape characters and double
quotation marks ("") are not supported.

● Output format: For the '\0' character, the
query result is displayed as "\000". If the
getBytes API of the JDBC driver is used, the
result is the '\0' character.

● Operator: Arithmetic operators (+ - * / %)
are not supported. Common logical
operators OR, AND, NOT (|| && !) are not
supported. Common bitwise operators (~ & |
^) are not supported.

BLOB Supported,
with
differences.

● Value range: In GaussDB, this type is mapped
from the BYTEA type. Its length cannot
exceed 1 GB. Otherwise, an error is reported.
In MySQL, the length of this type cannot
exceed 65535 bytes. Otherwise, an error is
reported in strict mode, and data is
truncated and an alarm is generated in loose
mode.

● Input format: Escape characters and double
quotation marks ("") are not supported.

● Output format: For the '\0' character, the
query result is displayed as "\000". If the
getBytes API of the JDBC driver is used, the
result is the '\0' character.

● Operator: Arithmetic operators (+ - * / %)
are not supported. Common logical
operators OR, AND, NOT (|| && !) are not
supported. Common bitwise operators (~ & |
^) are not supported.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 348

MySQL GaussDB Difference

MEDIUMBLO
B

Supported,
with
differences.

● Value range: In GaussDB, this type is mapped
from the BYTEA type. Its length cannot
exceed 1 GB. Otherwise, an error is reported.
In MySQL, the length of this type cannot
exceed 16777215 bytes. Otherwise, an error
is reported in strict mode, and data is
truncated and an alarm is generated in loose
mode.

● Input format: Escape characters and double
quotation marks ("") are not supported.

● Output format: For the '\0' character, the
query result is displayed as "\000". If the
getBytes API of the JDBC driver is used, the
result is the '\0' character.

● Operator: Arithmetic operators (+ - * / %)
are not supported. Common logical
operators OR, AND, NOT (|| && !) are not
supported. Common bitwise operators (~ & |
^) are not supported.

LONGBLOB Supported,
with
differences.

● Value range: In GaussDB, this type is mapped
from the BYTEA type. Its length cannot
exceed 1 GB. For details, see the centralized
and distributed specifications of the BYTEA
data type.

● Input format: Escape characters and double
quotation marks ("") are not supported.

● Output format: For the '\0' character, the
query result is displayed as "\000". If the
getBytes API of the JDBC driver is used, the
result is the '\0' character.

● Operator: Arithmetic operators (+ - * / %)
are not supported. Common logical
operators OR, AND, NOT (|| && !) are not
supported. Common bitwise operators (~ & |
^) are not supported.

BIT[(M)] Not
supported

-

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 349

3.3.1.5 JSON Data Type

Table 3-43 JSON Data Type

MySQL GaussDB Difference

JSON Supported,
with
differences.

● The JSON types in GaussDB in MySQL-
compatible mode are the same as the native
JSON type of GaussDB but greatly different
from that of MySQL. Therefore, the JSON
types are not listed one by one.

● For details about the JSON types in GaussDB
in MySQL-compatible mode, see "SQL
Reference > Data Types > JSON/JSONB
Types" in Developer Guide.

3.3.1.6 Attributes Supported by Data Types

Table 3-44 Attributes supported by data types

MySQL GaussDB

NULL Supported.

NOT NULL Supported.

DEFAULT Supported.

ON UPDATE Supported.

PRIMARY KEY Supported.

CHARACTER SET name Supported.

COLLATE name Supported.

3.3.1.7 Data Type Conversion
Conversion between different data types is supported. Data type conversion is
involved in the following scenarios:

● The data types of operands of operators (such as comparison and arithmetic
operators) are inconsistent. It is commonly used for comparison operations in
query or join conditions.

● The data types of arguments and parameters are inconsistent when a
function is called.

● The data types of target columns to be updated by DML statements
(including INSERT, UPDATE, MERGE, and REPLACE) and the defined column
types are inconsistent.

● Using CAST(expr AS datatype) can explicitly convert an expression to a data
type.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 350

● After the target data type of the final projection column is determined by set
operations (UNION, MINUS, EXCEPT, and INTERSECT), the type of the
projection column in each SELECT statement is inconsistent with the target
data type.

● In other expression calculation scenarios, the target data type used for
comparison or final result is determined based on the data type of different
expressions.
– DECODE
– CASE WHEN
– lexpr [NOT] IN (expr_list)
– BETWEEN AND
– JOIN USING(a,b)
– GREATEST and LEAST
– NVL and COALESCE

GaussDB and MySQL have different rules for data type conversion and target data
types. The following examples show the differences between the two processing
modes:

-- MySQL: The execution result of IN is 0, indicating false. According to the rule, '1970-01-01' is compared
with the expressions in the list in sequence. The results are all 0s. Therefore, the final result is 0.
mysql> SELECT '1970-01-01' IN ('1970-01-02', 1, '1970-01-02');
+---+
| '1970-01-01' in ('1970-01-02', 1, '1970-01-02') |
+---+
| 0 |
+---+

-- GaussDB: The execution result of IN is true, which is opposite to the MySQL result. The common type
selected based on the rule is int. Therefore, the left expression '1970-01-01' is converted to the int type and
compared with the value after the expression in the list is converted to the int type.
-- When '1970-01-01' and '1970-01-02' are converted to the int type, the values are 1970. (In MySQL-
compatible mode, invalid characters and the following content are ignored during conversion, and the
previous part is converted to the int type.) The comparison result is equal. Therefore, the returned result is
true.
gaussdb=# SELECT '1970-01-01' IN ('1970-01-02', 1::int, '1970-01-02') AS result;
 result

 t
(1 row)

Differences in data type conversion rules:

● The GaussDB clearly defines the conversion rules between different data
types.
– Whether to support conversion: Conversion is supported only when the

conversion path of two types is defined in the pg_cast system catalog.
– Conversion scenarios: conversion in any scenario, conversion only in CAST

expressions, and conversion only during value assignment. In scenarios
that are not supported, data type conversion cannot be performed even if
the conversion path is defined.

● MySQL supports conversion between any two data types.

Due to the preceding differences, when MySQL-based applications are migrated to
GaussDB, an error may be reported because the SQL statement does not support
the conversion between different data types. In the scenario where conversion is

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 351

supported, different conversion rules result in different execution results of SQL
statements.

You are advised to use the same data type in SQL statements for comparison or
value assignment to avoid unexpected results or performance loss caused by data
type conversion.

Differences in target data type selection rules:

In some scenarios, the data type to be compared or returned can be determined
only after the types of multiple expressions are considered. For example, in the
UNION operation, projection columns at the same position in different SELECT
statements are of different data types. The final data type of the query result
needs to be determined based on the data type of the projection columns in each
SELECT statement.

GaussDB and MySQL have different rules for determining the target data types.

● GaussDB rules:
– If the operand types of operators are inconsistent, the operand types are

not converted to the target type before calculation. Instead, operators of
two data types are directly registered, and two types of processing rules
are defined during operator processing. In this mode, implicit type
conversion does not exist, but the customized processing rule implies the
conversion operation.

– Rules for determining the target data type in the set operation and
expression scenarios:

▪ If all types are the same, it is the target type.

▪ If the two data types are different, check whether the data types are
of the same type, such as the numeric type, character type, and date
and time type. If they do not belong to the same type, the target
type cannot be determined. In this case, an error is reported during
SQL statement execution.

▪ For data types with the same category attribute (defined in the
pg_type system catalog), the data type with the preferred attribute
(defined in the pg_type system catalog) is selected as the target
type. If operand 1 can be converted to operand 2 (no conversion
path), but operand 2 cannot be converted to operand 1 or the
priority of the numeric type is lower than that of operand 2, then
operand 2 is selected as the target type.

▪ If three or more data types are involved, the rule for determining the
target type is as follows: common_type(type1,type2,type3) =
common_type(common_type(type1,type2),type3). Perform iterative
processing in sequence to obtain the final result.

▪ For IN and NOT IN expressions, if the target type cannot be
determined based on the preceding rules, each expression in lexpr
and expr_list is compared one by one based on the equivalent
operator (=).

▪ Precision determination: The precision of the finally selected
expression is used as the final result.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 352

● MySQL rules:
– If the operand types of operators are inconsistent, determine the target

type based on the following rules. Then, convert the inconsistent operand
types to the target type and then process the operands.

▪ If both parameters are of the string type, they are compared based
on the string type.

▪ If both parameters are of the integer type, they are compared based
on the integer type.

▪ If a hexadecimal value is not compared with a numeric value, they
are compared based on the binary string.

▪ If one parameter is of the datetime/timestamp type, and the other
parameter is a constant, the constant is converted to the timestamp
type for comparison.

▪ If one parameter is of the decimal type, the data type used for
comparison depends on the other parameter. If the other type is
decimal or integer, the decimal type is used. If the other type is not
decimal, the real type is used.

▪ In other scenarios, the data type is converted to the real type for
comparison.

– Rules for determining the target data type in the set operation and
expression scenarios:

▪ Establish a target type matrix between any two types. Given two
types, the target type can be determined by using the matrix.

▪ If three or more data types are involved, the rule for determining the
target type is as follows: common_type(type1,type2,type3) =
common_type(common_type(type1,type2),type3). Perform iterative
processing in sequence to obtain the final result.

▪ If the target type is integer and each expression type contains signed
and unsigned integers, the type is promoted to an integer type with
higher precision. The result is unsigned only when all expressions are
unsigned. Otherwise, the result is signed.

▪ The highest precision in the expression is used as the final result.

According to the preceding rules, GaussDB and MySQL differ greatly in data type
conversion rules and types cannot be directly compared. In the preceding scenario,
the execution result of SQL statements may be different from that in MySQL. In
the current version, you are advised to use the same type for all expressions or use
CAST to convert the type to the required type in advance to avoid differences.

3.3.2 System Functions

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 353

3.3.2.1 Flow Control Functions

Table 3-45 Flow control functions

MySQL GaussDB Difference

IF() Supported,
with
differences.

● The expr1 input parameter supports only the
Boolean type. If an input parameter of the
non-BOOL type cannot be converted to the
BOOL type, an error is reported.

● If the types of expr2 and expr3 are different
and no implicit conversion function exists
between the two types, an error is reported.

● If the two input parameters are of the same
type, the input parameter type is returned.

● If the expr2 and expr3 input parameters are
of the NUMERIC, STRING, or TIME type
respectively, GaussDB outputs the TEXT type,
while MySQL outputs the VARCHAR type.

IFNULL() Supported,
with
differences.

