
MapReduce Service

Component Development
Specifications

Issue 01

Date 2024-12-11

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 ClickHouse...1
1.1 ClickHouse Application Development Rules.. 1
1.2 ClickHouse Application Development Suggestions... 3

2 Doris..7
2.1 Table Creation Rules...7
2.2 Data Change... 8
2.3 Naming Conventions..9
2.4 Data Query..10
2.5 Data Import.. 11
2.6 UDF Development.. 12
2.7 Connection and Running.. 12

3 Flink.. 13
3.1 Flink Specification Overview... 13
3.2 FlinkSQL Connector Development.. 14
3.2.1 Development Rules... 14
3.2.2 Development Suggestions.. 14
3.2.3 Development Rules... 15
3.2.4 Development Rules... 15
3.2.5 Development Suggestions.. 16
3.2.6 Development Rules... 17
3.2.7 Development Suggestions.. 18
3.3 Flink on Hudi.. 19
3.3.1 Development Rules... 19
3.3.2 Suggestions..21
3.3.3 Development Rules... 21
3.3.4 Development Suggestions.. 23
3.3.5 Configuration Rules.. 23
3.3.6 Configuration Suggestions... 25
3.4 Flink Jobs... 25
3.4.1 Development Rules... 25
3.4.2 Development Suggestions.. 26
3.5 Flink SQL Logic.. 31

MapReduce Service
Component Development Specifications Contents

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

3.5.1 Development Rules... 31
3.5.2 Development Suggestions.. 33
3.6 Flink Performance Tuning.. 41
3.6.1 Performance Tuning Rules... 41
3.6.2 Performance Tuning Suggestions.. 42
3.7 Development Examples.. 52

4 HBase..54
4.1 HBase Application Development Rules... 54
4.2 HBase Application Development Suggestions.. 59

5 HDFS... 61
5.1 HDFS Application Development Rules.. 61
5.2 HDFS Application Development Suggestions... 65

6 Hive...67
6.1 Hive Application Development Rules...67
6.2 Hive Application Development Suggestions..71

7 Hudi.. 73
7.1 Hudi Development Specifications Overview... 73
7.2 Hudi Data Sheet Design Specification... 73
7.2.1 Hudi Table Model Design Specifications... 74
7.2.2 Hudi Table Index Design Specifications... 76
7.2.3 Hudi Table Partition Design Specifications...78
7.3 Hudi Data Table Management Operation Specifications... 79
7.3.1 Hudi Data Table Compaction Specifications..79
7.3.2 Hudi Data Table Clean Specifications.. 82
7.3.3 Hudi Data Table Archive Specifications... 83
7.4 Spark on Hudi Development Specifications.. 84
7.4.1 Spark Read/Write Hudi Development Specifications..84
7.4.1.1 SparkSQL table creation parameter specifications...88
7.4.1.2 Specifications for Spark to read Hudi parameters in incremental mode... 89
7.4.1.3 Specifications for setting the compaction parameter in the Spark asynchronous task execution
table.. 90
7.4.1.4 Spark Table Data Maintenance Specifications...90
7.4.1.5 Suggestions for Spark Concurrently Write Hudi Data...90
7.4.2 Suggestions on configuring resources for Spark read and write Hudi resources..91
7.4.3 Spark On Hudi Performance Optimization.. 92
7.5 Bucket Tuning Example.. 94
7.5.1 Creating a Bucket Index Table.. 94
7.5.2 Hudi table initialization... 97
7.5.3 Real-time Task Access.. 98
7.5.4 Offline Compaction Configuration.. 99

8 IoTDB..100

MapReduce Service
Component Development Specifications Contents

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

8.1 IoTDB Application Development Rules... 100
8.2 IoTDB Application Development Suggestions.. 100

9 Kafka.. 102
9.1 Kafka Application Development Rules..102
9.2 Kafka Application Development Suggestions...103

10 Mapreduce.. 104
10.1 MapReduce Application Development Rules... 104
10.2 MapReduce Application Development Suggestions.. 106

11 Spark.. 107
11.1 Spark Application Development Rules... 107
11.2 Spark Application Development Suggestions.. 109

MapReduce Service
Component Development Specifications Contents

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iv

1 ClickHouse

1.1 ClickHouse Application Development Rules

Ensure That the Time on the Client Is the Same as That on the Server If the
Cluster Is Installed in the Security Mode

If the cluster is of the security edition and Kerberos authentication is required, the
time on the server must be the same as that on the client. Pay attention to the
time difference conversion between time zones. If the time is inconsistent, the
client authentication fails and subsequent service processes cannot be executed.

ClickHouse Uses Its Own ZooKeeper Service

ClickHouse relies heavily on ZooKeeper and does many read and write operations
on it. To avoid affecting other services, each ClickHouse service should use its own
ZooKeeper service.

Use partition fields and index fields of data tables properly

The MergeTree engine organizes and stores data in partition directories. During
data query, partitions can be used to effectively skip useless data files and reduce
data reading.

The MergeTree engine sorts data based on the index field and generates sparse
indexes based on the index_granularity configuration. Data can be quickly filtered
based on index fields, reducing data reading and improving query performance.

Insert a large volume of data at a low frequency

Each time data is inserted in ClickHouse, one or more part files are generated. If
there are too many data parts, the pressure on merging increases and an
exception may occur, affecting data insertion. You are advised to insert 100,000
rows at a time and ensure the frequency is no more than once per second.

MapReduce Service
Component Development Specifications 1 ClickHouse

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

Do not use the character type to store data of the time, date, or numeric
type

Especially when the time, date, or numeric field needs to be calculated or
compared.

The number of records in a single table (distributed table) cannot exceed
trillions, and the number of records in a single table (local table) cannot
exceed ten billions

The performance of querying trillions of tables is poor, and the cluster
maintenance is difficult.

Data lifecycle management must be considered during table design
The disk space is limited, and data lifecycle management needs to be considered.
The MergeTree engine supports column fields and table-level TTL when creating
tables. When the values in a column field expire, ClickHouse replaces them with
the default values of the data type. If all values of a column in a partition have
expired, ClickHouse deletes the column files in the partition directory from the file
system. When the data in a table expires, the ClickHouse deletes all the
corresponding rows.

The external component ensures the idempotence of imported data
ClickHouse does not support transactions for data write. Use the external import
module to control data idempotence. For example, if data of a batch fails to be
imported, drop the corresponding partition data. After the fault is rectified, import
the partition data again.

When a local ClickHouse table is created, the partition by keyword must be
carried. Otherwise, the table cannot be migrated on the ClickHouse data
migration page of Manager

The ClickHouse data migration page depends on the partition field of the table
during table data migration. If partition by is not used to create partitions when
the table is created, the table cannot be migrated on the ClickHouse data
migration page of Manager.

Place a small table on the right for join query
When two tables are joined, the data in the right table is loaded to the memory,
and then the data in the left table is traversed based on the data in the right table
for matching. Placing the small table on the right reduces the number of match
queries. According to the usage, the performance of joining a large table to a
small table is improved by several orders of magnitude compared with that of
joining a small table to a large table.

MapReduce Service
Component Development Specifications 1 ClickHouse

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

1.2 ClickHouse Application Development Suggestions

Properly configure the maximum number of concurrent operations
ClickHouse has a high processing speed because it uses the parallel processing
mechanism. Even if a query is performed, half of the CPU of the server is used by
default. Therefore, the ClickHouse does not support high-concurrency query
scenarios. The default maximum number of concurrent requests is 100. You can
adjust this number as needed, but it should be no more than 200.

Deploy the load balancing component. The query is performed based on the
load balancing component to prevent the performance from being affected
due to heavy single-point query pressure

ClickHouse can connect to any node in the cluster for query. If the query is
performed on one node, the node may be overloaded and the reliability is low.
You are advised to use ClickHouseBalancer or other load balancing services to
balance the query load and improve reliability.

Properly set the partition key, ensure that the number of partitions is less
than 1000, and use the integer type for the partition field

1. You are advised to use toYYYYMMDD (table field pt_d) as the partition key.
The table field pt_d is of the date type.

2. If hourly partitioning is required in the service scenario, use toYYYYMMDD
(table field pt_d) and toYYYYMMDD (table field pt_h) as the joint
partitioning key. toYYYYMMDD (table field pt_h) is an integer number of
hours.

3. If data needs to be stored for many years, you are advised to create partitions
by month, for example, toYYYYMM (table field pt_d).

4. Properly control the number of parts based on factors such as the data
partition granularity, volume of data submitted in each batch, and data
storage period.

During query, the most frequently used and most filtered fields are used as
the primary keys. The fields are sorted in descending order of access
frequency and dimension cardinality

Data is sorted and stored based on primary keys. When querying data, you can
quickly filter data based on primary keys. Setting primary keys properly during
table creation can greatly reduce the amount of data to be read and improve
query performance. For example, if the service ID needs to be specified for all
analysis, the service ID field can be used as the first field of the primary key.

Properly set the sparse index granularity based on service scenarios
The primary key index of ClickHouse is stored by using a sparse index. The default
sampling granularity of the sparse index is 8192 rows, that is, one record is
selected from every 8192 rows in the index file.

MapReduce Service
Component Development Specifications 1 ClickHouse

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

Suggestions:

1. The smaller the index granularity is, the more effective the query in a small
range is. This avoids the waste of query resources.

2. The larger the index granularity is, the smaller the index file is, and the faster
the index file is processed.

3. If the table index granularity exceeds 1 billion, set this parameter to 16384.
Otherwise, set this parameter to 8192 or a smaller value.

Local Table Creation Reference

Reference:

CREATE TABLE mybase_local.mytable
(
 `did` Int32,
 `app_id` Int32,
 `region` Int32,
 `pt_d` Date
)
ENGINE = ReplicatedMergeTree('/clickhouse/tables/{shard}/mybase_local/mytable', '{replica}')
PARTITION BY toYYYYMMDD(pt_d)
ORDER BY (app_id, region)
SETTINGS index_granularity = 8192, use_minimalistic_part_header_in_zookeeper = 1;

Instructions:

1. Select a table engine:

ReplicatedMergeTree: MergeTree engine that supports the replica feature. It
is the most commonly used engine.

2. Table information registration path on ZooKeeper, which is used to distinguish
different configurations in the cluster:

/clickhouse/tables/{shard}/{databaseName}/{tableName}: {shard}
indicates the shard name, {databaseName} indicates the database name,
and {tableName} indicates the replicated table name.

3. order by primary key field:

The most frequently used and most filterable field is used as the primary key.
The dimensions are sorted in ascending order of access frequency and
dimension cardinality. It is recommended that the number of sorting fields be
less than or equal to 4. Otherwise, the merge pressure is high. The sorting
field cannot be null. If the sorting field is null, data conversion is required.

4. partition by field

The partition key cannot be null. If the field contains a null value, data
conversion is required.

5. Table-level parameter configuration:

index_granularity: sparse index granularity. The default value is 8192.

use_minimalistic_part_header_in_zookeeper: whether to enable the
optimized storage mode of the new version for data storage in the ZooKeeper.

6. For details about how to create a table, visit https://clickhouse.tech/
docs/en/engines/table-engines/mergetree-family/mergetree/.

MapReduce Service
Component Development Specifications 1 ClickHouse

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

https://clickhouse.tech/docs/en/engines/table-engines/mergetree-family/mergetree/
https://clickhouse.tech/docs/en/engines/table-engines/mergetree-family/mergetree/

Distributed Table Creation Reference

Reference:
CREATE TABLE mybase.mytable AS mybase_local.mytable
ENGINE = Distributed(cluster_3shards_2replicas, mybase_local, mytable, rand());

Instructions:

1. Name of the distributed table: mybase.mytable.
2. Name of the local table: mybase_local.mytable.
3. Use AS to associate the distributed table with the local table to ensure that

the field definitions of the distributed table are the same as those of the local
table.

4. Parameter description of the distributed table engine:
cluster_3shards_2replicas: name of a logical cluster.
mybase_local: name of the database where the local table is located.
mytable: local table name.
rand(): (optional) sharding key, which can be the raw data (such as did) of a
column in the table or the result of a function call, such as rand(). Note that
data must be evenly distributed in this key. Another common operation is to
use the hash value of a column with a large difference, for example,
intHash64(user_id).

Select the minimum type that meets the requirements based on the fields in
the service scenario table

Numeral type, such as UInt8/UInt16/UInt32/UInt64, Int8/Int16/Int32/Int64,
Float32/Float64. The performance varies according to the length.

Perform data analysis based on large and wide tables. Do not join large
tables. Convert distributed join queries into join queries of local tables to
improve performance

The performance of ClickHouse distributed join is poor. You are advised to
aggregate data into a wide table on the model side and then import the table to
ClickHouse. Queries in distributed join mode are converted to join queries on local
tables. This eliminates the transmission of a large volume of data between nodes
and reduces the volume of data involved in the calculation of local tables. The
service layer summarizes data based on the local join results of all shards. The
performance is improved remarkably.

Properly set the part size

The min_bytes_to_rebalance_partition_over_jbod parameter indicates the
minimum size of the part involved in automatic balancing and distribution among
disks in a JBOD array. The value must be appropriately set.

If the value is smaller than max_bytes_to_merge_at_max_space_in_pool/1024,
the ClickHouse server process fails to be started and unnecessary parts move
between disks.

MapReduce Service
Component Development Specifications 1 ClickHouse

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

If the value of min_bytes_to_rebalance_partition_over_jbod is greater than that
of max_data_part_size_bytes (maximum size of parts that can be stored on disks
in one array), no part can meet the condition for automatic balancing.

MapReduce Service
Component Development Specifications 1 ClickHouse

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

2 Doris

2.1 Table Creation Rules
This topic describes the rules and suggestions for creating Doris tables.

Doris Table Creation Rules
● When creating a Doris table and specifying buckets, make sure that each

bucket contains data ranging from 100 MB to 3 GB. Additionally, ensure that
the maximum number of buckets in a single partition does not exceed 5,000.

● You must set a bucketing policy for tables that have over 500 million data
records.

● Do not set too many bucketing columns in a table. Generally, one or two
columns are enough. In addition, you need to ensure even data distribution
and balanced query throughput.
– Data should be evenly distributed to prevent data skew in some buckets,

which affects data balancing and query efficiency.
– The query throughput is reduced with bucketing and tailoring of query

SQL statements to avoid full bucket scanning and improve query
performance.

– Preferentially use columns with evenly distributed data and those that are
commonly used as query conditions as bucketing columns.
You can use the following methods to analyze whether data skew occurs:
SELECT a, b, COUNT(*) FROM tab GROUP BY a,b;
Once the command is executed, verify if the variation in the number of
data records among the groups is minimal. If the difference surpasses 2/3
or 1/2, select another bucket field.

● Do not use dynamic partitioning for less than 20 million data records.
Dynamic partitioning generates partitions automatically, but users may
overlook small tables. Consequently, numerous useless buckets are created in
partitions.

● When creating a table, make sure to have three to five sort keys. Having too
many sort keys can impede data writing and importing.

MapReduce Service
Component Development Specifications 2 Doris

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

● If Auto Bucket is not used, bucketing should be determined by the data
volume to enhance the performance of data import and query. Auto Bucket
causes superfluous tablets and a large number of small files.

● Set at least 2 replicas when you create a table. The default replication factor
is 3. Do not use a single backup.

● Do not create a table that does not have an aggregate function column as an
AGGREGATE table.

● When creating a primary key table, ensure that the primary key column is
unique. Do not set all columns as primary key columns. Set a value column
for the primary key table. Do not use primary key tables in data deduplication
scenarios.

Doris Table Creation Suggestions
● Use no more than six materialized views in a single table. Do not nest

materialized views or them in ETL tasks such as heavy aggregations and joins
during data writing.

● If there are many historical partitions for a little historical data and the data is
unbalanced or the data query probability is low, you can create historical
partitions on a yearly/monthly basis and store all historical data in the
corresponding partitions.

To create history partition, use FROM ("2000-01-01") TO ("i") INTERVAL 1
YEAR.

● If the data volume is less than 10 million to 200 million, you do not need to
set partitions (the Doris has a default partition). Instead, you can directly use
the bucket policy.

● If more than 30% data skew occurs in the bucketing fields, do not use the
hash bucketing policy. Instead, use the random bucketing policy. The related
commands are as follows:

Create table ... DISTRIBUTED BY RANDOM BUCKETS 10 ...

● The first field must be the most frequently queried one in the table you
created. By default, you can quickly query data with prefix indexes. Select the
column that is most frequently queried and has a high cardinality as the
prefix index. The first 36 bytes of a row are used as the prefix index of the row
by default (for varchar columns, the first 20 bytes are matched as the prefix
index, and excessive bytes are truncated).

● To fuzzy match or use equivalent/in conditions in a query of more than 100
million data records, use inverted indexes (supported since Doris 2.x) or
Bloomfilter. For orthogonal queries with low cardinality columns, use bitmap
indexes. (The recommended cardinality of bitmap indexes ranges from 10000
to 100000.)

● Plan the number of fields to be used when creating a table. You can reserve
dozens of integer or character fields. If fields are insufficient, you need to add
fields temporarily at a high cost.

2.2 Data Change
This topic describes the rules and suggestions for changing Doris data.

MapReduce Service
Component Development Specifications 2 Doris

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

Doris Data Change Rules
● Do not directly use the delete or update statement to change data. Instead,

use the upsert of the CDC.
● Avoid frequently adding or deleting fields in tables during peak hours. Reserve

fields for future use when you create tables. If fields must be added or
deleted, or field types and comments must be modified, stop writing and
modifying tasks on the target table during off-peak hours and then re-create
a table.

a. Create a table. The structure of the table is the same as that of the table
you want to modify. Add new fields to the new table, delete unnecessary
fields, or change field types.

b. Specify fields and insert them to the newly created table.
INSERT INTONewly created table SELECTSpecified fields FROM Existing
table whose columns need to be modified;

NO TE

To prevent high CPU or memory usage and minimize the impact on query
service, you can import data to a new table in batches based on time if the table
has a significant amount of data. The command is as follows:

insert into tab1 select col from tab where date <= xx;

c. Exchange the names of the two tables. For more information, see
Exchange Tables.
ALTER TABLE [db.]tbl1 REPLACE WITH TABLE tbl2 [PROPERTIES('swap'
= 'true')];

● Some queries may take a long time and consume a lot of memory and CPU
resources. You can set the query timeout parameter query_timeout that
works on SQL statements or for a user.

Doris Data Change Suggestions

When you run large SQL statements, set session variables with hint by using a
method similar to SELECT /*+ SET_VAR(query_timeout = xxx*/ from table. Do
not set global system variables.

2.3 Naming Conventions
This topic describes the rules and suggestions for naming databases and tables.

Doris Naming Rules

The database character set must be UTF-8 and only UTF-8 is supported.

Doris Naming Suggestions
● Set database names in lowercase and use underscores (_) to link words. A

name must be less than 62 bytes.
● Table names of Doris are case sensitive. Set a name in lowercase and use

underscores (_) to link words. A name must be less than 64 bytes.

MapReduce Service
Component Development Specifications 2 Doris

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

https://doris.apache.org/docs/1.2/advanced/alter-table/replace-table/

2.4 Data Query
This topic describes the rules and suggestions for querying Doris data.

Doris Data Query Rules
● When you are using the data query code, retry the query and issue the query

again if the query fails.
● If the enumerated value of the constant in exceeds 1000, you must use a

subquery.
● Do not use the Statement Execution Action REST APIs to execute a large

number of SQL queries. These interfaces are used only for cluster
maintenance.

● When dealing with query results exceeding 50,000 records, consider using
either JDBC Catalog or the OUTFILE method to export the data. Otherwise,
allowing a large amount of data to accumulate on the front end (FE) can
impact cluster stability.
– When performing interactive queries, export data using pagination with

an offset limit. You can achieve this by using the ORDER BY command.
– If data is exported for a third party, use outfile or export.

● Utilize Colocation Join for joining more than two tables with over 300 million
records.

● Avoid using select * for querying large tables with hundreds of millions of
records and specify the required fields instead.
– Do not use select * when you use SQL Block.
– For high-concurrency point queries, enable row-based storage (supported

by Doris 2.x) and use PreparedStatement.
● Bucketing conditions must be set for queries of tables of hundreds of millions

records.
● Do not perform full-partition scan on partitioned tables.

Doris Data Query Suggestions
● When an INSERT INTO SELECT statement inserts over 100 million data

records, divide them into smaller batches for execution.
● Do not use OR as a JOIN condition.
● Do not frequently delete and modify data. Instead, delete data in batches

occasionally with conditions to improve system stability and deletion
efficiency.

● To return som data after sorting a large amount of data (more than 500
million records), reduce the data range for sorting. Sorting a large amount of
data affects query performance. The following is an example:
Instead of using from table order by datatime desc limit 10, use from table
where datatime='2023-10-20' order by datatime desc limit 10.

● Pay attention to the following points when using
parallel_fragment_exec_instance_num to optimize query task performance:

MapReduce Service
Component Development Specifications 2 Doris

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

This parameter determines the maximum number of fragments that can run
simultaneously at the session level. Too many concurrent fragments will use
up a significant amount of CPU resources. You can leave this parameter blank.
If you need to set this parameter to accelerate query speed, comply with the
following rules:
– Do not set this parameter to take effect globally, that is, do not use the

set global command to set this parameter.
– Set this parameter to an even number (2 or 4). The maximum value

cannot exceed half of the number of CPU cores on a single node.
– Check the CPU usage before you set the parameter. You can set this

parameter only when the CPU usage is less than 50%.
– If you use insert into select to insert a large amount of data, do not set

this parameter.

2.5 Data Import
This topic describes the technical suggestions for importing Doris data.

Doris Data Import Suggestions
● Do not frequently perform the update, delete, or truncate operation.

Perform an operation every several minutes. To use the delete operation, you
must set the partitioning condition or primary key column.

● Avoid using INSERT INTO tbl1 VALUES("1"),("a"); to frequently import small
amounts of data. Instead, opt for StreamLoad, BrokerLoad, SparkLoad, or
Flink Connector.

● When Flink writes data to Doris in real time, set the checkpoint based on the
data volume of each batch. If the data volume of each batch is too small, a
large number of small files will be generated. The recommended value is 60s.

● Do not use insert values as the main data write mode. StreamLoad,
BrokerLoad, or SparkLoad is recommended for batch data import.

● If there are downstream dependencies or queries when you use INSERT INTO
WITH LABEL XXX SELECT to import data, check whether the imported data is
visible.
Run the show load where label='xxx' SQL command to check whether the
current INSERT task is VISIBLE. The imported data is visible only when the
status is VISIBLE.

● Streamload is suitable for importing data of less than 10 GB, and Brokerload
is suitable for data of less than 100 GB. For large-scale data, use SparkLoad.

● Do not use Routine Load of Doris to import data. Instead, use Flink to query
Kafka data and then write the data to Doris. This limits the amount of data to
be imported in a single batch and avoids a large number of small files. If
Routine Load has already been used to import data, set
max_tolerable_backend_down_num to 1 on the FE before you change the
import method to improve reliability.

● Import data in batches at a low frequency. The average interval for importing
a single table must be greater than 30s. Import 1000 to 100000 rows of data
each time at a recommended interval of 60s.

MapReduce Service
Component Development Specifications 2 Doris

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

2.6 UDF Development
This topic describes the rules and suggestions for developing Doris UDF programs.

Doris UDF Development Rules
● The UDF invocation must be thread-safe.
● Do not load external large files to the memory when implementing a UDF.

Otherwise, the memory could be used up.
● Avoid a large number of recursive calls. Otherwise, stack overflow or OOM

may occur.
● Do not create objects or arrays continuously. Otherwise, the memory could be

used up.
● Use a Java UDF to capture and process possible exceptions. Do not send

exceptions to services. Use the try-catch block to handle exceptions and
record exception information if necessary.

● In the UDF, do not define static collection classes for storing temporary data
or query large objects in external data. Otherwise, the memory usage is high.

● Ensure that the imported packages in the class do not conflict with the
packages on the server. You can run the grep -lr "Fully-qualified class name"
command to check JAR package conflicts. Use fully-qualified class names to
avoid such conflicts.

Doris UDF Development Suggestions
● To prevent stack memory overflow, do not copy a large amount of data.
● Do not concatenate a large number of strings. Otherwise, the memory usage

is high.
● Java UDFs should use meaningful names so that other developers can easily

understand their purpose. Use camel-case names and end a name with a UDF,
for example, MyFunctionUDF.

● A Java UDF should specify the data type of the return value and must have a
return value. Do not set the return value to NULL when it should be the
default value or when an exception occurs. Use basic data types or Java
classes as return value types.

2.7 Connection and Running
This topic describes the specifications you need comply with when you connect to
Doris and run Doris tasks.

● Use an ELB to connect to Doris to prevent services interruption when the
connected FE is faulty.

