
MapReduce Service

Component Development
Specifications

Issue 01

Date 2024-05-11

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Security Authentication... 1
1.1 Rules.. 1
1.2 Suggestions... 1

2 ClickHouse...2
2.1 Rules.. 2
2.2 Suggestions... 4

3 Doris..8
3.1 Table Creation Rules...8
3.2 Data Change... 9
3.3 Naming Conventions... 10
3.4 Data Query..11
3.5 Data Import.. 12
3.6 UDF Development.. 13
3.7 Connection and Running.. 14

4 Flink.. 15
4.1 Applicable Scenarios.. 15
4.2 Rules.. 15
4.3 Suggestions... 15

5 HBase..16
5.1 Application Scenarios.. 16
5.2 Rules.. 16
5.3 Suggestions... 21
5.4 Examples.. 23
5.5 Appendix.. 29

6 HDFS... 31
6.1 Application Scenarios.. 31
6.2 Rules.. 31
6.3 Suggestions... 36

7 Hive...37
7.1 Application Scenarios.. 37
7.2 Rules.. 37

MapReduce Service
Component Development Specifications Contents

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

7.3 Suggestions... 41
7.4 Examples.. 43

8 Hudi.. 52
8.1 Applicable Scenarios.. 52
8.2 Suggestions... 52

9 Kafka.. 54
9.1 Application Scenarios.. 54
9.2 Rules.. 54
9.3 Suggestions... 55

10 Mapreduce.. 56
10.1 Application Scenarios.. 56
10.2 Rules..56
10.3 Suggestions...58
10.4 Examples..58

11 Spark.. 61
11.1 Application Scenarios.. 61
11.2 Rules..61
11.3 Suggestions...64

12 Yarn...68
12.1 Application Scenarios.. 68
12.2 Rules..68

MapReduce Service
Component Development Specifications Contents

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

1 Security Authentication

1.1 Rules

Only one account is used in each process and a process needs explicit
authentication only once.

This rule must be met in the following scenarios (pay attention to this in the
design phase):

1. A process can access multiple clusters at the same time (Each cluster has
independent KrbServer and LdapServer.)

2. All applications running in a container (for example, Tomcat) belong to the
same process.

1.2 Suggestions

Account Management Principles
1. Service application should apply for new accounts instead of using original

system accounts.
2. The new accounts should meet the principle of least privilege.

MapReduce Service
Component Development Specifications 1 Security Authentication

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

2 ClickHouse

2.1 Rules

Ensure That the Time on the Client Is the Same as That on the Server If the
Cluster Is Installed in the Security Mode

If the cluster is of the security edition and Kerberos authentication is required, the
time on the server must be the same as that on the client. Pay attention to the
time difference conversion between time zones. If the time is inconsistent, the
client authentication fails and subsequent service processes cannot be executed.

ClickHouse Uses Its Own ZooKeeper Service

ClickHouse relies heavily on ZooKeeper and does many read and write operations
on it. To avoid affecting other services, each ClickHouse service should use its own
ZooKeeper service.

Use partition fields and index fields of data tables properly

The MergeTree engine organizes and stores data in partition directories. During
data query, partitions can be used to effectively skip useless data files and reduce
data reading.

The MergeTree engine sorts data based on the index field and generates sparse
indexes based on the index_granularity configuration. Data can be quickly filtered
based on index fields, reducing data reading and improving query performance.

Insert a large volume of data at a low frequency

Each time data is inserted in ClickHouse, one or more part files are generated. If
there are too many data parts, the pressure on merging increases and an
exception may occur, affecting data insertion. You are advised to insert 100,000
rows at a time and ensure the frequency is no more than once per second.

MapReduce Service
Component Development Specifications 2 ClickHouse

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

Do not use the character type to store data of the time, date, or numeric
type

Especially when the time, date, or numeric field needs to be calculated or
compared.

The number of records in a single table (distributed table) cannot exceed
trillions, and the number of records in a single table (local table) cannot
exceed ten billions

The performance of querying trillions of tables is poor, and the cluster
maintenance is difficult.

Data lifecycle management must be considered during table design
The disk space is limited, and data lifecycle management needs to be considered.
The MergeTree engine supports column fields and table-level TTL when creating
tables. When the values in a column field expire, ClickHouse replaces them with
the default values of the data type. If all values of a column in a partition have
expired, ClickHouse deletes the column files in the partition directory from the file
system. When the data in a table expires, the ClickHouse deletes all the
corresponding rows.

The external component ensures the idempotence of imported data
ClickHouse does not support transactions for data write. Use the external import
module to control data idempotence. For example, if data of a batch fails to be
imported, drop the corresponding partition data. After the fault is rectified, import
the partition data again.

When a local ClickHouse table is created, the partition by keyword must be
carried. Otherwise, the table cannot be migrated on the ClickHouse data
migration page of Manager

The ClickHouse data migration page depends on the partition field of the table
during table data migration. If partition by is not used to create partitions when
the table is created, the table cannot be migrated on the ClickHouse data
migration page of Manager.

Place a small table on the right for join query
When two tables are joined, the data in the right table is loaded to the memory,
and then the data in the left table is traversed based on the data in the right table
for matching. Placing the small table on the right reduces the number of match
queries. According to the usage, the performance of joining a large table to a
small table is improved by several orders of magnitude compared with that of
joining a small table to a large table.

MapReduce Service
Component Development Specifications 2 ClickHouse

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

2.2 Suggestions

Properly configure the maximum number of concurrent operations
ClickHouse has a high processing speed because it uses the parallel processing
mechanism. Even if a query is performed, half of the CPU of the server is used by
default. Therefore, the ClickHouse does not support high-concurrency query
scenarios. The default maximum number of concurrent requests is 100. You can
adjust this number as needed, but it should be no more than 200.

Deploy the load balancing component. The query is performed based on the
load balancing component to prevent the performance from being affected
due to heavy single-point query pressure

ClickHouse can connect to any node in the cluster for query. If the query is
performed on one node, the node may be overloaded and the reliability is low.
You are advised to use ClickHouseBalancer or other load balancing services to
balance the query load and improve reliability.

Properly set the partition key, ensure that the number of partitions is less
than 1000, and use the integer type for the partition field

1. You are advised to use toYYYYMMDD (table field pt_d) as the partition key.
The table field pt_d is of the date type.

2. If hourly partitioning is required in the service scenario, use toYYYYMMDD
(table field pt_d) and toYYYYMMDD (table field pt_h) as the joint
partitioning key. toYYYYMMDD (table field pt_h) is an integer number of
hours.

3. If data needs to be stored for many years, you are advised to create partitions
by month, for example, toYYYYMM (table field pt_d).

4. Properly control the number of parts based on factors such as the data
partition granularity, volume of data submitted in each batch, and data
storage period.

During query, the most frequently used and most filtered fields are used as
the primary keys. The fields are sorted in descending order of access
frequency and dimension cardinality

Data is sorted and stored based on primary keys. When querying data, you can
quickly filter data based on primary keys. Setting primary keys properly during
table creation can greatly reduce the amount of data to be read and improve
query performance. For example, if the service ID needs to be specified for all
analysis, the service ID field can be used as the first field of the primary key.

Properly set the sparse index granularity based on service scenarios
The primary key index of ClickHouse is stored by using a sparse index. The default
sampling granularity of the sparse index is 8192 rows, that is, one record is
selected from every 8192 rows in the index file.

MapReduce Service
Component Development Specifications 2 ClickHouse

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

Suggestions:

1. The smaller the index granularity is, the more effective the query in a small
range is. This avoids the waste of query resources.

2. The larger the index granularity is, the smaller the index file is, and the faster
the index file is processed.

3. If the table index granularity exceeds 1 billion, set this parameter to 16384.
Otherwise, set this parameter to 8192 or a smaller value.

Local Table Creation Reference

Reference:

CREATE TABLE mybase_local.mytable
(
 `did` Int32,
 `app_id` Int32,
 `region` Int32,
 `pt_d` Date
)
ENGINE = ReplicatedMergeTree('/clickhouse/tables/{shard}/mybase_local/mytable', '{replica}')
PARTITION BY toYYYYMMDD(pt_d)
ORDER BY (app_id, region)
SETTINGS index_granularity = 8192, use_minimalistic_part_header_in_zookeeper = 1;

Instructions:

1. Select a table engine:

ReplicatedMergeTree: MergeTree engine that supports the replica feature. It
is the most commonly used engine.

2. Table information registration path on ZooKeeper, which is used to distinguish
different configurations in the cluster:

/clickhouse/tables/{shard}/{databaseName}/{tableName}: {shard}
indicates the shard name, {databaseName} indicates the database name,
and {tableName} indicates the replicated table name.

3. order by primary key field:

The most frequently used and most filterable field is used as the primary key.
The dimensions are sorted in ascending order of access frequency and
dimension cardinality. It is recommended that the number of sorting fields be
less than or equal to 4. Otherwise, the merge pressure is high. The sorting
field cannot be null. If the sorting field is null, data conversion is required.

4. partition by field

The partition key cannot be null. If the field contains a null value, data
conversion is required.

5. Table-level parameter configuration:

index_granularity: sparse index granularity. The default value is 8192.

use_minimalistic_part_header_in_zookeeper: whether to enable the
optimized storage mode of the new version for data storage in the ZooKeeper.

6. For details about how to create a table, visit https://clickhouse.tech/
docs/en/engines/table-engines/mergetree-family/mergetree/.

MapReduce Service
Component Development Specifications 2 ClickHouse

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

https://clickhouse.tech/docs/en/engines/table-engines/mergetree-family/mergetree/
https://clickhouse.tech/docs/en/engines/table-engines/mergetree-family/mergetree/

Distributed Table Creation Reference

Reference:
CREATE TABLE mybase.mytable AS mybase_local.mytable
ENGINE = Distributed(cluster_3shards_2replicas, mybase_local, mytable, rand());

Instructions:

1. Name of the distributed table: mybase.mytable.
2. Name of the local table: mybase_local.mytable.
3. Use AS to associate the distributed table with the local table to ensure that

the field definitions of the distributed table are the same as those of the local
table.

4. Parameter description of the distributed table engine:
cluster_3shards_2replicas: name of a logical cluster.
mybase_local: name of the database where the local table is located.
mytable: local table name.
rand(): (optional) sharding key, which can be the raw data (such as did) of a
column in the table or the result of a function call, such as rand(). Note that
data must be evenly distributed in this key. Another common operation is to
use the hash value of a column with a large difference, for example,
intHash64(user_id).

Select the minimum type that meets the requirements based on the fields in
the service scenario table

Numeral type, such as UInt8/UInt16/UInt32/UInt64, Int8/Int16/Int32/Int64,
Float32/Float64. The performance varies according to the length.

Perform data analysis based on large and wide tables. Do not join large
tables. Convert distributed join queries into join queries of local tables to
improve performance

The performance of ClickHouse distributed join is poor. You are advised to
aggregate data into a wide table on the model side and then import the table to
ClickHouse. Queries in distributed join mode are converted to join queries on local
tables. This eliminates the transmission of a large volume of data between nodes
and reduces the volume of data involved in the calculation of local tables. The
service layer summarizes data based on the local join results of all shards. The
performance is improved remarkably.

Properly set the part size

The min_bytes_to_rebalance_partition_over_jbod parameter indicates the
minimum size of the part involved in automatic balancing and distribution among
disks in a JBOD array. The value must be appropriately set.

If the value is smaller than max_bytes_to_merge_at_max_space_in_pool/1024,
the ClickHouse server process fails to be started and unnecessary parts move
between disks.

MapReduce Service
Component Development Specifications 2 ClickHouse

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

If the value of min_bytes_to_rebalance_partition_over_jbod is greater than that
of max_data_part_size_bytes (maximum size of parts that can be stored on disks
in one array), no part can meet the condition for automatic balancing.

MapReduce Service
Component Development Specifications 2 ClickHouse

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

3 Doris

3.1 Table Creation Rules
This section describes the rules and suggestions for creating a Doris table.

Doris Table Creation Rules
● When creating a Doris table and specifying bucket buckets, ensure that the

data size of each bucket ranges from 100 MB to 3 GB and the maximum
number of buckets in a single partition does not exceed 5000.

● If the number of data records in a table exceeds 500 million, you must set a
bucket policy.

● Do not set too many bucket columns in a table. Generally, you only need to
set one or two columns. In addition, you need to ensure even data
distribution and balanced query throughput.
– Data is evenly distributed to prevent data skew in some buckets from

affecting data balancing and query efficiency.
– The query throughput uses the bucket tailoring optimization of query

SQL statements to avoid full bucket scanning and improve query
performance.

– Bucket column selection: Columns with even data and commonly used as
query conditions are preferentially used as bucket columns.
You can use the following methods to analyze whether data skew occurs:
SELECT a, b, COUNT(*) FROM tab GROUP BY a,b;
After the command is executed, check whether the difference between
the number of data records in each group is small. If the difference
exceeds 2/3 or 1/2, select another bucket field.

● Do not use dynamic partitions for less than 20 million data records. Dynamic
partitioning automatically creates partitions, but users cannot pay attention
to small tables. As a result, a large number of unused partitions are created to
distinguish buckets.

● When creating a table, ensure that there are three to five sort keys. If there
are too many sort keys, data writing will be slow and data import
performance will be affected.

MapReduce Service
Component Development Specifications 3 Doris

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

● If Auto Bucket is not used, buckets need to be divided based on the existing
data volume to improve the import and query performance. Auto Bucket
causes a large number of tablets. As a result, a large number of small files
exist.

● The number of copies for creating a table must be at least 2. The default
value is 3. Do not use a single backup.

Doris Table Creation Suggestions
● The number of materialized views in a single table cannot exceed six. It is not

recommended that materialized views be nested. You are not advised to use
materialized views to perform ETL tasks such as heavy aggregation and join
calculation during data writing.

● If there is a large amount of historical partition data but the historical data is
small, the data is unbalanced, or the data query probability is low, you can
create historical partitions (such as yearly and monthly partitions) and store
all historical data in the corresponding partitions.
The method of creating a history partition is FROM ("2000-01-01") TO
("2022-01-01") INTERVAL 1 YEAR.

● If the data volume is less than 10 million to 200 million, you do not need to
set partitions (the Doris has a default partition). Instead, you can directly use
the bucket policy.

● If more than 30% data skew occurs in the bucket field, do not use the hash
bucketing policy. Instead, use the random bucketing policy. The related
commands are as follows:
Create table ... DISTRIBUTED BY RANDOM BUCKETS 10 ...

● During table creation, the first field must be the column that is most
frequently queried. By default, the prefix index quick query capability is
provided. The column that is most frequently queried and has a high
cardinality is selected as the prefix index, by default, the first 36 bytes of a
row are used as the prefix index of the row. (A column of the varchar type can
match only 20 bytes, and the prefix index will be truncated if less than 36
bytes are matched.)

● For more than 100 million data records, if fuzzy match or equivalent/in
conditions are used, you can use inverted indexes (supported since Doris 2.x)
or Bloomfilter. For orthogonal queries with low cardinality columns, bitmap
indexes are recommended. (The cardinality of bitmap indexes ranges from
10000 to 100000.)