● If the types of expr1 and expr2 are different
and no implicit conversion function exists
between the two types, an error is reported.

● If the two input parameters are of the same
type, the input parameter type is returned.

● If the expr1 and expr2 input parameters are
of the NUMERIC, STRING, or TIME type
respectively, GaussDB outputs the TEXT type,
while MySQL outputs the VARCHAR type.

● If one input parameter is of the FLOAT4 type
and the other is of any type in the numeric
category, GaussDB returns the DOUBLE type.
In MySQL, if one input parameter is of
FLOAT4 type and the other is of the TINYINT,
UNSIGNED TINYINT, SMALLINT, UNSIGNED
SMALLINT, MEDIUMINT, UNSIGNED
MEDIUMINT, or BOOL type, the FLOAT4 type
is returned. If the first is of FLOAT4 type and
the second is of BIGINT or UNSIGNED
BIGINT type, the FLOAT type is returned.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 354

MySQL GaussDB Difference

NULLIF() Supported,
with
differences.

● The NULLIF() type derivation in GaussDB
complies with the following logic:
– If the data types of two parameters are

different and the two input parameter
types have an equality comparison
operator, the left value type
corresponding to the equality comparison
operator is returned. Otherwise, the two
input parameter types are forcibly
compatible.

– If an equality comparison operator exists
after forcible type compatibility, the left
value type of the equality comparison
operator after forcible type compatibility
is returned.

– If the corresponding equality operator
cannot be found after forcible type
compatibility, an error is reported.
-- The two input parameter types have an equality
comparison operator.
gaussdb=# SELECT pg_typeof(nullif(1::int2, 2::int8));
 pg_typeof

 smallint
(1 row)
-- The two input parameter types do not have the
equality comparison operator, but the equality
comparison operator can be found after forcible type
compatibility.
gaussdb=# SELECT pg_typeof(nullif(1::int1, 2::int2));
 pg_typeof

 bigint
(1 row)

-- The two input parameter types do not have the
equality comparison operator, and the equality
comparison operator does not exist after forcible type
compatibility.
gaussdb=# SELECT nullif(1::bit, '1'::MONEY);
ERROR: operator does not exist: bit = money
LINE 1: SELECT nullif(1::bit, '1'::MONEY);
 ^
HINT: No operator matches the given name and
argument type(s). You might need to add explicit type
casts.
CONTEXT: referenced column: nullif

● The MySQL output type is related only to the
type of the first input parameter.
– If the type of the first input parameter is

TINYINT, SMALLINT, MEDIUMINT, INT, or
BOOL, the output is of the INT type.

– If the type of the first input parameter is
BIGINT, the output is of the BIGINT type.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 355

MySQL GaussDB Difference

– When the type of the first input
parameter is UNSIGNED TINYINT,
UNSIGNED SMALLINT, UNSIGNED
MEDIUMINT, UNSIGNED INT, or BIT, the
output is of the UNSIGNED INT type.

– If the type of the first input parameter is
UNSIGNED BIGINT, the output is of the
UNSIGNED BIGINT type.

– If the type of the first input parameter is
of the FLOAT, DOUBLE, or REAL type, the
output is of the DOUBLE type.

– If the type of the first input parameter
DECIMAL or NUMERIC, the output is of
the DECIMAL type.

– If the type of the first input parameter is
DATE, TIME, DATE, DATETIME,
TIMESTAMP, CHAR, VARCHAR, TINYTEXT,
ENUM, or SET, the output is of the
VARCHAR type.

– If the type of the first input parameter is
TEXT, MEDIUMTEXT, or LONGTEXT, the
output is of the LONGTEXT type.

– If the type of the first input parameter is
TINYBLOB, the output is of the
VARBINARY type.

– If the type of the first input parameter is
MEDIUMBLOB or LONGBLOB, the output
is of the LONGBLOB type.

– If the type of the first input parameter is
BLOB, the output is of the BLOB type.

ISNULL() Supported,
with
differences.

In GaussDB, the return value is t or f of the
BOOLEAN type. In MySQL, the return value is 1
or 0 of the INT type.

3.3.2.2 Date and Time Functions
The date and time functions in GaussDB in MySQL-compatible mode, with the
same behavior as MySQL, are described as follows:

● Functions may use time expressions as their input parameters.
Time expressions mainly include text, datetime, date, and time. Besides, all
types that can be implicitly converted to time expressions can be input
parameters. For example, a number can be implicitly converted to text and
then used as a time expression.
However, different functions take effect in different ways. For example, the
datediff function calculates only the difference between dates. Therefore, time

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 356

expressions are parsed as the date type. The timestampdiff function parses
time expressions as date, time, or datetime based on the unit parameter
before calculating the time difference.

● The input parameters of functions may contain an invalid date.

Generally, the supported date and datetime ranges are the same as those of
MySQL. The value of date ranges from '0000-01-01' to '9999-12-31', and the
value of datetime ranges from '0000-01-01 00:00:00' to '9999-12-31 23:59:59'.
Although GaussDB supports larger date and datetime ranges than MySQL,
dates out of range are still considered invalid.

In most cases, time functions report an alarm and return NULL if the input
date is invalid, unless the invalid date can be converted by CAST.

● Separators for input parameters of functions:

For a time function, all non-digit characters are regarded as separators when
input parameters are processed. The standard format is recommended: Use
hyphens (-) to separate year, month, and day, use colons (:) to separate hour,
minute, and second, and use a period (.) before milliseconds.

Error-prone scenario: When SELECT timestampdiff(hour, '2020-03-01
00:00:00', '2020-02-28 00:00:00+08'); is executed in a MySQL-compatible
database, the time function does not automatically calculate the time zone.
Therefore, +08 is not identified as the time zone. Instead, + is used as the
separator for calculation as seconds.

Most function scenarios of GaussDB date and time functions are the same as
those of MySQL, but there are still differences. Some differences are as follows:

● If an input parameter of a function is NULL, the function returns NULL, and
no WARNING or ERROR is reported. These functions include:

from_days, date_format, str_to_date, datediff, timestampdiff, date_add,
subtime, month, time_to_sec, to_days, to_seconds, dayname, monthname,
convert_tz, sec_to_time, addtime, adddate, date_sub, timediff, last_day,
weekday, from_unixtime, unix_timestamp, subdate, day, year, weekofyear,
dayofmonth, dayofyear, week, yearweek, dayofweek, time_format, hour,
minute, second, microsecond, quarter, get_format, extract, makedate,
period_add, timestampadd, period_diff, utc_time, utc_timestamp, maketime,
and curtime.

Example:
gaussdb=# SELECT day(null);
 day

(1 row)

● Some functions with pure numeric input parameters are different from those
of MySQL. Numeric input parameters without quotation marks are converted
into text input parameters for processing.

Example:
gaussdb=# SELECT day(19231221.123141);
WARNING: Incorrect datetime value: "19231221.123141"
CONTEXT: referenced column: day
 day

(1 row)

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 357

● Time and date calculation functions are adddate, subdate, date_add, and
date_sub. If the calculation result is a date, the supported range is
[0000-01-01,9999-12-31]. If the calculation result is a date and time, the
supported range is [0000-01-01 00:00:00.000000,9999-12-31
23:59:59.999999]. If the calculation result exceeds the supported range, an
ERROR is reported in strict mode, or a WARNING is reported in loose mode. If
the date result after calculation is within the range [0000-01-01,0001-01-01],
GaussDB returns the result normally. MySQL returns '0000-00-00'.

Example:
gaussdb=# SELECT subdate('0000-01-01', interval 1 hour);
ERROR: Datetime function: datetime field overflow
CONTEXT: referenced column: subdate

gaussdb=# SELECT subdate('0001-01-01', interval 1 day);
 subdate

 0000-12-31

(1 row)

● If the input parameter of the date or datetime type of the date and time
function contains month 0 or day 0, the value is invalid. In strict mode, an
ERROR is reported. In loose mode, if the input is a character string or number,
a WARNING is reported. If the input is of the date or datetime type, the
system processes the input as December of the previous year or the last day
of the previous month.

If the type of the CAST function is converted to date or datetime, an ERROR is
reported in strict mode. In loose mode, no WARNING is reported. Instead, the
system processes the input as December of the previous year or the last day
of the previous month. Pay attention to this difference. MySQL outputs the
value as it is, even if the year, month, and day are set to 0.

Example:
gaussdb=# SELECT adddate('2023-01-00', 1);-- Strict mode
ERROR: Incorrect datetime value: "2023-01-00"
CONTEXT: referenced column: adddate

gaussdb=# SELECT adddate('2023-01-00', 1); -- Loose mode
WARNING: Incorrect datetime value: "2023-01-00"
CONTEXT: referenced column: adddate
 adddate

(1 row)

gaussdb=# SELECT adddate(date'2023-00-00', 1); -- Loose mode
 adddate

 2022-12-01
(1 row)

gaussdb=# SELECT cast('2023/00/00' as date); -- Loose mode
 date

 2022-11-30
(1 row)

gaussdb=# SELECT cast('0000-00-00' as datetime); -- Loose mode
 timestamp

 0000-00-00 00:00:00
(1 row)

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 358

● If the input parameter of the function is of the numeric data type, no error is
reported in the case of invalid input, and the input parameter is processed as
0.
Example:
gaussdb=# SELECT from_unixtime('aa');
 from_unixtime

 1970-01-01 08:00:00
(1 row)

● A maximum of six decimal places are allowed. Decimal places with all 0s are
not allowed.
Example:
gaussdb=# SELECT from_unixtime('1234567899.00000');
 from_unixtime

 2009-02-14 07:31:39
(1 row)

● If the time function parameter is a character string, the result is correct only
when the year, month, and day are separated by a hyphen (-) and the hour,
minute, and second are separated by a colon (:).
Example:
gaussdb=# SELECT adddate('20-12-12',interval 1 day);
 adddate

 2020-12-13
(1 row)

● If the return value of a function is of the varchar type in MySQL, the return
value of the function is of the text type in GaussDB.
-- Return value of a function in GaussDB.
gaussdb=# SELECT pg_typeof(adddate('2023-01-01', 1));
 pg_typeof

 text
(1 row)

-- Return value of a function in MySQL.
mysql> CREATE VIEW v1 AS SELECT adddate('2023-01-01', 1);
Query OK, 0 rows affected (0.00 sec)

mysql> DESC v1;
+--------------------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------------------+-------------+------+-----+---------+-------+
| adddate('2023-01-01', 1) | varchar(29) | YES | | NULL | |
+--------------------------+-------------+------+-----+---------+-------+
1 row in set (0.00 sec)

Table 3-46 Date and time functions

MySQL GaussDB Difference

ADDDATE() Supported,
with
differences.