● If a hardware fault or a single Doris instance failure occurs, Doris can
continue executing running tasks, but newly submitted tasks cannot run. You
should enable retry upon failures so that submitted jobs can still run in case
of unknow exceptions.

MapReduce Service
Component Development Specifications 2 Doris

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

3 Flink

3.1 Flink Specification Overview

Scope

This document describes the design and development rules of using the MRS Flink
component for data lake and data house integration and unified stream and batch
data processing. The following specifications are provided:

● Data table design

● Resource configurations

● Performance tuning

● Fault handling

● Typical parameter settings

Terms

This section uses the following terms for description:

● Rule: a principle that must be observed during programming.

● Suggestion: a principle that must be considered during programming.

● Description: an explanation of the rule or suggestion in question.

● Example: an example for a rule or suggestion.

Application Scope
● Design, develop, test, and maintain data storage and data processing jobs

based on MRS-Flink data storage.

● Use this specification for MRS 3.2.0 and later versions.

● Parameter optimization guide is available for MRS 3.2.0 and later versions.

● For any inconsistency between this document and the open source
community, use the specifications in this document.

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

Reference

Flink open-source community: https://nightlies.apache.org/flink/flink-docs-stable/.

3.2 FlinkSQL Connector Development

3.2.1 Development Rules

Create a ClickHouse Table in Advance

If a Flink job cannot find a specified table in ClickHouse, an error will be reported.
You need to ensure that the table has been created in ClickHouse.

Deletion Is Not Supported When Writing ClickHouse Data with Flink

Flink cannot roll back the write of ClickHouse data because the deletion operation
is not supported. The withdrawal streams generated when Flink processes updated
data cannot be executed in ClickHouse. As a result, the data processing result is
incorrect.

This also affects data deletion when Flink CDC is used to connect to the upstream
database to write ClickHouse data. When physical operations are performed on
the upstream database, data in ClickHouse cannot be deleted synchronously.

3.2.2 Development Suggestions

Configure Multiple IP Addresses for the ClickHouseBalancer Instance

Configuring multiple IP addresses can prevent single point of failure (SPOF) for
ClickHouseBalancer. The configuration (with properties) is as follows:

'url' = 'jdbc:clickhouse://IP address 1 of the ClickHouseBalancer instance:ClickHouseBalancer port,IP address
2 of the ClickHouseBalancer instance:ClickHouseBalancer port/default',

Configure Proper Batch Parameters for Sink Tables

Parameters for batch write:

Flink stores data in the memory and flushes the data to the database table when
the trigger condition is met.

Configurations:

● sink.buffer-flush.max-rows: number of rows written to ClickHouse. The
default value is 100

● sink.buffer-flush.interval: interval for batch write. The default value is 1s.

If either of the two conditions is met, a sink operation is triggered. That is, data
will be flushed to the database table.

● Example 1: sink every 60 seconds
'sink.buffer-flush.max-rows' = '0',
'sink.buffer-flush.interval' = '60s'

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

● Example 2: sink every 100 records
'sink.buffer-flush.max-rows' = '100',
'sink.buffer-flush.interval' = '0s'

● Example 3: no sink
'sink.buffer-flush.max-rows' = '0',
'sink.buffer-flush.interval' = '0s'

Create the ReplacingMergeTree Table in the ClickHouse for Data
Deduplication

When Flink writes data to ClickHouseBalancer, data with the same key cannot be
written to the same ClickHouseServer. The merge of data with the same key
depends on the ReplacingMergeTree engine of ClickHouse.

3.2.3 Development Rules

Create a Doris Table in Advance
If a Flink job cannot find a specified table in Doris, an error will be reported. You
need to ensure that the table has been created in Doris.

Enable Checkpoint When Doris Is the Sink
Flink jobs write data to the Doris table only when a checkpoint is triggered.

3.2.4 Development Rules

Topic Must Be Specified When Kafka Is the Sink
[Example] Insert a message to the test_sink topic in Kafka.

CREATE TABLE KafkaSink(
 `user_id` VARCHAR,
 `user_name` VARCHAR,
 `age` INT
) WITH (
 'connector' = 'kafka',
 'topic' = 'test_sink',
 'properties.bootstrap.servers' ='Service IP address of the Kafka Broker instance:Kafka port',
 'scan.startup.mode' = 'latest-offset',
 'value.format' = 'csv',
 'properties.sasl.kerberos.service.name' = 'kafka',
 'properties.security.protocol' = 'SASL_PLAINTEXT',
 'properties.kerberos.domain.name' = 'hadoop.System domain name'
);
INSERT INTO KafkaSink (`user_id`, `user_name`, `age`)VALUES ('1', 'John Smith', 35);

properties.group.id Must Be Specified When Kafka Is the Source
[Example] Use testGroup as the user group to read Kafka messages whose topic
is test_sink.

CREATE TABLE KafkaSource(
 `user_id` VARCHAR,
 `user_name` VARCHAR,
 `age` INT
) WITH (
 'connector' = 'kafka',
 'topic' = 'test_sink',

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

 'properties.bootstrap.servers' ='Service IP address of the Kafka Broker instance:Kafka port',
 'scan.startup.mode' = 'latest-offset',
 'properties.group.id' = 'testGroup',
 'value.format' = 'csv',
 'properties.sasl.kerberos.service.name' = 'kafka',
 'properties.security.protocol' = 'SASL_PLAINTEXT',
 'properties.kerberos.domain.name' = 'hadoop.System domain name'
);
SELECT * FROM KafkaSource;

Do Not Set Both topic-pattern and topic
topic-pattern: topic pattern, which is used for the source table. The topic name
supports the regular expressions.

[Example] Subscribe to all topic messages that start with test-topic- and end with
a single digit for the source table:

CREATE TABLE payments (
 payment_id INT,
 customer_id INT,
 payment_date TIMESTAMP(3),
 payment_amount DECIMAL(10, 2)
) WITH (
 'connector' = 'kafka',
 'topic-pattern' = 'test-topic-[0-9]',
 'properties.bootstrap.servers' = 'localhost:9092',
 'format' = 'json'
);
SELECT * FROM payments WHERE payment_amount < 500;

3.2.5 Development Suggestions

Traffic Limiting Must Be Set When Kafka Is the Source
This rule is available for MRS 3.3.0 or later.

To prevent job exceptions caused by heavy traffic, set a traffic limit, which should
be the peak value of the pressure test for service rollout.

[Example]

The following parameter takes effect at any parallelism:
'scan.records-per-second.limit' = '1000'
The actual traffic limit is as follows:
min(parallelism * scan.records-per-second.limit, partitions num * scan.records-per-second.limit)

Write Data with the Same Key to the Same Kafka Partition for Data
Accuracy

Flink uses the fixed policy to write data to Kafka and performs hash calculation
based on the key before writing data.

[Example]

CREATE TABLE kafka (
 f_sequence INT,
 f_sequence1 INT,
 f_sequence2 INT,
 f_sequence3 INT
) WITH (
 'connector' = 'kafka',
 'topic' = 'yxtest123',

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

 'properties.bootstrap.servers' = '192.168.0.104:9092',
 'properties.group.id' = 'testGroup1',
 'scan.startup.mode' = 'latest-offset',
 'format' = 'json',
 'sink.partitioner'='fixed'
);

 insert into kafka select /*+ DISTRIBUTEBY('f_sequence','f_sequence1') */ * from datagen;

Set Kafka Source Parallelism Same as the Number of Topic Partitions for
Faster Kafka Consumption

When the parallelism of Kafka Source is greater than the number of topic
partitions, no more data is consumed.

3.2.6 Development Rules

Create an HBase Table in Advance

If a Flink job cannot find a specified table in HBase, an error will be reported. You
need to ensure that the table has been created in HBase.

Only Flink and HBase in Normal Clusters Can Be Interconnected

When HBase and Flink are in the same cluster or clusters with mutual trust,
FlinkServer can be interconnected with HBase.

If HBase and Flink are in different clusters without mutual trust, Flink in a normal
cluster can be interconnected with HBase in a normal cluster.

Configure HBASE_CONF_DIR When FlinkServer Interconnects With HBase

Step 1 Log in to the node where the client is installed as the client installation user and
copy all configuration files in the /opt/client/HBase/hbase/conf/ directory of
HBase to an empty directory of all nodes where FlinkServer is deployed, for
example, /tmp/client/HBase/hbase/conf/.

Change the owner of the configuration file directory and its upper-layer directory
on the FlinkServer node to omm.

chown omm: /tmp/client/HBase/ -R

NO TE

● FlinkServer nodes:

Log in to FusionInsight Manager, choose Cluster > Services > Flink > Instances, and
check the Service IP Address of FlinkServer.

● If the node where a FlinkServer instance is deployed is the node where the HBase client
is installed, skip this step on this node.

Step 2 Log in to Manager and choose Cluster > Services > Flink. Click Configurations
then All Configurations, search for the HBASE_CONF_DIR parameter, and enter
the FlinkServer directory (for example, /tmp/client/HBase/hbase/conf/) to which
the HBase configuration files are copied in Step 1 in Value.

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

NO TE

If the node where a FlinkServer instance resides is the node where the HBase client is
installed, enter the /opt/client/HBase/hbase/conf/ directory of HBase in Value of the
HBASE_CONF_DIR parameter.

Step 3 After the parameters are configured, click Save. After confirming the modification,
click OK.

Step 4 Click Instances, select all FlinkServer instances, choose More > Restart Instance,
and operate as prompted.

----End

3.2.7 Development Suggestions

Add HBase Configuration Using the With Properties When Submitting a Job
on the Client

Submit a job on the Flink client. For example, on a SQL client, add the following
configuration to the table creation statement:

Table 3-1 Flink job with properties

Configuration Description

'properties.hbase.rpc.protection' =
'authentication'

This parameter must be consistent with
that on the HBase server.

'properties.zookeeper.znode.parent'
= '/hbase'

If there are multiple services, hbase1 and
hbase2 coexist. You must clarify the
cluster to be accessed.

'properties.hbase.security.authorizati
on' = 'true'

This parameter is used to enable
authentication.

'properties.hbase.security.authentica
tion' = 'kerberos'

This parameter is used to enable Kerberos
authentication.

[Example]

CREATE TABLE hsink1 (
 rowkey STRING,
 f1 ROW < q1 STRING >,
 PRIMARY KEY (rowkey) NOT ENFORCED
) WITH (
 'connector' = 'hbase-2.2',
 'table-name' = 'cc',
 'zookeeper.quorum' = 'x.x.x.x:clientPort',
 'properties.hbase.rpc.protection' = 'authentication',
 'properties.zookeeper.znode.parent' = '/hbase',
 'properties.hbase.security.authorization' = 'true',
 'properties.hbase.security.authentication' = 'kerberos'
);

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

Enable Asynchronous Lookup Join for Faster Dimension Table Join
Add the following with property for the HBase dimension table:

'lookup.async'='true'

Increase the Parallelism of the Lookup Join Operator for Faster Dimension
Table Join

Add the following with property for the HBase dimension table:

'lookup.parallelism'='xx'

Increase the Parallelism of the Sink HBase Operator for Higher Write
Performance

Add the following with property for the HBase sink table:

'sink.parallelism'='xx'

3.3 Flink on Hudi

3.3.1 Development Rules
The following table describes the parameter specifications you need to comply
with to read Hudi tables on Flink streams.

Table 3-2 Parameter specifications

Parameter Ma
nd
ato
ry

Description Example

Connector Yes Type of the table to be read hudi

Path Yes Path for storing the table Set this
parameter based
on site
requirements.

table.type Yes Hudi table type. The default value
is COPY_ON_WRITE.

MERGE_ON_REA
D

hoodie.datasourc
e.write.recordkey.f
ield

Yes Primary key of the table Set this
parameter as
needed.

write.precombine.f
ield

Yes Data combination field Set this
parameter as
needed.

read.tasks No Hudi table read parallelism. The
default value is 4.

4

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

Parameter Ma
nd
ato
ry

Description Example

read.streaming.e
nabled

Yes ● true: Data is read on streams
incrementally.

● false: Data is read in batches.

Set this
parameter based
on the site
requirements.
For streaming
read, set this
parameter to
true.

read.streaming.st
art-commit

No Start commit (closed interval) in
the yyyyMMddHHmmss format. By
default, the latest commit is used.

-

hoodie.datasourc
e.write.keygenera
tor.type

No Primary key generation type of the
upstream table

COMPLEX

read.streaming.ch
eck-interval

No Check interval for finding new
source commits. The default value
is 1 minute.

5 (The default
value is
recommended
for heavy
traffic.)

read.end-commit No ● Incremental stream
consumption. Use
read.streaming.start-commit
to specify the start position.

● Batch incremental consumption.
Use read.streaming.start-
commit to specify the start
position, and the read.end-
commit to specify the end
position (closed interval). The
start and end positions are
included. By default, the latest
commit is the end position.

-

changelog.enable
d

No Whether to write changelog
messages. The default value is
false. Set this parameter to true
for CDC.

false

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

3.3.2 Suggestions

Set Proper Consumption Parameters to Avoid "File Not Found"

When the downstream consumes Hudi files too slowly, the upstream archives the
Hudi files. As a result, the "File Not Found" error occurs.

● Increase the value of read.tasks.

● If there is a triffic limit, increase the upper limit.

● Increase the upstream compaction, archive, and clean parameters.

3.3.3 Development Rules

Parameter Specifications

The following table describes the parameter specifications you need to comply
with to write Hudi tables on Flink streams.

Table 3-3 Parameter specifications

Parameter Man
dato
ry

Description Recomme
nded
Value

Connector Yes Type of the table to be read hudi

Path Yes Path for storing the table Set this
parameter
as required
based on
service
requireme
nts.

hoodie.datasourc
e.write.recordkey
.field

Yes Primary key of the table Set this
parameter
as required
based on
service
requireme
nts.

write.precombin
e.field

Yes Data combination field Set this
parameter
as required
based on
service
requireme
nts.

write.tasks No Hudi table write parallelism. The default
value is 4.

4

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

Parameter Man
dato
ry

Description Recomme
nded
Value

index.bootstrap.e
nabled

No Flink uses the memory index, which
caches the primary key of data to the
memory to ensure unique data in the
target table. This parameter must be
set. Otherwise, data may be duplicate.
The default value is true. The default
value is FALSE. Do not set this
parameter when bucketing indexes are
used.

TRUE

write.index_boot
strap.tasks

No This parameter is valid only after
index.bootstrap.enabled is enabled.
Increase the number of tasks to
accelerate startup.

4

index.state.ttl No Duration for storing index data. The
default value is 0, indicating that the
index data is permanently valid. You can
change the value based on the service
requirements.

0

compaction.delt
a_commits

No Condition for triggering the compaction
plan of the MOR table

200

compaction.asyn
c.enabled

Yes Whether to enable online compaction.
The compaction operation is transferred
to SparkSQL to improve the write
performance.

FALSE

hive_sync.enable No Whether to synchronize table
information to Hive.

True

hive_sync.metast
ore.uris

No Hivemeta URI Set this
parameter
as required
based on
service
requireme
nts.

hive_sync.jdbc_u
rl

No Hive JDBC link Set this
parameter
as required
based on
service
requireme
nts.

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Parameter Man
dato
ry

Description Recomme
nded
Value

hive_sync.table No Hive table name Set this
parameter
as required
based on
service
requireme
nts.

hive_sync.db No Name of the Hive database. The default
value is default.

Set this
parameter
as required
based on
service
requireme
nts.

hive_sync.suppor
t_timestamp

No Whether to support timestamps True

changelog.enabl
ed

No Whether to write changelog messages.
The default value is false. Set this
parameter to true for CDC.

false

Table Name Must Meet Hive Format Requirements
● Must start with a letter or underscore (_) and cannot start with a digit.
● Can contain only letters, digits, and underscores (_).
● Can contain a maximum of 128 characters.
● Cannot contain spaces or special characters, such as colons (:), semicolons (;),

and slashes (/).
● Is case insensitive. Lowercase letters are recommended.
● Cannot be Hive reserved keywords, such as select, from, and where.

[Example]

my_table, customer_info, sales_data

3.3.4 Development Suggestions
● Use spark SQL to centrally create tables.
● Use Spark asynchronous tasks to compact Hudi tables.

3.3.5 Configuration Rules

Flink Job Parameter Configuration Specifications
The following table describes the rules for configuring Flink job parameters.

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

Table 3-4 Parameter configuration specifications

Parameter Manda
tory

Description Recommende
d Value

-c Yes Main class name Set this
parameter as
you need.

-ynm Yes Flink YARN job name Set this
parameter as
you need.

execution.checkp
ointing.interval

Yes Interval for triggering a
checkpoint, which can be added
using -yD. The unit is ms.

60000

execution.checkp
ointing.timeout

Yes Checkpoint timeout interval. You
can run the -yD command to
add a checkpoint timeout
interval. The default value is 30
minutes.

30min

parallelism.defau
lt

No Job parallelism. For example, to
add the job parallelism for the
join operator, use -yD. The
default value is 1.

Set this
parameter
based on the
site
requirements.

table.exec.state.t
tl

Yes TTL (join ttl) of Flink state, which
can be added using -yD. The
default value is 0.

Set this
parameter
based on the
site
requirements.

Checkpoint Interval Should Be Longer Than the Checkpoint Execution
Duration

The checkpoint execution duration depends on checkpoint data volume. The larger
the data volume, the longer the execution duration.

Checkpoint Timeout Duration Should Be Longer Than the Checkpoint
Interval

The checkpoint interval indicates the interval for triggering a checkpoint. If the
execution duration is longer than the checkpoint timeout interval, the job fails.

If CDC is used, changelog needs to be enabled for Hudi table read and write.

To ensure Flink calculation accuracy when CDC is used, retain +I, +U, -U, and -D in
Hudi tables. Changelog must be enabled when data is written to or read from the
same Hudi table.

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

3.3.6 Configuration Suggestions

Set Traffic Limit When a Hudi Table Is the Source
To prevent job exceptions caused by heavy traffic, set a traffic limit, which should
be the peak value of the pressure test for service rollout.

Add the following parameter:

'read.rate.limit' = '1000'

Set execution.checkpointing.tolerable-failed-checkpoints
For Flink On Hudi jobs, set checkpoint tolerance times to a larger value, for
example, 100.

3.4 Flink Jobs

3.4.1 Development Rules

Ensure Data Accuracy When Aggregating Updated Data
When aggregating updated data, you need to select a proper solution. Otherwise,
the aggregation result can be incorrect.

The following statement is an example:
Create table t1(
 id int,
 partid int,
 value int
);
select
 partid,sum(value)
 from t1
 group by partid;

● First batch of data: [1,1,10],[2,1,11],[3,2,8]
Aggregation result: [1,21], [2,8]

● Second batch of data: [2,1,12] //Update the record whose ID is 2.
Error result: [1,33], [2,8] //Updated data (ID=2) cannot be identified.
Aggregation result: [1,22], [2,8] //The result is correct because update is
identified.

There are three ways to identify whether the data is updated:

● Using the state backend
The state backend stores all raw data. The new arriving data is determined as
the updated data based on the status. Then, the Flink aggregation withdrawal
function is used to update the aggregation result data.
Advantage: The aggregation accuracy is ensured. This solution has no
requirement on data which is easy to use.
Disadvantage: When there is a large amount of data, large state backend
storage is required.

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

● Using data in CDC format
The update operation record of CDC data contains both original data and
updated data. The previous aggregation result is removed based on original
data, and the latest calculation result is updated based on updated data.
Advantage: Large state backend storage is not required. The overall compute
resource pressure is lower than that of the state backend solution.
Disadvantage: This solution depends on the CDC format. Typically, data is
captured by a CDC collection tool and sent to Kafka, and then Flink reads
Kafka data for calculation.

● Using changelog data
The changelog format is similar to the CDC format. The only difference is that
the CDC format records original and updated data in one row, and the
changelog format stores updated data in two rows. One row is used to delete
the original data, and the other row stores insertion operation records of
updated data. Flink deletes the aggregation result based on the updated data
and inserts the calculation result based on the updated data. Changelog can
be implemented based on Hudi tables. Data in CDC format can be converted
into changelog data and stored in the log files of Hudi MOR tables.
Changelog data of Hudi can also be generated based on state backends.
Advantage: Aggregation consistency of updated data can be ensured based
on data lake storage.
Disadvantage:
– Only the log file of a Hudi MOR table contains changelog data. If

upstream data is stacked when Flink job calculation is delayed and the
log file is cleared, changelog data will be lost. You need to retain more
versions and properly configure resources for Flink jobs to make the data
stacking period shorter than the clearance period.

– The generation of changelogs based on the state backend also depends
on the state backend. Generally, the TTL is configured for the state
backend and is not retained permanently. In this scenario, the update
operation is arbitrary and there is no update period limit. For example, to
update data of the last month, set TTL to a value greater than one
month. To update all data, set TTL to permanent (do not do so for large
tables).

– Currently, the MOR table of changelogs can only be compacted by the
Flink engine. Spark engine is not available for compaction.

3.4.2 Development Suggestions

Consider Increasing the Number of Checkpoints for High Availability

By default, only the latest checkpoint status file is saved. If this file is unavailable
(for example, all copies of the HDFS file are damaged), state restoration fails. If
we keep two state file checkpoints, Flink rolls back to the state file of the previous
one even if the latest checkpoint is unavailable. You can increase the number of
reserved checkpoints as needed.

[Example] Set the number of reserved checkpoint files to 2.

state.checkpoints.num-retained: 2

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

Use Incremental RocksDB as the State Backend in the Production
Environment

Flink provides three state backends: MemoryStateBackend, FsStateBackend, and
RocksDBStateBackend.

● MemoryStateBackend stores states on the Java heap memory of JobManager.
Each state cannot be bigger than an akka frame, and the total size cannot
exceed the heap memory size of JobManager. This state backend is suitable
for local development and debugging or small-size states.

● FsStateBackend is the file system state backend. Generally, states are stored in
the TaskManager heap memory. In checkpointing, states are stored in the file
system. The JobManager memory stores only a small amount of metadata
(which is stored in ZooKeeper in HA scenarios). Since there is sufficient
storage space in the file system, this backend is suitable for stateful
processing tasks with large states, long window, or large key value states, and
is also suitable for the HA solution.

● RocksDBStateBackend is an embedded database backend. Generally, states
are stored in the RocksDB database, and the database data is stored on the
local disk. In checkpointing, states are stored in the file system, and the
JobManager memory stores a small amount of metadata (which is stored in
ZooKeeper in HA scenarios). This state backend is the only one that supports
incremental checkpointing. In addition to same scenarios of the
FsStateBackend, it is also suitable for processing ultra-large states.

Table 3-5 Flink state backends

Type MemoryStateBack-
end

FsStateBackend RocksDBStateBack-
end

Meth
od

Checkpoint data is
directly returned to
the master node and
is not flushed to disks.

Data is written to a
file whose path is
then sent to the
master node.

Data is written to a
file whose path is
then sent to the
master node.

Stora
ge

Heap memory Heap memory RocksDB (local disk)

Perfor
manc
e

Best performance
among the three
(generally not used)

High performance Poor performance

Disad
vanta
ge

Small data volume
only and easy data
loss

OOM Time-consuming read/
write, serialization,
and I/O

Incre
ment
al

Not supported Not supported Supported

[Example] Configure a RockDBStateBackend (flink-conf.yaml):

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

state.backend: rocksdb
state.checkpoints.dir: hdfs://namenode:40010/flink/checkpoints

Use EXACTLY ONCE Stream Processing Semantics to Ensure End-to-End
Consistency

There are three types of stream processing semantics: EXACTLY ONCE, AT LEAST
ONCE, and AT MOST ONCE.

● AT MOST ONCE: The integrity of data cannot be ensured, but the
performance is the best.

● AT LEAST ONCE: The integrity of data can be ensured, but the accuracy
cannot be ensured. The performance is moderate.

● EXACTLY ONCE: Data processing accuracy can be ensured, but the
performance is the worst.

Check whether EXACTLY_ONCE can be ensured. This semantics requires data
replay in the source (for example, Kafka message replay) and transactional in the
sink (for example, MySQL atomic data writing). If these requirements cannot be
met, you can degrade to AT LEAST ONCE or AT MOST ONCE.

● If the source does not support replay, only AT MOST ONCE can be ensured.
● If the sink does not support atomic write, only AT LEAST ONCE can be

ensured.

[Example] Use EXACTLY ONCE semantics with API calls:

env.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE)

[Example] Set Exactly once semantics in the resource file.

Semantics of checkpoint
execution.checkpointing.mode: EXACTLY_ONCE

Locate Back Pressure Point by Monitoring Information
Flink provides many monitoring metrics for you to analyze the performance states
and bottlenecks of a job.

[Example] Configure the number of samples and sampling interval.

Sampling interval when the valid backpressure result is discarded and backpressed, in ms
web.backpressure.refresh-interval: 60000
Number of backpressure samples
web.backpressure.num-samples: 100
Interval for backpressure sampling, in ms
web.backpressure.delay-between-samples: 50

You can view BackPressure in the Overview tab of the job. The following figure
shows that sampling is in progress. By default, sampling takes about 5 seconds.