● When creating a table, you need to plan the number of fields to be used in
the future. You can reserve dozens of fields of the integer or character type. If
fields are insufficient in the future, you need to add fields temporarily at a
high cost.

3.2 Data Change
This section describes the rules and suggestions for changing Doris data.

Doris Data Change Rules
● Applications cannot directly use the delete or update statement to change

data. You can use the upsert mode of the CDC to change data.

MapReduce Service
Component Development Specifications 3 Doris

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

● You are not advised to frequently add or delete fields in tables during peak
hours. You are advised to reserve fields to be used in the early stage of table
creation. If fields must be added or deleted, or field types and comments
must be modified, stop writing and modifying related tables during off-peak
hours, and then re-create the tables.

a. Create a table. The structure of the table is the same as that of the table
whose fields need to be added, deleted, or modified. Add new fields to
the new table, delete unnecessary fields, or modify fields whose types
need to be changed.

b. Select specified fields and insert them to the newly created table.

INSERT INTONewly created table SELECTSpecified column FROM
Existing table whose column needs to be modified;

NO TE

If the table contains a large amount of data, you can import the data to the new
table in batches by time to reduce the instantaneous high CPU or MEM memory
usage and affect the query service. The command is as follows:

insert into tab1 select col from tab where date <= xx;

c. Exchange the names of the two tables. For more information, see
Exchange Tables.

ALTER TABLE [db.]tbl1 REPLACE WITH TABLE tbl2 [PROPERTIES('swap'
= 'true')];

● Some queries may take a long time and consume a lot of memory and CPU
resources. Therefore, you need to set the query timeout parameter
query_timeout at the SQL or user level.

Doris Data Change Suggestions

When performing special large SQL operations, you can use a method similar to
SELECT /*+ SET_VAR(query_timeout = xxx*/ from table to set session variables
in hint mode. Do not set global system variables.

3.3 Naming Conventions
This section describes the rules and suggestions for naming a database or table
when you create a Doris database or table.

Doris Naming Rules

The database character set must be UTF-8 and only UTF-8 is supported.

Doris Naming Suggestions
● The database name is in lowercase and separated by underscores (_). The

length of the database name is less than 62 bytes.

● The name of the Doris table is case sensitive. The name is in lowercase and
separated by underscores (_). The length of the name is less than 64 bytes.

MapReduce Service
Component Development Specifications 3 Doris

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

https://doris.apache.org/docs/1.2/advanced/alter-table/replace-table/

3.4 Data Query
This section describes the rules and suggestions for querying Doris data.

Doris data query rules
● In the data query service code, you are advised to retry the query when the

query fails and issue the query again.

● If the enumerated value of the constant in exceeds 1000, the constant must
be changed to a subquery.

● Do not use REST API (Statement Execution Action) to execute a large number
of SQL queries. This interface is used only for cluster maintenance.

● If the number of query results exceeds 50,000, use JDBC Catalog or OUTFILE
to export the query data. Otherwise, a large amount of data on the FE will
occupy FE resources, affecting cluster stability.

– For interactive query, you are advised to export data in pagination mode
(offset limit). The pagination command is Order by.

– If data is exported for a third party, the outfile or export mode is
recommended.

● Colocation Join is used for JOIN of more than two tables with more than 300
million records.

● Do not use select * to query data in hundreds of millions of large tables.
Specify the fields to be queried during query.

– Use the SQL Block mode to forbid the select * operation.

– For high-concurrency point queries, you are advised to enable row-based
storage (supported by Doris 2.x) and use PreparedStatement for queries.

● Bucket conditions must be set for querying hundreds of millions of tables.

● Do not perform full-partition data scanning on a partitioned table.

Doris Data Query Suggestions
● If the number of insert into select statements exceeds 100 million, you are

advised to split the statements into multiple insert into select statements
and execute them in multiple batches.

● Do not use OR as a JOIN condition.

● You are not advised to frequently delete and modify data. You can save the
data to be deleted in batches and delete the data in batches occasionally. In
addition, you need to specify conditions to improve system stability and
deletion efficiency.

● Some data is returned after a large amount of data (more than 500 million)
is sorted. You are advised to reduce the data range before performing the
sorting. Otherwise, the performance will be affected if a large amount of data
is sorted. The following is an example.

Instead of from table order by datatime desc limit 10, use from table
where datatime='2023-10-20' order by datatime desc limit 10.

MapReduce Service
Component Development Specifications 3 Doris

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

● Pay attention to the following points when using
parallel_fragment_exec_instance_num to query task performance
optimization parameters:
This parameter is set at the session level and indicates the number of
fragments that can be concurrently executed. This parameter consumes a
large number of CPU resources. Therefore, you do not need to set this
parameter. If you need to set this parameter to accelerate query performance,
comply with the following rules:
– Do not set this parameter to take effect globally. Do not use the set

global command to set this parameter.
– You are advised to set this parameter to an even number 2 or 4. The

maximum value cannot exceed half of the number of CPU cores on a
single node.

– When setting this parameter, you need to observe the CPU usage. You
can set this parameter only when the CPU usage is less than 50%.

– If the query SQL statement is insert into select with a large amount of
data, you are advised not to set this parameter.

3.5 Data Import
This section describes the specifications for importing Doris data.

Doris Data Import Suggestions
● Do not frequently perform the update, delete, or truncate operation. You are

advised to perform the operation every several minutes. To use the delete
operation, you must set the partition or primary key column condition.

● Do not use INSERT INTO tbl1 VALUES("1"),("a"); to import data. If a small
amount of data needs to be written, use StreamLoad, BrokerLoad, SparkLoad,
or Flink Connector provided by Doris.

● When Flink writes data to Doris in real time, the time set for CheckPoint must
consider the data volume of each batch. If the data volume of each batch is
too small, a large number of small files will be generated. The recommended
value is 60s.

● You are advised not to use insert values as the main data write mode.
StreamLoad, BrokerLoad, or SparkLoad is recommended for batch data
import.

● When data is imported in INSERT INTO WITH LABEL XXX SELECT mode, if
downstream dependency or query exists, you need to check whether the
imported data is visible.
Run the show load where label='xxx' SQL command to check whether the
current INSERT task status is VISIBLE. The imported data is visible only when
the status is VISIBLE.

● Streamload is suitable for importing data of less than 10 GB, and Brokerload
is suitable for importing data of less than 100 GB. If the data volume is too
large, SparkLoad can be used.

● Do not use Routine Load of Doris to import data. You are advised to use Flink
to query Kafka data and then write the data to Doris. This facilitates the
control of the amount of data to be imported in a single batch and prevents a

MapReduce Service
Component Development Specifications 3 Doris

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

large number of small files from being generated. If Routine Load has been
used to import data, set max_tolerable_backend_down_num to 1 on the FE
before rectification to improve data import reliability.

● You are advised to import data in batches at a low frequency. The average
interval for importing a single table must be greater than 30s. The
recommended interval is 60s. 1000 to 100000 rows of data are imported at a
time.

3.6 UDF Development
This section describes the rules and suggestions for developing Doris UDF
programs.

Doris UDF Development Rules
● The method invocation in the UDF must be thread-safe.
● Do not read external large files to the memory in the UDF implementation. If

the file size is too large, the memory may be used up.
● Avoid a large number of recursive calls. Otherwise, stack overflow or OOM

may occur.
● Do not create objects or arrays continuously. Otherwise, the memory may be

used up.
● The Java UDF should capture and process possible exceptions. Do not send

exceptions to services for processing to avoid unknown exceptions in
programs. You can use the try-catch block to handle exceptions and record
exception information if necessary.

● In the UDF, do not define static collection classes for storing temporary data
or query large objects in external data. Otherwise, the memory usage is high.

● Ensure that the imported package in the class does not conflict with the
package on the server. You can run the grep -lr "Full restriction class name"
command to check the JAR packages that conflict with each other. If a class
name conflict occurs, you can fully restrict the class name to avoid the
conflict.

Doris UDF Development Suggestions
● Do not copy a large amount of data to prevent stack memory overflow.
● Do not concatenate a large number of strings. Otherwise, the memory usage

is high.
● Java UDFs should use meaningful names so that other developers can easily

understand their purpose. You are advised to use the camel-case naming
method and end it with UDF, for example, MyFunctionUDF.

● The Java UDF should specify the data type of the return value and must have
a return value. Do not set the return value to NULL by default or when an
exception occurs. You are advised to use basic data types or Java classes as
return value types.

MapReduce Service
Component Development Specifications 3 Doris

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

3.7 Connection and Running
Comply with the following specifications when connecting to the Doris and
running Doris tasks:

● You are advised to use the ELB to connect to the Doris to ensure that services
can be provided when the connected FE is faulty.

● When a single Doris instance or hardware fault occurs, newly submitted tasks
can be successfully executed, but running tasks cannot be successfully
executed when the fault occurs. Therefore, you need to retry a task when
connecting to the Doris to execute the task. When the task fails due to
unknown reasons, you can ensure that the newly submitted task can be
successfully executed.

MapReduce Service
Component Development Specifications 3 Doris

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

4 Flink

4.1 Applicable Scenarios
Flink is a unified computing framework that supports both batch processing and
stream processing. It provides a stream data processing engine that supports data
distribution and parallel computing. Flink features stream processing and is a top
open-source stream processing engine in the industry.

Flink provides high-concurrency pipeline data processing, millisecond-level latency,
and high reliability, making it suitable for low-latency data processing.

4.2 Rules

Delete Residual Directories If a Flink Task Stops Unexpectedly
After a FlinkServer instance is installed, the residual Flink directories are
automatically deleted.

By default, only residual directories in the /flink_base directory of ZooKeeper and
those in the /flink/recovery directory of HDFS are deleted.

4.3 Suggestions

FlinkServer Usage
You are advised to submit Flink jobs using FlinkServer. FlinkServer supports the
submission of Flink SQL jobs and Flink Jar jobs. .

MapReduce Service
Component Development Specifications 4 Flink

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

5 HBase

5.1 Application Scenarios
Hadoop database (HBase) is a reliable, high-performance, column-oriented and
scalable distributed storage system. Different from traditional relational databases,
HBase is suitable for massive data process.

The HBase is applicable to the following scenarios:

● Massive data processing (higher than the TB or PB level).
● High-throughput demanding scenarios
● Scenarios that require efficient random read of massive data.
● Good-scalability demanding scenarios
● Concurrent processing of structured and unstructured data.
● Scenarios that do not require the Atomicity, Consistency, Isolation, Durability

(ACID) feature provided by traditional relational databases.

HBase tables have the following features:
● Large: Each table contains a hundred million rows and one million columns.
● Column-oriented: Storage and rights control is implemented based on

columns (families), and columns (families) are independently retrieved.
● Sparse: Null columns do not occupy storage space.

5.2 Rules

Create a Configuration instance
Call the create() method of HBaseConfiguration to instantiate this class.
Otherwise, the HBase configurations cannot be successfully loaded.

Correct:

//This part is declared in the class member variable declaration.
private Configuration hbaseConfig = null;
//Instantiate this class using its constructor function or initialization method.
hbaseConfig = HBaseConfiguration.create();

MapReduce Service
Component Development Specifications 5 HBase

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

Incorrect:

hbaseConfig = new Configuration();

Share the Configuration instance
The HBase client codes obtain rights to interact with an HBase cluster by creating
an HConnection with Zookeeper. Each HConnection has a Configuration instance.
The created HConnection instances are cached. That is, if the HBase client needs
to communicate with an HBase cluster, a Configuration instance is transferred to
the cache. Then, the HBase client checks for an HConnection instance for the
Configuration instance in the cache. If a match is found, the HConnection instance
is returned. If no match is found, an HConnection instance will be created.

If the Configuration instance is frequently created, a lot of unnecessary
HConnection instances will be created, causing the number of connections to
Zookeeper to reach the upper limit.

Therefore, it is recommended that the client codes share the same Configuration
instance.

Create an Table instance
public abstract class TableOperationImpl {
 private static Configuration conf = null;
 private static Connection connection = null;
 private static Table table = null;
 private static TableName tableName = TableName.valueOf("sample_table");

 public TableOperationImpl() {
 init();
 }
 public void init() {
 conf = ConfigurationSample.getConfiguration();
 try {
 connection = ConnectionFactory.createConnection(conf);
 table = conn.getTable(tableName);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 public void close() {
 if (table != null) {
 try {
 table.close();
 } catch (IOException e) {
 System.out.println("Can not close table.");
 } finally {
 table = null;
 }
 }
 if (connection != null) {
 try {
 connection.close();
 } catch (IOException e) {
 System.out.println("Can not close connection.");
 } finally {
 connection = null;
 }
 }
 }
 public void operate() {
 init();
 process();
 close();

MapReduce Service
Component Development Specifications 5 HBase

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

 }
}

An Table instance cannot be used by multiple threads at the same time
Table is not thread safe for reads or write. If an Table instance is used by multiple
threads at the same time, exceptions will occur.

Cache a frequently used Table instance
Cache the Table instance that will be frequently used by a thread for a long period
of time. A cached instance, however, will not be necessarily used by a thread
permanently. In special circumstances, you need to rebuild an Table instance. See
the next rule for details.

Correct:

NO TE

In this example, the Table instance is cached by Map. This method applies when multiple
threads and Table instances are required. If an Table instance is used by only one thread
and the thread has only one Table instance, Map need not be used.

//In this Map, TableName is the Key value. Cache all Table instances.
private Map<String, Table> demoTables = new HashMap<String, Table>();
//All Table instances share this Configuration instance.
private Configuration demoConf = null;
/**
* <Initialize an HTable class>
* <Detailed function description>
* @param tableName
* @return
* @throws IOException
* @see [class, class#method, class#member]
*/
private Table initNewTable(String tableName) throws IOException
{
try (Connection conn = ConnectionFactory.createConnection(demoConf)){
 return conn.getTable(tableName);
 }
}
/**
* <Obtain Table instances>
* <Detailed function description>
* @see [class, class#method, class#member]
*/
private Table getTable(String tableName)
{
if (demoTables.containsKey(tableName))
{
return demoTables.get(tableName);
} else {
Table table = null;
try
{
table = initNewTable(tableName);
demoTables.put(tableName, table);
}
catch (IOException e)
{
// TODO Auto-generated catch block
e.printStackTrace();
}
return table;
}
}

MapReduce Service
Component Development Specifications 5 HBase

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

/**
* <Write data>
* <Multi-thread multi-Table instance design optimization is not involved. The synchronization method is
used
* because the Table is not thread safe. It is recommended that an Table instance be used by only one data
write thread at the same
*time.>
* @param dataList
* @param tableName
* @see [class, class#method, class#member]
*/
public void putData(List<Put> dataList, String tableName)
{Table table = getTable(tableName);
//Synchronization is not required if the Table instance is not shared by multiple threads.
//Note that Table is not thread safe.
synchronized (table)
{
try
{
table.put(dataList);
table.notifyAll();
}
catch (IOException e)
{
 // When IOE is detected, the cached instance needs to be re-created.
try {
 // Close the Connection.
 table.close();
 // Re-create the instance.
 table = initNewTable(tableName);
} catch (IOException e1) {
// TODO
}
}
}
}

Incorrect:
public void putDataIncorrect(List<Put> dataList, String tableName)
{Table table = null;
try
{
//Create an HTable instance each time when data is written.
table = initNewTable(tableName);
table.put(dataList);
}
catch (IOException e1)
{
// TODO Auto-generated catch block
e1.printStackTrace();
}
finally
{
table.close();
}
}

Rebuild an Table instance
Rebuilt a cached Table when IOException is detected. See the example of the
previous rule.