The performance of this function is different
from that of MySQL due to interval expression
differences. For details, see INTERVAL.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 359

MySQL GaussDB Difference

ADDTIME() Supported,
with
differences.

● MySQL returns NULL if the second input
parameter is a string in the DATETIME
format. GaussDB can calculate the value.

● The value range of an input parameter is
['0001-01-01 00:00:00', 9999-12-31
23:59:59.999999].

● If the first parameter of the ADDTIME
function in MySQL is a dynamic parameter
(for example, in a prepared statement), the
return type is TIME. Otherwise, the parse
type of the function is derived from the
parse type of the first parameter. The return
value rules of the ADDTIME function in
GaussDB are as follows:
– The first input parameter is of the date

type, the second input parameter is of the
date type, and the return value is of the
time type.

– The first input parameter is of the date
type, the second input parameter is of the
text type, and the return value is of the
text type.

– The first input parameter is of the date
type, the second input parameter is of the
datetime type, and the return value is of
the time type.

– The first input parameter is of the date
type, the second input parameter is of the
time type, and the return value is of the
time type.

– The first input parameter is of the text
type, the second input parameter is of the
date type, and the return value is of the
text type.

– The first input parameter is of the text
type, the second input parameter is of the
text type, and the return value is of the
text type.

– The first input parameter is of the text
type, the second input parameter is of the
datetime type, and the return value is of
the text type.

– The first input parameter is of the text
type, the second input parameter is of the
time type, and the return value is of the
text type.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 360

MySQL GaussDB Difference

– The first input parameter is of the
datetime type, the second input
parameter is of the date type, and the
return value is of the datetime type.

– The first input parameter is of the
datetime type, the second input
parameter is of the text type, and the
return value is of the text type.

– The first input parameter is of the
datetime type, the second input
parameter is of the datetime type, and
the return value is of the datetime type.

– The first input parameter is of the
datetime type, the second input
parameter is of the time type, and the
return value is of the datetime type.

– The first input parameter is of the time
type, the second input parameter is of the
date type, and the return value is of the
time type.

– The first input parameter is of the time
type, the second input parameter is of the
text type, and the return value is of the
text type.

– The first input parameter is of the time
type, the second input parameter is of the
datetime type, and the return value is of
the time type.

– The first input parameter is of the time
type, the second input parameter is of the
time type, and the return value is of the
time type.

CONVERT_T
Z()

Supported. -

CURDATE() Supported. -

CURRENT_DA
TE(),
CURRENT_DA
TE

Supported. -

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 361

MySQL GaussDB Difference

CURRENT_TI
ME(),
CURRENT_TI
ME

Supported,
with
differences.

The time value (after the decimal point) output
by precision is rounded off in GaussDB and
directly truncated in MySQL. The trailing 0s of
the time value (after the decimal point) output
by precision are not displayed in GaussDB but
displayed in MySQL. GaussDB supports only an
integer value within the range of [0,6] as the
precision of the returned time. For other values,
an error is reported. In MySQL, a precision value
within [0,6] is valid, but an input integer value
is divided by 256 to get a remainder. For
example, if the input integer value is 257, the
time value with precision 1 is returned.

CURRENT_TI
MESTAMP(),
CURRENT_TI
MESTAMP

Supported,
with
differences.

The time value (after the decimal point) output
by precision is rounded off in GaussDB and
directly truncated in MySQL. The trailing 0s of
the time value (after the decimal point) output
by precision are not displayed in GaussDB but
displayed in MySQL. GaussDB supports only an
integer value within the range of [0,6] as the
precision of the returned time. If the input
integer value is greater than 6, an alarm is
generated and the time value is output based
on the precision 6. In MySQL, a precision value
within [0,6] is valid, but an input integer value
is divided by 256 to get a remainder. For
example, if the input integer value is 257, the
time value with precision 1 is returned.

CURTIME() Supported,
with
differences.

In GaussDB, if a character string or a non-
integer value is entered, the value is implicitly
converted into an integer and then the precision
is verified. If the value is beyond the [0,6] range,
an error is reported. If the value is within the
range, the time value is output normally. In
MySQL, an error is reported. The time value
(after the decimal point) output by precision is
rounded off in GaussDB and directly truncated
in MySQL. The trailing 0s of the time value
(after the decimal point) output by precision
are not displayed in GaussDB but displayed in
MySQL. GaussDB supports only an integer value
within the range of [0,6] as the precision of the
returned time. For other values, an error is
reported. In MySQL, a precision value within
[0,6] is valid, but an input integer value is
divided by 256 to get a remainder. For example,
if the input integer value is 257, the time value
with precision 1 is returned.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 362

MySQL GaussDB Difference

YEARWEEK() Supported. -

DATE_ADD() Supported,
with
differences.

The performance of this function is different
from that of MySQL due to interval expression
differences. For details, see INTERVAL.

DATE_FORMA
T()

Supported. -

DATE_SUB() Supported,
with
differences.

The performance of this function is different
from that of MySQL due to interval expression
differences. For details, see INTERVAL.

DATEDIFF() Supported. -

DAY() Supported. -

DAYNAME() Supported. -

DAYOFMONT
H()

Supported. -

DAYOFWEEK(
)

Supported. -

DAYOFYEAR() Supported. -

EXTRACT() Supported. -

FROM_DAYS(
)

Supported. -

FROM_UNIXT
IME()

Supported. -

GET_FORMA
T()

Supported. -

HOUR() Supported. -

LAST_DAY Supported. -

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 363

MySQL GaussDB Difference

LOCALTIME(),
LOCALTIME

Supported,
with
differences.

The time value (after the decimal point) output
by precision is rounded off in GaussDB and
directly truncated in MySQL. The trailing 0s of
the time value (after the decimal point) output
by precision are not displayed in GaussDB but
displayed in MySQL. GaussDB supports only an
integer value within the range of [0,6] as the
precision of the returned time. For other integer
values, an error is reported. In MySQL, a
precision value within [0,6] is valid, but an input
integer value is divided by 256 to get a
remainder. For example, if the input integer
value is 257, the time value with precision 1 is
returned.

LOCALTIMEST
AMP,
LOCALTIMEST
AMP()

Supported,
with
differences.

The time value (after the decimal point) output
by precision is rounded off in GaussDB and
directly truncated in MySQL. The trailing 0s of
the time value (after the decimal point) output
by precision are not displayed in GaussDB but
displayed in MySQL. GaussDB supports only an
integer value within the range of [0,6] as the
precision of the returned time. If the input
integer value is greater than 6, an alarm is
generated and the time value is output based
on the precision 6. In MySQL, a precision value
within [0,6] is valid, but an input integer value
is divided by 256 to get a remainder. For
example, if the input integer value is 257, the
time value with precision 1 is returned.

MAKEDATE() Supported. -

MAKETIME() Supported,
with
differences.

When the input parameter is NULL, GaussDB
does not support self-nesting of the maketime
function, but MySQL supports.

MICROSECON
D()

Supported. -

MINUTE() Supported. -

MONTH() Supported. -

MONTHNAM
E()

Supported. -

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 364

MySQL GaussDB Difference

NOW() Supported,
with
differences.

The time value (after the decimal point) output
by precision is rounded off in GaussDB and
directly truncated in MySQL. The trailing 0s of
the time value (after the decimal point) output
by precision are not displayed in GaussDB but
displayed in MySQL. GaussDB supports only an
integer value within the range of [0,6] as the
precision of the returned time. If the input
integer value is greater than 6, an alarm is
generated and the time value is output based
on the precision 6. In MySQL, a precision value
within [0,6] is valid, but an input integer value
is divided by 256 to get a remainder. For
example, if the input integer value is 257, the
time value with precision 1 is returned.

PERIOD_AD
D()

Supported,
with
differences.

If the input parameter period or result is less
than 0, GaussDB reports an error by referring to
the performance in MySQL 8.0.x. Integer
wrapping occurs in MySQL 5.7. As a result, the
calculation result is abnormal.

PERIOD_DIFF(
)

Supported,
with
differences.

If the input parameter or result is less than 0,
GaussDB reports an error by referring to the
performance in MySQL 8.0.x. Integer wrapping
occurs in MySQL 5.7. As a result, the calculation
result is abnormal.

QUARTER() Supported. -

SEC_TO_TIM
E()

Supported. -

SECOND() Supported. -

STR_TO_DAT
E()

Supported,
with
differences.

GaussDB returns the text type, while MySQL
returns the datetime or date type.

SUBDATE() Supported,
with
differences.

The performance of this function is different
from that of MySQL due to interval expression
differences. For details, see INTERVAL.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 365

MySQL GaussDB Difference

SUBTIME() Supported,
with
differences.

● MySQL returns NULL if the second input
parameter is a string in the DATETIME
format. GaussDB can calculate the value.

● The value range of an input parameter is
['0001-01-01 00:00:00', 9999-12-31
23:59:59.999999].

● If the first parameter of the SUBTIME
function in MySQL is a dynamic parameter
(for example, in a prepared statement), the
return type is TIME. Otherwise, the parse
type of the function is derived from the
parse type of the first parameter. The return
value rules of the SUBTIME function in
GaussDB are as follows:
– The first input parameter is of the date

type, the second input parameter is of the
date type, and the return value is of the
time type.

– The first input parameter is of the date
type, the second input parameter is of the
text type, and the return value is of the
text type.

– The first input parameter is of the date
type, the second input parameter is of the
datetime type, and the return value is of
the time type.

– The first input parameter is of the date
type, the second input parameter is of the
time type, and the return value is of the
time type.

– The first input parameter is of the text
type, the second input parameter is of the
date type, and the return value is of the
text type.

– The first input parameter is of the text
type, the second input parameter is of the
text type, and the return value is of the
text type.

– The first input parameter is of the text
type, the second input parameter is of the
datetime type, and the return value is of
the text type.

– The first input parameter is of the text
type, the second input parameter is of the
time type, and the return value is of the
text type.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 366

MySQL GaussDB Difference

– The first input parameter is of the
datetime type, the second input
parameter is of the date type, and the
return value is of the datetime type.

– The first input parameter is of the
datetime type, the second input
parameter is of the text type, and the
return value is of the text type.

– The first input parameter is of the
datetime type, the second input
parameter is of the datetime type, and
the return value is of the datetime type.

– The first input parameter is of the
datetime type, the second input
parameter is of the time type, and the
return value is of the datetime type.

– The first input parameter is of the time
type, the second input parameter is of the
date type, and the return value is of the
time type.