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

Figure 3-1 Sampling in progress

As shown in the following figure, OK indicates that there is no back pressure, and
HIGH indicates that a subtask is backpressed.

Figure 3-2 No back pressure

Figure 3-3 Backpressed subtask

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

Switch to the Hive Dialect When Hive SQL Is Used and the Flink Syntax Is
Incompatible

Currently, Flink parses SQL syntax with the default or Hive engine. The former
supports Flink native SQL, and the latter supports Hive SQL. DDL and DML of
some Hive syntax cannot be run using Flink SQL. You can switch to Hive dialect.
Pay attention to the following things when using Hive dialect:

● Hive dialect can only be used to operate Hive tables only. Hive dialects should
be used with HiveCatalog.

● Although all Hive versions support the same syntax, whether there are specific
functions still depends on the Hive version in use. For example, database
location update is supported only in Hive-2.7.0 or later.

● Hive and Calcite have different reserved keywords. For example, default is a
reserved keyword in Calcite and a non-reserved keyword in Hive. When using
Hive dialect, you must use backquotes (`) to reference such keywords so that
they can be used as identifiers.

● Views created in Flink cannot be queried in Hive.

[Example] Use Hive syntax to parse SQL statement (sql-submit-defaults.yaml):

configuration: table.sql-dialect: hive

Use Memory Dimension Tables (such as Hudi) for Small- and Medium-scale
Data

● In a memory dimension table, dimension data is loaded to the memory. Each
TM loads full data and point query joins are performed in the memory. If the
data volume is too large, you need to allocate large memory space to the TM.
Otherwise, job exceptions may occur.

● In an external dimension table, dimension data is stored in a high-speed K-V
database. Point query joins are implemented through remote K-V query.
Typical open-source K-V databases include HBase

● State dimension table data is read to streaming jobs in real time as a stream
table. Data stream withdrawal is used to ensure data consistency for
dimension update and unsynchronized data. Dimension tables are stored for a
long time. Currently, Flink on Hudi allows you to set the TTL for a Hudi
dimension table.

Table 3-6 Comparison of dimension table implementations

Dimension Memory
Dimension
Table (Hive/
Hudi)

External
Dimension Table
(HBase)

State Dimension Table

Performance Very high
(within
milliseconds)

Medium
(millisecond-level)

High (within and in
milliseconds)

Data volume Small, less than
1 GB for a single
TM

Large, in TB level Medium, in GB level

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

Dimension Memory
Dimension
Table (Hive/
Hudi)

External
Dimension Table
(HBase)

State Dimension Table

Storage High memory
consumption,
full storage of a
single TM

No storage
consumption
(external storage
is used)

Distributed storage for
each TM: memory and
disks

Timeliness Periodic data
loading, low
timeliness

Relatively high High

Join result Low Medium -

Use HBase for Large Dimension Tables
If the data volume is large and data consistency requirement is not high, use
HBase KV databases to support point query joins of dimension tables.

Data in the K-V database needs to be written by another job, which has a time
difference with the Flink job. The current Flink job may not query the latest data
in the K-V database, and the lookup query does not support cancellation. The
association result is inconsistent.

Use Stream Tables as Dimension Tables for High Data Consistency
When you are using a Hudi dimension source table, the TTL of the table can be
set separately. Data will not age based on the overall TTL of the job. Dimension
data can be stored in the state backend for a long time. In addition, stream tables
can be used as dimension tables to ensure data consistency with the Flink
withdrawal.

3.5 Flink SQL Logic

3.5.1 Development Rules

Do Not Add Over Five Dimension Tables In Lookup Join
Hudi dimension tables are stored in the TM heap memory. When there are too
many dimension tables, heap memory stores too much dimension table data, and
the TM will consistently trigger GC. As a result, the job performance deteriorates.

[Example] Set the number of dimension tables in a lookup join to 5:

CREATE TABLE table1(id int, param1 string) with(...);
CREATE TABLE table2(id int, param2 string) with(...);
CREATE TABLE table3(id int, param3 string) with(...);
CREATE TABLE table4(id int, param4 string) with(...);
CREATE TABLE table5(id int, param5 string) with(...);
CREATE TABLE orders (

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

 order_id STRING,
 price DECIMAL(32,2),
 currency STRING,
 order_time TIMESTAMP(3),
 WATERMARK FOR order_time AS order_time
) WITH (/* ... */);

select
 o.*, t1.param1, t2.param2, t3.param3, t4.param4, t5.param5
from
 orders AS o
 JOIN table1 FOR SYSTEM_TIME AS OF o.proc_time AS t1 ON o.order_id = t1.id
 JOIN table2 FOR SYSTEM_TIME AS OF o.proc_time AS t2 ON o.order_id = t2.id
 JOIN table3 FOR SYSTEM_TIME AS OF o.proc_time AS t3 ON o.order_id = t3.id
 JOIN table4 FOR SYSTEM_TIME AS OF o.proc_time AS t4 ON o.order_id = t4.id
 JOIN table5 FOR SYSTEM_TIME AS OF o.proc_time AS t5 ON o.order_id = t5.id;

In a multi-stream join, the number of fact stream tables cannot exceed
three.

When there are too many tables, the back-end pressure is too high, increasing the
latency.

[Example] Join three dimension tables in real time.

CREATE TABLE table1(id int, param1 string) with(...);
CREATE TABLE table2(id int, param2 string) with(...);
CREATE TABLE table3(id int, param3 string) with(...);
CREATE TABLE orders (
 order_id STRING,
 price DECIMAL(32,2),
 currency STRING,
 order_time TIMESTAMP(3),
 WATERMARK FOR order_time AS order_time
) WITH (/* ... */);

select
 o.*, t1.param1, t2.param2, t3.param3
from
 orders AS o
 JOIN table1 AS t1 ON o.order_id = t1.id
 JOIN table2 AS t2 ON o.order_id = t2.id
 JOIN table3 AS t3 ON o.order_id = t3.id;

The number of nested joins cannot exceed three.
A larger number of nesting levels indicates a larger amount of data to be
withdrawn.

[Example] Nest three joins.

SELECT *
 FROM table1 WHERE column1 IN
(
 SELECT column1
 FROM table2 WHERE column2 IN (
 SELECT column2
 FROM table3 WHERE column3 = 'value'
)
)

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

A Single Lookup Join Table Should Not Be Larger than 1 GB in Hudi
Hudi dimension tables are stored in the TM heap memory. When a dimension
table is too large, heap memory stores too much dimension table data, and the
TM will consistently trigger GC. As a result, the job performance deteriorates.

Do Not Add Batch Source Operator to Stream Joins
Changed the Source operator to a dimension table operator based on service
requirements.

3.5.2 Development Suggestions

Filter Data Before Aggregate and Join to Reduce Data to Be Calculated
Filtering data before the shuffle phase to reduce network I/Os and improve query
efficiency.

For example, filtering data before joining a table is more effective than filtering
data when ON or WHERE is executed. The execution sequence is changed to
filtering before shuffling.

[Example] Move predicate condition A.userid>10 before the subquery statement to
reduce the shuffle data volume.

● SQL statements before optimization:
select... from A
join B
on A.key = B.key
where A.userid > 10
 and B.userid < 10
 and A.dt='20120417'
 and B.dt='20120417';

● SQL statement after optimization:
select ... from (
 select ... from A where dt='201200417' and userid > 10
)a
join (
 select ... from B where dt='201200417' and userid < 10
)b
on a.key = b.key;

Exercise Caution When Using the Regular Expression Function REGEXP
Regular expressions are time-consuming and require x100 performance overhead
of addition, subtraction, multiplication, and division. In addition, regular
expressions may enter an infinite loop in some extreme cases, causing job
blocking. You are advised to use LIKE to replace regular expressions. Typical
regular expression functions you may use include:

● REGEXP
● REGEXP_EXTRACT
● REGEXP_REPLACE

[Example]

● The following statement uses a regular expression:

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

SELECT
 *
FROM
 table
WHERE username NOT REGEXP "test|ceshi|tester'

● The following statement uses Like for fuzzy query:
SELECT
 *
FROM
 table
WHERE username NOT LIKE '%test%'
 AND username NOT LIKE '%ceshi%'
 AND username NOT LIKE '%tester%'

Do Not Use Long Expressions When You Nest UDFs

If the expression used to nest UDFs is too long, the code generated after Flink
optimization exceeds 64 KB and a compilation error occurs. It is recommended
that a maximum of six UDFs be nested.

[Example] Nest UDFs.

SELECT
 SUM(get_order_total(order_id))
FROM orders WHERE customer_id = (
 SELECT customer_id FROM customers WHERE customer_name = get_customer_name('John Doe')
)

Replace CASE WHEN in Aggregate Functions with FILTER

In aggregate functions, FILTER is a SQL standard clause for data filtering that
improves performance. FILTER is a modifier used in aggregate functions to limit
the values used in aggregation.

[Example] In the following example, CASE WHEN is used to collect UV statistics
from different dimensions, for example, Android UV, iPhone UV, web UV, and total
UV.

● Before modification
SELECT
day,
COUNT(DISTINCT user_id) AS total_uv,
COUNT(DISTINCT CASE WHEN flag IN (android', "iphone'") THEN user_id ELSE NULL END) AS app_uv,
COUNT(DISTINCT CASE WHEN flag IN(wap', 'other') THEN user_id ELSE NULL END) AS web_uv
FROM T
GROUP BY day

● After modification
SELECT
day,
COUNT(DISTINCT user_id) AS total_uv,
COUNT(DISTINCT user_id) FILTER (WHERE flag IN ('android', 'iphone')) AS app_uv,
COUNT(DISTINCT user_id) FILTER(WHERE flag IN ('wap', 'other'))AS web_uv
FROM T
GROUP BY day

The Flink SQL optimizer can identify different filter parameters on the same
distinct key. In the example, three COUNT DISTINCT are used on the user_id
column. Flink can use only one shared state instance instead of three to reduce
state access and state size. For some workloads, Flink can have significant
improvement in performance.

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

Split Distinct Aggregation to Eliminate Data Skew
Two-phase aggregation can eliminate typical data skew, but the performance of
processing distinct aggregation is poor. Even if two-phase aggregation is enabled,
distinct keys cannot be combined to eliminate duplicate values, and the
accumulator still contains all original records.

Different aggregations (COUNT(DISTINCT col)) can be divided into two levels:

For the first aggregation, use group key and additional bucket key to shuffle. The
bucket key is calculated using HASH_CODE(distinct_key) % BUCKET_NUM. The
default value of BUCKET_NUM is 1024, which can be configured using the
table.optimizer.distinct-agg.split.bucket-num option.

For the second aggregation, use the original group key to shuffle and SUM to
aggregate the Count DISTINCT values from different buckets. The same distinct
key is calculated in the same bucket only. The conversion is equivalent. The bucket
key functions as an additional group key to share the load of hotspots in the
group key. The bucket key makes jobs to be scalable to avoid data skew and
hotspotting in aggregations.

[Example]

● Add the following configurations in the resource file:
table.optimizer.distinct-agg.split.enabled: true
table.optimizer.distinct-agg.split.bucket-num: 1024

● Query the number of unique users who have logged in today:
SELECT day, COUNT(DISTINCT user_id)
FROM T
GROUP BY day

● The query is rewritten as follows:
SELECT day, SUM(cnt)
FROM(
 SELECT day, COUNT(DISTINCT user_id) as cnt
FROM T
GROUP BY day, MOD(HASH_CODE(user_id), 1024)
)
GROUP BY day

Set the Join Field as the Primary Key When Joining Streams
When the join field is not the primary key, Flink uses a hash-based shuffle, which
means that the original sequence of data is not preserved. This leads to multiple
replicas of the same join key field stored in the state backend, causing a Cartesian
product to be generated during the join.

For example, the field in table A is id, field1, and the field in table B is id, field2.
Join tables A and B based on id. Table A has historical data (1, a1), and table B
has historical data (1, b1). When table A changes from (1, a1) to (1, a2) and table
B changes (1, b1) to (1, b2), the join result is as follows and the join result cannot
preserve the data sequence:

1, a1, b1
1, a2, b1
1, a1, b2
1, a2, b2

● SQL statement before optimization:
create table t1 (
 id int,

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

 field1 string
) with(

);
create table t1 (
 id int,
 field2 string
) with(

);
select t1.id, t1.field1, t2.field2
from t1
left join t2 on t1.id = t2.id;

● SQL statement after optimization:
create table t1 (
 id int,
 field1 string,
 primary key (id) not enforced
) with(

);
create table t1 (
 id int,
 field2 string,
 primary key (id) not enforced
) with(

);
select t1.id, t1.field1, t2.field2
from t1
left join t2 on t1.id = t2.id;

Specify All Fields That Have the Composite Primary Key in the Select Clause
When the Join Key Is a Composite Primary Key

If all fields that have the composite primary key are not used in Select, the join
operator discards some primary keys. As a result, the join spec is NoUniqueKey.

● SQL statements before optimization:
create table table1(
 uuid varchar(20),
 name varchar(10),
 age int,
 ts timestamp,
 primary key (uuid) not enforced
) with (
 'connector' = 'datagen',
 'rows-per-second' = '1'
);
create table table2(
 uuid varchar(20),
 name varchar(10),
 age int,
 ts timestamp,
 primary key (uuid, name) not enforced
) with (
 'connector' = 'datagen',
 'rows-per-second' = '1'
);
create table print(
 uuid varchar(20),
 name varchar(10),
 age int,
 ts timestamp
) with ('connector' = 'print');
insert into
 print

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

select
 t1.uuid,
 t1.name,
 t2.age,
 t2.ts
from
 table1 t1
 join table2 t2 on t1.uuid = t2.uuid;

Figure 3-4 NoUniqueKey join spec

● SQL statements after optimization:
create table table1(
 uuid varchar(20),
 name varchar(10),
 age int,
 ts timestamp,
 primary key (uuid) not enforced
) with (
 'connector' = 'datagen',
 'rows-per-second' = '1'
);
create table table2(
 uuid varchar(20),
 name varchar(10),
 age int,
 ts timestamp,
 primary key (uuid, name) not enforced
) with (
 'connector' = 'datagen',
 'rows-per-second' = '1'
);
create table print(
 uuid varchar(20),
 name varchar(10),
 name1 varchar(10),
 age int,
 ts timestamp
) with ('connector' = 'print');
insert into
 print
select
 t1.uuid,
 t1.name,
 t2.name as name1,
 t2.age,
 t2.ts
from
 table1 t1
 join table2 t2 on t1.uuid = t2.uuid;

Figure 3-5 Optimized SQL

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

Use the Snowflake Schema When the Join Key Changes in a Left Join of
Tables

Data disorder occurs when the left join key changes. You are advised to associate
the right table with a view and then associate the view with the left table.

The change of the join key group_id causes the disorder of "-D" and "+I."
Although the parallelism degree are the same during the user_id-based hashing,
the "+I" message arrives first, and the "-D" message arrives later. As a result, the
records are overwritten in the wide table.

● SQL statement before optimization:
select...
from t1
left join t2 on t2.user_id = t1.user_id
left join t10 on t10.user_id = t1.user_id
left join t11 on t11.group_id = t10.group_id
left join t12 on t12.user_id = t1.user_id

● SQL statement after optimization:
create view tmp_view as(
select
..
from t10
left join t11 on t11.group_id = t10.group_id
);
select...
from t1
left join t2 on t2.user_id = t1.user_id
left join tmp_view on tmp_view.user_id = t1.user_id
left join t12 on t12.user_id = t1.user_id

Use Lookup Join After All Dual-stream Joins for Table Left Join
Data disorder occurs when you run left join LATERAL TABLE in the downstream if
a lookup join is performed before dual-stream joins.

Figure 3-6 Left join of tables

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

The specified primary key of the left stream cannot be inferred after a lookup join,
so all left stream historical data is stored in the state. When right stream data
arrives, each left stream record is matched with the latest state, withdrawn, and
then associated with the corresponding source data in the LATERAL TABLE. This
causes the data to become out of order.

To avoid incorrect data, perform a lookup join after a dual-stream join, as multiple
consecutive "-D" messages can cause the last record to be incorrect.

Figure 3-7 Consecutive "-D" messages

● SQL statement before optimization:
select...
from t1
left join t2 FOR SYSTEM_TIME AS OF t1.proctime AS t21 on t21.id = t1.id
left join t3 on t3.id = t1.id
left join LATERAL TABLE(udtf()) AS t4(res1,res2.res3,res4) on true

● SQL statement after optimization:
select...
from t1
left join t3 on t3.id = t1.id
left join t2 FOR SYSTEM_TIME AS OF t1.proctime AS t21 on t21.id = t1.id
left join LATERAL TABLE(udtf()) AS t4(res1,res2.res3,res4) on true

Specify the Precision When Using the Char Type or Use the String Data Type
cast(id as char) truncates only the first digit during data type conversion, causing
incorrect data. If the converted field is the primary key field, a large amount of
data will be lost.

You are not advised to use table.exec.legacy-cast-behaviour=ENABLED to
handle the conversion error.

In versions earlier than Flink 1.15, you can set table.exec.legacy-cast-behaviour
to enabled to enable type conversion. However, in Flink 1.15 and later versions,
this flag is disabled by default. In particular, this will:

● Disable trimming/padding for casting to CHAR/VARCHAR/BINARY/VARBINARY
● CAST never fails but returns NULL, behaving as TRY_CAST but without

inferring the correct type
● Formatting of some casting to CHAR/VARCHAR/STRING produces slightly

different results.

We discourage the use of this flag and we strongly suggest for new projects to
keep this flag disabled and use the new casting behavior. This flag will be removed
in the next Flink versions.

● SQL statement before optimization:

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

select
cast(id as char) as id,
...
from t1

● SQL statement after optimization:
select
cast(id as string) as id,
...
from t1

Filter Out the Data To Be Withdrawn When Multiple Flink Jobs or INSERT
INTO Statements Are Written into the Same Gauss for MySQL Database

When multiple Flink jobs write data to the same MySQL table, one job sends the
withdrawal data (-D and -U) to delete the entire row and then inserts the updated
data, causing other jobs to lose their changes.

● SQL statement before optimization:
create table source-A(
id,
user_id
)with(
'connector' = 'kafka'
);
create table source-B(
id,
org_id
)with(
'connector' = 'kafka'
);
create table sink-A(
id,
user_id
)with(
'connector' = 'jdbc'
'url' = 'jdbc:mysql://****',
'table-name' = 'sink-table'
);
create table sink-B(
id,
org_id
)with(
'connector' = 'jdbc'
'url' = 'jdbc:mysql://****',
'table-name' = 'sink-table'
);
insert into sink-A select id,user_id from source-A;
insert into sink-B select id,org_id from source-B;

● SQL statement after optimization:
create table source-A(
id,
user_id
)with(
'connector' = 'kafka'
);
create table source-B(
id,
org_id
)with(
'connector' = 'kafka'
);
create table sink-A(
id,
user_id
)with(
'connector' = 'jdbc'

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

'url' = 'jdbc:mysql://****',
'table-name' = 'sink-table',
'filter.record.enabled' = 'true'
);
create table sink-B(
id,
org_id
)with(
'connector' = 'jdbc'
'url' = 'jdbc:mysql://****',
'table-name' = 'sink-table',
'filter.record.enabled' = 'true'
);
insert into sink-A select id,user_id from source-A;
insert into sink-B select id,org_id from source-B;

3.6 Flink Performance Tuning

3.6.1 Performance Tuning Rules

Run Compaction on Hudi Tables to Prevent Long Checkpointing of the Hudi
Source Operator

If the checkpointing of the Hudi Source operator takes a long time, check whether
the compaction of the Hudi table is normal. If there was no compaction for a long
time, the list performance deteriorates.

Set Table TTL to Reduce the Backend Data Volume When Joining a Fact
Table and a Dimension Table

For details, see Optimize State Backends Through Table-Level TTL.

Set Proper Degree of Parallelism
The processing speed of tasks is related to parallelism. Generally, increasing
parallelism can effectively improve read speed. However, if parallelism is too high,
some node resources may be wasted, and if parallelism is too low, some nodes
may run tasks slowly. A SQL statement cannot set parallelism for a specific task.
You can set one for all.

Set source parallelism based on the upstream component. For a streaming system,
the parallelism is recommended to be the same as the number of upstream
partitions (for example, the number of Kafka topic partitions). For a batch system,
the parallelism is recommended to be the same as the number of upstream slices
(for example, the number of HDFS blocks).

The parallelism of Flink jobs using Source, Sink, and intermediate computing
operators should be adjusted. If intermediate computing is busy according to the
job flow diagram, you need to adjust the parallelism of the job to change the
parallelism of the operators, for example, the join operator.

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

3.6.2 Performance Tuning Suggestions

Enable the Log Indexes for Hudi MOR Stream Tables for Faster Flink
Streaming Reads on the MOR Table

To enable log indexes for better read and write performance of Hudi MOR tables,
add 'hoodie.log.index.enabled'='true' for the Sink and Source tables.

Adjust Operator Parallelism to Improve Performance
● You can set the parallelism parameters of read and write operators to

improve Hudi read and write performance.
The read.tasks parameter is for the parallelism of the read operator.
The write.tasks parameter is for the parallelism of the write operator.

● When state indexes are used and the job is restarted (not checkpoint restart),
the target table needs to be read to rebuild the indexes. You can increase the
parallelism of the operator to improve the performance.
The write.index_bootstrap.tasks parameter controls the parallelism for
loading indexes.

● When state indexes are used to write data, check the uniqueness of the
primary key and allocate a specific file to be written to improve operator
parallelism for better performance.
The write.bucket_assign.tasks parameter controls the task parallelism for
bucket assign. The default value is the parallelism of the execution
environment.

Optimize Resources to Improve the Performance of Stateless Computing

Flink computing operations are classified into the following types:

● Stateless computing: These operators (such as filter, union all, and lookup
join) do not need to save computing states.

● Stateful computing: These operators (such as join, union, window, group by,
and aggregation operators) compute based on data state changes.

For non-stateful computing, you can adjust Heap Size and NetWork of
TaskManager to optimize performance.

For example, if a job only reads and writes data, TaskManager does not need extra
vCores. The default values of off-Heap and Overhead are 1 GB, and the memory
is mainly allocated to heap and network.

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

Optimize Resources to Improve the Performance of Stateful Computing
The SQL logic contains many operations such as join and convolution calculation.
Tune state backend performance, vCore, and Manage Memory.

For example, if a job joins over three tables and the performance requirement is
high, add six extra vCores to a single TaskManager, increase the off-Heap and
overhead to 5 GB, and set the Manage Memory used for Flink status management
to 9.6 GB.

Optimize State Backends Through Table-Level TTL
This suggestion is available for MRS 3.3.0 or later.

When you join two Flink streams, there is a possibility that data in one table
changes rapidly (short TTL) and data in the other table changes slowly (long TTL).
Currently, Flink supports only table-level TTL. To ensure join accuracy, you need to
set the table-level TTL to a long time. In this case, a large amount of expired data
is stored in state backends, causing great workload pressure. To reduce the
pressure, you can use Hints to set different expiration time for left and right
tables. The WHERE clause is not supported.

For example, set the TTL of the left table (state.ttl.left) to 60 seconds and that of
the right table (state.ttl.right) to 120 seconds.

● Use Hints in the following format:
table_path /*+ OPTIONS(key=val [, key=val]*) */

key:
 stringLiteral
val:
 stringLiteral

● The following is a configuration example with a SQL statement:
CREATE TABLE user_info (`user_id` VARCHAR, `user_name` VARCHAR) WITH (
 'connector' = 'kafka',
 'topic' = 'user_info_001',

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

 'properties.bootstrap.servers' = '192.168.64.138:21005',
 'properties.group.id' = 'testGroup',
 'scan.startup.mode' = 'latest-offset',
 'value.format' = 'csv'
);
CREATE table print(
 `user_id` VARCHAR,
 `user_name` VARCHAR,
 `score` INT
) WITH ('connector' = 'print');
CREATE TABLE user_score (user_id VARCHAR, score INT) WITH (
 'connector' = 'kafka',
 'topic' = 'user_score_001',
 'properties.bootstrap.servers' = '192.168.64.138:21005',
 'properties.group.id' = 'testGroup',
 'scan.startup.mode' = 'latest-offset',
 'value.format' = 'csv'
);
INSERT INTO
 print
SELECT
 t.user_id,
 t.user_name,
 d.score
FROM
 user_info as t
 LEFT JOIN
 -- Set different TTLs for left and right tables.
 /*+ OPTIONS('state.ttl.left'='60S', 'state.ttl.right'='120S') */
 user_score as d ON t.user_id = d.user_id;

Optimize the State Backend Through Table-level JTL
This suggestion is available for MRS 3.3.0 or later.