Do not call the following methods unless necessary:

● Configuration#clear
Do not call this method if a Configuration is used by an object or a thread.
The Configuration#clear method clears all attributes loaded. If this method is

MapReduce Service
Component Development Specifications 5 HBase

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

called for a Configuration used by Table, all the parameters of this
Configuration will be deleted from Table. As a result, an exception occurs
when Table uses the Configuration the next time.
Therefore, avoid calling this method each time you rebuild an Table instance.
Call this method when all the threads need to quit.

● HConnectionManager#deleteAllConnections
This method deletes all connections from the Connection set. As the Table
stores the links to the connections, the connections being used cannot be
stopped after the HConnectionManager#deleteAllConnections method is
called, which eventually causes information leakage.

Handle the data failed to write
Some data write operations may fail due to instant exceptions or process failures.
Therefore, the data must be recorded so that it can be written to the HBase when
the cluster is restored.

The failed data returned by the HBase client will not be automatically rewritten.
The interface caller is only informed of the data failed to be written. To prevent
data loss, measures must be taken to temporarily save the data in a file or in
memory.

Correct:

private List<Row> errorList = new ArrayList<Row>();
/**
* <Insert data in PutList mode. >
* <Synchronization is not required if the method is not called by multiple threads.>
* @param put a data record
* @throws IOException
* @see [class, class#method, class#member]
*/
public synchronized void putData(Put put)
{
// Temporarily cache data in this List.
dataList.add(put);
// Perform a Put operation when the dataList size reaches PUT_LIST_SIZE.
if (dataList.size() >= PUT_LIST_SIZE)
{
try
{
demoTable.put(dataList);
}
catch (IOException e)
{
// If RetriesExhaustedWithDetailsException occurs,
// certain data failed to be written, which
// is caused by process errors in the HBase cluster or migration of a large number of
// Regions.
if (e instanceof RetriesExhaustedWithDetailsException)
{
RetriesExhaustedWithDetailsException ree =
 (RetriesExhaustedWithDetailsException)e;
int failures = ree.getNumExceptions();
for (int i = 0; i < failures; i++)
{
errorList.add(ree.getRow(i));
}
}
}
dataList.clear();
}
}

MapReduce Service
Component Development Specifications 5 HBase

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

Release resources

Call the Close method to release resources when the ResultScanner and Table
instances are not required. To enable the Close method to be called, add the Close
method to the finally block.

Correct:

ResultScanner scanner = null;
try
{
scanner = demoTable.getScanner(s);
//Do Something here.
}
finally
{
scanner.close();
}

Incorrect:

1. The code does not call the scanner.close() method to release resources.
2. The scanner.close() method is not placed in the finally block.

ResultScanner scanner = null;
scanner = demoTable.getScanner(s);
//Do Something here.
scanner.close();

Add fault-tolerance mechanism for Scan

Exceptions, such as lease expiration, may occur when Scan is performed. Retry
operations need to be performed when exceptions occur.

Retry operations can be applied in HBase-related interface methods to improve
fault tolerance capabilities.

Stop Admin as soon as it is not required

Stop Admin as soon as possible. Do not cache the same Admin instance for an
extended period of time.

5.3 Suggestions

Do not call the closeRegion method of Admin to close a Region

Admin interface provides an API to close a Region:

public void closeRegion(final String regionname, final String serverName)

When this method is used to close a Region, the HBase Client sends an RPC
request to the RegionServer of the Region to be closed. The Master is unaware of
the whole process. That is, the Master does not know even if the Region is closed.
If the closeRegion method is called when the Master determines to migrate the
Region based on the execution result of Balance, the Region cannot be closed or
migrated. (In the current HBase version, this issue has not been resolved).

Therefore, do not call the closeRegion method of Admin to close a Region.

MapReduce Service
Component Development Specifications 5 HBase

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

Write data in PutList mode

Table provides two data write interfaces:

● public void put(final Put put) throws IOException
● public void put(final List<Put> puts) throws IOException

The second one is recommended because it provides better performance than the
first one.

Specify StartKey and EndKey for a Scan

A Scan with a specific range offers higher performance than a Scan without
specific range.

Example:

Scan scan = new Scan();
scan.addColumn(Bytes.toBytes("familyname"),Bytes.toBytes("columnname"));
scan.setStartRow(Bytes.toBytes("rowA")); // StartKey is rowA.
scan.setStopRow(Bytes.toBytes("rowB")); // EndKey is rowB.
for(Result result : demoTable.getScanner(scan)) {
// process Result instance
}

Do not disable WAL

Write-Ahead-Log (WAL) allows data to be written in a log file before being stored
in the database.

WAL is enabled by default. The Put class provides an interface to disable WAL:

public void setWriteToWAL(boolean write)

If WAL is disabled (writeToWAL is set to False), data of the last 1s (The time can
be specified by the hbase.regionserver.optionallogflushinterval parameter on
the RegionServer. It is 1s by default) will be lost. WAL can be disabled only when
high data write speed is required and data loss of the last 1s is allowed.

Set blockcache to true when creating a table or when Scan is performed

Set blockcache to true when a table is created or when Scan is performed on the
HBase client. If there are a large number of repeated records, setting this
parameter to true can improve efficiency.

By default, blockcache is true. Avoid setting this parameter to false forcibly, for
example:

HColumnDescriptor fieldADesc = new HColumnDescriptor("value".getBytes());
fieldADesc.setBlockCacheEnabled(false);

The HBase does not support query by Orderby or with the search criteria
specified. It is based on the lexicographic order and can only be read by
Rowkey.

HBase should not be used in scenarios of random query and sequencing.

MapReduce Service
Component Development Specifications 5 HBase

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Suggestions on Services List Design
1. Pre-allocate regions in a balanced manner in order to improve concurrency

capabilities.
2. Avoid excessive hotspot regions. Import the time factor to Rowkey if

necessary.
3. It is preferred that concurrently accessed data be stored continuously.

Concurrently read data should be stored nearby, on the same row and in the
same cell.

4. Put frequently queried attributes property before Rowkey. Rowkey should be
designed to match the main query criteria in terms of criterion sequencing.

5. Attributes with high dispersions should be contained in RowKey. Design the
services list based on data dispersion and query scenarios.

6. Store redundant information to enhance indexing performance. Use
secondary index to adapt to more query scenarios.

7. Enable automatic deletion of expired data by setting the expiration time and
version quantity.

NO TE

In the HBase, Regions busy writing data are called hotspot Region.

5.4 Examples

Set Configuration parameters
To set up a connection between an HBase Client and the HBase Server, set the
following parameters:

● hbase.zookeeper.quorum: IP address of Zookeeper. If there are multiple
Zookeeper nodes, separate multiple IP addresses by a comma (,).

● hbase.zookeeper.property.clientPort: Port of Zookeeper.

NO TE

The Configuration instance created by using HBaseConfiguration.create() will be
automatically loaded with the configuration items in the following files:
● core-default.xml
● core-site.xml
● hbase-default.xml
● hbase-site.xml

Save these configuration files in Source Folder. To create a Source Folder, create
a resource folder in the project, right-click the folder, and choose Mark Directory
as > Resources Root.

MapReduce Service
Component Development Specifications 5 HBase

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

The following table describes the parameters to be configured on the client.

NO TE

Do not change the values of these parameters.

Parameter Description

hbase.client.pause Specifies the time to wait before a retry is performed
when an exception occurs. The actual time is
calculated based on this value and the number of
retires.

hbase.client.retries.numb
er

Specifies the number of retries to be performed
when an exception occurs.

hbase.client.retries.longer
.multiplier

This parameter is related to the number of retires.

hbase.client.rpc.maxatte
mpts

Specifies the number of retires when the RPC
request is not successfully sent.

hbase.regionserver.lease.
period

This parameter (in ms) is related to the Scanner
timeout period.

MapReduce Service
Component Development Specifications 5 HBase

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

Parameter Description

hbase.client.write.buffer This parameter is invalid if AutoFlush is enabled. If
AutoFlush is disabled, the HBase Client caches the
data to be written. When the size of the data cached
reaches the specified limit, the HBase Client initiates
a write operation to the HBase cluster.

hbase.client.scanner.cachi
ng

Specifies the number of rows allowed for a next
request during a Scan.

hbase.client.keyvalue.ma
xsize

Specifies the maximum value of a keyvalue.

hbase.htable.threads.max Specifies the maximum number of threads related to
data operations in an HTable instance.

hbase.client.prefetch.limi
t

Before reading or writing data, the client must
obtain the address of the Region. Therefore, a client
can have some Region addresses pre-cached. This
parameter is related to the configuration of the
number of Region addresses pre-cached.

Example:

hbaseConfig = HBaseConfiguration.create();
//You do not need to set the following parameters if they are specified in the configuration files.
hbaseConfig.set("hbase.zookeeper.quorum", "172.16.100.1,172.16.100.2,172.16.100.3");
hbaseConfig.set("hbase.zookeeper.property.clientPort", "2181");

Use HTablePool in multi-thread write operations
Use HTablePool for multiple data write threads. Observe the following when using
HTablePool to perform multi-thread write operations:

1. Enable multiple date write threads to share the same HTablePool instance.
2. Specify maxSize of the HTableInterface instance when instantiating

HTablePool. That is, instantiate the class using the following constructor
function:
public HTablePool(final Configuration config, final int maxSize)
The value of maxSize can be determined based on Threads (the number of
data write threads) and Tables (the number of user tables). Generally,
maxSize cannot be greater than the product of Threads and Tables. (maxSize
<= Threads x Tables)

3. The client thread obtains an HTableInterface instance with the table name of
tableName using HTablePool#getTable(tableName).

4. An HTableInterface instance can be used by only one thread at a time.
5. If HTableInterface is not used, call HTablePool#putTable(HTableInterface

table) to release it.

Example:

/**
* A certain number of retries is required after a data write failure. The time to wait before each retry is

MapReduce Service
Component Development Specifications 5 HBase

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

determined based on the number of retries performed.
*/
private static final int[] RETRIES_WAITTIME = {1, 1, 1, 2, 2, 4, 4, 8, 16, 32};
/**
* Specify the number of retries.
*/
private static final int RETRIES = 10;
/**
* The unit of the time to wait after a failure.
*/
private static final int PAUSE_UNIT = 1000;
private static Configuration hadoopConfig;
private static HTablePool tablePool;
private static String[] tables;
/**
* <Initialize HTablePool>
* <Function description>
* @param config
* @see [class, class#method, class#member]
*/
public static void initTablePool()
{
DemoConfig config = DemoConfig.getInstance();
if (hadoopConfig == null)
{
hadoopConfig = HBaseConfiguration.create();
hadoopConfig.set("hbase.zookeeper.quorum", config.getZookeepers());
hadoopConfig.set("hbase.zookeeper.property.clientPort", config.getZookeeperPort());
}
if (tablePool == null)
{
tablePool = new HTablePool(hadoopConfig, config.getTablePoolMaxSize());
tables = config.getTables().split(",");
}
}
public void run()
{
// Initialize HTablePool. Initialize this instance only once because it is shared by multiple threads.
initTablePool();
for (;;)
{
Map<String, Object> data = DataStorage.takeList();
String tableName = tables[(Integer)data.get("table")];
List<Put> list = (List)data.get("list");
// Use Row as the Key and save all puts in the List. This set is used only for querying the data failed to be
written when a write operation fails, because the Server only returns the Row of the data failed.
Map<byte[], Put> rowPutMap = null;
// Perform the operation again if it fails (even if some of the data failed to be written). Only the data failed
to be written is submitted each time.
INNER_LOOP :
for (int retry = 0; retry < RETRIES; retry++)
{
// Obtain an HTableInterface instance from HTablePool. Release the instance if it is not required.
HTableInterface table = tablePool.getTable(tableName);
try
{
table.put(list);
// The operation is successful.
break INNER_LOOP;
}
catch (IOException e)
{
// If the exception type is RetriesExhaustedWithDetailsException, some of the data failed to be written. The
exception occurs because the processes in the HBase cluster are abnormal or a large number of Regions are
being migrated.
// If the exception type is not RetriesExhaustedWithDetailsException, insert all the data in the list again.
if (e instanceof RetriesExhaustedWithDetailsException)
{
RetriesExhaustedWithDetailsException ree =

MapReduce Service
Component Development Specifications 5 HBase

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

(RetriesExhaustedWithDetailsException)e;
int failures = ree.getNumExceptions();
System.out.println("In this operation, [" + failures + "] data records failed to be inserted.");
// Instantiate the Map when a retry is performed upon the first failure.
if (rowPutMap == null)
{
rowPutMap = new HashMap<byte[], Put>(failures);
for (int m = 0; m < list.size(); m++)
{
Put put = list.get(m);
rowPutMap.put(put.getRow(), put);
}
}
//Clear the original data and then add the data failed to be written.
list.clear();
for (int m = 0; m < failures; m++)
{
list.add(rowPutMap.get(ree.getRow(m)));
}
}
}
finally
{
// Release the instance after using it.
tablePool.putTable(table);
}
// If an exception occurs, wait some time after releasing the HTableInterface instance.
try
{
sleep(getWaitTime(retry));
}
catch (InterruptedException e1)
{
System.out.println("Interruped");
}
}
}
}

Create a Put instance

HBase is a column-oriented database. One column of data may correspond to
multiple column families, and one column family may correspond to multiple
columns. Before data is written, the column (column family name and column
name) must be specified.

A Put instance must be created before a row of data is written in an HBase table.
The Put instance data consists of (Key, Value). The Value can contain multiple
columns of values.

When a (Key, Value) record is added to a Put instance, the family, qualifier, and
value added are byte sets. Use the Bytes.toBytes method to convert character
strings to byte sets. Do not use the String.toBytes method, because this method

MapReduce Service
Component Development Specifications 5 HBase

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

cannot ensure correct data coding. Errors occur when the Key or Value contains
Chinese characters.