– The first input parameter is of the time
type, the second input parameter is of the
text type, and the return value is of the
text type.

– The first input parameter is of the time
type, the second input parameter is of the
datetime type, and the return value is of
the time type.

– The first input parameter is of the time
type, the second input parameter is of the
time type, and the return value is of the
time type.

SYSDATE() Supported,
with
differences.

In MySQL, an integer input value is wrapped
when it reaches 255 (maximum value of a one-
byte integer value), while GaussDB does not.

YEAR() Supported. -

TIME_FORMA
T()

Supported. -

TIME_TO_SE
C()

Supported. -

TIMEDIFF() Supported. -

WEEKOFYEA
R()

Supported. -

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 367

MySQL GaussDB Difference

TIMESTAMPA
DD()

Supported. -

TIMESTAMPD
IFF()

Supported. -

TO_DAYS() Supported. -

TO_SECOND
S()

Supported. -

UNIX_TIMEST
AMP()

Supported,
with
differences.

GaussDB returns the numeric type, while
MySQL returns the int type.

UTC_DATE() Supported,
with
differences.

● MySQL supports calling without parentheses,
but GaussDB does not. In MySQL, an integer
input value is wrapped when it reaches 255
(maximum value of a one-byte integer
value).

● MySQL input parameters support only
integers ranging from 0 to 6. GaussDB
supports input parameters that can be
implicitly converted to integers ranging from
0 to 6.

UTC_TIME() Supported,
with
differences.

UTC_TIMESTA
MP()

Supported,
with
differences.

WEEK() Supported. -

WEEKDAY() Supported. -

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 368

3.3.2.3 String Functions

Table 3-47 String functions

MySQL GaussDB Difference

BIN() Supported,
with
differences.

In GaussDB, the types supported by function
input parameters are as follows:
● Integer types: tinyint, smallint, mediumint,

int, and bigint.
● Unsigned integer types: tinyint unsigned,

smallint unsigned, int unsigned, and bigint
unsigned.

● Character and text types: char, varchar,
tinytext, text, mediumtext, and longtext.
Only numeric integer strings are supported,
and the integer range is within the bigint
range.

● Floating-point types: float, real, and double.
● Fixed-point types: numeric, decimal, and dec.
● Boolean type: bool.

CONCAT() Supported,
with
differences.

The data type of the return value of CONCAT is
always text regardless of the data type of the
parameter. However, in MySQL, if CONCAT
contains binary parameters, the return value is
binary.

CONCAT_WS(
)

Supported,
with
differences.

The data type of the return value of
CONCAT_WS is always text regardless of the
data type of the parameter. However, in MySQL,
if CONCAT_WS contains binary parameters, the
return value is binary. In other cases, the return
value is a string.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 369

MySQL GaussDB Difference

ELT() Supported,
with
differences.

● In GaussDB, the types supported by function
input parameter 1 are as follows:
– Integer types: tinyint, smallint, mediumint,

int, and bigint.
– Unsigned integer types: tinyint unsigned,

smallint unsigned, and int unsigned.
– Character and text types: char, varchar,

tinytext, text, mediumtext, and longtext.
Only numeric integer strings are
supported, and the integer range is within
the bigint range.

– Floating-point types: float, real, and
double.

– Fixed-point types: numeric, decimal, and
dec.

– Boolean type: bool.
● In GaussDB, the types supported by function

input parameter 2 are as follows:
– Integer types: tinyint, smallint, mediumint,

int, and bigint.
– Unsigned integer types: tinyint unsigned,

smallint unsigned, int unsigned, and
bigint unsigned.

– Character and text types: char, varchar,
tinytext, text, mediumtext, and longtext.

– Floating-point types: float, real, and
double.

– Fixed-point types: numeric, decimal, and
dec.

– Boolean type: bool.
– Large object types: tinyblob, blob,

mediumblob, and longblob.
– Date types: datetime, timestamp, date,

and time.

FIELD() Supported,
with
differences.

● When function input parameters range from
the maximum bigint value to the maximum
bigint unsigned value, incompatibility occurs.

● When function input parameters are of the
float(m, d), double(m, d), or real(m, d) type,
the precision is higher and incompatibility
occurs.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 370

MySQL GaussDB Difference

FIND_IN_SET(
)

Supported,
with
differences.

When the database encoding is set to
'SQL_ASCII', the default case sensitivity rule is
not supported. That is, if no character set rule is
specified, uppercase and lowercase letters are
treated as distinct.

INSERT() Supported,
with
differences.

● The range of input parameters of the Int64
type is from –9223372036854775808 to
+9223372036854775807. If a value is out of
range, an error is reported. MySQL does not
limit the range of input parameters of the
numeric type. If an exception occurs, an
alarm is generated, indicating that the value
is set to the upper or lower limit.

● The maximum length of the input parameter
of the text type is 2^30 – 5 bytes, and the
maximum length of the input parameter of
the bytea type is 2^30 – 512 bytes.

● If any of the s1 and s2 parameters is of the
bytea type and the result contains invalid
characters, the displayed result may be
different from that of MySQL, but the
character encoding is the same as that of
MySQL.

LOCATE() Supported,
with
differences.

When input parameter 1 is of the bytea type
and input parameter 2 is of the text type, the
behavior of GaussDB is different from that of
MySQL.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 371

MySQL GaussDB Difference

MAKE_SET() Supported,
with
differences.

● When the bits parameter is an integer, the
maximum range is int128, which is smaller
than the MySQL range.

● When the bits parameter is of the date type
(datetime, timestamp, date, or time), it is
not supported because the conversion from
the date type to the integer type is different
from that in MySQL.

● GaussDB and MySQL are inherently different
in the bit and Boolean types, causing
different returned results. When the bits
input parameter is of the Boolean type, and
the str input parameter is of the bit or
Boolean type, they are not supported.

● When the bits input parameter is of the
character string or text type, only the pure
integer format is supported. In addition, the
value range of pure integers is limited to
bigint.

● The integer value of the str input parameter
exceeds the range from 81 negative nines to
81 positive nines. The return value is
different from that of MySQL.

● When the str input parameter is expressed in
scientific notation, trailing zeros are
displayed in GaussDB but not displayed in
MySQL. This is an inherent difference.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 372

MySQL GaussDB Difference

QUOTE() Supported,
with
differences.

● If the str character string contains "\Z", "\r",
"\%", or "_", GaussDB does not escape it,
which is different from MySQL. The slash
followed by digits may also cause
differences, for example, "\563". This
function difference is the escape character
difference between GaussDB and MySQL.

● The output format of "\b" in the str
character string is different from that in
MySQL. This is an inherent difference
between GaussDB and MySQL.

● If the str character string contains "\0",
GaussDB cannot identify the character
because the UTF-8 character set cannot
identify the character. As a result, the input
fails. This is an inherent difference between
GaussDB and MySQL.

● If str is of the bit or Boolean type, this type
is not supported because it is different in
GaussDB and MySQL.

● GaussDB supports a maximum of 1 GB data
transfer. The maximum length of the str
input parameter is 536870908 bytes, and the
maximum size of the result string returned
by the function is 1 GB.

● The integer value of the str input parameter
exceeds the range from 81 negative nines to
81 positive nines. The return value is
different from that of MySQL.

● When the str input parameter is expressed in
scientific notation, trailing zeros are
displayed in GaussDB but not displayed in
MySQL. This is an inherent difference.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 373

MySQL GaussDB Difference

SPACE() Supported,
with
differences.

● GaussDB allows an input parameter of no
more than 1073741818 bytes. If the length
exceeds the limit, an empty string is
returned. By default, MySQL allows an input
parameter of no more than 4194304 bytes. If
the length exceeds the limit, an alarm is
generated.

● In GaussDB, the types supported by function
input parameters are as follows:
– Integer types: tinyint, smallint, mediumint,

int, and bigint.
– Unsigned integer types: tinyint unsigned,

smallint unsigned, and int unsigned.
– Character and text types: char, varchar,

tinytext, text, mediumtext, and longtext.
Only numeric integer strings are
supported, and the integer range is within
the bigint range.

– Floating-point types: float, real, and
double.

– Fixed-point types: numeric, decimal, and
dec.

– Boolean type: bool.

SUBSTR() Supported. -

SUBSTRING() Supported. -

SUBSTRING_I
NDEX()

Supported. -

STRCMP() Supported,
with
differences.

● In GaussDB, the types supported by function
input parameters are as follows:
– Character types: char, varchar, nvarchar2,

and text
– Binary type: BYTEA
– Value type: tinying [unsigned], smallint

[unsigned], integer [unsigned], bigint
[unsigned], float4, float8, and numeric

– Date and time type: date, time without
time zone, datetime, and timestamptz

● For the floating-point type in the numeric
type, the precision may be different from
that in MySQL due to different connection
parameter settings. Therefore, this scenario is
not recommended, or the NUMERIC type is
used instead.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 374

MySQL GaussDB Difference

SHA()/
SHA1()

Supported. -

SHA2() Supported. -

3.3.2.4 Forced Conversion Functions

Table 3-48 Forced conversion functions

MySQL GaussDB Difference

CAST() Supported,
with
differences.

The data type conversion rules and supported
conversion types are subject to the conversion
scope and rules supported by GaussDB.

CONVERT() Supported,
with
differences.

The data type conversion rules and supported
conversion types are subject to the conversion
scope and rules supported by GaussDB.

3.3.2.5 Encryption Functions

Table 3-49 Encryption functions

MySQL GaussDB Difference

AES_DECRYP
T()

Supported. -

AES_ENCRYP
T()

Supported. -

3.3.2.6 JSON Functions
JSON function differences:

● If you add escape characters as input parameters to JSON functions and other
functions that allow character inputs, the processing is different from that in
MySQL by default. To be compatible with MySQL, set the GUC parameter
standard_conforming_strings to off. In this case, the processing of escape
characters is compatible with MySQL, but a warning is generated for non-
standard character input. The escape characters \t and \u and escape digits
are different from those in MySQL. The JSON_UNQUOTE() function is
compatible with MySQL. Even if the GUC parameter is not set, no alarm is
generated.