If backend data deletion upon one join is allowed in a Flink dual-stream inner join,
this feature can be used.

This feature is available for inner joins of streams only.

You can use hints to set different join times for left and right tables.

● Use Hints in the following format:
table_path /*+ OPTIONS(key=val [, key=val]*) */

key:
 stringLiteral
val:
 stringLiteral

● The following is a configuration example with a SQL statement:
CREATE TABLE user_info (`user_id` VARCHAR, `user_name` VARCHAR) WITH (
 'connector' = 'kafka',
 'topic' = 'user_info_001',
 'properties.bootstrap.servers' = '192.168.64.138:21005',
 'properties.group.id' = 'testGroup',
 'scan.startup.mode' = 'latest-offset',
 'value.format' = 'csv'
);
CREATE table print(
 `user_id` VARCHAR,
 `user_name` VARCHAR,
 `score` INT
) WITH ('connector' = 'print');
CREATE TABLE user_score (user_id VARCHAR, score INT) WITH (
 'connector' = 'kafka',
 'topic' = 'user_score_001',
 'properties.bootstrap.servers' = '192.168.64.138:21005',

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

 'properties.group.id' = 'testGroup',
 'scan.startup.mode' = 'latest-offset',
 'value.format' = 'csv'
);
INSERT INTO
 print
SELECT
 t.user_id,
 t.user_name,
 d.score
FROM
 user_info as t
 JOIN
 -- Set different JTL join times for left and right tables.
 /*+ OPTIONS('eliminate-state.left.threshold'='1','eliminate-state.right.threshold'='1') */
 user_score as d ON t.user_id = d.user_id;

Number of TM Slots Should be a Multiple of the Number of TM CPUs

In Flink, each task is divided into subtasks. A subtask is an execution thread unit
that runs on the TM. If Slot Sharing Group is disabled, a subtask is deployed in a
slot. Even if Slot Sharing Group is enabled, the subtasks in a slot are load balanced
in most cases. The number of slots on the TM indicates the number of running
task threads.

The number of slots must be the same as the number of CPU cores. When hyper-
threading is used, each slot occupies two or more hardware threads.

[Example] Set the number of TM slots to 2 to 4 times the number of CPU cores.

taskmanager.numberOfTaskSlots: 4
taskmanager.cpu.cores: 2

Adjust Network Memory When Shuffle Is Enabled, Data Volume Is Large,
and Concurrency Is High

When there are a large number of concurrent requests and a large amount of
data, there are massive amounts of network I/Os after shuffle. Increasing the
network cache memory can increase the amount of data read at a time, thereby
improving the I/O speed.

[Example]

#Ratio of the network memory usage to the process memory usage
taskmanager.memory.network.fraction: 0.6
Minimum size of the network cache memory
taskmanager.memory.network.min: 1g
#Maximum size of the network cache memory. (In MRS 3.3.1 and later versions, you do not need to change
the value. The default value is Long#MAX_VALUE.)
taskmanager.memory.network.max: 20g

Use Simple Data Types Such as POJO and Avro Based on Serialization
Performance

When using APIs to code Flink programs, you should consider the serialization of
Java objects. In most cases, Flink can efficiently process serialization. SQL data is
ROW data. SQL uses the built-in efficient serializer of Flink.

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

Table 3-7 Serialization

Serializer Opts/s

PojoSeriallizer 813

Kryo 294

Avro(Reflect API) 114

Avro(SpecificRecord API) 632

Network Communication Optimization
Flink communication mainly depends on the Netty network. Netty settings are
especially important for Flink application execution. The network determines the
data exchange speed and task execution efficiency.

[Example]

Number of threads on the netty server. The value -1 indicates the default parameter numOfSlot.
taskmanager.network.netty.server.numThreads -1(numOfSlot)
Number of netty client threads (The value -1 indicates the default parameter numofSlot).
taskmanager.network.netty.client.numThreads : -1
Timeout interval for connecting to the netty client.
taskmanager.network.netty.client.connectTimeoutSec: 120s
Size of the sending and receiving buffers of netty (0 indicates the default parameter of netty, 4 MB)
taskmanager.network.netty.sendReceiveBufferSize: 0
Netty transmission mode. The default option selects the mode based on the platform.
taskmanager.network.netty.transport: auto

Overall Memory Optimization
Flink has the heap memory and off-heap memory. The Java heap memory is
specified when the Java program is created, which is also part of the memory
where the JVM automatically triggers GC. Off-heap memory can be classified into
managed memory and memory cannot be managed by the JVM. Managed
Memory and Direct Memory that can be managed by the JVM are the focus of
optimization. JVM Metaspace and JVM Overhead that cannot be managed by the
JVM are native memory.

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

Figure 3-8 Memory

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

Table 3-8 Related parameters

Paramete
r

Configuration Description Remarks

Total
Memory

taskmanager.mem
ory.flink.size: none

Total memory size
managed by Flink. There
is no default value.
Metaspace and Overhead
are not included. Set this
parameter in standalone
mode.

Overall memory

taskmanager.mem
ory.process.size:
none

Memory size used by the
entire Flink process. Set
this parameter when
containers are used.

FrameWor
k

taskmanager.mem
ory.framework.hea
p.size: 128mb

Size of the heap memory
occupied by runtime.
Generally, you do not
need to change the value.
The occupied space is
relatively fixed.

Memory occupied
by RUNTIME.
Generally, you do
not need to
change the value
greatly.

taskmanager.mem
ory.framework.off-
heap.size: 128mb

Size of the off-heap
memory occupied by
runtime. Generally, you
do not need to change
the value. The occupied
space is relatively fixed.

Task taskmanager.mem
ory.task.heap.size:
none

There is no default value.
The value is obtained by
subtracting the memory
for framework, hosting,
and network from
flink.size.

Operator logic in
regular objects of
user code (such as
UDFs), which
occupies memory

taskmanager.mem
ory.task.off-
heap.size: 0

The default value is 0,
indicating the off-heap
memory used by task

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

Paramete
r

Configuration Description Remarks

Managed
Memory

taskmanager.mem
ory.managed.fracti
on: 0.4

Ratio of managed
memory to
taskmanager.memory.fli
nk.size. The default value
is 0.4.

The managed
memory used for
intermediate
result caching,
sorting, hashing
(batch
calculation) and
by RocksDB state
backends (stream
computing). For
batch processing,
a fixed size of
memory is applied
for at the
beginning. For
stream processing,
the memory is
applied on
demand.

taskmanager.mem
ory.managed.size:
0

Size of managed memory.
Generally, this parameter
is not specified. The
default value is 0. The
size is calculated based
on
taskmanager.memory.m
anaged.fraction. If this
parameter is specified,
the memory ratio will be
overwritten.

Network taskmanager.mem
ory.network.min:
64mb

Minimum network
memory.

Network memory
for shuffle and
broadcast
between
TaskManagers,
and for network
buffer.

taskmanager.mem
ory.network.max:
1gb

Maximum size of the
network cache. (For MRS
3.3.1 and later versions,
you do not need to
change the value. The
default value is
Long#MAX_VALUE.)

taskmanager.mem
ory.network.fractio
n: 0.1

Fraction of
taskmanager.memory.fli
nk.size used as the
network memory. The
default value is 0.1,
which is limited to the
value between
network.min and
network.max.

Network memory
for shuffle and
broadcast
between
TaskManagers,
and for network
buffer.

Others taskmanager.mem
ory.jvm-
metaspace.size:
256M

Maximum size of the
metaspace. The default
value is 256 MB.

Memory managed
by users

taskmanager.mem
ory.jvm-
overhead.min:
192M

Minimum extra overhead
of the JVM. The default
value is 192 MB.

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

Paramete
r

Configuration Description Remarks

taskmanager.mem
ory.jvm-
overhead.max: 1G

Maximum extra overhead
of JVM. The default value
is 1 GB.

taskmanager.mem
ory.jvm-
overhead.fraction:
0.1

Ratio of the extra JVM
overhead to
taskmanager.memory.pr
ocess.size. The default
value is 0.1. The
calculated extra JVM
overhead is limited
between jvm-
overhead.min and jvm-
overhead.max.

NO TE

In MRS 3.3.1 and later versions, you do not need to change the value of
taskmanager.memory.network.max.

Reduce Shuffled Data As Much As Possible If Broadcast Join Cannot Be Used
If broadcast join is not supported, shuffling will occur. You can use various
methods, such as predicate pushdown and runtime filter, to reduce the amount of
shuffled data.

[Example]

Configure runtime filter
table.exec.runtime-filter.enabled: true
Pushdown
table.optimizer.source.predicate-pushdown-enabled: true

Use a Local-Global Optimization Policy When Data Skew Occurs
[Example]

Enable mini-batch optimization.
table.exec.mini-batch.enabled: true
#Maximum waiting time
table.exec.mini-batch.allow-latency: 20ms
#Maximum number of cached records
table.exec.mini-batch.size: 8000
Enable two-phase aggregation.
table.optimizer.agg-phase-strategy: TWO_PHASE

Use MiniBatch Aggregation to Increase Throughput
The core idea of MiniBatch aggregation is caching a group of input data in the
buffer of the aggregation operator. When the input data is triggered for
processing, each key can access states with only one operation, which greatly
reduces state overhead and achieves better throughput. However, latency may

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

increase because it buffers some records instead of processing them immediately,
which is a trade-off between throughput and latency. This function is disabled by
default.

● Configure with APIs:
// Instantiate table environmentTableEnvironment tEnv = ...
// Access flink configuration.
Configuration configuration = tEnv.getConfig().getConfiguration();
// set low-level key-value options
configuration.setString("table.exec.mini-batch.enabled", "true"); // enable mini-batch
optimizationconfiguration.setString("table.exec.mini-batch.allow-latency", "5 s"); // use 5 seconds to
buffer input recordsconfiguration.setString("table.exec.mini-batch.size", "5000"); // the maximum
number of records can be buffered by each aggregate operator task

● Configure in the resource file (flink-conf.yaml):
table.exec.mini-batch.enabled: true
table.exec.mini-batch.allow-latency : 5 s
table.exec.mini-batch.size: 5000

Use Local-Global Two-Phase Aggregation to Reduce Data Skew
Local-Global aggregation is proposed to solve the data skew problem. A group of
aggregations is divided into two phases: local aggregation in the upstream and
global aggregation in the downstream, which is similar to the Combine + Reduce
in MapReduce.

Records in a data stream may skew. Instances of some aggregation operators
must process more records than others, which can cause hotspotting. Local
aggregation can accumulate a certain amount of input data with the same key to
a single accumulator. Global aggregation receives only the reduced accumulator
instead of a large amount of original input data, which greatly reduces network
shuffle and state access. The amount of input data accumulated in each local
aggregation is based on the mini-batch interval, which means that local-global
aggregation depends on mini-batch optimization.

● Configure with APIs:
// Instantiate table environmentTableEnvironment tEnv = ...
// access flink configuration
Configuration configuration = tEnv.getConfig().getConfiguration();// set low-level key-value options
configuration.setString("table.exec.mini-batch.enabled", "true"); // local-global aggregation depends
on mini-batch is enabled
configuration.setString("table.exec.mini-batch.allow-latency", "5 s");
configuration.setString("table.exec.mini-batch.size", "5000");
configuration.setString("table.optimizer.agg-phase-strategy", "TWO_PHASE"); // enable two-phase, i.e.
local-global aggregation

● Configure in the resource file:
table.exec.mini-batch.enabled: true
table.exec.mini-batch.allow-latency : 5 s
table.exec.mini-batch.size: 5000
table.optimizer.agg-phase-strategy: TWO_PHASE

Use Multiple Disks to Improve I/O Performance When RocksDB Is the State
Backend

RocksDB uses memory and disks to store data. When state is large, disk space
usage is high. If there are frequent read requests to RocksDB, the disk I/O will limit
speed of Flink tasks. When a TaskManager contains three slots, disks of a single
server are frequently read and written. Concurrent operations contend for the I/O
of the same disk, and the throughput of the three slots decreases. You can specify
multiple disks to reduce I/O competition.

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

[Example] Configure checkpoint directories of RockDB on different disks (flink-
conf.yaml).

state.backend.rocksdb.localdir:/data1/flink/rocksdb,/data2/flink/rocksdb

Replace the ValueState Storage Containers with MapState or ListState when
RocksDB is the Status Backend

RocksDB is an embedded KV database. Data is stored in key-value pairs. For map
data, if ValueState is used, the data is stored as a record in RocksDB, and the
value is the entire map. If MapState is used, the data is stored in multiple records
in RocksDB. This allows only a small part of data be serialized during query or
modification. When the map is stored as a whole, adding, deleting, or modifying
the map causes a large number of serialization operations. For List data, ListState
can be used to dynamically add elements without serialization.

In addition, the state in Flink supports TTL. TTL encapsulates the timestamp and
userValue. The TTL of ValueState is based on the entire key. The TTL of
MapState<UK, UV> is based on the UK. It has a smaller granularity and supports
more TTL semantics.

Configure Compaction to Reduce the Checkpoint Size

In I/O-intensive applications, you can enable checkpoint compaction to improve
I/O performance at the cost of a little CPU performance.

[Example] Enable compaction in checkpoint configuration (flink-conf.yaml).

execution.checkpointing.snapshot-compression: true

Recover Large-State Checkpoint from Local States

To quickly recover, each task writes checkpoint data to the local disk and
distributed remote storage at the same time. Each data record has two
replications. When an application needs to recover, the system checks if the local
checkpoint data is okay. If it is, the system uses it first. This makes it faster to get
the state data without having to get it from a remote location.

[Example] Configure checkpoints to be preferentially restored from the local host
(flink-conf.yaml):

state.backend.local-recovery: true

3.7 Development Examples
Flink can interconnect with multiple services, such as ClickHouse, HBase, and
HDFS. The following table lists the supported versions and examples.

● Interconnecting FlinkServer to ClickHouse
● Interconnecting FlinkServer with HBase
● Interconnecting FlinkServer with HDFS
● Interconnecting FlinkServer with Hive
● Interconnecting FlinkServer with Hudi

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

https://support.huaweicloud.com/intl/en-us/cmpntguide-lts-mrs/mrs_01_24148.html
https://support.huaweicloud.com/intl/en-us/cmpntguide-lts-mrs/mrs_01_24120.html
https://support.huaweicloud.com/intl/en-us/cmpntguide-lts-mrs/mrs_01_24247.html
https://support.huaweicloud.com/intl/en-us/cmpntguide-lts-mrs/mrs_01_24179.html
https://support.huaweicloud.com/intl/en-us/cmpntguide-lts-mrs/mrs_01_24180.html

● Interconnecting FlinkServer with Kafka

MapReduce Service
Component Development Specifications 3 Flink

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

https://support.huaweicloud.com/intl/en-us/cmpntguide-lts-mrs/mrs_01_24248.html

4 HBase

4.1 HBase Application Development Rules

Create a Configuration instance
Call the create() method of HBaseConfiguration to instantiate this class.
Otherwise, the HBase configurations cannot be successfully loaded.

Correct:

//This part is declared in the class member variable declaration.
private Configuration hbaseConfig = null;
//Instantiate this class using its constructor function or initialization method.
hbaseConfig = HBaseConfiguration.create();

Incorrect:

hbaseConfig = new Configuration();

Share the Configuration instance
The HBase client codes obtain rights to interact with an HBase cluster by creating
an HConnection with Zookeeper. Each HConnection has a Configuration instance.
The created HConnection instances are cached. That is, if the HBase client needs
to communicate with an HBase cluster, a Configuration instance is transferred to
the cache. Then, the HBase client checks for an HConnection instance for the
Configuration instance in the cache. If a match is found, the HConnection instance
is returned. If no match is found, an HConnection instance will be created.

If the Configuration instance is frequently created, a lot of unnecessary
HConnection instances will be created, causing the number of connections to
Zookeeper to reach the upper limit.

Therefore, it is recommended that the client codes share the same Configuration
instance.

Create an Table instance
public abstract class TableOperationImpl {
 private static Configuration conf = null;

MapReduce Service
Component Development Specifications 4 HBase

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

 private static Connection connection = null;
 private static Table table = null;
 private static TableName tableName = TableName.valueOf("sample_table");

 public TableOperationImpl() {
 init();
 }
 public void init() {
 conf = ConfigurationSample.getConfiguration();
 try {
 connection = ConnectionFactory.createConnection(conf);
 table = conn.getTable(tableName);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 public void close() {
 if (table != null) {
 try {
 table.close();
 } catch (IOException e) {
 System.out.println("Can not close table.");
 } finally {
 table = null;
 }
 }
 if (connection != null) {
 try {
 connection.close();
 } catch (IOException e) {
 System.out.println("Can not close connection.");
 } finally {
 connection = null;
 }
 }
 }
 public void operate() {
 init();
 process();
 close();
 }
}

An Table instance cannot be used by multiple threads at the same time
Table is not thread safe for reads or write. If an Table instance is used by multiple
threads at the same time, exceptions will occur.

Cache a frequently used Table instance
Cache the Table instance that will be frequently used by a thread for a long period
of time. A cached instance, however, will not be necessarily used by a thread
permanently. In special circumstances, you need to rebuild an Table instance. See
the next rule for details.

Correct:

NO TE

In this example, the Table instance is cached by Map. This method applies when multiple
threads and Table instances are required. If an Table instance is used by only one thread
and the thread has only one Table instance, Map need not be used.

//In this Map, TableName is the Key value. Cache all Table instances.
private Map<String, Table> demoTables = new HashMap<String, Table>();
//All Table instances share this Configuration instance.

MapReduce Service
Component Development Specifications 4 HBase

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

private Configuration demoConf = null;
/**
* <Initialize an HTable class>
* <Detailed function description>
* @param tableName
* @return
* @throws IOException
* @see [class, class#method, class#member]
*/
private Table initNewTable(String tableName) throws IOException
{
try (Connection conn = ConnectionFactory.createConnection(demoConf)){
 return conn.getTable(tableName);
 }
}
/**
* <Obtain Table instances>
* <Detailed function description>
* @see [class, class#method, class#member]
*/
private Table getTable(String tableName)
{
if (demoTables.containsKey(tableName))
{
return demoTables.get(tableName);
} else {
Table table = null;
try
{
table = initNewTable(tableName);
demoTables.put(tableName, table);
}
catch (IOException e)
{
// TODO Auto-generated catch block
e.printStackTrace();
}
return table;
}
}
/**
* <Write data>
* <Multi-thread multi-Table instance design optimization is not involved. The synchronization method is
used
* because the Table is not thread safe. It is recommended that an Table instance be used by only one data
write thread at the same
*time.>
* @param dataList
* @param tableName
* @see [class, class#method, class#member]
*/
public void putData(List<Put> dataList, String tableName)
{Table table = getTable(tableName);
//Synchronization is not required if the Table instance is not shared by multiple threads.
//Note that Table is not thread safe.
synchronized (table)
{
try
{
table.put(dataList);
table.notifyAll();
}
catch (IOException e)
{
 // When IOE is detected, the cached instance needs to be re-created.
try {
 // Close the Connection.
 table.close();
 // Re-create the instance.

MapReduce Service
Component Development Specifications 4 HBase

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

 table = initNewTable(tableName);
} catch (IOException e1) {
// TODO
}
}
}
}

Incorrect:

public void putDataIncorrect(List<Put> dataList, String tableName)
{Table table = null;
try
{
//Create an HTable instance each time when data is written.
table = initNewTable(tableName);
table.put(dataList);
}
catch (IOException e1)
{
// TODO Auto-generated catch block
e1.printStackTrace();
}
finally
{
table.close();
}
}

Rebuild an Table instance
Rebuilt a cached Table when IOException is detected. See the example of the
previous rule.

Do not call the following methods unless necessary:

● Configuration#clear
Do not call this method if a Configuration is used by an object or a thread.
The Configuration#clear method clears all attributes loaded. If this method is
called for a Configuration used by Table, all the parameters of this
Configuration will be deleted from Table. As a result, an exception occurs
when Table uses the Configuration the next time.
Therefore, avoid calling this method each time you rebuild an Table instance.
Call this method when all the threads need to quit.

● HConnectionManager#deleteAllConnections
This method deletes all connections from the Connection set. As the Table
stores the links to the connections, the connections being used cannot be
stopped after the HConnectionManager#deleteAllConnections method is
called, which eventually causes information leakage.

Handle the data failed to write
Some data write operations may fail due to instant exceptions or process failures.
Therefore, the data must be recorded so that it can be written to the HBase when
the cluster is restored.

The failed data returned by the HBase client will not be automatically rewritten.
The interface caller is only informed of the data failed to be written. To prevent
data loss, measures must be taken to temporarily save the data in a file or in
memory.

MapReduce Service
Component Development Specifications 4 HBase

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

Correct:

private List<Row> errorList = new ArrayList<Row>();
/**
* <Insert data in PutList mode. >
* <Synchronization is not required if the method is not called by multiple threads.>
* @param put a data record
* @throws IOException
* @see [class, class#method, class#member]
*/
public synchronized void putData(Put put)
{
// Temporarily cache data in this List.
dataList.add(put);
// Perform a Put operation when the dataList size reaches PUT_LIST_SIZE.
if (dataList.size() >= PUT_LIST_SIZE)
{
try
{
demoTable.put(dataList);
}
catch (IOException e)
{
// If RetriesExhaustedWithDetailsException occurs,
// certain data failed to be written, which
// is caused by process errors in the HBase cluster or migration of a large number of
// Regions.
if (e instanceof RetriesExhaustedWithDetailsException)
{
RetriesExhaustedWithDetailsException ree =
 (RetriesExhaustedWithDetailsException)e;
int failures = ree.getNumExceptions();
for (int i = 0; i < failures; i++)
{
errorList.add(ree.getRow(i));
}
}
}
dataList.clear();
}
}

Release resources
Call the Close method to release resources when the ResultScanner and Table
instances are not required. To enable the Close method to be called, add the Close
method to the finally block.

Correct:

ResultScanner scanner = null;
try
{
scanner = demoTable.getScanner(s);
//Do Something here.
}
finally
{
scanner.close();
}

Incorrect:

1. The code does not call the scanner.close() method to release resources.
2. The scanner.close() method is not placed in the finally block.

ResultScanner scanner = null;
scanner = demoTable.getScanner(s);

MapReduce Service
Component Development Specifications 4 HBase

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

//Do Something here.
scanner.close();

Add fault-tolerance mechanism for Scan
Exceptions, such as lease expiration, may occur when Scan is performed. Retry
operations need to be performed when exceptions occur.

Retry operations can be applied in HBase-related interface methods to improve
fault tolerance capabilities.

Stop Admin as soon as it is not required
Stop Admin as soon as possible. Do not cache the same Admin instance for an
extended period of time.

4.2 HBase Application Development Suggestions

Do not call the closeRegion method of Admin to close a Region
Admin interface provides an API to close a Region:

public void closeRegion(final String regionname, final String serverName)

When this method is used to close a Region, the HBase Client sends an RPC
request to the RegionServer of the Region to be closed. The Master is unaware of
the whole process. That is, the Master does not know even if the Region is closed.
If the closeRegion method is called when the Master determines to migrate the
Region based on the execution result of Balance, the Region cannot be closed or
migrated. (In the current HBase version, this issue has not been resolved).

Therefore, do not call the closeRegion method of Admin to close a Region.

Write data in PutList mode
Table provides two data write interfaces:

● public void put(final Put put) throws IOException
● public void put(final List<Put> puts) throws IOException

The second one is recommended because it provides better performance than the
first one.

Specify StartKey and EndKey for a Scan
A Scan with a specific range offers higher performance than a Scan without
specific range.

Example:

Scan scan = new Scan();
scan.addColumn(Bytes.toBytes("familyname"),Bytes.toBytes("columnname"));
scan.setStartRow(Bytes.toBytes("rowA")); // StartKey is rowA.
scan.setStopRow(Bytes.toBytes("rowB")); // EndKey is rowB.
for(Result result : demoTable.getScanner(scan)) {
// process Result instance
}

MapReduce Service
Component Development Specifications 4 HBase

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

Do not disable WAL

Write-Ahead-Log (WAL) allows data to be written in a log file before being stored
in the database.

WAL is enabled by default. The Put class provides an interface to disable WAL:

public void setWriteToWAL(boolean write)

If WAL is disabled (writeToWAL is set to False), data of the last 1s (The time can
be specified by the hbase.regionserver.optionallogflushinterval parameter on
the RegionServer. It is 1s by default) will be lost. WAL can be disabled only when
high data write speed is required and data loss of the last 1s is allowed.

Set blockcache to true when creating a table or when Scan is performed

Set blockcache to true when a table is created or when Scan is performed on the
HBase client. If there are a large number of repeated records, setting this
parameter to true can improve efficiency.

By default, blockcache is true. Avoid setting this parameter to false forcibly, for
example:

HColumnDescriptor fieldADesc = new HColumnDescriptor("value".getBytes());
fieldADesc.setBlockCacheEnabled(false);

The HBase does not support query by Orderby or with the search criteria
specified. It is based on the lexicographic order and can only be read by
Rowkey.