Example:

//The column family name is privateInfo.
private final static byte[] FAMILY_PRIVATE = Bytes.toBytes("privateInfo");
//The privateInfo column family has two columns: "name" and "address".
private final static byte[] COLUMN_NAME = Bytes.toBytes("name");
private final static byte[] COLUMN_ADDR = Bytes.toBytes("address");
/**
* <Create a Put instance. >
* <A put instance with one column family and two columns of data is created. >
* @param rowKey Key key value
* @param name name
* @param address address
* @return
* @see [class, class#method, class#member]
*/
public Put createPut(String rowKey, String name, String address)
{
Put put = new Put(Bytes.toBytes(rowKey));
put.add(FAMILY_PRIVATE, COLUMN_NAME, Bytes.toBytes(name));
 put.add(FAMILY_PRIVATE, COLUMN_ADDR, Bytes.toBytes(address));
return put;
}

Create an HBaseAdmin instance
Example:

private Configuration demoConf = null;
private HBaseAdmin hbaseAdmin = null;
/**
* <Constructor function>
* Import the Configuration instances.
*/
public HBaseAdminDemo(Configuration conf)
{
this.demoConf = conf;
try
{
// Instantiate HBaseAdmin
hbaseAdmin = new HBaseAdmin(this.demoConf);
}
catch (MasterNotRunningException e)
{
e.printStackTrace();
}
catch (ZooKeeperConnectionException e)
{
e.printStackTrace();
}
}
/**
* <Examples of method using>
* <For details about more methods, see the HBase interface documents. >
* @throws IOException
* @throws ZooKeeperConnectionException
* @throws MasterNotRunningException
* @see [Class, class#method, class#member]
*/
public void demo() throws MasterNotRunningException, ZooKeeperConnectionException, IOException
{
byte[] regionName = Bytes.toBytes("mrtest,jjj,1315449869513.fc41d70b84e9f6e91f9f01affdb06703.");
byte[] encodeName = Bytes.toBytes("fc41d70b84e9f6e91f9f01affdb06703");
// Reallocate a Region.
hbaseAdmin.unassign(regionName, false);

MapReduce Service
Component Development Specifications 5 HBase

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

// Actively initiate Balance.
hbaseAdmin.balancer();
// Move a Region. The second parameter is HostName+StartCode of RegionServer, for example,
// host187.example.com,60020,1289493121758. If this parameter is set to null, the Region will be moved at
random.
hbaseAdmin.move(encodeName, null);
// Check whether a table exists.
hbaseAdmin.tableExists("tableName");
// Check whether a table is activated.
hbaseAdmin.isTableEnabled("tableName");
}
/**
* <Method used to rapidly create a table >
* <Create an HTableDescriptor instance, which contains description of the HTable to be creased. Create the
column families, which are associated with the HColumnDescriptor instance. In this example, the column
family name is "columnName">.
* @param tableName table name
* @return
* @see [Class, class#method, class#member]
*/
public boolean createTable(String tableName)
{
try {
if (hbaseAdmin.tableExists(tableName)) {
return false;
}
HTableDescriptor tableDesc = new HTableDescriptor(tableName);
HColumnDescriptor fieldADesc = new HColumnDescriptor("columnName".getBytes());
fieldADesc.setBlocksize(640 * 1024);
tableDesc.addFamily(fieldADesc);
hbaseAdmin.createTable(tableDesc);
} catch (Exception e) {
e.printStackTrace();
return false;
}
return true;
}

5.5 Appendix

Parameters Batch and Caching for Scan
Batch: specifies the maximum number of data records returned each time when
scan calls the next interface. It is related to the number of columns read each
time.

Caching: specifies the maximum number of next values returned for an RPC
request. It is related to the number of rows obtained by each RPC.

The following examples explain the functions of these two parameters in Scan:

A Region contains two rows (rowkey) of data in table A. Each row has 1000
columns, and each column has only one version, that is, each row has 1000 key
values.

- Colu
A1

Colu
A2

Colu
A3

Colu
A4

… Colu
N1

Colu
N2

Colu
N3

Colu
N4

Row1 - - - - … - - - -

Row2 - - - - … - - - -

MapReduce Service
Component Development Specifications 5 HBase

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

● Example 1: If Batch is not specified and Caching is 2,

2000 (Key, Value) records will be returned for each RPC request.

● Example 2: If Batch is set to 500 and Caching is 2,

1000 (Key, Value) records will be returned for each RPC request.

● Example 3: If Batch is set to 300 and Caching is 4,

1000 (Key, Value) records will be returned for each RPC request.

Further explanation of Batch and Caching

● Each Caching indicates a chance of data request.

● The value of Batch determines whether a row of data can be read in a
Caching. If the value of Batch is smaller than the total columns in a row, this
row of data can be read in at least two Caching operations (the next Caching
starts from the data where the previous caching stops).

● Each Caching cannot cross rows. That is, if the value of Batch is not reached
after a row of data is read, data of the next row will not be read.

This can further explain the results of the previous examples.

● Example 1:

Since Batch is not set, all columns of that row will be read by default. As
Caching is 2, 2000 (Key, Value) records will be returned for each RPC request.

● Example 2:

Because Batch is 500 and Caching is 2, a maximum of 500 columns of data
will be read in each Caching. Therefore, 1000 (Key, Value) records will be
returned after two times of caching.

● Example 3:

Because Batch is 300 and Caching is 4, four times of caching are required to
read 1000 data records. Therefore, only 1000 (Key, Value) records will be
returned.

Code example:

Scan s = new Scan();
//Set the start and end keys for data query.
s.setStartRow(Bytes.toBytes("01001686138100001"));
s.setStopRow(Bytes.toBytes("01001686138100002"));
s.setBatch(1000);
s.setCaching(100);
ResultScanner scanner = null;
try {
scanner = tb.getScanner(s);
for (Result rr = scanner.next(); rr != null; rr = scanner.next()) {
for (KeyValue kv : rr.raw()) {
//Display the query results.
System.out.println("key:" + Bytes.toString(kv.getRow())
+ "getQualifier:" + Bytes.toString(kv.getQualifier())
+ "value" + Bytes.toString(kv.getValue()));
}
}
} catch (IOException e) {
System.out.println("error!" + e.toString());
} finally {
scanner.close();
}

MapReduce Service
Component Development Specifications 5 HBase

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

6 HDFS

6.1 Application Scenarios
Hadoop distribute file system (HDFS) runs on commodity hardware. It provides
high error tolerance. In addition, it supports high data access throughput and is
suitable for applications that involve large-scale data sets.

The HDFS is applicable to the following scenarios:

● Massive data processing (higher than the TB or PB level).
● High-throughput demanding scenarios.
● High-reliability demanding scenarios.
● Good-scalability demanding scenarios.

The HDFS is not applicable to the scenarios that involve a large number of small
files, random write, and low-latency read.

6.2 Rules

Set the HDFS NameNode metadata storage path
NameNode metadata is stored in ${BIGDATA_DATA_HOME}/namenode/data by
default. This parameter sets the storage path of HDFS metadata.

Enable NameNode image backup for the HDFS
fs.namenode.image.backup.enable specifies whether to enable the NameNode
image backup function. You need to set this parameter to true. Then the system
can periodically back up the NameNode data.

Set the HDFS DataNode data storage path
DataNode data is stored in ${BIGDATA_DATA_HOME}/hadoop/dataN/dn/
datadir by default. N indicates the number of directories is greater than or equal
to1.

MapReduce Service
Component Development Specifications 6 HDFS

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

For example, ${BIGDATA_DATA_HOME}/hadoop/data1/dn/datadir, $
{BIGDATA_DATA_HOME}/hadoop/data2/dn/datadir.

After the storage path is set, data is stored in the corresponding directory of each
mounted disk on a node.

Improve HDFS read/write performance
The data write process is as follows:

After receiving service data and obtaining the data block number and location
from the NameNode, the HDFS client contacts DataNodes and establishes a
pipeline with the DataNodes to be written. Then, the HDFS client writes data to
DataNode1 using a proprietary protocol, and DataNode1 writes data to
DataNode2 and DataNode3 (three duplicates). After data is written, a message is
returned to the HDFS client.

1. Set a proper block size. For example, set dfs.blocksize to 268435456 (256
MB).

2. It is not necessary to cache the big data that is not reused. In this case, set the
following parameters to false:
dfs.datanode.drop.cache.behind.reads and
dfs.datanode.drop.cache.behind.writes

Set the MapReduce intermediate file storage path
Only one default path is provided for storing MapReduce intermediate files, that
is, ${hadoop.tmp.dir}/mapred/local.It is recommended that intermediate files be
stored on each disk.

For example, /hadoop/hdfs/data1/mapred/local, /hadoop/hdfs/data2/mapred/
local, /hadoop/hdfs/data3/mapred/local. Directories that do not exist are
automatically ignored.

Release applied resources in finally during Java development.
Applied HDFS resources are released in try/finally and cannot be released outside
the try statement only. Otherwise, resource leakage occurs.

HDFS file operation APIs
Almost all Hadoop file operation classes are in the org.apache.hadoop.fs
package. These APIs support operations such as opening, reading, writing, and
deleting a file. FileSystem is the interface class provided for users in the Hadoop
class library. FileSystem is an abstract class. Concrete classes can be obtained only
using the get method. The get method has multiple overload versions, and the
following get method is often used.

static FileSystem get(Configuration conf);

This class encapsulates almost all file operations, such as mkdir and delete. The
program library framework for file operations is as follows:

operator()
{
 Obtain the Configuration object.

MapReduce Service
Component Development Specifications 6 HDFS

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

 Obtain the FileSystem object.
 Perform file operations.
 }

HDFS initialization method

HDFS initialization is a prerequisite for using APIs provided by HDFS.

To initialize HDFS, load the HDFS service configuration file, implement Kerberos
security authentication, and instantiate FileSystem. Obtain keytab files for
Kerberos security authentication in advance.

Example:
private void init() throws IOException {
 Configuration conf = new Configuration();
 // Read a configuration file.
 conf.addResource("user-hdfs.xml");
 // Implement security authentication in security mode.
 if ("kerberos".equalsIgnoreCase(conf.get("hadoop.security.authentication"))) {
 String PRINCIPAL = "username.client.kerberos.principal";
 String KEYTAB = "username.client.keytab.file";
 // Set the keytab key file.
 conf.set(KEYTAB, System.getProperty("user.dir") + File.separator + "conf" + File.separator +
conf.get(KEYTAB));
 // Set the Kerberos configuration file path. */
 String krbfilepath = System.getProperty("user.dir") + File.separator + "conf" + File.separator + "krb5.conf";
 System.setProperty("java.security.krb5.conf", krbfilepath);
 // Implement login authentication. */
 SecurityUtil.login(conf, KEYTAB, PRINCIPAL);
 }
 // Instantiate FileSystem.
 fSystem = FileSystem.get(conf);
 }

Upload local files to the HDFS

FileSystem.copyFromLocalFile (Path src, Patch dst) is used to upload local files
to a specified directory in the HDFS. src and dst indicate complete file paths.

Example:

public class CopyFile {
 public static void main(String[] args) throws Exception {
 Configuration conf=new Configuration();
 FileSystem hdfs=FileSystem.get(conf);
 //Local file
 Path src =new Path("D:\\HebutWinOS");
 //To the HDFS
 Path dst =new Path("/");
 hdfs.copyFromLocalFile(src, dst);
 System.out.println("Upload to"+conf.get("fs.default.name"));
 FileStatus files[]=hdfs.listStatus(dst);
 for(FileStatus file:files){
 System.out.println(file.getPath());
 }
 }
 }

Create files on the HDFS

FileSystem.mkdirs (Path f) is used to create folders on HDFS. f indicates a
complete folder path.

Example:

MapReduce Service
Component Development Specifications 6 HDFS

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

public class CreateDir {
 public static void main(String[] args) throws Exception{
 Configuration conf=new Configuration();
 FileSystem hdfs=FileSystem.get(conf);
 Path dfs=new Path("/TestDir");
 hdfs.mkdirs(dfs);
 }
 }

Query the modification time of an HDFS file
FileSystem.getModificationTime() is used to query the modification time of a
specified HDFS file.

Example:

 public static void main(String[] args) throws Exception {
 Configuration conf=new Configuration();
 FileSystem hdfs=FileSystem.get(conf);
 Path fpath =new Path("/user/hadoop/test/file1.txt");
 FileStatus fileStatus=hdfs.getFileStatus(fpath);
 long modiTime=fileStatus.getModificationTime();
 System.out.println("file1.txt modification time is"+modiTime);
 }

Read all files in an HDFS directory
FileStatus.getPath() is used to query all files in an HDFS directory.

Example:

public static void main(String[] args) throws Exception {
 Configuration conf=new Configuration();
 FileSystem hdfs=FileSystem.get(conf);
 Path listf =new Path("/user/hadoop/test");

 FileStatus stats[]=hdfs.listStatus(listf);
 for(int i = 0; i < stats.length; ++i) {
 System.out.println(stats[i].getPath().toString());
 }
 hdfs.close();
 }

Query the location of a specified file in an HDFS cluster
FileSystem.getFileBlockLocation (FileStatus file, long start, long len) is used to
query the location of a specified file in an HDFS cluster. file indicates a complete
file path, and start and len specify the file path.

Example:

public static void main(String[] args) throws Exception {
 Configuration conf=new Configuration();
 FileSystem hdfs=FileSystem.get(conf);
 Path fpath=new Path("/user/hadoop/cygwin");

 FileStatus filestatus = hdfs.getFileStatus(fpath);
 BlockLocation[] blkLocations = hdfs.getFileBlockLocations(filestatus, 0, filestatus.getLen());

 int blockLen = blkLocations.length;
 for(int i=0;i < blockLen;i++){
 String[] hosts = blkLocations[i].getHosts();
 System.out.println("block_"+i+"_location:"+hosts[0]);
 }
 }

MapReduce Service
Component Development Specifications 6 HDFS

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

Obtain all node names in an HDFS cluster

DatanodeInfo.getHostName() is used to obtain all node names in an HDFS
cluster.

Example:

public static void main(String[] args) throws Exception {
 Configuration conf=new Configuration();
 FileSystem fs=FileSystem.get(conf);

 DistributedFileSystem hdfs = (DistributedFileSystem)fs;

 DatanodeInfo[] dataNodeStats = hdfs.getDataNodeStats();

 for(int i=0;i < dataNodeStats.length;i++){
 System.out.println("DataNode_"+i+"_Name:"+dataNodeStats[i].getHostName());
 }
 }

Multithread security login mode

If multiple threads are performing login operations, the relogin mode must be
used for the subsequent logins of all threads after the first successful login of an
application.

login example code:

 private Boolean login(Configuration conf){
 boolean flag = false;
 UserGroupInformation.setConfiguration(conf);
 try {
 UserGroupInformation.loginUserFromKeytab(conf.get(PRINCIPAL), conf.get(KEYTAB));
 System.out.println("UserGroupInformation.isLoginKeytabBased(): "
+UserGroupInformation.isLoginKeytabBased());
 flag = true;
 } catch (IOException e) {
 e.printStackTrace();
 }
 return flag;
 }

relogin example code:

public Boolean relogin(){
 boolean flag = false;
 try {
 UserGroupInformation.getLoginUser().reloginFromKeytab();
 System.out.println("UserGroupInformation.isLoginKeytabBased(): "
+UserGroupInformation.isLoginKeytabBased());
 flag = true;
 } catch (IOException e) {
 e.printStackTrace();
 }
 return flag;
 }

NO TICE

Repetitive logins will cause a newly created session to overwrite the previous
session. As a result, the previous session cannot be maintained or monitored, and
some functions are unavailable after the previous session expires.

MapReduce Service
Component Development Specifications 6 HDFS

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

6.3 Suggestions

Notes for reading and writing HDFS files
The HDFS does not support random read/write.

Data can be appended only to the end of an HDFS file.

Only data stored in the HDFS supports append. edit.log and metadata files do not
support append. When using the append function, set dfs.support.append in
hdfs-site.xml to true.

NO TE

● dfs.support.append is disabled by default in open-source versions but enabled by
default in FusionInsight versions.