● When processing an ultra-long number (the number contains more than 64
characters), the JSON function of GaussDB parses the number as a DOUBLE

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 375

and uses scientific notation for counting. The input parameters of the non-
JSON type are the same as those of MySQL. However, when input parameters
of the JSON type are used, the JSON type is not completely compatible with
MySQL. As a result, differences occur in this scenario. MySQL displays
complete numbers. (When the number length exceeds 82, MySQL displays an
incorrect result.) GaussDB still parses an ultra-long number into a double-
precision value. Long numbers are stored using floating-point numbers.
During calculation, precision loss occurs in both GaussDB and MySQL.
Therefore, you are advised to use character strings to store long numbers.
gaussdb=# SELECT json_insert('[1, 4,
99]','$[6]',json
_insert('[1,4]','$[5]',99
999999));
 json_insert

 [1, 4, 1e+74, [1, 4, 1e+74]]
(1 row)

Table 3-50 JSON functions

MySQL GaussDB Difference

JSON_APPEN
D()

Supported. -

JSON_ARRAY(
)

Supported. -

JSON_ARRAY_
APPEND()

Supported. -

JSON_ARRAY_
INSERT()

Supported. -

JSON_CONTA
INS()

Supported. -

JSON_CONTA
INS_PATH()

Supported. -

JSON_DEPTH(
)

Supported,
with
differences.

GaussDB returns values of the int type, while
MySQL returns values of the bigint type.

JSON_EXTRAC
T()

Supported. -

JSON_INSER
T()

Supported. -

JSON_KEYS() Supported. -

JSON_LENGT
H()

Supported,
with
differences.

GaussDB returns values of the int type, while
MySQL returns values of the bigint type.

JSON_MERG
E()

Supported. -

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 376

MySQL GaussDB Difference

JSON_OBJEC
T()

Supported. -

JSON_QUOT
E()

Supported,
with
differences.

Return value difference: In GaussDB, JSON is
returned. In MySQL, varchar or text is returned.

JSON_REMOV
E()

Supported. -

JSON_REPLAC
E()

Supported. -

JSON_SEARC
H()

Supported,
with
differences.

GaussDB returns the text type, while MySQL
returns the JSON type.

JSON_SET() Supported. -

JSON_TYPE() Supported,
with
differences.

JSON values of the numeric type are identified
as number, which is different from MySQL.

JSON_UNQU
OTE()

Supported. -

JSON_VALID(
)

Supported. -

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 377

3.3.2.7 Aggregate Functions

Table 3-51 Aggregate functions

MySQL GaussDB Difference

GROUP_CON
CAT()

Supported,
with
differences.

● If the group_concat parameter contains
both the DISTINCT and ORDER BY syntaxes,
all expressions following ORDER BY must be
in the DISTINCT expression.

● group_concat(... order by Number) does
not indicate the sequence of the parameter.
The number is only a constant expression,
which is equivalent to no sorting.

● The data type of the return value of
group_concat is always text regardless of
the data type of the parameter. For MySQL,
if group_concat contains binary parameters,
the return value is binary. In other cases, the
return value is a character string. If the
return value length is greater than 512 bytes,
the data type is a character large object or
binary large object.

● The value of group_concat_max_len ranges
from 0 to 1073741823. The maximum value
is smaller than that of MySQL.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 378

MySQL GaussDB Difference

DEFAULT() Supported,
with
differences.

● The default value of a column is an array.
GaussDB returns an array. MySQL does not
support the array type.

● GaussDB columns are hidden columns (such
as xmin and cmin). The default function
returns a null value.

● GaussDB supports default values of
partitioned tables, temporary tables, and
multi-table join query.

● GaussDB supports the query of nodes whose
column names contain character string
values (indicating names) and A_Star nodes
(indicating asterisks [*]), for example,
default(tt.t4.id) and default(tt.t4.*). For
invalid query column names and A_Star
nodes, the error information reported by
GaussDB is different from that reported by
MySQL.

● When the default value of a column is
created in GaussDB, the range of the column
type is not verified. As a result, an error may
be reported when the default function is
used.

● If the default value of a column is a function
expression, the default function in GaussDB
returns the calculated value of the default
expression of the column during table
creation. The default function in MySQL
returns NULL.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 379

3.3.2.8 Numeric Operation Functions

Table 3-52 Numeric operation functions

MySQL GaussDB Difference

log2() Supported,
with
differences.

● The display of decimal places is different
from that in MySQL. Due to the limitation of
the GaussDB floating-point data type, the
extra_float_digits parameter is used to
control the number of decimal places to be
displayed.

● Due to the internal processing difference of
the input precision, the calculation results of
GaussDB and MySQL are different.

● The following data types are supported:
– Integer types: bigint, int16, int, smallint,

and tinyint.
– Unsigned integer types: bigint unsigned,

integer unsigned, smallint unsigned, and
tinyint unsigned.

– Floating-point number type: numeric and
real.

– Character string type: character, character
varying, clob, and text. Only numeric
integer strings are supported.

– SET type.
– NULL type.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 380

MySQL GaussDB Difference

log10() Supported,
with
differences.

● The display of decimal places is different
from that in MySQL. Due to the limitation of
the GaussDB floating-point data type, the
extra_float_digits parameter is used to
control the number of decimal places to be
displayed.

● Due to the internal processing difference of
the input precision, the calculation results of
GaussDB and MySQL are different.

● The following data types are supported:
– Integer types: bigint, int16, int, smallint,

and tinyint.
– Unsigned integer types: bigint unsigned,

integer unsigned, smallint unsigned, and
tinyint unsigned.

– Floating-point number type: numeric and
real.

– Character string type: character, character
varying, clob, and text. Only numeric
integer strings are supported.

– SET type.
– NULL type.

RAND([seed]) Supported,
with
differences.

Due to the random number generation
algorithm used in the function, the random
number returned by the function is different
from that returned by MySQL.

3.3.2.9 Other Functions

Table 3-53 Other functions

MySQL GaussDB Difference

UUID() Supported. -

UUID_SHOR
T()

Supported. -

3.3.3 Operators
GaussDB is compatible with most MySQL operators, but there are some
differences. Unless otherwise specified, the operator behavior in MySQL-
compatible mode is the native GaussDB behavior by default.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 381

Table 3-54 Operators

MySQL GaussDB Difference

NULL-safe
equal (<=>)

Supported. -

[NOT]
REGEXP

Supported,
with
differences.

● If the GUC parameter b_format_dev_version
is set to 's2' and a pattern string with escape
characters such as "\\a", "\\d", "\\e", "\\n", "\
\Z", or "\\u" is matched with source
character strings "\a", "\d", "\e", "\n", "\Z", or
"\u", the behavior of GaussDB is different
from that of MySQL 5.7 but the same as that
of MySQL 8.0.

● When the GUC parameter
b_format_dev_version is set to 's2', "\b" in
GaussDB can match "\\b", but the matching
will fail in MySQL.

● If the input parameter of the pattern string is
invalid with only the right parenthesis ()),
GaussDB and MySQL 5.7 will report an error,
but MySQL 8.0 will not.

● In the rule of matching the de|abc sequence
with de or abc, when there are empty values
on the left and right of the pipe symbol (|),
MySQL 5.7 will report an error, but GaussDB
and MySQL 8.0 will not.

● The regular expression of the tab character
"\t" can match the character class [:blank:] in
GaussDB and MySQL 8.0 but cannot in
MySQL 5.7.

● GaussDB supports non-greedy pattern
matching. That is, the number of matching
characters is as small as possible. A question
mark (?) is added after some special
characters, for example, ?? *? +? {n}? {n,}?
{n,m}? MySQL 5.7 does not support non-
greedy pattern matching, and the error
message "Got error 'repetition-operator
operand invalid' from regexp" is displayed.
MySQL 8.0 already supports this function.

● In the binary character set, the text and
BLOB types will be converted to the bytea
type. However, the REGEXP operator does
not support the bytea type. Therefore, the
matching will fail.

[NOT] RLIKE Supported,
with
differences.

Same as [NOT] REGEXP.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 382

3.3.4 Character Sets
GaussDB allows you to specify the following character sets for databases,
schemas, tables, or columns.

Table 3-55 Character sets

MySQL GaussDB

utf8mb4 Supported.

gbk Supported.

gb18030 Supported.

NO TE

Currently, GaussDB does not perform strict encoding logic verification on invalid characters
that do not belong to the current character set. As a result, such invalid characters may be
successfully entered. However, an error is reported during verification in MySQL.

3.3.5 Collation Rules
GaussDB allows you to specify the following collation rules for schemas, tables, or
columns.

NO TE

Differences in collation rules:

● Currently, collation rules can only be specified for the character string type and some
binary types. You can check the typcollation attribute of a type in the pg_type system
catalog. If it is not 0, the type supports the collation. The collation can be specified for
all types in MySQL. However, collation rules are meaningless except those for character
strings and binary types.

● The current collation rules can be specified only when the corresponding character set is
the same as the database-level character set.

● The default collation of the utf8mb4 character set is utf8mb4_general_ci, which is the
same as that in MySQL 5.7. utf8mb4_0900_ai_ci is not the default collation of utf8mb4.

● In GaussDB, utf8 and utf8mb4 are the same character set.

Table 3-56 Collation rules

MySQL GaussDB

utf8mb4_general_ci Supported.

utf8mb4_unicode_ci Supported.

utf8mb4_bin Supported.

gbk_chinese_ci Supported.

gbk_bin Supported.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 383

MySQL GaussDB

gb18030_chinese_ci Supported.

gb18030_bin Supported.

binary Supported.

utf8mb4_0900_ai_ci Supported.

utf8_general_ci Supported.

utf8_bin Supported.

3.3.6 SQL

3.3.6.1 DDL

Table 3-57 DDL syntax compatibility

Description Syntax Difference

Create primary keys
and UNIQUE indexes
during table creation
and modification.

ALTER TABLE and
CREATE TABLE

● GaussDB does not support
the UNIQUE INDEX|KEY
index_name syntax. An
error will be reported
when the UNIQUE INDEX|
KEY index_name syntax is
used. However, MySQL
supports these functions.

● When a constraint is
created as a global
secondary index and
USING BTREE is specified
in the SQL statement, the
underlying index is created
as UB-tree.

● When the table joined
with the constraint is
Ustore and USING BTREE
is specified in the SQL
statement, the underlying
index is created as UB-
tree.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 384

Description Syntax Difference

Support prefix
indexes.

CREATE INDEX ● The prefix length cannot
exceed 2676. The actual
length of the key value is
restricted by the internal
page. If a column contains
multi-byte characters or
an index has multiple
keys, an error may be
reported when the index
line length exceeds the
threshold.

● In the CREATE INDEX
syntax, the following
keywords cannot be used
as prefix keys for column
names: COALESCE,
EXTRACT, GREATEST,
LEAST, LNNVL, NULLIF,
NVL, NVL2, OVERLAY,
POSITION, REGEXP_LIKE,
SUBSTRING,
TIMESTAMPDIFF, TREAT,
TRIM, XMLCONCAT,
XMLELEMENT, XMLEXISTS,
XMLFOREST, XMLPARSE,
XMLPI, XMLROOT, and
XMLSERIALIZE.