HBase should not be used in scenarios of random query and sequencing.

Suggestions on Services List Design
1. Pre-allocate regions in a balanced manner in order to improve concurrency

capabilities.
2. Avoid excessive hotspot regions. Import the time factor to Rowkey if

necessary.
3. It is preferred that concurrently accessed data be stored continuously.

Concurrently read data should be stored nearby, on the same row and in the
same cell.

4. Put frequently queried attributes property before Rowkey. Rowkey should be
designed to match the main query criteria in terms of criterion sequencing.

5. Attributes with high dispersions should be contained in RowKey. Design the
services list based on data dispersion and query scenarios.

6. Store redundant information to enhance indexing performance. Use
secondary index to adapt to more query scenarios.

7. Enable automatic deletion of expired data by setting the expiration time and
version quantity.

NO TE

In the HBase, Regions busy writing data are called hotspot Region.

MapReduce Service
Component Development Specifications 4 HBase

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

5 HDFS

5.1 HDFS Application Development Rules

Set the HDFS NameNode metadata storage path

NameNode metadata is stored in ${BIGDATA_DATA_HOME}/namenode/data by
default. This parameter sets the storage path of HDFS metadata.

Enable NameNode image backup for the HDFS

fs.namenode.image.backup.enable specifies whether to enable the NameNode
image backup function. You need to set this parameter to true. Then the system
can periodically back up the NameNode data.

Set the HDFS DataNode data storage path

DataNode data is stored in ${BIGDATA_DATA_HOME}/hadoop/dataN/dn/
datadir by default. N indicates the number of directories is greater than or equal
to1.

For example, ${BIGDATA_DATA_HOME}/hadoop/data1/dn/datadir, $
{BIGDATA_DATA_HOME}/hadoop/data2/dn/datadir.

After the storage path is set, data is stored in the corresponding directory of each
mounted disk on a node.

Improve HDFS read/write performance

The data write process is as follows:

After receiving service data and obtaining the data block number and location
from the NameNode, the HDFS client contacts DataNodes and establishes a
pipeline with the DataNodes to be written. Then, the HDFS client writes data to
DataNode1 using a proprietary protocol, and DataNode1 writes data to
DataNode2 and DataNode3 (three duplicates). After data is written, a message is
returned to the HDFS client.

MapReduce Service
Component Development Specifications 5 HDFS

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

1. Set a proper block size. For example, set dfs.blocksize to 268435456 (256
MB).

2. It is not necessary to cache the big data that is not reused. In this case, set the
following parameters to false:
dfs.datanode.drop.cache.behind.reads and
dfs.datanode.drop.cache.behind.writes

Set the MapReduce intermediate file storage path
Only one default path is provided for storing MapReduce intermediate files, that
is, ${hadoop.tmp.dir}/mapred/local.It is recommended that intermediate files be
stored on each disk.

For example, /hadoop/hdfs/data1/mapred/local, /hadoop/hdfs/data2/mapred/
local, /hadoop/hdfs/data3/mapred/local. Directories that do not exist are
automatically ignored.

Release applied resources in finally during Java development.
Applied HDFS resources are released in try/finally and cannot be released outside
the try statement only. Otherwise, resource leakage occurs.

HDFS file operation APIs
Almost all Hadoop file operation classes are in the org.apache.hadoop.fs
package. These APIs support operations such as opening, reading, writing, and
deleting a file. FileSystem is the interface class provided for users in the Hadoop
class library. FileSystem is an abstract class. Concrete classes can be obtained only
using the get method. The get method has multiple overload versions, and the
following get method is often used.

static FileSystem get(Configuration conf);

This class encapsulates almost all file operations, such as mkdir and delete. The
program library framework for file operations is as follows:

operator()
{
 Obtain the Configuration object.
 Obtain the FileSystem object.
 Perform file operations.
 }

HDFS initialization method
HDFS initialization is a prerequisite for using APIs provided by HDFS.

To initialize HDFS, load the HDFS service configuration file, implement Kerberos
security authentication, and instantiate FileSystem. Obtain keytab files for
Kerberos security authentication in advance.

Example:
private void init() throws IOException {
 Configuration conf = new Configuration();
 // Read a configuration file.
 conf.addResource("user-hdfs.xml");
 // Implement security authentication in security mode.
 if ("kerberos".equalsIgnoreCase(conf.get("hadoop.security.authentication"))) {

MapReduce Service
Component Development Specifications 5 HDFS

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

 String PRINCIPAL = "username.client.kerberos.principal";
 String KEYTAB = "username.client.keytab.file";
 // Set the keytab key file.
 conf.set(KEYTAB, System.getProperty("user.dir") + File.separator + "conf" + File.separator +
conf.get(KEYTAB));
 // Set the Kerberos configuration file path. */
 String krbfilepath = System.getProperty("user.dir") + File.separator + "conf" + File.separator + "krb5.conf";
 System.setProperty("java.security.krb5.conf", krbfilepath);
 // Implement login authentication. */
 SecurityUtil.login(conf, KEYTAB, PRINCIPAL);
 }
 // Instantiate FileSystem.
 fSystem = FileSystem.get(conf);
 }

Upload local files to the HDFS
FileSystem.copyFromLocalFile (Path src, Patch dst) is used to upload local files
to a specified directory in the HDFS. src and dst indicate complete file paths.

Example:

public class CopyFile {
 public static void main(String[] args) throws Exception {
 Configuration conf=new Configuration();
 FileSystem hdfs=FileSystem.get(conf);
 //Local file
 Path src =new Path("D:\\HebutWinOS");
 //To the HDFS
 Path dst =new Path("/");
 hdfs.copyFromLocalFile(src, dst);
 System.out.println("Upload to"+conf.get("fs.default.name"));
 FileStatus files[]=hdfs.listStatus(dst);
 for(FileStatus file:files){
 System.out.println(file.getPath());
 }
 }
 }

Create files on the HDFS
FileSystem.mkdirs (Path f) is used to create folders on HDFS. f indicates a
complete folder path.

Example:

public class CreateDir {
 public static void main(String[] args) throws Exception{
 Configuration conf=new Configuration();
 FileSystem hdfs=FileSystem.get(conf);
 Path dfs=new Path("/TestDir");
 hdfs.mkdirs(dfs);
 }
 }

Query the modification time of an HDFS file
FileSystem.getModificationTime() is used to query the modification time of a
specified HDFS file.

Example:

 public static void main(String[] args) throws Exception {
 Configuration conf=new Configuration();
 FileSystem hdfs=FileSystem.get(conf);

MapReduce Service
Component Development Specifications 5 HDFS

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

 Path fpath =new Path("/user/hadoop/test/file1.txt");
 FileStatus fileStatus=hdfs.getFileStatus(fpath);
 long modiTime=fileStatus.getModificationTime();
 System.out.println("file1.txt modification time is"+modiTime);
 }

Read all files in an HDFS directory
FileStatus.getPath() is used to query all files in an HDFS directory.

Example:

public static void main(String[] args) throws Exception {
 Configuration conf=new Configuration();
 FileSystem hdfs=FileSystem.get(conf);
 Path listf =new Path("/user/hadoop/test");

 FileStatus stats[]=hdfs.listStatus(listf);
 for(int i = 0; i < stats.length; ++i) {
 System.out.println(stats[i].getPath().toString());
 }
 hdfs.close();
 }

Query the location of a specified file in an HDFS cluster
FileSystem.getFileBlockLocation (FileStatus file, long start, long len) is used to
query the location of a specified file in an HDFS cluster. file indicates a complete
file path, and start and len specify the file path.

Example:

public static void main(String[] args) throws Exception {
 Configuration conf=new Configuration();
 FileSystem hdfs=FileSystem.get(conf);
 Path fpath=new Path("/user/hadoop/cygwin");

 FileStatus filestatus = hdfs.getFileStatus(fpath);
 BlockLocation[] blkLocations = hdfs.getFileBlockLocations(filestatus, 0, filestatus.getLen());

 int blockLen = blkLocations.length;
 for(int i=0;i < blockLen;i++){
 String[] hosts = blkLocations[i].getHosts();
 System.out.println("block_"+i+"_location:"+hosts[0]);
 }
 }

Obtain all node names in an HDFS cluster
DatanodeInfo.getHostName() is used to obtain all node names in an HDFS
cluster.

Example:

public static void main(String[] args) throws Exception {
 Configuration conf=new Configuration();
 FileSystem fs=FileSystem.get(conf);

 DistributedFileSystem hdfs = (DistributedFileSystem)fs;

 DatanodeInfo[] dataNodeStats = hdfs.getDataNodeStats();

 for(int i=0;i < dataNodeStats.length;i++){
 System.out.println("DataNode_"+i+"_Name:"+dataNodeStats[i].getHostName());
 }
 }

MapReduce Service
Component Development Specifications 5 HDFS

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

Multithread security login mode
If multiple threads are performing login operations, the relogin mode must be
used for the subsequent logins of all threads after the first successful login of an
application.

login example code:

 private Boolean login(Configuration conf){
 boolean flag = false;
 UserGroupInformation.setConfiguration(conf);
 try {
 UserGroupInformation.loginUserFromKeytab(conf.get(PRINCIPAL), conf.get(KEYTAB));
 System.out.println("UserGroupInformation.isLoginKeytabBased(): "
+UserGroupInformation.isLoginKeytabBased());
 flag = true;
 } catch (IOException e) {
 e.printStackTrace();
 }
 return flag;
 }

relogin example code:

public Boolean relogin(){
 boolean flag = false;
 try {
 UserGroupInformation.getLoginUser().reloginFromKeytab();
 System.out.println("UserGroupInformation.isLoginKeytabBased(): "
+UserGroupInformation.isLoginKeytabBased());
 flag = true;
 } catch (IOException e) {
 e.printStackTrace();
 }
 return flag;
 }

NO TICE

Repetitive logins will cause a newly created session to overwrite the previous
session. As a result, the previous session cannot be maintained or monitored, and
some functions are unavailable after the previous session expires.

5.2 HDFS Application Development Suggestions

Notes for reading and writing HDFS files
The HDFS does not support random read/write.

Data can be appended only to the end of an HDFS file.

Only data stored in the HDFS supports append. edit.log and metadata files do not
support append. When using the append function, set dfs.support.append in
hdfs-site.xml to true.

MapReduce Service
Component Development Specifications 5 HDFS

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

NO TE

● dfs.support.append is disabled by default in open-source versions but enabled by
default in FusionInsight versions.

● This parameter is a server parameter. You are advised to enable this parameter to use
the append function.

● Store data in other modes, such as HBase, if the HDFS is not applicable.

The HDFS is not suitable for storing a large number of small files
The HDFS is not suitable for storing a large number of small files because the
metadata of small files will consume excessive memory resources of the
NameNode.

Back up HDFS data in three duplicates
Three duplicates are enough for DataNode data backup. System data security is
improved when more duplicates are generated but system efficiency is reduced.
When a node is faulty, data on the node is balanced to other nodes.

Periodical HDFS Image Back-up
The system can back up the data on NameNode periodically after the image back-
up parameter fs.namenode.image.backup.enable is set to true.

Provide operations to ensure data reliability
When you invoke the write function to write data, HDFS client does not write the
data to HDFS but caches it in the client memory. If the client is abnormal, power-
off, the data will be lost. For high-reliability demanding data, invoke hflush to
refresh the data to HDFS after writing finishes.

MapReduce Service
Component Development Specifications 5 HDFS

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

6 Hive

6.1 Hive Application Development Rules

Load the Hive JDBC driver

The client software connects to HiveServer using Java database connectivity
(JDBC). Therefore, you must load the JDBC driver class
org.apache.hive.jdbc.HiveDriver for Hive.

Use the current class loader to load the driver class.

If there is no jar package in classpath, the client software throws "Class Not
Found" and exits.

Example:

Class.forName("org.apache.hive.jdbc.HiveDriver").newInstance();

Set up a database connection

The driver management class java.sql.DriverManager of JDK is used to obtain a
connection to the Hive database.

The Hive database URL is url="jdbc:hive2://
xxx10.64xxx.22xxx.231xxx:2181,10xxx.64xxx.22xxx.232xxx:2181,10xxx.64xxx.22xxx.2
33xxx:2181/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=hiveserver2;s
asl.qop=auth-conf;auth=KERBEROS;principal=hive/
hadoop.hadoop.com@HADOOP.COM;user.principal=hive/
hadoop.hadoop.com;user.keytab=conf/hive.keytab";

In this example, ZooKeeper is deployed on three nodes and the default port is
2181. xxx.xxx.xxx.xxx indicates each of the IP addresses of the three nodes.The
user name and password are null or empty because authentication has been
performed successfully.

Example:

// Set up a connection.
 connection = DriverManager.getConnection(url, "", "");

MapReduce Service
Component Development Specifications 6 Hive

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

Execute HQL

Note that the HQL statement cannot end with a semicolon (;).

Correct:

String sql = "SELECT COUNT(*) FROM employees_info";
 Connection connection = DriverManager.getConnection(url, "", "");
 PreparedStatement statement = connection.prepareStatement(sql);
 resultSet = statement.executeQuery();

Incorrect:

String sql = "SELECT COUNT(*) FROM employees_info;";
 Connection connection = DriverManager.getConnection(url, "", "");
 PreparedStatement statement = connection.prepareStatement(sql);
 resultSet = statement.executeQuery();

Close a database connection

After the client executes the HQL, close the database connection to prevent
memory leakage.

Close the statement and connection objects of the JDK.

Example:

finally {
 if (null != statement) {
 statement.close();
 }

 // Close the JDBC connection.
 if (null != connection) {
 connection.close();
 }
 }

HQL syntax used to check for null values

Use is null to check whether a field is empty, that is, the field has no value. Use is
not null to check whether a field is not mull, that is, the field has a value.

If you use is null for a character whose type is String and length is 0, False is
returned. Use col = '' to check for null values, and use col != '' to check for non-
null values.

Correct:

select * from default.tbl_src where id is null;
 select * from default.tbl_src where id is not null;
 select * from default.tbl_src where name = '';
 select * from default.tbl_src where name != '';

Incorrect:

select * from default.tbl_src where id = null;
 select * from default.tbl_src where id != null;
 select * from default.tbl_src where name is null;
 select * from default.tbl_src where name is not null;

Note that the type of the id field in the tbl_src table is Int, and the type of the
name field is String.

MapReduce Service
Component Development Specifications 6 Hive

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

The client configuration parameters must be consistent with the server
configuration parameters

If the configuration parameters of the Hive, YARN, and HDFS servers of the cluster
are modified, the related parameter in a client program will be modified. You need
to check whether the configuration parameters submitted to the HiveServer before
the configuration parameters are modified are consistent with those on the
servers. If the configuration parameters are inconsistent, modify them on the
client and submit them to the HiverServer. In the following example, if the
parameter of YARN in the cluster is modified, the parameter submitted to the
HiverServer from the Hive client and sample program before the modification
must be reviewed and modified.

Initial state:

The parameter configuration of YARN in the cluster is as follows:

mapreduce.reduce.java.opts=-Xmx2048M

The parameter configuration on the client is as follows:

mapreduce.reduce.java.opts=-Xmx2048M

The parameter configuration of YARN in the cluster after the modification is as
follows:

mapreduce.reduce.java.opts=-Xmx1024M

If the parameter in the client program is not changed, the parameter is still valid.
This will result in insufficient memory for reducer and lead to MR running failure.

Multithread security login mode
If multiple threads are performing login operations, the relogin mode must be
used for the subsequent logins of all threads after the first successful login of an
application.

login example code:

 private Boolean login(Configuration conf){
 boolean flag = false;
 UserGroupInformation.setConfiguration(conf);

 try {
 UserGroupInformation.loginUserFromKeytab(conf.get(PRINCIPAL), conf.get(KEYTAB));
 System.out.println("UserGroupInformation.isLoginKeytabBased(): "
+UserGroupInformation.isLoginKeytabBased());
 flag = true;
 } catch (IOException e) {
 e.printStackTrace();
 }
 return flag;

 }

relogin example code:

public Boolean relogin(){
 boolean flag = false;
 try {

 UserGroupInformation.getLoginUser().reloginFromKeytab();
 System.out.println("UserGroupInformation.isLoginKeytabBased(): "

MapReduce Service
Component Development Specifications 6 Hive

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

+UserGroupInformation.isLoginKeytabBased());
 flag = true;
 } catch (IOException e) {
 e.printStackTrace();
 }
 return flag;
 }

Prerequisites for using the REST interface of WebHCat to submit an MR task
in Streaming mode

The REST interface depends on the streaming packages of Hadoop. Before
submitting an MR task to WebHCat in Streaming mode, upload hadoop-
streaming-2.7.0.jar to the specified path of the HDFS: hdfs:///apps/templeton/
hadoop-streaming-2.7.0.jar. Log in to the node where the client and Hive service
are installed. Assume that the client installation path is /opt/client.

source /opt/client/bigdata_env

Run the kinit command to log in to the node as the human-machine or machine-
machine user.

hdfs dfs -put ${BIGDATA_HOME}/FusionInsight_HD_8.1.0.1/FusionInsight-
Hadoop-*/hadoop/share/hadoop/tools/lib/hadoop-streaming-*.jar /apps/
templeton/

/apps/templeton/ need to be modified based on different instances. The default
instance uses /apps/templeton/ and the Hive1 instance uses /apps1/templeton/.
The others follow the same rule

Read and write operations cannot be performed on the same table at the
same time

Currently, Hive does not support concurrent operations. Read and write operations
cannot be performed on the same table at the same time. Otherwise, query
results may be inaccurate and tasks may fail.

A bucket table does not support insert into

A bucket table does not support insert into, and only supports insert overwrite;
otherwise, the number of files and the number of buckets will be inconsistent.

Prerequisites for using some REST interfaces of WebHCat

Some REST interfaces of WebHCat depend on the JobHistoryServer instance of
MapReduce. The interfaces are as follows:

● mapreduce/jar(POST)
● mapreduce/streaming(POST)
● hive(POST)
● jobs(GET)
● jobs/:jobid(GET)
● jobs/:jobid(DELETE)

MapReduce Service
Component Development Specifications 6 Hive

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

Hive Authorization Description

It is recommended that Hive authorization (databases, tables, or views) be
performed on the Manager authorization page. Authorization in command-line
interface is not recommended except in the alter databases databases_name set
owner='user_name' scenario.

Hive on HBase partition tables cannot be created

Data of Hive on HBase tables is stored on HBase. Because HBase tables are
divided into multiple partitions that are scattered on RegionServer, Hive on HBase
partition tables cannot be created on Hive.

A Hive on HBase table does not support insert overwrite

HBase uses a RowKey to uniquely identify a record. If data to be inserted has the
same RowKey as the existing data, HBase will use the new data to overwrite the
existing data. If insert overwrite is performed for a Hive on HBase table on Hive,
only data with the same RowKey will be overwritten.

6.2 Hive Application Development Suggestions

HQL - implicit type conversion

If the query statements use the field value for filtering, do not use the implicit
type conversion of Hive to compile HQL. The reason is that the implicit type
conversion is not conducive to code reading and migration.

Correct:

select * from default.tbl_src where id = 10001;
 select * from default.tbl_src where name = 'TestName';

Incorrect:

select * from default.tbl_src where id = '10001';
 select * from default.tbl_src where name = TestName;

NO TE

Note that the type of the id field in the tbl_src table is Int, and the type of the name field is
String.

HQL - object name length

The HQL object names include table names, field names, view names, and index
names. It is recommended that the object name not exceed 30 bytes.

An error is reported if an object name of Oracle exceeds 30 bytes. PT also limits
object names to 30 bytes.

Excessive long object names are not conductive to code reading, migration, and
maintenance.

MapReduce Service
Component Development Specifications 6 Hive

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

HQL - statistics of data records
To count the total number of records in a table, use select count(1) from
table_name.

To count the number of valid records for a field in a table, use select
count(column_name) from table_name.

JDBC - timeout limit
The JDBC provided by Hive supports timeout limit. The default value is 5 minutes.
Users can use java.sql.DriverManager.setLoginTimeout(int seconds) to change
the value. The unit of seconds is second.

UDF Management
It is recommended that the administrator creates permanent UDF. This is done to
avoid repeated execution of the add jar statement and UDF redefining.

UDF of Hive has some default properties. For example, the default value of
deterministic is true (indicating that the same result will be returned for the
same input), and the default value of stateful is true. Corresponding annotates
should be added when user-defined UDF conducts an internal data summary. The
following is an example:

@UDFType(deterministic = false)
Public class MyGenericUDAFEvaluator implements Closeable {

Suggestions on Optimizing Table Partitions
1. It is advised to use partition tables and store data by day when data volume is

large and statistics need to be collected on a daily basis.
2. In order to avoid excessive small files, add distribute by to the partition field

during dynamic partition data insertion.

Suggestions on Optimizing Storage File Formats
Hive supports multiple storage formats, including TextFile, RCFile, ORC, Sequence,
and Parquet. If you want to save storage space or query certain fields for the most
of time, use columnar storage, for example, ORC files, to create tables.

MapReduce Service
Component Development Specifications 6 Hive

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

7 Hudi

7.1 Hudi Development Specifications Overview

Scope

This document describes the design and development rules for the integrated lake
warehouse and batch processing solution based on the MRS-Hudi component. It
mainly includes the following specifications:

● Data table design
● Resource configuration
● Performance Tuning
● Common Troubleshooting
● Common parameter settings

Terms Conventions

This specification is described in the following terms:

● Rule: The rule must be observed during programming.
● Recommendation: Principles that must be considered when programming.
● Description: The interpretation of the rule or recommendation.
● Example: This rule or suggestion is given from both positive and negative

aspects.

Scope of application
● Design, develop, test, and maintain data storage and processing based on

MRS-Hudi.
● This design specification is based on MRS 3.3.0.

7.2 Hudi Data Sheet Design Specification

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

7.2.1 Hudi Table Model Design Specifications

rules
● A proper primary key must be set for the Hudi table.

Hudi tables provide the data update and idempotent write capabilities. This
capability requires that primary keys must be set for Hudi tables. Improper
primary keys will cause duplicate data. The primary key can be a single
primary key or a composite primary key. The primary key cannot have null or
null values. To set the primary key, see the following example:
SparkSQL:
//Use primaryKey to specify the primary key. If the primary key is a composite primary key, separate it
with commas (,).
create table hudi_table (
id1 int,
id2 int,
name string,
price double
) using hudi
options (
primaryKey = 'id1,id2',
preCombineField = 'price'
);

SparkDatasource:
//Use hoodie.datasource.write.recordkey.field to specify the primary key.
df.write.format("hudi").
option("hoodie.datasource.write.table.type", COPY_ON_WRITE).
option("hoodie.datasource.write.precombine.field", "price").
option("hoodie.datasource.write.recordkey.field", "id1, id2").

FlinkSQL:
//Use hoodie.datasource.write.recordkey.field to specify the primary key.
create table hudi_table(
id1 int,
id2 int,
name string,
price double
) partitioned by (name) with (
'connector'='hudi',
'hoodie.datasource.write.recordkey.field' = 'id1,id2',
'write.precombine.field'='price')

● The precombine field must be set in the Hudi table.
During data synchronization, data may be repeatedly written and disordered,
for example, abnormal data recovery and abnormal restart of the writer
program. You can set the precombine field to a proper value to ensure data
accuracy. Old data will not overwrite new data, that is, the idempotent write
capability. This field can be of the following types: service table update
timestamp, database submission timestamp, and so on. The value of the
precombine field cannot be null or null. You can set the precombine field by
referring to the following example:
SparkSQL:
//Specify the precombine field by using the preCombineField field.
create table hudi_table (
id1 int,
id2 int,
name string,
price double
) using hudi

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

options (
primaryKey = 'id1,id2',
preCombineField = 'price'
);

SparkDatasource:
//Specify the precombine field by using hoodie.datasource.write.precombine.field.
df.write.format("hudi").
option("hoodie.datasource.write.table.type", COPY_ON_WRITE).
option("hoodie.datasource.write.precombine.field", "price").
option("hoodie.datasource.write.recordkey.field", "id1, id2").

Flink:
//Specify the precombine field by using write.precombine.field.
create table hudi_table(
id1 int,
id2 int,
name string,
price double
) partitioned by (name) with (
'connector'='hudi',
'hoodie.datasource.write.recordkey.field' = 'id1,id2',
'write.precombine.field'='price')

● Flow calculation uses the MOR table.
Streaming computing is real-time computing with low latency and requires
high-performance streaming read and write capabilities. Among the MOR and
COW models in Hudi tables, the MOR table has better streaming read and
write performance. Therefore, the MOR table model is used in streaming
computing scenarios. The following table lists the comparison between the
read and write performance of MOR tables.