● This parameter is a server parameter. You are advised to enable this parameter to use
the append function.

● Store data in other modes, such as HBase, if the HDFS is not applicable.

The HDFS is not suitable for storing a large number of small files
The HDFS is not suitable for storing a large number of small files because the
metadata of small files will consume excessive memory resources of the
NameNode.

Back up HDFS data in three duplicates
Three duplicates are enough for DataNode data backup. System data security is
improved when more duplicates are generated but system efficiency is reduced.
When a node is faulty, data on the node is balanced to other nodes.

Periodical HDFS Image Back-up
The system can back up the data on NameNode periodically after the image back-
up parameter fs.namenode.image.backup.enable is set to true.

Provide operations to ensure data reliability
When you invoke the write function to write data, HDFS client does not write the
data to HDFS but caches it in the client memory. If the client is abnormal, power-
off, the data will be lost. For high-reliability demanding data, invoke hflush to
refresh the data to HDFS after writing finishes.

MapReduce Service
Component Development Specifications 6 HDFS

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

7 Hive

7.1 Application Scenarios
Hive is an open-source data warehouse framework built on Hadoop. It provides
storage of structured data and basic data analysis services using the Hive query
language (HQL), a language like the structured query language (SQL). Hive
converts HQL statements to MapReduce or Spark tasks to query and analyze
massive data stored in Hadoop clusters.

Hive provides the following features:

● Extracts, transforms, and loads (ETL) data using HQL.
● Analyzes massive structured data using HQL.
● Supports multiple data storage formats, including JavaScript object notation

(JSON), comma separated values (CSV), TextFile, RCFile, ORCFILE, and
SequenceFile.

● Multiple client connection modes. JDBC interfaces are supported.

Hive is applicable to offline massive data analysis (such as log and cluster status
analysis), large scale data mining (such as user behavior analysis, interest region
analysis, and region display), and other scenarios.

To ensure Hive high availability (HA), user data security, and service access
security, Huawei MRS incorporates the following features based on Hive 3.1.0:

● Kerberos security authentication.
● Data file encryption.
● Comprehensive rights management.

7.2 Rules

Load the Hive JDBC driver
The client software connects to HiveServer using Java database connectivity
(JDBC). Therefore, you must load the JDBC driver class
org.apache.hive.jdbc.HiveDriver for Hive.

MapReduce Service
Component Development Specifications 7 Hive

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

Use the current class loader to load the driver class.

If there is no jar package in classpath, the client software throws "Class Not
Found" and exits.

Example:

Class.forName("org.apache.hive.jdbc.HiveDriver").newInstance();

Set up a database connection
The driver management class java.sql.DriverManager of JDK is used to obtain a
connection to the Hive database.

The Hive database URL is url="jdbc:hive2://
xxx10.64xxx.22xxx.231xxx:2181,10xxx.64xxx.22xxx.232xxx:2181,10xxx.64xxx.22xxx.2
33xxx:2181/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=hiveserver2;s
asl.qop=auth-conf;auth=KERBEROS;principal=hive/
hadoop.hadoop.com@HADOOP.COM;user.principal=hive/
hadoop.hadoop.com;user.keytab=conf/hive.keytab";

In this example, ZooKeeper is deployed on three nodes and the default port is
2181. xxx.xxx.xxx.xxx indicates each of the IP addresses of the three nodes.The
user name and password are null or empty because authentication has been
performed successfully.

Example:

// Set up a connection.
 connection = DriverManager.getConnection(url, "", "");

Execute HQL
Note that the HQL statement cannot end with a semicolon (;).

Correct:

String sql = "SELECT COUNT(*) FROM employees_info";
 Connection connection = DriverManager.getConnection(url, "", "");
 PreparedStatement statement = connection.prepareStatement(sql);
 resultSet = statement.executeQuery();

Incorrect:

String sql = "SELECT COUNT(*) FROM employees_info;";
 Connection connection = DriverManager.getConnection(url, "", "");
 PreparedStatement statement = connection.prepareStatement(sql);
 resultSet = statement.executeQuery();

Close a database connection
After the client executes the HQL, close the database connection to prevent
memory leakage.

Close the statement and connection objects of the JDK.

Example:

finally {
 if (null != statement) {
 statement.close();
 }

MapReduce Service
Component Development Specifications 7 Hive

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

 // Close the JDBC connection.
 if (null != connection) {
 connection.close();
 }
 }

HQL syntax used to check for null values
Use is null to check whether a field is empty, that is, the field has no value. Use is
not null to check whether a field is not mull, that is, the field has a value.

If you use is null for a character whose type is String and length is 0, False is
returned. Use col = '' to check for null values, and use col != '' to check for non-
null values.

Correct:

select * from default.tbl_src where id is null;
 select * from default.tbl_src where id is not null;
 select * from default.tbl_src where name = '';
 select * from default.tbl_src where name != '';

Incorrect:

select * from default.tbl_src where id = null;
 select * from default.tbl_src where id != null;
 select * from default.tbl_src where name is null;
 select * from default.tbl_src where name is not null;

Note that the type of the id field in the tbl_src table is Int, and the type of the
name field is String.

The client configuration parameters must be consistent with the server
configuration parameters

If the configuration parameters of the Hive, YARN, and HDFS servers of the cluster
are modified, the related parameter in a client program will be modified. You need
to check whether the configuration parameters submitted to the HiveServer before
the configuration parameters are modified are consistent with those on the
servers. If the configuration parameters are inconsistent, modify them on the
client and submit them to the HiverServer. In the following example, if the
parameter of YARN in the cluster is modified, the parameter submitted to the
HiverServer from the Hive client and sample program before the modification
must be reviewed and modified.

Initial state:

The parameter configuration of YARN in the cluster is as follows:

mapreduce.reduce.java.opts=-Xmx2048M

The parameter configuration on the client is as follows:

mapreduce.reduce.java.opts=-Xmx2048M

The parameter configuration of YARN in the cluster after the modification is as
follows:

mapreduce.reduce.java.opts=-Xmx1024M

If the parameter in the client program is not changed, the parameter is still valid.
This will result in insufficient memory for reducer and lead to MR running failure.

MapReduce Service
Component Development Specifications 7 Hive

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

Multithread security login mode

If multiple threads are performing login operations, the relogin mode must be
used for the subsequent logins of all threads after the first successful login of an
application.

login example code:

 private Boolean login(Configuration conf){
 boolean flag = false;
 UserGroupInformation.setConfiguration(conf);

 try {
 UserGroupInformation.loginUserFromKeytab(conf.get(PRINCIPAL), conf.get(KEYTAB));
 System.out.println("UserGroupInformation.isLoginKeytabBased(): "
+UserGroupInformation.isLoginKeytabBased());
 flag = true;
 } catch (IOException e) {
 e.printStackTrace();
 }
 return flag;

 }

relogin example code:

public Boolean relogin(){
 boolean flag = false;
 try {

 UserGroupInformation.getLoginUser().reloginFromKeytab();
 System.out.println("UserGroupInformation.isLoginKeytabBased(): "
+UserGroupInformation.isLoginKeytabBased());
 flag = true;
 } catch (IOException e) {
 e.printStackTrace();
 }
 return flag;
 }

Prerequisites for using the REST interface of WebHCat to submit an MR task
in Streaming mode

The REST interface depends on the streaming packages of Hadoop. Before
submitting an MR task to WebHCat in Streaming mode, upload hadoop-
streaming-2.7.0.jar to the specified path of the HDFS: hdfs:///apps/templeton/
hadoop-streaming-2.7.0.jar. Log in to the node where the client and Hive service
are installed. Assume that the client installation path is /opt/client.

source /opt/client/bigdata_env

Run the kinit command to log in to the node as the human-machine or machine-
machine user.

hdfs dfs -put ${BIGDATA_HOME}/FusionInsight_HD_8.1.0.1/FusionInsight-
Hadoop-*/hadoop/share/hadoop/tools/lib/hadoop-streaming-*.jar /apps/
templeton/

/apps/templeton/ need to be modified based on different instances. The default
instance uses /apps/templeton/ and the Hive1 instance uses /apps1/templeton/.
The others follow the same rule

MapReduce Service
Component Development Specifications 7 Hive

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

Read and write operations cannot be performed on the same table at the
same time

Currently, Hive does not support concurrent operations. Read and write operations
cannot be performed on the same table at the same time. Otherwise, query
results may be inaccurate and tasks may fail.

A bucket table does not support insert into
A bucket table does not support insert into, and only supports insert overwrite;
otherwise, the number of files and the number of buckets will be inconsistent.

Prerequisites for using some REST interfaces of WebHCat
Some REST interfaces of WebHCat depend on the JobHistoryServer instance of
MapReduce. The interfaces are as follows:

● mapreduce/jar(POST)
● mapreduce/streaming(POST)
● hive(POST)
● jobs(GET)
● jobs/:jobid(GET)
● jobs/:jobid(DELETE)

Hive Authorization Description
It is recommended that Hive authorization (databases, tables, or views) be
performed on the Manager authorization page. Authorization in command-line
interface is not recommended except in the alter databases databases_name set
owner='user_name' scenario.

Hive on HBase partition tables cannot be created
Data of Hive on HBase tables is stored on HBase. Because HBase tables are
divided into multiple partitions that are scattered on RegionServer, Hive on HBase
partition tables cannot be created on Hive.

A Hive on HBase table does not support insert overwrite
HBase uses a RowKey to uniquely identify a record. If data to be inserted has the
same RowKey as the existing data, HBase will use the new data to overwrite the
existing data. If insert overwrite is performed for a Hive on HBase table on Hive,
only data with the same RowKey will be overwritten.

7.3 Suggestions

HQL - implicit type conversion
If the query statements use the field value for filtering, do not use the implicit
type conversion of Hive to compile HQL. The reason is that the implicit type
conversion is not conducive to code reading and migration.

MapReduce Service
Component Development Specifications 7 Hive

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

Correct:

select * from default.tbl_src where id = 10001;
 select * from default.tbl_src where name = 'TestName';

Incorrect:

select * from default.tbl_src where id = '10001';
 select * from default.tbl_src where name = TestName;

NO TE

Note that the type of the id field in the tbl_src table is Int, and the type of the name field is
String.

HQL - object name length
The HQL object names include table names, field names, view names, and index
names. It is recommended that the object name not exceed 30 bytes.

An error is reported if an object name of Oracle exceeds 30 bytes. PT also limits
object names to 30 bytes.

Excessive long object names are not conductive to code reading, migration, and
maintenance.

HQL - statistics of data records
To count the total number of records in a table, use select count(1) from
table_name.

To count the number of valid records for a field in a table, use select
count(column_name) from table_name.

JDBC - timeout limit
The JDBC provided by Hive supports timeout limit. The default value is 5 minutes.
Users can use java.sql.DriverManager.setLoginTimeout(int seconds) to change
the value. The unit of seconds is second.

UDF Management
It is recommended that the administrator creates permanent UDF. This is done to
avoid repeated execution of the add jar statement and UDF redefining.

UDF of Hive has some default properties. For example, the default value of
deterministic is true (indicating that the same result will be returned for the
same input), and the default value of stateful is true. Corresponding annotates
should be added when user-defined UDF conducts an internal data summary. The
following is an example:

@UDFType(deterministic = false)
Public class MyGenericUDAFEvaluator implements Closeable {

Suggestions on Optimizing Table Partitions
1. It is advised to use partition tables and store data by day when data volume is

large and statistics need to be collected on a daily basis.

MapReduce Service
Component Development Specifications 7 Hive

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

2. In order to avoid excessive small files, add distribute by to the partition field
during dynamic partition data insertion.

Suggestions on Optimizing Storage File Formats
Hive supports multiple storage formats, including TextFile, RCFile, ORC, Sequence,
and Parquet. If you want to save storage space or query certain fields for the most
of time, use columnar storage, for example, ORC files, to create tables.

7.4 Examples

JDBC Secondary Development Code Example 1
The following code example provides the following functions:

1. Provides the username and key file path in the JDBC URL address so that
programs can automatically perform security logins and create Hive
connections.

2. Runs HQL statements for creating, querying, and deleting tables.
package com.huawei.bigdata.hive.example;

import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;
import java.util.Properties;

import org.apache.hadoop.conf.Configuration;
import com.huawei.bigdata.security.LoginUtil;

public class JDBCExample {
 private static final String HIVE_DRIVER = "org.apache.hive.jdbc.HiveDriver";

 private static final String ZOOKEEPER_DEFAULT_LOGIN_CONTEXT_NAME = "Client";
 private static final String ZOOKEEPER_SERVER_PRINCIPAL_KEY = "zookeeper.server.principal";
 private static final String ZOOKEEPER_DEFAULT_SERVER_PRINCIPAL = "zookeeper/hadoop.hadoop.com";

 private static Configuration CONF = null;
 private static String KRB5_FILE = null;
 private static String USER_NAME = null;
 private static String USER_KEYTAB_FILE = null;

 private static String zkQuorum = null;//IP address and port list of a ZooKeeper node
 private static String auth = null;
 private static String sasl_qop = null;
 private static String zooKeeperNamespace = null;
 private static String serviceDiscoveryMode = null;
 private static String principal = null;
 private static String auditAddition = null;
 private static void init() throws IOException{
 CONF = new Configuration();

 Properties clientInfo = null;
 String userdir = System.getProperty("user.dir") + File.separator
 + "conf" + File.separator;

MapReduce Service
Component Development Specifications 7 Hive

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

 InputStream fileInputStream = null;
 try{
 clientInfo = new Properties();
 //"hiveclient.properties" is the client configuration file. If the multi-instance feature is used, you need to
replace the file with "hiveclient.properties" of the corresponding instance client.
 //"hiveclient.properties" file is stored in the config directory of the decompressed installation package of
the corresponding instance client.
 String hiveclientProp = userdir + "hiveclient.properties" ;
 File propertiesFile = new File(hiveclientProp);
 fileInputStream = new FileInputStream(propertiesFile);
 clientInfo.load(fileInputStream);
 }catch (Exception e) {
 throw new IOException(e);
 }finally{
 if(fileInputStream != null){
 fileInputStream.close();
 fileInputStream = null;
 }
 }
 //The format of zkQuorum is "xxx.xxx.xxx.xxx:2181,xxx.xxx.xxx.xxx:2181,xxx.xxx.xxx.xxx:2181";
 //"xxx.xxx.xxx.xxx" of zkQuorum indicates the IP address of the node where ZooKeeper locates. The
default port is 2181.
 zkQuorum = clientInfo.getProperty("zk.quorum");
 auth = clientInfo.getProperty("auth");
 sasl_qop = clientInfo.getProperty("sasl.qop");
 zooKeeperNamespace = clientInfo.getProperty("zooKeeperNamespace");
 serviceDiscoveryMode = clientInfo.getProperty("serviceDiscoveryMode");
 principal = clientInfo.getProperty("principal");
 auditAddition = clientInfo.getProperty("auditAddition");
 // Set a user name for the newly created user, where xxx indicates the username created previously. For
example, if the created user is user, USER_NAME is user.
 USER_NAME = "xxx";

 if ("KERBEROS".equalsIgnoreCase(auth)) {
 // Set the keytab and krb5 file path on the client.
 USER_KEYTAB_FILE = userdir + "user.keytab";
 KRB5_FILE = userdir + "krb5.conf";
 System.setProperty("java.security.krb5.conf", KRB5_FILE);
 System.setProperty(ZOOKEEPER_SERVER_PRINCIPAL_KEY, ZOOKEEPER_DEFAULT_SERVER_PRINCIPAL);
 }
 }