● Prefix keys are not
supported in primary key
and unique key indexes.

Specify character sets
and collation rules.

ALTER SCHEMA, ALTER
TABLE, CREATE
SCHEMA, and CREATE
TABLE

-

Create a partitioned
table.

CREATE TABLE
PARTITION

-

Specify table-level
and column-level
comments during
table creation and
modification.

CREATE TABLE and
ALTER TABLE

-

Specify index-level
comments during
index creation.

CREATE INDEX -

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 385

Description Syntax Difference

Exchange the
partition data of an
ordinary table and a
partitioned table.

ALTER TABLE
PARTITION

Differences in ALTER TABLE
EXCHANGE PARTITION:
● If MySQL tables or

partitions use tablespaces,
data in partitions and
ordinary tables cannot be
exchanged. If GaussDB
tables or partitions use
different tablespaces, data
in partitions and ordinary
tables can still be
exchanged.

● MySQL does not verify the
default values of columns.
Therefore, data in
partitions and ordinary
tables can be exchanged
even if the default values
are different. GaussDB
verifies the default values.
If the default values are
different, data in
partitions and ordinary
tables cannot be
exchanged.

● After the DROP COLUMN
operation is performed on
a partitioned table or an
ordinary table in MySQL,
if the table structure is
still consistent, data can
be exchanged between
partitions and ordinary
tables. In GaussDB, data
can be exchanged
between partitions and
ordinary tables only when
the deleted columns of
ordinary tables and
partitioned tables are
strictly aligned.

● MySQL and GaussDB use
different hash algorithms.
Therefore, data stored in
the same hash partition
may be inconsistent. As a
result, the exchanged data
may also be inconsistent.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 386

Description Syntax Difference

● MySQL partitioned tables
do not support foreign
keys. If an ordinary table
contains foreign keys or
other tables reference
foreign keys of an
ordinary table, data in
partitions and ordinary
tables cannot be
exchanged. GaussDB
partitioned tables support
foreign keys. If the
FOREIGN KEY constraints
of two tables are the
same, data in partitions
and ordinary tables can be
exchanged. If a GaussDB
partitioned table does not
contain foreign keys, an
ordinary table is
referenced by other tables,
and the partitioned table
is the same as the
ordinary table, data in the
partitioned table can be
exchanged with that in
the ordinary table.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 387

Description Syntax Difference

Support auto-
increment columns.

ALTER TABLE and
CREATE TABLE

● Currently, only local auto-
increment columns of
each DN are supported.

● It is recommended that
the auto-increment
column be the first
column of a non-global
secondary index.
Otherwise, an alarm is
generated when a table is
created, and errors may
occur when some
operations are performed
on a table that contains
auto-increment columns,
for example, ALTER TABLE
EXCHANGE PARTITION.
The auto-increment
column in MySQL must be
the first column of the
index.

● In the syntax
AUTO_INCREMENT =
value, value must be a
positive number less than
2^127. MySQL does not
verify the value.

● An error occurs if the
auto-increment continues
after an auto-increment
value reaches the
maximum value of a
column data type. In
MySQL, errors or warnings
may be generated during
auto-increment, and
sometimes auto-
increment continues until
the maximum value is
reached.

● GaussDB does not support
the
innodb_autoinc_lock_mod
e system variable, but
when its GUC parameter
auto_increment_cache is
set to 0, the behavior of
inserting auto-increment
columns in batches is

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 388

Description Syntax Difference

similar to that when the
MySQL system variable
innodb_autoinc_lock_mod
e is set to 1.

● When 0s, NULLs, and
definite values are
imported or batch inserted
into auto-increment
columns, the auto-
increment values inserted
after an error occurs in
GaussDB may not be the
same as those in MySQL.
The
auto_increment_cache
parameter is provided to
control the number of
reserved auto-increment
values.

● In different execution
plans, the auto-increment
sequence and reserved
auto-increment values
may be different from
those in MySQL. For
example, "INSERT INTO
table VALUES(...),(...),..." is
distributed to different
DNs. Therefore, in some
execution plans, DNs
cannot obtain the number
of rows to be inserted. The
auto_increment_cache
parameter is provided to
control the number of
reserved auto-increment
values.

● When auto-increment is
triggered by parallel
import or insertion of
auto-increment columns,
the cache value reserved
for each parallel thread is
used only in the thread. If
the cache value is not
used up, the values of
auto-increment columns
in the table are
discontinuous. The auto-

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 389

Description Syntax Difference

increment value generated
by parallel insertion
cannot be guaranteed to
be the same as that
generated in MySQL.

● The SERIAL data type of
GaussDB is an original
auto-increment column,
which is different from the
AUTO_INCREMENT
column. The SERIAL data
type of MySQL is the
AUTO_INCREMENT
column.

● The value of
auto_increment_offset
cannot be greater than
that of
auto_increment_increme
nt. Otherwise, an error
occurs. MySQL allows it
and states that
auto_increment_offset
will be ignored.

● If a table has a primary
key or index, the sequence
in which the ALTER TABLE
command rewrites table
data may be different
from that in MySQL.
GaussDB rewrites table
data based on the table
data storage sequence,
while MySQL rewrites
table data based on the
primary key or index
sequence. As a result, the
auto-increment sequence
may be different.

● When the ALTER TABLE
command is used to add
or modify auto-increment
columns, the number of
auto-increment values
reserved for the first time
is the number of rows in
the table statistics. The
number of rows in the

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 390

Description Syntax Difference

statistics may not be the
same as that in MySQL.

● When auto-increment is
performed in a trigger or
user-defined function, the
return value of
last_insert_id is updated.
MySQL does not update it.

● If the values of the GUC
parameters
auto_increment_offset
and
auto_increment_increme
nt are out of range, an
error occurs. MySQL
automatically changes the
value to a boundary value.

● The last_insert_id function
is not supported.

● Currently, local temporary
tables do not support
auto-increment columns.

● If sql_mode is set to
no_auto_value_on_zero,
the auto-increment
columns of the table are
not subject to NOT NULL
constraints. In GaussDB
and MySQL, when the
value of an auto-
increment column is not
specified, NULL will be
inserted into the auto-
increment column, but
auto-increment is
triggered for the former
and not triggered for the
latter.

Delete the PRIMARY
KEY constraints of a
table.

ALTER TABLE -

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 391

Description Syntax Difference

Support the CREATE
TABLE... LIKE syntax.

CREATE TABLE ... LIKE ● In versions earlier than
MySQL 8.0.16, CHECK
constraints are parsed but
their functions are
ignored. In this case,
CHECK constraints are not
replicated. GaussDB
supports replication of
CHECK constraints.

● For the set data type,
MySQL supports
replication while GaussDB
does not during table
creation.

● When a table is created,
all PRIMARY KEY
constraint names in
MySQL are fixed to
PRIMARY KEY. GaussDB
does not support
replication of PRIMARY
KEY constraint names.

● When a table is created,
MySQL supports
replication of UNIQUE KEY
constraint names, but
GaussDB does not.

● When a table is created,
MySQL versions earlier
than 8.0.16 do not have
CHECK constraint
information, but GaussDB
supports replication of
CHECK constraint names.

● When a table is created,
MySQL supports
replication of index
names, but GaussDB does
not.

● When a table is created
across sql_mode, MySQL is
controlled by the loose
mode and strict mode.
The strict mode may
become invalid in
GaussDB.
For example, if the source
table has the default value

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 392

Description Syntax Difference

"0000-00-00", GaussDB
can create a table that
contains the default value
"0000-00-00" in
"no_zero_date" strict
mode, which means that
the strict mode is invalid.
MySQL fails to create the
table because it is
controlled by the strict
mode.

● MySQL supports cross-
database table creation,
but GaussDB does not.

● If the source table is a
temporary table, you can
create a non-temporary
table in MySQL but not in
GaussDB.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 393

Description Syntax Difference

Compatible with
syntax for changing
table names.

ALTER TABLE[IF
EXISTS] tbl_name
RENAME [TO | AS | =]
new_tbl_name;
RENAME {TABLE |
TABLES} tbl_name TO
new_tbl_name [,
tbl_name2 TO
new_tbl_name2, ...];

● The ALTER RENAME
syntax in GaussDB
supports only the function
of changing the table
name and cannot be
coupled with other
function operations.

● In GaussDB, only the old
table name column
supports the
schema.table_name
format, and the new and
old table names belong to
the same schema.

● GaussDB does not support
renaming of old and new
tables across schemas.
However, if you have the
permission, you can
modify the names of
tables in other schemas in
the current schema.

● The syntax for renaming
multiple groups of tables
in GaussDB supports
renaming of all local
temporary tables, but
does not support the
combination of local
temporary tables and non-
local temporary tables.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 394

Description Syntax Difference

Create a partition. ALTER TABLE [IF
EXISTS] { table_name
[*] | ONLY table_name |
ONLY (table_name)}
action [, ...];

action:
move_clause |
exchange_clause |
row_clause |
merge_clause |
modify_clause |
split_clause |
add_clause |
drop_clause |
ilm_clause
add_clause:
ADD
{{partition_less_than_ite
m |
partition_start_end_ite
m | partition_list_item} |
PARTITION({partition_le
ss_than_item |
partition_start_end_ite
m |
partition_list_item})}

● The ALTER TABLE
table_name ADD
PARTITION
(partition_definition1,
partition_definition1,…);
syntax cannot be used to
add multiple partitions.

● Only the original syntax
for adding multiple
partitions is supported:
ALTER TABLE table_name
ADD PARTITION
(partition_definition1),
ADD PARTITION
(partition_definition2[y1]
), …;.

3.3.6.2 DML

Table 3-58 DML syntax compatibility

Description Syntax Difference

DELETE supports
ORDER BY and LIMIT.

DELETE -

UPDATE supports
ORDER BY and LIMIT.

UPDATE -

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 395

Description Syntax Difference

Support the REPLACE
INTO syntax.