Comparison
Dimension

MOR table COW Table

Stream write High Low

Streaming Read High Low

Batch write High Low

Batch Read Low High

● Real-time into the lake, the table model adopts MOR table.

Generally, the performance requirements for real-time lake entry are within
minutes or at the minute level. Based on the comparison between Hudi and
Hudi table models, the MOR table model needs to be selected in the real-
time lake entry scenario.

● Use lowercase letters for Hudi table names and column names.
When multiple engines read and write the same Hudi table, lowercase letters
are used to avoid case difference between engines.

The suggestion
● In the Spark batch processing scenario, the COW table is used in the scenario

where the write latency is not high.
In the COW table model, the write speed is low because of write
amplification. But COW has very good readability. In addition, batch
computing is not sensitive to write latency, so COW tables can be used.

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

● The Hive metadata synchronization function must be enabled for the Hudi
table write task.
SparkSQL is naturally integrated with Hive, and metadata is not required. This
suggestion is applicable to the scenario where the Hudi table is written
through the Spark Datasource API or Flin. When the Hudi table is written
through the Spark Datasource API or Flin, the configuration item for
synchronizing metadata to the Hive needs to be added. This configuration is
used to uniformly host the metadata of Hudi tables in the Hive metadata
service, facilitating cross-engine data operations and data management.

7.2.2 Hudi Table Index Design Specifications

rules
● Do not modify the table index type.

The index of the Hudi table determines the data storage mode. If the index
type is changed randomly, duplicate existing data and new data in the table
will occur and data accuracy will be affected. Common index types are as
follows:
– Bloom index: unique index of the Spark engine. The bloomfiter

mechanism is used to write the Bloom index content to the footer of the
Parquet file.

– Bucket index: During data writing, the primary key is used to perform
hash calculation and write data into buckets. This index has the fastest
write speed, but the number of buckets needs to be properly configured.
Both Flink and Spark support this index.

– Status index: It is unique to the Flink engine. It records the storage
location of row records to the status backend. During the cold start of a
job, all data storage files are traversed to generate index information.

● If the Flink status index is used, Spark cannot continue to write data after
data is written to Flink.
When writing data to the MOR table of Hudi, Flink generates only log files.
The log files will be converted into parquet files by performing the
compaction operation. When updating the Hudi table, Spark depends on
whether the parquet file exists. If the current Hudi table is written into a log
file, duplicate data will be generated if Spark is used to write the Hudi table.
In the batch initialization phase, Spark is used to write data to Hudi tables in
batches. When Flink is used to write data based on Flink status indexes, the
cause is that all data files are traversed to generate status indexes during
Flink cold startup.

● In the real-time lake access scenario, the Spark engine uses bucket indexes,
and the Flink engine can use bucket indexes or status indexes.
In real time, the high performance data needs to be imported within minutes
or at the minute level. Index selection affects the performance of writing Hudi
tables. The performance differences between indexes are as follows:
– Bucket index.

Advantage: During the write process, the primary key is written in hash
buckets, which provides high performance and is not limited by the data
volume of the table. Both the Flink and Spark engines support this
function. The Flink and Spark engines can cross-write the same table.

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

Disadvantage: The number of buckets cannot be dynamically adjusted. If
the data volume fluctuates and the data volume of the entire table keeps
increasing, a large data file is generated due to a large data volume in a
single bucket. Balance improvement needs to be performed in
conjunction with partition tables.

– Flink status index.
Advantages: The index information of the primary key exists in the state
backend. Data update only needs to check the state backend, which is
fast. In addition, the size of the generated data files is stable, and the
problem of small files and oversized files is not generated.
Disadvantage: This index is specific to Flink. When the total number of
data rows in a table reaches hundreds of millions, state backend
parameters need to be optimized to maintain write performance. This
index does not support cross-write of Flink and Spark.

● For a table whose data volume keeps increasing, the bucket index must be
partitioned by time, and the partition key must be the data creation time.
According to the characteristics of Flink status index, if the Hudi table exceeds
a certain amount of data, the Flink job status backend is under great pressure.
To maintain performance, you need to optimize the status backend
parameters. In addition, the entire table data needs to be traversed during the
cold start of Flink. As a result, the Flink job startup is slow due to a large
amount of data. Therefore, for a table with a large amount of data, bucket
indexes can be used to avoid complex state backend optimization.
If the bucket index + partition table mode cannot balance the problem of
large Bueckt buckets, you can use the Flink state index and optimize the
corresponding configuration parameters according to the specifications.

The suggestion
● If the number of data records in a Flink-based streaming table exceeds 200

million, the bucket index is used. If the number of data records does not
exceed 200 million, the Flink status index can be used.
According to the characteristics of Flink status index, when the Hudi table
exceeds a certain amount of data, the Flink job status backend is under great
pressure. To maintain performance, you need to optimize the status backend
parameters. In addition, the entire table data needs to be traversed during the
cold start of Flink. A large amount of data may cause slow startup of Flink
jobs. Therefore, for tables with a large amount of data, bucket indexes can be
used to avoid complex state backend optimization.
If the bucket index + partition table mode cannot balance the problem of
large Bueckt buckets, you can use the Flink state index and optimize the
corresponding configuration parameters according to the specifications.

● Bucket index-based tables are designed based on the data volume of a single
bucket, which is 2 GB.
To prevent a single bucket from being too large, it is recommended that the
data volume of a single bucket not exceed 2 GB. (The 2 GB indicates the size
of the data content, not the number of data rows or the size of the parquet
data file.) to limit the Parquet file size of the corresponding bucket to 256 MB.
Balance read and write memory consumption and HDFS storage utilization.
Therefore, the limit of 2 GB is only an empirical value because the size of
different service data after column-store compression is different.

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

Why is 2 GB recommended?
– After 2 GB data is stored as a column-store Parquet file, the size of the

data file is about 150 MB to 256 MB. Data varies depending on the
service. The size of a single HDFS data block is usually 128 MB, which
effectively utilizes the storage space.

– The memory space occupied by data read and write is the size of original
data (including null values). During big data computing, 2 GB is within
the acceptable range for single-task read and write.

If the data volume of a single bucket exceeds the value range, what are the
possible impacts?
– OOM may occur in read and write tasks. To solve this problem, increase

the memory usage of a single task.
– The read and write performance deteriorates because the amount of data

processed by a single task increases, which increases the processing time.

7.2.3 Hudi Table Partition Design Specifications

rules
The partition key cannot be updated:

Hudi has the primary key uniqueness mechanism. However, in a partitioned table
scenario, only the primary key in the partition can be unique. Therefore, if the
value of the partitioned key changes, multiple rows with the same primary key
may exist. In the scenario where data is partitioned by date, you can use the data
creation time as the partition field. Do not use the data update time as the
partition field.

NO TE

When the Hudi index type is set to Global, Hudi supports cross-partition data update.
However, Global index performance is poor and is not recommended.

The suggestion
● The fact table uses the date partition table, and the dimension table uses the

non-partition or large-granularity date partition.
Whether to use a partitioned table depends on the total data volume,
increment, and usage mode of the table. From the table attributes, the fact
table and dimension table have the following characteristics:
– Fact table: The data volume is large and the increment is large. Data is

read by date and data in a certain period is read.
– Dimension table: The total amount is small and the increment is small.

Most of the dimension table is updated. Data is read in the entire table
or filtered by service ID.

Based on the preceding considerations, if the dimension table is partitioned by
day, the number of files is too large. In addition, the full table is read, which
causes a large number of file reading tasks. If the large-granularity date
partition, such as year partition, is used, the number of partitions and the
number of files can be effectively reduced. For dimension tables with small
increments, you can also use non-partitioned tables. If a dimension table

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

contains a large amount of total data or a large amount of incremental data,
you can use a service ID for partitioning. In most data processing logic, service
conditions are used to filter large dimension tables to improve processing
performance. Such tables must be optimized based on service scenarios. You
cannot optimize from a date partition alone. The fact table is read by time
segment. The number of files read in the last year, month, or day is relatively
stable and controllable. Therefore, the date partition table is preferred for fact
tables.

● The partition uses the date field and the granularity of the partition table. The
granularity must be determined based on the data update scope. The size
must be neither too large nor too small.
The partitioning granularity can be year, month, or day. The goal of the
partitioning granularity is to reduce the number of file buckets that are
concurrently written, especially when the data volume is updated and the
updated data has a regular time range. For example, if the data update
proportion in the last month is the largest, partitions can be created by
month. If the data updated in the last day accounts for a large proportion,
partition the data by day.
Bucket index is used. Data is written to each bucket in the partition by using
the hash algorithm of the primary key. The data volume in each partition
fluctuates. Therefore, the number of buckets in a partition is calculated based
on the maximum data volume in the partition. In this case, the more fine-
grained partitions are, the more redundant buckets are. For example:
If day-level partitions are used, the average daily data volume is 3 GB, and
the maximum daily logs are 8 GB. In this case, tables are created using the
number of buckets = 8 GB/2 GB = 4. Daily updates account for a large
number of data, and are mainly scattered in the last month. As a result, data
is written to the buckets of the whole month, that is, 4 x 30 = 120 buckets. If
monthly partitioning is used, the number of buckets in the partition = 3 GB x
30/2 GB = 45 buckets. In this way, the number of buckets to be written is
reduced to 45. With limited computing resources, the fewer buckets are
written to, the higher the performance.

7.3 Hudi Data Table Management Operation
Specifications

7.3.1 Hudi Data Table Compaction Specifications
Updated data in the mor table is written in the form of row-store logs. When the
logs are read, they need to be combined based on the primary key and are row-
stored. As a result, the log reading efficiency is much lower than that of the
parquet. Hudi uses compaction to compress logs into parquet files to improve the
log read performance.

rules
● If data is continuously written to a table, perform the compaction at least

once within 24 hours.
For the MOR table, the compaction operation must be performed at least
once a day, regardless of whether the MOR table is written in streaming

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

mode or in batches. If compaction is not performed for a long time, the size
of logs in the Hudi table will increase. In this case, the following problems will
occur:
– Hudi table reading is slow and requires a lot of resources. This is because

reading MOR tables involves log merging, which consumes a lot of
resources and is slow.

– A long-term compaction process consumes a lot of resources and is prone
to OOM.

– If no Compaction operation is performed to generate Parquet files of the
new version, the files of the old version cannot be cleared by the Clean
operation, increasing the storage pressure.

● The ratio of CPU to memory is 1:4 to 1:8.
A Compaction job merges the data in the existing parquet file and the data in
the new log file, which consumes a lot of memory resources. Based on the
previous table design specifications and the actual traffic fluctuation, it is
recommended that the ratio of CPU to memory for a Compaction job be 1. 4
to 1:8, ensuring stable running of Compaction jobs. If the OOM problem
occurs in the Compaction, increase the memory usage.

The suggestion
● The Compaction performance is improved by increasing the number of

concurrent requests.
If the ratio of CPU to memory is proper, compaction jobs are stable and a
single compaction task can run stably. However, the overall running duration
of the Compaction depends on the number of files processed by the
Compaction and the number of allocated CPU cores (concurrency capability).
Therefore, the Compaction performance can be improved by increasing the
number of CPU cores for the Compaciton job. (Note that the ratio of CPU to
memory must be ensured when the CPU is increased.)

● Hudi tables use asynchronous compaction.
To ensure the stable running of the streaming data import job, ensure that
the streaming data import job does not perform other tasks during the real-
time data import process. For example, Flink performs Compaction when
writing data to Hudi. This seems to be a good solution, that is, completing the
storage and compaction. However, the compaction operation consumes a lot
of memory and I/O, and has the following impact on the streaming database
import job:
– Increased end-to-end latency: Compaction increases the write latency

because Compaction is more time-consuming than importing data to the
database.

– Job instability: Compaction brings more instability to the stock-in job.
Compaction OOM will cause the entire job to fail.

● You are advised to perform the compaction every 2 to 4 hours.
Compaction is an important and mandatory maintenance method for MOR
tables. For real-time tasks, the compaction process must be decoupled from
the real-time tasks. Spark tasks are scheduled periodically to complete
asynchronous compaction. The key point of this solution is how to set the
period properly. If the period is too short, Spark tasks may be idle. If the
period is too long, too many Compaction Plans may be accumulated and not

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

executed. As a result, Spark tasks take a long time and downstream read job
latency is long. In this scenario, the following suggestions are provided: Based
on the cluster resource usage, asynchronous Compaction jobs can be
scheduled and executed every two or four hours. This is a basic solution for
maintaining MOR tables.

● Spark is used to perform compaction asynchronously. Flink is not used to
perform compaction.
The recommended solution for Flink to write hudi is that Flink only writes
data and generates compaction plans. A separate Spark job asynchronously
executes compaction, clean, and archive. Compaction plan generation is
lightweight and has negligible impact on Flink write jobs.
The procedure for implementing the preceding solution is as follows:
– Flink only writes data and generates compaction plans.

Add the following parameters to the table creation statement of the Flink
stream task to ensure that only the compaction plan is generated when
the Flink task writes data to the Hudi.
'compaction.async.enabled'='false' //Disable the Flink from executing the Compaction task.
'compaction.schedule.enabled' ='true' //Enable compaction plan generation.
'compaction.delta_commits' = '5' //By default, the MOR table attempts to generate a
compaction plan after five checkpoints. This parameter needs to be adjusted based on the site
requirements.
'clean.async.enabled' = 'false' //Disable the Clean operation.
'hoodie.archive.automatic' = 'false' //Disable the Archive operation.

– Spark executes the Compaction plan offline, and performs the Clean
and Archive operations.
On the scheduling platform (Huawei DataArts can be used), run a
scheduled offline task to enable Spark to execute the Compaction plan
and clean and archive the Hudi table.
set hoodie.archive.automatic = false;
set hoodie.clean.automatic = false;
set hoodie.compact.inline = true;
set hoodie.run.compact.only.inline=true;
The set hoodie.cleaner.commits.retained = 500; // clean retains the data files corresponding to
the latest 500 deltacommits on the timeline. The files corresponding to the deltacommits in the
earlier version will be deleted. The value must be greater than the value of
compaction.delta_commits. Adjust the value based on the site requirements.
set hoodie.keep.max.commits = 700; // timeline retains a maximum of 700 deltacommits.
The set hoodie.keep.min.commits = 501; // timeline retains at least 500 deltacommits. The value
must be greater than the value of hoodie.cleaner.commits.retained. Adjust the value based on
the site requirements.
run compaction on <database name>. <table name>; // Executes the Compaction plan.
run clean on <database name>. <table name>; // Performing the Clean Operation
The run archivelog on <database name>.<table name>; // performs the Archive operation.

● Asynchronous Compaction can serialize multiple tables into a job. Tables with
similar resource configuration are put into a group. The resource configuration
of the group of jobs is the resource required by the table that consumes the
most resources.
For the people who are in the ·Asynchronous compaction is used for the
HDI table. And to the · Use Spark to asynchronously execute Compaction,
not... For the asynchronous Compaction task mentioned in, the following
suggestions are provided:
– You do not need to develop an asynchronous compaction task for each

Hudi table, which leads to high job development costs, explosion of
cluster jobs, and ineffective use and release of cluster resources.

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

– Asynchronous compaction tasks can be completed by executing
SparkSQL. Compaction, Clean, and Archive tasks of multiple Hudi tables
can be executed in the same task. For example, asynchronous
maintenance operations can be performed on table1 and table2.
set hoodie.clean.async = true;
set hoodie.clean.automatic = false;
set hoodie.compact.inline = true;
set hoodie.run.compact.only.inline=true;
set hoodie.cleaner.commits.retained = 500;
set hoodie.keep.min.commits = 501;
set hoodie.keep.max.commits = 700;
run compaction on <database name>. <table1>;
run clean on <database name>. <table1>;
run archivelog on <database name>.<table1>;
run compaction on <database name>.<table2>;
run clean on <database name>.<table2>;
run archivelog on <database name>.<table2>;

7.3.2 Hudi Data Table Clean Specifications
Clean is also one of the maintenance operations of the Hudi table. This operation
needs to be performed on both the MOR and COW tables. The Clean operation is
used to clear the files of the old version (data files that are not used by Hudi
anymore). This not only saves the time for the Hudi table list process, but also
relieves the storage pressure.

rules
The Hudi table must be cleaned.

Clean must be enabled for the MOR and COW tables of Hudi.

● When data is written to the Hudi table, the system automatically determines
whether to clean the Hudi table because the clean function is enabled by
default (hoodie.clean.automatic is set to true by default).

● The Clean operation is not triggered every time data is written. At least two
conditions must be met:

a. The Hudi table requires an old version of the file. For COW tables, files of
earlier versions must exist as long as the data is updated. For the MOR
table, ensure that the data has been updated and compaction has been
performed so that the file of the earlier version can be available.

b. The Hudi table meets the threshold specified by
hoodie.cleaner.commits.retained. If Flink writes hudi, the number of
checkpoints submitted must exceed the threshold. For batch Hudi, the
number of batch write times must exceed the threshold.

The suggestion
● The downstream MOR table uses the batch read mode. The number of clean

versions is the number of compaction versions plus 1.
The MOR table must ensure that the compaction plan can be successfully
executed. The compaction plan only records the log files in the Hudi table and
the Parquet files to be merged. Therefore, the most important point is to
ensure that all the files to be merged exist when the compaction plan is
executed. In the Hudi table, only the Clean operation can clear files.
Therefore, it is recommended that the Clean triggering threshold (the value of

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

hoodie.cleaner.commits.retained) be at least greater than the Compaction
triggering threshold. (For the Flink task, the value is the value of
compaction.delta_commits.)

● Flow calculation is used in the downstream direction of the MOR table. In
earlier versions, hour-level calculation is retained.
If the downstream of the MOR table uses streaming computing, such as Flink
streaming read, the historical version can be stored in hours based on service
requirements. In this way, incremental data in the last few hours can be read
from log files. If the retention duration is too short, When the downstream
Flink job is restarted or blocked due to abnormal interruption, the upstream
incremental data has been cleaned. Flink needs to read the incremental data
from the parquet file, and the performance deteriorates. If the retention
period is too long, historical data in logs will be redundantly stored.
You can reserve the historical version data for two hours according to the
following formula:
Set the number of versions to 3600 x 2/Version interval. The version interval is
obtained from the checkpoint period of the Flink job or the upstream batch
write period.

● If the service does not have special requirements for storing historical version
data in the COW table, set the number of versions to 1.
Each version of a COW table contains full data of the table. The number of
versions that are retained depends on the number of versions that are
redundant. Therefore, if the service does not require historical data
backtracking, set the number of retained versions to 1, that is, retain the
latest version.

● The clean job must be executed at least once a day, which can be executed
every 2 to 4 hours.
The MOR and COW tables of Hudi must be cleaned at least once a day. For
details about how to clean the MOR and COW tables, see section 2.2.1.6. The
clean function of the COW can automatically determine whether to perform
the clean operation when writing data.

7.3.3 Hudi Data Table Archive Specifications
Archive is used to reduce the pressure on Hudi to read and write metadata. All
metadata is stored in the following path: Hudi table root directory/.hoodie. If the
number of files in the .hoodie directory exceeds 10000, the Hudi table has obvious
read and write latency.

rules

Archive must be executed for the Hudi table.

For the MOR and COW tables of Hudi, the Archive function must be enabled.

● When data is written to the Hudi table, the system automatically determines
whether to perform the Archive operation because the Archive function is
enabled by default (hoodie.archive.automatic is set to true by default).

● The Archive operation is not triggered every time data is written. At least the
following conditions must be met:

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

a. The Hudi table meets the threshold specified by
hoodie.keep.max.commits. If the Flink writes data to the hudi, the
number of checkpoints submitted must exceed the threshold. If Spark
writes data to the hudi, the number of times that the hudi is written
must exceed the threshold.

b. The Hudi table has been cleaned. If the Hudi table is not cleaned, the
Archive operation will not be executed. (Ignore this condition in MRS
3.3.1-LTS and later versions.)

The suggestion

The Archive job must be executed at least once a day, which can be executed
every two to four hours.

The MOR and COW tables of Hudi must be archived at least once a day. For
details about how to archive the MOR and COW tables, see section 2.2.1.6. The
archive function of the COW can automatically determine whether to execute the
data write operation.

7.4 Spark on Hudi Development Specifications

7.4.1 Spark Read/Write Hudi Development Specifications

Specifications of the parameters in various write modes for the Spark write
Hudi

Type Descriptio
n

Enable parameter Scen
ario
Selec
tion

Features

upse
rt

update +
insert
Hudi
default
write type,
which has
the update
capability.

This parameter is set by default and
does not need to be set to Enabled.
● SparkSQL:

set
hoodie.datasource.write.operation=upsert;

● DataSource Api:
df.write
.format("hudi")
.options(xxx)
.option("hoodie.datasource.write.operation",
"upsert")
.mode("append")
.save("/tmp/tablePath")

The
defau
lt
value
is
select
ed.

Pros:
● Small

files can
be
merged.

● Updates
are
supporte
d.

Disadvanta
ges:
● Write

speed
go by
the rules
to the
letter.

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

Type Descriptio
n

Enable parameter Scen
ario
Selec
tion

Features

appe
nd

Directly
write data
without
updates

● Spark: Spark does not have the
pure append mode. You can use
the bulk insert mode instead.

● SparkSQL:
set hoodie.datasource.write.operation =
bulk_insert;
set
hoodie.datasource.write.row.writer.enable =
true;

● DataSource Api:
df.write
.format("hudi")
.options(xxx)
.option("hoodie.datasource.write.operation",
"bulk_insert")
.option("hoodie.datasource.write.row.writer.e
nable", "true")
.mode("append")
.save("/tmp/tablePath")

High
throu
ghput
and
no
data
updat
e
scena
rio.

Pros:
● Fastest

write
speed.

Disadvanta
ges:
● Small

files
cannot
be
merged.

● No
update
capabilit
y.

● Clusterin
g is
required
to
merge
small
files.

delet
e

Delete
operation

No parameter is required. You can
directly use the delete syntax.
delete from tableName where primaryKey='id1';

The
SQL
state
ment
delet
es
data.

Same as
the upsert
type.

Inser
t
over
write

Override
partition

No parameter is required. Use the
insert overwrite syntax directly.
insert overwrite table tableName partition (dt =
'2021-01-04')
select * from srcTable;

Partiti
on
level
again.

Overwrite
the
partition.

Inser
t
over
write
table

Override
the entire
table

No parameter is required. Use the
insert overwrite syntax directly.
insert overwrite table tableName
select * from srcTable;

Rewri
te it
all.

Overwrite
the entire
table.

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

Type Descriptio
n

Enable parameter Scen
ario
Selec
tion

Features

Bulk
_inse
rt

Batch
Import

● SparkSQL:
set hoodie.datasource.write.operation =
bulk_insert;
set
hoodie.datasource.write.row.writer.enable =
true;

● DataSource Api:
df.write
.format("hudi")
.options(xxx)
.option("hoodie.datasource.write.operation",
"bulk_insert")
.option("hoodie.datasource.write.row.writer.e
nable", "true")
.mode("append")
.save("/tmp/tablePath")

You
are
advis
ed to
use
this
tool
durin
g
table
initial
izatio
n and
migra
tion.

The mode
is the same
as the
append
mode.

Specifications for Spark to read Hudi parameters in incremental mode
Type Descriptio

n
Enable parameter Scenario

Selectio
n

Features

snap
shot

Real-time
data
reading.

Default value. No parameter is
required to enable this function.
SparkSQL:
set hoodie.datasource.query.type=snapshot;

DataSource Api:
val df = spark.read
.format("hudi")
.option("hoodie.datasource.query.type",
"snapshot")
.load("tablePath")

Default
selection

Each read
data is the
latest, and
the data is
visible
immediatel
y after
being
written.

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

Type Descriptio
n

Enable parameter Scenario
Selectio
n

Features

incre
men
tal

Increment
al query.
Only the
data
between
two
commit
operations
is queried.

● SparkSQL:
set
hoodie.tableName.consume.mode=INCR
EMENTAL;// The current table must be
read in incremental mode.
set
hoodie.tableName.consume.start.timesta
mp=20201227153030;// Specify the
initial incremental pull. commit
set
hoodie.tableName.consume.end.timesta
mp=20210308212318; // specifies the
end of the incremental pull. If the end
of the commit operation is not
specified, the latest commit operation is
used.
select * from tableName where
`_hoodie_commit_time`>'
20201227153030'and
`_hoodie_commit_time`<='
20210308212318'; //The results must be
filtered by start.timestamp and
end.timestamp. If end.timestamp is not
specified, the results are filtered by
start.timestamp.
set
hoodie.tableName.consume.mode=SNAP
SHOT; // After using the incremental
mode, the query mode must be reset.