 /**
 * This example shows how to use the Hive JDBC interface to run the HQL command
.
 *

 *
 * @throws ClassNotFoundException
 * @throws IllegalAccessException
 * @throws InstantiationException
 * @throws SQLException
 * @throws IOException
 */
 public static void main(String[] args) throws InstantiationException,
 IllegalAccessException, ClassNotFoundException, SQLException, IOException{
 // Parameter Initialization
 init();

 // Define HQL. HQL must be a single statement and cannot contain ";".
 String[] sqls = {"CREATE TABLE IF NOT EXISTS employees_info(id INT,name STRING)",
 "SELECT COUNT(*) FROM employees_info", "DROP TABLE employees_info"};

 // Build JDBC URL
 StringBuilder sBuilder = new StringBuilder(
 "jdbc:hive2://").append(zkQuorum).append("/");

 if ("KERBEROS".equalsIgnoreCase(auth)) {
 sBuilder.append(";serviceDiscoveryMode=")
 .append(serviceDiscoveryMode)
 .append(";zooKeeperNamespace=")

MapReduce Service
Component Development Specifications 7 Hive

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

 .append(zooKeeperNamespace)
 .append(";sasl.qop=")
 .append(sasl_qop)
 .append(";auth=")
 .append(auth)
 .append(";principal=")
 .append(principal)
 .append(";user.principal=")
 .append(USER_NAME)
 .append(";user.keytab=")
 .append(USER_KEYTAB_FILE);
 } else {
 //Normal mode
 sBuilder.append(";serviceDiscoveryMode=")
 .append(serviceDiscoveryMode)
 .append(";zooKeeperNamespace=")
 .append(zooKeeperNamespace)
 .append(";auth=none");
 }
 if (auditAddition != null && !auditAddition.isEmpty()) {
 strBuilder.append(";auditAddition=").append(auditAddition);
 }
 String url = sBuilder.toString();

 // Load the Hive JDBC driver.
 Class.forName(HIVE_DRIVER);

 Connection connection = null;
 try {
 // Obtain the JDBC connection.
 // If the normal mode is used, the second parameter needs to be set to a correct username. Otherwise,
the anonymous user will be used for login.
 connection = DriverManager.getConnection(url, "", "");

 // Create a table.
 // If data needs to be imported to the table, use the load statement to import data to the table, for
example, import data from the HDFS to the table.
 // load data inpath '/tmp/employees.txt' overwrite into table employees_info;
 execDDL(connection,sqls[0]);
 System.out.println("Create table success!");

 // Query the table.
 execDML(connection,sqls[1]);

 // Delete the table
 execDDL(connection,sqls[2]);
 System.out.println("Delete table success!");
 }catch (Exception e) {
 System.out.println("Create connection failed : " + e.getMessage());
 }
 finally {
 // Close the JDBC connection.
 if (null != connection) {
 connection.close();
 }
 }
 }

 public static void execDDL(Connection connection, String sql)
 throws SQLException {
 PreparedStatement statement = null;
 try {
 statement = connection.prepareStatement(sql);
 statement.execute();
 }
 finally {
 if (null != statement) {
 statement.close();
 }

MapReduce Service
Component Development Specifications 7 Hive

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

 }
 }

 public static void execDML(Connection connection, String sql) throws SQLException {
 PreparedStatement statement = null;
 ResultSet resultSet = null;
 ResultSetMetaData resultMetaData = null;

 try {
 // Execute HQL.
 statement = connection.prepareStatement(sql);
 resultSet = statement.executeQuery();

 // Export the queried column names to the console.
 resultMetaData = resultSet.getMetaData();
 int columnCount = resultMetaData.getColumnCount();
 for (int i = 1; i <= columnCount; i++) {
 System.out.print(resultMetaData.getColumnLabel(i) + '\t');
 }
 System.out.println();

 // Export the query results to the console.
 while (resultSet.next()) {
 for (int i = 1; i <= columnCount; i++) {
 System.out.print(resultSet.getString(i) + '\t');
 }
 System.out.println();
 }
 }
 finally {
 if (null != resultSet) {
 resultSet.close();
 }

 if (null != statement) {
 statement.close();
 }
 }
 }

}

JDBC Secondary Development Code Example 2
The following code example provides the following functions:

1. Does not provide the username and key file path in the JDBC URL address to
create Hive connections. Users perform security logins by themselves.

2. Runs HQL statements for creating, querying, and deleting tables.

MapReduce Service
Component Development Specifications 7 Hive

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

NO TE

When accessing ZooKeeper, programs need to use the jaas configuration file, for example,
user.hive.jaas.conf. The details are as follows:
Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="D:\\workspace\\jdbc-examples\\conf\\user.keytab"
 principal="xxx@HADOOP.COM"
 useTicketCache=false
 storeKey=true
 debug=true;
 };

You need to modify the keyTab path (absolute path) and principal in the configuration file
based on the actual environment, and set environment variable
java.security.auth.login.config to the file path.
package com.huawei.bigdata.hive.example;

import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;
import java.sql.SQLException;
import java.util.Properties;

import org.apache.hadoop.conf.Configuration;
import com.huawei.bigdata.security.LoginUtil;

public class JDBCExamplePreLogin {
 private static final String HIVE_DRIVER = "org.apache.hive.jdbc.HiveDriver";

 private static final String ZOOKEEPER_DEFAULT_LOGIN_CONTEXT_NAME = "Client";
 private static final String ZOOKEEPER_SERVER_PRINCIPAL_KEY = "zookeeper.server.principal";
 private static final String ZOOKEEPER_DEFAULT_SERVER_PRINCIPAL = "zookeeper/hadoop";

 private static Configuration CONF = null;
 private static String KRB5_FILE = null;
 private static String USER_NAME = null;
 private static String USER_KEYTAB_FILE = null;

 private static String zkQuorum = null;//IP address and port list of a ZooKeeper node
 private static String auth = null;
 private static String sasl_qop = null;
 private static String zooKeeperNamespace = null;
 private static String serviceDiscoveryMode = null;
 private static String principal = null;
 private static String auditAddition = null;
 private static void init() throws IOException{
 CONF = new Configuration();

 Properties clientInfo = null;
 String userdir = System.getProperty("user.dir") + File.separator
 + "conf" + File.separator;
 InputStream fileInputStream = null;
 try{
 clientInfo = new Properties();
 //"hiveclient.properties" is the client configuration file. If the multi-instance feature is used, you
need to replace the file with "hiveclient.properties" of the corresponding instance client.
 //"hiveclient.properties" file is stored in the config directory of the decompressed installation
package of the corresponding instance client.
 String hiveclientProp = userdir + "hiveclient.properties" ;

MapReduce Service
Component Development Specifications 7 Hive

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

 File propertiesFile = new File(hiveclientProp);
 fileInputStream = new FileInputStream(propertiesFile);
 clientInfo.load(fileInputStream);
 }catch (Exception e) {
 throw new IOException(e);
 }finally{
 if(fileInputStream != null){
 fileInputStream.close();
 fileInputStream = null;
 }
 }
 //The format of zkQuorum is "xxx.xxx.xxx.xxx:2181,xxx.xxx.xxx.xxx:2181,xxx.xxx.xxx.xxx:2181";
 //"xxx.xxx.xxx.xxx" of zkQuorum indicates the IP address of the node where ZooKeeper locates. The
default port is 2181.
 zkQuorum = clientInfo.getProperty("zk.quorum");
 auth = clientInfo.getProperty("auth");
 sasl_qop = clientInfo.getProperty("sasl.qop");
 zooKeeperNamespace = clientInfo.getProperty("zooKeeperNamespace");
 serviceDiscoveryMode = clientInfo.getProperty("serviceDiscoveryMode");
 principal = clientInfo.getProperty("principal");
 auditAddition = clientInfo.getProperty("auditAddition");
 // Set a user name for the newly created user, where xxx indicates the username created previously.
For example, if the created user is user, USER_NAME is user.
 USER_NAME = "xxx";

 if ("KERBEROS".equalsIgnoreCase(auth)) {
 // Set the keytab and krb5 file path on the client.
 USER_KEYTAB_FILE = userdir + "user.keytab";
 KRB5_FILE = userdir + "krb5.conf";

 LoginUtil.setJaasConf(ZOOKEEPER_DEFAULT_LOGIN_CONTEXT_NAME, USER_NAME,
USER_KEYTAB_FILE);
 LoginUtil.setZookeeperServerPrincipal(ZOOKEEPER_SERVER_PRINCIPAL_KEY,
ZOOKEEPER_DEFAULT_SERVER_PRINCIPAL);

 // Security mode
 // Zookeeper Login Authentication
 LoginUtil.login(USER_NAME, USER_KEYTAB_FILE, KRB5_FILE, CONF);
 }
 }

 /**
 * This example shows how to use the Hive JDBC interface to run the HQL command
.
 *

 *
 * @throws ClassNotFoundException
 * @throws IllegalAccessException
 * @throws InstantiationException
 * @throws SQLException
 * @throws IOException
 */
 public static void main(String[] args) throws InstantiationException,
 IllegalAccessException, ClassNotFoundException, SQLException, IOException{
 // Parameter Initialization
 init();

 // Define HQL. HQL must be a single statement and cannot contain ";".
 String[] sqls = {"CREATE TABLE IF NOT EXISTS employees_info(id INT,name STRING)",
 "SELECT COUNT(*) FROM employees_info", "DROP TABLE employees_info"};

 // Build JDBC URL
 StringBuilder sBuilder = new StringBuilder(
 "jdbc:hive2://").append(zkQuorum).append("/");

 if ("KERBEROS".equalsIgnoreCase(auth)) {
 sBuilder.append(";serviceDiscoveryMode=")
 .append(serviceDiscoveryMode)
 .append(";zooKeeperNamespace=")
 .append(zooKeeperNamespace)

MapReduce Service
Component Development Specifications 7 Hive

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

 .append(";sasl.qop=")
 .append(sasl_qop)
 .append(";auth=")
 .append(auth)
 .append(";principal=")
 .append(principal);
 } else {
 // Normal mode
 sBuilder.append(";serviceDiscoveryMode=")
 .append(serviceDiscoveryMode)
 .append(";zooKeeperNamespace=")
 .append(zooKeeperNamespace)
 .append(";auth=none");
 }
 if (auditAddition != null && !auditAddition.isEmpty()) {
 strBuilder.append(";auditAddition=").append(auditAddition);
 }
 String url = sBuilder.toString();

 // Load the Hive JDBC driver.
 Class.forName(HIVE_DRIVER);

 Connection connection = null;
 try {
 // Obtain the JDBC connection.
 // If the normal mode is used, the second parameter needs to be set to a correct username.
Otherwise, the anonymous user will be used for login.
 connection = DriverManager.getConnection(url, "", "");

 // Create a table.
 // If data needs to be imported to the table, use the load statement to import data to the table,
for example, import data from the HDFS to the table.
 // load data inpath '/tmp/employees.txt' overwrite into table employees_info;
 execDDL(connection,sqls[0]);
 System.out.println("Create table success!");

 // Query the table.
 execDML(connection,sqls[1]);

 // Delete the table
 execDDL(connection,sqls[2]);
 System.out.println("Delete table success!");
 }
 finally {
 // Close the JDBC connection.
 if (null != connection) {
 connection.close();
 }
 }
 }

 public static void execDDL(Connection connection, String sql)
 throws SQLException {
 PreparedStatement statement = null;
 try {
 statement = connection.prepareStatement(sql);
 statement.execute();
 }
 finally {
 if (null != statement) {
 statement.close();
 }
 }
 }

 public static void execDML(Connection connection, String sql) throws SQLException {
 PreparedStatement statement = null;
 ResultSet resultSet = null;

MapReduce Service
Component Development Specifications 7 Hive

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

 ResultSetMetaData resultMetaData = null;

 try {
 // Execute HQL.
 statement = connection.prepareStatement(sql);
 resultSet = statement.executeQuery();

 // Export the queried column names to the console.
 resultMetaData = resultSet.getMetaData();
 int columnCount = resultMetaData.getColumnCount();
 for (int i = 1; i <= columnCount; i++) {
 System.out.print(resultMetaData.getColumnLabel(i) + '\t');
 }
 System.out.println();

 // Export the query results to the console.
 while (resultSet.next()) {
 for (int i = 1; i <= columnCount; i++) {
 System.out.print(resultSet.getString(i) + '\t');
 }
 System.out.println();
 }
 }
 finally {
 if (null != resultSet) {
 resultSet.close();
 }

 if (null != statement) {
 statement.close();
 }
 }
 }

}

HCatalog Secondary Development Code Example
The following code example demonstrates how to use the HCatInputFormat and
HCatOutputFormat interfaces provided by HCatalog to submit MapReduce jobs.
public class HCatalogExample extends Configured implements Tool {

 public static class Map extends
 Mapper<LongWritable, HCatRecord, IntWritable, IntWritable> {
 int age;
 @Override
 protected void map(
 LongWritable key,
 HCatRecord value,
 org.apache.hadoop.mapreduce.Mapper<LongWritable, HCatRecord,
 IntWritable, IntWritable>.Context context)
 throws IOException, InterruptedException {
 age = (Integer) value.get(0);
 context.write(new IntWritable(age), new IntWritable(1));
 }
 }

 public static class Reduce extends Reducer<IntWritable, IntWritable,
 IntWritable, HCatRecord> {
 @Override
 protected void reduce(
 IntWritable key,
 java.lang.Iterable<IntWritable> values,
 org.apache.hadoop.mapreduce.Reducer<IntWritable, IntWritable,
 IntWritable, HCatRecord>.Context context)
 throws IOException, InterruptedException {
 int sum = 0;
 Iterator<IntWritable> iter = values.iterator();

MapReduce Service
Component Development Specifications 7 Hive

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

 while (iter.hasNext()) {
 sum++;
 iter.next();
 }
 HCatRecord record = new DefaultHCatRecord(2);
 record.set(0, key.get());
 record.set(1, sum);

 context.write(null, record);
 }
 }

 public int run(String[] args) throws Exception {
 Configuration conf = getConf();
 String[] otherArgs = args;

 String inputTableName = otherArgs[0];
 String outputTableName = otherArgs[1];
 String dbName = "default";

 @SuppressWarnings("deprecation")
 Job job = new Job(conf, "GroupByDemo");

 HCatInputFormat.setInput(job, dbName, inputTableName);
 job.setInputFormatClass(HCatInputFormat.class);
 job.setJarByClass(HCatalogExample.class);
 job.setMapperClass(Map.class);
 job.setReducerClass(Reduce.class);
 job.setMapOutputKeyClass(IntWritable.class);
 job.setMapOutputValueClass(IntWritable.class);
 job.setOutputKeyClass(WritableComparable.class);
 job.setOutputValueClass(DefaultHCatRecord.class);

 OutputJobInfo outputjobInfo = OutputJobInfo.create(dbName,outputTableName, null);
 HCatOutputFormat.setOutput(job, outputjobInfo);
 HCatSchema schema = outputjobInfo.getOutputSchema();
 HCatOutputFormat.setSchema(job, schema);
 job.setOutputFormatClass(HCatOutputFormat.class);

 return (job.waitForCompletion(true) ? 0 : 1);
 }
 public static void main(String[] args) throws Exception {
 int exitCode = ToolRunner.run(new HCatalogExample(), args);
 System.exit(exitCode);
 }
 }

MapReduce Service
Component Development Specifications 7 Hive

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

8 Hudi

8.1 Applicable Scenarios
Full data analysis: When an analysis needs to read full data in a table, you can
use the real-time view of Hudi to provide the latest full data for the analysis
engine.