REPLACE ● Difference between the
initial values of the time
type. For example:
– MySQL is not affected

by the strict or loose
mode. You can insert
time 0 into a table.
mysql> CREATE TABLE test(f1
TIMESTAMP NOT NULL, f2
DATETIME NOT NULL, f3
DATE NOT NULL);
Query OK, 1 row affected
(0.00 sec)

mysql> REPLACE INTO test
VALUES(f1, f2, f3);
Query OK, 1 row affected
(0.00 sec)

mysql> SELECT * FROM test;
+---------------------
+---------------------+------------
+
| f1 | f2
| f3 |
+---------------------
+---------------------+------------
+
| 0000-00-00 00:00:00 |
0000-00-00 00:00:00 |
0000-00-00 |
+---------------------
+---------------------+------------
+
1 row in set (0.00 sec)

– The time 0 can be
successfully inserted
only when GaussDB is
in loose mode.
gaussdb=# SET
b_format_version = '5.7';
SET
gaussdb=# SET
b_format_dev_version = 's1';
SET
gaussdb=# SET sql_mode = '';
SET
gaussdb=# CREATE TABLE
test(f1 TIMESTAMP NOT
NULL, f2 DATETIME NOT
NULL, f3 DATE NOT NULL)
DISTRIBUTE BY HASH(f1);
CREATE TABLE
gaussdb=# REPLACE INTO
test VALUES(f1, f2, f3);
REPLACE 0 1
gaussdb=# SELECT * FROM
test;
f1 | f2 | f3

+---------------------+------------

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 396

Description Syntax Difference

0000-00-00 00:00:00 |
0000-00-00 00:00:00 |
0000-00-00
(1 row)
In strict mode, the error
is reported: date/time
field value out of
range: "0000-00-00
00:00:00".

● Difference between the
initial values of the BIT
type when NOT NULL
exists. For example:
– The initial value of the

BIT type is an empty
string '' in MySQL, that
is:
mysql> CREATE TABLE test(f1
BIT(3) NOT NULL);
Query OK, 0 rows affected
(0.01 sec)

mysql> REPLACE INTO test
VALUES(f1);
Query OK, 1 row affected
(0.00 sec)

mysql> SELECT f1, f1 IS NULL
FROM test;
+----+------------+
| f1 | f1 is null |
+----+------------+
| | 0 |
| | 0 |
+----+------------+
2 rows in set (0.00 sec)

– If the initial value of
the BIT type is NULL in
GaussDB, an error is
reported.
gaussdb=# CREATE TABLE
test(f1 int, f2 BIT(3) NOT
NULL) DISTRIBUTE BY
HASH(f1);
CREATE TABLE
gaussdb=# REPLACE INTO
test VALUES(1, f2);
ERROR: null value in column
"f2" violates not-null
constraint
DETAIL: Failing row contains
(1, null).

SELECT supports
multi-partition query.

SELECT -

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 397

Description Syntax Difference

UPDATE supports
multi-partition
update.

UPDATE -

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 398

Description Syntax Difference

Import data by using
LOAD DATA.

LOAD DATA ● The execution result of the
LOAD DATA syntax is the
same as that in MySQL
strict mode. The loose
mode is not adapted
currently.

● The IGNORE and LOCAL
parameters are used only
to ignore the conflicting
rows when the imported
data conflicts with the
data in the table and to
automatically fill default
values for other columns
when the number of
columns in the file is less
than that in the table.
Other functions are not
supported currently.

● If the keyword LOCAL is
specified and the file path
is a relative path, the file
is searched from the
binary directory. If the
keyword LOCAL is not
specified and the file path
is a relative path, the file
is searched from the data
directory.

● If single quotation marks
are specified as
separators, escape
characters, and newline
characters in the syntax,
lexical parsing errors
occur.

● The
[(col_name_or_user_var
[,
col_name_or_user_var]...)
] parameter cannot be
used to specify a column
repeatedly.

● The newline character
specified by [FIELDS
TERMINATED BY 'string']
cannot be the same as the
separator specified by

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 399

Description Syntax Difference

[LINES TERMINATED
BY'string'].

● If the data written to a
table by running LOAD
DATA cannot be
converted to the data type
of the table, an error is
reported.

● Columns can only be
specified by column name
instead of user variables.

● The LOAD DATA SET
expression does not
support the calculation of
a specified column name.

● If there is no implicit
conversion function
between the return value
type of the SET expression
and the corresponding
column type, an error is
reported.

● LOAD DATA does not
support the INSERT or
DELETE trigger.

● LOAD DATA applies only
to tables but not views.

● The default newline
character of the file in
Windows is different from
that in Linux. LOAD DATA
cannot identify this
scenario and reports an
error. You are advised to
check the newline
character at the end of
lines in the file to be
imported.

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 400

Description Syntax Difference

Compatible with
INSERT IGNORE.

INSERT IGNORE ● GaussDB displays the error
information after the
downgrade. MySQL
records the error
information after the
downgrade to the error
stack and runs the show
warnings; command to
view the error
information. For example:

● Time type difference. For
example:
– The default values of

date, datetime, and
timestamp in GaussDB
are 0.
gaussdb=# CREATE TABLE
test(f1 DATE NOT NULL, f2
DATETIME NOT NULL, f3
TIMESTAMP NOT NULL);
CREATE TABLE
gaussdb=# INSERT IGNORE
INTO test VALUES(NULL,
NULL, NULL);
WARNING: null value in
column "f1" violates not-null
constraint
DETAIL: Failing row contains
(null, null, null, null).
WARNING: null value in
column "f2" violates not-null
constraint
DETAIL: Failing row contains
(null, null, null, null).
WARNING: null value in
column "f3" violates not-null
constraint
DETAIL: Failing row contains
(null, null, null, null).
INSERT 0 1
gaussdb=#
SELECT * FROM test;
 f1 | f2 |
f3
------------+---------------------
+---------------------
 1970-01-01 | 1970-01-01
00:00:00 | 1970-01-01
00:00:00
(1 row)

– The default values of
date, datetime, and
timestamp in MySQL
are 0.
mysql> CREATE TABLE test(f1
DATE NOT NULL, f2
DATETIME NOT NULL, f3
TIMESTAMP NOT NULL);

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 401

Description Syntax Difference

Query OK, 0 rows affected
(0.00 sec)

mysql> INSERT IGNORE INTO
test VALUES(NULL, NULL,
NULL);
Query OK, 1 row affected, 3
warnings (0.00 sec)

mysql> show warnings;
+---------+------
+----------------------------+
| Level | Code |
Message |
+---------+------
+----------------------------+
| Warning | 1048 | Column 'f1'
cannot be null |
| Warning | 1048 | Column 'f2'
cannot be null |
| Warning | 1048 | Column 'f3'
cannot be null |
+---------+------
+----------------------------+
3 rows in set (0.00 sec)

mysql> SELECT * FROM test;
+------------+---------------------
+---------------------+
| f1 | f2 |
f3 |
+------------+---------------------
+---------------------+
| 0000-00-00 | 0000-00-00
00:00:00 | 0000-00-00
00:00:00 |
+------------+---------------------
+---------------------+
1 row in set (0.00 sec)

● GaussDB does not support
the MySQL bit type.
Therefore, the INSERT
IGNORE error downgrade
is not supported when the
NOT NULL constraint of
the bit type is ignored and
the length of the inserted
bit type is different from
that defined.
– Bit type in GaussDB

gaussdb=# CREATE TABLE
test(f1 BIT(10) NOT NULL);
CREATE TABLE
gaussdb=# INSERT IGNORE
INTO test VALUES(NULL);
ERROR: Un-support feature
DETAIL: ignore null for insert
statement is not supported in
column f1.
gaussdb=# INSERT IGNORE
INTO test VALUES('1010');

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 402

Description Syntax Difference

ERROR: bit string length 4
does not match type bit(10)
CONTEXT: referenced column:
f1

– Bit type in MySQL
mysql> CREATE TABLE test(f1
BIT(10) NOT NULL);
Query OK, 0 rows affected
(0.00 sec)

mysql> INSERT IGNORE INTO
test VALUES(NULL);
Query OK, 1 row affected, 1
warning (0.00 sec)

mysql> INSERT IGNORE INTO
test VALUES('1010');
Query OK, 1 row affected, 1
warning (0.01 sec)

● If the precision is specified
for the time type in
MySQL, the precision is
displayed when the zero
value is inserted. It is not
displayed in GaussDB. For
example:
– Time precision specified

in GaussDB
gaussdb=# CREATE TABLE
test(f1 TIME(3) NOT NULL, f2
DATETIME(3) NOT NULL, f3
TIMESTAMP(3) NOT NULL);
CREATE TABLE
gaussdb=# INSERT IGNORE
INTO test
VALUES(NULL,NULL,NULL);
WARNING: null value in
column "f1" violates not-null
constraint
DETAIL: Failing row contains
(null, null, null).
WARNING: null value in
column "f2" violates not-null
constraint
DETAIL: Failing row contains
(null, null, null).
WARNING: null value in
column "f3" violates not-null
constraint
DETAIL: Failing row contains
(null, null, null).
INSERT 0 1
gaussdb=# SELECT * FROM
test;
 f1 | f2 |
f3
----------+---------------------
+---------------------
 00:00:00 | 1970-01-01
00:00:00 | 1970-01-01 00:00:00
(1 row)

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 403

Description Syntax Difference

– Time precision specified
in MySQL
mysql> CREATE TABLE test(f1
TIME(3) NOT NULL, f2
DATETIME(3) NOT NULL, f3
TIMESTAMP(3) NOT NULL);
Query OK, 0 rows affected
(0.00 sec)

mysql> INSERT IGNORE INTO
test
VALUES(NULL,NULL,NULL);
Query OK, 1 row affected, 3
warnings (0.00 sec)

mysql> SELECT * FROM test;
+--------------
+-------------------------
+-------------------------+
| f1 | f2 |
f3 |
+--------------
+-------------------------
+-------------------------+
| 00:00:00.000 | 0000-00-00
00:00:00.000 | 0000-00-00
00:00:00.000 |
+--------------
+-------------------------
+-------------------------+
1 row in set (0.00 sec)

● The execution process in
MySQL is different from
that in GaussDB.
Therefore, the number of
generated warnings may
be different. For example:
– Number of warnings

generated in GaussDB
gaussdb=# CREATE TABLE
test(f1 INT, f2 INT not null);
CREATE TABLE
gaussdb=# INSERT INTO test
VALUES(1,0),(3,0),(5,0);
INSERT 0 3
gaussdb=# INSERT IGNORE
INTO test SELECT f1+1, f1/f2
FROM test;
WARNING: division by zero
CONTEXT: referenced column:
f2
WARNING: null value in
column "f2" violates not-null
constraint
DETAIL: Failing row contains
(2, null).
WARNING: division by zero
CONTEXT: referenced column:
f2
WARNING: null value in
column "f2" violates not-null

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 404

Description Syntax Difference

constraint
DETAIL: Failing row contains
(4, null).
WARNING: division by zero
CONTEXT: referenced column:
f2
WARNING: null value in
column "f2" violates not-null
constraint
DETAIL: Failing row contains
(6, null).
INSERT 0 3