● DataSource Api:
val df = spark.read
.format("hudi")
.option("hoodie.tableName.consume.mo
de", "INCREMENTAL")
.option("hoodie.tableName.consume.star
t.timestamp", "20201227153030")
.option("hoodie.tableName.consume.end
.timestamp", "20210308212318")
.load("tablePath")
.where ("`_hoodie_commit_time`>'
20201227153030' and
`_hoodie_commit_time`<='
20210308212318 '")

In the
streamin
g
processin
g
scenario,
only
incremen
tal data
is
obtained
each
time.

Reads only
the data
between
two
commit
operations.
It is not a
full table
scan, which
is much
more
efficient
than
obtaining
the data
before the
commit
operation
by using
the where
condition.

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

Type Descriptio
n

Enable parameter Scenario
Selectio
n

Features

read
_opti
mize
d

Read-
optimized
view.
Only the
data in the
parquet
file in the
table is
read. For
the mor
table, new
data is
written to
the log.
Therefore,
the data
read in
this mode
is not the
latest.

● SparkSQL:
When the Mor table is
synchronized to Hive, three
tables are generated: primary
table, ro table, and rt table.
The ro table is the read
optimization table. You can
directly read the ro table.
select * from tableName_ro;

● DataSource Api:
val df = spark.read
.format("hudi")
.option("hoodie.datasource.query.type",
"read_optimized")
.load("tablePath")

The
query
performa
nce is
required,
but the
data
delay is
acceptab
le.

For the
mor table,
the
performanc
e of this
read mode
is much
faster than
that of the
real-time
table. In
this mode,
log data is
not read
and can be
read only
after data
is
compacted.
Therefore,
data
reading in
this mode
has a
certain
data
latency.

7.4.1.1 SparkSQL table creation parameter specifications

The rules
● When creating a table, you must specify primaryKey and preCombineField.

Hudi tables provide the data update and idempotent write capabilities. This
capability requires that primary keys must be set for data records to identify
duplicate data and update operations. If the primary key is not specified, the
table will lose the data update capability. If the preCombineField parameter is
not specified, duplicate primary keys will occur.

Parameter
name

Parameter Description Input
Value

Description

primaryKey primary key of hudi On
Dema
nd

It must be specified. It
can be a composite
primary key but must
be globally unique.

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

Parameter
name

Parameter Description Input
Value

Description

preCombineFiel
d

Pre-combination key.
Multiple data records with
the same primary key are
merged based on this field.

On
dema
nd

This parameter is
mandatory. Data with
the same primary key
will be merged by this
field. You cannot
specify multiple fields.

● Do not set hoodie.datasource.hive_sync.enable to false during table creation.
If this parameter is set to false, newly written partitions cannot be
synchronized to Hive Metastore. The query engine loses data when reading
the data because the newly written partition information is missing.

● Do not set the Hudi index type to INMEMORY.
This index is for test use only. Using the index in the production environment
will cause duplicate data.

Creating an example
create table data_partition(id int, comb int, col0 int, yy int, mm int, dd int)
using hudi -- Specify the hudi data source.
partitioned by(yyy, mm, dd) --Specify the partition. Multi-level partitioning is supported.
location '/opt/log/data_partition' --Specify the path. If the table is not created in Hive Warehouse, the table
is created.
options(
type='mor', --Table type: mor or cow
primaryKey='id', --primary key, which can be a compound primary key but must be globally unique.
preCombineField='comb' --Pre-combined field. Data with the same primary key will be merged by this field.
Currently, only one field cannot be specified.
)

7.4.1.2 Specifications for Spark to read Hudi parameters in incremental
mode

rules
Before the incremental query, you must specify the query mode of the current
table as the incremental query mode and rewrite the query mode of the table
after the query.

If the incremental query is complete and the table query mode is not set again,
subsequent real-time query will be affected.

Example
set hoodie.tableName.consume.mode=INCREMENTAL;// The current table must be read in incremental
mode.
set hoodie.tableName.consume.start.timestamp=20201227153030;// Specify the initial incremental pull.
commit
set hoodie.tableName.consume.end.timestamp=20210308212318; // specifies the end of incremental
pulling. If this parameter is not specified, the latest commit command is used.
select * from tableName where `_hoodie_commit_time`>' 20201227153030'and `_hoodie_commit_time`<='
20210308212318'; //The results must be filtered based on start.timestamp and end.timestamp. If
end.timestamp is not specified, the results must be filtered based only on start.timestamp.

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

The set hoodie.tableName.consume.mode=SNAPSHOT; // has used the incremental mode, and the query
mode must be reset.

7.4.1.3 Specifications for setting the compaction parameter in the Spark
asynchronous task execution table

● Do not manually run the run schedule command to generate a compaction
plan if the write job is not stopped.
Error example:
run schedule on dsrTable

If other tasks are writing data to the table, data loss will occur after this
operation is performed.

● When running the run compaction command, do not set
hoodie.run.compact.only.inline to false. Set hoodie.run.compact.only.inline to
true.
Error example:
set hoodie.run.compact.only.inline=false;
run compaction on dsrTable;

If other tasks are writing data to the table, performing the preceding
operations will cause data loss.
Correct example: Asynchronous Compaction
set hoodie.compact.inline = true;
set hoodie.run.compact.only.inline=true;
run compaction on dsrTable;

7.4.1.4 Spark Table Data Maintenance Specifications
Do not run the Alter command to modify the key attributes of a table: type/
primaryKey/preCombineField/hoodie.index.type.

Run the following statement to modify the key attributes of the table:
alter table dsrTable set tblproperties('type'='xx');

alter table dsrTable set tblproperties('primaryKey'='xx');

alter table dsrTable set tblproperties('preCombineField'='xx');

alter table dsrTable set tblproperties('hoodie.index.type'='xx');

Engines such as Hive and Presto can directly modify table attributes. However,
such modification will cause duplicate data in the entire Hudi table or even data
damage. Therefore, do not modify the preceding attributes.

7.4.1.5 Suggestions for Spark Concurrently Write Hudi Data
● In concurrent scenarios, the inter-partition concurrent write mode is

recommended. That is, different write tasks are written to different partitions.
Partition concurrency parameter control:
– SQL mode:

set hoodie.support.partition.lock=true;

– DataSource API mode:
df.write
.format("hudi")
.options(xxx)
.option("hoodie.support.partition.lock", "true")
.mode(xxx)
.save("/tmp/tablePath")

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

NO TE

The preceding parameters must be set for all inter-partition concurrent write tasks.

● Do not perform concurrent writes in the same partition. To perform
concurrent writes, you need to enable the Hudi OCC mode and strictly comply
with the concurrency parameter settings. Otherwise, table data may be
damaged.
Concurrent OCC parameter control:
– SQL mode:

//Enable the OCC.
set hoodie.write.concurrency.mode=optimistic_concurrency_control;
set hoodie.cleaner.policy.failed.writes=LAZY;
//Enable the concurrent lock ZooKeeper.
set
hoodie.write.lock.provider=org.apache.hudi.client.transaction.lock.ZookeeperBasedLockProvider; /
/ Setting the ZooKeeper Lock
set hoodie.write.lock.zookeeper.url=<zookeeper_url>; // Setting the ZooKeeper Address
set hoodie.write.lock.zookeeper.port=<zookeeper_port>; // Setting the Use of the ZooKeeper Port
set hoodie.write.lock.zookeeper.lock_key=<table_name>; // Set lock name
set hoodie.write.lock.zookeeper.base_path=<table_path>; // Setting the ZooKeeper Lock Path

– DataSource API mode:
df.write
.format("hudi")
.options(xxx)
.option("hoodie.write.concurrency.mode", "optimistic_concurrency_control")
.option("hoodie.cleaner.policy.failed.writes", "LAZY")
.option("hoodie.write.lock.zookeeper.url", "zookeeper_url")
.option("hoodie.write.lock.zookeeper.port", "zookeeper_port")
.option("hoodie.write.lock.zookeeper.lock_key", "table_name")
.option("hoodie.write.lock.zookeeper.base_path", "table_path")
.mode(xxx)
.save("/tmp/tablePath")

NO TE

1. The preceding parameters must be set for all concurrent write tasks. The OCC does not
ensure that all concurrent write tasks are successfully executed. When multiple write
tasks update the same file, only one task succeeds.

2. In the concurrent scenario, the cleaner policy must be set to Lazy. Therefore, junk files
cannot be automatically deleted.

7.4.2 Suggestions on configuring resources for Spark read and
write Hudi resources

● According to the resource configuration rules for the Hudi task of Spark, the
ratio of memory to CPU cores is 2:1, and the ratio of off-heap memory to CPU
cores is 0.5:1. That is, one core, requiring 2 GB heap memory and 0.5 GB non-
heap memory.

NO TE

In the Spark initialization and import scenario, the preceding resource ratio needs to
be adjusted because the amount of data to be processed is large. The recommended
ratio of memory to core is 4:1 and the ratio of non-heap memory to core is 1:1.

Example:
spark-submit
--master yarn-cluster
--executor-cores 2 //Core
--executor-memory 4g //Heap memory
--conf spark.executor.memoryOverhead=1024 // off-heap memory

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

● Spark-based ETL calculation: The recommended ratio of CPU core to memory
is greater than 1:2, and the recommended ratio is from 1:4 to 1:8.
The previous rule refers to the resource ratio of pure read and write. If Spark
jobs have service logic calculation in addition to read and write, this process
will cause memory increase. Therefore, it is recommended that the ratio of
CPU cores to memory be greater than 1:2. If the logic is complex, increase the
memory. This should be adjusted based on the actual situation. Generally, the
default value range is 1:4 to 1:8.

● It is recommended that the number of CPU cores be greater than or equal to
the number of buckets. (The partition table may be written to multiple
partitions each time. In ideal conditions, the recommended number of CPU
cores = Number of write partitions x Number of buckets. If the actual number
of cores is less than the value, the write performance decreases linearly.)
Example:
The number of buckets in the current table is three, and the number of
partitions that are written to the table is two. It is recommended that the
number of cores configured for the Spark import task be greater than or
equal to 3 x 2.
spark-submit
--master yarn-cluster
--executor-cores 2
--executor-memory 4g
--excutor-num 3

The preceding configuration indicates that the number of excutor-
num*executor-cores=6 >= partitions multiplied by the number of buckets is 6.

7.4.3 Spark On Hudi Performance Optimization

Optimizing Spark Shuffle Parameters to Improve Hudi Write Efficiency
● If spark.shuffle.readHostLocalDisk is set to true, the local disk reads shuffle

data, reducing network transmission overhead.
● If spark.io.encryption.enabled is set to false, the shuffle process is disabled

from writing encrypted disks, improving the shuffle efficiency.
● Set spark.shuffle.service.enabled to true to enable the shuffle service and

improve the stability of the shuffle task.

Configuration Item Cluster Default
Value

After adjustment

--conf spark.shuffle.readHostLocalDisk false true

--conf spark.io.encryption.enabled true false

--conf spark.shuffle.service.enabled false true

Adjusting Spark Scheduling Parameters to Optimize the Spark Scheduling
Delay in OBS Scenarios

● If OBS storage is enabled, Spark locality can be disabled to improve Spark
scheduling efficiency.

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

Configuration Item Cluster Default
Value

After adjustment

--conf spark.locality.wait 3s 0s

--conf spark.locality.wait.process 3s 0s

--conf spark.locality.wait.node 3s 0s

--conf spark.locality.wait.rack 3s 0s

Optimizes the shuffle parallelism and improves the Spark processing
efficiency.

The following figure shows the shuffle concurrency.

The default cluster size is 200. You can set the job size separately. If the bottleneck
stage (long execution time) is found and the number of cores allocated to the
current job is greater than the number of concurrent jobs, the concurrency is
insufficient. Optimize the configuration as follows:

Scenario Configuration
Item

Cluster
Default

After adjustment

Jar Job spark.default.par
allelism

200 Set this parameter to twice
the number of available
resources in the actual job.

SQL Job spark.sql.shuffle.
partitions

200 Set this parameter to twice
the number of available
resources in the actual job.

Hudi
Warehousing
Operation

hoodie.upsert.sh
uffle.parallelism

200 Used by non-bucket tables.
Set this parameter to twice
the number of available
resources.

CA UTION

When spark.dynamicAllocation.enabled is set to true, resources are evaluated
based on spark.dynamicAllocation.maxExecutors.

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

Bucket table. Bucket tailoring can be enabled to improve primary key click
query efficiency.

Example:

The service uses the primary key ID as the query condition to perform the point
query. For example, select xxx where id = idx...

When creating a table, you can add the following attributes to improve the query
efficiency. By default, the attribute value is primaryKey, that is, primary key.

hoodie.bucket.index.hash.field=id

When initializing a Hudi table, you can quickly write data in BulkInsert
mode.

Example:

set hoodie.combine.before.insert=true; //: deduplicates the data before the database is imported. If the data
is not duplicate, you do not need to set this parameter.
set hoodie.datasource.write.operation = bulk_insert; // specifies the bulk insert mode.
set hoodie.bulkinsert.shuffle.parallelism = 4; // specifies the degree of parallelism during bulk_insert data
writing, which is equal to the number of partition parquet files saved after data writing.
insert into dsrTable select * from srcTabble

Enable log column tailoring to improve the query efficiency of the mor
table.

When the mor table is read, logs and Parquet are combined, and the performance
is not satisfactory. Log column tailoring can be enabled to reduce the I/O read
overhead during combination.

Run the following command to query the SparkSQL database:

set hoodie.enable.log.column.prune=true;

Other parameters are optimized when Spark processes Hudi tables.
● Set spark.sql.enableToString to false to reduce the memory usage when Spark

parses complex SQL statements and improve the parsing efficiency.
● If spark.speculation is set to false, speculative execution is disabled. Enabling

this parameter consumes extra CPU resources. In addition, Hudi does not
support this parameter. If this parameter is enabled, files may be damaged.

Configuration Item Cluster Default After adjustment

--conf spark.sql.enableToString true false

--conf spark.speculation false false

7.5 Bucket Tuning Example

7.5.1 Creating a Bucket Index Table
Common parameters for setting bucket indexes are as follows:

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

● Spark:
hoodie.index.type=BUCKET
hoodie.bucket.index.num.buckets=5

● Flink
index.type=BUCKET
hoodie.bucket.index.num.buckets=5

Determine whether to use a partitioned table or a non-partitioned table.

Tables are classified into fact tables and dimension tables based on their
application scenarios.

● A fact table usually has a large amount of data, mainly new data, and a small
proportion of updated data. In addition, most updated data is within a recent
period (year, month, or day). When the downstream reads the table for ETL
calculation, the downstream usually uses the time range (for example, the
latest day, month, or year) for tailoring. Such a table can be partitioned based
on the data creation time to ensure the optimal read and write performance.

● Generally, the data volume of a dimension table is small. The data volume of
the entire table is mainly updated and few new data is added. The table data
volume is stable. In addition, full data needs to be read for ETL calculation
such as join. Therefore, the performance of non-partitioned tables is better.

● Do not update the partition key of a partitioned table. Otherwise,
duplicate data will be generated.

Exception scenario: ultra-large dimension table and ultra-small fact table

In special cases, for example, a dimension table with a large number of data
continuously added exists. (The table data volume is greater than 200 GB or the
daily growth volume exceeds 60 MB.) or a fact table with very small data volume.
(The table data volume is less than 10 GB and will not exceed 10 GB in the next
three to five years.) Exception handling needs to be performed based on specific
scenarios:

● Dimension table with a large number of data continuously added

Method 1: Reserve the number of buckets. If a non-partitioned table is used,
you need to estimate the data increment in a long period of time to increase
the number of buckets in advance. The disadvantage is that files will continue
to expand as data increases.

Method 2: Large-granularity partitioning (recommended). If a partition table
is used, calculate the data based on the data growth. For example, yearly
partitioning is used. This method is more troublesome, but the table does not
need to be imported again after several years.

Method 3: Data aging: Analyze whether invalid dimension data can be
deleted from large dimension tables based on service logic to reduce the data
scale.

● A fact table with a very small amount of data

In this way, the non-partitioned table can be used to reserve more buckets to
improve the read and write performance while estimating the data growth
over a long period of time.

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

Check the number of buckets in the table.

The number of buckets in the Hudi table is related to the table performance.
Therefore, pay special attention to the setting.

The following are the key information for setting the number of buckets. You need
to confirm the information before creating a table.

● Non-partition table

a. Total number of data records in a single table = select count(1) from
tablename (required when entering the lake)

b. Size of a single data record = 1 KB on average (Huawei recommends that
you run the select * from tablename limit 100 command to paste the
query result in Notepad++ to obtain the size of 100 records and divide
the size by 100 to obtain the average size of a single record.)

c. Data volume in a single table (GB) = Total number of data records in a
single table x Data size in a single table/1024/1024

d. Number of buckets for non-partitioned tables = MAX(Data volume of a
single table (GB)/2 GB x 2) Roundup, 4)

● Partition table

a. Maximum number of partition data records in the last month = Consult
the product line before entering the lake

b. Size of a single data record = 1 KB on average (Huawei recommends that
you run the select * from tablename limit 100 command to paste the
query result in Notepad++ to obtain the size of 100 data records and
divide the size by 100 to obtain the average size of a single data record.)

c. Data volume of a single partition (GB) = Maximum number of data
records in the partition in the last month x Data size of a single table/
1024/1024

d. Number of buckets in the partition table = MAX(Data volume of a single
partition (GB)/2 GB, rounded up, 1)

CA UTION

The total data size of the table is used, not the size of the compressed file.
An even number of buckets is recommended. Set the minimum number of
buckets for a non-partitioned table to 4 and that for a partitioned table to 1.

Confirm the SQL statement for creating a table.

DataArts supports operations on Hudi tables using Spark JDBC and Spark APIs.

● In Spark JDBC mode, public resources are used and Spark jobs do not need to
be started independently. However, resources and configuration parameters
required for SQL execution cannot be specified. Therefore, you are advised to
create tables or query a small amount of data.

● When SQL statements executed in Spark API mode are used, it takes a long
time to start a Spark job independently. However, you can set running

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

program parameters to specify parameters such as resources required by the
job. Batch import is recommended.

A job uses APIs to specify resources to prevent other tasks from occupying JDBC
resources for a long time.

CA UTION

If DataArts uses Spark APIs to operate Hudi tables, you must add the parameter --
conf spark.support.hudi=true and run jobs by scheduling.

Creating Hudi Tables Using DataArts
DataArts supports operations on Hudi tables using Spark JDBC and Spark APIs.

● In Spark JDBC mode, public resources are used and Spark jobs do not need to
be started independently. However, resources and configuration parameters
required for SQL execution cannot be specified. Therefore, you are advised to
create tables or query a small amount of data.

● When SQL statements executed in Spark API mode start a Spark job
independently, it takes a certain period of time. However, you can specify
parameters such as resources required by the job by configuring running
program parameters. Batch import is recommended.

A job uses APIs to specify resources to prevent other tasks from occupying JDBC
resources for a long time.

CA UTION

If DataArts uses Spark APIs to operate Hudi tables, you must add the parameter --
conf spark.support.hudi=true and run jobs by scheduling.

7.5.2 Hudi table initialization
1. Usually, a Spark job is used to initialize and import inventory data. The

initialization data volume is large. Therefore, you are advised to use APIs to
provide sufficient resources for the initialization.

2. In the scenario where Flink or Spark stream jobs need to be written in real
time after batch initialization, you are advised to filter messages on the and
consume the messages from a specified time range to control the repeated
data access volume. (For example, after Spark initialization is complete, Flink
filters out data generated two hours ago when consuming Kafka.). If Kafka
messages cannot be filtered, you can access the data in real time to generate
offsets, truncate tables, import historical data, and enable real-time data.

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

NO TE

1. If the table already contains data and no truncate table exists before batch initialization,
the batch data will be written into a large log file, which poses great pressure on
subsequent compaction and requires more resources.

2. Hudi tables are stored in Hive metadata. There should be one internal table (manually
created) and two external tables (automatically created after data is written).

3. Two external tables named _ro (Users read only the merged parquet file, that is, read
the optimized view chart.), _rt (Read the latest version of data written in real time, i.e.
real-time view chart).

7.5.3 Real-time Task Access
Real-time jobs are usually completed by Flink SQL or SparkStreaming. For real-
time streaming tasks, compaction plans are generated synchronously and
asynchronously.

● Configure the Hudi table on the sink end in a Flink SQL job as follows:
create table denza_hudi_sink (
$HUDI_SINK_SQL_REPLACEABLE$
) PARTITIONED BY (
years,
months,
days
) with (
'connector' = 'hudi', //Specifies that the Hudi table is written.
'path'='obs://XXXXXXXXXXXXXXXXXX/', //Specify the path for storing the Hudi table.
'table.type'='MAKEED_ON_READ', //Hudi table type
'hoodie.datasource.write.recordkey.field' = 'id', //Primary key
'write.precombine.field'='vin', //Combined field
'write.tasks' = '10', //Flink write parallelism
'hoodie.datasource.write.keygenerator.type' = 'COMPLEX', //Specify the KeyGenerator, which is the
same as the Hudi table type created by Spark.
' hoodie.datasource.write.hive_style_partitioning '='true', //Use the partition format supported by Hive.
'read.streaming.enabled' = 'true', //Enable stream reading.
'read.streaming.check-interval'='60', //checkpoint interval, in seconds.
'index.type' = 'BACKET', //Specify the index type of the Hudi table as BUCKET.
'hoodie.bucket.index.num.buckets' = '10', //Specify the number of buckets.
'compaction.delta_commits' = '3', //Interval for the commit file generated by the compaction
'compaction.async.enabled' = 'false', //Disable the asynchronous execution of the compaction.
'compaction.schedule.enabled' ='true', //compaction synchronously generates a plan.
'clean.async.enabled'='false', //Disable asynchronous clean.
'hoodie.archive.automatic'='false', //Automatic archive disabled
'hoodie.clean.automatic'='false', //Automatic clean is disabled.
'hive_sync.enable' = 'true', // Automatically synchronize Hive tables.
'hive_sync.mode' = 'jdbc', //The Hive table synchronization mode is jdbc.
'hive_sync.jdbc_url'='', //Jdbc URL for synchronizing Hive tables
'hive_sync.db' = 'hudi_cars_byd', //Database for synchronizing Hive tables
'hive_sync.table'='byd_hudi_denza_1s_mor', //Synchronize the table name of the Hive table.
'hive_sync.metastore.uris' = 'thrift://XXXXX:9083', //Metastore URI for synchronizing Hive tables
'hive_sync.support_timestamp' = 'true', //The Hive table supports the timestamp format.
'hive_sync.partition_extractor_class' = 'org.apache.hudi.hive.MultiPartKeysValueExtractor' / /
Synchronize the extractor class of the Hive table.
);

● The following table lists the common parameters used by the Spark
Streaming to write data to the Hudi table. (The meaning of the parameter is
similar to that of flink and is not commented out.)
hoodie.table.name=
hoodie.index.type=BUCKET
hoodie.bucket.index.num.buckets=3
hoodie.datasource.write.precombine.field=
hoodie.datasource.write.recordkey.field=
hoodie.datasource.write.partitionpath.field=
hoodie.datasource.write.table.type= MERGE_ON_READ

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

hoodie.datasource.write.hive_style_partitioning=true
hoodie.compact.inline=true
hoodie.schedule.compact.only.inline=true
hoodie.run.compact.only.inline=false
hoodie.clean.automatic=false
hoodie.clean.async=false
hoodie.archive.async=false
hoodie.archive.automatic=false
hoodie.compact.inline.max.delta.commits=50
hoodie.datasource.hive_sync.enable=true
hoodie.datasource.hive_sync.partition_fields=
hoodie.datasource.hive_sync.database=
hoodie.datasource.hive_sync.table=
hoodie.datasource.hive_sync.partition_extractor_class=org.apache.hudi.hive.MultiPartKeysValueExtracto
r

7.5.4 Offline Compaction Configuration
For real-time services of MOR tables, compaction plans are generated during data
write. Therefore, DataArts or scripts need to be used to schedule SparkSQL to
execute the generated compaction plans.

● Execution parameter
set hoodie.compact.inline = true; // Enable compaction.
The set hoodie.run.compact.only.inline = true; //compaction executes only the generated plans and
does not generate new plans.
set hoodie.cleaner.commits.retained = 120; // Clearing and Retaining 120 Commits
A maximum of 140 commit records can be retained in the set hoodie.keep.max.commits = 140; //
archive.
At least 121 commit records can be retained in the set hoodie.keep.min.commits = 121; // archive.
set hoodie.clean.async = false; // Enable asynchronous cleanup.
set hoodie.clean.automatic = false; //Disable the automatic cleaning function to prevent the
compaction operation from starting the clean operation.
run compaction on $tablename; //Execute the compaction plan.
run clean on $tablename; //Run the clean operation to delete redundant versions.
run archivelog on $tablename; //Merge and clear metadata files by running archivelog.