Quick data analysis: When an analysis poses higher requirements on analysis
performance than eventually consistent or full data, you can use the read-
optimized view of Hudi to improve read efficiency.

Incremental data analysis: In incremental data extract, transform and load (ETL)
and online analytical processing (OLAP) scenarios, you can use the incremental
view of Hudi to read the latest incremental data or the incremental data
submitted at a specified time, eliminating the need to search the entire full data
and significantly improving the read performance.

Historical image data analysis: To analyze data at a historical time point, you
can use Multiversion Concurrency Control (MVCC) of Hudi to read image data of a
specific version.

8.2 Suggestions
Currently, Hudi is mainly applicable to real-time data import to the lake and
incremental data ETL. Stored historical data can be imported to Hudi tables in
batches.

Copy on write (COW) tables apply to scenarios where the incremental data is
basically new data and that have high requirements on data read performance.

Merge on read (MOR) tables apply to scenarios that have high requirements on
data import performance and where the incremental data contains a large
amount of added and updated data.

You are advised to use the date field to set partition paths in hoodie keys.

Configure Hudi resources for real-time data importing to the data lake in based
on the number of Kafka partitions. One Kafka partition can be consumed by only
one executor-core. Therefore, setting excessive executor-cores wastes resources.

MapReduce Service
Component Development Specifications 8 Hudi

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

Set the consumption batch parameters for Spark Streaming to write data to the
data lake based on site requirements. Ensure that the interval between two
batches is slightly smaller than the time required for consuming a batch of
messages to write data into the Hudi table.

The degree of parallelism (DOP) of Hudi write operations cannot be too large. A
proper DOP helps shorten the processing time.

MapReduce Service
Component Development Specifications 8 Hudi

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

9 Kafka

9.1 Application Scenarios
Kafka is a distributed message releasing and subscription system. It provides
features such as message persistence, high-throughput, multi-client support, and
real-time message processing. Kafka is applicable to online and offline message
consumption as well as Internet service massive data collection scenarios, such as
conventional data collection, active website tracking, aggregation of operation
data in statistics systems (monitoring data), and log collection.

Reasons for using the message system

● Decoupling: The message system inserts a hidden, data-based interface layer
during data processing.

● Redundancy: Message queues are persistent, preventing data loss.
● Scalability: Message queues are decoupled from data processing, facilitating

the expansion of data processing.
● Recoverability: Data processing can be recovered in case of failures.
● Sequence guarantee: Message queues help ensure the message sequence and

keep the messages in a partition in order.
● Asynchronous communication: Messages can join the queue for further

processing when necessary.

9.2 Rules

Create Topics by calling Kafka APIs (AdminZkClient.createTopic)
● For Java programming languages, correct examples are as follows:

import kafka.zk.AdminZkClient;
import kafka.zk.KafkaZkClient;
import kafka.admin.RackAwareMode;
…
KafkaZkClient kafkaZkClient = KafkaZkClient.apply(zkUrl, JaasUtils.isZkSecurityEnabled(),
zkSessionTimeoutMs, zkConnectionTimeoutMs, Int.MaxValue(), Time.SYSTEM, "", "", null);
AdminZkClient adminZkClient = new AdminZkClient(kafkaZkClient);
adminZkClient.createTopic(topic, partitions, replicas, new Properties(), RackAwareMode.Enforced

MapReduce Service
Component Development Specifications 9 Kafka

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

$.MODULE$);
…

● For Scala programming languages, correct examples are as follows:
import kafka.zk.AdminZkClient;
import kafka.zk.KafkaZkClient;
…
val kafkaZkClient: KafkaZkClient = KafkaZkClient.apply(zkUrl, JaasUtils.isZkSecurityEnabled(),
zkSessionTimeoutMs, zkConnectionTimeoutMs, Int.MaxValue, Time.SYSTEM, "", "")
val adminZkClient: AdminZkClient = new AdminZkClient(kafkaZkClient)
adminZkClient.createTopic(topic, partitions, replicas)

The number of Partition copies must be less than or equal to the number of
nodes

Copies of Topic Partitions in Kafka are used for improving data reliability. Copies of
the same Partition are distributed on different nodes. Therefore, the number of
Partition copies must be less than or equal to the number of nodes.

Set the fetch.message.max.bytes parameter of the Consumer client

The value of fetch.message.max.bytes muster be equal to or greater than the
maximum number of bytes of messages that the Producer client generates each
time. If the value is too small, the messages generated by the Producer client
cannot be consumed successfully by the Consumer client.

9.3 Suggestions

In the same group, the number of consumers and that of Topic Partitions to
be consumed should be the same

If the number of consumers is greater than that of Topic Partitions, some
consumers cannot consume Topics. If the number of consumers is smaller than
that of Topic Partitions, concurrent consumption cannot be fully represented.
Therefore, the number of consumers and that of Topic Partitions to be consumed
should be the same.

Avoid writing data with single ultra-large log

Data with single ultra-large log can affect efficiency and writing. Under such
circumstance, modify the values of the max.request.size and
max.partition.fetch.bytes configuration items when initializing Kafka producer
instances and consumer instances, respectively.

For example, set max.request.size and max.partition.fetch.bytes to 5252880.
 // Protcol type:configuration SASL_PLAINTEXT or PLAINTEXT
 props.put(securityProtocol, kafkaProc.getValues(securityProtocol, "SASL_PLAINTEXT"));
 // service name
 props.put(saslKerberosServiceName, "kafka");
 props.put("max.request.size", "5252880");
 // Security protocol type
 props.put(securityProtocol, kafkaProc.getValues(securityProtocol, "SASL_PLAINTEXT"));
 // service name
 props.put(saslKerberosServiceName, "kafka");
 props.put("max.partition.fetch.bytes","5252880");

MapReduce Service
Component Development Specifications 9 Kafka

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

10 Mapreduce

10.1 Application Scenarios
Files of Mapreduce are stored in the HDFS. MapReduce is a programming model
used for parallel computation of large data sets (larger than 1 TB). It is advised to
use MapReduce when the file being processed cannot be loaded to memory.

It is advised to use Spark if MapReduce is not required.

10.2 Rules

Inherit the Mapper abstract class.
The map() and setup() methods are called during the Map procedure of a
MapReduce task.

Example:

public static class MapperClass extends

Mapper<Object, Text, Text, IntWritable> {
/**
* map input. The key indicates the offset of the original file, and the value is a row of characters in the
original file.
* The map input key and value are provided by InputFormat. You do not need to set them. By default,
TextInputFormat is used.
*/
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
//Custom implementation
}
/**
* The setup() method is called only once before the map() method of a map task or the reduce() method
of a reduce task is called.*/
public void setup(Context context) throws IOException,
InterruptedException {
// Custom implementation
}
}

MapReduce Service
Component Development Specifications 10 Mapreduce

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

Inherit the Reducer abstract class.
The reduce() and setup() methods are called during the Reduce procedure of a
MapReduce task.

Example:

public static class ReducerClass extends

Reducer<Text, IntWritable, Text, IntWritable> {

/**
* @param The input is a collection iterator consisting of (key, value) pairs.
* Each map puts together all the pairs with the same key. The reduce method sums the number of the
same keys.
* Call context.write(key, value) to write the output to the specified directory.
* Outputformat writes the (key, value) pairs output by reduce to the file system.
* By default, TextOutputFormat is used to write the reduce output to the HDFS.
*/

public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
// Custom implementation
}

/**
* The setup() method is called only once before the map() method of a map task or the reduce() method
of a reduce task is called.
*/

public void setup(Context context) throws IOException,
InterruptedException {

// Custom implementation. Context obtains the configuration information.

}
}

Submit a MapReduce task.
Use the main() method to create a job, set parameters, and submit the job to the
Hadoop cluster.

Example:

public static void main(String[] args) throws Exception {
Configuration conf = getConfiguration();
// Input parameters for the main method: args[0] indicates the input path of the MR job. args[1] indicates
the output path of the MR job.
String[] otherArgs = new GenericOptionsParser(conf, args)
.getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "job name");
// Locate the jar package of the major task.
job.setJar("D:\\job-examples.jar");
// job.setJarByClass(TestWordCount.class);
// Set the map and reduce classes to be executed. You can also specify them in the configuration file.
job.setMapperClass(TokenizerMapperV1.class);
job.setReducerClass(IntSumReducerV1.class);
// Set the combiner class. By default, it is not used. If it is used, it runs the same classes as reduce. Exercise
care when using the Combiner class. You can also specify the combiner class in the configuration file.
job.setCombinerClass(IntSumReducerV1.class);
// Set the output type of the job. You can also specify it in the configuration file.
job.setOutputKeyClass(Text.class);

MapReduce Service
Component Development Specifications 10 Mapreduce

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

job.setOutputValueClass(IntWritable.class);
// Set the input and output paths for the job. You can also specify them in the configuration file.
Path outputPath = new Path(otherArgs[1]);
FileSystem fs = outputPath.getFileSystem(conf);
// If the output path already exists, delete it.
if (fs.exists(outputPath)) {
fs.delete(outputPath, true);
}
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}

10.3 Suggestions

Specify the global configuration items in mapred-site.xml
The mapred-site.xml file contains the following configuration items:

setMapperClass(Class <extends Mapper> cls) ->"mapreduce.job.map.class"
setReducerClass(Class<extends Reducer> cls) ->"mapreduce.job.reduce.class"
setCombinerClass(Class<extends Reducer> cls) ->"mapreduce.job.combine.class"
setInputFormatClass(Class<extends InputFormat> cls) ->"mapreduce.job.inputformat.class"
setJar(String jar) ->"mapreduce.job.jar"
setOutputFormat(Class< extends OutputFormat> theClass) ->"mapred.output.format.class"
setOutputKeyClass(Class<> theClass) ->"mapreduce.job.output.key.class"
setOutputValueClass(Class<> theClass) ->"mapreduce.job.output.value.class"
setPartitionerClass(Class<extends Partitioner> theClass) ->"mapred.partitioner.class"
setMapOutputCompressorClass(Class<extends CompressionCodec> codecClass)
->"mapreduce.map.output.compress"&"mapreduce.map.output.compress.codec"
setJobPriority(JobPriority prio) ->"mapreduce.job.priority"
setQueueName(String queueName) ->"mapreduce.job.queuename"
setNumMapTasks(int n) ->"mapreduce.job.maps"
setNumReduceTasks(int n) ->"mapreduce.job.reduces"

10.4 Examples

Count the number of female netizens who dwell on online shopping for
more than 2 hours at a weekend.

The operation involves three steps:

1. Filter the online time of female netizens in log files using the MapperClass
inherited from the Mapper abstract class.

2. Calculate the online time of each female netizen and output information
about the female netizens who dwell online for more than 2 hours using the
ReducerClass inherited from the Reducer abstract class.

3. Use the main method to create a MapReduce job and then submit the
MapReduce job to the Hadoop cluster.

Step 1: Use MapperClass to define the map() and setup() methods of the
Mapper abstract class.

public static class MapperClass extends

Mapper<Object, Text, Text, IntWritable> {
// Separator
String delim;

MapReduce Service
Component Development Specifications 10 Mapreduce

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

// Filter the sex.
String sexFilter;
private final static IntWritable timeInfo = new IntWritable(1);
private Text nameInfo = new Text();
/**
* map input. The key indicates the offset of the original file, and the value is a row of characters in the
original file.
* The map input key and value are provided by InputFormat. You do not need to set them. By default,
TextInputFormat is used.
*/
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
// A row of characters read.
String line = value.toString();
if (line.contains(sexFilter)) {
// Obtain the names.
String name = line.substring(0, line.indexOf(delim));
nameInfo.set(name);
// Obtain information about the online time.
String time = line.substring(line.lastIndexOf(delim),
line.length());
timeInfo.set(Integer.parseInt(time));
// map outputs (key, value) pairs.
context.write(nameInfo, timeInfo);
}
}
/**
* The setup() method is called only once before the map() method of a map task or the reduce() method
of a reduce task is called.
*/
public void setup(Context context) throws IOException,
InterruptedException {
// Obtain configuration information using Context.
sexFilter = delim + context.getConfiguration().get("log.sex.filter", "female") + delim;
}
}

Step 2: Use CReducerClass to define the reduce() method of the Reducer
abstract class.

public static class ReducerClass extends
Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
// Total time limit.
private int timeThreshold;
/**
* @param The input is a collection iterator consisting of (key, value) pairs.
* Each map puts together all the pairs with the same key. The reduce method sums the number of the
same keys.
* Call context.write(key, value) to write the output to the specified directory.
* Outputformat writes the (key, value) pairs output by reduce to the file system.
* By default, TextOutputFormat is used to write the reduce output to the HDFS.
*/
public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
// If the time is smaller than the time limit, no information will be returned.
if (sum < timeThreshold) {
return;
}
result.set(sum);
// reduce output: key: female netizen information, value: online time
context.write(key, result);
}
/**
* The setup() method is called only once before the map() method of a map task or the reduce() method

MapReduce Service
Component Development Specifications 10 Mapreduce

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

of a reduce task is called.
*/
public void setup(Context context) throws IOException,
InterruptedException {
// Obtain configuration information using Context.
timeThreshold = context.getConfiguration().getInt(
"log.time.threshold", 120);
}
}

Step 3: Use the main() method to create a job, set parameters, and submit
the job to the Hadoop cluster.

public static void main(String[] args) throws Exception {
Configuration conf = getConfiguration();
// Input parameters for the main method: args[0] indicates the input path of the MR job. args[1] indicates
the output path of the MR job.
String[] otherArgs = new GenericOptionsParser(conf, args)
.getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "Collect Female Info");
// Locate the jar package of the major task.
job.setJar("D:\\mapreduce-examples\\hadoop-mapreduce-examples\\mapreduce-examples.jar");
// job.setJarByClass(TestWordCount.class);
// Set the map and reduce classes to be executed. You can also specify them in the configuration file.
job.setMapperClass(TokenizerMapperV1.class);
job.setReducerClass(IntSumReducerV1.class);
// Set the combiner class. By default, it is not used. If it is used, it runs the same classes as reduce. Exercise
care when using the Combiner class. You can also specify the combiner class in the configuration file.
job.setCombinerClass(IntSumReducerV1.class);
// Set the output type of the job. You can also specify it in the configuration file.
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// Set the input and output paths for the job. You can also specify them in the configuration file.
Path outputPath = new Path(otherArgs[1]);
FileSystem fs = outputPath.getFileSystem(conf);
// If the output path already exists, delete it.
if (fs.exists(outputPath)) {
fs.delete(outputPath, true);
}
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) 0 : 1);
}

MapReduce Service
Component Development Specifications 10 Mapreduce

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

11 Spark

11.1 Application Scenarios
Spark is a distributed batch processing framework. It provides analysis and mining
and iterative memory computing capabilities and supports application
development in multiple programming languages, including Scala, Java, and
Python. Spark is applicable to the following scenarios:

● Data processing: Spark can process data quickly and has fault tolerance and
scalability.