– Number of warnings
generated in MySQL
mysql> CREATE TABLE test(f1
INT, f2 INT not null);
Query OK, 0 rows affected
(0.01 sec)

mysql> INSERT INTO test
VALUES(1,0),(3,0),(5,0);
Query OK, 3 rows affected
(0.00 sec)
Records: 3 Duplicates: 0
Warnings: 0

mysql> INSERT IGNORE INTO
test SELECT f1+1, f1/f2 FROM
test;
Query OK, 3 rows affected, 4
warnings (0.00 sec)
Records: 3 Duplicates: 0
Warnings: 4

● The differences between
MySQL's and GaussDB's
INSERT IGNORE in
triggers are as follows:
– INSERT IGNORE used

in a GaussDB trigger
gaussdb=# CREATE TABLE
test1(f1 INT NOT NULL);
CREATE TABLE
gaussdb=# CREATE TABLE
test2(f1 INT);
CREATE TABLE
gaussdb=# CREATE OR
REPLACE FUNCTION
trig_test() RETURNS TRIGGER
AS $$
gaussdb$# BEGIN
gaussdb$# INSERT IGNORE
INTO test1 VALUES(NULL);
gaussdb$# RETURN NEW;
gaussdb$# END;
gaussdb$# $$ LANGUAGE
plpgsql;
CREATE FUNCTION
gaussdb=# CREATE TRIGGER
trig2 BEFORE INSERT ON
test2 FOR EACH ROW
EXECUTE PROCEDURE

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 405

Description Syntax Difference

trig_test();
CREATE TRIGGER
gaussdb=# INSERT INTO test2
VALUES(NULL);
WARNING: null value in
column "f1" violates not-null
constraint
DETAIL: Failing row contains
(null).
CONTEXT: SQL statement
"INSERT IGNORE INTO test1
VALUES(NULL)"
PL/pgSQL function trig_test()
line 3 at SQL statement
INSERT 0 1
gaussdb=# SELECT * FROM
test1;
 f1

 0
(1 rows)

gaussdb=# SELECT * FROM
test2;
 f1

(1 rows)

– INSERT IGNORE used
in a MySQL trigger
mysql> CREATE TABLE
test1(f1 INT NOT NULL);
Query OK, 0 rows affected
(0.01 sec)

mysql> CREATE TABLE
test2(f1 INT);
Query OK, 0 rows affected
(0.00 sec)

mysql> DELIMITER ||
mysql> CREATE TRIGGER trig2
BEFORE INSERT ON test2 FOR
EACH ROW
 -> BEGIN
 -> INSERT IGNORE into
test1 values(NULL);
 -> END||
Query OK, 0 rows affected
(0.01 sec)

mysql> DELIMITER ;
mysql> INSERT INTO test2
VALUES(NULL);
ERROR 1048 (23000): Column
'f1' cannot be null
mysql> INSERT IGNORE INTO
test2 VALUES(NULL);
Query OK, 1 row affected
(0.00 sec)

mysql> SELECT * FROM test1;
+----+
| f1 |

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 406

Description Syntax Difference

+----+
| 0 |
+----+
1 row in set (0.00 sec)

mysql> SELECT * FROM test2;
+------+
| f1 |
+------+
| NULL |
+------+
1 row in set (0.00 sec)

● The implementation
mechanism of Boolean
and serial in GaussDB is
different from that in
MySQL. Therefore, the
default zero value in
GaussDB is different from
that in MySQL. For
example:
– Behavior in GaussDB

gaussdb=# CREATE TABLE
test(f1 SERIAL, f2 BOOL NOT
NULL);
NOTICE: CREATE TABLE will
create implicit sequence
"test_f1_seq" for serial column
"test.f1"
CREATE TABLE
gaussdb=# INSERT IGNORE
INTO test values(NULL,NULL);
WARNING: null value in
column "f1" violates not-null
constraint
DETAIL: Failing row contains
(null, null).
WARNING: null value in
column "f2" violates not-null
constraint
DETAIL: Failing row contains
(null, null).
INSERT 0 1
gaussdb=# SELECT * FROM
test;
 f1 | f2
----+----
 0 | f
(1 row)

– Behavior in MySQL
mysql> CREATE TABLE test(f1
SERIAL, f2 BOOL NOT NULL);
Query OK, 0 rows affected
(0.00 sec)

mysql> INSERT IGNORE INTO
test values(NULL,NULL);
Query OK, 1 row affected, 1
warning (0.00 sec)

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 407

Description Syntax Difference

mysql> SELECT * FROM test;
+----+----+
| f1 | f2 |
+----+----+
| 1 | 0 |
+----+----+
1 row in set (0.00 sec)

3.3.6.3 DCL

Table 3-59 DCL syntax compatibility

Description Syntax Difference

Set names with
COLLATE specified.

SET [SESSION |
LOCAL] NAMES
{'charset_name'
[COLLATE
'collation_name'] |
DEFAULT};

GaussDB does not allow
charset_name to be different
from the database character
set. For details, see "SQL
Reference > SQL Syntax > S >
SET" in Developer Guide.

3.3.7 Drivers

3.3.7.1 JDBC

3.3.7.1.1 JDBC API Reference

The JDBC API definitions in GaussDB are the same as those in MySQL and comply
with industry standards. This section describes the behavior differences of JDBC
APIs between GaussDB in MySQL-compatible mode and MySQL.

Obtaining Data from a Result Set

ResultSet objects provide a variety of methods to obtain data from a result set.
Table 3-60 describes the common methods for obtaining data. If you want to
know more about other methods, see JDK official documents.

Table 3-60 Common methods for obtaining data from a result set

Method Description Difference

int getInt(int
columnIndex)

Obtains int
data by
column
index.

-

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 408

Method Description Difference

int
getInt(String
columnLabel)

Obtains int
data by
column
name.

-

String
getString(int
columnIndex)

Obtains
string data
by column
index.

If the column type is integer and the column
contains the ZEROFILL attribute, GaussDB pads
0s to meet the width required by the ZEROFILL
attribute and outputs the result. MySQL directly
outputs the result.

String
getString(Stri
ng
columnLabel)

Obtains
string data
by column
name.

If the column type is integer and the column
contains the ZEROFILL attribute, GaussDB pads
0s to meet the width required by the ZEROFILL
attribute and outputs the result. MySQL directly
outputs the result.

Date
getDate(int
columnIndex)

Obtains date
data by
column
index.

-

Date
getDate(Strin
g
columnLabel)

Obtains date
data by
column
name.

-

GaussDB
Compatibility(Distributed) 3 MySQL Compatibility Description

Issue 01 (2025-09-09) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 409

	Contents
	1 GaussDB Compatibility Overview
	2 Oracle Compatibility Description
	2.1 Overview of Oracle Database Compatibility
	2.2 Basic SQL Elements
	2.2.1 Data Types
	2.2.2 Data Type Comparison Rules
	2.2.3 Literals
	2.2.4 Format Models
	2.2.5 Nulls
	2.2.6 Comments
	2.2.7 Database Objects
	2.2.8 Database Object Names and Qualifiers
	2.2.9 Syntax for Schema Objects and Parts in SQL Statements

	2.3 Pseudocolumns
	2.4 Operators
	2.5 Expressions
	2.6 Conditions
	2.7 Drivers
	2.7.1 JDBC
	2.7.1.1 Array
	2.7.1.2 Struct

	2.8 Common SQL DDL Clauses
	2.9 SQL Queries and Subqueries
	2.10 PL/SQL Language
	2.10.1 Basic PL/SQL Syntax
	2.10.2 Data Type Compatibility
	2.10.3 Control Statements
	2.10.4 Collections and Records
	2.10.5 Static SQL Statements
	2.10.6 Dynamic SQL Statements
	2.10.7 Triggers

	2.11 System Functions
	2.11.1 Single-Row Functions
	2.11.2 Other Functions

	2.12 System Views
	2.13 Advanced Packages

	3 MySQL Compatibility Description
	3.1 Overview of MySQL Compatibility
	3.2 M-compatible Mode
	3.2.1 Data Types
	3.2.1.1 Numeric Data Types
	3.2.1.2 Date and Time Data Types
	3.2.1.3 String Data Types
	3.2.1.4 Binary Data Types
	3.2.1.5 Attributes Supported by Data Types
	3.2.1.6 Data Type Conversion

	3.2.2 System Functions
	3.2.2.1 System Function Compatibility Overview
	3.2.2.2 Flow Control Functions
	3.2.2.3 Date and Time Functions
	3.2.2.4 String Functions
	3.2.2.5 Forced Conversion Functions
	3.2.2.6 Encryption Functions
	3.2.2.7 Comparison Functions
	3.2.2.8 Aggregate Functions
	3.2.2.9 Numeric Operation Functions
	3.2.2.10 Other Functions

	3.2.3 Operators
	3.2.4 Character Sets
	3.2.5 Collation Rules
	3.2.6 Transactions
	3.2.7 SQL
	3.2.7.1 Keywords
	3.2.7.2 Identifiers
	3.2.7.3 DDL
	3.2.7.4 DML
	3.2.7.5 DCL
	3.2.7.6 Other Statements
	3.2.7.7 Users and Permissions
	3.2.7.8 System Catalogs and System Views

	3.2.8 Drivers
	3.2.8.1 ODBC
	3.2.8.1.1 ODBC API Reference

	3.2.8.2 JDBC

	3.3 MySQL-compatible Mode
	3.3.1 Data Types
	3.3.1.1 Numeric Data Types
	3.3.1.2 Date and Time Data Types
	3.3.1.3 String Data Types
	3.3.1.4 Binary Data Types
	3.3.1.5 JSON Data Type
	3.3.1.6 Attributes Supported by Data Types
	3.3.1.7 Data Type Conversion

	3.3.2 System Functions
	3.3.2.1 Flow Control Functions
	3.3.2.2 Date and Time Functions
	3.3.2.3 String Functions
	3.3.2.4 Forced Conversion Functions
	3.3.2.5 Encryption Functions
	3.3.2.6 JSON Functions
	3.3.2.7 Aggregate Functions
	3.3.2.8 Numeric Operation Functions
	3.3.2.9 Other Functions

	3.3.3 Operators
	3.3.4 Character Sets
	3.3.5 Collation Rules
	3.3.6 SQL
	3.3.6.1 DDL
	3.3.6.2 DML
	3.3.6.3 DCL

	3.3.7 Drivers
	3.3.7.1 JDBC
	3.3.7.1.1 JDBC API Reference