NO TE

Do not set the clearance and archiving parameters to a large value. Otherwise, the
Hudi table performance will be affected. Therefore, you are advised to:

Two times the number of commit operations required by the
hoodie.cleaner.commits.retained = compaction

hoodie.keep.min.commits = hoodie.cleaner.commits.retained + 1

hoodie.keep.max.commits = hoodie.keep.min.commits + 20

Run the clean and archive commands after the compaction command is executed. The
clean and archive logs have low requirements on resources. To avoid resource waste,
you can configure the compaction task as a task when DataArts is used to schedule
the clean and archive logs as a task and configure different resources for the clean
and archive logs to save resources.

● Execution resource

a. The interval for scheduling compaction plans must be smaller than the
interval for generating compaction plans. For example, if a compaction
plan is generated about one hour, the scheduling task for executing the
compaction plan must be scheduled at least every half an hour.

b. For the resources configured for the Compaction job, the number of
vcores must be at least equal to or greater than the number of buckets in
a single partition. The ratio of the number of vcores to the memory must
be 1:4, that is, one vcore is configured with 4 GB memory.

MapReduce Service
Component Development Specifications 7 Hudi

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

8 IoTDB

8.1 IoTDB Application Development Rules

Set a Proper Number of Storage Groups

A proper number of storage groups can improve performance. The system
processes I/O requests first in the memory cache and then switch to the stored
files or folders if no result is found. In this regard, a large number of storage
groups will store too many files or folders, take up large amounts of memory, and
slow down the system I/O speed as a result. A small number will reduce the
concurrency and block write commands.

Set a balanced number of storage groups based on your data scale and usage
scenarios to achieve better system performance.

All Time Series Must Start with root and End with the Sensor

The time series can be considered as the complete path of the sensor that
generates the time series data. In IoTDB, all time series must start with root and
end with the sensor.

8.2 IoTDB Application Development Suggestions

Use the Native Session API to Avoid SQL Concatenation

For the sample of calling the IoTDB Session API in a cluster in security mode, see
IoTDB Session. For that in a cluster in common mode, see IoTDB Session.

Use Write APIs with High Performance Based on Service Requirements

The write APIs are ranked as follows in descending order of their performance:

insertTablets (inserts multiple tablets, from multiple rows of the same column on
multiple devices) >

MapReduce Service
Component Development Specifications 8 IoTDB

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

https://support.huaweicloud.com/intl/en-us/devg-lts-mrs/mrs_07_500011.html
https://support.huaweicloud.com/intl/en-us/devg-lts-mrs/mrs_07_490011.html

insertTablet (inserts a tablet, from multiple rows of the same column on a single
device) >

insertRecordsOfOneDevice (inserts multiple records, from multiple rows of
different columns on a single device) >

insertRecords(Object value) (inserts multiple records, from multiple rows of
different columns on multiple devices) >

insertRecords(String value) (inserts multiple records, from multiple rows of
different columns on multiple devices) >

insertRecord (inserts a record, from only one row on a single device)

Do Not Use the Same Client to Initiate Concurrent Connections
An IoTDB client can connect to only one IoTDBServer. A large number of
concurrent connections from the same client to IoTDBServer will deteriorate the
connection performance. You can use multiple clients to connect to IoTDBServer
based on service requirements to achieve load balancing.

Use SessionPool to Reuse Connections
Use the distributed technology to cache sessions so that the client does not need
to create sessions for each read or write request. Alternatively, use SessionPool to
reuse connections.

Close ResultSet and SessionDataSet in a Timely Manner
Close ResultSet and SessionDataSet in a timely manner to avoid resource wastes.

MapReduce Service
Component Development Specifications 8 IoTDB

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

9 Kafka

9.1 Kafka Application Development Rules

Create Topics by calling Kafka APIs (AdminZkClient.createTopic)
● For Java programming languages, correct examples are as follows:

import kafka.zk.AdminZkClient;
import kafka.zk.KafkaZkClient;
import kafka.admin.RackAwareMode;
…
KafkaZkClient kafkaZkClient = KafkaZkClient.apply(zkUrl, JaasUtils.isZkSecurityEnabled(),
zkSessionTimeoutMs, zkConnectionTimeoutMs, Int.MaxValue(), Time.SYSTEM, "", "", null);
AdminZkClient adminZkClient = new AdminZkClient(kafkaZkClient);
adminZkClient.createTopic(topic, partitions, replicas, new Properties(), RackAwareMode.Enforced
$.MODULE$);
…

● For Scala programming languages, correct examples are as follows:
import kafka.zk.AdminZkClient;
import kafka.zk.KafkaZkClient;
…
val kafkaZkClient: KafkaZkClient = KafkaZkClient.apply(zkUrl, JaasUtils.isZkSecurityEnabled(),
zkSessionTimeoutMs, zkConnectionTimeoutMs, Int.MaxValue, Time.SYSTEM, "", "")
val adminZkClient: AdminZkClient = new AdminZkClient(kafkaZkClient)
adminZkClient.createTopic(topic, partitions, replicas)

The number of Partition copies must be less than or equal to the number of
nodes

Copies of Topic Partitions in Kafka are used for improving data reliability. Copies of
the same Partition are distributed on different nodes. Therefore, the number of
Partition copies must be less than or equal to the number of nodes.

Set the fetch.message.max.bytes parameter of the Consumer client

The value of fetch.message.max.bytes muster be equal to or greater than the
maximum number of bytes of messages that the Producer client generates each
time. If the value is too small, the messages generated by the Producer client
cannot be consumed successfully by the Consumer client.

MapReduce Service
Component Development Specifications 9 Kafka

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

9.2 Kafka Application Development Suggestions

In the same group, the number of consumers and that of Topic Partitions to
be consumed should be the same

If the number of consumers is greater than that of Topic Partitions, some
consumers cannot consume Topics. If the number of consumers is smaller than
that of Topic Partitions, concurrent consumption cannot be fully represented.
Therefore, the number of consumers and that of Topic Partitions to be consumed
should be the same.

Avoid writing data with single ultra-large log
Data with single ultra-large log can affect efficiency and writing. Under such
circumstance, modify the values of the max.request.size and
max.partition.fetch.bytes configuration items when initializing Kafka producer
instances and consumer instances, respectively.

For example, set max.request.size and max.partition.fetch.bytes to 5252880.
 // Protcol type:configuration SASL_PLAINTEXT or PLAINTEXT
 props.put(securityProtocol, kafkaProc.getValues(securityProtocol, "SASL_PLAINTEXT"));
 // service name
 props.put(saslKerberosServiceName, "kafka");
 props.put("max.request.size", "5252880");
 // Security protocol type
 props.put(securityProtocol, kafkaProc.getValues(securityProtocol, "SASL_PLAINTEXT"));
 // service name
 props.put(saslKerberosServiceName, "kafka");
 props.put("max.partition.fetch.bytes","5252880");

MapReduce Service
Component Development Specifications 9 Kafka

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

10 Mapreduce

10.1 MapReduce Application Development Rules

Inherit the Mapper abstract class.
The map() and setup() methods are called during the Map procedure of a
MapReduce task.

Example:

public static class MapperClass extends

Mapper<Object, Text, Text, IntWritable> {
/**
* map input. The key indicates the offset of the original file, and the value is a row of characters in the
original file.
* The map input key and value are provided by InputFormat. You do not need to set them. By default,
TextInputFormat is used.
*/
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
//Custom implementation
}
/**
* The setup() method is called only once before the map() method of a map task or the reduce() method
of a reduce task is called.*/
public void setup(Context context) throws IOException,
InterruptedException {
// Custom implementation
}
}

Inherit the Reducer abstract class.
The reduce() and setup() methods are called during the Reduce procedure of a
MapReduce task.

Example:

public static class ReducerClass extends

Reducer<Text, IntWritable, Text, IntWritable> {

/**

MapReduce Service
Component Development Specifications 10 Mapreduce

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

* @param The input is a collection iterator consisting of (key, value) pairs.
* Each map puts together all the pairs with the same key. The reduce method sums the number of the
same keys.
* Call context.write(key, value) to write the output to the specified directory.
* Outputformat writes the (key, value) pairs output by reduce to the file system.
* By default, TextOutputFormat is used to write the reduce output to the HDFS.
*/

public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
// Custom implementation
}

/**
* The setup() method is called only once before the map() method of a map task or the reduce() method
of a reduce task is called.
*/

public void setup(Context context) throws IOException,
InterruptedException {

// Custom implementation. Context obtains the configuration information.

}
}

Submit a MapReduce task.

Use the main() method to create a job, set parameters, and submit the job to the
Hadoop cluster.

Example:

public static void main(String[] args) throws Exception {
Configuration conf = getConfiguration();
// Input parameters for the main method: args[0] indicates the input path of the MR job. args[1] indicates
the output path of the MR job.
String[] otherArgs = new GenericOptionsParser(conf, args)
.getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "job name");
// Locate the jar package of the major task.
job.setJar("D:\\job-examples.jar");
// job.setJarByClass(TestWordCount.class);
// Set the map and reduce classes to be executed. You can also specify them in the configuration file.
job.setMapperClass(TokenizerMapperV1.class);
job.setReducerClass(IntSumReducerV1.class);
// Set the combiner class. By default, it is not used. If it is used, it runs the same classes as reduce. Exercise
care when using the Combiner class. You can also specify the combiner class in the configuration file.
job.setCombinerClass(IntSumReducerV1.class);
// Set the output type of the job. You can also specify it in the configuration file.
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// Set the input and output paths for the job. You can also specify them in the configuration file.
Path outputPath = new Path(otherArgs[1]);
FileSystem fs = outputPath.getFileSystem(conf);
// If the output path already exists, delete it.
if (fs.exists(outputPath)) {
fs.delete(outputPath, true);
}
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}

MapReduce Service
Component Development Specifications 10 Mapreduce

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

10.2 MapReduce Application Development Suggestions
Globally used configuration items, which are specified in the mapred-site.xml
configuration file.

The following provides the configuration items in the mapred-site.xml file
corresponding to the interface.

Example:

setMapperClass(Class <extends Mapper> cls) ->"mapreduce.job.map.class"
setReducerClass(Class<extends Reducer> cls) ->"mapreduce.job.reduce.class"
setCombinerClass(Class<extends Reducer> cls) ->"mapreduce.job.combine.class"
setInputFormatClass(Class<extends InputFormat> cls) ->"mapreduce.job.inputformat.class"
setJar(String jar) ->"mapreduce.job.jar"
setOutputFormat(Class< extends OutputFormat> theClass) ->"mapred.output.format.class"
setOutputKeyClass(Class<> theClass) ->"mapreduce.job.output.key.class"
setOutputValueClass(Class<> theClass) ->"mapreduce.job.output.value.class"
setPartitionerClass(Class<extends Partitioner> theClass) ->"mapred.partitioner.class"
setMapOutputCompressorClass(Class<extends CompressionCodec> codecClass)
->"mapreduce.map.output.compress"&"mapreduce.map.output.compress.codec"
setJobPriority(JobPriority prio) ->"mapreduce.job.priority"
setQueueName(String queueName) ->"mapreduce.job.queuename"
setNumMapTasks(int n) ->"mapreduce.job.maps"
setNumReduceTasks(int n) ->"mapreduce.job.reduces"

MapReduce Service
Component Development Specifications 10 Mapreduce

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

11 Spark

11.1 Spark Application Development Rules

Import the Spark class in Spark applications
● Example in Java:

//Class imported when SparkContext is created.
import org.apache.spark.api.java.JavaSparkContext
//Class imported for the RDD operation.
import org.apache.spark.api.java.JavaRDD
//Class imported when SparkConf is created.
import org.apache.spark.SparkConf

● Example in Scala:
//Class imported when SparkContext is created.
import org.apache.spark.SparkContext
//Class imported for the RDD operatin.
import org.apache.spark.SparkContext._
//Class imported when SparkConf is created.
import org.apache.spark.SparkConf

Pay attention to the parameter transfer between the Driver and Executor
nodes in distributed cluster

When Spark is used for programming, certain code logic needs to be determined
based on the parameter entered. Generally, the parameter is specified as a global
variable and assigned a null value. The actual value is assigned before the
SparkContext object is instantiated using the main function. However, in the
distributed cluster mode, the jar package of the executable program will be sent
to each Executor. If the global variable values are changed only for the nodes in
the main function and are not sent to the functions executing tasks, an error of
null pointer will be reported.

Correct:

object Test
{
 private var testArg: String = null;
 def main(args: Array[String])
 {
 testArg = ¡;
 val sc: SparkContext = new SparkContext(¡);

MapReduce Service
Component Development Specifications 11 Spark

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

 sc.textFile(¡)
 .map(x => testFun(x, testArg));
 }

 private def testFun(line: String, testArg: String): String =
 {
 testArg.split(¡);
 return ¡;
 }
}

Incorrect:

//Define an object.
object Test
{
 // Define a global variable and set it to null. Assign a value to this variable before the SparkContext object
is instantiated using the main function.
 private var testArg: String = null;
 //main function
 def main(args: Array[String])
 {
 pair
 testArg = ¡;
 val sc: SparkContext = new SparkContext(¡);

 sc.textFile(¡)
 .map(x => testFun(x));
 }

 private def testFun(line: String): String =
 {
 testArg.split(...);
 return ¡;
 }
}

No error will be reported in the local mode of Spark. However, in the distributed
cluster mode, an error of null pointer will be reported. In the cluster mode, the jar
package of the executable program is sent to each Executor for running. When the
testFun function is executed, the system queries the value of testArg from the
memory. The value of testArg, however, is changed only when the nodes of the
main function are started and other nodes are unaware of the change. Therefore,
the value returned by the memory is null, which causes an error of null pointer.

SparkContext.stop must be added before an application program stops
When Spark is used in secondary development, SparkContext.stop() must be
added before an application program stops.

NO TE

When Java is used in application development, JavaSparkContext.stop() must be added
before an application program stops.
When Scala is used in application development, SparkContext.stop() must be added before
an application program stops.

The following use Scala as an example to describe correct and incorrect examples.

Correct:

//Submit a spark job.
val sc = new SparkContext(conf)

MapReduce Service
Component Development Specifications 11 Spark

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

//Specific task
...

//The application program stops.
sc.stop()

Incorrect:

//Submit a spark job.
val sc = new SparkContext(conf)

//Specific task
...

If you do not add SparkContext.stop, the YARN page displays the failure
information. In the same task, as shown in Figure 11-1, the first program does not
add SparkContext.stop(), while the second program adds SparkContext.stop.

Figure 11-1 Difference when SparkContext.stop() is added

Appropriately plan the proportion of resources for AM
When there are many tasks and each task occupies few resources, the tasks may
fail to start even if the cluster resources are sufficient and the tasks are submitted
successfully. To address this issue, you can increase the value of Max AM
Resource Percent.

Figure 11-2 Modify Max AM Resource Percent

11.2 Spark Application Development Suggestions

Persist the RDD that will be frequently used
The default RDD storage level is StorageLevel.NONE, which means that the RDD is
not stored on disks or in memory. If an RDD is frequently used, persist the RDD as
follows:

Call cache(), persist(), or persist(newLevel: StorageLevel) of spark.RDD to persist
the RDD. The cache() and persist() functions set the RDD storage level to
StorageLevel.MEMORY_ONLY. The persist(newLevel: StorageLevel) function allows
you to set other storage level for the RDD. However, before calling this function,
ensure that the RDD storage level is StorageLevel.NONE or the same as the

MapReduce Service
Component Development Specifications 11 Spark

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

newLevel. That is, once the RDD storage level is set to a value other than
StorageLevel.NONE, the storage level cannot be changed.

To unpersist an RDD, call unpersist(blocking: Boolean = true). The function can:

1. Remove the RDD from the persistence list. The corresponding RDD data
becomes recyclable.

2. Set the storage level of the RDD to StorageLevel.NONE.

Carefully select the the shuffle operator
This type of operator features wide dependency. That is, a partition of the parent
RDD affects multiple partitions of the child RDD. The elements in an RDD are
<key, value> pairs. During the execution process, the partitions of the RDD will be
sequenced again. This operation is called shuffle.

Network transmission between nodes is involved in the shuffle operators.
Therefore, for an RDD with large data volume, you are advised to extract
information as much as possible to minimize the size of each piece of data and
then call the shuffle operators.

The following methods are often used:

● combineByKey() : RDD[(K, V)] => RDD[(K, C)]
This method is used to convert all the keys that have the same value in
RDD[(K, V)] to a value with type of C.

● groupByKey() and reduceByKey() are two types of implementation of
combineByKey. If groupByKey and reduceByKey cannot meet requirements in
complex data aggregation, you can use customized aggregation functions as
the parameters of combineByKey.

● distinct(): RDD[T] => RDD[T]
This method is used to remove repeated elements. The code is as follows:
map(x => (x, null)).reduceByKey((x, y) => x, numPartitions).map(_._1)

This process is time-consuming, especially when the data volume is high.
Therefore, it is not recommended for the RDD generated from large files.

● join() : (RDD[(K, V)], RDD[(K, W)]) => RDD[(K, (V, W))]
This method is used to combine two RDDs through key.
If a key in RDD[(K, V)] has X values and the same key in RDD[(K, W)] has Y
values, a total of (X * Y) data records will be generated in RDD[(K, (V, W))].

Use high-performance operators if the service permits
1. Using reduceByKey/aggregateByKey to replace groupByKey

The map-side pre-aggregation refers to that each local node performs the
aggregation operation on the same key, which is similar to the local combiner
in MapReduce. The map-side pre-aggregation ensures that each key on a
node is unique. When a node is collecting the data of the same key in the
processing results of the previous nodes, data that needs to be obtained will
be significantly reduced, decreasing disk I/O and Internet transmission cost.
Generally speaking, it is advised to replace groupByKey operator with
reduceByKey or aggregateByKey operator if possible because they will pre-
aggregate the local same key on each node by using user-defined functions.

MapReduce Service
Component Development Specifications 11 Spark

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

However, the groupByKey operator does not support pre-aggregation and
delivers lower performance than reduceByKey or aggregateByKey because all
data are distributed and transmitted on all the nodes.

2. Using mapPartitions to replace ordinary map operators
During a function invocation, mapPartitions operators will process all the data
in a partition instead of only one piece of data, and therefore delivers higher
performance than the ordinary map operators. However, mapPartitions may
occasionally result in Out of Memory (OOM). If memory is insufficient, some
objects cannot be recycled during memory recycling. Therefore, exercise
caution when using mapPartitions.

3. Performing the coalesce operation after filtering
After filtering a large portion of data (for example, above 30%) by using the
filter operator in an RDD, you are advised to manually decrease the number
of partitions by using coalesce in order to compress the data in RDD to fewer
partitions. This is because after filtering, much data in each partition is
filtered out, leaving little data to be processed. If the computing is continued,
resources can be wasted. The task handling speed decreases as the number of
tasks increases. Therefore, decreasing the number of partitions by using
coalesce to compress the RDD data to fewer partitions can ensure that all the
partitions are handled with fewer tasks. The performance can also be
enhanced in some scenarios.

4. Using repartitionAndSortWithinPartitions to replace repartition and sort
repartitionAndSortWithinPartitions is recommended by Spark official website.
It is advised to use repartitionAndSortWithinPartitions for sorting after
repartitioning. This operator can sort and shuffle repartitions at the same
time, delivering higher performance.

5. Using foreachPartitions to replace foreach
Similar to "Using mapPartitions to replace ordinary map operators", this
mechanism handles all the data in a partition during a function invocation
instead of one piece of data. In practice, foreachPartitions is proved to be
helpful in improving performance. For example, the foreach function can be
used to write all the data in RDD into MySQL. Ordinary foreach operators,
write data piece by piece, and a database connection is established for each
function invocation. Frequent connection establishments and destructions
cause low performance. foreachPartitions, however, processes all the data in a
partition at a time. Only one database connection is required for each
partition. Batch insertion delivers higher performance.

RDD Shared Variables
In application development, when a function is transferred to a Spark
operation(such as map and reduce) and runs on a remote cluster, the operation is
actually performed on the independent copies of all the variables involved in the
function. These variables will be copied to each machine. In general, reading and
writing shared variables across tasks is apparently inefficient. Spark provides two
shared variables that are commonly used: broadcast variable and accumulator.

Kryo can be used to optimize serialization performance in performance-
demanding scenarios.

Spark offers two serializers:

MapReduce Service
Component Development Specifications 11 Spark

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

org.apache.spark.serializer.KryoSerializer: high-performance but low
compatibility

org.apache.spark.serializer.JavaSerializer: average performance and high
compatibility

Method: conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")

NO TE

The following are reasons why Spark does not use Kryo-based serialization by default:
Spark uses Java serialization by default, that is, uses the ObjectOutputStream and
ObjectInputStream API to perform serialization and deserialization. Spark can also use Kryo
serialization library, which delivers higher performance than Java serialization library.
According to official statistics, Kryo-based serialization is 10 times more efficient than Java-
based serialization. Kryo-based serialization requires the registration of all the user-defined
types to be serialized, which is a burden for developers.

Suggestions on Optimizing Spark Streaming Performance
1. Set an appropriate batch processing duration (batchDuration).
2. Set concurrent data receiving appropriately.

– Set multiple receivers to receive data.
– Set an appropriate receiver congestion duration.

3. Set concurrent data processing appropriately.
4. Use Kryo-based serialization.
5. Optimize memory.

– Set the persistence level to reduce GC costs.
– Use concurrent Mark Sweep GC algorithms to shorten GC pauses.

Suggestions for a Running PySpark
To run a PySpark application, you must install the Python environment and upload
the necessary Python dependency package to the HDFS. The Python environment
provided by the cluster cannot be used.

MapReduce Service
Component Development Specifications 11 Spark

Issue 01 (2024-12-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

	Contents
	1 ClickHouse
	1.1 ClickHouse Application Development Rules
	1.2 ClickHouse Application Development Suggestions

	2 Doris
	2.1 Table Creation Rules
	2.2 Data Change
	2.3 Naming Conventions
	2.4 Data Query
	2.5 Data Import
	2.6 UDF Development
	2.7 Connection and Running

	3 Flink
	3.1 Flink Specification Overview
	3.2 FlinkSQL Connector Development
	3.2.1 Development Rules
	3.2.2 Development Suggestions
	3.2.3 Development Rules
	3.2.4 Development Rules
	3.2.5 Development Suggestions
	3.2.6 Development Rules
	3.2.7 Development Suggestions

	3.3 Flink on Hudi
	3.3.1 Development Rules
	3.3.2 Suggestions
	3.3.3 Development Rules
	3.3.4 Development Suggestions
	3.3.5 Configuration Rules
	3.3.6 Configuration Suggestions

	3.4 Flink Jobs
	3.4.1 Development Rules
	3.4.2 Development Suggestions

	3.5 Flink SQL Logic
	3.5.1 Development Rules
	3.5.2 Development Suggestions

	3.6 Flink Performance Tuning
	3.6.1 Performance Tuning Rules
	3.6.2 Performance Tuning Suggestions

	3.7 Development Examples

	4 HBase
	4.1 HBase Application Development Rules
	4.2 HBase Application Development Suggestions

	5 HDFS
	5.1 HDFS Application Development Rules
	5.2 HDFS Application Development Suggestions

	6 Hive
	6.1 Hive Application Development Rules
	6.2 Hive Application Development Suggestions

	7 Hudi
	7.1 Hudi Development Specifications Overview
	7.2 Hudi Data Sheet Design Specification
	7.2.1 Hudi Table Model Design Specifications
	7.2.2 Hudi Table Index Design Specifications
	7.2.3 Hudi Table Partition Design Specifications

	7.3 Hudi Data Table Management Operation Specifications
	7.3.1 Hudi Data Table Compaction Specifications
	7.3.2 Hudi Data Table Clean Specifications
	7.3.3 Hudi Data Table Archive Specifications

	7.4 Spark on Hudi Development Specifications
	7.4.1 Spark Read/Write Hudi Development Specifications
	7.4.1.1 SparkSQL table creation parameter specifications
	7.4.1.2 Specifications for Spark to read Hudi parameters in incremental mode
	7.4.1.3 Specifications for setting the compaction parameter in the Spark asynchronous task execution table
	7.4.1.4 Spark Table Data Maintenance Specifications
	7.4.1.5 Suggestions for Spark Concurrently Write Hudi Data

	7.4.2 Suggestions on configuring resources for Spark read and write Hudi resources
	7.4.3 Spark On Hudi Performance Optimization

	7.5 Bucket Tuning Example
	7.5.1 Creating a Bucket Index Table
	7.5.2 Hudi table initialization
	7.5.3 Real-time Task Access
	7.5.4 Offline Compaction Configuration

	8 IoTDB
	8.1 IoTDB Application Development Rules
	8.2 IoTDB Application Development Suggestions

	9 Kafka
	9.1 Kafka Application Development Rules
	9.2 Kafka Application Development Suggestions

	10 Mapreduce
	10.1 MapReduce Application Development Rules
	10.2 MapReduce Application Development Suggestions

	11 Spark
	11.1 Spark Application Development Rules
	11.2 Spark Application Development Suggestions