● Iterative computation: Spark supports iterative computation to meet the
requirements of multi-step data processing logic.

● Data mining: Spark supports complex mining and analysis of massive data
and supports multiple data mining and machine learning algorithms.

● Streaming Processing: Spark supports streaming processing with a second-
level delay and supports multiple external data sources.

● Query Analysis: Spark supports standard SQL query analysis, provides the DSL
(DataFrame), and supports multiple external input types.

11.2 Rules

Import the Spark class in Spark applications
● Example in Java:

//Class imported when SparkContext is created.
import org.apache.spark.api.java.JavaSparkContext
//Class imported for the RDD operation.
import org.apache.spark.api.java.JavaRDD
//Class imported when SparkConf is created.
import org.apache.spark.SparkConf

● Example in Scala:
//Class imported when SparkContext is created.
import org.apache.spark.SparkContext
//Class imported for the RDD operatin.
import org.apache.spark.SparkContext._
//Class imported when SparkConf is created.
import org.apache.spark.SparkConf

MapReduce Service
Component Development Specifications 11 Spark

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

Pay attention to the parameter transfer between the Driver and Executor
nodes in distributed cluster

When Spark is used for programming, certain code logic needs to be determined
based on the parameter entered. Generally, the parameter is specified as a global
variable and assigned a null value. The actual value is assigned before the
SparkContext object is instantiated using the main function. However, in the
distributed cluster mode, the jar package of the executable program will be sent
to each Executor. If the global variable values are changed only for the nodes in
the main function and are not sent to the functions executing tasks, an error of
null pointer will be reported.

Correct:

object Test
{
 private var testArg: String = null;
 def main(args: Array[String])
 {
 testArg = ¡;
 val sc: SparkContext = new SparkContext(¡);

 sc.textFile(¡)
 .map(x => testFun(x, testArg));
 }

 private def testFun(line: String, testArg: String): String =
 {
 testArg.split(¡);
 return ¡;
 }
}

Incorrect:

//Define an object.
object Test
{
 // Define a global variable and set it to null. Assign a value to this variable before the SparkContext object
is instantiated using the main function.
 private var testArg: String = null;
 //main function
 def main(args: Array[String])
 {
 pair
 testArg = ¡;
 val sc: SparkContext = new SparkContext(¡);

 sc.textFile(¡)
 .map(x => testFun(x));
 }

 private def testFun(line: String): String =
 {
 testArg.split(...);
 return ¡;
 }
}

No error will be reported in the local mode of Spark. However, in the distributed
cluster mode, an error of null pointer will be reported. In the cluster mode, the jar
package of the executable program is sent to each Executor for running. When the
testFun function is executed, the system queries the value of testArg from the
memory. The value of testArg, however, is changed only when the nodes of the

MapReduce Service
Component Development Specifications 11 Spark

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

main function are started and other nodes are unaware of the change. Therefore,
the value returned by the memory is null, which causes an error of null pointer.

SparkContext.stop must be added before an application program stops
When Spark is used in secondary development, SparkContext.stop() must be
added before an application program stops.

NO TE

When Java is used in application development, JavaSparkContext.stop() must be added
before an application program stops.
When Scala is used in application development, SparkContext.stop() must be added before
an application program stops.

The following use Scala as an example to describe correct and incorrect examples.

Correct:

//Submit a spark job.
val sc = new SparkContext(conf)

//Specific task
...

//The application program stops.
sc.stop()

Incorrect:

//Submit a spark job.
val sc = new SparkContext(conf)

//Specific task
...

If you do not add SparkContext.stop, the YARN page displays the failure
information. In the same task, as shown in Figure 11-1, the first program does not
add SparkContext.stop(), while the second program adds SparkContext.stop.

Figure 11-1 Difference when SparkContext.stop() is added

Appropriately plan the proportion of resources for AM
When there are many tasks and each task occupies few resources, the tasks may
fail to start even if the cluster resources are sufficient and the tasks are submitted
successfully. To address this issue, you can increase the value of Max AM
Resource Percent.

MapReduce Service
Component Development Specifications 11 Spark

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

Figure 11-2 Modify Max AM Resource Percent

11.3 Suggestions

Persist the RDD that will be frequently used
The default RDD storage level is StorageLevel.NONE, which means that the RDD is
not stored on disks or in memory. If an RDD is frequently used, persist the RDD as
follows:

Call cache(), persist(), or persist(newLevel: StorageLevel) of spark.RDD to persist
the RDD. The cache() and persist() functions set the RDD storage level to
StorageLevel.MEMORY_ONLY. The persist(newLevel: StorageLevel) function allows
you to set other storage level for the RDD. However, before calling this function,
ensure that the RDD storage level is StorageLevel.NONE or the same as the
newLevel. That is, once the RDD storage level is set to a value other than
StorageLevel.NONE, the storage level cannot be changed.

To unpersist an RDD, call unpersist(blocking: Boolean = true). The function can:

1. Remove the RDD from the persistence list. The corresponding RDD data
becomes recyclable.

2. Set the storage level of the RDD to StorageLevel.NONE.

Carefully select the the shuffle operator
This type of operator features wide dependency. That is, a partition of the parent
RDD affects multiple partitions of the child RDD. The elements in an RDD are
<key, value> pairs. During the execution process, the partitions of the RDD will be
sequenced again. This operation is called shuffle.

Network transmission between nodes is involved in the shuffle operators.
Therefore, for an RDD with large data volume, you are advised to extract
information as much as possible to minimize the size of each piece of data and
then call the shuffle operators.

The following methods are often used:

● combineByKey() : RDD[(K, V)] => RDD[(K, C)]
This method is used to convert all the keys that have the same value in
RDD[(K, V)] to a value with type of C.

● groupByKey() and reduceByKey() are two types of implementation of
combineByKey. If groupByKey and reduceByKey cannot meet requirements in
complex data aggregation, you can use customized aggregation functions as
the parameters of combineByKey.

MapReduce Service
Component Development Specifications 11 Spark

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

● distinct(): RDD[T] => RDD[T]
This method is used to remove repeated elements. The code is as follows:
map(x => (x, null)).reduceByKey((x, y) => x, numPartitions).map(_._1)

This process is time-consuming, especially when the data volume is high.
Therefore, it is not recommended for the RDD generated from large files.

● join() : (RDD[(K, V)], RDD[(K, W)]) => RDD[(K, (V, W))]
This method is used to combine two RDDs through key.
If a key in RDD[(K, V)] has X values and the same key in RDD[(K, W)] has Y
values, a total of (X * Y) data records will be generated in RDD[(K, (V, W))].

Use high-performance operators if the service permits
1. Using reduceByKey/aggregateByKey to replace groupByKey

The map-side pre-aggregation refers to that each local node performs the
aggregation operation on the same key, which is similar to the local combiner
in MapReduce. The map-side pre-aggregation ensures that each key on a
node is unique. When a node is collecting the data of the same key in the
processing results of the previous nodes, data that needs to be obtained will
be significantly reduced, decreasing disk I/O and Internet transmission cost.
Generally speaking, it is advised to replace groupByKey operator with
reduceByKey or aggregateByKey operator if possible because they will pre-
aggregate the local same key on each node by using user-defined functions.
However, the groupByKey operator does not support pre-aggregation and
delivers lower performance than reduceByKey or aggregateByKey because all
data are distributed and transmitted on all the nodes.

2. Using mapPartitions to replace ordinary map operators
During a function invocation, mapPartitions operators will process all the data
in a partition instead of only one piece of data, and therefore delivers higher
performance than the ordinary map operators. However, mapPartitions may
occasionally result in Out of Memory (OOM). If memory is insufficient, some
objects cannot be recycled during memory recycling. Therefore, exercise
caution when using mapPartitions.

3. Performing the coalesce operation after filtering
After filtering a large portion of data (for example, above 30%) by using the
filter operator in an RDD, you are advised to manually decrease the number
of partitions by using coalesce in order to compress the data in RDD to fewer
partitions. This is because after filtering, much data in each partition is
filtered out, leaving little data to be processed. If the computing is continued,
resources can be wasted. The task handling speed decreases as the number of
tasks increases. Therefore, decreasing the number of partitions by using
coalesce to compress the RDD data to fewer partitions can ensure that all the
partitions are handled with fewer tasks. The performance can also be
enhanced in some scenarios.

4. Using repartitionAndSortWithinPartitions to replace repartition and sort
repartitionAndSortWithinPartitions is recommended by Spark official website.
It is advised to use repartitionAndSortWithinPartitions for sorting after
repartitioning. This operator can sort and shuffle repartitions at the same
time, delivering higher performance.

5. Using foreachPartitions to replace foreach

MapReduce Service
Component Development Specifications 11 Spark

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

Similar to "Using mapPartitions to replace ordinary map operators", this
mechanism handles all the data in a partition during a function invocation
instead of one piece of data. In practice, foreachPartitions is proved to be
helpful in improving performance. For example, the foreach function can be
used to write all the data in RDD into MySQL. Ordinary foreach operators,
write data piece by piece, and a database connection is established for each
function invocation. Frequent connection establishments and destructions
cause low performance. foreachPartitions, however, processes all the data in a
partition at a time. Only one database connection is required for each
partition. Batch insertion delivers higher performance.

RDD Shared Variables

In application development, when a function is transferred to a Spark
operation(such as map and reduce) and runs on a remote cluster, the operation is
actually performed on the independent copies of all the variables involved in the
function. These variables will be copied to each machine. In general, reading and
writing shared variables across tasks is apparently inefficient. Spark provides two
shared variables that are commonly used: broadcast variable and accumulator.

Kryo can be used to optimize serialization performance in performance-
demanding scenarios.

Spark offers two serializers:

org.apache.spark.serializer.KryoSerializer: high-performance but low
compatibility

org.apache.spark.serializer.JavaSerializer: average performance and high
compatibility

Method: conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")

NO TE

The following are reasons why Spark does not use Kryo-based serialization by default:

Spark uses Java serialization by default, that is, uses the ObjectOutputStream and
ObjectInputStream API to perform serialization and deserialization. Spark can also use Kryo
serialization library, which delivers higher performance than Java serialization library.
According to official statistics, Kryo-based serialization is 10 times more efficient than Java-
based serialization. Kryo-based serialization requires the registration of all the user-defined
types to be serialized, which is a burden for developers.

Suggestions on Optimizing Spark Streaming Performance
1. Set an appropriate batch processing duration (batchDuration).
2. Set concurrent data receiving appropriately.

– Set multiple receivers to receive data.
– Set an appropriate receiver congestion duration.

3. Set concurrent data processing appropriately.
4. Use Kryo-based serialization.
5. Optimize memory.

MapReduce Service
Component Development Specifications 11 Spark

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

– Set the persistence level to reduce GC costs.
– Use concurrent Mark Sweep GC algorithms to shorten GC pauses.

MapReduce Service
Component Development Specifications 11 Spark

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

12 Yarn

12.1 Application Scenarios
YARN is a distributed resource management system that is used to improve
resource usage in the distributed cluster environment. Resources include memory,
I/O, network resources, and disk resources. YARN is developed to address the
shortage of the original MapReduce framework. Initially, MapReduce's committers
were able to modify the existing codes periodically. As codes increase and due to
the problems in the design of the original MapReduce framework, the
modification becomes increasingly difficult. Therefore, MapReduce's committers
decides to redesign the framework with enhancements to scalability, availability,
reliability, and compatibility, increasing the resource usage of next-generation
MapReduce(MRv2/Yarn) and supporting more computing frameworks apart from
MapReduce.

12.2 Rules

Use YarnClient. createYarnClient() to create a client
Do not directly use the protocol interface
ClientRMProxy.createRMProxy(config,ApplicationClientProtocol.class) to create a
client.

The Application Master uses the asynchronous interface
AMRMClientAsync.createAMRMClientAsync() to interact with the
ResourceManager

Do not directly use the protocol interface
ClientRMProxy.createRMProxy(config,ApplicationMasterProtocol.class) to create a
client used by the Application Master to interact with the ResourceManager.

MapReduce Service
Component Development Specifications 12 Yarn

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

The Application Master uses the asynchronous interface
AMRMClientAsync.createAMRMClientAsync() to interact with the
NodeMabager

Do not directly use the ContainerManagementProtocolProxy interface to create a
client used by the Application Master to interact with the NodeManager.

Multithread security login mode
If multiple threads are performing login operations, the relogin mode must be
used for the subsequent logins of all threads after the first successful login of an
application.

login example code:

 private Boolean login(Configuration conf){
 boolean flag = false;
 UserGroupInformation.setConfiguration(conf);
 try {
 UserGroupInformation.loginUserFromKeytab(conf.get(PRINCIPAL), conf.get(KEYTAB));
 System.out.println("UserGroupInformation.isLoginKeytabBased(): "
+UserGroupInformation.isLoginKeytabBased());
 flag = true;
 } catch (IOException e) {
 e.printStackTrace();
 }
 return flag;
 }

relogin example code:

public Boolean relogin(){
 boolean flag = false;
 try {
 UserGroupInformation.getLoginUser().reloginFromKeytab();
 System.out.println("UserGroupInformation.isLoginKeytabBased(): "
+UserGroupInformation.isLoginKeytabBased());
 flag = true;
 } catch (IOException e) {
 e.printStackTrace();
 }
 return flag;
}

MapReduce Service
Component Development Specifications 12 Yarn

Issue 01 (2024-05-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

	Contents
	1 Security Authentication
	1.1 Rules
	1.2 Suggestions

	2 ClickHouse
	2.1 Rules
	2.2 Suggestions

	3 Doris
	3.1 Table Creation Rules
	3.2 Data Change
	3.3 Naming Conventions
	3.4 Data Query
	3.5 Data Import
	3.6 UDF Development
	3.7 Connection and Running

	4 Flink
	4.1 Applicable Scenarios
	4.2 Rules
	4.3 Suggestions

	5 HBase
	5.1 Application Scenarios
	5.2 Rules
	5.3 Suggestions
	5.4 Examples
	5.5 Appendix

	6 HDFS
	6.1 Application Scenarios
	6.2 Rules
	6.3 Suggestions

	7 Hive
	7.1 Application Scenarios
	7.2 Rules
	7.3 Suggestions
	7.4 Examples

	8 Hudi
	8.1 Applicable Scenarios
	8.2 Suggestions

	9 Kafka
	9.1 Application Scenarios
	9.2 Rules
	9.3 Suggestions

	10 Mapreduce
	10.1 Application Scenarios
	10.2 Rules
	10.3 Suggestions
	10.4 Examples

	11 Spark
	11.1 Application Scenarios
	11.2 Rules
	11.3 Suggestions

	12 Yarn
	12.1 Application Scenarios
	12.2 Rules

